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Generalized Sabban curves in the Euclidean n-sphere and
spherical duality

Shyuichi IZUMIYA and Takayuki NAGAI

April 24, 2017

Abstract

In this paper, we define generalized Sabban frames of curves in Sn and investigate the
singularities of the spherical duals of the curves by using invariants with respect to such
frames.

1 Introduction

In this paper we consider regular curves in the unit hypersphere in the Euclidean n + 1-space
(Sn ⊂ Rn+1) which is called generalized Sabban curves. We denote that a × b is the vector
product and a · b is the canonical scaler product of a, b ∈ Rn+1.

Let γ : I −→ S2 ⊂ R3 be a unit speed regular curve. Then we have an orthonormal frame
{γ, t,n} along γ, where t(s) is the unit tangent vector of γ at s and n(s) = γ(s) × t(s). We
have the Frenet-type formula: 

γ ′(s) = t(s),
t′(s) = −γ(s) + κg(s)n(s),
n′(s) = −κg(s)t(s),

where κg(s) = t′(s) · n(s) is the geodesic curvature of γ at s. This frame was introduced by
Sabban (cf. [8]) and it is called a Sabban frame of γ. For a unit speed curve in S2, we always
have the Sabban frame. However, we need some assumptions to define the Sabban type frame
for regular curves in Sn, where n ≥ 3. We say that a unit speed curve γ : I −→ S3 ⊂ R4 is a
Sabban curve (or, a spherical Frenet curve) if ∥t′(s)+γ(s)∥ ≠ 0 at any point s ∈ I. Then we have
an orthonormal frame {γ, t,n1,n2} of R4 along γ, where n1(s) = (t′(s) +γ(s))/∥t′(s) +γ(s)∥
and n2(s) = γ(s) × t(s) × n1(s). Here, a1 × a2 × a3 is the generalized vector product in R4

(cf. §2). Then we have 
γ ′(s) = t(s),
t′(s) = −γ(s) + κ1(s)n1(s),
n′

1(s) = −κ1(s)t(s) + κ2(s)n2(s),
n′

2(s) = −κ2(s)t(s),
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where κ1(s) = ∥t′(s) + γ(s)∥ ̸= 0 and κ2(s) = n′
1(s) · n2(s). We call {γ, t,n1,n2} a Sabban

frame along a Sabban curve γ. In §2, we construct an orthonormal frame {γ, t,n1, . . . ,nn−1}
along γ : I −→ Sn ⊂ Rn+1 under some conditions on γ. We call the above orthonormal frame
a generalized Sabban frame. In this case γ is called a generalized Sabban curve, which is an
analogous notion of Frenet curves in Rn (cf. [6, 7])

In this paper we consider spherical dual hypersurfaces of generalized Sabban curves. For a
generalized Sabban curve γ we define a hypersurface (γ)∗ in Sn by

(γ)∗ = {ξ1n1(s) + · · ·+ ξn−1nn−1(s) | s ∈ I, ξ21 + · · ·+ ξ2n−1 = 1}.

Then we call (γ)∗ a spherical dual hypersurface of γ. In §4 we give an interpretation why (γ)∗

can be called a spherical dual of γ as an application of the theory of Legendrian dualities. The
main purpose in this paper is to give classifications and characterizations of the singularities of
(γ)∗ by using the geometric properties of the generalized Sabban frame (cf. Theorems 5.6 and
6.2). These results are generalizations of some of the results on curves in S2 or S3 [2, 9, 10].

2 Notations and Definitions

In this section we consider a regular curve in the unit hypersphere in the Euclidean space. Let
Sn be the n-dimensional unit sphere in the Euclidean space Rn+1. Given a vector n ∈ Rn+1\{0}
and a real number c, the hyperplane with a normal vector n is defined to be HP (n, c) = {x ∈
Rn+1 | n · x = c}, where v ·w is the canonical scalar product of v,w ∈ Rn+1. A sphere in Sn

is given by
Sn−1(n, c) = Sn ∩H(n, c) = {x ∈ Sn | n · x = c}.

We say that Sn−1(n, c) is a great hypersphere if c = 0 and a small hypersphere if c ̸= 0,
respectively. Here, we call n a polar vector of Sn−1(n, c). For any ai =

(
a1i , a

2
i , . . . , a

n+1
i

)
∈

Rn+1 (i = 1, . . . , n), the vector product a1 × a2 × · · · × an is defined by

a1 × a2 × · · · × an = det


e1 e2 . . . en+1

a11 a21 . . . an+1
1

...
...

. . .
...

a1n a2n . . . an+1
n

 ,

where {e1, e2, . . . , en+1} is the canonical basis of Rn+1. We can easily show that a1×a2×· · ·×an

is orthogonal to any ai (i = 1, . . . , n).

We now define generalized Sabban frame of a spherical curve in Sn. Let γ : I −→ Sn be
a regular curve, where I is an open interval in R. We can reparametrize γ by the arc-length.
Hence, we may assume that γ(s) is a unit speed curve, so that we have the tangent vector
t(s) = γ ′(s) = (dγ/ds)(s) with ∥t(s)∥ = 1. In the case when ∥t′(s) + γ(s)∥ ̸= 0, we have a
unit vector n1(s) = (t′(s) + γ(s))/∥t′(s) + γ(s)∥. We can easily show that n1(s) is orthogonal
to γ(s) and t(s) by a straight forward calculation. We write κ1(s) = ∥t′(s) + γ(s)∥. Next we
consider κ2(s) = ∥n1(s) + κ1(s)t(s)∥. In the case when κ2(s) ̸= 0, we have another unit vector
n2 = (n1(s) + κ1(s)t(s))/∥n1(s) + κ1(s)t(s)∥. By repeating the method similar to the above,
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we have the following functions and unit vectors;

κi(s) = ∥n′
i−1(s) + κi−1(s)ni−2(s)∥,

ni(s) =
n′

i−1(s) + κi−1(s)ni−2(s)

∥n′
i−1(s) + κi−1(s)ni−2(s)∥

=
n′

i−1(s) + κi−1(s)ni−2(s)

κi(s)

for i = 1, . . . , n− 2 , where we assume that κi(s) ̸= 0 for all i. Finally, we define

nn−1(s) =
γ(s)× t(s)× n1(s)× · · · × nn−2(s)

∥γ(s)× t(s)× n1(s)× · · · × nn−2(s)∥
,

κn−1(s) = n′
n−2(s) · nn−1(s).

We call κi(s) a ith-curvature of γ(s).

Lemma 2.1. With the above notation, vectors γ(s), t(s),n1(s), . . . ,nn−2(s),nn−1(s) are or-
thogonal to each other.

Proof. By definition, nn−1(s) is orthogonal to γ(s), t(s),n1(s), . . . ,nn−2(s). For other vectors
we can prove by a straight forward calculation. For example,

(∗) γ(s) · n1(s) =
1

κ1

(γ(s) · t′(s) + γ(s) · γ(s))

Because γ is a spherical curve, γ(s)·γ(s) = 1, so that we have γ(s)·t(s) = 0. Then (γ(s)·t(s))′ =
γ ′(s) · t(s) + γ(s) · t′(s) = 0, so

γ(s) · t′(s) = −γ ′(s) · t(s)
= −∥t(s)∥2 = −1.

Then

(∗) =
1

κ1

(−1 + 1) = 0.

Therefore γ(s) and t(s) are orthogonal. We can prove that all vectors are orthogonal to each
other by the method similar to the above calculation. 2

By the above lemma, the set of vectors {γ(s), t(s),n1(s), . . . ,nn−1(s)} is an orthonormal
frame of Rn+1 along γ. We call this frame a generalized Sabban frame along γ. We also call a
spherical curve γ a generalized Sabban curve when κi(s) ̸= 0 for i = 1, 2, . . . , n− 2. We remark
that κn−1(s) might be equal to 0.

Here we expect the following Frenet-Serret type formula :

γ ′(s) = t(s),
t′(s) = −γ(s) + κ1(s)n1(s),
n′

1(s) = −κ1(s)t(s) + κ2(s)n2(s),
· · · = · · ·

n′
i(s) = −κi(s)ni−1(s) + κi+1(s)ni+1(s),
· · · = · · ·

n′
n−2(s) = −κn−2(s)nn−3(s) + κn−1(s)nn−1(s)

n′
n−1(s) = −κn−1(s)nn−2(s).
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We obtain equations for γ ′(s), · · · ,n′
n−3(s) by definition. On the other hand we need a

little calculation to get the equations for n′
n−2(s) , n

′
n−1(s) since the definitions of κn−1(s) and

nn−1(s) are different from other κi(s) and ni(s).

Lemma 2.2. We have the following equations :

n′
n−2(s) = −κn−2(s)nn−3(s) + κn−1(s)nn−1(s)

n′
n−1(s) = −κn−1(s)nn−2(s).

Proof. We denote that n′
n−2(s) = λγ(s) + µn(s) + ξ1n1(s) + · · · + ξn−1nn−1(s). Since

γ(s), · · · ,nn−1(s) are orthogonal, nn−2(s) · γ(s) = 0. Then, it follows that,

(nn−2(s) · γ(s))′ = n′
n−2(s) · γ(s) + nn−2(s) · γ ′(s)

= λ+ nn−2(s) · t(s)
= λ,

so λ = 0. We can prove that µ, ξ1, · · · , ξn−4 and ξn−2 are equal to 0 by the same way as the
above. By definition, n′

n−2(s) · nn−1(s) = ξn−1 = κn−1(s). Finally,

(nn−2(s) · nn−3(s))
′ = n′

n−2(s) · nn−3(s) + nn−2(s) · n′
n−3(s)

= ξn−3 + nn−2(s) · (κn−3(s)nn−4(s) + κn−2(s)nn−2(s))

= ξn−3 + κn−2(s).

Since nn−2(s) ·nn−3 = 0, ξn−3 = −κn−2(s). We can prove the formula for n′
n−1(s) by the same

way as the above. This completes the proof. 2

By Lemma 2.2, we have the Frenet-Serret type formulae for the generalized Sabban frame
of a spherical curve. We can write them as follows:

γ ′(s)
t′(s)
n′

1(s)
...

n′
n−2(s)

n′
n−1(s)


=



0 1 0 0 0 · · · 0 0
−1 0 κ1(s) 0 0 · · · 0 0
0 −κ1(s) 0 κ2(s) 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 · · · 0 0 −κn−2(s) 0 κn−1(s)
0 0 · · · 0 0 0 −κn−1(s) 0





γ(s)
t(s)
n1(s)

...
nn−2(s)
nn−1(s)


We can interpret the geometric meaning of the (n− 1)th-curvature κn−1(s) of γ(s).

Proposition 2.3. Let γ : I → Sn be a generalized Sabban curve. Then there exists a great
hypersphere Sn−1(n, 0) such that γ(I) ⊂ Sn−1(n, 0) if and only if κn−1 ≡ 0.

Proof. Suppose that κn−1 ≡ 0. By the Frenet-Serret type formulae (∗∗), nn−1 is a constant
vector. We denote that nn−1(s) = n. We consider a function f : I → R defined by f(s) = γ(s) ·
n. Then we have f(s) = γ(s) ·n = γ(s) ·nn−1(s) = 0 and f ′(s) = t(s) ·n = t(s) ·nn−1(s) = 0.
Therefore f(s) is constantly equal to 0, so that γ(s) ∈ Sn ∩ H(n, 0) = Sn−1(n, 0). For the
converse, suppose that there exists Sn−1(n, 0) such that γ(I) ⊂ Sn−1(n, 0). Then the function
f defined as the above is constantly equal to 0. It follows that f ′(s) = t(s) · n = 0. Thus,
0 = f ′′(s) = t′(s) · n = (−γ(s) + κ1(s)n1(s)) · n = κ1(s)n1(s) · n. Since κ1(s) ̸= 0, we have
n1(s) · n = 0. It follows that

0 = n′
1(s) · n = (−κ1(s)t(s) + κ2(s)n2(s)) · n = κ2(s)n2(s) · n.
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Since κ2(s) ̸= 0, we have n2(s) · n = 0. It also follows that

0 = n′
2(s) · n = (−κ2(s)n1(s) + κ3(s)n3(s)) · n = κ3(s)n3(s) · n.

Since κ3(s) ̸= 0, we have n3(s) · n = 0. We continue this procedure. Finally, we have
κn−1(s)nn−1(s) · n = 0. If nn−1(s) · n = 0, then n is orthogonal to all vectors of the gen-
eralized Sabban frame {γ(s), t(s),n1(s), . . . ,nn−1(s)} which contradicts to the fact that the
generalized Sabban frame is a basis of Rn+1 and n ̸= 0. Thus κn−1(s) = 0 for any s ∈ I. 2

3 Spherical height functions

In this section we introduce a family of functions on a curve in the sphere that is useful for the
study of invariants of generalized Sabban curve. For a generalized Sabban curve γ : I → Sn,
we define a function H : I × Sn → R by H(s,v) = γ(s) · v. We call H a spherical height
function on γ. We write hv0(s) = Hv0(s) = H(s,v0) for any fixed vector v0 ∈ Sn. Then we
have the following proposition.

Proposition 3.1. Let γ : I → Sn be a generalized Sabban curve. Then we have the following :
(1) hv0(s0) = 0 if and only if there exist µ, ξ1, · · · , ξn−1 ∈ R such that v0 = µt(s0) + ξ1n1(s0) +
· · ·+ ξn−1nn−1(s0) and µ2 + ξ21 + · · ·+ ξ2n−1 = 1,

(2) for k < n, hv0(s0) = h′
v0(s0) = · · · = h

(k)
v0 (s0) = 0 if and only if there exist ξk, · · · , ξn−1 ∈ R

such that v0 = ξknk(s0) + · · ·+ ξn−1nn−1(s0) and ξ2k + · · ·+ ξ2n−1 = 1,

(3) hv0(s0) = h′
v0(s0) = · · · = h

(n)
v0 (s0) = 0 if and only if v0 = ±nn−1(s0) and κn−1(s0) = 0,

(4) for k > n, hv0(s0) = h′
v0(s0) = · · · = h

(k)
v0 (s0) = 0 if and only if v0 = ±nn−1(s0) and

κn−1(s0) = κ′
n−1(s0) = · · · = κ

(k−n)
n−1 (s0) = 0.

By the definition of spherical height function, h
(k)
v0 (s0) = (γ(s0) · v0)

(k) = γ(k)(s0) · v0. We
consider γ(k)(s0). By the Frenet-Serret type formulae, we have the following lemma.

Lemma 3.2. γ(k)(s) has the following form:
(1) γ ′(s) = t(s),
(2) γ ′′(s) = −γ(s) + κ1(s)n1(s),
(3) For 3 ≤ k ≤ n , there exist functions λ(s), µ(s), ξ1(s), · · · , ξk−2(s) such that

(∗∗) γ(k)(s) = λ(s)γ(s) + µ(s)t(s) + ξ1(s)n1(s) + · · ·
+ξk−2(s)nk−2(s) + κ1(s)κ2(s) · · ·κk−1(s)nk−1(s).

Proof. By the definition of t,n1 and κ1, (1) and (2) hold.
We prove assertion (3) by using induction. Let k = 3. By the formula (2),

γ(3)(s) = {−γ(s) + κ1(s)n1(s)}′

= −t(s) + κ′
1(s)n1(s) + κ1(s)n1

′(s)

= −t(s) + κ′
1(s)n1(s) + κ1(s)(−κ1(s)t(s) + κ2(s)n2(s))

= −(1 + κ2
1(s))t(s) + κ′

1(s)n1(s) + κ1(s)κ2(s)n2(s)

The coefficient of n2 is κ1(s)κ2(s). Then (∗∗) holds for k = 3.
We assume that (∗∗) holds for k − 1; that is, there exist λ(s), µ(s), ξ1(s), · · · , ξk−3(s) such that

γ(k−1)(s) = λ(s)γ(s) + µ(s)t(s) + ξ1(s)n1(s) + · · ·+ ξk−3(s)nk−3(s) + κ1(s)κ2(s) · · ·κk−2(s)nk−2(s).
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Here we calculate γ(k) by using the Frenet-Serret type formulae:

γ(k)(s) = {γ(k−1)}′(s)
= λ

′
(s)γ(s) + λ(s)γ ′(s) + µ′(s)t(s) + µ(s)t′(s) + · · ·+ ξk−3

′
(s)nk−3(s) + ξk−3(s)n

′
k−3(s)

+{κ1(s)κ2(s) · · ·κk−2(s)}′nk−2(s) + κ1(s)κ2(s) · · ·κk−2(s)n
′
k−2(s)

= {λ′
(s)− µ(s)}γ(s) + {λ(s) + µ′(s)− κ1(s)}t(s) + · · ·
+{ξk−4(s)κk−3(s) + ξk−3

′
(s) + κ1(s)κ2(s) · · ·κk−2(s)}nk−3(s)

+{ξk−3(s)κk−2(s) + (κ1(s)κ2(s) · · ·κk−2(s))
′}nk−2(s)

+κ1(s)κ2(s) · · ·κk−2(s)κk−1(s)nk−1(s)

The coefficient of nn−1(s) is κ1(s)κ2(s) · · ·κk−1(s). Then (∗∗) holds for all k = 3, 4, · · · , n.
2

Proof of Proposition 3.1. By using the generalized Sabban frame, there exist λ, µ, ξ1, · · · , ξn−1 ∈
R such that:

v0 = λγ(s0) + µt(s0) + ξ1n1(s0) + · · ·+ ξn−1nn−1(s0).

Then we have

hv0(s0) = γ(s0) · v0 = λ.

Therefore assertion (1) holds.
We prove assertion (2) inductively. Let k = 1. By assertion (1) of Lemma 3.2 , we have

h′
v0
(s0) = γ ′(s0) · v0 = t(s0) · v0 = µ.

Thus hv0(s0) = h′
v0
(s0) = 0 means λ = µ = 0, then (2) holds for k = 1. We now assume that

(2) holds for k− 1. This means that hv0(s0) = h′
v0
(s0) = · · · = hk−1

v0
(s0) = 0 if and only if there

exist ξk, · · · , ξn−1 ∈ R such that v0 = ξk−1nk−1(s0) + · · · + ξn−1nn−1(s0). By assertion (3) of
Lemma 3.2, we have

hk
v0
(s0) = γ(k)(s) · v0 = (λ(s)γ(s0) + · · ·+ κ1(s0)κ2(s0) · · ·κk−1(s0)nk−1(s0)) · v0.

Therefore, hv0(s0) = h′
v0
(s0) = · · · = h

(k)
v0 (s0) = 0 if and only if

0 = h(k)
v0
(s0) = γ(k)(s) · (ξk−1nk−1(s0) + · · ·+ ξn−1nn−1(s0)) = κ1(s0)κ2(s0) · · ·κk−1(s0) · ξk−1.

Since k − 1 < n − 1, we have κ1(s0)κ2(s0) · · ·κk−1(s0) ̸= 0, so that ξk−1 = 0. We also have
1 = v0 · v0 = ξ2k + · · · + ξ2n−1. This completes the induction step. By assertion (2), hv0(s0) =

h′
v0
(s0) = · · · = h

(n−1)
v0 (s0) = 0 if and only if v0 = ±nn−1(s0). It follows from (3) of Lemma 3.2

that hv0(s0) = h′
v0
(s0) = · · · = h

(n)
v0 (s0) = 0 if and only if

0 = h(n)
v0

(s0) = γ(n)(s0) · (±nn−1(s0)) = ±κ1(s0)κ2(s0) · · ·κn−2(s0)κn−1(s0)

This means that κn−1(s0) = 0. This completes the proof of (3).
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We now prove assertion (4) by induction. By assertion (3), hv0(s0) = h′
v0
(s0) = · · · =

h
(n+1)
v0 (s0) = 0 if and only if v0 = ±nn−1(s0), κn−1(s0) = 0 and h

(n+1)
v0 (s0) = 0. By (3) of

Lemma 3.2, we have

γ(n)(s) = λ(s)γ(s) + µ(s)t(s) + ξ1(s)n1(s) + · · ·
+ξn−2(s)nn−2(s) + κ1(s)κ2(s) · · ·κn−1(s)nn−1(s).

If we put K(s) = κ1(s)κ2(s) · · ·κn−2(s), then we have

γ(n+1)(s) = λ
′
(s)γ(s) + λ(s)t(s) + µ′(s)t(s) + µ(s)(−γ(s) + κ1(s)n1(s))

+ξ1
′
(s)n1(s) + ξ1(s)(−κ1(s)t(s) + κ2(s)n2(s)) + · · ·

+ξn−2
′
(s)nn−2(s) + ξn−2(s)(−κn−2(s)nn−3(s) + κn−1(s)nn−1(s))

+(K ′(s)κn−1(s) +K(s)κ′
n−1(s))nn−1(s)−K(s)κ2

n−1(s)nn−2(s)

= V (s) +W (s),

for some V (s) ∈ ⟨γ(s), t(s),n1(s), . . . ,nn−2(s)⟩R and

W (s) = (ξn−2(s)κn−1(s) +K ′(s)κn−1(s) +K(s)κ′
n−1(s))nn−1(s).

Since V (s) · nn−1(s) = 0 and κ1(s)κ2(s) · · ·κn−2(s) ̸= 0, v0 = ±nn−1(s0), κn−1(s0) = 0 and

h
(n+1)
v0 (s0) = 0 if and only if v0 = ±nn−1(s0), κn−1(s0) = 0 and κ′

n−1(s0) = 0. Thus assertion
(4) for k = n+1 holds. We now assume that the following conditions hold for k = n+ (r− 1):

hv0(s0) = h′
v0(s0) = · · · = h

(k)
v0 (s0) = 0 if and only if v0 = ±nn−1(s0) and κn−1(s0) = κ′

n−1(s0) =

· · · = κ
(r−1)
n−1 (s0) = 0 and γ(k)(s) = V (s) +W (s), where V (s) ∈ ⟨γ(s), t(s),n1(s), . . . ,nn−2(s)⟩R

and there exist functions η0(s), η1(s), . . . ηr−2(s) such that

W (s) =

(
r−2∑
i=0

ηi(s)κ
(i)
n−1(s) +K(s)κ

(r−1)
n−1 (s)

)
nn−1(s).

Therefore, we have V (s) = V (s)+ζ(s)nn−2(s) for some V (s) ∈ ⟨γ(s), t(s),n1(s), . . . ,nn−3(s)⟩R.
It follows that

V ′(s) = V
′
(s) + ζ ′(s)nn−2(s) + ζ(s)(−κn−2(s)nn−3(s) + κn−1(s)nn−1(s))

and

W ′(s) =

(
r−2∑
i=0

(η′i(s)κ
(i)
n−1(s) + ηi(s)κ

(i+1)
n−1 (s)) +K ′(s)κ

(r−1)
n−1 (s) +K(s)κ

(r)
n−1(s)

)
nn−1(s)

−

(
r−2∑
i=0

ηi(s)κ
(i)
n−1(s) +K(s)κ

(r−1)
n−1 (s)

)
κn−2(s)nn−2(s).

It follows that there exist functions η0(s), . . . ηr−1(s) and Ṽ (s) ∈ ⟨γ(s), t(s),n1(s), . . . ,nn−2(s)⟩R
such that

γ(k+1)(s) = Ṽ (s) +

(
r−1∑
i=0

ηi(s)κ
(i)
n−1(s) +K(s)κ

(r)
n−1(s)

)
nn−1(s).

Since K(s) ̸= 0 and nn−1(s) · Ṽ (s) = 0, hv0(s0) = h′
v0(s0) = · · · = h

(k+1)
v0 (s0) = 0 if and only if

v0 = ±nn−1(s0) and κn−1(s0) = κ′
n−1(s0) = · · · = κ

(r)
n−1(s0) = 0. This completes the proof for

assertion (4). 2
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4 Spherical Legendrian duality

According to the results of Proposition 3.1, we now define a mapping Dγ : I × Sn−2 −→ Sn by

Dγ(s, ξ) = ξ1n1(s) + · · ·+ ξn−1nn−1(s),

where ξ = (ξ1, . . . , ξn−1) ∈ Sn−2. Then (γ)∗ = Dγ(I ×Sn−2) is called a spherical dual hypersur-
face of γ. In this section we clarify the reason why (γ)∗ is called the spherical dual of γ. For the
purpose we now briefly review some properties of contact manifolds and Legendrian submani-
folds. Let W be a 2n + 1-dimensional smooth manifold and K be a tangent hyperplane field
on W . Locally such a field is defined as the field of zeros of a 1-form α. If tangent hyperplane
field K is non-degenerate, we say that (W,K) is a contact manifold. Here K is said to be
non-degenerate if α∧ (dα)n ̸= 0 at any point of W . In this case K is called a contact structure
and α is a contact form. Let ϕ : W −→ W ′ be a diffeomorphism between contact manifolds
(W,K) and (W ′, K ′). We say that ϕ is a contact diffeomorphism if dϕ(K) = K ′. Two contact
manifolds (W,K) and (W ′, K ′) are contact diffeomorphic if there exists a contact diffeomor-
phism ϕ : W → W ′. A submanifold i : L ⊂ W of a contact manifold (W,K) is a Legendrian
submanifold if dimL = n and dip(TpL) ⊂ Ki(p) at any point p ∈ L. We consider a smooth
fiber bundle π : N → A. The fiber bundle π : N → A is called a Legendrian fibration if its
total space W is furnished with a contact structure and its fibers are Legendrian submanifolds.
Let π : N → A be a Legendrian fibration. For a Legendrian submanifold i : L ⊂ N , a map
π◦i : L → A is called a Legendrian map. The image of the Legendrian map π◦i is called a wave
front of i which is denoted by W (i). For any p ∈ W , it is known that there is a local coordinate
system (x1, . . . , xn, p1, . . . , pn, z) around p such that π(x1, . . . , xn, p1, . . . , pn, z) = (x1, . . . , xn, z)
and the contact structure is given by the 1-form α = dz −

∑n
i=1 pidxi (cf [1], Part III ).

We now consider the following double fibrations of Sn:

∆ = {(v,w) ∈ Sn × Sn|v ·w = 0},
π1 : ∆ ∋ (v,w) 7−→ v ∈ Sn, π2 : ∆ ∋ (v,w) 7−→ w ∈ Sn,

θ1 = dv ·w|∆, θ2 = v · dw|∆.

Here, dv · w =
∑n

i=0 widvi and v · dw =
∑n

i=0 vidwi. Since d(v · w) = dv · w + v · dw and
v · w = 0 on ∆, θ−1

1 (0) and θ−1
2 (0) define the same tangent hyperplane field over ∆ which is

denoted by K. Since ∆ can be identified with the unit tangent bundle of Sn, we have the
following result (cf. [3]).

Theorem 4.1. Under the above notation, (∆, K) is a contact manifold and both of πi are
Legendrian fibrations.

By definition, ∆ is a smooth submanifold in Rn+1×Rn+1 and each πi (i = 1, 2) is a smooth
fibration. Moreover, by the definition of the contact forms θ1, θ2, all fibers of π1 and π2 are
Legendrian submanifolds in (∆, K). If we have a Legendrian submanifold L ⊂ ∆, then we say
that π1(L) ⊂ Sn and π2(L) ⊂ Sn are spherical Legendrian dual to each other. Since both of
v × S(v, 0) = π−1

1 (v) and S(v, 0) × v = π−1
2 (v) are Legendrian submanifolds of ∆, a point

v ∈ Sn and the great hypersphere S(v, 0) ⊂ Sn are spherical Legendrian dual to each other.
This means that this duality is analogous to the classical duality in the projective geometry.
We have the following theorem.

Theorem 4.2. Let γ : I −→ Sn be a generalized Sabban curve. Then γ(I) and (γ)∗ are
spherical Legendrian dual to each other.
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Proof. We define a mapping L : I × Sn−2 → ∆ by L(s, ξ) = (γ(s), Dγ(s, ξ)). By definition,
L is a well defined mapping. Moreover, we have

∂L
∂s

=

(
t,
∂Dγ

∂s

)
,

∂L
∂ξi

= (0,ni(s)) .

Therefore, {∂L/∂s, ∂L/∂ξ1, . . . ∂L/∂ξn−1} are linearly independent. This means that L : I ×
Rn−1 → ∆ is immersive. Then the restriction of the above mapping to I × Sn−2 is also
immersive. Moreover, we have L∗θ1 = t(s)ds ·Dγ(s, ξ) = 0, so that L(I×Sn−2) is a Legendrian
submanifold of ∆. This completes the proof. 2

Then we have the following corollary:

Corollary 4.3. For any generalized Sabban curve γ : I −→ Sn, (γ)∗ is a wave front of
L(I × Sn−2) with respect to the Legendrian fibration π2.

5 Unfoldings of function-germs

We use some general results on the singularity theory for families of function germs. Detailed
descriptions are found in the book [4]. Let F : (R × Rr, (s0, x0)) → R be a function germ.
We call F an r-parameter unfolding of f , where f(s) = Fx0(s, x0). We say that f has an Ak-
singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and f (k+1)(s0) ̸= 0. Let F be an unfolding
of f and f(s) has an Ak-singularity (k ≥ 1) at s0. We write the (k − 1)-jet of the partial
derivative ∂F

∂xi
at s0 by j(k−1)( ∂F

∂xi
(s, x0))(s0) =

∑k−1
j=0 αji(s − s0)

j for i = 1, . . . , r. Then F is
called an R-versal unfolding if the k × r matrix of coefficients (αji)j=0,...,k−1;i=1,...,r has rank k
(k ≤ r). We introduce an important set concerning the unfoldings relative to the above notions.
A discriminant set of F is the set

DF = {x ∈ Rr| ∃s such that F =
∂F

∂s
= 0 at (s, x)}.

We also define

Di
F = {x ∈ Rr| ∃s such that F =

∂F

∂s
= · · · = ∂iF

∂si
= 0 at (s, x)}

which is called an ith-order discriminant set of F. By definition, the first-order discriminant set is
the discriminant set. Then we are interested in classification of Di

F by diffeomorphisms. We say
that two function germs f, g : (R, 0) −→ R are R-equivalent if there exists a diffeomorphism
germ ϕ : (R, 0) −→ (R, 0) such that f ◦ ϕ(s) = g(s) + (f(0) − g(0)) for any s ∈ (R, 0). If
f : (R, 0) −→ R has an Ak-singularity at 0, then f is R-equivalent to g(s) = ±sk+1 (cf.[4,
Theorem 3.3]). We can also easily show the following proposition (cf. [4, 6.6]).

Proposition 5.1. The unfolding G : (R× Rr, (0, 0)) −→ (R, 0) given by

G(s, x) = ±sk+1 + x1 + x2s+ · · ·+ xks
k−1

is an R-versal unfolding of g(s) = ±sk+1 at 0.

Let F,G : (R×Rr, (0, 0)) −→ (R, 0) be unfoldings of f, g : (R, 0) −→ (R, 0), respectively. We
say that F,G are P -R-equivalent if there exists a diffeomorphism germ Φ : (R×Rr, (0, 0)) −→
(R × Rr, (0, 0)) of the form Φ(s, x) = (ϕ1(s, x), ϕ2(x)) such that F ◦ Φ = G. By definition, if
F,G are P -R-equivalent, then f, g are R-equivalent. By the uniqueness of R-versal unfolding
(cf. [5]), we have the following theorem.
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Theorem 5.2. Let F,G : (R × Rr, (0, 0)) −→ (R, 0) be unfoldings of f, g : (R, 0) −→ (R, 0),
respectively. Suppose that F,G are R-versal unfoldings of f, g respectively. If f, g are R-
equivalent, then F,G are P -R-equivalent.

By straightforward calculations and an induction, we can show the following proposition.

Proposition 5.3. Let F,G : (R×Rr, (0, 0)) −→ (R, 0) be unfoldings of f, g : (R, 0) −→ (R, 0),
respectively. If F,G are P -R-equivalent, then there exists a diffeomorphism germ ϕ : (Rr, 0) −→
(Rr, 0) such that ϕ(Di

G) = Di
F as set germs for any i.

For the unfolding G : (R× Rr, (0, 0)) −→ (R, 0) given by

G(s, x) = ±sk+1 + x1 + x2s+ · · ·+ xks
k−1,

we can show that x = (x1, . . . , xk) ∈ Di
G (1 ≤ i ≤ k − 1) if and only if

(∗∗∗)



x1 = ∓sk+1 − sx2 − · · · − sk−1xk,
x2 = ∓(k + 1)sk − 2sx3 − · · · − (k − 1)sk−2xk,

x3 = ∓ (k+1)k
2

sk − 3sx4 − · · · − (k−1)(k−2)
2

sk−3,
... =

...

xi+1 = ∓ (k+1)k···(k−i+3)
i!

sk+1−i − (i+ 1)sxi+2 − · · · − (k−1)(k−2)···(k−i+1)
(i−1)!

sk−ixk.

We now consider a map-germ DA±
k : (Rk−1, 0) −→ (Rk, 0) defined by

DA±
k (u1, . . . , uk−1) = (±uk+1

1 +
k−1∑
i=2

(i− 1)ui
1ui,∓(k + 1)uk

1 −
k−1∑
i=2

iui−1
1 ui, u2, . . . , uk−1).

We remark that (ImDA±
2 , 0) is diffeomorphic to the cusp C = {(t2, t3) |t ∈ (R, 0)} and

(ImDA±
3 , 0) is diffeomorphic to the swallowtail SW = {(3u4+u2v, 4u3+2uv, v) |(u, v) ∈ (R2, 0)}

as set-germs. By Theorem 5.2 and Proposition 5.3, we have the following classification.

Theorem 5.4. Let F : (R×Rr, (s0, x0)) → R be an r-parameter unfolding of f(s) which has an
Ak singularity (k ≤ r) at s0. Suppose that F is an R-versal unfolding. Then (DF , (s0, x0)) is
diffeomorphic to (ImDA±

k × Rr−k, 0) as set-germs. Moreover, (Dk−1
F , (s0, x0)) is diffeomorphic

to (Imσ[2, 3, . . . , k, k+1]×Rr−k, 0) as set-germs, where σ[2, 3, . . . , k, k+1] : (R, 0) −→ (Rk, 0)
is a curve defined by

σ[2, 3, . . . , k, k + 1](t) = (t2, t3, . . . , tk, tk+1).

Proof. By the system of equations (∗∗∗) for i = 1, we have{
x1 = ∓sk+1 − sx2 − · · · − sk−1xk,
x2 = ∓(k + 1)sk − 2sx3 − · · · − (k − 1)sk−2xk.

Then we have {
x1 = ±sk+1 + s2x3 + · · ·+ (k − 2)sk−1xk,
x2 = ∓(k + 1)sk − 2sx3 − · · · − (k − 1)sk−2xk.

If we put s = u1, x3 = u2, . . . , xk = uk−1, the above system of equations means that (DG, 0) =
(ImDA±

k ×Rr−k, 0). Since f(s) has an Ak singularity at s = s0, f is R-equivalent to ±tk+1. By
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Theorem 5.2, F and G are R-equivalent, so that (DF , (s0, x0)) and (DG, 0) are diffeomorphic
as set-germs.

On the other hand, if we continue the above calculation until i = k − 1, we can show that

x1 = λ1(k)s
k+1, x2 = λ2(k)s

k, x3 = λ3(k)s
k−1, . . . , xk = λk(k)s

2,

for some λi(k) ∈ Q \ {0}. By an affine coordinate change on Rr, we have

x1 = s2, x2 = s3, . . . , xk−1 = sk, xk = sk+1.

This means that (Dk−1
G , 0) is diffeomorphic to (Imσ[2, 3, . . . , k, k + 1] × Rr−k, 0) as set-germs.

By Theorem 5.2 and Proposition 5.3, we have the assertion. This completes the proof. 2

We remark that we can calculate Di
G for 1 < i < k − 1. It is, however, rather complicated,

so that we omit the further arguments here.

We now consider spherical height functions on generalized Sabban curve. Let γ : I −→ Sn

be a generalized Sabban curve and H : I × Sn −→ R the spherical height function on γ. For
(s0,v0) ∈ I × Sn, we consider the function germ H : (I × Sn, (s0,v0)) −→ R and H can be
considered as an n-parameter unfolding of hv0 .

Proposition 5.5. For v0 ∈ Sn, suppose that hv0 has Ak-singularity at s0 for any k ≤ n. Then
H is an R-versal unfolding of hv0.

Proof. We now consider an orthonormal basis {γ(s0), t(s0),n1(s0), . . . ,nn−1(s0)} of Rn+1. We
have the local representation of γ : I −→ Sn around s0 by

γ(s) = x1(s)γ(s0) + x2(s)t(s0) + x3(s)n1(s0) + · · ·+ xn+1(s)nn−1(s0).

We also write that v0 = λγ(s0) + µt(s0) +
∑n−1

i=1 ξini(s0) with λ2 + µ2 +
∑n−1

i=1 ξ2i = 1. Then we
have

H(s,v0) = λx1(s) + µx2(s) + ξ1x3(s) + · · ·+ ξn−1xn+1(s).

Suppose that ξn−1 > 0 and ξn−1 =
√

1− λ2 − µ2 −
∑n−2

i=1 ξ2i . Then we have

∂H

∂λ
(s,v0) = x1(s)−

λ

ξn−1

xn+1(s),

∂H

∂µ
(s,v0) = x2(s)−

µ

ξn−1

xn+1(s),

∂H

∂ξ1
(s,v0) = x3(s)−

ξ1
ξn−1

xn+1(s),

...
...

...
∂H

∂ξn−2

(s,v0) = xn(s)−
ξn−2

ξn−1

xn+1(s).

We now consider the following matrix:

A =


x1(s0)− λ

ξn−1
xn+1(s0) x2(s0)− µ

ξn−1
xn+1(s0) · · · xn(s0)− ξn−2

ξn−1
xn+1(s0)

x′
1(s0)− λ

ξn−1
x′
n+1(s0) x′

2(s0)−
µ

ξn−1
x′
n+1(s0) · · · x′

n(s0)−
ξn−2

ξn−1
x′
n+1(s0)

...
...

. . .
...

xn−1
1 (s0)− λ

ξn−1
xn−1
n+1(s0) xn−1

2 (s0)− µ
ξn−1

xn−1
n+1(s0) · · · xn−1

n (s0)− ξn−2

ξn−1
xn−1
n+1(s0)

 .
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If we put ai =
t (xi(s0), x

′
i(s0), . . . , x

n−1
i (s0)), then we have

A =

(
a1 −

λ

ξn−1

an+1,a2 −
µ

ξn−1

an+1,a3 −
ξ1
ξn−1

an+1, . . . ,an −
ξn−2

ξn−1

an+1

)
.

It follows that

detA = det(a1,a2, . . . ,an) +
λ

ξn−1

det(an+1,a2,a3, . . . ,an)

+
µ

ξn−1

det(a1,an+1,a3, . . . ,an) + · · ·+ ξn−2

ξn−1

det(a1, . . . ,an−1,an+1)

=
(−1)n

ξn−1

v0 · (γ(s0)× γ ′(s0)× · · · × γ(n−1)(s0)).

By a straightforward calculation, we have

γ(s0)× γ ′(s0)× · · · × γ(n−1)(s0) = κn−3
1 (s0)κ

n−2
2 (s0) · · ·κn−2(s0)nn−1(s0),

so that
detA = (−1)nκn−3

1 (s0)κ
n−2
2 (s0) · · ·κn−2(s0) ̸= 0.

This means that rankA = n. Thus the assertion for k = n holds. It follows that the assertion
for k < n also holds. 2

By Proposition 3.1, (1) and (2), we have DH = (γ)∗ and Dn−1
H = {±nn−1(s) | s ∈ I}.

Moreover, Proposition 3.1, (2) asserts that hv0 has an Ak singularity at s = s0 for k < n if and
only if there exist (0, . . . , 0, ξ0k, ξ

0
k+1, . . . , ξ

0
n−1) ∈ Sn−2 such that ξ0k ̸= 0 and

v0 = ξ0knk(s0) + · · ·+ ξ0n−1nn−1(s0).

We now define a set (γ)∗k ⊂ Sn by

(γ)∗k = {ξknk(s) + · · ·+ ξn−1nn−1(s) | ξ2k + · · ·+ ξ2n−1 = 1, and s ∈ I},

so that (γ)∗k = Dk
H . By Theorem 5.4 and Proposition 5.5, we have the following theorem.

Theorem 5.6. Let γ : I −→ Sn be a generalized Sabban curve. Then we have the following :

(1) for k < n − 1, the germ of the spherical dual (γ)∗ of γ at (s0, ξ
0) = (s0, (ξ

0
1 , . . . , ξ

0
n−1)) ∈

I×Sn−2 is diffeomorphic to (ImDA±
k ×Rn−k, 0) as set-germs if ξ01 = · · · = ξ0k−1 = 0 and ξ0k ̸= 0.

In this case the germ of (γ)∗k at (s0, ξ
0) ∈ I × Sn−2 is diffeomorphic to (Imσ[2, 3, . . . , k, k +

1]× Rn−k, 0) as set-germs,

(2) the germ of the spherical dual (γ)∗ of γ at (s0, ξ
0) ∈ I×Sn−1 is diffeomorphic to (ImDA±

n−1×
R, 0) as set-germs if ξ0 = (0, . . . , 0,±1) and κn−1(s0) ̸= 0. In this case the germ of the image
of nn−1(s) at nn−1(s0) is diffeomorphic to (Imσ[2, 3, . . . , n− 1, n]× R, 0) as set-germs.

(3) the germ of the spherical dual (γ)∗ of γ at (s0, ξ
0) ∈ I×Sn−1 is diffeomorphic to (ImDA±

n , 0)
as set-germs if ξ0 = (0, . . . , 0,±1), κn−1(s0) = 0 and κ′

n−1(s0) ̸= 0. In this case the germ of the
image of nn−1(s) at nn−1(s0) is diffeomorphic to (Imσ[2, 3, . . . , n, n+ 1], 0) as set-germs.

Proof. By Proposition 5.5, if hv0 has an Ak singularity at s = s0 (k ≤ n), then H is an R-versal
unfolding of hv0 . Since (γ)

∗
k = Dk

H , assertion (1) follows from Theorem 5.4. By Proposition 3.1
((2), (3)) and Theorem 5.4, assertion (2) holds. Similar to the other cases, assertion (3) holds
applying Proposition 3.1 ((3), (4)) and Theorem 5.4. This completes the proof. 2
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6 Contact with great hyperspheres

By Proposition 2.3, there exists n ∈ Sn such that γ(I) ⊂ Sn−1(v, 0) if and only if κn−1 ≡ 0. In
this case nn−1(s) is a constant vector and nn−1(s) ≡ v. By definition, v ∈ DH if and only if there
exists s0 ∈ I such that hv(s0) = h′

v(s0) = 0. If we consider a function hv : Sn −→ R defined by
hv(x) = x · x, then h−1

v (0) = Sn−1(v, 0) and hv ◦ γ(s) = hv(s), sot that hv(s0) = h′
v(s0) = 0

if and only if Sn−1(v, 0) is tangent to γ at s = s0. We call such a hypersphere a tangent great
hypersphere of γ at s = s0.We remark that there are infinitely many tangent great hyperspheres
of γ at s = s0. We say that a tangent great hypersphere Sn−1(v, 0) of γ at s = s0 has at least

k + 1-point contact with γ if hv(s0) = h′
v(s0) = · · · = h

(k)
v (s0) = 0. We also say that Sn−1(v, 0)

of γ at s = s0 has k + 1-point contact with γ if it has at least k + 1-point contact but does not
have at least k + 2-point contact with γ at s = s0. By Proposition 3.1, we have the following
proposition.

Proposition 6.1. Let γ : I −→ Sn be a generalized Sabban curve and v0 ∈ Sn. Then we have
the following:

(1) S(v0, 0) is a tangent hypersphere of γ at s = s0 if and only if there exists ξ0 = (ξ01 , . . . ξ
0
n−1) ∈

Sn−1 such that v0 = ξ01n1(s0) + · · ·+ ξ0n−1nn−1(s0),

(2) for k < n, S(v0, 0) has at least k+1-point contact with γ at s = s0 if and only if there exist
(0, . . . , 0, ξ0k, ξ

0
k+1, . . . , ξ

0
n−1) ∈ Sn−2 such that v0 = ξ0knk(s0) + · · ·+ ξ0n−1nn−1(s0),

(3) S(v0, 0) has at least n-point contact with γ at s = s0 if and only if v0 = ±nn−1(s0),

(4) for k > n, S(v0, 0) has at least k + 1-point contact with γ at s = s0 if and only if v0 =

±nn−1(s0) and κn−1(s0) = κ′
n−1(s0) = · · · = κ

(k−n)
n−1 (s0) = 0

As a consequence, for k < n, (γ)∗k is the locus of the polar vectors v ∈ Sn such that S(v, 0)
has at least k + 1-point contact with γ at s. In particular, (γ)∗n = {±nn−1(s) | s ∈ I} is the
locus of the polar vectors v ∈ Sn such that S(v, 0) has at least n+1-point contact with γ at s.
We call S(v, 0) an osculating great hypersphere of γ at s = s0 if v = ±nn−1(s0). As a corollary
of Theorem 5.6 and Proposition 6.1, we have the following theorem.

Theorem 6.2. Let γ : I −→ Sn be a generalized Sabban curve and v0 = ξ01n1(s0) + · · · +
ξ0n−1nn−1(s0) ∈ Sn (i.e. S(v0, 0) is a tangent great hypersphere of γ at s = s0). Then we have
the following :

(1) for k < n − 1, the germ of the spherical dual (γ)∗ of γ at (s0, ξ
0) = (s0, (ξ

0
1 , . . . , ξ

0
n−1)) ∈

I×Sn−2 is diffeomorphic to (ImDA±
k ×Rn−k, 0) as set-germs if S(v0, 0) has at least k+1-point

contact with γ at s = s0, in this case the germ of (γ)∗k at (s0, ξ
0) ∈ I × Sn−2 is diffeomorphic

to (Imσ[2, 3, . . . , k, k + 1]× Rn−k, 0) as set-germs,

(2) the germ of the spherical dual (γ)∗ of γ at (s0, ξ
0) ∈ I×Sn−1 is diffeomorphic to (ImDA±

n−1×
R, 0) as set-germs if S(v0, 0) has n+ 1-point contact with γ at s = s0. In this case the germ of
the image of nn−1(s) at nn−1(s0) is diffeomorphic to (Imσ[2, 3, . . . , n−1, n]×R, 0) as set-germs.

(3) the germ of the spherical dual (γ)∗ of γ at (s0, ξ
0) ∈ I×Sn−1 is diffeomorphic to (ImDA±

n , 0)
as set-germs if S(v0, 0) has n + 2-point contact with γ at s = s0. In this case the germ of the
image of nn−1(s) at nn−1(s0) is diffeomorphic to (Imσ[2, 3, . . . , n, n+ 1], 0) as set-germs.
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