

HOKKAIDO UNIVERSITY

Title	Effects of prenatal exposure to perfluoroalkyl acids on prevalence of allergic diseases among 4-year-old children
Author(s)	Goudarzi, Houman; Miyashita, Chihiro; Okada, Emiko; Kashino, Ikuko; Kobayashi, Sumitaka; Chen, Chi-Jen; Ito, Sachiko; Araki, Atsuko; Matsuura, Hideyuki; Ito, Yoichi M.; Kishi, Reiko
Citation	Environment international, 94, 124-132 https://doi.org/10.1016/j.envint.2016.05.020
Issue Date	2016-09
Doc URL	http://hdl.handle.net/2115/71412
Rights	© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	EnvironInt94_124.pdf

1	Effects of prenatal exposure to perfluoroalkyl acids on prevalence of
2	allergic diseases among 4-year-old children
3	Houman Goudarzi ^a , Chihiro Miyashita ^a , Emiko Okada ^b , Ikuko Kashino ^{a,c} , Sumitaka
4	Kobayashi ^a , Chi-Jen Chen ^{a,d} , Sachiko Ito ^a , Atsuko Araki ^a , Hideyuki Matsuura ^a , Yoichi M.
5	Ito ^e , Reiko Kishi ^a *
6	
7	^a Center for Environmental and Health Sciences, Hokkaido University, North 12 West 7 Kita-
8	ku, Sapporo 060-0812, Japan
9	^b Department of Public Health Sciences, Hokkaido University Graduate School of Medicine,
10	North 15 West 7 Kita-ku, Sapporo 060-8638, Japan
11	^c Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center
12	for Global Health and Medicine, Toyama 1-21-1, Shinjuku-ku, Tokyo 162-8655, Japan.
13	^d Department of Public Health, China Medical University, 91 Hsueh-Shih Road, Taichung
14	40402, Taiwan
15	^e Department of Biostatistics, Division of Advanced Medical Sciences, Hokkaido University
16	Graduate School of Medicine, North 15 West 7 Kita-ku, Sapporo 060-8638, Japan
17	*Corresponding author at: Center for Environmental and Health Sciences, Hokkaido
18	University, North 12 West 7, Kita-ku, Sapporo 060-0812, Japan. Tel: +81 11 706 4746; 706
19	4725. E-mail address: rkishi@med.hokudai.ac.jp (Reiko Kishi).

20 Abstract

21 Perfluoroalkyl acids (PFAAs) are ubiquitous chemicals extremely resistant and widespread 22 throughout the environment, frequently being detected in human blood samples. Animal studies have revealed that exposure to PFAAs results in immunotoxicity. However, the 23 association between PFAAs, especially long-chain PFAAs, and allergies in humans is not well 24 established. We examined whether prenatal exposure to PFAAs is associated with allergic 25 diseases among 4-year-old children in a large-scale prospective birth cohort in Hokkaido, Japan. 26 27 1558 Mother-child pairs were included in this study and prenatal levels of eleven PFAAs were measured in maternal plasma samples obtained between 28 and 32 weeks of pregnancy by 28 29 using ultra-performance liquid chromatography-tandem mass spectrometry. Participant 30 demographic and characteristic information were obtained from self-administered pre- and 31 postnatal questionnaires and medical birth records. Infant allergies were assessed using the Japanese version of the International Study of Asthma and Allergies in Childhood (ISAAC) 32 Phase Three questionnaire, which was administered 4 years post-delivery including eczema, 33 wheezing and rhinoconjunctivitis with prevalence of 19.0%, 18.7%, and 5.4%, respectively. 34 35 Associations of PFAA quartiles with allergic outcomes were examined using logistic models. Adjusted odds ratios (ORs) in the 4th quartile vs. 1st quartile (Q4 vs. Q1) for total allergic 36 37 diseases (including at least one allergic outcome) significantly decreased for perfluorododecanoic acid (PFDoDa) (Q4 vs. Q1 OR: 0.621; 95% confidence interval (CI): 38

39	0.454, 0.847) and perfluorotridecanoic acid (PFTrDA) (Q4 vs. Q1 OR: 0.712; 95% CI: 0.524,
40	0.966) in all children. We found similar results when examining the association between
41	PFAAs and eczema. The adjusted OR (Q4 vs. Q1) for wheezing in relation to higher maternal
42	PFHxS levels was 0.728 (95% CI: 0.497, 1.06) in all children. In conclusion, prenatal exposure
43	to long-chain PFAAs, such as PFDoDa and PFTrDA, may have immunosuppressive effects on
44	allergic diseases in 4-year-old children.
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

59 Perfluoroalkyl acids (PFAAs) are ubiquitous chemicals with widespread occurrence in the 60 environment, animals, and humans. PFAAs are synthetic chemicals with varying carbon lengths (4 to 14 carbons) that exhibit high thermal and chemical stability owing to fluorine-61 carbon covalent bonding. PFAAs have extensive industrial applications, such as in textile 62 impregnation, furnishings, non-stick housewares, and food packaging (Kannan et al., 2004; 63 Butenhoff et al., 2006; Fromme et al., 2009). The major routes of exposure to PFAAs are 64 through contaminated food, water, and house dust (Kato et al., 2009; Vestergren et al., 2012). 65 The most commonly used PFAAs are perfluorooctane sulfonic acid (PFOS) and 66 perfluorooctanoic acid (PFOA). While PFOS and PFOA are being actively phased out by 67 several industries, they are still present in older products. PFAAs are resistant to metabolism, 68 69 with long elimination half-lives of 3.8, 5.4, and 8.5 years in humans for PFOA, PFOS, and perfluorohexane sulfonate (PFHxS), respectively (Olsen et al., 2007). The stability and long 70 71 half-lives of PFAAs contribute to their continued presence in the environment and to human 72 exposure.

Animal studies revealed the resulting endocrine disruption, growth, and neuro- and hepatotoxic properties of PFOS and PFOA (Lau et al., 2003; Leubker et al., 2005; Seacat et al., 2003). Exposure to PFOS and PFOA in animals decreased lymphoid organ weights, and reduced the number of lymphoid cells and antibody production (Yang et al. 2001, 2002; Peden-

77	Adams et al., 2007). In animals, PFOS and PFOA inhibit the T-cell-dependent immunoglobulin
78	M (IgM) antibody response (TDAR), which is an essential mediator of immune system
79	function. For appropriate TDAR, proper function of B cells, T cells, and antigen presenting
80	cells is necessary to produce antibodies. Immune system development starts during the fetal
81	period, and in utero exposure of fetuses to chemicals can alter the development of immune
82	cells, contributing to a modified risk of developing allergic diseases in postnatal life (Luster et
83	al., 1992; DeWitt et al., 2012). Keil et al. (2008) examined the effects of gestational exposure
84	to PFOS and PFOA on the immune function of mice, 4 and 8 weeks following birth and found
85	that functional immune system deficits were not evident until 8 weeks of age when natural
86	killer cell function and IgM production were significantly reduced. This suggests an age-related
87	immune response effect during postnatal life following in utero exposure to PFAAs.
88	PFAAs can pass through the placental barrier during pregnancy and infants are exposed to
89	these chemicals through lactation and indoor house dust (Inoue et al., 2004; Vestergren et al.,
90	2012; Cariou et al., 2015). Exposure to PFAAs during this critical window of susceptibility
91	may affect several aspects of health later in life, including immune function. Previous
92	epidemiological studies proposing immunomodulatory effects of PFAAs indicated that prenatal
93	exposure to PFOS and PFOA was associated with levels of IgE in cord blood with conflicting
94	results (Wang et al., 2011; Okada et al., 2012). Additionally, pre- and post-natal exposure to
95	PFOS and PFOA are related to reduced antibody levels of tetanus and diphtheria (Grandjean et

96	al., 2012), and rubella (Granum et al., 2013) in children, and influenza in adults (Looker et al.,
97	2014). In addition, Fletcher et al. (2009) reported an inverse association between immunologic
98	biomarkers such as IgA, IgE, and C-reactive protein with high PFOA exposure levels in mid-
99	Ohio Valley residents living near a plant that contaminated the water supply with PFOA.
100	Recent studies revealed a trend of decreasing PFOA and PFOS levels in the general
101	population of the United States (Kato et al., 2009; Olsen et al., 2012) and European countries
102	such as Sweden and Germany (Glyn et al., 2012; Schroder-Kermani et al., 2012). Although we
103	previously reported a declining trend of PFOS and PFOA, we observed an increasing trend for
104	perfluorononanoic acid (PFNA, C9) and perfluorodecanoic acid (PFDA, C10) levels among
105	pregnant women between 2003 and 2011 in Hokkaido, Japan (Okada et al. 2013). We
106	previously reported negative association of PFTrDA and eczema in infancy in the same cohort
107	(Okada et al. 2014). Although some animal experiments suggest prenatal PFAA exposure
108	modifies the postnatal immune response throughout the period of early childhood (Keil et al.
109	2008), the long-term effects of PFAAs, including long-chain PFAAs, on allergic diseases in
110	childhood are not well understood thus far. In this study, we examined the association of 11
111	prenatal PFAA levels with allergic diseases among 4-year-old children assessed by ISAAC
112	questionnaires in a prospective birth cohort.

114 2. Methods

116 The current work is a part of a large ongoing birth cohort of over 20,000 mother-infant pairs 117 that were recruited through the Hokkaido Study on Environment and Children's health. The 118 details of this study have previously been described (Kishi et al. 2011 and 2013). This study was initiated in February 2003 with native Japanese mother-child pairs. Pregnant women who 119 attended prenatal visits in early pregnancy (>13 weeks of gestational age) at any of the 37 120 participating hospitals and clinics in the Hokkaido prefecture were eligible for this study. 121 122 Health care personnel approached the pregnant women during these visits to explain the study. 123 Among 33,500 eligible women from 2003 to 2009, 17,869 mothers agreed to participate in this 124 study. Of these, we selected 12,847 who had submitted a baseline questionnaire with available 125 third trimester blood samples and hospital birth records. After exclusion of cases with 126 miscarriage and stillbirth (n = 19), congenital malformation (n = 143), and multiple births (n = 143) 162), we selected 6335 participants who had completed all three postnatal questionnaires at 4, 127 12, and 24 months after birth. Among these, we randomly selected 300 participants per year 128 129 from 2003 to 2008 and 295 participants in 2009 (n=2095) for PFAA measurement in maternal 130 plasma samples (Okada et al., 2014). After exclusion of cases with congenital malformations that became apparent following completion of the follow-up questionnaire at 12 months (n=17), 131 maternal blood samples obtained before 26 weeks of gestation (n=15), withdrawal (n=6), and 132 an extremely high PFOS level (n=1); among remaining 2056 mother child pairs, 1558 mother-133

child pairs sent us questionnaires pertaining to their 4-year-old children for inclusion in thecurrent study (Supplementary data, Figure S1).

This study was conducted after obtaining all of the participants' written informed consent from the time of pregnancy up to two years following delivery. Informed consent was also obtained when the children reached 4 years of age. The institutional ethics board for epidemiological studies at Hokkaido University Center for Environmental and Health Sciences and Hokkaido University Graduate School of Medicine approved the study protocol.

141 2.2. Data collection

Mothers completed a self-administered baseline questionnaire during the first trimester of 142 pregnancy, which included parental information related to age, prepregnancy BMI, previous 143 144 medical history, educational level, annual household income, parity, alcohol consumption, 145 medication, and smoking during pregnancy. We extracted information on gestational age, infant gender, and birth weight, as well as miscarriage, stillbirth, multiple births, and congenital 146 anomalies from medical birth records. We collected a self-administered questionnaire at 4 147 months following delivery, including information about birth size, maternal complications 148 149 during pregnancy, and maternal smoking status in the third trimester, as reported by mothers. At 4 years post-delivery, participants completed another self-administered questionnaire 150 collecting information related to infant size, breast feeding, smoking status of parents, parental 151 history of allergic diseases, pets in the home, cooling/heating system at homes, environmental 152

tobacco smoke (ETS) exposure and day care attendance. ETS exposure was defined as a selfreported positive response to the presence of a smoker in the environment where children lived
daily life at 4 years of age. At this time point, mothers reported any previous or current medical
history of infant allergic diseases including eczema, wheezing, and rhinoconjunctivitis
symptoms.

158 2.3. Exposure assessment

Detailed sample preparation and PFAAs measurement methods have been previously described 159 160 (Okada et al., 2013). In brief, we collected a 10-mL blood sample from the maternal peripheral vein between 28 and 32 weeks of pregnancy with samples being stored at -80°c until analysis. 161 We used maternal plasma for exposure assessment using ultra-performance liquid 162 163 chromatography, coupled with triple quadrupole tandem mass spectrometry instrumentation 164 (UPLC-MS/MS) (Waters, USA). We measured concentrations of 11 PFAAs: PFSAs (perfluoroalkane sulfonates) including PFHxS, PFOS; and PFCAs (perfluorinated carboxylic 165 acids) including perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), PFOA, 166 PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, perfluorotetradecanoic acid (PFTeDA) in 167 168 maternal plasma samples obtained during the third trimester of pregnancy.

169 2.4. Outcome assessment

170 12 months prevalence of three allergic diseases were assessed based on the mothers' self171 administered questionnaires, obtained 4 years post-delivery. Allergic diseases were defined

172 using a modified section of the Japanese version of the International Study of Asthma and 173 Allergies in Childhood (ISAAC) Phase Three questionnaire (Asher et al., 2006). Eczema was 174 defined based on positive answers to all three of the following questions: "Has your child had this itchy rash at any time in the past 12 months?", "Has your child ever had a recurrent skin 175 rash for at least 6 months?", and "Has this itchy rash at any time affected any of the following 176 places: the folds of the elbows; behind the knees; in front of the ankles; under the buttocks; or 177 around the neck, ears, or eyes?". Wheezing was defined as a positive answer to the question: 178 "Has your child had wheezing or whistling in the chest in the past 12 months?" Current 179 rhinoconjunctivitis symptoms were assessed based on positive answers to both of the following 180 questions: "In the past 12 months, has your child had a problem sneezing or a runny or blocked 181 182 nose when he or she did not have a cold or the flu?" and if the answer is positive, "In the past 12 months, has this nose problem been accompanied by itchy watery eyes?" (Asher et al., 2006). 183 We also defined total allergic diseases as cases with at least one of the symptoms associated 184 with eczema, wheezing, or rhinoconjunctivitis. 185

186 2.5. Data analysis

We performed all of the statistical analyses using JMP pro 10 (SAS Institute Inc., NC, USA).
The results were considered statistically significant if p < 0.05. For participants with PFAA
levels less than MDL, a value equal to half of the MDL was substituted. We divided participants
into four groups according to quartiles (Q) of prenatal PFAA levels. In crude and adjusted

191	logistic regression analyses, we examined associations between prenatal PFAA concentrations
192	and prevalence of allergic diseases. Odds ratios (ORs) for the risk of allergic diseases were
193	evaluated for PFAA levels in the second through fourth quartiles and compared to those in the
194	lowest quartiles. For calculation of p for trend, we used the linear contrast coefficients -3, -1,
195	+1, +3 assigned to quartiles 1, 2, 3, and 4, respectively (Kishi et al., 2015; Goudarzi et al.,
196	2015). We examined the effects on total allergic diseases and on each allergic symptom
197	separately. We selected study confounders according to a review of the literature and based on
198	the change in estimate criteria, which was set to a value of greater than 10%. Potential
199	confounding variables considered in the analysis were maternal age (continuous), number of
200	older siblings (0, \geq 1), maternal education (\leq 12, $>$ 13 years), parental allergic history (yes/no),
201	infant gender, breast-feeding period (<6, ≥6 months), day care attendance (yes/no), and
202	environmental tobacco smoke (ETS) exposure at the age of 4 years (yes/no). The number of
203	older siblings was obtained from parity information. Due to potential sex differences of PFAA
204	health effects, we also stratified the results by sex.

206 3. Results.

In total, 1,558 mother-child pairs were included in this study. The average maternal age (SD) was 31.1 (4.4), and prepregnancy BMI (SD) was 20.9 (2.9). 45.7 % of mothers were nulliparous and 6.2% were smoking during pregnancy. 50.9% of infants were male (Table 1).

210	Due to a low detection rate, we excluded PFHxA, PFHpA and PFTeDA prior to data
211	analysis. Among the eight remaining PFAAs, PFHxS and PFDoDA had detection rates of 82.6
212	and 90.6%, respectively. Other PFAAs had detection rates greater than 97%. PFOS had the
213	highest median exposure levels (4.92 ng/mL) followed by PFOA (2.01 ng/mL), PFUnDA (1.43
214	ng/mL), and PFNA (1.18 ng/mL).
215	The number and percentage of children who developed allergic diseases in the preceding
216	12 months were as follows: wheezing 291 (18.7%), eczema 296 (19.0%), and
217	rhinoconjunctivitis 84 (5.4%). In total, 536 (34.4%) had at least one of the indicated allergic
218	symptoms. Incidence of allergic symptoms was higher among boys than among girls, but this
219	trend was not found to be statistically significant (Table 3).
220	We analyzed the association of PFAAs with total allergic diseases (Table 4, Figure 1),
221	eczema (Figure 2, Supplementary Table S1), wheezing (Table 5), and rhinoconjunctivitis
222	(Supplementary data, Table S2) using logistic regression models. Although not statistically
223	significant (p-for trend= 0.085), we observed a negative association between total allergic
224	diseases across PFUnDA quartiles (Q4 vs. Q1 adjusted OR: 0.736, 95% CI: 0.538, 1.00) in all
225	children. In addition, adjusted ORs in the highest quartile versus that in the lowest quartile for
226	total allergic diseases significantly decreased for PFDoDA (Q4 vs. Q1 OR: 0.621; 95% CI:
227	0.454, 0.847; p for trend= 0.008) and PFTrDA (Q4 vs. Q1 OR: 0.712; 95% CI: 0.524, 0.966; p
228	for trend= 0.013). Following sex stratification, we observed a significant association between

total allergic diseases and PFDoDA or PFTrDA only within the male population (Table 4, figure230 2).

231	As shown in Figure 2 and Supplemental Table S1, among males, the adjusted ORs for
232	eczema and PFOA decreased significantly for the three highest quartiles when compared with
233	that in the lowest quartile (Q4 vs. Q1 OR: 0.592; 95% CI: 0.319, 1.08, p for trend= 0.022).
234	The adjusted ORs for the highest vs. lowest quartiles were 0.566 (95% CI: 0.383, 0.831) for
235	PFDoDA, and 0.672 (95% CI: 0.465, 0.968) for PFTrDA in all children. Effects of these long
236	chain PFAAs were highly prominent among boys. This is further supported by the adjusted
237	ORs of eczema in boys across the second to forth quartiles compared with the lowest quartile
238	of PFDoDA; the adjusted ORs were 0.877 (95% CI: 0.536, 1.43), 0.828 (95% CI: 0.500, 1.36),
239	and 0.451 (95% CI: 0.253, 0.785), respectively, indicating a dose-response relationship (p for
240	trend= 0.008).
• • •	

Among PFAAs, PFHxS was found to be significantly associated with prevalence of wheezing (Table 5); the adjusted OR of PFHxS in the fourth quartile versus the first quartile was 0.728 (95% CI: 0.497, 1.06, p for trend= 0.038) in all children. Following sex stratification, this association was more pronounced among boys (Q4 vs. Q1 OR: 0.650; 95% CI: 0.391, 1.07; p for trend= 0.063).

PFNA exhibited a significant association with monotonic reduced prevalence of
rhinoconjunctivitis (Q4 vs. Q1 OR: 0.409; 95% CI: 0.192, 0.825; p for trend= 0.019). After sex

248	stratification, the adjusted OR of the forth quartile compared to the first quartile was reduced
249	for PFNA across both sexes. However, the p value for the trend was not statistically significant
250	(Supplementary data, Table S2). In addition, adjusted ORs for rhinoconjunctivitis decreased
251	among the three highest quartiles of PFUnDA (Q4 vs. Q1 OR: 0.285; 95% CI: 0.099, 0.714; p
252	for trend= 0.030) and PFDoDA (Q4 vs. Q1 OR: 0.430; 95% CI: 0.176, 0.985; p for trend=
253	0.045) when compared with that in the lowest quartile in a male population. Although we found
254	some associations between PFAAs and rhinoconjunctivitis, these results should be interpreted
255	cautiously due to the small number of participants with rhinoconjunctivitis in our study.
256	
257	
258	4. Discussion.
259	In this prospective birth cohort study, we focused on the effects of prenatal exposure to
260	eleven PFAAs, including long-chain molecules, on the prevalence of allergic diseases in
261	children at 4 years of age. We found that prenatal exposure to long-chain PFAAs, including
262	PFDoDA and PFTrDA, was inversely associated with prevalence of total allergic diseases in
263	4-year-old children. We observed that PFDoDA and PFTrDA were associated with a reduction
264	in prevalence of eczema. Additionally, exposure to PFHxS was negatively associated with
265	prevalence of wheezing. Within the female population, almost all adjusted ORs of allergic

266 diseases across second to fourth quartiles of PFAAs were less than one when compared with

267	the first quartile values as a reference. However, we observed the association between PFAAs
268	and allergic diseases in 4-year-old children to be statistically significant only in boys.
269	In this study, median values of PFAAs with C6-C8 chains, including PFHxS, PFOS, and
270	PFOA, were low during pregnancy compared to those in the U.S. (Stein et al., 2012), Denmark
271	(Halldorsson et al., 2012), Korea (Lee et al., 2013), and China (Jiang et al., 2014). However,
272	longer chain PFAA concentrations (C \geq 9) were higher than those reported in western countries
273	such as Spain, Denmark, Sweden, and the U.S. (Harada et al. 2011).
274	We developed several adjusted models using different potential confounding factors to
275	examine the consistency of the results. In addition to the confounders mentioned in the methods
276	section, we included annual household income in the adjusted models, but this had no effect
277	on the results. We also included smoking, alcohol consumption during pregnancy and maternal
278	prepregnancy BMI in the adjusted models and found that the results remained consistent.
279	Furthermore, owing to the importance of home environment in relation to allergic diseases
280	(Araki et al., 2012; Cong et al. 2014), we collected information on owning pets and having
281	carpets, heating/cooling systems (electrical systems vs. fuel systems), and the presence of mold
282	and dew condensation in homes in 4 years post-delivery questionnaires. We included these
283	covariates one by one and collectively in the adjusted model, with no significant changes in the
284	results. This suggests that our results regarding the association between prenatal exposure to
285	PFAAs and allergic diseases at 4 years of age may not be confounded by the noted covariates.

286	One of sources of exposure to environmental chemicals including PFAAs is sea food, however
287	sea foods contain omega 3 fatty acids which are anti-inflammatory nutrients and linked with
288	better respiratory function (Miata and Arita2015). We have not assessed sources of the mother's
289	intake of PFAAs such as diet in this study, and it might be a confounder in the current analysis.
290	Several previous animal studies suggest that PFAAs have immunotoxic effects, including
291	suppression of cytokine production affecting TNF- α , IL4, and IFN- γ (Qazi et al., 2010), and
292	reduced IgM production and humoral immunity (Dewitt et al., 2009; Peden-Adams et al., 2007).
293	In animal studies, PFAAs changed T-helper (Th)-1 and -2 cell cytokine balance and shift
294	toward a more Th2 cytokine pathway, lead to suppression of their cellular response and
295	enhancement of their humoral response (Dong et al. 2011; Zheng et al. 2011). However,
296	epidemiological studies have reported the suppression of antibody production in individuals
297	exposed to higher PFAA levels. Prenatal exposure to PFAAs was negatively associated with
298	the presence of the anti-rubella antibody among 3-year-old children (Granum et al., 2013).
299	They examined four specific PFAAs and the strength of the inverse association between PFAA
300	and antibody levels were ranked as follows: PFNA>PFOA>PFHxS>PFOS, indicating that
301	PFCAs have a stronger influence on antibody production than PFSAs. Similarly, we also
302	observed a stronger association between PFCAs with longer carbon chains and allergic
303	outcomes. In another study, higher pre- and postnatal exposure to PFOS and PFOA were
304	inversely associated with tetanus and diphtheria antibody concentrations at 5 and 7 years of

305	age (Grandjean et al., 2012). Results of these birth cohorts are consistent with our results. In
306	contrast, a Taiwanese case-control study reported a positive association between serum levels
307	of PFHxS, PFOS, PFOA, PFNA, and PFDA and juvenile asthma and IgE levels among 10- to
308	15-year-old children. In a cross sectional, National Health and Nutrition Examination Survey
309	(NHANES), Humblet et al. (2014) reported an association between PFOA levels and an
310	increased likelihood of asthma diagnosis. An inverse association between PFOS levels and
311	both asthma and wheezing among children aged 12-19 years was noted. In both studies,
312	prenatal exposures were not assessed and serum childhood PFAAs levels were several times
313	higher than the levels in our study. This lack of consistency may be attributable to several
314	factors such as different timing of blood sampling, PFAA exposure levels, age of examined
315	children, and different study designs.
316	The most likely target of PFAAs has been shown to be the peroxisome proliferator-activated
317	receptor (PPAR)-a (Vanden Heuvel et al., 2006; Takacs and Abbott 2007). Experimental
318	studies suggested that PFOA is a stronger agonist than PFOS for the transactivation of PPAR-
319	α and PPAR- γ in mouse and human cells (Vanden Heuvel et al., 2006). PFOA and PFNA
320	(PFCAs) also have higher transplacental passage efficiencies than PFOS (Gustzkow et al.,
321	2012; Lee et al., 2013). Moreover, laboratory studies suggest that PFAAs with longer carbon
322	chains have a greater toxic potential and lower EC50 values (Kleszczynski et al. 2007; Buhrke
323	et al., 2013). Therefore, these conclusions may partially explain why PFCAs, especially those

with longer carbon chains such as PFTrDA and PFDoDA, display a strong association withallergic outcomes in this study.

326 We previously reported the relation of PFAAs to infant allergic diseases at 12 and 24 months of age using ISAAC questionnaires (Okada et al., 2014), illustrating a link between 327 prenatal exposure to PFTrDA and a reduced risk of eczema among female infants (n=2,062). 328 In the current study, we followed those infants to 4 years of age and found that other PFAAs 329 that contain shorter carbon chains, including PFHxS, PFNA, PFUnDA, PFDoDA, are also 330 negatively associated with prevalence of allergic outcomes. Taken together, although we 331 332 observed some differences in characteristics between the two studies, these two reports suggest consistent dyshomeostasis of immune function in infant and early childhood after prenatal 333 334 exposure to PFAAs.

335 Some previous animal studies showed sex differences of PFAA effects on immune system functions. Gestational exposure to PFOS induced suppression of innate and humoral immunity 336 in next generation male, but not female offspring, in a mouse model (Keil et al., 2008). Another 337 study that only examined female pups concluded that in utero exposure to PFOA did not 338 suppress IgM production (Hu, Strynar, and DeWitt 2010). Most of the previously conducted 339 epidemiological studies concerning the association between PFAAs and allergic outcomes 340 included sex as a confounder in the adjusted models (Grandjean et al., 2012; Dong et al. 2013; 341 Humblet et al., 2014) but they did not stratify the results according to sex. As explained, the 342

adjusted OR values of allergic diseases across the second to fourth quartiles of prenatal PFAAs
were less than those in the first quartile, which was used as a reference for both sexes. In current
study, we found p for trend in the association between PFAAs and prevalence of allergic
diseases were significant among boys but not girls; however, p values for exposure-sex
interaction did not show significant interaction.

We applied logistic regression to estimate association of PFAAs and allergic outcomes in current study. However, some previous studies suggest that applying logistic regression when outcome is not rare may result in overestimation of odds ratios and using Poisson regression and log-binomial regression may provide more correct estimates (Barros and Hirakata, 2003). Therefore, we performed data analysis using log-binominal regression and Poisson regression. However, the results did not change.

354 In this study, we examined several types of PFAAs with varying carbon chain lengths. We assessed PFAA exposure levels using UPLC-MS-MS, which is a very sensitive method that 355 involves a standard protocol. Owing to changing blood volume plasma concentration of 356 environmental chemicals during pregnancy, plasma samples were only collected within a 357 narrow blood sampling period (between 28 and 32 weeks of pregnancy) to maintain the 358 standardization and consistency of results. In this study, information was collected relating to 359 a wide variety of demographic characteristics and possible confounding variables through 360 361 questionnaires completed during and following pregnancy. The prospective design of this study

362	permits the suggestion of a strong causal relationship between exposure and outcome
363	assessment when compared with case-control or cross-sectional studies. However, this study
364	has some limitations. We collected information on allergic diseases based on maternal reports,
365	which is prone to recall bias. We measured PFAA levels once, however due to long half-life
366	and moderate-to-high reliability of PFAA measurements in maternal samples during pregnancy,
367	single measurement of PFAAs is probably enough and has minimal influence on the results.
368	We did not measure postnatal exposure levels of PFAAs and immunological biomarkers in
369	children including IgE, and Th1/Th2 cytokines. In addition, when compared to the original
370	cohort (n>20,000) participants in the current study have higher socioeconomic status as
371	indicated by higher maternal education levels, lower maternal smoking rates during pregnancy
372	and lower postnatal ETS exposure. In addition, we missed around 25% of participants in the
373	current study compare with our previous study regarding the effects of PFAAs on allergic
374	diseases in first 24 months of life (Okada et al. 2014). These suggest the possibility of selection
375	bias. In report of Okada et al. (2014), mothers had higher smoking rate during pregnancy, but
376	other demographic characteristics of these two studies such as maternal age, parity, child
377	gender and parental allergy history were similar (Supplementary data, Table S3). In current
378	study, we examined 12 months prevalence of three allergic diseases using ISAAC
379	questionnaires. Allergic diseases have turnover such as onset, remission and relapse during
380	infancy and childhood. Therefore, further studies with longer observations are needed for

381	finding remission, relapse and persistence of allergic diseases associated with prenatal
382	chemical exposure in later life.
383	
384	Conclusion.
385	We found an inverse association between prenatal exposure to long-chain PFAAs and
386	prevalence of allergic diseases in early childhood. This provides new evidence that PFAAs in
387	humans may disrupt immune system balance consistent with animal studies. However, more
388	studies with longer observation periods need to be conducted to further elucidate longer effects
389	and the underlying mechanisms.
390	
391	
392	
393	
394	
395	
396	
397	
398	

399 References

400	Araki A, Kanazawa A, Kawai T, Eitaki Y, Morimoto K, Nakayama K,et al. 2012. The
401	relationship between exposure to microbial volatile organic compound and allergy
402	prevalence in single-family homes. Sci Total Environ. 15; 423:18-26.
403	Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, Weiland SK. 2006. Worldwide
404	time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and
405	eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional
406	surveys. Lancet 368:733–43.
407	Barros AJ, Hirakata VN. 2003. Alternatives for logistic regression in cross-sectional studies:
408	an empirical comparison of models that directly estimate the prevalence ratio. BMC Med
409	Res Methodol. 3:21.
410	Butenhoff JL, Olsen GW, Pfahles-Hutchens A. 2006. The applicability of biomonitoring data
411	for perfluorooctanesulfonate to the environmental public health continuum. Environ Health
412	Perspect. 114(11):1776-82.
413	Buhrke T, Kibellus A, Lampen A. 2013. In vitro toxicological characterization of
414	perfluorinated carboxylic acids with different carbon chain lengths. Toxicol Lett.

415 218(2):97-104.

416 Cariou R, Veyrand B, Yamada A, Berrebi A, Zalko D, Durand S, et al. 2015. Perfluoroalkyl

417 acid (PFAA) levels and profiles in breast milk, maternal and cord serum of French women

418 and their newborns. Environ Int. 84:71-81.

419	Cong S, Araki A, Ukawa S, Ait Bamai Y, Tajima S, Kanazawa A, et al. Association of
420	mechanical ventilation and flue use in heaters with asthma symptoms in Japanese
421	schoolchildren: a cross-sectional study in Sapporo, Japan. J Epidemiol. 2014; 24(3):230-8.
422	DeWitt JC, Shnyra A, Badr MZ, Loveless SE, Hoban D, Frame SR, et al. 2009. Immunotoxicity
423	of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome
424	proliferator-activated receptor alpha. Crit Rev Toxicol 39:76–94.
425	DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. 2012. Immunotoxicity of
426	perfluorinated compounds: recent developments. Toxicol Pathol. 40(2):300-11.
427	Fletcher T, Steenland K, Savitz D. Status Report: PFOA and immune biomarkers in adults
428	exposed to PFOA in drinking water in the mid-Ohio valley.
429	http://www.c8sciencepanel.org/pdfs/Status_Report_C8_and_Immune_markers_March200
430	<u>9.pdf</u> , 2009. [(accessed 7 October 2013)].
431	Fromme H, Tittlemier SA, Volkel W, Wilhelm M, Twardella D. 2009. Perfluorinated
432	compoundsexposure assessment for the general population in western countries. Int J Hyg
433	Environ Health. 212:239-270.
434	Glynn A, Berger U, Bignert A, Ullah S, Aune M, Lignell S, et al. 2012. Perfluorinated Alkyl
435	Acids in Blood Serum from Primiparous Women in Sweden: Serial Sampling during
436	Pregnancy and Nursing, And Temporal Trends 1996–2010. Environ. Sci. Technol. 46 (16):
437	9071–9079.

438	Goudarzi H, Nakajima S, Ikeno T, Sasaki S, Kobayashi S, Miyashita C, et al. 2015. Prenatal
439	exposure to perfluorinated chemicals and neurodevelopment in early infancy: The
440	Hokkaido Study. Sci Total Environ. 541:1002-1010.
441	Grandjean P, Andersen EW, Budtz-Jørgensen E, Nielsen F, Mølbak K, Weihe P, et al. 2012.
442	Serum vaccine antibody concentrations in children exposed to perfluorinated compounds.
443	JAMA 307:391–7.
444	Granum B, Haug LS, Namork E, Stølevik SB, Thomsen C, Aaberge IS, et al. 2013. Pre-natal
445	exposure to perfluoroalkyl substances may be associated with altered vaccine antibody
446	levels and immune-related health outcomes in early childhood. J Immunotoxicol
447	10(4):373-9.
448	Gützkow KB1, Haug LS, Thomsen C, Sabaredzovic A, Becher G, Brunborg G. 2012. Placental
449	transfer of perfluorinated compounds is selectivea Norwegian Mother and Child sub-
450	cohort study. Int J Hyg Environ Health. 215(2):216-9.
451	Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G et al. 2012. Prenatal
452	exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective
453	cohort study. Environ Health Perspect 120:668-673.
454	Harada KH, Hitomi T, Niisoe T, Takanaka K, Kamiyama S, Watanabe T, et al. 2011. Odd-
455	numbered perfluorocarboxylates predominate over perfluorooctanoic acid in serum
456	samples from Japan, Korea and Vietnam. Environ Int. 37:1183–9.

457	Hu Q., Strynar M. J., and DeWitt J. C. 2010. Are developmentally exposed C57BL/6 mice
458	insensitive to suppression of TDAR by PFOA? J Immunotoxicol 7, 344-49.
459	Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S et al. 2004. Perfluorooctane sulfonate
460	(PFOS) and related perfluorinated compounds in human maternal and cord blood samples:

- 461 assessment of PFOS exposure in a susceptible population during pregnancy. Environ
 462 Health Perspect 112:1204-1207.
- Jiang W, Zhang Y, Zhu L, Deng J. 2014. Serum levels of perfluoroalkyl acids (PFAAs) with
- 464 isomer analysis and their associations with medical parameters in Chinese pregnant women.465 Environ Int 64:40-47.
- 466 Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, et al. 2004.
- 467 Perfluorooctanesulfonate and related fluorochemicals in human blood from several468 countries. Environ Sci Technol. 38(17):4489-95.
- 469 Kato K, Calafat AM, Needham LL. 2009. Polyfluoroalkyl chemicals in house dust. Environ
 470 Res. 109:518-523.
- 471 Keil D. E., Mehlmann T., Butterworth L., and Peden-Adams M. M. 2008. Gestational exposure
- 472 to perfluorooctane sulfonate suppresses immune function in B6C3F1 mice. Toxicol Sci 103,
 473 77–85.
- 474 Kishi R, Sasaki S, Yoshioka E, Yuasa M, Sata F, Saijo Y, et al. 2011. Cohort profile: The
- 475 Hokkaido study on environment and children's health in Japan. Int J Epidemiol 40:611-618.

476	Kishi R, Kobayashi S, Ikeno T, Araki A, Miyashita C, Itoh S, et al. 2013. Ten years of progress
477	in the Hokkaido birth cohort study on environment and children's health: cohort profile
478	updated 2013. Environ Health Prev Med. 18:429–50.

- 479 Kishi R, Nakajima T, Goudarzi H, Kobayashi S, Sasaki S, Okada E, et al. 2015. The
- 480 Association of Prenatal Exposure to Perfluorinated Chemicals with Maternal Essential and
- 481 Long-Chain Polyunsaturated Fatty Acids during Pregnancy and the Birth Weight of Their
- 482 Offspring: The Hokkaido Study. Environ Health Perspect. 123(10):1038-45.
- 483 Kleszczyński K, Gardzielewski P, Mulkiewicz E, Stepnowski P, Składanowski AC. 2007.
- 484 Analysis of structure-cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic
 485 acids. Toxicol In Vitro 21(6):1206-11.
- 486 Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. 2003. Exposure
- 487 to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation.
- 488 Toxicological sciences: an official journal of the Society of Toxicology 74:382-392.
- 489 Lee YJ, Kim MK, Bae J, Yang JH. 2013. Concentrations of perfluoroalkyl compounds in
- 490 maternal and umbilical cord sera and birth outcomes in Korea. Chemosphere 90:1603-1609.
- 491 Looker C, Luster MI, Calafat AM, Johnson VJ, Burleson GR, Burleson FG, et al. 2014
- 492 Influenza vaccine response in adults exposed to perfluorooctanoate and
- 493 perfluorooctanesulfonate. Toxicol Sci. 138(1):76-88.
- 494 Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL. 2005. Neonatal mortality from in

utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response,

- 496 and biochemical and pharamacokinetic parameters. Toxicology 215:149-169.
- 497 Luster MI, Portier C, Pait DG, White KL, Jr. Gennings C, Munson AE, et al. 1992. Risk
- 498 assessment in immunotoxicology: I. Sensitivity and predictability of immune tests. Fund
 499 Appl Toxicol 18: 200–10.
- 500 Miyata J, Arita M. 2015. Role of omega-3 fatty acids and their metabolites in asthma and
- allergic diseases. Allergol Int. 64(1):27-34.
- 502 Okada E, Sasaki S, Saijo Y, Washino N, Miyashita C, Kobayashi S, et al. 2012. Prenatal
- 503 exposure to perfluorinated chemicals and relationship with allergies and infectious diseases
- in infants. Environ Res. 112:118–25.
- 505 Okada E, Kashino I, Matsuura H, Sasaki S, Miyashita C, Yamamoto J, et al. 2013. Temporal
- trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan,
- 507 2003-2011. Environ Int 60:89-96.
- 508 Okada E, Sasaki S, Kashino I, Matsuura H, Miyashita C, Kobayashi S, Itoh K, Ikeno T,
- 509 Tamakoshi A, Kishi R. 2014. Prenatal exposure to perfluoroalkyl acids and allergic diseases
- 510 in early childhood. Environ Int. 65:127-34.
- 511 Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. 2007. Half-
- 512 life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and
- 513 perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect

514 115:1298-1305.

515	Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, et al. 2012. Temporal
516	trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000-
517	2010. Environ Sci Technol 46:6330–8.
518	Peden-Adams M. M., EuDaly J. G., Dabra S., EuDaly A., Heesemann L., Smythe, J., et al.
519	2007. Suppression of humoral immunity following exposure to the perfluorinated
520	insecticide sulfluramid. J Toxicol Environ Health A 70: 1130–141.
521	Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. 2010. Dietary exposure
522	to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular
523	hepatocytes and alters the hepatic immune status in mice. Int Immunopharmacol.
524	10(11):1420-7.
525	Schröter-Kermani C1, Müller J, Jürling H, Conrad A, Schulte C. 2013. Retrospective
526	monitoring of perfluorocarboxylates and perfluorosulfonates in human plasma archived by
527	the German Environmental Specimen Bank. Int J Hyg Environ Health. 216(6):633-40.
528	Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, et al. 2003.
529	Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology
530	183:117-131.
531	Stein CR, Wolff MS, Calafat AM, Kato K, Engel SM. 2012. Comparison of polyfluoroalkyl

532 compound concentrations in maternal serum and amniotic fluid: a pilot study. Reprod

533 Toxicol 34:312-316.

534	Takacs ML, Abbott BD. 2007. Activation of mouse and human peroxisome proliferator-
535	activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and
536	perfluorooctane sulfonate. Toxicol Sci 95:108-117.
537	Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. 2006. Differential activation of nuclear
538	receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of
539	human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -
540	gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92:476-489.
541	Vestergren R, Berger U, Glynn A, Cousins IT. 2012. Dietary exposure to perfluoroalkyl acids
542	for the Swedish population in 1999, 2005 and 2010. Environ Int. 15;49:120-7.
543	Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL, et al. 2011. The effect of
544	prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res. 111: 785–91.
545	Yang Q, Xie, Y, Eriksson A. M., Nelson B. D., and DePierre J. W. 2001. Further evidence for
546	the involvement of inhibition of cell proliferation and development in thymic and splenic
547	atrophy induced by the peroxisome proliferator perfluoroctanoic acid in mice. Biochem
548	Pharmacol 62: 1133–40.
549	Yang Q, Abedi-Valugerdi M, Xie, Y, Zhao X. Y., Moller G., Nelson B. D. et al. 2002. Potent
550	suppression of the adaptive immune response in mice upon dietary exposure to the potent
551	peroxisome proliferator, perfluorooctanoic acid. Int Immunopharmacol 2: 389–97.

564 Abbreviations:

PFAAs, perfluoroalkyl acids; PFSAs, perfluoroalkane sulfonates; PFCAs, perfluorinated
carboxylic acids; PFHxA, perfluorohexanoic acid; PFHpA, perfluoroheptanoic acid; PFOA,
perfluorooctanoic acid; PFNA, perfluorononanoic acid; PFDA, perfluorodecanoic acid;
PFUnDA, perfluoroundecanoic acid; PFDoDA, perfluorododecanoic acid; PFTrDA,
perfluorotridecanoic acid; PFTeDA, perfluorotetradecanoic acid; PFHxS, perfluorohexane
sulfonate; PFOS, perfluorooctane sulfonate; MDL, method detection limits; CI, confidence

571	interval; OR, odds ratio; Ig, immunoglobulin; ETS, environmental tobacco smoke; ISAAC,
572	International Study of Asthma and Allergies in Childhood.
573	
574	Acknowledgements
575	We are grateful to all of the participants for taking part in this study and the staff of the
576	Hokkaido study on Environment and Children's Health. This study was funded by a Grant-in-
577	Aid for Scientific Research from the Japanese Ministry of Health, Labor, and Welfare; the
578	Ministry of Education, Culture, Sports, Science, and Technology; and the Japan Society for the
579	Promotion of Science. The authors declare they have no actual or potential competing financial
580	interests.

584			
585			4-year postpartum
586	Characteristics		assessment ($n=1558$).
587			mean±SD or No. (%)
588			(//)
589	Parental characteristics		
590	Maternal age (years) (mean ± SD)		31.1±4.4
591	Prepregnancy BMI		20.9+2.9
592			20.7 ± 2.7
593	Maternal educational level (years)	≤12	660 (42.4)
594		>12	898 (57.6)
595	Parity (times) ^a	0	702 (45.7)
596		≥1	835 (54.3)
597	Maternal smoking status during pregnancy	Nonsmoker	1461 (93.8)
598		Smoker	97 (6.2)
599	Maternal allergic history	Yes	484 (31.0)
600	Paternal allergic history	Yes	307 (19.7)
601	Annual household income (million yen) ^a	<5	880 (64.0)
602		≥5	495 (36.0)
603	Children characteristics		
604	Gender	Male	793 (50.9)
605		Female	765 (49.1)
606	Breast feeding (months)	<6	289 (18.6)
607		≥6	1269 (81.4)
608	Older siblings (numbers)	0	702 (45.7)
609		≥1	835 (54.3)
610	Day care attendance at 4-year-old ^a	Yes	1373 (90.3)
611		No	148 (9.7)
612	ETS exposure at 4-year-old ^{a, b}	Yes	724 (48.0)
613		No	782 (52.0)
614	^a Missing data: parity (n=21), annual household inc	ome (n=183), day	care attendance $(N=37)$, ar

Table 1. Characteristics of the Hokkaido Study on Environment and Children's Health Study
Population, Japan (n=1558).

^aMissing data: parity (n=21), annual household income (n=183), day care attendance (N=37), and ETS
exposure (n=52).

616 ^bETS: environmental tobacco smoke.

617

583

619 Table 2. Concentrations of PFAAs in maternal plasma samples from the Hokkaido Study on

	Detection				Concentration (ng/mL)						
Compound	MDL ^a	No.	%	GM	Mean	SD	Minimum	25th	50th	75th	Maximum
PFHxS (C6)	0.2	1287	82.6	0.275	0.322	0.202	< 0.2	0.221	0.296	0.395	3.386
PFHxA (C6)	0.1	721	46.2	0.085	0.103	0.071	< 0.1	< 0.1	< 0.1	0.145	0.694
PFHpA (C7)	0.1	549	35.2	0.076	0.095	0.080	< 0.1	< 0.1	< 0.1	0.125	0.757
PFOS (C8)	0.3	1558	100	4.932	5.456	2.61	1.003	3.667	4.925	6.654	30.283
PFOA (C8)	0.2	1557	99.9	2.105	2.713	2.30	< 0.2	1.314	2.013	3.346	24.88
PFNA (C9)	0.3	1556	99.8	1.23	1.402	0.94	< 0.3	0.908	1.183	1.589	13.189
PFDA (C10)	0.1	1551	99.5	0.514	0.575	0.282	< 0.1	0.393	0.522	0.694	2.434
PFUnDA (C11)	0.1	1555	99.8	1.368	1.534	0.722	< 0.1	1.037	1.431	1.895	5.89
PFDoDA (C12)	0.1	1413	90.6	0.172	0.191	0.081	< 0.1	0.14	0.186	0.233	0.729
PFTrDA (C13)	0.1	1524	97.8	0.316	0.350	0.154	< 0.1	0.247	0.332	0.424	1.325
PFTeDA (C14)	0.1	238	15.2	0.057	0.061	0.029	< 0.1	< 0.1	< 0.1	< 0.1	0.303

620 Environment and Children's Health, Japan, 2003–2013 (n=1558).

621 ^aMDL: method detection limit, SD: standard deviation

	Total	Male children	Female children		
Symptoms	(n=1558)	(n=793)	(n=765)	p ^a	
	n (%)	n (%)	n (%)	-	
Total allergic diseases ^b	536 (34.4)	285 (35.9)	251 (32.8)	0.194	
Wheezing	291 (18.7)	162 (20.4)	129 (16.8)	0.071	
Eczema	296 (19.0)	153 (19.2)	143 (18.6)	0.762	
Rhinoconjunctivitis symptoms	84 (5.4)	46 (5.8)	38 (4.9)	0.467	

Table 3. Prevalence of allergic diseases in 4 years of age in the Hokkaido Study on Environment and Children's Health, Japan, 2003–2013 (n = 1558).

^a Chi-square test.

^b "Total allergic diseases" indicates cases with at least one of the listed symptoms.

			Total $(n = 1)$	558)				Male childre	n (n = 79	3)	Female children (n = 765)				
Compound			Crude	Adjusted ^a		*		Crude		Adjusted ^a	*	Crude		Adjusted ^a	
	п"	OR	(95% CI)	OR	(95% CI)	n*	OR	(95% CI)	OR	(95% CI)	n	OR	(95% CI)	OR	(95% CI)
PFHxS															
Quartile 1	140	1		1		76	1		1		64	1		1	
Quartile 2	143	0.981	(0.732, 1.31)	0.917	(0.675, 1.24)	75	0.995	(0.663, 1.49)	0.886	(0.577, 1.35)	68	0.973	(0.638, 1.48)	0.953	(0.608, 1.49)
Quartile 3	123	0.799	(0.593, 1.07)	0.771	(0.563, 1.05)	65	0.791	(0.524, 1.19)	0.739	(0.479, 1.13)	58	0.811	(0.526, 1.25)	0.836	(0.525, 1.32)
Quartile 4	130	0.858	(0.638, 1.15)	0.841	(0.615, 1.15)	69	0.859	(0.571, 1.29)	0.800	(0.519, 1.23)	61	0.859	(0.559, 1.32)	0.910	(0.572, 1.44)
p for trend		0.163		0.177			0.300		0.223			0.357		0.588	
P for Sex interaction		0.999		0.999											
PFOS															
Quartile 1	148	1		1		78	1		1		70	1		1	
Quartile 2	121	0.727	(0.54, 0.978)	0.658	(0.481, 0.898)	61	0.73	(0.483, 1.10)	0.674	(0.433, 1.04)	60	0.724	(0.473, 1.108)	0.655	(0.416, 1.02)
Quartile 3	131	0.823	(0.614, 1.10)	0.787	(0.577, 1.07)	71	0.948	(0.631, 1.42)	0.884	(0.572, 1.36)	60	0.713	(0.466, 1.091)	0.717	(0.457, 1.12)
Quartile 4	136	0.868	(0.648, 1.16)	0.815	(0.596, 1.11)	75	0.962	(0.643, 1.43)	0.910	(0.590, 1.40)	61	0.776	(0.507, 1.188)	0.750	(0.474, 1.18)
p for trend		0.513		0.391			0.852		0.975			0.257		0.308	

Table 4. Prenatal PFAA concentrations and prevalence of total allergic diseases at 4 years of age in the Hokkaido Study on Environment and Children's Health, Japan, 2003–2013 (n= 1558).

P for	Sex		0.708		0.700										
interact	on														
PFOA															
Quar	ile 1	133	1		1		66	1		1		67 1			1
Quar	tile 2	144	1.11	(0.833, 1.49)	1.07	(0.791, 1.47)	87	1.362	(0.907, 2.04)	1.24	(0.810, 1.92)	57 0.	878	(0.571, 1.34)	0.950 (0.602, 1.49)
Quar	ile 3	138	1.05	(0.785, 1.41)	0.954	(0.695, 1.31)	73	1.089	(0.719, 1.64)	0.936	(0.601, 1.45)	65 1.	017	(0.668, 1.54)	1.02 (0.646, 1.62)
Quar	ile 4	121	0.862	(0.639, 1.16)	0.830	(0.591, 1.16)	59	0.828	(0.54, 1.26)	0.746	(0.458, 1.20)	62 0.	898	(0.589, 1.36)	0.989 (0.612, 1.59)
p for t	rend		0.300		0.208			0.236		0.125		0.	785		0.955
P for	Sex		0.335		0.469										
interact	on														
PFNA															
Quar	tile 1	139	1		1		73	1		1		66 1			1
Quar	ile 2	143	1.05	(0.784, 1.40)	1.36	(0.891, 2.08)	83	1.278	(0.853, 1.91)	1.36	(0.891, 2.08)	60 0.	847	(0.553, 1.29)	0.919 (0.589, 1.43)
Quar	tile 3	127	0.869	(0.646, 1.16)	0.694	(0.442, 1.08)	58	0.759	(0.498, 1.15)	0.694	(0.442, 1.08)	69 0.	989	(0.651, 1.50)	1.00 (0.644, 1.56)
Quar	ile 4	127	0.865	(0.643, 1.16)	0.873	(0.562, 1.35)	71	0.915	(0.609, 1.37)	0.873	(0.562, 1.35)	56 0.	809	(0.525, 1.24)	0.900 (0.562, 1.44)
p for t	rend		0.192		0.137			0.242		0.143		0.	501		0.769
P for	Sex		0.159		0.224										
interact	on														
PFDA															
Quar	tile 1	140	1		1		74	1		1		66 1			1
Quar	ile 2	132	0.899	(0.669, 1.20)	0.886	(0.652, 1.20)	71	0.93	(0.619, 1.398)	0.867	(0.564, 1.33)	61 0.	866	(0.565, 1.32)	0.930 (0.595, 1.45)

Quartile 3	133	0.913 (0.68, 1.22)	0.880 (0.646, 1.19))	76	1.08	(0.724, 1.633)	1.08	(0.709, 1.67)	57	0.756	(0.492, 1.16)	0.746 (0.473, 1.17)
Quartile 4	131	0.879 (0.654, 1.18)	0.906 (0.663, 1.23	3)	64	0.819	(0.542, 1.239)	0.812	(0.522, 1.25)	67	0.944	(0.62, 1.43)	1.06 (0.680, 1.67)
p for trend		0.433	0.544			0.516		0.590			0.667		0.978
P for Sex		0.399	0.280										
interaction													
PFUnDA													
Quartile 1	145	1	1		75	1		1		70	1		1
Quartile 2	130	0.838 (0.624, 1.12)	0.859 (0.631, 1.10	5)	82	0.986	(0.662, 1.47)	0.971	(0.637, 1.48)	48	0.664	(0.426, 1.03)	0.731 (0.459, 1.15)
Quartile 3	137	0.897 (0.669, 1.20)	0.905 (0.667, 1.22	2)	67	0.908	(0.599, 1.37)	0.919	(0.591, 1.42)	70	0.891	(0.590, 1.34)	0.928 (0.604, 1.42)
Quartile 4	124	0.778 (0.579, 1.04)	0.736 (0.538, 1.00))	61	0.712	(0.469, 1.08)	0.715	(0.460, 1.10)	63	0.851	(0.559, 1.29)	0.777 (0.496, 1.21)
p for trend		0.151	0.085			0.100		0.134			0.735		0.461
P for Sex		0.306	0.646										
interaction													
PFDoDA													
Quartile 1	151	1	1		81	1		1		70	1		1
Quartile 2	129	0.753 (0.561, 1.01)	0.735 (0.540, 0.99	99)	82	0.854	(0.573, 1.27)	0.810	(0.532, 1.23)	47	0.616	(0.396, 0.960)	0.630 (0.395, 0.998)
Quartile 3	140	0.853 (0.638, 1.14)	0.810 (0.597, 1.09))	68	0.714	(0.473, 1.07)	0.683	(0.443, 1.05)	72	1.02	(0.675, 1.54)	0.976 (0.629, 1.51)
Quartile 4	116	0.638 (0.474, 0.860)	0.621 (0.454, 0.84	47)	54	0.497	(0.325, 0.760)	0.492	(0.314, 0.766)	62	0.819	(0.538, 1.24)	0.805 (0.516, 1.25)
p for trend		0.011	0.008			<0.001	t	0.001			0.840		0.750
P for Sex		0.033	0.084										
interaction													

PFTrDA													
Quartile 1	155	1	1		82	1		1		73	1		1
Quartile 2	132	0.772 (0.576, 1.03)	0.784	(0.577, 1.06)	79	0.799	(0.535, 1.194)	0.807	(0.529, 1.23)	53	0.715	(0.464, 1.10)	0.742 (0.472, 1.16)
Quartile 3	118	0.657 (0.488, 0.884)	0.634	(0.464, 0.864)	61	0.565	(0.372, 0.856)	0.557	(0.358, 0.862)	57	0.763	(0.498, 1.16)	0.739 (0.472, 1.15)
Quartile 4	131	0.740 (0.553, 0.991)	0.712	(0.524, 0.966)	63	0.628	(0.414, 0.951)	0.647	(0.416, 1.00)	68	0.869	(0.576, 1.31)	0.806 (0.522, 1.24)
p for trend		0.024	0.013			0.008		0.017			0.575		0.359
P for Sex		0 381	0.547										
interaction		0.301	0.347										

^a Adjusted for maternal age, maternal educational level, parental allergic history, number of older siblings, breast feeding, day care attendance, and ETS exposure at 4 years of age. In addition to the aforementioned confounders, we included child gender in adjusted models for total children prior to sex stratification.

*Indicates number of cases with allergic symptoms.

Figure 1. The association between quartiles of PFDoDA (A), PFTrDA (B) and prevalence of total allergic diseases among 4-year old children. The total allergic diseases were defined as cases with at least one of the following symptoms: eczema, wheezing, or rhinoconjunctivitis. Data was adjusted for maternal age, maternal educational level, parental allergic history, number of older siblings, breast feeding, day care attendance, and ETS exposure at 4 years of age. In addition to the mentioned confounders, we included child gender in adjusted models for total children prior to sex stratification. Q: quartile.

2. The association between quartiles of PFDoDA (A) and PFTrDA (B) and prevalence of eczema among 4-year old children. Data was adjusted for maternal age, maternal educational level, parental allergic history, number of older siblings, breast feeding, day care attendance, and ETS exposure at 4 years of age. In addition to the mentioned confounders, we included child gender in adjusted models for total children prior to sex stratification. Q: quartile.

Prenatal PFAA concentrations and prevalence of wheezing in 4 years old in the Hokkaido Study on Environment and Children's Health, Japan, 2003–2013 (n= 1558).

		Total (n =	1558)		Male children (n = 793)						Female children (n = 765)					
Compound		Crude	1	Adjusted ^a			Crude		Adjusted ^a	*		Crude		Adjusted ^a		
n*	OR	(95% CI)	OR	(95% CI)	- n*	OR	(95% CI)	OR	(95% CI)	- n ⁻	OR	(95% CI)	OR	(95% CI)		
PFHxS																
Quartile 1 80	1		1		49	1		1		31	1		1			
Quartile 2 83	1.00	(0.711, 1.41)	0.895	(0.624, 1.28)	42	0.829	(0.519, 1.32)	0.705	(0.430, 1.15)	41	1.28	(0.764, 2.14)	1.21	(0.706, 2.10)		
Quartile 3 61	0.702	(0.486, 1.01)	0.652	(0.443, 0.954)	33	0.612	(0.374, 1.00)	0.582	(0.346, 0.966)	28	0.842	(0.483, 1.47)	0.811	(0.448, 1.46)		
Quartile 4 67	0.778	(0.543, 1.11)	0.728	(0.497, 1.06)	38	0.722	(0.448, 1.16)	0.650	(0.391, 1.07)	29	0.867	(0.499, 1.50)	0.889	(0.494, 1.59)		
p for trend	0.056		0.038			0.097		0.063			0.320		0.398			
P for Sex	0.654		0.670													
interaction	0.034		0.070													
PFOS																
Quartile 1 78	1		1		43	1		1		35	1		1			
Quartile 2 67	0.822	(0.572, 1.18)	0.753	(0.514, 1.09)	33	0.758	(0.458, 1.25)	0.751	(0.439, 1.27)	34	0.899	(0.533, 1.51)	0.753	(0.433, 1.30)		
Quartile 3 79	1.01	(0.714, 1.43)	0.980	(0.680, 1.41)	47	1.21	(0.758, 1.94)	1.18	(0.718, 1.94)	32	0.826	(0.487, 1.40)	0.809	(0.467, 1.39)		
Quartile 4 67	0.824	(0.574, 1.18)	0.770	(0.526, 1.12)	39	0.901	(0.555, 1.46)	0.889	(0.530, 1.48)	28	0.740	(0.429, 1.27)	0.676	(0.379, 1.19)		
p for trend	0.527		0.398			0.855		0.921			0.259		0.238			
P for Sex	0.459		0 582													
interaction	0.439		0.382													
PFOA																
Quartile 1 66	1		1		32	1		1		34	1		1			
Quartile 2 74	1.13	(0.79, 1.64)	1.09	(0.743, 1.60)	44	1.33	(0.805, 2.20)	1.22	(0.722, 2.09)	30	0.94	(0.549, 1.61)	0.982	(0.557, 1.72)		
Quartile 3 76	1.18	(0.823, 1.70)	1.10	(0.749, 1.62)	44	1.40	(0.845, 2.32)	1.29	(0.762, 2.22)	32	0.977	(0.575, 1.66)	0.969	(0.544, 1.72)		
Quartile 4 75	1.16	(0.806, 1.67)	1.09	(0.729, 1.65)	42	1.37	(0.824, 2.28)	1.25	(0.711, 2.22)	33	0.971	(0.574, 1.64)	1.00	(0.555, 1.82)		

p for trend	0.411		0.699			0.235		0.427			0.948		0.992	
P for Sex interaction	0.727		0.741											
PFNA														
Quartile 1 70	1		1		36	1		1		34	1		1	
Quartile 2 78	1.14	(0.801, 1.64)	1.16	(0.803, 1.67)	47	1.43	(0.883, 2.34)	1.49	(0.908, 2.49)	31	0.878	(0.514, 1.49)	0.860	(0.493, 1.49)
Quartile 3 67	0.945	(0.654, 1.36)	0.910	(0.617, 1.33)	34	0.987	(0.588, 1.65)	0.911	(0.526, 1.57)	33	0.906	(0.535, 1.53)	0.918	(0.528, 1.59)
Quartile 4 76	1.10	(0.767, 1.57)	1.11	(0.760, 1.63)	45	1.27	(0.781, 2.07)	1.23	(0.732, 2.09)	31	0.918	(0.537, 1.56)	1.04	(0.587, 1.85)
p for trend	0.872		0.875			0.658		0.852			0.788		0.820	
P for Sex interaction	0.523		0.463											
PFDA														
Quartile 1 76	1		1		40	1		1		36	1		1	
Quartile 2 65	0.816	(0.566, 1.17)	0.785	(0.537, 1.14)	36	0.873	(0.529, 1.43)	0.794	(0.468, 1.34)	29	0.755	(0.441, 1.29)	0.785	(0.451, 1.35)
Quartile 3 82	1.09	(0.768, 1.54)	1.08	(0.756, 1.56)	52	1.45	(0.909, 2.32)	1.53	(0.943, 2.51)	30	0.762	(0.447, 1.29)	0.728	(0.415, 1.26)
Quartile 4 68	0.853	(0.594, 1.22)	0.879	(0.602, 1.28)	34	0.834	(0.503, 1.38)	0.859	(0.503, 1.45)	34	0.874	(0.521, 1.46)	0.918	(0.532, 1.58)
p for trend	0.755		0.917			0.966		0.743			0.637		0.702	
P for Sex interaction	0.203		0.119											
PFUnDA														
Quartile 1 72	1		1		37	1		1		35	1		1	
Quartile 2 70	0.96	(0.667, 1.38)	0.994	(0.682, 1.44)	45	1.13	(0.695, 1.83)	1.20	(0.725, 2.01)	25	0.753	(0.43, 1.31)	0.793	(0.444, 1.40)
Quartile 3 77	1.06	(0.748, 1.52)	1.10	(0.762, 1.60)	41	1.216	(0.739, 2.00)	1.32	(0.783, 2.25)	36	0.944	(0.565, 1.57)	0.918	(0.541, 1.56)
Quartile 4 72	0.991	(0.69, 1.42)	1.04	(0.714, 1.51)	39	1.047	(0.635, 1.72)	1.19	(0.709, 2.03)	33	0.931	(0.551, 1.57)	0.906	(0.522, 1.56)

p for trend	0.889		0.706			0.803		0.462			0.980		0.843	
P for Sex	0 725		0.762											
interaction	0.755		0.762											
PFDoDA														
Quartile 1 71	1		1		34	1		1		37	1		1	
Quartile 2 71	0.972	(0.675, 1.39)	0.962	(0.659, 1.40)	50	1.42	(0.874, 2.32)	1.41	(0.851, 2.36)	21	0.553	(0.31, 0.987)	0.556	(0.303, 1.00)
Quartile 3 79	1.109	(0.776, 1.58)	1.12	(0.778, 1.63)	41	1.21	(0.731, 2.01)	1.22	(0.728, 2.08)	38	1.01	(0.613, 1.67)	1.02	(0.604, 1.73)
Quartile 4 70	0.946	(0.657, 1.36)	0.999	(0.684, 1.45)	37	1.04	(0.622, 1.74)	1.14	(0.668, 1.95)	33	0.859	(0.512, 1.44)	0.864	(0.502, 1.48)
p for trend	0.960		0.794			0.903		0.781			0.950		0.533	
P for Sex	0.044		0.110											
interaction	0.066		0.119											
PFTrDA														
Quartile 1 78	1		1		44	1		1		34	1		1	
Quartile 2 73	0.918	(0.643, 1.31)	0.966	(0.669, 1.39)	38	0.737	(0.452, 1.199)	0.810	(0.487, 1.34)	35	1.16	(0.691, 1.96)	1.19	(0.696, 2.04)
Quartile 3 65	0.800	(0.556, 1.15)	0.805	(0.550, 1.17)	39	0.788	(0.485, 1.281)	0.813	(0.486, 1.35)	26	0.789	(0.453, 1.37)	0.801	(0.449, 1.41)
Quartile 4 75	0.926	(0.650, 1.31)	0.944	(0.653, 1.36)	41	0.883	(0.545, 1.43)	0.978	(0.590, 1.61)	34	0.976	(0.579, 1.64)	0.919	(0.531, 1.58)
p for trend	0.526		0.565			0.694		0.931			0.614		0.474	
P for Sex	0.550		0.507											
interaction	0.558		0.59/											

^a Adjusted for maternal age, maternal educational level, parental allergic history, number of older siblings, breast feeding, day care attendance, and ETS exposure at 4 years of

age. In addition to the aforementioned confounders, we included child gender in adjusted models for total children prior to sex stratification.

*Indicates number of cases with wheezing.