Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane
Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane

Tetsuo Mioka*, Konomi Fujimura-Kamada†, Nahiro Mizugaki†, Takuma Kishimoto‡, Takamitsu Sano†, Hitoshi Nunome§, David E. Williams¶, Raymond J. Andersen‖, and Kazuma Tanaka*‡

*Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan; †Departments of Chemistry and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

ABSTRACT Phospholipid flippase (type 4 P-type ATPase) plays a major role in the generation of phospholipid asymmetry in eukaryotic cell membranes. Loss of Lem3p-Dnf1/2p flippases leads to the exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell surface in yeast, resulting in sensitivity to PS- or PE-binding peptides. We isolated Sfk1p, a conserved membrane protein in the TMEM150/FRAG1/DRAM family, as a multicopy suppressor of this sensitivity. Overexpression of SFK1 decreased PS/PE exposure in lem3Δ mutant cells. Consistent with this, lem3Δ sfk1Δ double mutant cells exposed more PS/PE than the lem3Δ mutant. Sfk1p was previously implicated in the regulation of the phosphatidylinositol-4 kinase Stt4p, but the effect of Sfk1p on PS/PE exposure in lem3Δ was independent of Stt4p. Surprisingly, Sfk1p did not facilitate phospholipid flipping but instead repressed it, even under ATP-depleted conditions. We propose that Sfk1p negatively regulates transbilayer movement of phospholipids irrespective of directions. In addition, we showed that the permeability of the plasma membrane was dramatically elevated in the lem3Δ sfk1Δ double mutant in comparison with the corresponding single mutants. Interestingly, total ergosterol was decreased in the lem3Δ sfk1Δ mutant. Our results suggest that phospholipid asymmetry is required for the maintenance of low plasma membrane permeability.

INTRODUCTION

In eukaryotic cells, the composition of phospholipids is quite different between the exoplasmic (outer) and the cytosolic (inner) membrane leaflets of the plasma membrane. The bulk of phosphatidylcholine (PC) and sphingolipids are contained in the exoplasmic leaflet, whereas phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphoinositides are predominantly distributed in the cytosolic leaflet (Devaux, 1991; Zachowski, 1993; Murate et al., 2015). In the model membranes, phospholipid transfer between the bilayer hardly occurs spontaneously, because polar heads of phospholipids are hydrophilic, whereas the center of the bilayer is hydrophobic region. Therefore, transbilayer movement of phospholipids in cell membranes is catalyzed by three types of phospholipid translocases: flippase, floppase, and scramblase. Flippases are type 4 P-type ATPases that translocate phospholipids from one leaflet to the other (Devaux, 1991; Panatala et al., 2011; Sebastian et al., 2012; Panatala et al., 2015). Some of the ABC transporters are

© 2018 Mioka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–NonCommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
reported to act as flippases that translocate phospholipids from the cytosolic to exoplasmic leaflet (flop) (Coleman et al., 2013). Scramblase catalyzes bidirectional transbilayer movement in an energy-independent manner (Montigny et al., 2016).

Flippases are implicated in the fundamental body functions including vision, hearing, and learning and their diseases (Levano et al., 2012; van der Mark et al., 2013; Coleman et al., 2014). At the cellular level, flippases in endomembranes are important for the membrane trafficking processes: endosomal trafficking (Hua et al., 2002; Pomorski et al., 2003; Furuta et al., 2007; Lee et al., 2015; Tanaka et al., 2016), biogenesis of secretory vesicles (Gall et al., 2002; Poulsen et al., 2008; Mioka et al., 2014), and protein sorting in the trans-Golgi network (TGN) (Hachiro et al., 2013; Hanskins et al., 2015). On the other hand, flippases located in the plasma membrane are not only involved in the membrane trafficking (Hua et al., 2002; Pomorski et al., 2003; Furuta et al., 2007) but also participate in other various functions: apoptosis signaling (Segawa et al., 2014), mating signaling (Sartorel et al., 2015), apical membrane barrier (Paulusma et al., 2006), cell polarity (Iwamoto et al., 2004; Saito et al., 2007; Das et al., 2012), and cell migration (Kato et al., 2013).

The relevance of flippases to cellular functions has been mostly found in studies using a model organism, budding yeast. Budding yeast has five flippases: Drs2p, Dnf1p, Dnf2p, Dnf3p, and Neo1p. Drs2p, Dnf1/2p, and Dnf3p form complexes with Cdc50p, Lem3p, and Crf1p noncatalytic subunits, respectively (Saito et al., 2004; Furuta et al., 2007). These interactions are required for ER exit, proper localization, function, and translocase activity (Saito et al., 2004; Furuta et al., 2007; Lenoir et al., 2009; Takahashi et al., 2011; Puts et al., 2012). Therefore, defects in dis2Δ, dnf1Δ dnf2Δ, and dnf3Δ mutants are phenocopied by cdc50Δa, lem3Δa, and crf1Δa mutants, respectively (Saito et al., 2004; Furuta et al., 2007). Of the five flippases, only Neo1p is essential and does not bind to any of Cdc50 family proteins (Saito et al., 2004; Furuta et al., 2007). Cdc50p–Drs2p, Crf1p–Dnf3p, and Neo1p are located primarily in the TGN and endosomes (Chen et al., 1999; Saito et al., 2004; Wicky et al., 2004; Furuta et al., 2007), while Lem3p–Dnf1/2p is mainly localized to the plasma membrane (Kato et al., 2002; Pomorski et al., 2003). Loss of the Lem3p–Dnf1/2p causes the decrease in uptake of exogenous phospholipid analogues, and the exposure of PE and PS (Kato et al., 2002; Hanson et al., 2003; Parsons et al., 2006). Lem3p–Dnf1/2p are also required for the uptake of exogenous lysophospholipids (Riekhof and Voelker, 2006; Riekhof et al., 2007).

In addition to Lem3p–Dnf1/2p, some factors affecting the phospholipid asymmetry in the plasma membrane have been identified. Serine/threonine kinases Fpk1/2p phosphorylate Dnf1/2p and up-regulate their flippase activity (Nakano et al., 2008). Two other kinases, Ypk1p and Gin4p, and sphingolipids indirectly modulate the phospholipid asymmetry through the regulation of Fpk1/2p (Roelants et al., 2010, 2015). Pdr5p and Yor1p, two multidrug ABC transporters, contribute to PE flop in the plasma membrane (Decottignies et al., 1998; Pomorski et al., 2003). Opt2p, a member of the oligopeptide transporter family, is implicated in phospholipid flop and plays a role in maintenance of phospholipid asymmetry mediated by the RIM101 pathway (Yamauchi et al., 2015).

In this study, to further understand the regulatory mechanisms and the physiological role of the phospholipid asymmetry in the plasma membrane, we searched for novel regulators of the phospholipid asymmetry and identified Sfk1p, a conserved transmembrane protein belonging to the TMEM150/FRAG1/DRAM family (Chung et al., 2015). Our results suggest an unprecedented function of Sfk1p; Sfk1p may negatively regulate the rate of spontaneous flip and flop of phospholipids in the plasma membrane. Moreover, we found that the order of phospholipid asymmetry correlated with passive permeability of the plasma membrane.

RESULTS

Sfk1p, in conjunction with Lem3p-Dnf1/2p, regulates PS and PE asymmetry in the plasma membrane

PC, PE, and PS are thought to be potential substrates for Lem3p-Dnf1/2p, but unlike nitrobenzoxadiazole (NBD)-PC and -PE, the internalization of NBD-PS occurs even in lem3Δa or dnf1Δa dnf2Δa cells (Kato et al., 2002; Saito et al., 2004; Stevens et al., 2008). To examine the contribution of Lem3p-Dnf1/2p to the flip of endogenous PS, we tested growth sensitivity to papuamide B (pap B), a depsipeptide, that binds to PS in biological membranes (Parsons et al., 2006). lem3Δa and dnf1Δa dnf2Δa exhibited high sensitivity to pap B and duramycin, a small tetracyclic peptide which binds to PE (Iwamoto et al., 2007) (Figure 1A). These results strongly suggest that Lem3p-Dnf1/2p actively translocates endogenous PS, as well as PE, in the plasma membrane. Lem3p-Dnf1/2p is recycled through the endocytic recycling pathway from the plasma membrane to the TGN via early endosomes (Saito et al., 2004; Takagi et al., 2012), and this pathway is impaired in cdc50Δa and dnf2Δa cells (Saito et al., 2004; Liu et al., 2007). Therefore, the milder sensitivity of cdc50Δa and dnf2Δa to pap B and duramycin may be due to reduced levels of Lem3p-Dnf1/2p in the plasma membrane due to the recycling defect (Figure 1A). Consistent with this idea, mutants defective in the endocytic recycling pathway (e.g., vps51Δa and ypt6Δa) exhibited a sensitivity to a PE-binding peptide and intracellularly accumulated Dnf1/2p-green fluorescent protein (GFP) (Takagi et al., 2012).

To investigate the regulatory mechanism and physiological role of PS asymmetry, we screened for multicopy suppressor genes that rescue the pap B sensitivity of the lem3Δa mutant. The screen identified SFK1 (YKL051W), which encodes a conserved plasma membrane protein of the TMEM150/FRAG1/DRAM family with six membrane-spanning domains (Audhya and Emr, 2002; Chung et al., 2015). Overexpression of SFK1 suppressed growth sensitivity to pap B in lem3Δa and cdc50Δa/dnf2Δa mutants (Figure 1B) and also suppressed the duramycin sensitivity in the lem3Δa mutant (Figure 1C).

Overexpression of SFK1 did not suppress growth sensitivity of wild-type cells to a high concentration of pap B or duramycin (Supplementary Figure S1A). To confirm the effect of overexpression of SFK1 to the exposure of PE in the plasma membrane, we visualized exposed PE using biotinylated Ro 09-0198 peptide (Bio-Ro), an analogue of duramycin, and Alexa Fluor 488–conjugated streptavidin (Emoto et al., 1996; Iwamoto et al., 2004; Figure 1D). We observed fluorescence signals in the bud tip of lem3Δa cells (40.3%, n > 100 cells), but these signals were significantly reduced in SFK1-overexpressing lem3Δa cells (5.2%, n > 100 cells) (Figure 1E).

Consistent with the effects of overexpression, deletion of SFK1 aggravated the growth sensitivities to pap B and duramycin in lem3Δa cells at lower concentrations of these drugs (Figure 1F). The increase in exposed PE in lem3Δa sfk1Δa cells was confirmed by Bio-Ro staining: fluorescence signals were detected all over the plasma membrane in 73.6% of lem3Δa sfk1Δa cells (n > 100 cells) (Figure 1G). Quantitative analysis of fluorescence signals suggested that ~80% of lem3Δa sfk1Δa cells exhibited Alexa Fluor 488 signal in more than 70% of cell surface area (Supplemental Figure S1B). sfk1Δa single-mutant cells were not sensitive to either pap B or duramycin at concentrations at which lem3Δa mutant cells were sensitive (Figure 1F) and did not expose PE (Figure 1G). These results suggest that Sfk1p, in conjunction with Lem3p-Dnf1/2p, regulates the asymmetric distribution of PS and PE.

1204 | T. Mioka et al. Molecular Biology of the Cell
Reduced exposure of PS and PE by SFK1 overexpression is independent of phosphoinositides, ABC transporters, and phospholipase B

SFK1 was originally isolated as a multicopy suppressor of a temperature-sensitive mutation of STT4, which encodes a type III phosphatidylinositol 4-kinase. Skf1p was implicated in the proper localization of Stt4p to the plasma membrane and Stt4p-mediated PtdInsP₄ production. However, Skf1p was not essential for either localization to the plasma membrane or kinase activity of Stt4p (Audhya and Emr, 2002). On the other hand, Ypp1p and Efr3p play essential roles in the assembly of the functional Stt4p complex at the plasma membrane (Baird et al., 2008). Thus, Skf1p may have another function not related to Stt4p. Overexpression of neither STT4 nor MSS4, which encodes a phosphatidylinositol-4-phosphate 5-kinase (Desrivieres et al., 1998; Homma et al., 1998), rescued growth sensitivity to pap B or duramycin in the lem3Δ mutant (Figure 2A). We further examined the involvement of Stt4p in the effect of overexpression of SFK1. TMEM150A, a mammalian homolog of Skf1p, binds to PI4KIIIβ via its C-terminal cytoplasmic region (Chung et al., 2015). We constructed the SFK1ΔC mutant that lacks the C-terminal cytoplasmic region (Figure 2B), which was properly expressed and localized to the plasma membrane (Figure 2, C and D). Consistent with the results in mammalian cells, overexpression of SFK1ΔC hardly suppressed the temperature sensitivity of stt4Δ (Figure 2E). In contrast, overexpression of SFK1ΔC suppressed the pap B sensitivity of lem3Δ (Figure 2F). Furthermore, the stt4Δ mutation did not aggrate sensitivity to pap B in the lem3Δ mutant (Figure 2G). These results indicate that the effects of overexpression or deletion of SFK1 on the PS and PE exposure in the lem3Δ mutant are not mediated by Stt4p.

Some ABC transporters act as floppases in both mammalian cells (Aye et al., 2009) and yeast (Pomorski et al., 2003). To investigate the possibility that Skf1p inhibits flop of PS and PE by down-regulating an ABC transporter, we created a lem3Δ abcΔ strain deleted for all eight known plasma membrane-localized ABC transporters, YOR1, PDR5, SNO2, PDR10, PDR11, PDR12, PDR15, and AUS1 (Jungwirth and Kuchler, 2006) (see Materials and Methods). The deletion of the ABC transporters did not suppress the pap B sensitivity in lem3Δ but did partially suppress the duramycin sensitivity, suggesting that these ABC transporters are not responsible for PS flop but may make some contribution to PE flop (Pomorski et al., 2003). Overexpression of SFK1 suppressed both pap B and duramycin sensitivity in the lem3Δ abcΔ mutant (Figure 2H). These results suggest that ABC transporters are not involved in the reductions in PS and PE exposure on overexpression of SFK1.
We next examined the possibility that Sfk1p contributes to the degradation of exposed PS and PE. Budding yeast has three phospholipase Bs (PLBs), PLB1, PLB2, and PLB3. Yeast PLBs are localized in the periplasmic space or the cell wall and have hydrolase activity toward PC, PE, PS, and PI (Lee et al., 1994; Merkel et al., 1999). To test the possibility that Sfk1p accelerates the PLB-mediated hydrolysis of exposed PS and PE, we generated the lem3Δ plb1Δ plb2Δ plb3Δ mutant and checked its sensitivity to pap B. Deletion of PLBs slightly increased the pap B sensitivity of lem3Δ, suggesting that PLBs contribute to the hydrolysis of exposed PS to a minor extent (Figure 2I). Overexpression of SFK1 suppressed the pap B sensitivity of lem3Δ plb1Δ plb2Δ plb3Δ, suggesting that the suppression was not mediated by up-regulation of PLBs.

Phospholipid flipping is decreased by the overexpression of SFK1

In the next series of experiments, we investigated whether overexpression of SFK1 would promote PS and PE flipping. We first examined the localization of other flippases, as SFK1 overexpression might recruit another flippase to the plasma membrane in lem3Δ. Enhanced GFP (EGFP)-tagged Dnf3p, Dns2p, and Neo1p were distributed normally in punctate structures corresponding to the TGN/endosomes (Hua et al., 2002; Wicky et al., 2004), and they were not localized to the plasma membrane in SFK1-overexpressing lem3Δ cells, suggesting that the effect of SFK1 overexpression on lem3Δ cells is not mediated by these flippases (Figure 3A). We also confirmed that Dnf1p-EGFP and Dnf2p-EGFP were trapped in the ER in lem3Δ (Saito et al., 2004) on overexpression of SFK1 (Figure 3A).

We next determined the internalization of NBD-labeled phospholipids. As previously reported, the bulk of internalization of NBD-PC and -PE, but not -PS, depended on Lem3p-Dnf1/2p (Kato et al., 2002; Saito et al., 2004; Stevens et al., 2008) (Figure 3B). Considering that lem3Δ and dnf1Δ dnf2Δ were hypersensitive to pap B amino acid of Sfk1ΔCp is shown in red for comparison. (C) Expression of SFK1 overexpression on lem3Δ cells. WT and lem3Δ cells transformed with YEp24, YEp352-SS7T4, YEp352-SSM54, or YEp24-SFK1 were cultured in SDA-U medium at 30°C, and cell growth was examined as in A for 1 day at 30°C. (G) The stt4-1 mutation does not affect the sensitivity to pap B in lem3Δ cells. Cells were cultured in YPD medium at 30°C, and cell growth was examined as in A. (H) The effect of SFK1 overexpression is independent of ABC transporters. lem3Δ and lem3Δ abcΔ cells transformed with YEp24 or YEp24-SFK1 were cultured in SDA-U medium at 30°C, and cell growth was examined as in A. (I) The effect of SFK1 overexpression is independent of phospholipase B. lem3Δ and lem3Δ plb1Δ/2Δ cells transformed with YEp24 or YEp24-SFK1 were cultured in SDA-U medium at 30°C, and cell growth was examined as in A.
Flippases regulate membrane permeability

Flippases regulate membrane permeability

Sfk1p may negatively regulate transbilayer movement of phospholipids in both directions

If Sfk1p represses phospholipid flip, then this repression would be released by deletion of SFK1. Consistent with this, deletion of SFK1 increased uptake of NBD-PC and -PE in wild-type and lem3Δ cells (Figure 4A, left panel). In an assay for flip of a fluorescently labeled PS, we employed TopFluor-PS, with properties more similar to PS than NBD-PS (Kay et al., 2012). TopFluor-PS, like NBD-PS, was internalized into cells in a LEM3-independent manner (Figure 4A, right panel). Deletion of SFK1 increased uptake of NBD-PS, but not of TopFluor-PS, in wild-type cells. However, deletion of SFK1 increased uptake of both NBD-PS and TopFluor-PS in the lem3Δ mutant (Figure 4A, right panel). These effects by deletion of SFK1 were also observed when cells were washed at the last step of the assay with bovine serum albumin (BSA) that extracts NBD-lipids from the outer leaflet of the plasma membrane, suggesting that Sfk1p affects flipping but not the insertion of NBD-lipids into the outer leaflet of the plasma membrane (Figure 4B). Interestingly, the increase in internalization of NBD-PC, -PE, and -PS by sfk1Δ occurred even under ATP-depleted conditions (Figure 4C). These results suggest that Sfk1p represses NBD-phospholipid uptake in a manner independent of flippases and other ATP-dependent phospholipid translocases.

To summarize the effect of SFK1, PS/PE exposure in lem3Δ cells was decreased by overexpression of SFK1, but increased by deletion of SFK1. These results seemed to be consistent with the hypothesis that Sfk1p, like flippases, enhances phospholipid flipping. However, we obtained the opposite results: internalization of NBD-phospholipids was decreased by overexpression of SFK1 but increased by deletion of SFK1. On the basis of these seemingly contradictory results, we propose an unprecedented function for SFK1, namely that Sfk1p restricts transbilayer movement of phospholipids independently of direction. That is, Sfk1p may negatively regulate transbilayer movement of phospholipids in both directions.

LEM3 and SFK1 are required for maintenance of membrane impermeability

Deletion of SFK1 exacerbated the disruption of phospholipid asymmetry in lem3Δ cells. To understand the physiological significance localization of flippases Dnf1/2p, Dnf1p-EGFP, or Dnf2p-EGFP-expressing wild-type cells transformed with YEp24 or YEp24-SFK1 were cultured in SDA-U medium at 30°C and subjected to fluorescence microscopy. Scale bar: 5 μm.
of phospholipid asymmetry in the plasma membrane, we investigated the phenotypes of lem3Δ sfk1Δ cells. We found that lem3Δ sfk1Δ cells were highly sensitive to detergents (Figure 5A). This is consistent with a previous report that the dysfunction of ATP8B1, a P4-ATPase in mammalian cells, leads to high sensitivity to hydrophobic bile salts in liver cells (Paulusuma et al., 2006). Thus, the asymmetric distribution of phospholipids in the plasma membrane may act as a barrier to protect cells against membrane-destabilizing agents. In addition, lem3Δ sfk1Δ cells were also highly sensitive to various metal cations and cytoxic compounds, including hygromycin B, sodium azide, and fluconazole (FLC), which have different intracellular targets (Figure 5B). To exclude the possibility that this drug sensitivity was due to weakened cell wall, we tested the effect of overexpression of ERG6, a drug ABC transporter acting as an efflux pump. Consistent with the results of Emter et al. (2002), pdr5Δ cells and erg6Δ cells were highly sensitive to CHX (Figure 5C) but only erg6Δ cells exhibited rhodamine accumulation in the absence of ATP (confirming that energy-dependent efflux by Pdr5p was unrelated to membrane permeability (Figure 5D). We observed that lem3Δ sfk1Δ cells exhibited high sensitivity to CHX and an ATP-independent accumulation of rhodamine (Figure 5, E and F). Further, the effect of lem3Δ sfk1Δ on rhodamine accumulation was additive to the effects of pdr5Δ and erg6Δ (Figure 5G). These results suggest that membrane permeability is increased by simultaneous deletion of LEM3 and SFK1.

Rhodamine accumulation and sensitivity to cytotoxic compounds, including CHX, did not differ significantly between wild-type and sfk1Δ cells but were slightly higher in lem3Δ cells and highest in lem3Δ sfk1Δ cells (Figure 5, B, E, and F). The pattern of these phenotypes is similar to that of pap B/duramycin sensitivity (Figure 1F), which led us to hypothesize that disruption of phospholipid asymmetry causes an increase in membrane permeability. Interestingly, lem3Δ sfk1Δ exhibited a synthetic growth defect with erg6Δ, but not pdr5Δ (Figure 5H), reflecting the functional relationship between phospholipid asymmetry and ergosterol in the plasma membrane.

Overexpression of SFK1 suppresses the increase in membrane permeability in lem3Δ cells

We found that the lem3Δ cells grown in synthetic medium accumulated higher levels of rhodamine than those grown in rich medium (Figure 5F), even under ATP-depleted conditions (Figure 6A). Next, we tested the effect of overexpression of SFK1 on membrane permeability in the lem3Δ mutant. Overexpression of SFK1 did not change rhodamine uptake in wild-type cells but suppressed the increase in rhodamine accumulation in lem3Δ cells, even under ATP-depleted conditions (Figure 6A). Furthermore, the sensitivities of lem3Δ cells to CHX and FLC were also suppressed by overexpression of SFK1 (Figure 6B). This suppression occurred in lem3Δ cwp1Δ cwp2Δ triple mutant cells (Supplemental Figure S2B), whereas overexpression of SFK1 did not suppress sensitivity to calcofluor white (CFW), which binds to cell wall chitin, in the lem3Δ cells (Supplemental Figure S2C). These results are consistent with our notion that the increase in membrane permeability is caused by perturbed phospholipid asymmetry in the lem3Δ mutant.

Emter et al. (2002) suggested that ergosterol, a major sterol in budding yeast, restricts the rate of passive diffusion across the plasma membrane. In support of this hypothesis, deletion of ERG6, an enzyme in the ergosterol biosynthetic pathway, resulted in higher sensitivity to CHX and significant accumulation of rhodamine dye. This effect of ERG6 on the membrane permeability was independent of PDR5, a multi-drug ABC transporter acting as an efflux pump. Consistent with the results of Emter et al. (2002), pdr5Δ and ergΔ cells were highly sensitive to CHX (Figure 5C) but only ergΔ cells exhibited rhodamine accumulation in the absence of ATP, confirming that energy-dependent efflux by Pdr5p was unrelated to membrane permeability (Figure 5D). We observed that lem3Δ sfk1Δ cells exhibited high sensitivity to CHX and an ATP-independent accumulation of rhodamine (Figure 5, E and F). Further, the effect of lem3Δ sfk1Δ on rhodamine accumulation was additive to the effects of pdr5Δ and erg6Δ (Figure 5G). These results suggest that membrane permeability is increased by simultaneous deletion of LEM3 and SFK1.
Fluidity of the plasma membrane is increased in the \textit{lem3Δ sfk1Δ} mutant

Membrane permeability to most nonionic substances is correlated to membrane fluidity (Lande et al., 1995). Membrane fluidity can be assayed by fluorescence anisotropy using a fluorescent probe, trimethylammonium diphenylhexatriene (TMA-DPH). TMA-DPH is anchored at the plasma membrane and does not enter into the cell due to its trimethylammonium group (Abe and Hiraki, 2009; Figure 7A). To assess the fluidity of the plasma membrane, we assayed...
FIGURE 6: Suppression of elevated membrane permeability in lemΔ by overexpression of SFK1. (A) Overexpression of SFK1 reduces the influx of rhodamine into lemΔ cells in an ATP-independent manner. Wild-type and lemΔ cells transformed with YEp24 or YEp24-SFK1 were cultured in SDA-U medium at 30°C, preincubated in SDA-U medium with or without 1 mM sodium azide for 30 min at 30°C, and incubated with rhodamine 6G for 60 min at 30°C. Percentage average accumulation of rhodamine relative to wild-type carrying YEp24 vector is presented, with SD of three independent experiments (*p < 0.05; **p < 0.01; Tukey’s test). (B) Suppression of sensitivity to CHX and FLC in lemΔ by overexpression of SFK1. Wild-type and lemΔ cells transformed with YEp24 or YEp24-SFK1 were cultured in SDA-U medium at 30°C, serially diluted, and spotted onto YPDA plates containing 0.1 μg/ml CHX or 10 μM FLC, followed by incubation for 2 d at 30°C. (C) Sfk1p is functional in the erg6Δ background. lemΔ erg6Δ cells transformed with YEp24 or YEp24-SFK1 were cultured in SDA-U medium at 30°C, and cell growth was examined as in B. (D) Overexpression of SFK1 does not suppress the CHX sensitivity in erg6Δ. Wild-type, lemΔ, and erg6Δ cells transformed with YEp24 or YEp24-SFK1 were cultured in SDA-U medium at 30°C, and cell growth was examined as in B.

FIGURE 7: Membrane fluidity is increased in the lemΔ sfk1Δ double mutant. (A) TMA-DPH is retained in the plasma membrane. Cells were cultured in SD medium at 25°C and treated with 0.5 μM TMA-DPH. Stained cell suspensions were kept on ice for 45 min and subjected to fluorescence microscopy. Scale bar: 5 μm. (B) Steady-state anisotropy is decreased in the lemΔ sfk1Δ mutant. Cells were cultured in SD medium at 25°C, treated with 0.5 μM TMA-DPH, and subjected to an analysis by spectrophotometry. Measurement of anisotropy was performed as described under Materials and Methods. Average of steady-state anisotropy is presented, with SD from three independent experiments (*p < 0.05; Tukey’s test).

Ergosterol is decreased in the lemΔ sfk1Δ mutant
To examine whether Sfk1p affects membrane lipid composition, we measured phospholipid content in total cellular lipids of mutant cells. Neither deletion nor overexpression of SFK1 altered the phospholipid composition in wild-type and lemΔ cells (Figure 7A). We next examined ergosterol content in mutant cells. Surprisingly, free ergosterol was decreased in lemΔ sfk1Δ cells compared with wild-type cells (Figure 7B). Because most of the free ergosterol is found in the plasma membrane (Zinser et al., 1993), our results suggest that ergosterol is decreased in the plasma membrane of the lemΔ sfk1Δ mutant, which is consistent with the increased permeability (Figure 5) and increased fluidity (Figure 7) of the plasma membrane in lemΔ sfk1Δ cells. Overexpression of SFK1 did not change ergosterol levels in wild-type and lemΔ cells (Figure 8B). These results suggest that the decreased level of ergosterol was due to severe defects in phospholipid asymmetry caused by lemΔ sfk1Δ double mutations rather than to a specific effect of Sfk1p on ergosterol levels.

Expression of SFK1 is up-regulated by some stresses
Growth of cells lacking Lem3p and Sfk1p was sensitive to NaCl (Figure 5B). We checked expressions of Dnf1p, Dnf2p, and Sfk1p under conditions of NaCl stress by fluorescent microscopy and found that expression of Sfk1p-EGFP, but not that of Dnf1/2p-EGFP, was up-regulated by 1 M NaCl (Figure 9A), which was previously reported in a genomewide transcriptome analysis (Yale and Bohnert, 2001). Consistent with this, growth sensitivity to pap B and duramycin in lemΔ cells was suppressed by 0.4 M NaCl, as well as overexpression of SFK1 (Figure 9B). We confirmed that C-terminally tagged versions of Sfk1p were functional (Supplemental Figure S3).

Up-regulation of Sfk1p-EGFP by NaCl prompted us to investigate whether Sfk1p...
stresses is mediated by the Hog1p and/or Rim101p pathways, which are involved in the response to high osmolarity and high salinity, respectively (Brewster et al., 1993; Marques et al., 2015). Although 1 M sorbitol had little effect on the expression of Sfk1p-EGFP in our microscopic examination (Figure 9D), the response to 1 M NaCl stress, but not to low pH and low temperature, was dependent on the Hog1p pathway (Figure 9F). Then we tested expression of Sfk1p in 1 M sorbitol and 0.5 M NaCl, which is equivalent to 1 M sorbitol in osmolarity. Sfk1p was induced in 1 M sorbitol as well as in 0.5 M NaCl in a Hog1p-dependent manner, but the induction level was lower compared with 1 M NaCl (Figure 9G).

We monitored growth of the lem3Δ sfk1Δ cells at 18°C and pH 4.4, but they grew normally, implying that SFK1 might be redundant with a gene other than LEM3 that is required for growth under this condition. Although we do not know how harmful NaCl, low pH, and low temperature are to the cell membrane, Sfk1p may counteract the effects of these stresses by down-regulating phospholipid translocation.

DISCUSSION

Sfk1p is a novel regulator of phospholipid asymmetry in the plasma membrane

We identified Sfk1p as a novel regulator of phospholipid asymmetry in the plasma membrane. Overexpression of SFK1 repressed phospholipid flipping as well as PS/PE exposure in lem3Δ, but deletion of SFK1 exhibited opposite effects. Although we were unable to measure the flop rate due to a technical difficulty, our results are most consistent with the notion that Sfk1p represses both flip and flop. A model for Sfk1p action is depicted in Figure 10. In the presence of Lem3p-Dnf1/2p, neither deletion nor overexpression of SFK1 influences phospholipid asymmetry, because the rate of flip by Lem3p-Dnf1/2p always exceeds the rate of flop, resulting in maintenance of normal phospholipid asymmetry. On the other hand, in the absence of Lem3p-Dnf1/2p, PS and PE are exposed on the cell surface due to the reversal of flip/flop rates. This PS/PE exposure is suppressed by overexpression of SFK1 and enhanced by deletion of SFK1 through repression and disinhibition of flip and flop, respectively.

It remains to be elucidated how Sfk1p represses flip and flop. Importantly, the increase in NBD-lipid uptake on deletion of SFK1 occurred in an ATP-independent manner (Figure 4C). Sfk1p could affect flip/flop by inhibiting a phospholipid scramblase, but no scramblase has yet been identified in yeast. One possibility is that Sfk1p is a novel regulatory factor of spontaneous flip and flop, which are thought to occur rarely in the plasma membrane due to...
the tight packing of lipid bilayer and the amphipathic nature of phospholipids. In model membranes, packing defects at the phase-transition temperature were implicated in rapid flip and flop (John et al., 2002). Sterols, sphingolipids, and saturated acyl chains, all of which are abundant in the plasma membrane, are key components of tightly packed membranes (Bigay and Antonny, 2012). Sfk1p might be involved in the maintenance of packing order via regulation of the distribution, content, or interactions of these key lipids. The decrease of ergosterol in the lem3Δ sfk1Δ mutant may suggest that Sfk1p is involved in the regulation of ergosterol levels, but neither the sfk1Δ single mutation nor overexpression of SFK1 affected ergosterol contents, suggesting that the decrease in ergosterol is rather caused by the defects in phospholipid asymmetry.

Our results suggested that the effect of SFK1 on the phospholipid asymmetry is STT4 independent (Figure 2, A and E–G), but the interaction between these two proteins implies that the regulation of phospholipid asymmetry by Sfk1p is functionally relevant to PI4P signaling. Recent work showed that the C-terminal region of TMEM150A, a mammalian homologue of Sfk1p, also binds to PI4-kinase type IIIα (Chung et al., 2015). The conserved motif in the TMEM150/FRAG1/DRAM family is located in the region including six transmembrane domains except for the C-tail (Chung et al., 2015), suggesting that the interactions with PI4 kinases are specific to Sfk1p/TMEM150A.

The role of phospholipid asymmetry in passive membrane permeability of the plasma membrane

Low membrane permeability is a very important property for the barrier function of the plasma membrane, specifically, the entry of exogenous toxic molecules. Our results revealed that normal phospholipid asymmetry is required for the impermeability of the plasma membrane; this is a novel

FIGURE 9: Expression of SFK1 is up-regulated by several stresses. (A) Up-regulation of Sfk1p-EGFP by 1M NaCl. Sfk1p-EGFP-, Dnf1p-EGFP-, or Dnf2p-EGFP-expressing wild-type cells were cultured in YPDA medium with or without 1M NaCl at 30°C for 6 h in the exponential phase and subjected to fluorescence microscopy. Scale bar: 5 μm. (B) Suppression of sensitivity to pap B and duramycin in lem3Δ by Sfk1p cells. Cells were cultured in YPDA medium at 30°C, serially diluted, and spotted onto YPDA plates containing 0.1 μg/ml pap B or 5 μM duramycin with or without 0.4 M NaCl, followed by incubation for 2 d at 30°C. (C–E) Up-regulation of Sfk1p by cold temperature and low pH. (C) Sfk1p-EGFP was induced by low pH and cold temperature. Wild-type cells expressing SFK1-EGFP were cultured in YPDA medium under the indicated conditions for >12 h in the exponential phase and then subjected to fluorescence microscopy. Scale bar: 5 μm. (D) Expression of Sfk1p-EGFP was microscopically examined under various conditions, and relative intensity of GFP fluorescence is shown. (E) Wild-type cells expressing SFK1-3HA were cultured in YPDA as in C. Total lysates were prepared and separated by SDS–PAGE, followed by immunoblotting with antibody against HA. Amido black-stained membrane is shown as a loading control. Expression levels were determined by the ratio of Sfk1p-3HA (closed arrowhead) to a band in amido black control (open arrowhead). The band intensity was quantified with ImageJ. The data present average expression levels relative to control with SD of three independent experiments (*p < 0.05, **p < 0.01; Tukey’s test).

(F, G) Up-regulation of Sfk1p by high osmolarity is dependent on the Hog1p pathway. (F) Cells expressing SFK1-3HA were cultured in YPDA under the indicated conditions for 8 h in the exponential phase. (G) Cells expressing SFK1-3HA were cultured in YPDA under the indicated conditions and collected at the indicated time points. SDS–PAGE and immunoblotting were performed as in E, and the band in amido black control (open arrowhead) was used as a loading control.
Flippases regulate membrane permeability

Vol. 29 May 15, 2018

Finding regarding the physiological significance of the phospholipid asymmetry (Figure 11A). Loss of phospholipid asymmetry leads to a decreased level of ergosterol, which may account for the increased permeability of the plasma membrane in the lem3Δ sfk1Δ mutant.

Phospholipid asymmetry of the plasma membrane seems to play an important role for ergosterol homeostasis. In the lem3Δ sfk1Δ mutant, free ergosterol may be decreased due to increased esterification for storage or decreased synthesis. A recent study reported an association between PS and cholesterol: PS is required for retaining cholesterol in the cytosolic leaflet of the plasma membrane (Maekawa and Fairn, 2015). Although a similar interaction of PS with ergosterol has yet to be demonstrated, the abnormal distribution of ergosterol caused by the perturbation of PS asymmetry may trigger imbalance of ergosterol homeostasis in lem3Δ sfk1Δ cells. On the other hand, PC is also a potential substrate of Lem3p-Dnf1/2p (Kato et al., 2002; Pomorski et al., 2003). ATP8B1, a mammalian P4-ATPase located in the plasma membrane, preferentially flips NBD-PC (Takatsu et al., 2014). Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 (PFIC1), a severe liver disease (Bull et al., 1998; Klomp et al., 2004). Interestingly, a PFIC1-type mutation in ATP8B1 leads to high sensitivity to the detergent action of hydrophobic bile salts in mouse (Paulusma et al., 2006), as well as a reduction in NBD-PC flipping (Takatsu et al., 2014). Thus, the perturbation of PC asymmetry may also bring about imbalance of ergosterol homeostasis, resulting in high membrane permeability and high detergent sensitivity in lem3Δ sfk1Δ cells.

Sfk1p is up-regulated by various stresses

We found that the protein level of Sfk1p was up-regulated by high osmolarity, low temperature, and low pH (Figure 9). The additive effects of these stresses on SFK1 expression suggest multiple regulatory pathways for SFK1, including the Hog1p pathway. Meanwhile, the protein level of Dnf1/2p was not altered by these stresses (Figure 9A and Supplemental Figure S4). The flippase activity of Dnf1/2p is regulated by serine/threonine kinases Fpk1/2p (Nakano et al., 2008), and Fpk1/2p are regulated in turn by Ypk1p and Gin4p kinases and sphingolipids (Roelants et al., 2010, 2015). Therefore, Dnf1/2p may be regulated at the level of flippase activity in response to environmental stresses.

Changes in pH and salinity of medium alter the lipid composition of the plasma membrane (Turk et al., 2007). Growth temperature and carbon source also influence the composition of membrane lipid and fatty acid (Klose et al., 2012). Our findings suggest that the inhibition of phospholipid transbilayer movement, and thus regulation of phospholipid asymmetry, plays a role in adaptation to stress conditions (Figure 11B). Investigation of the mechanisms the cell uses to adapt to these stresses will reveal novel function of phospholipid asymmetry, beyond the maintenance of low membrane permeability.

MATERIALS AND METHODS

Chemicals, media, and genetic techniques

Chemicals were purchased from Wako Pure Chemicals Industries (Osaka, Japan) unless otherwise indicated. Papuamide B was from the collection of R. Andersen. Duramycin was purchased from Sigma-Aldrich (St. Louis, MO). Standard genetic manipulations and plasmid transformation of yeast were performed as described previously (Elble, 1992; Guthrie and Fink, 2002). Yeast strains were cultured in rich yeast extract medium containing 1% yeast extract (Difco Laboratories, Detroit, MI), 2% Bacto peptone (Difco), 2% glucose, and 0.01% adenine, or synthetic dextrose (SD) medium containing 0.17% yeast nitrogen base without amino acids and ammonium sulfate (Difco).

FIGURE 11: Physiological role and regulation of phospholipid asymmetry. (A) Contribution of phospholipid asymmetry to the barrier function of the plasma membrane. Perturbation of phospholipid asymmetry causes high permeability in the plasma membrane. (B) SFK1p may be involved in the adaptation to environmental stresses by regulating spontaneous flip and flop.
0.5% ammonium sulfate, 2% glucose, and the required amino acids or nucleic acid bases. Strains carrying URA3-harboring plasmids were cultured in SD medium containing 0.5% casamino acids (Difco), 0.03% tryptophan, and 0.01% adenine (SDA-U). For serial dilution spot assays, cells were grown to early log phase in appropriate medium and adjusted to a concentration of 1.0 × 10^7 cells/ml. From 10-fold dilutions, 4-μl drops were spotted onto appropriate plates.

Strains and plasmids

Yeast strains and plasmids used in this study are listed in Tables 1 and 2, respectively. Standard molecular biological techniques (Sambrook and Russell, 2001) were used for the construction of plasmids, PCR amplification, and DNA sequencing. PCR-based procedures were used to construct gene deletions and gene fusions with EGFP, 3HA, and the GAL1 promoter (Longtine et al., 1998). All constructs produced by the PCR-based procedure were verified by colony PCR to confirm that the replacement occurred at the expected locus. Sequences of PCR primers are available on request.

To create the lem3ΔαβcΔ strain in which all eight known plasma membrane-localized ABC transporters were deleted, the lem3Δ::HIS3MX6 yor1Δ::HIS3MX6 pdr5Δ::HphMX6 snq2Δ::KanMX6 strain (lem3Δ::abcΔ) was first generated by crossing the lem3Δ::HIS3MX6 pdr5Δ::HphMX6 snq2Δ::KanMX6 strain with the yor1Δ::HIS3MX6 pdr5Δ::HphMX6 snq2Δ::KanMX6 strain. lem3Δ::HIS3MX6 and yor1Δ::HIS3MX6 were confirmed by colony PCR. Next, PDR10, PDR11, PDR12, PDR15, and AUS1 were individually disrupted in the lem3ΔαβcΔ strain using the TRP1 disruption cassette. Crosses among these five strains, followed by sporulation and tetrad dissection, yielded strains containing combinations of the disrupted alleles, which were confirmed by colony PCR. This procedure was performed repeatedly, ultimately yielding the lem3ΔαβcΔ strain.

Isolation of multicopy suppressors of papuamide B sensitivity in the lem3Δ mutant

The lem3Δ strain was transformed with a yeast genomic DNA library constructed in the multicopy plasmid YEp24 (Carlson and Botstein, 1982). A total of 12,000 transformants were selected on SDA-U plates at 30°C and then replica- plated onto YPDA plates containing 0.25 μg/ml pap B. The transformants that contained LEM3 on the plasmid were identified by colony PCR and eliminated. Plasmids were recovered from the remaining 51 transformants. Restriction enzyme digestion of the plasmids indicated that 21 different clones had been isolated, and they were grouped into seven different genomic regions by DNA sequencing. Fragment subcloning revealed that SFK1, PDR3, PDR1, PLB3, YLR278C, KIC1, and HLR1 were responsible for the suppression. Among these genes, SFK1 was the strongest suppressor of pap B sensitivity in the lem3Δ mutant. PDR1, YLR278C, KIC1, and HLR1 exhibited modest suppression, whereas PDR3 and PLB3 exhibited weak suppression (Supplemental Figure S5).

Microscopic observations

Cells were observed using a Nikon ECLIPSE E800 microscope (Nikon Instec, Tokyo, Japan) equipped with an HB-10103AF super-high-pressure mercury lamp and a 1.4 numerical aperture 100X Plan Apo oil immersion objective lens (Nikon Instec) with appropriate fluorescence filter sets (Nikon Instec) or differential interference contrast optics. Images were acquired using a cooled digital charge-coupled device camera (C4742-95-12NR, Hamamatsu Photonics, Hamamatsu, Japan) and AQUACOSMOS software (Hamamatsu Photonics). GFP-tagged proteins were observed in living cells, which were grown to early to midlogarithmic phase, harvested, and resuspended in SD medium. For detection of GFP fluorescence, cells were immediately observed using a GFP bandpass filter set. Observations were compiled from the examination of at least 100 cells.

Staining of phosphatidylethanolamine with biontinated Ro09-0198 peptide

Staining of PE in the outer leaflet of the plasma membrane was performed using the biontinated Ro09-0198 peptide (Bio-Ro) as described (Iwamoto et al., 2004; Saito et al., 2007), with the following modifications. Bio-Ro, which was prepared essentially as described (Aoki et al., 1994), was a gift from M. Umeda (Kyoto University, Japan). Cells were cultured in YPDA or SDA-U medium at 18°C for 12 h, until reaching midlogarithmic phase. A 1-ml culture of cells at a cell density of OD600/ml = 0.4–0.6 was harvested, resuspended in 20 μl of YPDA containing 40 μM Bio-Ro, and incubated for 3 h on ice. The cells were washed once with phosphate-buffered saline (PBS) and fixed with 5% formaldehyde in PBS for 1 h at room temperature. After two washes with spheroplast buffer (1.2 M sorbitol, 0.1 M potassium phosphate, pH 7.4), cells were resuspended in 100 μl of spheroplast buffer containing 1 mg/ml Zymolyase 100T (Seikagaku Kogyo, Tokyo, Japan) and 0.2 μl of β-mercaptoethanol (from 14.2 M stock solution), followed by incubation for 30 min at 30°C. To visualize Bio-Ro, the cells were washed three times with PBS and then incubated in PBS containing 5 μg/ml Alexa Fluor 488-streptavidin (Invitrogen, Carlsbad, CA) for 1 h at room temperature. After five washes with PBS, cells were observed using a fluorescein isothiocyanate (FITC) filter set.

Lipid preparation

1-Palmitoyl-2-(6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphocholine (NBD-PC), 1-palmitoyl-2-(6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphoethanolamine (NBD-PE), 1-palmitoyl-2-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl]-sn-glycero-3-phosphoserine (NBD-PS), 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-phospho-l-serine (TopFluor PS), and dioleoylphosphatidylcholine (DOPC) were obtained from Avanti Polar Lipids (Alabaster, AL). To prepare large unilamellar vesicles, lipids were mixed at 40 mol% NBD- or TopFluor-phospholipid and 60 mol% DOPC. Chloroform was removed by evaporation followed by vacuum desiccation. Desiccated phospholipids were solubilized in SD medium; the mixture was passed seven times through a LiposoFast-Basic stabilizer (Avestin, Ottawa, Canada), equipped with 0.1-μm filters to produce evenly sized vesicles, containing a 1 mM total concentration of lipids.

Internalization of fluorescence-labeled phospholipids into yeast cells

Fluorescently labeled phospholipid internalization experiments were performed as described (Kato et al., 2002). Briefly, cells were grown to early logarithmic phase in SD or SDA-U medium at 30°C. After dilution to 0.35 OD600/ml, cells were preincubated in SD with or without...
<table>
<thead>
<tr>
<th>Strain*</th>
<th>Mating type</th>
<th>Genotype</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>YKT38</td>
<td>a</td>
<td>Wild-type (lys2-801 ura3-52 his3Δ-200 trp1Δ-63 leu2Δ-1)</td>
<td>Misu et al. (2003)</td>
</tr>
<tr>
<td>YKT249</td>
<td>a</td>
<td>cdc50Δ::HISMX6</td>
<td>Misu et al. (2003)</td>
</tr>
<tr>
<td>YKT715</td>
<td>a</td>
<td>lem3Δ::TRP1</td>
<td>Saito et al. (2004)</td>
</tr>
<tr>
<td>YKT745</td>
<td>α</td>
<td>drs2Δ::KanMX6</td>
<td>Saito et al. (2004)</td>
</tr>
<tr>
<td>YKT770</td>
<td>α</td>
<td>lem3Δ::TRP1 DRS2-EGFP::KanMX6</td>
<td>Saito et al. (2004)</td>
</tr>
<tr>
<td>YKT771</td>
<td>α</td>
<td>DNF1-EGFP::KanMX6</td>
<td>Saito et al. (2004)</td>
</tr>
<tr>
<td>YKT773</td>
<td>α</td>
<td>lem3Δ::TRP1 DNF1-EGFP::KanMX6</td>
<td>Saito et al. (2004)</td>
</tr>
<tr>
<td>YKT918</td>
<td>a</td>
<td>dnf1Δ::HphMX6 dnf2Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT921</td>
<td>α</td>
<td>DNF2-EGFP::KanMX6</td>
<td>Furuta et al. (2007)</td>
</tr>
<tr>
<td>YKT923</td>
<td>α</td>
<td>lem3Δ::TRP1 DNF2-EGFP::KanMX6</td>
<td>Furuta et al. (2007)</td>
</tr>
<tr>
<td>YKT927</td>
<td>α</td>
<td>lem3Δ::TRP1 DNF3-EGFP::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT930</td>
<td>α</td>
<td>lem3Δ::TRP1 NEO1-EGFP::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT1161</td>
<td>α</td>
<td>lem3Δ::TRP1 pdr5Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT1162</td>
<td>a</td>
<td>pdr5Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT1709</td>
<td>a</td>
<td>stt4-1 ade8 TRP1</td>
<td>Yoshida et al. (1994)</td>
</tr>
<tr>
<td>YKT2000</td>
<td>α</td>
<td>dss2Δ::HphMX4 TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2112</td>
<td>a</td>
<td>cdc50Δ::HphMX4 TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2117</td>
<td>a</td>
<td>slk1Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2118</td>
<td>a</td>
<td>lem3Δ::HISMX6 slk1Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2119</td>
<td>a</td>
<td>erg6Δ::KanMX6 TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2120</td>
<td>α</td>
<td>SFK1-EGFP::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2121</td>
<td>α</td>
<td>lem3Δ::CalEU2 plb1Δ::HISMX6 plb2Δ::KanMX6 plb3Δ::HphMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2122</td>
<td>a</td>
<td>lem3Δ::HISMX6 stt4-1 TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2123</td>
<td>α</td>
<td>lem3Δ::HISMX6 yor1Δ::HISMX6 pdr5Δ::HphMX6 snq2Δ::KanMX6 pdr10Δ::TRP1 pdr11Δ::TRP1 pdr12Δ::TRP1 pdr15Δ::TRP1 aus1Δ::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2124</td>
<td>a</td>
<td>yor1Δ::HISMX6 pdr5Δ::HphMX6 snq2Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2125</td>
<td>a</td>
<td>lem3Δ::HISMX6 yor1Δ::HISMX6 pdr5Δ::HphMX6 snq2Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2126</td>
<td>a</td>
<td>lem3Δ::TRP1 slk1Δ::HphMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2129</td>
<td>a</td>
<td>lem3Δ::TRP1 pdr5Δ::KanMX6 slk1Δ::HphMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2130</td>
<td>α</td>
<td>lem3Δ::HISMX6 erg6Δ::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2131</td>
<td>a</td>
<td>slk1Δ::HphMX6 erg6Δ::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2132</td>
<td>α</td>
<td>lem3Δ::HISMX6 slk1Δ::HphMX6 erg6Δ::TRP1</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2133</td>
<td>a</td>
<td>SFK1-3HA::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2134</td>
<td>a</td>
<td>hog1Δ::KanMX6 SFK1-3HA::HISMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2135</td>
<td>a</td>
<td>rim101Δ::KanMX6 SFK1-3HA::HISMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2136</td>
<td>a</td>
<td>HISMX6::PGAL1-SFK1-3HA::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2137</td>
<td>a</td>
<td>HISMX6::PGAL1-SFK1C-3HA::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2138</td>
<td>a</td>
<td>HISMX6::PGAL1-SFK1::GFP::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2139</td>
<td>a</td>
<td>HISMX6::PGAL1-SFK1C::GFP::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2140</td>
<td>a</td>
<td>cwp1Δ::HISMX6 cwp2Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2141</td>
<td>α</td>
<td>lem3Δ::TRP1 cwp1Δ::HISMX6 cwp2Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2142</td>
<td>a</td>
<td>slk1Δ::HphMX6 cwp1Δ::HISMX6 cwp2Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2143</td>
<td>a</td>
<td>lem3Δ::TRP1 slk1Δ::HphMX6 cwp1Δ::HISMX6 cwp2Δ::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2144</td>
<td>α</td>
<td>lem3Δ::TRP1 SFK1-EGFP::KanMX6</td>
<td>This study</td>
</tr>
<tr>
<td>YKT2145</td>
<td>a</td>
<td>lem3Δ::TRP1 SFK1-3HA::KanMX6</td>
<td>This study</td>
</tr>
</tbody>
</table>

*YKT strains are isogenic derivatives of YEF473 (Longtine et al., 1998). Only relevant genotypes are described.

TABLE 1: *Saccharomyces cerevisiae* strains used in this study.
1 mM sodium azide for 30 min at 30°C and incubated for 30 min at 30°C with vesicles containing 40% NBD- or TopFluor-phospholipid and 60% DOPC at a final concentration of 50 μM. Cells were then suspended in SD containing 20 mM sodium azide. Flow cytometry of fluorescently labeled cells was performed on a FACSCalibur cytometer using the CellQuest software (BD Biosciences, San Jose, CA).

Labeling with TMA-DPH and measurement of steady-state anisotropy

Labeling with TMA-DPH was performed as described (Abe et al., 2009). Briefly, cells were grown in SD medium at 25°C at 0.5–1.0 OD(600). The cells (2 OD(600) units) were collected, washed twice with TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 7.0), and labeled with TMA-DPH (Invitrogen, Carlsbad, CA) at 25°C for 10 min in the dark. After washing twice, the cells were subjected to fluorescence microscopy or analysis by spectrophotometry. Before the microscopic observation, TMA-DPH-stained cells were kept on ice for 45 min, and the cells were observed using a UV-1A filter set.

For measurement of the steady-state anisotropy of TMA-DPH, an RF-5300PC spectrophluorometer (Shimadzu Co., Kyoto, Japan) was used. TMA-DPH-stained cells were resuspended in TE buffer at 0.25 OD(600) and placed on ice until use. The cell suspensions were warmed at 30°C for 5 min prior to measurements. The excitation and emission wavelengths were 361 and 432 nm, respectively. Calculation of the steady-state anisotropy was performed as described (Abe et al., 2009).

Rhodamine uptake assay

Cells were grown to early logarithmic phase in YPDA or SDA-U medium at 30°C. After dilution to 0.5 OD(600)/ml, cells were preincubated in SD with or without 1 mM sodium azide for 30 min at 30°C and incubated for 1 h at 30°C with rhodamine 6G (Sigma-Aldrich) at a final concentration of 50 μM. Cells were then subjected to flow cytometry analysis on a FACSCalibur cytometer using the CellQuest software.

Lipid analysis

Total lipids were extracted basically by the Bligh and Dyer method (Bligh and Dyer, 1959). Cells were grown in 100–200 ml of YPDA or SDA-U medium to 0.8–1.0 OD(600)/ml at 30°C. The cells were collected and resuspended in 3.8 ml of chloroform-methanol-0.1 M HCl/0.1 M KCl (1:2:0.8) and lysed by vortexing with glass beads for 1 min. Then 1.0 ml of each chloroform and 0.1 M HCl/0.1 M KCl were added, followed by centrifugation, isolation of the lipid containing phase, and evaporation of the solvent. The extracted lipids were dissolved in appropriate volume of chloroform. Total phospholipids were determined by phosphorus assay (Rouser et al., 1970).

For phospholipid analysis, samples were subjected to thin-layer chromatography (TLC) on a TLC plate (Silica gel 60; Merck Millipore), with the solvent system chloroform/methanol/acetic acid/formic acid (50:30:4.5:6.5). After migration, plates were dried and sprayed with primuline solution (Sigma-Aldrich). Fluorescent spots of PE, PS, PI, and PC were scraped into glass tubes and subjected to lipid extraction and phosphorus assay as described above.

For ergosterol analysis, the samples containing 20 nmol phospholipate were subjected to TLC on a HPTLC plate (Silica gel 60; Merck Millipore), with the solvent system hexane/diethyl ether/acetonic acid (80:20:1) (Dodge and Phillips, 1967). After migration, plates were dried and sprayed with a 10% (wt/vol) cupric sulfate solution in 8% (wt/vol) orthophosphoric acid. Plates were heated in an oven at 180°C for 20 min. Plates were scanned with a CanoScan 8800F image scanner (Canon, Tokyo, Japan), and the acquired images were quantified with ImageJ (https://imagej.nih.gov/ij/).

Immunoblot analysis

Immunoblot analysis was performed as described previously (Misu et al., 2003). For SDS–PAGE of Sfk1p-3HA, samples were heated at 95°C for 5 min before loading. The mouse anti-HA (HA.11) monoclonal antibody (Babco, Richmond, CA) was used at 1:1000 dilution.

Statistical analysis and data reproducibility

Significance for Figure 5G was determined using a two-sided Student’s t test. Significance for all other figures was determined by a one-way analysis of variance with a Tukey’s test. All data are representatives of at least three independent experiments of biological replicates that gave reproducible results.

ACKNOWLEDGMENTS

We thank Yoshikazu Ohya for providing yeast strains and plasmids. We thank Masato Umeda for providing Bio-Ro. We thank Masataka Kinjo for the RF-5300PC spectrophluorometer. We thank Yukifumi Uesono and our colleagues in the Tanaka laboratory for valuable discussions and Eriko Itoh for technical assistance. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grants 20570174 (K.F.-K.), 25840064 (T.S.), and 21370085 (K.T.).

REFERENCES

Mioka T, Fujimura-Kamada K, Tanaka K (2014). Asymmetric distribution of phosphatidylserine is generated in the absence of phospho-

Nakano K, Yamamoto T, Kishimoto T, Noji T, Tanaka K (2008). Protein kinase Fpk1p and Fpk2p are novel regulators of phospholipid asym-

metry. Mol Biol Cell 19, 1783–1797.

Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC et al. (2008). Molecular interactions of yeast aminophospholipid flippase and translocases, and its role in membrane trafficking within the endomem-

