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Abstract 

Atmospheric aerosol is a liquid and solid particles suspended in the atmosphere 

with diameters ranging from 10–3 to 102 micrometers. Most atmospheric aerosols are 

produced by natural processes and some are from human industrial and agricultural 

activities. The aerosol particles that are directly emitted into the atmosphere including: 

sea spray aerosol, dust, biomass or fossil fuel burning aerosol, volcanic ash, primary 

organic aerosol, in addition, there are some aerosol particles can be produced from 

precursor gases (e.g., sulfates, nitrates, ammonium salts, secondary organic aerosol). 

Atmospheric aerosol has a significant influence on the radiative balance of the 

Earth and global climate change by both direct and indirect ways. On the one hand, the 

atmospheric aerosols can directly reflect and absorb the incoming solar and terrestrial 

radiation. On the other hand, the atmospheric aerosols can affect the incoming radiation 

indirectly through modifying cloud formation and the microphysical properties of 

clouds.  

Recently, air pollution has become a matter of global concern. Atmospheric 

aerosols play very crucial role in air quality. Ground-level aerosols, also known as 

particulate matter (PM), are associated with human health and as such are regulated as a 

priority air quality pollutant.  

The studies of atmospheric aerosols properties are therefore significant to 

understanding Earth system dynamics and atmospheric environment. Satellites are 

increasingly contributing to obtain information on aerosol properties (e.g., the aerosol 

optical depth (AOD), the columnar concentration of particles, their sizes). In addition, 

the atmospheric aerosol is one of the largest uncertainties in surface observation from 

satellite-level, since aerosol distribution is often heterogeneous. Therefore, the remote 

sensing of the Earth’s surface results are effected by atmospheric gases (e.g. water vapor 

and ozone) and aerosol particles scattering and absorption. 

The main objectives of this research are to develop an aerosol retrieval algorithm 

in order to retrieve aerosol properties from satellite observations, and to develop an 

atmospheric correction method for high-precision surface monitoring. To achieve these 

aims, three main tasks have been undertaken:  

First, the surface contribution at satellite-level was determined. The signal obtained 

by the spaceborne sensor measures the radiance at the top of the Earth's atmosphere 

(TOA), which consists of two basic components: the radiance scattered by atmosphere 

and the radiance reflected by the surface. Therefore, to derive the aerosol information, 
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the surface contribution should be separated from the atmosphere contribution. 

Secondly, an aerosol retrieval algorithm was established. Thirdly, a self-correction 

method for minimizing the atmospheric influences in spectral bands according to 

predicted aerosol information was developed.  

The main contents of this thesis include 5 parts: 

1. I created a new algorithm for retrieving AOD over land, from the Cloud and 

Aerosol Imager (CAI), which is one of the instruments on the Greenhouse gases 

Observing SATellite (GOSAT) for detecting and correcting cloud and aerosol 

interference. I used the GOSAT and AErosol RObotic NETwork (AERONET) 

collocated data from different regions over the globe to analyze the relationship between 

the TOA reflectance in the shortwave infrared (SWIR) 1.6 μm band and the surface 

reflectance in the red (0.67 μm) band. Our results confirmed that the relationships 

between the surface reflectance at 0.67 μm and TOA reflectance at 1.6 μm are not 

constant for different surface conditions. Under low AOD conditions (AOD at 0.55 μm 

< 0.1), a Normalized Difference Vegetation Index (NDVI) based regression function for 

estimating the surface reflectance of 0.67 μm band from the 1.6 μm band was 

summarized, and it achieved good performance, proving that the reflectance relations of 

the 0.67 μm and 1.6 μm bands are typically vegetation dependent. Since the NDVI itself 

is easily affected by aerosols, I combined the advantages of the Aerosol FRee vegetation 

Index (AFRI), which is aerosol resistant and highly correlated with regular NDVI, with 

our regression function, which can preserve the various correlations of 0.67 μm and 1.6 

μm bands for different surface types, and developed a new surface reflectance and 

aerosol-free NDVI estimation algorithm, which I named the Modified AFRI1.6 

algorithm. This algorithm was applied to AOD retrieval, and the validation results for 

our algorithm show that the retrieved AOD has a consistent relationship with 

AERONET measurements, with a correlation coefficient of 0.912, and approximately 

67.7% of the AOD retrieved data were within the expected error range (± 0.1 ± 

15%AODAERONET).  

2. I evaluated the performances of Atmospherically Resistant Vegetation Index 

(ARVI), Enhanced Vegetation Index (EVI), two-band-based EVI (EVI2), Visible 

Atmospherically Resistant Index (VARI) and AFRI for vegetation detection and 

monitoring with various AOD levels using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and AERONET data. Vegetation indices (VIs) calculated 

from satellite observations in the visible and infrared bands have been widely used for 

the assessment of vegetation cover and conditions. The NDVI is a commonly used VI 

for the retrieval of the biophysical properties of the vegetation canopy. However, due to 

the significant disadvantages of NDVI, including that it is sensitive to atmospheric 
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influences, there is a considerable reduction in the precision of the detection of 

vegetation dynamics at the satellite level. Therefore, several modified spectral 

vegetation indices have been developed to remove or minimize atmospheric 

disturbances. The ARVI and EVI utilize the reflectance measurements in the blue 

wavelengths to conduct a self-correction process to correct the atmospheric scattering 

effects in the red bands. The VARI is designed to emphasize vegetation and to mitigate 

atmospheric influences by using three color (blue, green and red) bands. The AFRI was 

developed using the SWIR 1.6 μm and 2.1 μm bands, which are more sensitive to 

differences in vegetation and less affected by atmospheric influences due to their longer 

wavelengths. The objective of this part was to evaluate the performances of ARVI, EVI, 

VARI, AFRI, and their variants for different AOD values. For the validation analysis, I 

used the spatially and temporally matched MODIS and AERONET collocated data. The 

TOA reflectance provided by the MODIS/Terra calibrated radiances (MOD02HKM) 

data were used to calculate the TOA VI values (not atmospherically corrected), and the 

surface VIs (atmospherically corrected) were calculated using the reflectance data from 

the MODIS surface reflectance product (MOD09HKM). The experimental results 

revealed that the TOA ARVI and TOA EVI are highly correlated with the surface NDVI 

for different levels of AODs. However, their TOA VI values were somewhat different 

from the corresponding surface VI values. AFRIs outperform other VIs due to the 

smaller differences in their TOA and surface VI values. Compared with ARVI, EVI, and 

AFRI, the EVI2 and VARI were more easily affected by atmospheric aerosols. 

3. A self-corrected method to minimize the atmospheric influences on vegetation 

indices was developed. Based on the linear relationship between the surface reflectance 

relationship in the 0.6-µm red and 2.1-µm SWIR bands, the surface reflectance in the 

red band can be estimated. Under a median assumption in viewing geometry, we can 

derive a predicted AOD according to the top-of-atmosphere reflectance and estimated 

surface reflectance. The predicted AOD value can be considered as prior knowledge of 

the atmospheric conditions to actualize the self-corrected procedure. Based on 

simulation results from a radiative transfer model, I summarized two empirical 

functions to correct for the aerosol influences in near-infrared (NIR) and red bands. 

Consequently, the corrected NIR band could be singly utilized to improve the 

measurement accuracy of SWIR-based vegetation indices. The corrected NIR and red 

band pair could also be directly used in the construction of vegetation indices, which 

would have the capability to assess vegetation and even aerosols that are present in the 

atmosphere. This method was applied in the construction of the corrected NIR-derived 

AFRI2.1 and the corrected NDVI, the performances of which were investigated under 

different aerosol loading conditions. The results revealed that under different AOD 

values, the corrected NIR-derived AFRI2.1 was generally closer to the atmospherically 
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corrected NDVI than the original AFRI2.1. Compared with the uncorrected NDVI, the 

NDVI corrected by our method exhibited an obviously better performance under aerosol 

loading conditions; the atmospheric influences on the NIR and red bands were largely 

removed, generating near-theoretical values. 

4. A SWIR 2.1-µm-based self-correction method has been developed for the 

correction of the atmospheric influences in the red and NIR bands. However, there are 

many sensors that only provide observations in the 1.6-µm SWIR band, and it is 

difficult to apply this correction method to the sensors without 2.1-µm bands. To 

overcome this issue, I analyzed the reflectance relationship between the 1.6 µm and 2.1 

µm bands using the MODIS surface reflectance product, and attempted to adapt the 

2.1-µm-based self-correction method to the 1.6-µm-based sensors, according to the 

reflectance relationship between the 1.6 µm and 2.1 µm bands. The analyzed results 

revealed that the reflectance relationship between the 1.6 µm and 2.1 µm bands is 

typically dependent on vegetation conditions and that the reflectance at 2.1 µm can be 

parameterized as a function of the 1.6 µm reflectance and the VI. Based on our 

experimental results, an AFRI2.1-based regression function connecting the 1.6 µm and 

2.1 µm bands was summarized. Under light aerosol loading (AOD at 0.55 µm < 0.1), 

the 2.1 µm reflectance derived by our method has an extremely high correlation with the 

true 2.1 µm reflectance (r-value = 0.928). Using the relationship between the 1.6 µm 

and 2.1 µm bands, the adaption of the correction method has been successfully 

accomplished. The performance of the 1.6-µm-based correction method has been tested 

with different levels of AOD by a comparison of the atmospherically corrected VIs. The 

results showed that the atmospheric influences in the red and NIR bands were 

effectively corrected using the 1.6-µm-based correction method, and the corrected red 

and NIR band derived VIs have obvious improvements in accuracy. The development of 

the 1.6-µm-based correction method offers the potential for 1.6-µm sensors to detect the 

vegetation dynamics in the presence of aerosols. The corrected red and NIR bands can 

be directly used in the construction of VIs (e.g., NDVI, Ratio Vegetation Index (RVI)); 

the single corrected band, such as the corrected NIR band, can also be used alone in 

aerosol resist VIs (e.g., the AFRI, NDVIMIR) to improve their accuracies. 

5. I developed a Dark Target (DT) AOD retrieval algorithm for GOSAT CAI based 

on the strategy of MODIS DT algorithm. When retrieving AOD from satellite platforms, 

the determination of surface contributions is a major challenge. In the MODIS DT 

algorithm, surface signals in the visible wavelengths are estimated based on the 

relationships between visible channels and SWIR near the 2.1-µm channel. However, 

the CAI only has the 1.6-µm band to cover SWIR wavelengths. To resolve the 

difficulties in determining surface reflectance caused by the lack of 2.1-μm band data, 

the relationship between reflectance at 1.6 µm and at 2.1 µm summarized in Chapter 5 
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were used. Similar to the MODIS DT algorithms (Collection 5 and Collection 6), a 

Thermal and Near-infrared Sensor for Carbon Observation-Cloud and Aerosol Imager 

(TANSO-CAI)-applicable approach that uses AFRI2.1 and the scattering angle to 

account for the visible surface signals was proposed. It was then applied to the CAI 

sensor for AOD retrieval; the retrievals were validated by comparisons with 

ground-level measurements from AERONET sites. Validations show that retrievals from 

the CAI have high agreement with the AERONET measurements, with an r-value of 

0.922, and 69.2% of the AOD retrieved data falling within the expected error envelope 

of ± (0.1 + 15% AODAERONET). 

This thesis introduced two new algorithms for retrieval AOD over land from 

GOSAT TANSO-CAI. They can extend the function of GOSAT TANSO-CAI to the 

AOD observations to provide one-platform combination data (including carbon dioxide, 

methane and AOD) for future studies on the relationship between greenhouse gases and 

aerosols. In addition, a 2.1-µm band based self-correction method for minimizing the 

atmospheric influences in red and NIR bands was proposed. Based on the reflectance 

relationship between 2.1-µm and 1.6-µm bands, the self-correction method has been 

successfully adapted to the sensors that only provide observation near the 1.6-µm 

spectral band.
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Chapter 1 General introduction  

 

1.1 Introduction 

The main objectives of this research are to develop aerosol retrieval algorithm and 

retrieve aerosol properties from satellite observations, and to develop atmospheric 

correction method for high-precision surface monitoring. This chapter introduces the 

thesis structure: (1) the research background; (2) the methods applied in this thesis and 

(3) the outline of the chapters. 

1.2 Background 

1.2.1 Impact of aerosols on the Earth’s environment 

The word aerosol is an analogy of the term hydrosol and is defined as the liquid 

and solid particles suspended in the atmosphere with diameters ranging from a few 

nanometers to 100 micrometers (μm) [1,2]. Several phenomena, such as dust, fumes, 

smoke, mist, fog, haze, and smog, are essentially types of aerosols [3]. Aerosols can be 

natural or anthropogenic; although most atmospheric aerosols are produced by natural 

processes, some are from human industrial and agricultural activities [4]. On a global 

scale, natural aerosols are much more common than anthropogenic ones, by a factor of 

approximately 4 to 5. However, due to human activities, regional aerosols may 

considerably increase, particularly in developing and industrialized regions [5]. The 

primary particles are emitted directly from a wide variety of natural and anthropogenic 

sources as aerosol particles, such as sea spray aerosols, dust, biomass- or fossil 

fuel-burning aerosols, volcanic ash, and primary organic aerosols, which can be 

emitted directly into the atmosphere. Secondary aerosol particles can be produced from 

precursor gases (e.g., sulfates, nitrates, ammonium salts, secondary organic aerosols) 

[6].  

Atmospheric aerosols are important components of the climate system and 

strongly impact the Earth’s radiation balance, hydrological cycle, and climate. Aerosol 

effects in the climate system can be roughly classified as “direct effects” and “indirect 

effects”. Aerosols scatter and absorb the thermal radiation that is emitted from the 

Earth’s surface and atmosphere as well as solar radiation (known as the direct aerosol 

effects) and modify the fractional cloud cover and the microphysical properties of 

clouds (known as the indirect aerosol effects) [7–10]. Compared to the anthropogenic 

greenhouse gases that cause the retention of heat, aerosol particles are much harder to 
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characterize. The direct effects (the scattering or absorption of solar radiation) are 

dependent on the physical and chemical properties of the atmospheric aerosols, such as 

the particle size, hygroscopicity, and complex refractive index. The scattering of 

incoming solar radiation back to space results in a net decrease in the solar energy at 

the Earth’s surface, whereas absorbing aerosol particles (such as black carbon) warm 

the atmosphere through the efficient absorption of solar and thermal radiation [6]. 

Aerosols have short lifetimes, so their concentrations, compositions, and size 

distributions are temporally and spatially highly variable, depending on the aerosol 

type and meteorology [11,12].  

Over the past decades, anthropogenic emissions of atmospheric aerosol and their 

precursors have dramatically increased [13]. Ground-level aerosols, also known as 

particulate matter (PM), are highly associated with human health and as such are 

regulated as a priority air quality pollutant [14,15]. Air pollution has become a matter 

of global concern. Aerosol particles of 0.1 to 1 μm can cause a degradation of visibility. 

Suspended particle matter of less than 2.5 μm in diameter (PM2.5) can penetrate the 

lungs and be incorporated into the blood, leading to diseases [16].  

1.2.2 Observation of atmospheric aerosols  

Aerosol monitoring contributes significantly to the understanding of the Earth’s 

environmental systems. Satellites are increasingly being used to monitor the spatial and 

temporal distribution of aerosols from the local to global scale, and to study their 

physical and chemical properties [17]. Spectral aerosol optical depth (AOD) is the 

most frequently used aerosol optical property, because it is directly related to PM 

loading. AOD derived from satellite observations has thus been used as a proxy for 

surface PM [15,18]. AOD is a dimensionless measure of aerosol abundance and the 

amount of solar light extinction (scattering and absorption) caused by aerosol particles 

passing through a column of the atmosphere [18,19]. The satellite sensor receives a 

reflectance containing contributions from both the land surface and the atmosphere 

(especially aerosols). The main challenge of aerosol retrieval over land is to remove 

the surface contributions from the integrated reflectance signal at the satellite level 

[20–22]. 

Several algorithms have been developed based on different physical principles to 

separate the surface and atmospheric contributions for different sensors [23]. For 

instance, Moderate Resolution Imaging Spectroradiometer (MODIS), as typical 

single-view sensors, use the shortwave infrared (SWIR) channel to determine surface 

reflectance in the visible channels based on stable relationship between the visible and 

SWIR channels [24,25]. Multi-angle Imaging SpectroRadiometer (MISR) and 

Advanced Along Track Scanning Radiometer (AATSR) are multiangular sensors that 



3 

 

make it possible to accurately account for directional surface scattering [26,27]. The 

Polarization and Directionality of Earth’s Reflectance (POLDER) instrumentation on 

the Advanced Earth Observing Satellite 1 (ADEOS-1) can achieve polarization 

measurement, which allows ground contributions to be determined based on the fact 

that atmospheric scattering is much more polarized than surface reflection [22,28]. 

Dark Target (DT) is a classic and popular technique for surface reflectance estimation 

and has been successfully applied to MODIS [29,30], Landsat Thematic Mapper [21], 

Advanced Very High Resolution Radiometer (AVHRR) [31,32], as well as several 

other sensors [7,33,34]. The DT approach assumes that aerosols over "dark" surfaces 

(such as vegetated land and dark oceans) will brighten the scene, and the aerosol signal 

is a major component of the top-of-atmosphere (TOA) signal in this case [7,35]. Thus, 

low surface reflectance values favor good discrimination between the surface and 

atmospheric contributions. In the MODIS DT algorithm, the influence of aerosols on 

the SWIR 2.1-µm channel is negligible (except for heavy aerosol or dusts), so the 

correlations of reflectance in the 0.47, 0.67 and 2.1 µm channels are used to estimate 

surface reflectance. Although highly accurate estimations can be made over low 

reflectance areas, the DT algorithm is limited by surface conditions and cannot be used 

over bright-reflection regions such as cites, desert or semi desert regions; this is 

because the surface reflectance signals over these regions are too large, which makes it 

difficult to discriminate aerosol contributions from satellite level TOA signals 

[2,36,37].  

1.2.3 Atmospheric effects on the remote sensing of surface reflectance 

    Solar radiation reflected by the Earth’s surface undergoes significant interactions 

with the atmosphere before it reaches satellite sensors. Satellite images of the Earth’s 

surface and the reflected solar spectrum do not represent the true ground-leaving 

radiance. Part of the observed brightness is from the reflected solar radiance at the 

surface, and the remainder is derived from the brightness of the atmosphere [38]. 

The radiance of light reflected by the Earth-atmosphere system for a cloudless sky 

consists of three components: 

L = Lo + Ls + Ld (1) 

where L is the radiance of the light reflected from the (cloudless) Earth-atmosphere 

system, Lo is the radiance of the light scattered by the direct sunbeam in the sensor's 

field of view from the atmosphere which is not reflected by the surface; Ls is the 

radiance of the light reflected by the surface and directly transmitted through the 

atmosphere; and Ld is the radiance of the light reflected by the surface and then 

scattered by the atmosphere to the sensor [39].  
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The atmospheric effects on the remote sensing of the surface reflectance by 

molecular scattering and absorption and aerosol scattering. The absorption depends on 

the amount of absorbing gases, mainly ozone and oxygen, and the molecular scattering 

depends on atmospheric pressure. Because the molecular scattering and absorption 

depend on ozone and oxygen, which have relatively stable atmospheric concentrations 

[40–44], molecular scattering and absorption can be accounted for satisfactorily. 

However, aerosols are a major unknown atmospheric component and their effects on 

remote sensing depend on the characteristics of the particular atmospheric aerosols, 

such as the particle size distributions, shapes, chemical compositions and refractive 

indices of the different components [39].  

When using multispectral satellite data for monitoring surface conditions, 

atmospheric effects can lead to a darkening if the surface is bright (sand, vegetation) in 

the near-infrared (NIR) band, and brightening if the surface is dark (water, vegetation) 

in the visible part of the spectrum [39,44,45]. This problem is especially significant for 

monitoring purposes, such as for agricultural or land use studies [38]. 

1.2.4 Atmospheric effects on vegetation indices 

Vegetation is a key component of global ecosystems and represents an active 

surface interacting with solar radiation and transforming it. Understanding the changes 

in Earth’s vegetation cover is highly associated with understanding land-atmosphere 

interactions and their effects on climate [46,47]. Since the first remote sensing satellite 

was launched and began taken the advantage of the satellite data that can provide 

spatially and periodically comprehensive views of land vegetation cover, considerable 

efforts have been made to monitor and characterize the dynamics of the Earth’s 

vegetation from space [46–49]. During the past few decades, several vegetation indices 

(VIs) were developed and used for terrestrial science applications. VIs are 

mathematical combinations of spectral bands that accentuate the spectral properties of 

vegetation (such as the optical characteristics of leaf chlorophyll, leaf area, canopy 

cover, and canopy architecture) and distinguishes vegetation from other terrestrial 

features [50–53]. Although VIs are not intrinsic physical quantities, they are widely 

used for vegetation-related remote sensing and the assessment of biophysical and 

biochemical variables (such as the canopy chlorophyll content, leaf area index, green 

vegetation fraction, gross primary productivity, and fraction of photosynthetically 

active radiation absorbed by vegetation) [53,54].  

The Normalized Difference Vegetation Index (NDVI) is the most representative 

VI, and its usefulness in monitoring and assessing global vegetation coverage and 

condition has been well demonstrated [55]. NDVI is calculated based on the behavior 

of the vegetation spectra, wherein chlorophyll pigments absorb light in the red region, 
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and the cellular structures of leaves reflect large portions of the light in the NIR 

wavelengths. Such differences in the reflected red and NIR bands are typical due to 

vegetation and do not show over other ground types. NDVI generally ranges from -1 to 

1 with vegetation; a 0 or negative value means no vegetation (such as areas with cloud 

or snow cover), a value between 0.1 and 0.4 is indicative of urban areas, while a value 

between 0.4 and 1 indicates the higher possible densities of green leaves [56].  

It is well known that NDVI is sensitive to atmospheric absorption and scattering 

caused by highly variable aerosols [51,53]. Atmospheric molecules and aerosols create 

“atmosphere path radiance” through the scattering of solar radiant flux, which becomes 

an added flux component observed by satellite sensors. Conversely, the atmosphere 

absorbs ground-reflected radiance fluxes, resulting in a loss of the transmitted radiant 

energy. These coupled effects lead to variations in satellite-sensor-observed 

reflectances in the NIR and red bands and cause the apparent NDVI values to be lower 

than the true NDVI values [55]. Thus, a certain number of vegetation indices such as 

Atmospherically Resistant Vegetation Index (ARVI), Enhanced Vegetation Index (EVI) 

and Aerosol FRee vegetation Index (AFRI), have been developed with similar 

vegetation index functions as well as eliminating or at least reducing the atmosphere 

influences. However, they basically addressed the issue that atmospheric effects on the 

red band, and only very few studies focus on the atmospheric effects on the NIR band. 

Under heavy aerosol loading conditions, the errors in NIR exert considerable influence 

on computation of vegetation indices. 

 

1.3 Aims and approaches 

The main objectives of this research are to develop an aerosol retrieval algorithm 

in order to retrieve aerosol properties from satellite observations, and to develop an 

atmospheric correction method for high-precision surface monitoring. The more 

specific objectives are outlined below:  

(1) To analyze relationship between surface reflectance in the visible and SWIR 

bands of Greenhouse gases Observing SATellite Thermal and Near-infrared Sensor for 

Carbon Observation-Cloud and Aerosol Imager (GOSAT TANSO-CAI), and to 

develop surface reflectance estimation methods. 

(2) To develop aerosol retrieval algorithms for GOSAT TANSO-CAI sensor. 

(3) To develop a self-correction method for minimizing the atmospheric 

influences in spectral bands according to predicted aerosol information.  

The main remote sensing data used in this thesis contain MODIS data, GOSAT 
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TANSO-CAI data, and Aerosol Robotic Network (AERONET) AOD data. 

 

1.4 Thesis contents 

This thesis consists of seven chapters, covering five main topics. The schematic 

framework for this research is shown in Figure 1.1. 

In Chapter 2, I used the GOSAT and AERONET collocated data from different 

regions over the globe to analyze the relationship between the TOA reflectance in the 

SWIR (1.6 μm) band and the surface reflectance in the red (0.67 μm) band. This 

information was used to develop an AOD retrieval algorithm for GOSAT TANSO-CAI. 

The retrieval results have been validated through a comparison with ground-level 

measurements from AERONET. 

In Chapter 3, the performances of different vegetation indices, including the ARVI, 

EVI, two-band-based EVI (EVI2), Visible Atmospherically Resistant Index (VARI), and 

AFRI for vegetation detection and monitoring were evaluated using the MODIS and 

AERONET data, given various AOD levels. 

In Chapter 4, a SWIR 2.1-µm-based self-corrected method to minimize the 

atmospheric influences in the red and NIR bands was introduced. This method has been 

applied in the construction of a corrected NIR-derived AFRI2.1 and a corrected NDVI, 

the performances of which have been investigated under different aerosol loading 

conditions by comparing their results with the atmospherically corrected VIs. 

In Chapter 5, the reflectance relationship between the 1.6 µm and 2.1 µm bands 

was analyzed using the MODIS surface reflectance product, and an attempt to adapt the 

2.1-µm-band-based self-correction method to the 1.6-µm-based sensors was made, 

using the reflectance relationship between the 1.6 µm and 2.1 µm bands. The 

performance of the 1.6-µm-based correction method has been tested under different 

levels of AODs by a comparison with the atmospherically corrected VIs. 

In Chapter 6, a DT aerosol retrieval algorithm for GOSAT CAI, based on the 

Moderate Resolution Imaging Spectroradiometer (MODIS) DT algorithm, was 

introduced. The TANSO-CAI-applicable DT approach uses AFRI2.1 and the scattering 

angle to account for the visible surface signals, and the observed AOD was validated by 

comparisons with the ground-level measurements from AERONET sites. 

Chapter 7 presents a summary of the important findings and overall conclusions of 

this study. The limitations of the approaches and methods used in this and future works 

are discussed. 
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Figure 1.1 A schematic flow of the research organization. 
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Chapter 2 A modified aerosol free vegetation index algorithm for 

aerosol optical depth retrieval using GOSAT TANSO-CAI 

data  

 

2.1 Introduction 

Aerosols have a considerable influence on the radiative balance of the Earth and 

global climate change through the absorption and scattering of solar radiation [1–3]. 

Particularly, atmospheric aerosol particles are closely associated with public health and 

the environment (e.g., the tropospheric aerosols, also known as particulate matter, PM) 

[4–6]. One important aerosol optical property, aerosol optical depth (AOD), can reflect 

the characteristics of atmospheric turbidity and is the most frequently used monitoring 

parameter of atmospheric aerosols [7]. 

Satellite remote-sensing techniques are very effective for observing the spatial 

distributions and temporal variations of aerosol optical properties on a large scale [8]. 

Various satellite sensors have been applied to retrieve AOD [9–11], even though these 

sensors are not initially intended for aerosol monitoring [12]. The estimation of AOD 

has benefited from the development of algorithms for sensors with different 

wavelengths, viewing angles and polarizations [13,14]. 

Removal of the surface contribution has long been considered the primary task for 

estimating the optical properties of aerosols [14,15]. Due to the complexities of the 

land surface, aerosol retrieval over land is much more difficult compared to retrieval 

over ocean. Currently, several methods have been developed to remove the land 

surface contribution in satellite remote sensing. Among these, the Dark Target (DT) 

algorithm has been widely used for aerosol retrieval and has been successfully applied 

to different satellite sensors, such as Moderate-Resolution Imaging Spectroradiometer 

(MODIS) [16,17], Advanced Very High Resolution Radiometer (AVHRR) [18] and 

Visible infrared Imaging Radiometer (VIIRS) [19]. The DT algorithm is based on the 

assumption that aerosols will brighten the scene over “dark” surfaces (vegetated land 

and dark ocean). Generally, the dark surfaces have low surface reflectances in parts of 

the visible and shortwave infrared (SWIR) channels, and the low surface contribution 

benefits the determination of contribution of aerosols. The MODIS DT algorithm uses 

the linear relationships between the surface reflectance of the SWIR (2.1 μm) channel 

(negligibly affected by aerosols at this wavelength) and the red or blue channels to 
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account for the surface signal in the corresponding channel. This method works best 

over dark vegetated surfaces, but not over bright land surfaces. This is because the 

top-of-atmosphere (TOA) reflectances acquired by satellite sensors over bright land 

surfaces are overwhelmed by the surface contributions, making it very difficult to 

estimate the contribution of aerosols [20,21]. The development of the Deep Blue 

algorithm has made up the gap in aerosols retrieval over bright land surface; the Deep 

Blue algorithm successfully performed aerosols retrieval over bright targets as well as 

over most vegetated targets [21,22]. The precalculated surface reflectance database in 

the blue channels is the prerequisite of the Deep Blue algorithm, and it is a complicated 

task to develop a reflectance database for other sensors. Despite the MODIS DT 

algorithm having been proven to be a mature algorithm for AOD retrieving, sensors 

without a 2.1 μm channel onboard cannot rely on this algorithm to estimate the surface 

reflectance of red or blue channels. Therefore, different strategies were developed for 

the instruments that do not measure reflectance in the 2.1 μm channel. In the synergetic 

aerosol retrieval (SYNAER) method [14,23], Holzer-Popp et al. introduced a 

Normalized Difference Vegetation Index (NDVI) and scattering angle-involved 

iterative regression function for estimating the surface reflectance at 0.67 μm from the 

apparent reflectance of the 1.6 μm band [23,24]. This method was carried out with 

Advanced Along-Track Scanning Radiometer (AATSR) and Scanning Imaging 

Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) sensors 

onboard Environmental Satellite (ENVISAT) used for AOD retrieval [23–25]. 

Similarly, Mei et al. derived an approach to estimate surface reflectance at 0.67 μm 

from the apparent reflectance at 3.75 μm from the AVHRR data based on NDVI. In 

their algorithms, the NDVI is used to determine the dark fields and tune the ratios and 

relationships between the 0.67 μm and the 1.6 μm or 3.75 μm bands under different 

surface conditions [26]. Nevertheless, aerosols easily influence NDVI, and increasing 

AOD would typically result in the decrease of NDVI values [27,28]. To eliminate the 

errors in NDVI caused by aerosols, an additional one-step iteration was performed to 

adjust the NDVI value [23–26,29]. Compared with non-iterative retrieval algorithms, 

the iteration step will increase the computational cost of retrieval. Therefore, replacing 

NDVI with the Aerosol FRee vegetation Index (AFRI) has the potential to simplify the 

retrieval process. 

In our study, the data from Greenhouse gases Observing SATellite (GOSAT) were 

used for AOD retrieval. GOSAT is the world’s first spacecraft to retrieve the 

concentrations of carbon dioxide and methane. Thermal and Near-infrared Sensor for 

carbon Observation Fourier Transform Spectrometer (TANSO-FTS) and Cloud & 

Aerosol Imager (TANSO-CAI) are the observation instruments on board the satellite. 

TANSO-FTS is used to measure the total columns of carbon dioxide and methane [30]. 
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One of the important responsibilities or functions of TANSO-CAI is to provide 

information about aerosols by visualizing the atmosphere and the ground surface to 

detect cirrus clouds and aerosols, which are then used to correct the TANSO-FTS data 

[31,32]. Many studies show that inaccurate aerosol information can result in significant 

errors in the retrieved column-averaged dry-air mole fractions of CO2 (XCO2) results, 

and information on aerosol optical properties has been considered the most substantial 

factor affecting the XCO2 retrieval algorithm [32,33]. However, since the TANSO-CAI 

does not have any definitive aerosol product, a priori information on aerosol as the 

input to the TANSO-FTS retrieval process is utilized from other platforms [34]. 

Because the atmosphere is constantly changing, different platforms will inevitably 

bring uncertainty due to their observation conditions and spatial-temporal differences. 

Therefore, as the onboard instruments use the same platform as TANSO-FTS, the 

development of the aerosol retrieval algorithm for TANSO-CAI can take full 

advantage of their spatial-temporal consistency and fulfill the requirement of obtaining 

more accurate aerosol information for the TANSO-FTS retrieval process. An AOD 

retrieval algorithm can extend the function of TANSO-CAI to the AOD observations to 

provide one-platform combination data (including carbon dioxide, methane and AOD) 

for future studies on the relationship between greenhouse gases and aerosols. Moreover, 

the AOD observations also play a key role for estimating ground-level PM2.5 

concentrations [35]. The improvements of aerosol and chemical transport model have 

proliferated the assimilation of aerosol data, which can analyze and forecast dust 

storms and general air quality [36,37]. 

In this paper, I mainly describe a non-iterative AOD retrieval algorithm over land 

using the GOSAT TANSO-CAI red (0.67 μm), near-infrared (NIR, 0.87 μm) and SWIR 

(1.6 μm) bands. An important part of this work was the development of a surface 

reflectance estimation algorithm based on the analysis of TANSO-CAI and AErosol 

Robotic Network (AERONET) collocated data from different ground stations located 

in different global regions (described in Section 2.2.3). The AOD retrieval was based 

on a look-up table method that was established using a radiative transfer model, and 

the evaluation of the retrieval algorithm was conducted by comparing the retrieved 

AOD and AERONET AOD (described in Section 2.2.4). 

 

2.2 General principle 

For Lambertain surfaces under a cloud-free and vertically homogeneous 

atmosphere, the physical processes of reflection, scattering and absorption of solar 

radiation are described by Equation 1.  
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RTOA(𝜆, 𝜇0, 𝜇, 𝜑)  = RPath(𝜆, 𝜇0, 𝜇, 𝜑) +
RSurf(𝜆)Τ𝑑(𝜆, 𝜇0)Τu(𝜆, 𝜇)

1 − RSurf(𝜆)S(𝜆)
 (1) 

 

 

where 𝜇0, 𝜇 and 𝜑 are the cosine of the solar zenith angle, the cosine of the satellite 

zenith angle and the relative azimuth angle between the sun and satellite, respectively; 

RTOA is the TOA reflectance at a given wavelength λ; RPath is the atmospheric “path 

reflectance”, which includes the molecular and aerosol scattering; Rsurf is the angular 

“surface reflectance”; S is the atmospheric hemispherical albedo; Td is the atmospheric 

transmittance from TOA to surface; and Tu is the atmospheric transmission from the 

surface to TOA. From Equation 1, the TOA reflectance received by the satellite sensor 

can be regarded as the joint contribution of surface and atmosphere [20,38].  

Three very important atmospheric parameters are RPath, TdTu and S, and they are 

functions of AOD. When the aerosol model is determined, multiple sets of RPath, TdTu 

and S values can be precomputed according to pre-defined combinations of AODs and 

geometrical conditions using the radiative transfer model. Then, a look-up table can be 

established for AOD retrieval [39–41]. 

When using the look-up table to retrieve AOD, the geometric parameters in the 

look-up table that are equal or closest to the geometric parameters of the satellite 

observations would be found. The selected geometric parameter set has multiple 

corresponding sets of atmospheric parameters: RPath, TdTu and S with different AOD 

values. Each set of atmospheric parameters RPath, TdTu and S, along with the estimated 

surface reflectance, is substituted into Equation 1 to calculate the theoretical apparent 

reflectance. The theoretical apparent reflectances for the different parameter sets are 

compared with the actual apparent reflectance; to find the one that is closest to the 

actual apparent reflectance; its corresponding AOD will be considered the retrieved 

AOD.  

In Equation 1, we can see that the three atmospheric parameters and the surface 

reflectance are critical to the retrieval accuracy. Among these, the atmospheric 

parameters are provided by the radiative transfer model, which in turn is determined by 

the surface reflectance estimation algorithm. 

 

2.3 Data and algorithm 

2.3.1 GOSAT TANSO-CAI 

The Greenhouse gases Observing SATellite, developed by the Japan Aerospace 

Exploration Agency (JAXA), the Ministry of the Environment of Japan (MOE) and the 
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National Institute for Environmental Studies (NIES) of Japan, was successfully 

launched on 23 January 2009 from Tanegashima Island, Japan [30,42]. GOSAT flies in 

a sun-synchronous orbit with a ground speed of 6.8 km/s at an altitude of 666 km and 

maintains an inclination angle of 98°. Its period of revolution is approximately 1 hour 

and 40 minutes, the local nadir overpass time is approximately 12:47 p.m., and it 

revisits the same point in space every three days with a total of 44 paths [42]. GOSAT 

carries two primary instruments, TANSO-FTS and the TANSO-CAI, to monitor the 

global distributions of carbon dioxide and methane and to detect clouds and aerosols 

[43].  

The TANSO-CAI is a multichannel, narrow-band radiometer with ultraviolet (UV, 

band 1), visible (band 2), NIR (band 3) and SWIR (band 4) bands, used to capture 

daytime images of the atmosphere and ground. The center wavelengths of bands 1 to 4 

are 0.38, 0.67, 0.87 and 1.6 μm, respectively. Bands 1, 2 and 3 all have 20 μm 

bandwidths, while band 4 has a 90 μm bandwidth. Bands 1 to 3 have a 500 m spatial 

resolution at the nadir and a 1000 km observation swath; band 4 has a 1.5 km spatial 

resolution and a 750 km scan swath [42–44].  

TANSO-CAI provides different processing-level radiances, cloud flag, global 

radiance and reflectance distribution, along with NDVI products [30]. The satellite data 

used in this study are the CAI L1B+ radiance data, and the radiance of each band has 

to be converted to reflectance for AOD retrieval [45]. In CAI L1B+ product, 

radiometric and geometric corrections (such as orthorectification, band-to-band 

registration and resampling) have been performed [46,47]. The observation 

information includes important geometric parameters for retrieval, such as the solar 

zenith/azimuth angle and satellite zenith/azimuth angle, which are recorded and added 

into the product data [48]. 

2.3.2 AERONET AOD data 

The AERONET [49] is a ground-based remote-sensing aerosol network with over 

800 stations globally, providing long-term, continuous, standardized data on aerosol 

optical, microphysical and radiative properties. The AERONET obtains spectral AOD 

within the 0.34 to 1.02 μm wavelength range by direct Sun measurement with an 

accuracy of 0.01–0.02, and the AOD data are computed for three data quality levels: 

Level 1.0 (raw, unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-screened 

and quality-assured) [50,51]. In this study, extensive use of AERONET Level 2.0 AOD 

data was made for atmospheric correction and validation of satellite retrievals. Since 

the retrieved AOD is at the wavelength of 550 nm, comparing TANSO-CAI AOD with 

AERONET AOD at the same wavelength requires that all AERONET AOD at other 

wavelengths should first be interpolated into 0.55 μm using the Angstrom exponent, 
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which can be calculated as follows [52]: 

α = −
ln (

τλ
 τ0.55

)

ln (
λ

0.55
)

 (2) 

where τλ is the AOD at a given wavelength λ, and α is the Angstrom exponent, the 

values of which are provided by AERONET measurement. 

2.3.3 Atmospheric correction of collocated TANSO-CAI/AERONET data 

To develop a surface reflectance (at 0.67 μm) estimation algorithm using the TOA 

reflectances at 1.6 μm, it is imperative to analyze the relationship between the 

satellite-measured reflectance and the surface reflectance by conducting accurate 

atmospheric correction.  

Through atmospheric correction, I attempt to obtain information on atmospheric 

optical properties and then determine the real surface reflectance using the information 

from satellite observation [27]. Atmospheric correction primarily eliminates the impact 

of molecular and aerosol scattering and absorption by gases, such as water vapor, 

ozone, oxygen, and aerosols [53–56]. Molecular scattering and absorption by ozone 

and oxygen, which have relatively stable atmospheric concentrations, are not difficult 

to subtract. In addition, it is practical to correct the effects of water vapor by using 

climatology data or other satellite data. However, aerosols are the most difficult 

component to eliminate since their distributions are often heterogeneous [56]. 

Fortunately, the theoretical model of atmospheric radiative transfer can be used to 

account for the effects of the atmospheric components, including those mentioned 

above [57]. In this study, the 6S (Second Simulation of a Satellite Signal in the Solar 

Spectrum) radiative transfer model and the ground-measured AOD from AERONET 

were used to perform atmospheric correction on TANSO-CAI images. 6S is an 

advanced radiative transfer code developed specifically for satellite applications [58]. 

It offers two main working modalities: simulation and atmospheric correction [59]. To 

run this code, a number of parameters are required as input: geometric conditions, 

atmospheric model, aerosol model and AOD, spectral conditions, ground reflectance 

type, and TOA reflectance/radiance. The atmospherically corrected 

reflectance/radiance and the relevant correction coefficients are output as results [60]. 

The continental aerosol model was selected as it can broadly describe both the 

scattering and absorption properties [16,61]. The atmospheric correction was 

performed on the arranged spatially and temporally matched TANSO-CAI/AERONET 

collocated data. The selection of TANSO-CAI/AERONET collocation data are based 
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on the following criteria: GOSAT overpasses are within 15 minutes of the AERONET 

measurements and localized within a 30 km radius around the AERONET sites. To 

reduce the effect of multiple aerosol scattering, only the collocated data with low AOD 

are corrected atmospherically [61]. The TANSO-CAI/AERONET collocated data, 

selected in 2011, with τ0.55 < 0.1, were obtained from nine global sites (Figure 2.1 and 

Table 2.1) [62]. After atmospheric correction, they were utilized to study the relation 

between 0.67 μm surface reflectance and 1.6 μm TOA reflectance. 
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Figure 2.1 The geographical distribution of AErosol Robotic Network (AERONET) sites (red sites were used for studying reflectance relationships, and green 
sites were used for validating results) and global Normalized Difference Vegetation Index (NDVI, it ranges from −1 to 1, a 0 or negative value 
means no vegetation and close to 1 indicates the highest possible density of green leaves) from Thermal and Near-infrared Sensor for Carbon 
Observation-Cloud and Aerosol Imager (TANSO-CAI) on 29 June 2015.   
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Table 2.1 The geographical information of AERONET sites (S sites were used for studying 
reflectance relationships, V sites were used for validating results). 

 

Site Name 
Longitude 

(decimal_degrees) 

Latitude 

(decimal_degrees) 

Elevation  

(meters) 

Alta_Floresta S, V −56.10 −9.87 277 

Appalachian_State S, V −81.69 36.21 1080 

Aubiere_LAMP S 3.11 45.76 423 

Belsk V 20.79 51.84 190 

Chiang_Mai_Met_Sta V 98.97 18.77 312 

CLUJ_UBB S 23.55 46.77 405 

Dhaka_University V 90.40 23.73 34 

DRAGON_Mt_Rokko V 135.23 34.76 760 

Gandhi_College V 84.13 25.87 60 

Georgia_Tech S −84.40 33.78 294 

Gorongosa V 34.35 −18.98 30 

Harvard_Forest V −72.19 42.53 322 

Ilorin V 4.34 8.32 350 

Palaiseau S 2.21 48.70 156 

Timisoara S, V 21.23 45.75 122 

Tomsk_22 V 84.07 56.42 80 

UAHuntsville S −86.65 34.73 223 

Ubon_Ratchathani S 104.87 15.25 120 

Ussuriysk V 132.16 43.70 280 

Vientiane V 102.57 17.99 170 

XiangHe V 116.96 39.75 36 

Xinglong V 117.58 40.40 970 
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2.3.4 Relationship between TOA reflectance at 1.6 μm and surface reflectance at 0.67 μm 

Atmospheric correction resulted in surface reflectance at 0.67 μm (TANSO-CAI 

band 2), which was compared with the TOA reflectance at 1.6 μm; Figure 2.2a shows a 

plot of their match-ups and regression line, with the color scale indicating the data 

frequency. The correlation coefficient (r) value is 0.79, and the slope and offset are 

approximately 0.42 and −0.01. The regression exhibits large scatter and cannot 

satisfactorily ensure retrieval accuracy. For example, where the TOA reflectance at 1.6 

μm is 0.2, the regression function would lead to a surface reflectance of 0.072 at 0.67 

μm. The scatter plot shows the surface reflectance at 0.67 has a large variation, ranging 

from 0.020 to 0.185. This uncertainty could cause large deviations in AOD retrieval. 

Therefore, using this regression function to estimate surface reflectance at 0.67 μm is 

not advised.  

Levy et al. (2007) and Thomas et al. (2008) suggest that the reflectance 

relationships between the red (0.67 μm) and SWIR bands (such as 1.6 and 2.1 μm) 

vary based on the surface type (vegetation condition/amount) [23,61,63]. Figure 2.2b 

shows the comparison of the surface reflectance at 0.67 µm and TOA reflectance at 1.6 

µm, and the color of each point indicates the value of the NDVI, according to the given 

color scale. It is easy to see that this relationship of surface reflectance at 0.67 μm and 

TOA reflectance at 1.6 μm (0.67 vs. 1.6) is a function of NDVI, and an apparent 

change in regulation is that the higher NDVI data seem to have lower slope, and vice 

versa. Therefore, like Levy et al. (2007) and Thomas et al. (2008), I also attempted to 

use the NDVI to indicate the impact of surface variability on the reflectance 

relationships of the red and SWIR bands [23,61,63]. NDVI is a numerical indicator 

that has been widely applied to estimate the quantity, quality and development of 

vegetation. It uses the different absorption properties of vegetation toward the red and 

NIR wavelengths to measure the biomass amount. Sensors onboard satellites or 

aircrafts can calculate the NDVI value according to Equation 3 [64–66]. 

NDVI = (RNIR − Rred)/(RNIR + Rred) (3) 

where RNIR and Rred are the reflectances in the NIR and red bands. Specifically, these 

bands are the TANSO-CAI band 3 (0.87 μm) and band 2 (0.67 μm), respectively. The 

NDVI values of these experimentally collocated data were calculated performing 

atmospheric correction on bands 2 and 3. The scatter plots in Figure 2.3 are the subsets 

of the total set of experimental data in Figure 2.2, they display the reflectance 

relationships at 1.6 μm and 0.67 μm, varying by intervals of 0.025 in NDVI. Each 
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scatter plot of Figure 2.3 has a specific 0.67 vs. 1.6 relationship and regression line for 

a given NDVI value. Almost all of them were found to show significantly higher 

r-values than the total set of experimental data. In Figure 2.4, the slopes and intercepts 

of 0.67 vs. 1.6 regressions (for the scatter plots in Figure 2.3) are plotted as functions 

of NDVI. The regression slopes of the scatter plots are highly correlated with NDVI  

(r = −0.955), and the slopes are decreasing as surface NDVI increases. In contrast, the 

regression intercepts have a very weak correlation (r = −0.198) with NDVI changes. 

Based on these results, an NDVI-dependent regression function for estimating the 

surface reflectance at 0.67 μm from the 1.6 μm band was established and is given in 

Equation 4. 

R0.67 = Slope0.67/1.6 ∗ R1.6 + Intercept0.67/1.6, 

with 

Slope0.67/1.6 = a1 ∗ NDVI + b1, 

Intercept0.67/1.6 = a2 ∗ NDVI + b2, 

(4) 

where R0.67 is the surface reflectance at 0.67 μm; R1.6 is the TOA reflectance at 1.6 μm; 

and NDVI is calculated by atmospherically correcting the reflectances of the NIR and 

red bands. The coefficient values (a1 = −0.605, b1 = 0.590, and a2 = −0.009, b2 = 0.023) 

are based on the results in Figure 2.4. 

 

 

Figure 2.2 Scatter plots of top-of-atmosphere (TOA) reflectance at 1.6 μm and surface 
reflectance at 0.67 μm with: density data frequency (a); and NDVI (b). The results 
are from TANSO-CAI/AERONET collocated data (selected from the s marked 
AERONET sites in Table 2.1) in 2011 with AOD (at 0.55 μm) < 0.1. 
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Figure 2.3 Relationship between TOA reflectances at 1.6 μm and surface reflectance at 0.67 
μm varying with different NDVI values (All data points in each graph fall within 
NDVI value ± 0.0001). 
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Figure 2.4 Relationship between TOA reflectances at 1.6 μm and surface reflectance at 0.67 
μm as a function of NDVI: (a) slopes (for each scatter plot in Figure 3 with given 
NDVI values) as a function of NDVI; and (b) intercepts as a function of NDVI. 

 

I tested this regression function by comparing the estimated results with the 

atmospherically corrected surface reflectance using the 6S radiative transfer code and 

AERONET measurements (Figure 2.5a). With an r-value of 0.959, the estimated 

surface reflectance has a very high consistency with the atmospherically corrected 

surface reflectance. In a biophysical context, as NIR light is reflected by spongy 

mesophyll cells [66], so it could be expected that higher-density vegetation land 

surface would show relatively higher reflectance at 0.87 μm than other surface types. 

Many studies suggest that the reflectances of red and SWIR have stronger correlation 

in dense dark vegetation areas [63]. Therefore, I also tested the data with surface 

reflectance values higher than 0.25 in band 3. As depicted in Figure 2.5b, the r-value 

increases to 0.980, and most of the overestimated points have been removed. The 

above results indicate that the relationship of 0.67 vs. 1.6 is dependent on the amount 

of vegetation and that NDVI can be used as a suitable tuner to interpret how the 0.67 

vs. 1.6 ratio changes with different surface types.  
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Figure 2.5 Comparison of estimated surface reflectances and atmospherically corrected 
surface reflectances at 0.67 μm: (a) experimental data; and (b) experimental data 
with reflectance of band 3 larger than 0.25. 

 

2.3.5 The modified AFRI1.6 algorithm  

The NDVI-based regression function has great practicability for estimating 

surface reflectance under very low aerosol conditions. However, the sensitivity of 

NDVI to the influence of atmospheric aerosols [27,28] render it ill-suited for 

estimating reflectance under higher aerosol conditions. Typically, as the AOD increases, 

the satellite-measured NDVI values rapidly decrease [66,67]. In the MODIS retrieval 

algorithm Collection 5, NDVISWIR, a new vegetation index (VI) much less influenced 

by aerosols, is calculated from the 1.2 μm and 2.1 μm channels used for estimating the 

surface conditions [61,63]. Nevertheless, TANSO-CAI does not have the 1.2 μm and 

2.1 μm wavelength bands on board. To overcome these difficulties, I developed a new 

algorithm based upon the idea of AFRI [68], which was first proposed by Karnieli et al. 

(2001). AFRI is calculated as function of reflectances of NIR and SWIR (1.6 or 2.1 μm) 

bands and described by the following equations. 

AFRI2.1 = (RNIR − 0.5 ∗ R2.1)/(RNIR + 0.5 ∗ R2.1)                  (5) 

   AFRI1.6 = (RNIR − 0.66 ∗ R1.6)/(RNIR + 0.66 ∗ R1.6) (6) 

where RNIR, R1.6 and R2.1 are the surface reflectances of NIR, 1.6 and 2.1 μm bands, 

respectively, and the coefficients 0.5 and 0.66 are based on the empirical linear 

relationships between the red (0.67 μm) band and the SWIR (1.6 and 2.1 μm) bands 

that were found by aircraft measurements [68]. The difference between NDVI and 

AFRI is that the SWIR reflectance has replaced the red reflectance of NDVI, according 
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to these empirical linear relationships. Thus, it takes full advantage of the ability of 

SWIR to penetrate the atmospheric column containing aerosols with negligible 

influence; at the same time, it remains sensitive to vegetation and has the potential to 

become a capable alternative to NDVI for estimating surface status [68,69]. AFRI1.6 

and AFRI2.1 were developed based on a single constant linear relationship between red 

and SWIR bands; however, the relationship of 0.67 vs. 1.6 is sensitive to changes in 

the surface type. Regarding this, it was already shown in Section 2.3.4 that the 

relationship of 0.67 vs. 1.6 is typically dependent on surface vegetation conditions 

(tested using TANSO-CAI bands). Therefore, a single constant linear relationship 

cannot represent the true correlation of 0.67 vs. 1.6 for ground with complicated 

surface conditions, because any error from a biased linear regression function would be 

inherited and applied in AFRI1.6.  

Combining the main strategies of the AFRI and the NDVI-based regression 

functions, I developed a new aerosol-free NDVI estimation method named the 

modified AFRI1.6 algorithm. The modified AFRI1.6 algorithm retains the original 

advantages of AFRI1.6, which is less influenced by aerosols, but replaces the single 

constant relationship-based method with a method that takes the vegetation-dependent 

relationships of 0.67 vs. 1.6 into account. Equation 4 can be rewritten as Equation 7, in 

which, the surface reflectance at 0.67 μm is a function of both the NDVI and TOA 

surface reflectance at 1.6 μm. Equation 8 shows the NDVI calculated from the 

TANSO-CAI bands. 

R0.67 =  (a1 ∗ NDVI + b1) ∗ R1.6 + a2 ∗ NDVI + b2 (7) 

NDVI = (R0.87 − R0.67)/(R0.87 + R0.67) (8) 

where R0.87 is the TOA reflectance of TANSO-CAI band 3; R0.67 is the estimated 

surface reflectance of TANSO-CAI band 2; and NDVI is the aerosol-free NDVI, 

calculated by R0.87 and R0.67. By substituting Equation 7 into Equation 8, and then 

rearranging, I obtain Equation 9. 

NDVI2 ∗ (a1 ∗ R1.6 + a2) + NDVI ∗ (R0.87 + (a1 + b1) ∗ R1.6 + a2 + b2)

+ (b1 ∗ R1.6 + b2 − R0.87) = 0 (9) 

Equation 9 is a quadratic equation in NDVI, and the solutions of the equation are as 

follows: 
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NDVI

=
−(R0.87 + (a1 + b1) ∗ R1.6 + a2 + b2)

2 ∗ (a1 ∗ R1.6 + a2)
 

± 
√(R0.87 + (a1 + b1) ∗ R1.6 + a2 + b2)2 − 4 ∗ (a1 ∗ R1.6 + a2) ∗ (b1 ∗ R1.6 + b2 − R0.87)

2 ∗ (a1 ∗ R1.6 + a2)
 

(10) 

In Equations 7 to 10, the coefficient values are a1 = −0.605, b1 = 0.590, and a2 = 0, 

b2 = 0.023. Among these, a2 was set to a value of 0 since the relationship of the 

intercepts with NDVI is considered very weak. As Equation 10 shows, this formula has 

two roots. In actual retrieval, only one reasonable root would be obtained because 

NDVI should be within the range of −1 to 1 and the other root exceeds this range. 

Using the estimated aerosol-free NDVI in Equation 7, the surface reflectance at 0.67 

μm can be estimated and used to retrieve the AOD. 

2.3.6 The look-up table 

The AOD can be determined by solving the radiative transfer equation with the 

relevant atmospheric parameters. For faster processing, I created a look-up table using 

the 6S radiative transfer code that has been widely used in different remote-sensing 

applications and sensors; for example, it is used to calculate the look-up table for 

MODIS atmospheric correction algorithm [61,70]. This look-up table includes 

pre-computed atmospheric parameters (RPath, TdTu and S) with given combinations of 

aerosol models, geometrical conditions and AODs. By using the look-up table, the 

appropriate atmospheric parameter combinations for solving the radiative transfer 

equation, can be rapidly selected, thereby improving retrieval efficiency. 

The 6S model is applicable for calculating atmospheric radiative transfer with a 

solar reflection range of 0.25 to 4.0 μm, and a 2.5 nm step used for spectral integration 

[61]. Before using the 6S model, the spectral condition of GOSAT TANSO-CAI was 

defined band by band with the interpolated TANSO-CAI Spectral Response Function. 

The look-up table was constructed using the following parameters: geometrical 

conditions, atmosphere model, aerosol models, AOD and atmospheric parameters 

(RPath, TdTu and S). The geometrical conditions include twenty-one solar zenith angles 

from 0° to 60° with a step of 3°, six satellite zenith angles from 0° to 60° with a step of 

12°, eight relative azimuth angles from 0° to 168° with a step of 24°, and one relative 

azimuth angle at 180°. Three different atmosphere models, Tropical, Midlatitude 

Summer and Midlatitude Winter, were taken into account. Because the previous 

atmospheric correction was performed with the continental aerosol model, I selected 

the continental aerosol model as the aerosol model for the look-up table construction 
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[16,61]. AOD values in the look-up table were set: the smallest with a value of 0.001, 

and others in the range of 0.01 to 2.00 with an increment of 0.01. 

2.3.7 AOD retrieval 

In this paper I use the TANSO-CAI 1.6 μm band to estimate the surface 

reflectance of 0.67 μm band to retrieve the AOD. According to the observation 

geometry parameters (solar zenith angle, azimuth angle, satellite zenith angle, and 

azimuth angle) in the satellite data files, the relevant observation geometry parameters 

that are equal or closest to the values in the established look-up table can be selected. 

Corresponding to the selected geometric parameters, there are multiple sets of RPath, 

TdTu and S values with different AOD values. I input every parameter set and the 

surface reflectance into Equation 1 to calculate the theoretical apparent reflectance in 

the 0.67 μm band. Then I could obtain multiple sets of theoretical apparent reflectances. 

Comparing the apparent reflectance of the TANSO-CAI data with these theoretical 

apparent reflectances, the one closest to the actual apparent reflectance and its 

corresponding AOD was selected as the retrieved AOD of this pixel. 

 

 

Figure 2.6 TOA reflectance as a function of AOD and surface reflectance at 0.67 μm. 
Simulation is performed under the observation geometric conditions with solar 
zenith angle = 45°, satellite zenith angle = 2° and relative azimuth angles = 45°. 
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However, due to the limitations of the instruments and algorithm, not all pixels 

can be used for retrieval. For example, when using the DT algorithm, the dark pixels 

should be preselected. I simulated the relationship between the TOA reflectance in the 

TANSO-CAI 0.67 μm band and the AOD for different surface reflectances using the 

6S code. Figure 2.6 demonstrates that the higher surface reflectance has smaller TOA 

reflectance changes as AOD increases. Namely, the higher surface reflectance areas are 

not sensitive to the AOD changes. It is noted that when the surface reflectance 

increases from 0.01 to 0.1, the TOA reflectance still responds to the increase in the 

AOD. To reduce the simulation difference, even with other observed geometric 

conditions, the pixels with surface reflectance values that are higher than 0.085 should 

not be selected to perform AOD retrieval [23]. In addition, based on the results 

presented in Section 2.3.4, to ensure the AOD retrieval accuracy, the thresholds of 

TOA reflectance of red band and estimated aerosol-free NDVI were set, when the TOA 

reflectance of red band is lower than 0.225, or the estimated aerosol-free NDVI is out 

the range of 0.375 to 0.825, it should not be taken into account during the retrieval. 

 

2.4 Results and discussion 

2.4.1 Case study over South Asia 

An example of the AOD retrieval over the South Asian region from TANSO-CAI 

using our algorithm is shown in Figure 2.7. Figure 2.7a,b shows the TANSO-CAI RGB 

composite images (shown in true color) of 4 and 7 November 2011, and their retrieved 

AOD distributions are shown in Figure 2.7c,d, respectively. The Southwestern part of 

China, Nepal and the Northern part of India are covered in this scene. The area 

between lines A and B is the North of Indo-Gangetic basin, one of the world’s largest 

drainage basins [71]. It is bordered by the Himalayas, which are located on the border 

between Nepal and Tibet, China. Rapidly growing industrialization and expanding 

urbanization has led to high pollution in these regions, and as such it has become a 

regional aerosol hot spot [71,72]. Comparing Figure 2.7a,b, the air condition of Figure 

2.7a in the region between lines A and B seems highly polluted. This could be 

attributed to the burning of biomass. I used MODIS Thermal Anomalies/Fire products 

(MOD14A1) [73] to detect the occurrence of fire. A large patch of clustered burning 

spots out of and near the scene was extracted on 4 November 2011, and burning spots 

were apparently decreased on 7 November 2011. As shown in Figure 2.7c,d, the 

relatively higher AOD dominates in the area between lines A and B; in contrast, very 

low AOD is distributed in the area between lines B and C. This is due to the unique 

topography (Figure 2.7e), with the mighty Himalayan peaks [74] of acting like a 

barrier and blocking the transfer of biomass-burning aerosols, causing the aerosols to 
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accumulate in the area between lines A and B surrounding the peaks. Our retrieval 

result successfully illustrated the contrast in AOD between areas of AB (line A to line 

B) and BC (line B to line C). Additionally, as the terrain gradually increases from the 

foot of a hill to the top (near the area of line B), the influx of aerosols decreases and 

becomes rare. Our results also reflected this detailed gradual change in AOD: over the 

area of the peak slope, there is a long and narrow zone with smoothly changing color. I 

can see that there is only a small retrieval result in the China area (the area north of line 

C). This is mainly because the surface over western China is relatively bright [26], and 

when the estimated surface reflectance is higher than 0.085, those pixels are not taken 

into account in the AOD retrieval. The absence of AOD retrieval in the area between 

lines A and B is also caused by the high estimated surface reflectance and the influence 

of cloud cover. The AERONET station Pokhara, located in the southeastern part of the 

image, provided the AOD measurements within ± 15 min of the satellite observation 

time, and the mean AOD on 4 and 7 November are 1.98 and 0.57, respectively. The 

results of our algorithm show that the retrieved AOD near the Pokhara station are 1.95 

and 0.65 on corresponding date, very close to the AERONET measurements. The 

details of validation using ground-level measurements from global sites are shown in 

Section 2.4.2. As shown in this case study, one of the deficiencies as well as challenges 

in the retrieval performance is that there are some retrieved spots at the edges of 

clouds. 
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Figure 2.7 Examples of the AOD retrieval over South Asian region: (a) RGB image from 
TANSO-CAI on 4 November 2011; (b) RGB image from TANSO-CAI on 7 
November 2011; (c) retrieved AOD at 550 nm on 4 November 2011; (d) retrieved 
AOD at 550 nm on 7 November 2011; and (e) topographic image. 

 

2.4.2 Comparison of retrieved AOD with AERONET measurements 

For quantitative validation, ground-based Sun photometer measurements are 

widely used to evaluate the accuracy of AOD satellite retrievals. All ground-based 

AOD measurements from AERONET that are within 15 minutes of the GOSAT 

observation are considered for validation. The TANSO-CAI/AERONET collocation 

criteria [75–77] for validation are more stringent in space. AOD results retrieved 



35 

 

within a radius of 7.5 km of the AERONET site are averaged and then evaluated by 

comparison with a total of 300 collocated data points, provided from 16 AERONET 

sites for the period from April 2009 to August 2014. The 16 AERONET sites are 

located in East Asia (XiangHe, DRAGON_Mt_Rokko and XiangHe), Southeast Asia 

(Chiang_Mai_Met_Sta, Vientiane and Gandhi_College), South Asia 

(Dhaka_University), North Asia (Tomsk_22 and Ussuriysk), South Africa (Gorongosa 

and Ilorin), Europe (Belsk and Timisoara), South America (Alta_Floresta) and North 

America (Appalachian_State and Harvard_Forest) (green points in Figure 2.1).  

The scatter plots of TANSO-CAI versus AERONET AOD are shown in Figure 2.8. 

The linear regression analysis shows that the TANSO-CAI-retrieved AOD has high 

agreement on the AERONET AOD with an r-value of 0.91. The regression line lies 

close to the one-to-one line with a slope of 1.10 and an intercept of 0.02. In addition to 

the linear regression analysis, some additional statistical indicators, including root 

mean square error (RMSE), mean bias error (MBE) and expected error (EE), were 

used to evaluate this algorithm. The RMSE [50,78,79] is sensitive to systematic and 

random errors. It is an absolute criterion and is commonly used to determine 

differences between satellite-retrieved AODs and ground-measured AODs. The RMSE 

(Equation 11) is defined as follows. 

RMSE = √
1

n
∑ (AOD(TANSO−CAI)i
n
i=1 − AOD(AERONET)i)2. (11) 

The MBE [80] (Equation 12) is used here to measure the mean error magnitude and 

calculated as 

MBE =
1

n
∑ (AOD(TANSO−CAI)i − AOD(AERONET)i)
n
i=1 . (12) 

EE [81] can denote the expected uncertainty of retrieval and is the major target of 

the validation studies. It is a confidence envelope that encompasses the sum of the 

absolute (dominating at low AOD) and relative (dominating at high AOD) AOD errors. 

The definition of EE (Equation 13) is based on a single criterion: at least 66% 

(approximately one standard deviation) of the collocated AOD match-ups fall within 

the corresponding envelope that is described as 

AOD(AERONET) − |EE| ≤ AOD(TANSO−CAI) ≤ AOD(AERONET) + |EE|. (13) 

Many studies have estimated the uncertainties of satellite-retrieved AOD and 
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attempted to define EE to validate a related algorithm or product [81]. Prior to the 

Terra launch, Kaufman et al. (1997) estimated the EE (± 0.05 ± 0.2AOD(AERONET)) of 

MODIS-retrieved AOD by sensitivity studies [17]. After the launch of Terra (later 

renamed Aqua), Chu et al. (2002) estimated the MODIS-measured AOD with the EE 

(± 0.05 ± 0.2AOD(AERONET)) [82]. MODIS Collection 5 (C005) DT aerosol products is 

reported EE for land to ± 0.05 ± 0.15AOD(AERONET) [83]. In addition, Mei et al. (2014) 

defined EE with a different envelope of ± 0.1 ± 0.15AOD(AERONET) for an AVHRR 

retrieval algorithm [26]. I tried three different EEs (EE1: ± 0.05 ± 0.15AOD(AERONET), 

EE2: ± 0.05 ± 0.2AOD(AERONET), EE3: ± 0.10 ± 0.15AOD(AERONET)) mentioned above 

to estimate AOD retrieval uncertainty. The analysis of the results of our algorithm (for 

total retrieval) shows that the RMSE and MBE between the TANSO-CAI and 

AERONET AOD are 0.196 and 0.052. The proportion of retrievals agreeing within 

EE1 of the AERONET measurements is 48.0%. For the relaxed criteria with EE3, there 

are 67.7% match-ups within the EE3.  

Although a good level of agreement was found for the total set of retrieved AOD 

from the globally distributed sites, I had no idea how the algorithm would behave over 

different regions [84]. To study more detailed situations than the descriptions for the 

total data in Figure 2.8a, it is instructive to regionally compare the TANSO-CAI and 

AERONET according to the locations of the AERONET sites. Based on the previous 

analysis methods, the following statistics are shown in the Table 2.2: number of 

experimental points (N), regression line, correlation coefficient (r), RMSE (AOD unit), 

MBE and EEs (EE1, EE2 and EE3) for each region (East Asia, Southeast Asia, South 

Asia, North Asia, South Africa, Europe, South America and North America). The 

comparisons of TANSO-CAI versus AERONET AOD for each region are shown in 

Figure 2.8b to 2.8i. For all regions except South Asia, which has a high ground-truth 

AOD, the RMSE and the MBE are always below 0.22 and 0.12, respectively (in 

absolute terms). The TANSO-CAI AOD obtained very high r-value (more than 0.85) in 

East Asia, Southeast Asia, South Asia and North Asia. Among them, South Asia has the 

poorest RMSE and MBE in all regions. The proportions of the points within EEs are 

only with 35.5%, 54.8% and 51.6% for EE1, EE2 and EE3, respectively. This could be 

explained by the complicated surface-cover types around the Dhaka_University 

AERONET site, which lead to improper estimations of surface reflectance during 

certain seasons, because for two consecutive years I found that most of the outliers 

were obtained during the period from February to April. On the other hand, the high 

ground-truth AOD (with a mean value of 0.915) can also bring uncertainties due to the 

effect of multiple scattering. Contrary to South Asia, the results for North America 

show a low r-value of 0.377, but a large proportion of data within EEs. As shown in 

Figure 2.8i, the ground-truth AOD was very low (with a mean value of 0.102). The 
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retrieval errors and the insufficient observation of high AOD experimental data lead to 

the low statistical r-value; however, the low RMSE and MBE (in absolute terms), and 

the match-up rate of 66% within EE1 indicate that our algorithm achieved good 

performance in North America.  

Although the mean ground-truth AOD in Southeast Asia were measured with a 

high value of 0.646, good retrieval is still observed over this region with low RMSE 

and MBE, high r-value, a large proportion of experimental data within EEs, and a 

regression line that is very close to the one-to-one line. This is not surprising as the 

Chiang_Mai_Met_Sta, Vientiane and Gandhi_College AERONET sites are typical 

rural vegetated sites, which have relatively lower surface reflectances and are ideal for 

AOD retrieval [85]. The experimental data for Europe are from the Belsk and 

Timisoara sites. The Belsk site is a vegetated rural site, and the Timisoara site is 

located in the center of one of the most developed towns in Romania [86]. It can 

clearly be seen in Figure 2.8g that the retrieved AOD for this region is easily 

overestimated, compared with the ground-level measured data. In the analysis, I found 

that almost all the outliers with large errors are from Timisoara. It is possible that 

uncertainty arises from the complicated reflectance relationship between the 0.67 vs. 

1.6 over urban areas and high local emissions, such as aerosol pollution from roads and 

power plants [85,86], both of which pose a huge challenge to the satellite retrieval of 

aerosol properties.  

The sites in North Asia, South Africa and North America all have negative MBE 

values (−0.073, −0.119 and −0.018, respectively). I found that the AERONET sites in 

these regions, which have very high vegetation backgrounds, tend to underestimate 

AOD in very light loading conditions. Similarly, the MODIS DT algorithm also tends 

to underestimate dark-target sites with small AOD [81,87]. This error may result from 

the systematic overestimation of the surface reflectance, since the parameters in the 

regression function for estimating surface reflectance are determined by the 

experimental data over the selected areas (in Section 2.3), and high-quality estimations 

are concentrated on a certain range of surface-type variation. When the algorithm is 

applied to an extremely highly vegetated or bare-surface area, the factual parameters 

for estimating surface reflectance would be biased toward the parameters presumed by 

these overall experimental data, and the biases would become intrinsic systematic 

errors [87]. 
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Figure 2.8 The comparison of retrieved AOD and AERONET measurements over different 
regions: (a) all regions; (b) East Asia; (c) Southeast Asia; (d) South Asia; (e) North 
Asia; (f) South Africa; (g) Europe; (h) South America; and (i) North America. The 
red solid, black solid and dashed lines are the regression line, one-to-one line and 
expected error (EE1) (± 0.05 ± 0.15AOD(AERONET)) envelope line, respectively. 
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Table 2.2 Summary statistics for the entire dataset and each individual region: number of samples (N), correlation coefficients (r), root mean square 
error (RMSE), mean bias error (MBE),and EEs. 

Region N Mean AERONET AOD r RMSE MBE EE1 EE2 EE3 

East Asia 49 0.282 0.927 0.178 0.055 36.7% 38.8% 59.2% 

Southeast Asia 76 0.646 0.911 0.159 0.018 56.6% 65.8% 77.6% 

South Asia 31 0.915 0.857 0.343 0.264 35.5% 54.8% 51.6% 

North Asia 26 0.307 0.949 0.129 −0.073 38.5% 42.3% 61.5% 

South Africa 11 0.283 0.578 0.167 −0.119 9.1% 36.4% 54.5% 

Europe 45 0.217 0.753 0.213 0.114 46.7% 51.1% 60.0% 

South America 9 0.067 0.639 0.102 0.091 33.3% 33.3% 66.7% 

North America 53 0.102 0.377 0.164 −0.018 66.0% 71.7% 83.0% 

Total 300 0.381 0.912 0.196 0.052 48.0% 55.0% 67.7% 
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Table 2.3 Proportions of match-ups below, within and above the EEs for AOD < 0.6 and > 0.6. 

 

 

  

  EE1  EE2  EE3 

AODs N Below Within Above  Below Within Above  Below Within Above 

AOD < 0.6 238 23.1% 44.5% 32.4%  21.0% 48.3% 30.7%  12.2% 64.7% 23.1% 

AOD > 0.6 62 3.2% 61.3% 33.9%  0% 80.6% 19.4%  0% 79.0% 20.9% 
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Only two regions (Southeast Asia and North America) had more than 55% of 

match-ups fall in EE1. Even excluding the two regions (South Africa and South 

America) that have very small volumes of collocated data, only 35.5%~46.7% of 

match-ups fell in EE1 for the other regions. Obviously, EE1 is an overly strict criterion 

with which to evaluate the accuracy of the current algorithm. For the relaxed EEs, at 

least 51% of match-ups fell into EE3 for each region. Comparing the results for EE2 

and EE3, more match-ups were virtually contained in EE3 for all regions (except for 

South Asia). The statistics in Table 2.3 show that the proportions of match-ups that fell 

well within EEs are higher for the observations with higher ground-truth AOD [16], and 

most of the match-ups that fell below the EEs were for lower aerosol loading 

conditions. 

 

2.5 Conclusions 

I introduced a new aerosol retrieval algorithm for land from the observation of the 

GOSAT TANSO-CAI sensor. Based upon the preliminary analysis from selected 

TANSO-CAI/AERONET collocations, we found that the relationship between surface 

reflectance in the red band and TOA reflectance in the SWIR 1.6 μm band varies with 

surface conditions. The NDVI was successfully utilized as a key factor to interpret the 

variety of 0.67 vs. 1.6 ratios with different surface properties. A regression function 

dependent on NDVI to estimate the surface reflectance of red band from the TOA 

reflectance of the 1.6 μm band for clear-sky conditions (AOD at 0.55 μm less than 0.1) 

was summarized. I compared the estimated surface reflectance against the 

atmospherically corrected surface reflectance, and the results show that the estimated 

surface reflectance has a very good agreement with the theoretical surface reflectance. 

The results also confirmed that the correlations between the 0.67 vs. 1.6 are vegetation 

dependent and proved that the regression function is practical and accurate for this 

application. The main problem in aerosol retrieval is that the NDVI itself can be 

affected by aerosols. Therefore, by combining the advantages of AFRI, which can resist 

the influences from atmospheric aerosols, with our regression function, which can 

preserve the correlations of 0.67 vs. 1.6 with different vegetation amounts, a modified 

AFRI1.6 algorithm for estimating aerosol-free NDVI and surface reflectance of 0.67 μm 

was developed. This modified AFRI1.6 algorithm-based AOD retrieval was tested by 

comparing its results with the collocated AERONET AOD from 16 AERONET sites 

located in different global regions. The results show that the retrieved AOD has very 

high consistency with the AERONET measurements, with an r-value of 0.912, and a 

regression line (with an equation of y = 1.101x + 0.021) that lies close to the one-to-one 

line. There are 67.7% experimental match-ups falling within the EE of ± 0.1 ± 
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0.15AOD(AERONET).  

This algorithm demonstrates a new approach to retrieve AOD from an onboard 

satellite sensor that can only pick up the 1.6 μm and the NDVI (red and NIR) bands. In 

theory, this algorithm can be implemented for any satellite sensor if it provide 

reflectances in the appropriate bands.  

 

References 

1. Boucher, O.; Anderson, T.L. General circulation model assessment of the sensitivity 

of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and 

chemistry. Journal of Geophysical Research: Atmospheres 1995, 100, 26117-26134. 

2. Kaufman, Y.J.; Tanre, D.; Boucher, O. A satellite view of aerosols in the climate 

system. Nature 2002, 419, 215-223. 

3. Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, 

J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 

423-430. 

4. Kocifaj, M.; Horvath, H.; Jovanović, O.; Gangl, M. Optical properties of urban 

aerosols in the region Bratislava-Vienna I. methods and tests. Atmospheric 

Environment 2006, 40, 1922-1934. 

5. World Health Organization. Air Quality Guidelines for Europe; WHO Regional 

Office for Europe: Copenhagen, Danmark, 2000. 

6. Wang, Z.; Chen, L.; Tao, J.; Zhang, Y.; Su, L. Satellite-based estimation of regional 

particulate matter (PM) in Beijing using vertical-and-RH correcting method. 

Remote sensing of environment 2010, 114, 50-63. 

7. Zhang, X.; Yang, L.; Yamaguchi, Y. Retrieval of aerosol optical depth over urban 

areas using Terra/MODIS data. International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Science 2010, 38, 374-379. 

8. Higurashi, A.; Nakajima, T. Development of a two-channel aerosol retrieval 

algorithm on a global scale using NOAA AVHRR. Journal of the Atmospheric 

Sciences 1999, 56, 924-941. 

9. Yu, H.; Kaufman, Y.; Chin, M.; Feingold, G.; Remer, L.; Anderson, T.; Balkanski, 

Y.; Bellouin, N.; Boucher, O.; Christopher, S. A review of measurement-based 

assessments of the aerosol direct radiative effect and forcing. Atmospheric 

Chemistry and Physics 2006, 6, 613-666. 

10. Kokhanovsky, A.; Breon, F.-M.; Cacciari, A.; Carboni, E.; Diner, D.; Di 

Nicolantonio, W.; Grainger, R.; Grey, W.; Höller, R.; Lee, K.-H. Aerosol remote 

sensing over land: A comparison of satellite retrievals using different algorithms 

and instruments. Atmospheric Research 2007, 85, 372-394. 



43 

 

11. de Leeuw, G.; Holzer-Popp, T.; Bevan, S.; Davies, W.H.; Descloitres, J.; Grainger, 

R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Klüser, L. Evaluation of seven 

European aerosol optical depth retrieval algorithms for climate analysis. Remote 

Sensing of Environment 2015, 162, 295-315. 

12. Riffler, M.; Popp, C.; Hauser, A.; Fontana, F.; Wunderle, S. Validation of a 

modified AVHRR aerosol optical depth retrieval algorithm over Central Europe. 

Atmospheric Measurement Techniques 2010, 3, 1255-1270. 

13. King, M.D.; Kaufman, Y.J.; Tanré, D.; Nakajima, T. Remote sensing of 

tropospheric aerosols from space: Past, present, and future. Bulletin of the 

American Meteorological society 1999, 80, 2229-2259. 

14. Holzer-Popp, T.; Schroedter, M.; Gesell, G. Retrieving aerosol optical depth and 

type in the boundary layer over land and ocean from simultaneous GOME 

spectrometer and ATSR‐2 radiometer measurements, 1, method description. 

Journal of Geophysical Research: Atmospheres 2002, 107, D21. 

15. Wang, Z.; Li, Q.; Wang, Q.; Li, S.; Chen, L.; Zhou, C.; Zhang, L.; Xu, Y. HJ-1 

terrestrial aerosol data retrieval using deep blue algorithm. Journal of Remote 

Sensing 2012, 16, 596-610. (In Chinese) 

16. Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.-C.; Li, R.-R.; Flynn, L. The 

MODIS 2.1-μm channel-correlation with visible reflectance for use in remote 

sensing of aerosol. IEEE transactions on Geoscience and Remote Sensing 1997, 35, 

1286-1298. 

17. Kaufman, Y.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational 

remote sensing of tropospheric aerosol over land from EOS moderate resolution 

imaging spectroradiometer. Journal of Geophysical Research: Atmospheres 1997, 

102, 17051-17067. 

18. Soufflet, V.; Tanré, D.; Royer, A.; O'Neil, N. Remote sensing of aerosols over 

boreal forest and lake water from AVHRR data. Remote Sensing of Environment 

1997, 60, 22-34. 

19. Dark Target (MODIS Aerosol Retrieval Algorithm): VIIRS. Available online: 

http://darktarget.gsfc.nasa.gov/platforms/viirs (accessed on 8 July 2016). 

20. Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol optical depth 

retrieval over bright areas using Landsat 8 OLI images. Remote Sensing 2016, 8, 

23. 

21. Dark Target (MODIS Aerosol Retrieval Algorithm): What is the difference between 

dark target and deep blue? Available online: 

http://darktarget.gsfc.nasa.gov/content/what-difference-between-dark-target-and- 

deep-blue (accessed on 18 July 2016). 

22. Hsu, N.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.; Hansell, R.; Seftor, C.; Huang, 

J.; Tsay, S.C. Enhanced deep blue aerosol retrieval algorithm: The second 

http://www.baidu.com/link?url=yFVTfBWAxR8ZlYa94AdpYCwWeAc3QEgJRwLaJHGDOiPtt9lrX2CbEifnHov32057qZ0jydvGaqDzfcPAXTqM-hPtOgXQSRWejlcN_ZBIFQtaQEiboyRFXy_Jkwib6qyu6Fm9VaJgnhJXtZQHkthJ9o5obYfe_6jP8P255DiAoiqOHAfl8wsXGhIKAkv36lXgqiLLv3yu8QvDdWvIp_36GiKtRPzu3BgGuIyh1mUAeHrYOvFjzKBRTiYhKlARVsL2rZMol4KSDpLr5x6P6sQrN_
http://www.baidu.com/link?url=yFVTfBWAxR8ZlYa94AdpYCwWeAc3QEgJRwLaJHGDOiPtt9lrX2CbEifnHov32057qZ0jydvGaqDzfcPAXTqM-hPtOgXQSRWejlcN_ZBIFQtaQEiboyRFXy_Jkwib6qyu6Fm9VaJgnhJXtZQHkthJ9o5obYfe_6jP8P255DiAoiqOHAfl8wsXGhIKAkv36lXgqiLLv3yu8QvDdWvIp_36GiKtRPzu3BgGuIyh1mUAeHrYOvFjzKBRTiYhKlARVsL2rZMol4KSDpLr5x6P6sQrN_


44 

 

generation. Journal of Geophysical Research: Atmospheres 2013, 118, 9296-9315. 

23. Holzer-Popp, T.; Schroedter-Homscheidt, M.; Breitkreuz, H.; Martynenko, D.; 

Klüser, L. Improvements of synergetic aerosol retrieval for ENVISAT. Atmospheric 

Chemistry & Physics 2008, 8, 7651-7672. 

24. Holzer-Popp, T.; Schroedter-Homscheidt, M.; Breitkreuz, H.; Klüser, L.; 

Martynenko, D. Synergetic aerosol retrieval from SCIAMACHY and AATSR 

onboard ENVISAT. Atmospheric Chemistry and Physics Discussions 2008, 8, 1-49. 

25. Holzer-Popp, T.; Schroedter-Homscheidt, M. Synergetic aerosol retrieval from 

ENVISAT. In Proceedings of ENVISAT & ERS Symposium, Salzburg, Austria, 

6–10 September 2004. 

26. Mei, L.; Xue, Y.; Kokhanovsky, A.; von Hoyningen-Huene, W.; de Leeuw, G.; 

Burrows, J. Retrieval of aerosol optical depth over land surfaces from AVHRR data. 

Atmospheric Measurement Techniques 2013, 6, 2227-2251. 

27. Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to 

visible and near-IR satellite imagery. International Journal of Remote Sensing 1988, 

9, 1357-1381. 

28. Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for 

EOS-MODIS.  IEEE transactions on Geoscience and Remote Sensing 1992, 30, 

261-270. 

29. von Hoyningen‐Huene, W.; Freitag, M.; Burrows, J. Retrieval of aerosol optical 

thickness over land surfaces from top-of-atmosphere radiance. Journal of 

Geophysical Research: Atmospheres 2003, 108, D9. 

30. Global Greenhouse Gas Observation by Satellite Project (7th Edition (July 2016)). 

Available online: http://www.gosat.nies.go.jp/eng/GOSAT_pamphlet_en.pdf 

(accessed on 18 May 2016). 

31. Arai, K.; Sakashita, M. Evaluation of cirrus cloud detection accuracy of 

GOSAT/CAI and Landsat-8 with laser radar: Lidar and confirmation with Calipso 

data. Evaluation. 2016, 5, 12-21. 

32. GOSAT/IBUKI Data Users Handbook 1st Edition. Available online: 

https://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/doc/GOSAT_HB_E_

1stEdition_for_HP.pdf (accessed on 12 May 2016). 

33. Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Lee, H.; Cho, C.; Goo, T.-Y. Impact of 

aerosol property on the accuracy of a CO2 retrieval algorithm from satellite remote 

sensing. Remote Sensing 2016, 8, 322. 

34. Algorithm Theoretical Basis Document (ATBD) for CO2 and CH4 Columun 

Amounts Retrieval from GOSAT TANSO-FTS SWIR. Available online: 

http://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/doc/documents/ATBD

_FTSSWIRL2_V1.1_en.pdf (accessed on 22 May 2016). 

35. Schaap, M.; Apituley, A.; Timmermans, R.; Koelemeijer, R.; de Leeuw, G. 



45 

 

Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, The 

Netherlands. Atmospheric Chemistry and Physics 2009, 9, 909-925. 

36. Liu, Z.; Liu, Q.; Lin, H.C.; Schwartz, C.S.; Lee, Y.H.; Wang, T. Three-dimensional 

variational assimilation of MODIS aerosol optical depth: Implementation and 

application to a dust storm over East Asia. Journal of Geophysical Research: 

Atmospheres 2011, 116, D23206. 

37. Schwartz, C.S.; Liu, Z.; Lin, H.C.; Cetola, J.D. Assimilating aerosol observations 

with a “hybrid” variational‐ensemble data assimilation system. Journal of 

Geophysical Research: Atmospheres 2014, 119, 4043-4069. 

38. Istomina, L.; von Hoyningen-Huene, W.; Kokhanovsky, A.; Schultz, E.; Burrows, J. 

Remote sensing of aerosols over snow using infrared AATSR observations. 

Atmospheric Measurement Techniques 2011, 4, 1133-1145. 

39. Zhang, Y.; Li, Z.; Qie, L.; Zhang, Y.; Liu, Z.; Chen, X.; Hou, W.; Li, K.; Li, D.; Xu, 

H. Retrieval of aerosol fine-mode fraction from intensity and polarization 

measurements by PARASOL over East Asia. Remote Sensing 2016, 8, 417. 

40. Wang, Z.; Gao, Z.; Li, Q.; Wang, W.; Chen, L.; Li, S. Urban aerosol monitoring 

over Ning-Bo from HJ-1. In Proceedings IEEE International Geoscience and 

Remote Sensing Symposium, Munich, Germany, 22-27 July 2012; pp. 2520-2523. 

41. Wong, M.S.; Lee, K.-H.; Nichol, J.E.; Li, Z. Retrieval of aerosol optical thickness 

using MODIS, a study in Hong Kong and the Pearl River Delta Region. IEEE 

Transactions on Geoscience and Remote Sensing 2010, 48, 3318-3327. 

42. Kuze, A.; O'Brien, D.M.; Taylor, T.E.; Day, J.O.; O'Dell, C.W.; Kataoka, F.; 

Yoshida, M.; Mitomi, Y.; Bruegge, C.J.; Pollock, H. Vicarious calibration of the 

GOSAT sensors using the railroad valley desert playa.  IEEE Transactions on 

Geoscience and Remote Sensing 2011, 49, 1781-1795. 

43. Huo, J.; Zhang, W.; Zeng, X.; Lü, D.; Liu, Y. Examination of the quality of 

GOSAT/CAI cloud flag data over Beijing using ground-based cloud data. Advances 

in Atmospheric Sciences 2013, 30, 1526-1534. 

44. Fukuda, S.; Nakajima, T.; Takenaka, H.; Higurashi, A.; Kikuchi, N.; Nakajima, 

T.Y.; Ishida, H. New approaches to removing cloud shadows and evaluating the 

380 nm surface reflectance for improved aerosol optical thickness retrievals from 

the GOSAT/TANSO-cloud and aerosol imager. Journal of Geophysical Research: 

Atmospheres 2013, 118, 13520-13531. 

45. Algorithm Theoretical Basis Document (ATBD) on the Processing of GOSAT 

TANSO-CAI L3 Global Reflectance Products. Available online: 

https://data.gosat.nies.go.jp/GosatWebDds/productorder/distribution/user/ATBD_C

AIL3REF_V1.0_en.pdf (accessed on 29 May 2016). 

46. Algorithm theoretical basis document for TANSO-CAI L1B processing. Available 

online: 



46 

 

https://data.gosat.nies.go.jp/GosatWebDds/productorder/distribution/user/ATBD_C

AIL1B_V1.0_en.pdf (accessed on 23 May 2016). 

47. Algorithm theoretical basis document for TANSO-CAI L1B+ processing. Available 

online: 

https://data.gosat.nies.go.jp/GosatWebDds/productorder/distribution/user/ATBD_C

AIL1BP_V1.01_en.pdf (accessed on 26 May 2016). 

48. NIES GOSAT Product Format Descriptions. Available online: 

https://data.gosat.nies.go.jp/GosatWebDds/productorder/distribution/user/GOSAT_

ProductDescription_V1.50_en.pdf (accessed on 17 May 2015). 

49. Holben, B.N.; Eck, T.; Slutsker, I.; Tanre, D.; Buis, J.; Setzer, A.; Vermote, E.; 

Reagan, J.A.; Kaufman, Y.; Nakajima, T. AERONET-A federated instrument 

network and data archive for aerosol characterization. Remote sensing of 

environment 1998, 66, 1-16. 

50. Chen, H.; Cheng, T.; Gu, X.; Li, Z.; Wu, Y. Evaluation of polarized remote sensing 

of aerosol optical thickness retrieval over China. Remote Sensing 2015, 7, 

13711-13728. 

51. Homepage of AEROSOL ROBOTIC NETWORK. Available online: 

http://aeronet.gsfc.nasa.gov/new_web/index.html (accessed on 11 May 2016). 

52. Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64-75. 

53. Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS 

data in the visible to middle infrared: First results. Remote sensing of environment 

2002, 83, 97-111. 

54. Vermote, E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land 

surfaces. Journal of Geophysical Research: Atmospheres 2008, 113. 

55. Fu, Q.; Min, X.; Sun, L.; Ma, S. Atmospheric correction of HJ-1 A/B CCD over 

land: Land surface reflectance calculation for geographical information product. 

Journal of Geographical Sciences 2014, 24, 1083-1094. 

56. Liang, S.; Fang, H.; Chen, M. Atmospheric correction of LANDSAT ETM+ land 

surface imagery. I. Methods.  IEEE Transactions on Geoscience and Remote 

Sensing 2001, 39, 2490-2498. 

57. Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second 

simulation of the satellite signal in the solar spectrum, 6S: An overview.  IEEE 

Transactions on Geoscience and Remote Sensing 1997, 35, 675-686. 

58. Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes 

for atmospheric correction and aerosol retrieval: Intercomparison study. Applied 

Optics 2008, 47, 2215-2226. 

59. Callieco, F.; Dell'Acqua, F. A comparison between two radiative transfer models 

for atmospheric correction over a wide range of wavelengths. International journal 

of remote sensing 2011, 32, 1357-1370. 



47 

 

60. Vermote, E.; Tanré, D.; Deuzé, J.; Herman, M.; Morcrette, J.; Kotchenova, S. 

Second simulation of a satellite signal in the solar spectrum-vector (6sv). 6S User 

Guide Version 2006, 3, 1-55. 

61. Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second‐

generation operational algorithm: Retrieval of aerosol properties over land from 

inversion of moderate resolution imaging spectroradiometer spectral reflectance. 

Journal of Geophysical Research: Atmospheres 2007, 112, D13211. 

62. Homepage of NASA Earth Observatory. Available online: 

http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetati

on_2.php (accessed on 23 October 2016). 

63. Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 5. 

Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf (accessed 

on 20 May 2015). 

64. Rouse, J.W.; Haas, R.H.; Deering, D.W.; Sehell, J.A. Monitoring the Vernal 

Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. 

Remote Sensing Center: Texas A&M University, College Station, TX, USA, 1974.  

65. Ogutu, B.O.; Dash, J. An algorithm to derive the fraction of photosynthetically 

active radiation absorbed by photosynthetic elements of the canopy (FAPARps) 

from eddy covariance flux tower data. New Phytologist 2013, 197, 511-523. 

66. Liu, G.-R.; Liang, C.-K.; Kuo, T.-H.; Lin, T.-H.; Huang, S. Comparison of the 

NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD 

using SPOT 4 vegetation dat. Terrestrial Atmospheric and Oceanic Sciences 2004, 

15, 15-32. 

67. Zhou, L.; Kaufmann, R.; Tian, Y.; Myneni, R.; Tucker, C. Relation between 

interannual variations in satellite measures of northern forest greenness and climate 

between 1982 and 1999. Journal of Geophysical Research: Atmospheres 2003, 108, 

D1. 

68. Karnieli, A.; Kaufman, Y.J.; Remer, L.; Wald, A. AFRI—Aerosol free vegetation 

index. Remote Sensing of Environment 2001, 77, 10-21. 

69. Ben‐Ze'ev, E.; Karnieli, A.; Agam, N.; Kaufman, Y.; Holben, B. Assessing 

vegetation condition in the presence of biomass burning smoke by applying the 

aerosol‐free vegetation index (AFRI) on MODIS images. International Journal of 

Remote Sensing 2006, 27, 3203-3221. 

70. Vermote, E.; Vermeulen, A. Atmospheric correction algorithm: Spectral 

reflectances (MOD09), ATBD version 4.0, April 1999. Available online: 

http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf (accessed on 5 May 2016). 

71. Tripathi, S.; Dey, S.; Chandel, A.; Srivastava, S.; Singh, R.P.; Holben, B. 

Comparison of MODIS and AERONET derived aerosol optical depth over the 

Ganga Basin, India. Annales Geophysicae 2005, 23, 1093-1101. 



48 

 

72. Tiwari, S.; Singh, A. Variability of aerosol parameters derived from ground and 

satellite measurements over Varanasi located in the Indo-Gangetic Basin. Aerosol 

and Air Quality Research 2013, 13, 627-638. 

73. Giglio, L. MODIS collection 5 active fire product user’s guide version 2.4. 2010. 

Available online: 

http://www.fao.org/fileadmin/templates/gfims/docs/MODIS_Fire_Users_Guide_2.

4.pdf (accessed on 22 May 2016). 

74. Khatiwada, K.R.; Panthi, J.; Shrestha, M.L.; Nepal, S. Hydro-climatic variability in 

the Karnali River Basin of Nepal Himalaya. Climate 2016, 4, 17. 

75. Witek, M.L.; Garay, M.J.; Diner, D.J.; Smirnov, A. Aerosol optical depths over 

oceans: A view from MISR retrievals and collocated MAN and AERONET in situ 

observations. Journal of Geophysical Research: Atmospheres 2013, 118, 

12620-12633. 

76. Petrenko, M.; Ichoku, C.; Leptoukh, G. Multi-sensor aerosol products sampling 

system (MAPSS). Atmospheric Measurement Techniques 2012, 5, 913-926. 

77. More, S.; Pradeep Kumar, P.; Gupta, P.; Devara, P.; Aher, G. Comparison of aerosol 

products retrieved from AERONET, MICROTOPS and MODIS over a tropical 

urban city, Pune, India. Aerosol and Air Quality Research 2013, 13, 107-121. 

78. Shi, Y.; Zhang, J.; Reid, J.; Holben, B.; Hyer, E.; Curtis, C. An analysis of the 

collection 5 MODIS over-ocean aerosol optical depth product for its implication in 

aerosol assimilation. Atmospheric Chemistry and Physics 2011, 11, 557-565. 

79. Shi, Y.; Zhang, J.; Reid, J.; Hyer, E.; Hsu, N. Critical evaluation of the MODIS 

deep blue aerosol optical depth product for data assimilation over North Africa. 

Atmospheric Measurement Techniques 2013, 6, 949-969. 

80. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over 

the root mean square error (RMSE) in assessing average model performance. 

Climate research 2005, 30, 79-82. 

81. Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T. 

Global evaluation of the collection 5 MODIS dark-target aerosol products over 

land. Atmospheric Chemistry and Physics 2010, 10, 10399-10420. 

82. Chu, D.; Kaufman, Y.; Ichoku, C.; Remer, L.; Tanré, D.; Holben, B. Validation of 

MODIS aerosol optical depth retrieval over land. Geophysical research letters 

2002, 29, 12. 

83. Remer, L.A.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; 

Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and 

validation. Journal of the atmospheric sciences 2005, 62, 947-973. 

84. Ruiz-Arias, J.; Dudhia, J.; Gueymard, C.; Pozo-Vázquez, D. Assessment of the 

level-3 MODIS daily aerosol optical depth in the context of surface solar radiation 

and numerical weather modeling. Atmospheric Chemistry and Physics 2013, 13, 



49 

 

675-692. 

85. Nichol, J.E.; Bilal, M. Validation of modis 3 km resolution aerosol optical depth 

retrievals over Asia. Remote Sensing 2016, 8, 328. 

86. Calinoiu, D.; Ionel, I.; Triftordai, G. Analysis of aerosol optical thickness in 

timisoara from aeronet global network observations. Strojarstvo 2011, 53, 353-358. 

87. Xie, Y.; Zhang, Y.; Xiong, X.; Qu, J.J.; Che, H. Validation of MODIS aerosol 

optical depth product over China using CARSNET measurements.  Atmospheric 

environment 2011, 45, 5970-5978.  

 



50 

 

 

Chapter 3 Investigation of the performance of vegetation indices at 

different levels of aerosol optical depths 

 

3.1 Introduction 

Vegetation is a key component of global ecosystems and represents an active 

surface interacting with solar radiation and transforming it. Understanding the changes 

in Earth’s vegetation cover is highly associated with understanding land-atmosphere 

interactions and their effects on climate [1,2]. During the past few decades, several 

vegetation indices (VIs) were developed and used for terrestrial science applications 

[3–6]. The Normalized Difference Vegetation Index (NDVI) [7,8] is the most 

representative VI, and it is formulated as follows (Equation 1): 

NDVI = (RNIR − Rred)/(RNIR + Rred)                 (1) 

where Rred and RNIR are the surface reflectances over the NIR and visible regions of the 

spectrum, respectively. NDVI is calculated based on the behavior of the vegetation 

spectra, wherein chlorophyll pigments absorb light in the red region, and the cellular 

structures of leaves reflect large portions of the light in the NIR wavelengths. Such 

differences in the reflected red and NIR bands are typical due to vegetation and do not 

show over other ground types. It is well known that NDVI is sensitive to atmospheric 

absorption and scattering caused by highly variable aerosols [4,6]. Thus, a certain 

number of vegetation indices have been developed with similar vegetation index 

functions with the aim of eliminating, or at least reducing, the atmospheric influences.  

One such approach is the Atmospherically Resistant Vegetation Index (ARVI), 

which was first proposed and used for the remote sensing of vegetation from the Earth 

Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS). 

ARVI takes advantage of the presence of the blue band (0.47 μm) in addition to that of 

the red and NIR bands included in NDVI. The self-correction of ARVI works by using 

the differences in the radiances measured in the blue and the red bands to conduct a 

correction of the atmospheric influences on the red band [4]. ARVI can be written as 

follows (Equations 2): 

ARVI = (RNIR
∗ − Rrb

∗ )/(RNIR
∗ + Rrb

∗ )                  (2a) 

where   
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   Rrb
∗ = Rred

∗ − γ(Rblue
∗ − Rred

∗ )                      (2b) 

in which is the subscript rb denotes the red and blue bands, R* stands for the 

atmospherically corrected or partially atmospherically corrected (Rayleigh and ozone 

absorptions) surface reflectances, and γ has a recommended value of 1.  

The Enhanced Vegetation Index (EVI) is an advanced VI that was developed to 

improve the sensitivity of the index to high biomass regions and enhance its vegetation 

monitoring capability. Through a decoupling of the canopy background signal and a 

reduction of the atmospheric influences, a feedback-based approach that takes both the 

background adjustment and atmospheric resistance concepts into consideration is 

established in EVI. Currently, the MODIS provided standard VI products include the 

NDVI and EVI data generated from the Terra and Aqua instruments. EVI is defined as 

follows (Equation 3) [9,10]: 

EVI = G(RNIR
∗ − Rred

∗ )/(RNIR
∗ + C1Rred

∗ − C2Rblue
∗ + L)        (3) 

where G is the gain or scaling factor; C1 and C2 are the coefficients of the aerosol 

resistance terms, which use the blue band to correct for the aerosol influences in the red 

band; and L is the canopy background adjustment for correcting the nonlinear, 

differential NIR and red wavelength transfers through a canopy. The coefficients 

adopted in the MODIS EVI algorithm are L=1, C1=6, C2=7.5, and G=2.5 [11]. 

EVI is a 3-band VI and is limited to sensor systems that include the blue, red and 

NIR bands, making it more difficult to generate the long-term EVI time series than their 

NDVI counterparts [6]. Moreover, due to the inability of the (saturated) blue band to 

convey any useful atmospheric information, EVI exhibits extremely high values over 

bright targets (heavy clouds, and snow/ice). To address this issue, a modified 2-band 

EVI (EVI2), which is the most similar to the 3-band EVI, was designed without the blue 

band. In addition, starting with the collection 5.0 of the MODIS VI products, the 

standard 3-band EVI was replaced by EVI2 over high-reflectance surfaces, such as 

clouds, snow and ice. By simply assuming the relationship between the red and blue 

bands, the EVI equation can be reduced to the 2-band EVI2 as follows (Equation 4): 

EVI2 = 2.5 ∗ (RNIR
∗ − Rred

∗ )/(RNIR
∗ + 2.4 ∗ Rred

∗ + 1)           (4) 

The studies of Jiang et al. (2008) have shown that EVI and EVI2 have similarly 

good consistencies for areas with insignificant atmospheric effects. However, when 

aerosols or residual clouds are present, EVI has larger values than EVI2 [11]. 

The aforementioned VIs are calculated by transforming the spectral bands in the 

visible and NIR regions. The Visible Atmospherically Resistant Index (VARI) [12], 

which is based entirely on the visible part of the spectrum, is minimally sensitive to 



52 

 

atmospheric effects and was developed to estimate the green vegetation fraction [13]. In 

addition, VARI was utilized in monitoring the chaparral moisture content [14]. To 

reduce atmospheric effects, ARVI [4] was introduced in VARI, which is calculated as 

(Equation 5) 

VARI = (Rgreen − Rred)/(Rgreen + Rred − Rblue)          (5) 

where Rgreen stands for the surface reflectance in the green band (0.56 μm). Compared 

with NDVI, which is sensitive to changes in small vegetation fractions and insensitive 

to changes in moderate and high vegetation fractions, VARI performs well in the 

estimation of the vegetation fraction from the visible range of the spectrum and shows a 

linear response to vegetation fraction [13]. 

In addition to the NIR and visible band derived atmospherically resistant VIs, the 

shortwave infrared (SWIR) wavelength bands have also been used in VIs. The SWIR 

bands (1.6 or 2.1 μm) are sensitive to changes in vegetation and can penetrate the 

atmospheric column even in the presence of aerosols, such as smoke or sulfates, due to 

their longer-than-visible-band wavelengths, which are considered to be much larger than 

the radius of most aerosols (expect for dust particles) [15]. Making full of these 

advantages, Miura et al. (1998) used the SWIR bands in place of the red band in NDVI, 

and analyzed their ability to minimize atmospheric “smoke” contamination [16]. 

Afterwards, Karnieli et al. (2001) found that, under clear sky conditions, there are very 

high correlation coefficient between the red and the SWIR spectral bands at 

approximately 2.1 and 1.6 μm, and their empirical linear relationships were summarized 

as follows (Equations 6a and 6b): 

Rred = 0.5 ∗ R2.1                           (6a) 

Rred = 0.66 ∗ R1.6                          (6b) 

where R2.1 and R1.6 are the reflectances at 2.1 and 1.6 μm, respectively. The linear 

relationship between the 1.6-μm and red bands can be improved by applying a 

curvilinear relationship to produce slight higher correlation coefficients, as in Equation 

6c [17]: 

     Rred = 0.01 + 0.14 ∗ R1.6 + 0.72 ∗ R1.6
2             (6c) 

Based on the above relationships, the SWIR bands can be included in a new VI, in 

which the 2.1 μm or 1.6 μm bands can replace the red band. Thus, a new VI called the 

Aerosol FRee vegetation Index (AFRI) has been developed. AFRI has three versions 

(AFRI2.1, AFRI1.6-1 (based on Equation 6b), and AFRI1.6-2 (based on Equation 6c)), 

computed as follows (Equations 7a to 7c) [17]: 
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AFRI2.1 = (RNIR − 0.5 ∗ R2.1)/(RNIR + 0.5 ∗ R2.1)               (7a) 

AFRI1.6-1 = (RNIR − 0.66 ∗ R1.6)/(RNIR + 0.66 ∗ R1.6)             (7b) 

AFRI1.6-2 =
(RNIR−0.01−0.14∗R1.6−0.72∗R1.6

2
)

(RNIR+0.01+0.14∗R1.6+0.72∗R1.6
2
)
                 (7c) 

Although these self-corrected, atmospherically resistant, and SWIR-derived VIs 

were developed based on their theoretical resistances to atmospheric influences, some of 

their performances have been tested for different applications. However, variations 

introduced by atmospheric effects, absorption and scattering can considerably reduce 

the precision of the subsequent detections of the vegetation dynamics over the Earth's 

surface [18], and very few studies have investigated the performances of VIs across 

different aerosol optical depth (AOD) levels. Therefore, in this study, I quantitatively 

compared the performances of these self-corrected, atmospherically resistant, and 

SWIR-derived VIs for different AOD over different AErosol Robotic Network 

(AERONET) sites.  

 

3.2 Data sources and methods 

3.2.1 Satellite and AERONET data 

The MODIS instrument onboard the EOS Terra satellite has 36 spectral bands, 

ranging in wavelength from the visible to the thermal-IR (0.4 to 14.4 μm); the red (0.65 

μm) and NIR (0.86 μm) bands that are used in NDVI have nominal resolutions of 250 m 

at nadir, and the other bands used in the VIs (Equations 2 to 7), including the blue (0.47 

μm), green (0.56 μm), 1.6-μm SWIR, and 2.1-μm SWIR bands, have resolutions of 500 

m [19].  

MODIS completes a global survey every one to two days and provides 44 standard 

data products of various global changes. The MODIS/Terra Calibrated Radiances 

(MOD02HKM) provides the calibrated and geolocated at-aperture radiances for the 7 

bands located in the 0.45 to 2.20 μm range, with a spatial resolution of 500 m. The 

MOD02HKM are not atmospherically corrected and were used as the TOA reflectance 

data [20].  

MODIS also provides the Surface Reflectance Product (MOD09HKM), which is 

an estimation of the surface reflectance in the same 7 bands of the MOD02HKM. 

Through correcting the effects of atmospheric scattering and absorption due to 

atmospheric gases, aerosols, and thin cirrus clouds, the adjusted reflectance of MOD09 

has been verified as highly accurate and similar to that measured at ground level [21]. 



54 

 

Thus, the MODIS Surface Reflectance Product is used to calculate the surface VIs in 

this study. 

To evaluate the performance of the above VIs with different levels of AOD, the 

AERONET measurements were used to understand the VIs measurements at the 

corresponding aerosol loadings. AERONET [22] is a worldwide remote sensing aerosol 

network that provides information on various aerosol properties from direct 

ground-level measurements. It has been validated that the ground-level measurements 

have higher accuracies than the current satellite-based measurements, and the 

uncertainties of the visible and NIR wavelengths are very low, with a value of 0.01 

[22,23]. 

To ensure the accuracy of the data sources, the new version of the MODIS 

products (collection 6) and the AERONET level 2.0 (cloud screened and 

quality-assured) data were used in our analysis.  

3.2.2 Selection of experimental data 

In this study, I utilized the spatially and temporally matched MODIS/AERONET 

collocated data as the experimental data. The selection of the MODIS/AERONET 

collocated data was based on the following criterion: The cloud-free MODIS data (both 

MOD02HKM and MOD09HKM) should by located within a 10-km radius of the 

AERONET sites, and the corresponding AOD provided by AERONET should be within 

30 minutes of the MODIS pass.  

According to these selection criterion, several MODIS/AERONET matches with 

AOD values ranging from 0.1 to 1.2 were found among the AERONET sites: those at 

Ubon Ratchathani, Ussuriysk, and Gandhi College. The geographical and landcover 

information from the three sites includes the location, dominant landcover type and 

fraction of dominant landcover type within the radii of 5 km and 10 km, as shown in 

Table 3.1.  
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Table 3.1 The geographical and land cover information about the AErosol Robotic Network (AERONET) Ubon_Ratchathani, Ussuriysk, and Gandhi College 

sites.  

 

Site Name 

Longitude 

(decimal_ 

degrees) 

Latitude 

(decimal_ 

degrees) 

Elevation 

(meters) 

Dominant landcover 

(Radius: 5 km) 

Dominant landcover 

(Radius: 10 km) 

    Type Fraction Type Fraction 

Ubon_Ratchathani 104.87 15.25 120 Urban area 60% 
Cropland, irrigated 

or post-flooded 
81% 

Ussuriysk 132.16 43.70 280 

Tree cover, 

broadleaved, 

deciduous 

94% 

Tree cover, 

broadleaved, 

deciduous 

84% 

Gandhi_College 84.13 25.87 60 Cropland, rainfed 60% 
Cropland, irrigated 

or post-flooded 
86% 
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3.3 Results and discussion 

3.3.1 Comparison of NDVI with other vegetation indices 

For the selected spatially and temporally matched MODIS/AERONET collocated 

data, the pairs of top-of-atmosphere (TOA) and top-of-canopy (TOC) VIs were 

calculated using the MODIS TOA reflectance and the surface reflectance data, 

respectively. Their performances for different AOD levels were analyzed through 

comparisons of the TOA and TOC VIs. It should be noted that, although some of the 

mentioned VIs (such as ARVI, EVI) were originally calculated using partially 

atmospherically corrected (Rayleigh and ozone absorption) reflectances, to maintain 

consistency with the other VIs, all the TOA VIs were calculated using the uncorrected 

TOA reflectances. 

I first compared all the TOA VIs against the TOC NDVI, and the comparison 

results for the three AERONET sites are shown as the graphs (a to h) in Figures 3.1 to 

3.12. The statistical root mean square error (RMSE) and mean bias error (MBE) were 

used to assess the overall errors, and the results for each experimental site are shown in 

Tables 3.2 to 3.7. The TOA ARVI showed a high consistency with the TOC NDVI, and 

the linear correlation of R2 was approximately 0.5 to 0.9. The uncorrected TOA 

reflectance-derived ARVIs all displayed higher values than the TOC NDVI.  

The TOA EVI also agrees well with the TOC NDVI; however, it was found that, 

under light aerosol loading conditions, two lower correlation cases (graph (c) in 

Figures 3.5 and 3.7) were observed over the densely vegetated Ussuriysk site. This is 

mainly due to the saturation of the NDVI in the dense vegetation area. In addition, this 

phenomenon suggests that the differences between EVI and NDVI caused by the 

saturation of NDVI over highly vegetated areas were smaller under higher AOD 

conditions. The two band-based TOA EVI2 showed considerable differences from the 

values of the EVI. For all the experimental cases, the TOA EVI was generally larger 

than the TOC NDVI, while EVI2 was lower than the TOC NDVI. This is because the 

aerosol resistant property of EVI was not retained in EVI2. For the TOA VARI, there 

was a weak consistency with the TOC NDVI.  

The three SWIR-derived AFRIs can be considered as modified NDVIs. Generally, 

the TOA AFRI2.1 showed a higher correlation with the TOC NDVI than did the TOA 

AFRI1.6. This may be the reason that the reflectance relationship between the 2.1-μm 

and red bands is stronger than that of the 1.6-μm and red bands. A comparison of 

AFRI1.6-1 with AFRI1.6-2 shows that their statistical RMSE and MBE values imply that 

TOA AFRI1.6-2 is much closer to the TOC NDVI; it may be possible that the 

curvilinear relationships in Equation 6c better describe the reflectance relationship 
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between the 1.6-μm and red bands. In addition, I noted that the TOA AFRIs closely 

resemble the TOC NDVI and showed considerably less scatter over the Ussuriysk site; 

in contrast, the AFRIs exhibit erratic behavior over the Gandhi College site. This is 

mostly due to reflectance relationships between the red and SWIR (1.6 μm or 2.1 μm) 

bands, which are independent of the vegetation fraction, and the rules of R0.6 = 0.5R2.1 

and R0.6 = 0.66R1.6 were summarized over a vegetated area. Therefore, AFRIs perform 

well over the highly vegetated Ussuriysk site, while abnormally high AFRI values 

were observed for the low-vegetation areas (with NDVI < 0.4) over the Gandhi 

College site. 
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Figure 3.1 Experimental results for the Ubon_Ratchathani site (Julian calendar day 047 in 2010) 
with an AOD at 0.55 μm of 0.59). (a) Top-of-atmosphere (TOA) Normalized 
Difference Vegetation Index (NDVI), (b) TOA Atmospherically Resistant 
Vegetation Index (ARVI), (c) TOA Enhanced Vegetation Index (EVI), (d) TOA 
modified 2-band EVI (EVI2), (e) TOA Visible Atmospherically Resistant Index 
(VARI), (f) TOA Aerosol FRee vegetation Index (AFRI2.1), (g) TOA AFRI1.6-1 and 
(h) TOA AFRI1.6-2 plotted against the top-of-canopy NDVI (TOC NDVI); (A) TOA 
NDVI, (B) TOA ARVI, (C) TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA 
AFRI2.1, (G) TOA AFRI1.6-1 and (H) TOA AFRI1.6-2 plotted against their TOC 
index values, respectively; (1) TOA reflectance in blue (0.47 μm), (2) TOA 
reflectance in green (0.55 μm), (3) TOA reflectance in red (0.65μm) and (4) TOA 
reflectance in near-infrared (NIR, 0.86 μm) plotted against their surface reflectance 
values, respectively. 
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Figure 3.2 Experimental results for the Ubon_Ratchathani site (Julian calendar day 068 in 
2010) with an AOD at 0.55 μm of 1.21). (a) TOA NDVI, (b) TOA ARVI, (c) TOA 
EVI, (d) TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) 
TOA AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, 
(C) TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA 
AFRI1.6-1 and (H) TOA AFRI1.6-2 plotted against their TOC index values, 
respectively; (1) TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green 
(0.55 μm), (3) TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR 
(0.86 μm) plotted against their surface reflectance values, respectively. 
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Figure 3.3 Experimental results for the Ubon_Ratchathani site (Julian calendar day 324 in 
2010) with an AOD at 0.55 μm of 0.12). (a) TOA NDVI, (b) TOA ARVI, (c) TOA 
EVI, (d) TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) 
TOA AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, 
(C) TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA 
AFRI1.6-1 and (H) TOA AFRI1.6-2 plotted against their TOC index values, 
respectively; (1) TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green 
(0.55 μm), (3) TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR 
(0.86 μm) plotted against their surface reflectance values, respectively. 
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Figure 3.4 Experimental results for the Ubon_Ratchathani site (Julian calendar day 055 in 
2011) with an AOD at 0.55 μm of 0.87). (a) TOA NDVI, (b) TOA ARVI, (c) TOA 
EVI, (d) TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) 
TOA AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, 
(C) TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA 
AFRI1.6-1 and (H) TOA AFRI1.6-2 plotted against their TOC index values, 
respectively; (1) TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green 
(0.55 μm), (3) TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR 
(0.86 μm) plotted against their surface reflectance values, respectively. 
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Figure 3.5 Experimental results for the Ussuriysk site (Julian calendar day 159 in 2008) with 
an AOD at 0.55 μm of 0.33). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, (d) 
TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Figure 3.6 Experimental results for the Ussuriysk site (Julian calendar day 178 in 2008) with 
an AOD at 0.55 μm of 0.55). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, (d) 
TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Figure 3.7 Experimental results for the Ussuriysk site (Julian calendar day 210 in 2008) with 
an AOD at 0.55 μm of 0.18). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, (d) 
TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Figure 3.8 Experimental results for the Ussuriysk site (Julian calendar day 148 in 2009) with 
an AOD at 0.55 μm of 0.79). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, (d) 
TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Figure 3.9 Experimental results for the Gandhi_College site (Julian calendar day 036 in 2012) 
with an AOD at 0.55 μm of 0.83). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, 
(d) TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Figure 3.10 Experimental results for the Gandhi_College site (Julian calendar day 050 in 2012) 
with an AOD at 0.55 μm of 0.24). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, 
(d) TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Figure 3.11 Experimental results for the Gandhi_College site (Julian calendar day 056 in 2012) 
with an AOD at 0.55 μm of 0.46). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, 
(d) TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Figure 3.12 Experimental results for the Gandhi_College site (Julian calendar day 065 in 2012) 
with an AOD at 0.55 μm of 1.09). (a) TOA NDVI, (b) TOA ARVI, (c) TOA EVI, 
(d) TOA EVI2, (e) TOA VARI, (f) TOA AFRI2.1, (g) TOA AFRI1.6-1 and (h) TOA 
AFRI1.6-2 plotted against the TOC NDVI; (A) TOA NDVI, (B) TOA ARVI, (C) 
TOA EVI, (D) TOA EVI2, (E) TOA VARI, (F) TOA AFRI2.1, (G) TOA AFRI1.6-1 
and (H) TOA AFRI1.6-2 plotted against their TOC index values, respectively; (1) 
TOA reflectance in blue (0.47 μm), (2) TOA reflectance in green (0.55 μm), (3) 
TOA reflectance in red (0.65 μm) and (4) TOA reflectance in NIR (0.86 μm) 
plotted against their surface reflectance values, respectively. 
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Table 3.2 The angle of observation and summarized statistics for the experimental data in the 
graphs (a to h) and (1 to 4) in Figures 3.1 to 3.4 (DOY is day of year,  Rred is the 
reflectance at 0.65 μm, RNIR  is the reflectance at 0.86 μm, Rblue  is the 
reflectance at 0.47 μm, and Rgreen is the reflectance at 0.55 μm). 

Site_Name: Ubon_Ratchathani 

Year/DOY 2010/047 2010/068 2010/324 2011/055 

AOD 0.590 1.211 0.121 0.868 

NDVI 
RMSE 0.203 0.225 0.083 0.153 

MBE −0.202 −0.223 −0.079 −0.151 

ARVI 
RMSE 0.186 0.043 0.153 0.085 

MBE 0.184 0.040 0.127 0.080 

EVI 
RMSE 0.086 0.043 0.129 0.069 

MBE 0.081 −0.027 −0.118 −0.064 

EVI2 
RMSE 0.333 0.343 0.299 0.285 

MBE −0.331 −0.341 −0.295 −0.283 

VARI  
RMSE 0.131 0.274 0.310 0.271 

MBE −0.118 −0.271 −0.254 −0.264 

AFRI2.1 
RMSE 0.100 0.052 0.168 0.092 

MBE 0.093 0.028 0.152 0.074 

AFRI1.6-1 
RMSE 0.293 0.345 0.221 0.296 

MBE −0.290 −0.341 −0.210 −0.291 

AFRI1.6-2 
RMSE 0.049 0.101 0.087 0.073 

MBE −0.013 −0.081 0.054 −0.019 

𝐑𝐫𝐞𝐝  
RMSE 0.017 0.036 0.011 0.013 

MBE 0.016 0.035 −0.008 0.009 

𝐑𝐍𝐈𝐑  
RMSE 0.094 0.064 0.084 0.073 

MBE −0.093 −0.062 −0.082 −0.071 

𝐑𝐛𝐥𝐮𝐞  
RMSE 0.146 0.146 0.069 0.113 

MBE 0.146 0.146 0.069 0.113 

𝐑𝐠𝐫𝐞𝐞𝐧  
RMSE 0.052 0.067 0.012 0.040 

MBE 0.052 0.067 0.010 0.040 

Viewing 

Geometry 

(degree) 

Solar zenith angle 43.360 34.315 41.122 38.038 

Sensor zenith angle 62.617 43.038 42.903 43.138 

Relative azimuth angle 31.700 25.720 50.030 31.725 
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Table 3.3 The angle of observation and summarized statistics for the experimental data in the 
graphs (A to H) and (1 to 4) in Figures 3.1 to 3.4 (DOY is day of year,  Rred is the 
reflectance at 0.65 μm, RNIR  is the reflectance at 0.86 μm, Rblue  is the 
reflectance at 0.47 μm, and Rgreen is the reflectance at 0.55 μm). 

Site_Name: Ubon_Ratchathani 

Year/DOY 2010/047 2010/068 2010/324 2011/055 

AOD 0.590 1.211 0.121 0.868 

NDVI 
RMSE 0.203 0.225 0.083 0.153 

MBE −0.202 −0.223 −0.079 −0.151 

ARVI 
RMSE 0.344 0.198 0.283 0.250 

MBE 0.344 0.198 0.272 0.249 

EVI 
RMSE 0.241 0.150 0.069 0.095 

MBE 0.239 0.147 0.067 0.092 

EVI2 
RMSE 0.168 0.162 0.105 0.123 

MBE −0.167 −0.161 −0.103 −0.122 

VARI  
RMSE 0.460 0.312 0.348 0.296 

MBE 0.458 0.311 0.316 0.294 

AFRI2.1 
RMSE 0.040 0.035 0.034 0.040 

MBE 0.038 0.033 0.032 0.036 

AFRI1.6-1 
RMSE 0.013 0.010 0.005 0.013 

MBE 0.011 0.000 0.003 −0.001 

AFRI1.6-2 
RMSE 0.071 0.045 0.032 0.051 

MBE 0.070 0.042 0.029 0.049 

𝐑𝐫𝐞𝐝  
RMSE 0.017 0.036 0.011 0.013 

MBE 0.016 0.035 −0.008 0.009 

𝐑𝐍𝐈𝐑  
RMSE 0.094 0.064 0.084 0.073 

MBE −0.093 −0.062 −0.082 −0.071 

𝐑𝐛𝐥𝐮𝐞  
RMSE 0.146 0.146 0.069 0.113 

MBE 0.146 0.146 0.069 0.113 

𝐑𝐠𝐫𝐞𝐞𝐧  
RMSE 0.052 0.067 0.012 0.040 

MBE 0.052 0.067 0.010 0.040 

Viewing 

Geometry 

(degree) 

Solar zenith angle 43.360 34.315 41.122 38.038 

Sensor zenith angle 62.617 43.038 42.903 43.138 

Relative azimuth angle 31.700 25.720 50.030 31.725 
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Table 3.4 The angle of observation and summarized statistics for the experimental data in the 
graphs (a to h) and (1 to 4) in Figures 3.5 to 3.8 (DOY is day of year,  Rred is the 
reflectance at 0.65 μm, RNIR  is the reflectance at 0.86 μm, Rblue  is the 
reflectance at 0.47 μm, and Rgreen is the reflectance at 0.55 μm). 

Site_Name: Ussuriysk 

Year/DOY 2008/159 2008/178 2008/210 2009/148 

AOD 0.328 0.554 0.183 0.792 

NDVI 
RMSE 0.185  0.161  0.096  0.233  

MBE −0.185  −0.161  −0.095  −0.231  

ARVI 
RMSE 0.199  0.101  0.150  0.031  

MBE 0.199  0.101  0.148  0.028  

EVI 
RMSE 0.142  0.055  0.075  0.062  

MBE 0.137  0.041  −0.060  −0.051  

EVI2 
RMSE 0.406  0.365  0.352  0.429  

MBE −0.405  −0.363  −0.350  −0.427  

VARI  
RMSE 0.424  0.082  0.283  0.242  

MBE 0.392  0.001  0.224  −0.238  

AFRI2.1 
RMSE 0.012  0.019  0.019  0.029  

MBE 0.003  −0.014  −0.004  −0.024  

AFRI1.6-1 
RMSE 0.341  0.355  0.355  0.358  

MBE −0.341  −0.355  −0.354  −0.357  

AFRI1.6-2 
RMSE 0.122  0.141  0.138  0.130  

MBE −0.122  −0.140  −0.136  −0.126  

𝐑𝐫𝐞𝐝  
RMSE 0.033  0.033  0.015  0.043  

MBE 0.033  0.033  0.015  0.042  

𝐑𝐍𝐈𝐑  
RMSE 0.087  0.056  0.061  0.097  

MBE −0.086  −0.055  −0.061  −0.095  

𝐑𝐛𝐥𝐮𝐞  
RMSE 0.121  0.103  0.073  0.115  

MBE 0.121  0.103  0.073  0.115  

𝐑𝐠𝐫𝐞𝐞𝐧  
RMSE 0.039  0.041  0.023  0.042  

MBE 0.039  0.041  0.023  0.042  

Viewing 

Geometry 

(degree) 

Solar zenith angle 29.136 25.124 29.400 26.085 

Sensor zenith angle 54.640 18.318 18.542 18.188 

Relative azimuth angle 33.361  38.002  41.358  42.940  
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Table 3.5 The angle of observation and summarized statistics for the experimental data in the 
graphs (A to H) and (1 to 4) in Figures 3.5 to 3.8 (DOY is day of year,  Rred is the 
reflectance at 0.65 μm, RNIR  is the reflectance at 0.86 μm, Rblue  is the 
reflectance at 0.47 μm, and Rgreen is the reflectance at 0.55 μm). 

Site_Name: Ussuriysk 

Year/DOY 2008/159 2008/178 2008/210 2009/148 

AOD 0.328 0.554 0.183 0.792 

NDVI 
RMSE 0.185  0.161  0.096  0.233  

MBE −0.185  −0.161  −0.095  −0.231  

ARVI 
RMSE 0.252  0.149  0.198  0.096  

MBE 0.251  0.149  0.197  0.090  

EVI 
RMSE 0.332  0.235  0.158  0.135  

MBE 0.332  0.235  0.157  0.133  

EVI2 
RMSE 0.196  0.156  0.120  0.231  

MBE −0.196  −0.155  −0.120  −0.228  

VARI  
RMSE 0.807  0.436  0.700  0.188  

MBE 0.794  0.431  0.680  0.186  

AFRI2.1 
RMSE 0.006  0.006  0.012  0.025  

MBE −0.001  0.002  0.010  −0.023  

AFRI1.6-1 
RMSE 0.016  0.008  0.003  0.038  

MBE −0.016  −0.007  0.000  −0.037  

AFRI1.6-2 
RMSE 0.003  0.003  0.009  0.015  

MBE 0.000  0.003  0.009  −0.013  

𝐑𝐫𝐞𝐝  
RMSE 0.033  0.033  0.015  0.043  

MBE 0.033  0.033  0.015  0.042  

𝐑𝐍𝐈𝐑  
RMSE 0.087  0.056  0.061  0.097  

MBE −0.086  −0.055  −0.061  −0.095  

𝐑𝐛𝐥𝐮𝐞  
RMSE 0.121  0.103  0.073  0.115  

MBE 0.121  0.103  0.073  0.115  

𝐑𝐠𝐫𝐞𝐞𝐧  
RMSE 0.039  0.041  0.023  0.042  

MBE 0.039  0.041  0.023  0.042  

Viewing 

Geometry 

(degree) 

Solar zenith angle 29.136 25.124 29.400 26.085 

Sensor zenith angle 54.640 18.318 18.542 18.188 

Relative azimuth angle 33.361  38.002  41.358  42.940  
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Table 3.6 The angle of observation and summarized statistics for the experimental data in the 
graphs (a to h) and (1 to 4) in Figures 3.9 to 3.12 (DOY is day of year,  Rred is the 
reflectance at 0.65 μm, RNIR  is the reflectance at 0.86 μm, Rblue  is the 
reflectance at 0.47 μm, and Rgreen is the reflectance at 0.55 μm). 

Site_Name: Gandhi_College 

Year/DOY 2012/036 2012/050 2012/056 2012/065 

AOD 0.829 0.236 0.456 1.086 

NDVI 
RMSE 0.146  0.091  0.092  0.098  

MBE −0.142  −0.091  −0.091  −0.097  

ARVI 
RMSE 0.085  0.145  0.141  0.093  

MBE 0.076  0.137  0.123  0.088  

EVI 
RMSE 0.151  0.120  0.182  0.089  

MBE −0.146  −0.116  −0.181  −0.087  

EVI2 
RMSE 0.333  0.332  0.342  0.274  

MBE −0.330  −0.331  −0.340  −0.273  

VARI  
RMSE 0.240  0.195  0.268  0.268  

MBE −0.229  −0.177  −0.242  −0.259  

AFRI2.1 
RMSE 0.241  0.153  0.148  0.211  

MBE 0.224  0.131  0.123  0.202  

AFRI1.6-1 
RMSE 0.130  0.181  0.187  0.110  

MBE −0.085  −0.163  −0.168  −0.090  

AFRI1.6-2 
RMSE 0.176  0.097  0.102  0.176  

MBE 0.155  0.063  0.076  0.165  

𝐑𝐫𝐞𝐝  
RMSE 0.010  0.003  0.004  0.004  

MBE 0.002  0.002  −0.001  −0.002  

𝐑𝐍𝐈𝐑  
RMSE 0.093  0.083  0.077  0.072  

MBE −0.091  −0.081  −0.075  −0.071  

𝐑𝐛𝐥𝐮𝐞  
RMSE 0.071  0.062  0.055  0.069  

MBE 0.068  0.062  0.055  0.069  

𝐑𝐠𝐫𝐞𝐞𝐧  
RMSE 0.017  0.010  0.009  0.013  

MBE 0.011  0.010  0.008  0.012  

Viewing 

Geometry 

(degree) 

Solar zenith angle 45.043  39.647  41.513  39.248  

Sensor zenith angle 40.210  54.772  6.795  19.758  

Relative azimuth angle 124.292  123.934  44.702  41.717  
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Table 3.7 The angle of observation and summarized statistics for the experimental data in the 
graphs (A to H) and (1 to 4) in Figures 3.9 to 3.12 (DOY is day of year,  Rred is 
the reflectance at 0.65 μm, RNIR  is the reflectance at 0.86 μm, Rblue  is the 
reflectance at 0.47 μm, and Rgreen is the reflectance at 0.55 μm).  

Site_Name: Gandhi_College 

Year/DOY 2012/036 2012/050 2012/056 2012/065 

AOD 0.829 0.236 0.456 1.086 

NDVI 
RMSE 0.146  0.091  0.092  0.098  

MBE −0.142  −0.091  −0.091  −0.097  

ARVI 
RMSE 0.171  0.217  0.219  0.203  

MBE 0.174  0.224  0.228  0.205  

EVI 
RMSE 0.003  0.061  0.022  0.054  

MBE 0.015  0.064  0.025  0.057  

EVI2 
RMSE 0.144  0.123  0.113  0.102  

MBE −0.141  −0.121  −0.111  −0.100  

VARI  
RMSE 0.212  0.314  0.283  0.209  

MBE 0.213  0.316  0.290  0.211  

AFRI2.1 
RMSE 0.014  0.012  0.012  0.016  

MBE 0.017  0.015  0.015  0.019  

AFRI1.6-1 
RMSE 0.009  0.006  0.008  0.006  

MBE 0.005  0.005  0.004  −0.002  

AFRI1.6-2 
RMSE 0.013  0.011  0.012  0.012  

MBE 0.015  0.013  0.015  0.014  

𝐑𝐫𝐞𝐝  
RMSE 0.010  0.003  0.004  0.004  

MBE 0.002  0.002  −0.001  −0.002  

𝐑𝐍𝐈𝐑  
RMSE 0.093  0.083  0.077  0.072  

MBE −0.091  −0.081  −0.075  −0.071  

𝐑𝐛𝐥𝐮𝐞  
RMSE 0.071  0.062  0.055  0.069  

MBE 0.068  0.062  0.055  0.069  

𝐑𝐠𝐫𝐞𝐞𝐧  
RMSE 0.017  0.010  0.009  0.013  

MBE 0.011  0.010  0.008  0.012  

Viewing 

Geometry 

(degree) 

Solar zenith angle 45.043  39.647  41.513  39.248  

Sensor zenith angle 40.210  54.772  6.795  19.758  

Relative azimuth angle 124.292  123.934  44.702  41.717  
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3.3.2 Comparison of TOA vegetation indices and individual TOC vegetation indices 

To understand how much the atmospheric influences impact the mentioned VIs, 

we compared the TOA VIs with their respective TOC VIs, and the results are shown as 

graphs (A to H) in Figures 3.1 to 3.12. The larger differences between the TOA and 

TOC index values indicate that these VIs are more sensitive to atmospheric influences. 

For each VI, we can see that the TOA indices all showed very high correlations with 

their TOC indices. However, their TOA index values were increased or decreased by 

atmospheric influences. For example, the TOA ARVI is typically overestimated versus 

the TOC ARVI; conversely, the TOA EVI2 values were lower than the TOC values due 

to atmospheric effects. The RMSE and MBE of the TOA and TOC VIs are shown in 

Tables 3.3, 3.5, and 3.7, and Figures 3.13 to 3.15 show the comparisons of the RMSE 

values of the VIs over different experimental sites. Except for those of VARI, ARVI 

and EVI had the largest RMSE values. Because both ARVI and EVI rely on the blue 

band for the correction the atmospheric effects in the red band, the measurements of 

ARVI and EVI should utilize the atmospherically corrected or partially 

atmosphere-corrected (Rayleigh and ozone absorption) surface reflectances. The large 

errors in the ARVI and EVI simulations may be caused by the use of uncorrected TOA 

reflectances. The SWIR-derived AFRIs showed the best ability to “resist atmosphere 

influences” and have very low RMSE values even when the AOD value is very high.  

3.3.3 Atmospheric influences in the MODIS red, NIR, blue, and green bands 

The reduction in the precision of the remote sensing image interpretation for the 

detection of vegetation dynamics is essentially caused by the atmospheric effects in the 

bands that are used in VIs. Therefore, in Section 3.3.1 and 3.3.2, I analyzed those cases 

corresponding to the atmospheric influences in the MODIS red, NIR, blue, and green 

bands. The comparisons of the TOA and surface reflectances of these four bands are 

shown in the graphs (1 to 4) in Figures 3.1 to 3.12. I found that the TOA reflectances in 

the blue (graphs (1) in Figures 3.1 to 3.12) and green (graphs (2) in Figures 3.1 to 3.12) 

bands are obviously larger than the corresponding surface reflectances. This is because 

the blue and the green bands have shorter wavelengths than the red, making the former 

more easily affected by the atmospheric particles scattering, and the added path 

radiance intrinsic to the atmosphere, which has not been reflected by the Earth's 

surface, can increase the brightness of these bands [11,21]. For the red (graphs (3) in 

Figures 3.1 to 3.12) band, over the low reflectance area, the effect of the atmosphere is 

to create a bright surface. As the graphs (4) in Figures 3.1 to 3.12 shown, the TOA 

reflectance values in the NIR band dropped lower than the corresponding surface 

reflectance. The reduction in the NIR is caused by the atmospheric absorption. Figure 

3.16 shows the standard deviations of the MBE for these four bands with different 
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AOD values. The lower standard deviation of the MBE values indicated a lower 

susceptibility to the influences of the atmosphere. Our results revealed that larger MBE 

values were derived from the shorter wavelength bands. Because of this, the 

uncorrected reflectance used in the blue band-based self-corrected ARVI and EVI led 

to unsatisfactory performances; in contrast to ARVI and EVI, the SWIR-based AFRIs 

were less affected by aerosol loading due to the ability of longer wavelength to 

penetrate the atmosphere, even in the presence of aerosols. 

 

Figure 3.13 Experimental results over the Ubon Ratchathani site and the root mean square 
error (RMSE) between the TOA and TOC vegetation index values for different 
aerosol optical depths (AODs). 

 

Figure 3.14 Experimental results over the Ussuriysk site and the RMSE between the TOA and 
TOC vegetation index values for different AODs. 
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Figure 3.15 Experimental results over the Gandhi_College site and the RMSE between the 
TOA and TOC vegetation index values for different AODs. 

 

 

 

Figure 3.16 The standard deviation of the mean bias errors (MBEs) between the TOA and the 
surface reflectance in different spectral bands. 

 

3.4 Conclusions 

In this study, I evaluated the performances of ARVI, EVI, EVI2, VARI and AFRI 

for vegetation detection and monitoring with various AOD levels using the MODIS 
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and AERONET data.  

The studies of Bowker et al. [24] showed that, without atmospheric effects, ARVI 

has the high correlation with NDVI. Our results revealed that, for different aerosol 

conditions, the TOA ARVI also showed high consistency with the TOC NDVI.  

With the exception of that of ARVI, the TOA EVIs better agreed with the TOC 

NDVI than the other VIs. However, the poor agreement was observed over dense 

vegetated areas with low aerosols loadings, which is due to the non-linear behavior of 

NDVI leading to the saturation problem in areas with dense vegetation. It indicated 

that the atmospheric influences fade-out the differences between the EVI and NDVI 

caused by the saturation effect. 

The success of the AFRIs is limited over vegetated area; the TOA AFRIs and the 

TOC NDVI are obviously more consistent over densely vegetated areas, and larger 

differences between the TOA AFRIs and the TOC NDVI may occur over low 

vegetation area.  

Among the three different AFRIs, AFRI2.1 and AFRI1.6-2 have closer values to 

those of the TOC NDVI than those of AFRI1.6.  

The TOA and the TOC index values were compared for each VI, under different 

AOD levels. The SWIR-based VIs (e.g., AFRIs) showed smaller differences between 

their TOA and TOC index values than the other VIs. This demonstrated that the 

SWIR-based VIs are less affected by atmospheric influences.  

For the application of the self-corrected VIs (e.g., ARVI and EVI), when using the 

TOA reflectance directly rather than the atmospherically corrected or partially 

atmosphere-corrected (Rayleigh and ozone absorption) surface reflectance, the 

TOA-derived values show extremely high correlations with the TOC values; however, 

the uncorrected reflectances can lead to the TOA-derived ARVI and EVI tending to 

overestimate the surface-derived values.  

Conversely, the atmospheric effects reduced the TOA EVI2 and VARI values and 

led to the underestimation of vegetation conditions. 

The experimental results verified that the effect of an atmosphere without clouds 

is to render a dark surface as bright in the visible region and to reduce the brightness in 

the NIR band. Among the visible bands, the blue band is most sensitive to the 

atmosphere; compared with the visible bands, the NIR band is less affected by 

atmospheric influences, but is sensitive to vegetation variations.  

Miura et al. (1998) suggested that the effects of aerosols on the NIR band should 
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be corrected [16]; however, so far there have been relatively few published research 

papers on this topic. In this case, it is possible to correct the atmospheric effects in both 

the visible and NIR bands for VIs through a combination of the self-corrected and 

SWIR-based concepts in the advanced VIs (e.g., ARVI, EVI, AFRIs). 
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Chapter 4 A self-corrected method for correcting for atmospheric 

influences in vegetation indices 

 

4.1 Introduction 

Vegetation indices (VIs) are radiometric measures of vegetation or greenness and 

have been widely used for monitoring vegetation structure and function in remote 

sensing applications [1,2]. In recent decades, a large number of VIs have been 

developed by employing the sum, difference, ratio, or other linear combinations of two 

or more spectral bands in the visible to middle infrared spectrum that can provide key 

information for understanding the biosphere and its dynamics [3,4]. Among these, the 

Normalized Difference Vegetation Index (NDVI) [5] has been extensively used in 

many fields, including precision agriculture, rangeland management, and forest 

management [6]. NDVI is calculated using the difference in the reflectances of red 

(Rred) and near-infrared (NIR; RNIR) radiation, as shown in Equation 1:  

NDVI = (RNIR − Rred)/(RNIR + Rred)                 (1) 

The sensitivity of NDVI to the presence of vegetation is mainly based on the 

different behaviors between the red and NIR spectra over green vegetation: the 

chlorophyll of vegetation usually absorbs the energy in the red wavelength, while the 

mesophyll reflects in the NIR wavelength, and there is no such reflectance for areas 

with no vegetation [7,8]. However, NDVI also has several weaknesses, including its 

sensitivity to the effects of soil characteristics (type, brightness, color, wetness, etc.) 

[9], the saturation of the index value [10], and atmospheric influences [11]. Because 

the reflectance of the red and NIR bands observed by spaceborne sensors is disturbed 

by light-absorbing and scattering aerosols in the atmosphere, the observed NDVI is 

underestimated over vegetated surfaces [12,13]. 

To improve upon the NDVI by minimizing the soil influence, a number of new 

VIs have been proposed, such as the Soil-Adjusted Vegetation Index (SAVI) [14], the 

Transformed SAVI (TSAVI) [15], the Soil-Adjusted Ratio Vegetation Index (SAVI2) 

[16] and the Modified SAVI (MSAVI) [17]. Regarding the removal of aerosol 

influence on VIs, there are two main approaches: The first involves employing another 

band or parameter to correct the errors in the relevant band. For instance, the 

Atmospherically Resistant Vegetation Index (ARVI) was developed by incorporating 

the blue band that directly conducts atmospheric corrections on the red band [7]. In 
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addition, the Soil-adjusted and Atmospheric Resistant Vegetation Index (SARVI) and 

the Enhanced Vegetation Index (EVI), which evolved from NDVI, SAVI and ARVI, 

have the capacity to self-correct atmospheric influences by taking the soil properties 

and atmospheric interferences into account [18,19]. The second approach uses 

shortwave infrared (SWIR) spectral bands to construct VIs. Because the wavelength of 

the SWIR band is much larger than the radius of most common aerosols, the SWIR 

electromagnetic signal is able to penetrate atmospheric columns containing suspended 

aerosols [8,20]; however, the SWIR also remains the sensitive to vegetation [8]. Thus, 

several SWIR-based VIs have been developed. The usefulness of VIs based on the 

ratio of SWIR/NIR (1.6 μm/0.8 μm and 2.1 μm/0.8 μm) has been demonstrated in 

monitoring the state of forests, e.g., discriminating forest damage [21–23]. Miura et al. 

(1998) derived several 1.6- or 2.1-μm-based VIs (Equations 2a and 2b) and assessed 

their performance in a smoke-filled atmosphere [24]: 

NDVIMIR = (RNIR − RMIR)/(RNIR + RMIR)             (2a) 

SAVIMIR = (RNIR − RMIR)(1 + L)/(RNIR + RMIR)          (2b) 

where MIR is either the 1.6- or 2.1-μm spectral band and L is a canopy background 

adjustment factor [14]. Subsequently, Karnieli et al. (2001) measured a variety of 

ground surfaces in Israel using a field spectrometer by aircraft and summarized the 

empirical linear relationship between the SWIR spectral band around 2.1 and 1.6 μm 

and the red band around 0.6 μm, where R0.6 = 0.5R2.1 and R0.6 = 0.66R1.6. Based on 

these relationships, the Aerosol FRee vegetation Index (AFRI) has been proposed, and 

the two versions of AFRI (Equations 3a and 3b) are formulated as follows [25]: 

AFRI2.1 = (RNIR − 0.5 ∗ R2.1)/(RNIR + 0.5 ∗ R2.1)            (3a) 

AFRI1.6 = (RNIR − 0.66 ∗ R1.6)/(RNIR + 0.66 ∗ R1.6)          (3b) 

where R2.1 and R1.6 represent the reflectance of the 1.6- and 2.1-μm spectral bands, 

respectively. Under clear sky conditions, AFRI closely resembles NDVI, and they have 

almost identical values. The major application of AFRI is for assessing vegetation in 

the presence of smoke, anthropogenic pollution, or volcanic plumes [25]. Ben-ze’ev et 

al. (2001) assessed vegetation conditions in the presence of smoke from biomass 

burning using the AFRI and EVI, and the results showed that the AFRI is more 

effective than the EVI in observing vegetation conditions under biomass burning 

smoke conditions [18]. Although these studies were well performed, it should be noted 

that SWIR-based VIs only take the atmospheric influences in the visible band into 

consideration. However, the top-of-atmosphere (TOA) reflectance in the NIR band also 

suffers from the influence of aerosols. Figure 4.1 shows the TOA reflectance of the 

NIR band (0.86 µm) as a function of the aerosol optical depth (AOD) and surface 
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reflectance. We can see that there is a critical surface reflectance (approximately equal 

to 0.15 in Figure 4.1) almost not susceptible to aerosol change [13,26], and for the 

lower surface reflectance, aerosols decrease TOA reflectance values; in contrast, for 

the higher surface reflectance, aerosols decrease the TOA reflectance values. Therefore, 

by giving full consideration to the impact of aerosols on the NIR band, the VI accuracy 

can be improved, particularly for aerosol loading conditions. Nevertheless, the removal 

of the atmosphere contribution from TOA reflectance in NIR is a challenging task. 

Although the atmospheric correction approach can be used to derive precise surface 

reflectance, the complexity of the algorithm limits its applicability to VIs.  

In this paper, I describe a self-corrected method for minimizing the atmospheric 

influences in the NIR and red bands. Section 4.2 describes the detailed development of 

the methodology. In Section 4.3, I assess the performance of our proposed method 

under different aerosol conditions (with different AOD values). 

 

 

Figure 4.1 Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere 
(TOA) reflectance at 0.86 μm as a function of aerosol optical depth (AOD) at 0.55 
µm and different surface reflectance values.   
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4.2 Materials and methods 

4.2.1 Satellite data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is the primary 

instrument onboard the Earth Observing System (EOS) Terra and Aqua satellites. As 

one of the most reliable data sources on the global scale, MODIS views the entire 

Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands ranging in 

wavelength from 0.4 µm to 14.4 µm at a resolution of 250-1000 m and playing an 

important role in understanding global dynamics and processes occurring on the land, 

in the oceans, and in the lower atmosphere [27]. Because of its strengths, including its 

global coverage, high radiometric resolution and dynamic ranges and accurate 

calibration in the visible, NIR and thermal infrared bands [28], the satellite data 

provided from the MODIS platform can be considered as the ideal experimental data 

for our study. 

MODIS/Terra Calibrated Radiances (MOD02HKM) in Collection 6 were used as 

the TOA reflectance data. The MOD02HKM product contains calibrated and 

geolocated at-aperture radiance data for 7 discrete bands located in the 0.45- to 

2.20-micron region of the electromagnetic spectrum. Although MODIS bands 1 and 2 

have 250-m resolution and bands 3 through 7 have 500-m resolution, the entire band 

dataset has been co-registered to the same spatial scale in the 500-m product [29].  

The Geolocation Fields L1A dataset (MOD03) in Collection 6 records geodetic 

latitude, longitude, surface height above the geoid, solar zenith and azimuth angles, 

satellite zenith and azimuth angles and land/sea mask, some of which are important 

inputs in the atmospheric correction algorithm. Using these parameters in the MOD03 

product, atmospherically corrected VIs can be generated, and the performance of the 

newly derived VIs can be assessed by comparing them with the atmospherically 

corrected VIs [30]. 

4.2.2 AERONET measurements 

The Aerosol Robotic Network (AERONET) [31] is a worldwide network that 

provides ground-level AOD measurements with high quality. The AERONET Level 

2.0 (cloud screened and quality-assured) data AOD measurements have very high 

accuracy, with uncertainty of only 0.01−0.02 (approximately 1/3−1/5 of satellite 

observations [32]). These data are usually considered as the “ground truth” and are 

widely used for various aerosol-related studies. In this study, to analyze the aerosol 

influence on VIs, I tested the performance of VIs under different aerosol loading 

conditions. The corresponding surface conditions can be derived by atmospheric 

correction. Since the quality of the atmospheric correction is strongly driven by 
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knowledge of the AOD, the selected experimental fields should be near the AERONET 

sites. According to the AOD values from the AERONET measurements, aerosol 

loading of experimental fields can be easily determined [33,34].  

AERONET measures the direct sun and diffuse sky radiance in the 0.34−1.02-μm 

and 0.44−1.02-μm spectral ranges [35]; however, it does not measure AOD at the 

0.55-μm wavelength, which is a vital input for the atmospheric correction processing. 

To obtain AOD at 0.55 μm, the AOD at other wavelengths can be interpolated to the 

0.55-μm wavelength using the Angstrom Exponent α [36], defined as follows 

(Equation 4): 

α = −
ln(

τλ
 τ0.55

)

ln(
λ

0.55
)

                            (4) 

where 𝝉𝝀  represents the AOD at a given wavelength 𝝀 and α is the Angstrom 

exponent. The value of α is also provided by the AERONET measurement. 

4.2.3 Methodology for minimizing atmospheric influences on the NIR and red bands 

An overview of the strategy for correcting for the atmospheric influence on the 

NIR and red bands is shown in Figure 4.2. The fundamental processing steps mainly 

include (1) surface reflectance estimation using the relationship between the 0.65- and 

2.1-µm bands (R0.6 = 0.5R2.1) and prediction of atmospheric aerosol loading (AOD) 

according to TOA reflectance, surface reflectance, and the assumptions in atmospheric 

correction; (2) correcting TOA reflectance in the NIR and red bands using the proposed 

method and predicted AOD in the last step; (3) construction of VIs using the corrected 

NIR and red bands. 
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Figure 4.2 Flowchart of the self-correction method for removing the atmospheric influences in 
the MODIS near-infrared (NIR) and red bands along with the vegetation indices 
derived from the proposed method. 

 

4.2.3.1 AOD prediction  

The Dark Target (DT) algorithm is one of the common methods to determine the 

surface reflectance in the visible band, and it has been widely used in aerosol retrieval 

and atmospheric correction algorithms for different satellites. Because the SWIR band 

near the 2.1-µm wavelength is less affected by atmospheric aerosols and there are 

robust linear relationships between the TOA reflectance at 2.1 µm and the surface 

reflectance in the red or blue (0.47 and 0.65 µm for MODIS) bands, the MODIS DT 

algorithm uses these relationships to account for the surface signal in the red or blue 

channels [37–39]. 

In this study, the DT algorithm was used in the first step to estimate the surface 

reflectance at 0.65 µm, and the estimated surface reflectance at 0.65 µm is 

quantitatively equal to half of the TOA reflectance at 2.1 µm. According to the basic 

principle of the AOD retrieval algorithm, when the surface contribution is determined, 

and an appropriate aerosol model assumed, it is possible to retrieve the AOD values. 

The sensor that receives a signal at a certain wavelength is variable with respect to the 
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surface contribution, aerosol loading and observation geometry (solar zenith angle, 

satellite zenith angle and relative azimuth angle). The aerosol retrieval algorithm 

therefore takes the observation geometry into account. However, the observation 

geometry is generally not involved in the construction of VIs. Additionally, after the VI 

calculation (such as NDVI), the influences on the VI from observation geometry are 

greatly reduced [40]. In this study, I assumed a median viewing geometry with a solar 

zenith angle = 30°, satellite zenith angle = 30°, and relative azimuth angles = 90°, 

under which AOD prediction and correction processing for the NIR and red band 

would be conducted.  

To quickly generate the AOD values from its TOA reflectance and the estimated 

surface reflectance, I used the Second Simulation of a Satellite Signal in the Solar 

Spectrum (6S) radiative transfer code to simulate the interactive changes among the 

AOD, TOA reflectance and the surface reflectance under the assumed observation 

geometry. In addition, the aerosol model employed the continental aerosol model that 

is a broadly used assumption over land retrieval. Figure 4.3 shows the AOD (with five 

given values of 0.1, 0.5, 1.0, 1.5, and 2.0) as a function of TOA reflectance and surface 

reflectance. As shown, for higher surface reflectance, the corresponding relationship 

between TOA reflectance and AOD displayed a larger slope. This pattern indicates that 

lower ground surface reflectance is more sensitive to the variation in AOD. The 

regression functions for different surface reflectance values in Figure 4.3 all have 

extremely high coefficients of determination values and can be formulated as follows 

(Equations 5a to 5c): 

                AOD = Slopered ∗ R0.65
TOA + Interceptred      (5a) 

where R0.65
TOA is the TOA reflectance at 0.65 µm and Slopered and Interceptred are 

the slope and intercept of the regression functions, respectively. The slope and 

intercept changes with varying surface reflectance were analyzed and are shown in 

Figure 4.4. Based on the generated fitting regression, the slope and intercept in 

Equation 3 can be determined using the empirical quadratic polynomial functions as 

follows (Equations 5b and 5c):  

Slopered = 2055.8 ∗ R0.65
surf2 − 28.436 ∗ R0.65

surf + 20.257    (5b) 

Interceptred = −392.52 ∗ R0.65
surf2 + 6.7345 ∗ R0.65

surf − 0.7885  (5c) 

where R0.65
surf  is the predicted surface reflectance at 0.65 µm from the SWIR band. 

Using Equations 5a to 5c, the AOD value under the assumed viewing geometry can be 

rapidly predicted with the TOA reflectance and surface reflectance at 0.65 µm. 
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Figure 4.3 Changes in AOD at 0.55 µm varying with MODIS TOA reflectance and surface 
reflectance at 0.65 μm under the assumed viewing geometry. 

 

 

 

Figure 4.4 The coefficients (slope and intercept) of regression functions in Figure 4.3 as a 
function of surface reflectance at 0.65 μm.  
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4.2.3.2 Correction of the NIR band using estimated AOD  

As explained in the overview of the strategy, the correction of atmospheric effects 

for the NIR band can be conducted based on the predicted AOD. Such a correction 

procedure is similar to atmospheric correction. When using the 6S radiative transfer 

code for the atmospheric correction, the following parameters are required as input: (1) 

geometric conditions, (2) atmospheric profile for the gaseous components, (3) the 

aerosol model (type and concentration), (4) the spectral condition, and (5) ground 

reflectance (type and spectral variation) [41]. Obviously, such sophisticated parameters 

and computation would hinder the application flexibility of the VI. Therefore, I 

followed the assumed observation geometry and aerosol model assumptions in the 

previous step to develop a simplified method to correct for the atmospheric effects for 

the NIR band. 

In contrast to the previous step, I aimed to achieve the surface reflectance of the 

NIR band according to the estimated AOD. I pre-set a set of TOA reflectance values in 

the NIR band (with values of 0.01 and ranging from 0.05 to 0.4 with increments of 

0.05) and used the 6S radiative transfer code to calculate the TOA reflectance 

corresponding surface reflectance for AOD values of 0.1, 0.5, 1.0, 1.5, and 2.0. The 

relationship between the surface reflectance in the NIR band and the AOD values for 

different TOA reflectance values is shown in Figure 4.5. All the relationships are well 

fitted by quadratic polynomial function curves, and therefore, I formulated the surface 

reflectance of the NIR band as a function of AOD and TOA reflectance as follows 

(Equations 6a to 6d): 

R0.86
surf = a ∗ AOD2 + b ∗ AOD + c            (6a) 

a = 0.156 ∗ R0.86
TOA − 0.03       (6b) 

b = 0.269 ∗ R0.86
TOA − 0.0259       (6c) 

c = 1.0405 ∗ R0.86
TOA − 0.0076       (6d) 

where R0.86
surf  is the corrected reflectance in the NIR band. a, b, and c represent the 

coefficients of the regression functions in Figure 4.5. Because the values of these 

coefficients vary according to the different TOA reflectance values, I analyzed the 

relationships between these coefficients and the TOA reflectance. As shown in Figure 

4.6, extremely strong linear relationships exist between these coefficients and the TOA 

reflectance. Therefore, the values of a, b, and c can be determined using Equations 6b 

to 6c, in which the coefficients are a function of the TOA reflectance in the NIR band. 
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Figure 4.5 MODIS surface reflectance at 0.86 μm as a function of AOD at 0.55 µm under 
different TOA reflectance values.   

 

 

 

Figure 4.6 The coefficients (a, b, and c) of regression functions in Figure 4.5 as a function of 
TOA reflectance at 0.86 μm. 
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4.2.3.3 Correction of the red band using estimated AOD 

The red band correction is similar to the NIR band correction method. Under the 

same assumptions, I ran the 6S radiative transfer code to simulate the atmospherically 

corrected reflectance in the red band with different TOA reflectance and AOD values. 

The surface reflectance of the red band can be computed according to the TOA 

reflectance and the estimated AOD using the following formulas (Equations 7): 

R0.65
Surf = a ∗ AOD2 + b ∗ AOD + c      (7a) 

 a = 0.466 ∗ R0.65
TOA − 0.0922         (7b) 

b = 0.231 ∗ R0.65
TOA − 0.0257       (7c) 

c = 1.1682 ∗ R0.65
TOA − 0.0275       (7d) 

where R0.65
Surf is the corrected reflectance in the red band. As shown by the simulated 

results (Figure 4.7), the relationship between the corrected surface reflectance and 

AOD values for different observed TOA reflectance values can be well described using 

quadratic polynomial functions. In Equations 7, a, b, and c are the coefficients of the 

function, these coefficients are also a function of the TOA reflectance in the red band 

and can be determined according to the fitted regressions in Figure 4.8. 

 

 

Figure 4.7 MODIS surface reflectance at 0.65 μm as a function of AOD at 0.55 µm under 
different TOA reflectance values.   
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Figure 4.8 The coefficients (a, b, and c) of regression functions in Figure 4.7 as a function of 
TOA reflectance at 0.65 μm. 

 

4.3 Results and discussion 

4.3.1 Assessing the performance of the method with different aerosol loading conditions 

The current approach was applied to correcting VIs under different aerosol 

conditions, and the performance was assessed through a comparison with the 

atmospherically corrected NDVI. Because the accuracy of atmospheric correction is 

strongly dependent on knowledge of the AOD [34], the spatially and temporally 

matched MODIS/AERONET collocated data were used as the experimental data for 

the accuracy assessment. The selection of MODIS/AERONET collocation data was 

based on the following criteria: the experimental MODIS MOD02HKM data should be 

located within a 10 km radius around the AERONET sites, and the AERONET 

measured must be within 30 minutes of MODIS overpassing. 

To derive the atmospherically corrected NDVI, a pixel-by-pixel atmospheric 

correction was applied to the NIR and red bands using the 6S radiative transfer code. 

The key input parameters included the following: (1) the viewing geometry (solar 

zenith angle, satellite zenith angle and relative azimuth angle), which was obtained 

from the Geolocation Fields L1A dataset (MOD03); (2) mean AOD measurements 

within 30 minutes of MODIS overpassing; (3) the continental aerosol model, which is 

a common assumption for land retrieval; and (4) spectral conditions of the MODIS 

0.86- and 0.65-µm bands. Using the 6S radiative transfer code enabled atmospheric 

correction working modality, and the surface reflectance at a certain wavelength could 

be computed according to input parameters. 
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4.3.1.1 Improvement of the corrected NIR-derived AFRI2.1 

Karnieli et al. (2001) showed that under clear sky conditions, AFRI2.1 has almost 

identical values to NDVI. However, as the smoke conditions become heavy, the 

agreement between AFRI2.1 and NDVI weakens [25]. Regarding this issue, I attempt to 

correct the NIR band of AFRI2.1 using our approach to construct a corrected 

NIR-derived AFRI2.1 (Equation 8).  

AFRI2.1
Corrected = (RNIR

Corrected − 0.5 ∗ R2.1)/(RNIR
Corrected + 0.5 ∗ R2.1)     (8) 

where RNIR
Corrected  and AFRI2.1

Corrected  are the corrected NIR and the corrected 

NIR-derived AFRI2.1, respectively. I compared the corrected NIR-derived AFRI2.1 

against the original AFRI2.1 and the atmospherically corrected NDVI with different 

levels of aerosol loading to assess the performance of this method. 

AFRI2.1 was developed based on the linear relationship between surface 

reflectance at 0.65 µm and 2.1 µm and the rule of R0.6 = 0.5R2.1, which is independent 

of the vegetation amounts [25]. Therefore, AFRI2.1 works best over dark vegetated 

targets and cannot be applied effectively over water bodies or bright land surfaces [18]. 

In addition, the estimation of AOD, which is the first step of the current correction 

approach, used the rule of R0.6 = 0.5R2.1. For quality control of the correction, the 

non-vegetated targets were eliminated by an empirical threshold based on the 

mechanism that NIR light is reflected by spongy mesophyll cells [8], since vegetated 

surfaces show relatively higher reflectance in the NIR than other surface types. I set an 

empirical threshold with an R0.86 value of 0.225 to distinguish vegetated targets from 

others. 

The experimental collocated MODIS/AERONET data from the 

Ubon_Ratchathani, Ussuriysk, and Gandhi_College sites were used for validation, and 

the experimental results are shown in Figures 4.9 to 4.11 and Tables 4.1 to 4.3. In 

Figures 4.9 to 4.11, the graphs in columns a to d have different AOD values; rows 1 

and 2 show the comparisons of atmospherically corrected NDVI vs. AFRI2.1 and 

atmospherically corrected NDVI vs. corrected NIR-derived AFRI2.1; row 3 displays the 

comparisons of surface reflectance vs. TOA reflectance at 0.86 µm (black scatter plots) 

and the surface reflectance vs. corrected reflectance at 0.86 µm (green scatter plots). 

The statistical root mean square error (RMSE) and mean bias error (MBE) were used 

to investigate errors. Compared with the performance of AFRI2.1 and the corrected 

NIR-derived AFRI2.1, except for the case of Figures 4.9a, the corrected NIR-derived 

AFRI2.1 are closer to the one-to-one line than the original AFRI2.1, and the corrected 

NIR-derived AFRI2.1 also exhibits lower RMSE and MBE (in absolute terms) values.  

The performance of our method in the case of Figure 4.9a was poor due to system 
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error of the algorithm. The experimental data in Figure 4.9a are under very low aerosol 

conditions with an AOD value of 0.12, as shown in Figure 4.9(a-3), and the TOA 

reflectance of the NIR band is almost unaffected by atmospheric influences and has 

very similar values with the surface reflectance. Under such conditions, when the 

viewing geometry differed from our assumption, the errors caused by differences in 

viewing geometry would easily overwhelm the influences from the atmosphere and 

become the major error source.  

As the graphs of row 3 in Figures 4.9 to 4.11 show, the NIR band is also affected 

by atmospheric aerosols: as the AOD values increase, the TOA reflectance of the NIR 

band shows an obviously larger degree of difference with the surface reflectance (black 

scatter plots), and their corresponding RMSE values are also higher. Additionally, all 

the statistical MBEs have negative values, which is because the vegetated surface 

radiance in NIR is reduced by the absorption of atmospheric aerosols. By comparing 

the corrected NIR reflectance with the uncorrected reflectance, we can observe that our 

method is effective for removing the atmospheric influences in the NIR. Except for the 

cases in Figures 4.9(a-3) and 4.9(b-3), the corrected NIR reflectance values (green 

scatter plots) are all very close to the one-to-one line, and the derived low RMSE and 

MBE (in absolute terms) values indicate that the corrected NIR reflectance values are 

almost identical to the surface reflectance values. Consequently, the performance of 

AFRI2.1 has been improved by correcting for the atmospheric influences in the NIR 

band. The poor performance of the experimental data in Figure 4.9b is not the same as 

in Figure 4.9a. The measured AOD in Figure 4.9b is high, with a value of 0.59, 

whereas the corrected AFRI2.1 only shows slight improvement because the observation 

was taken with an extremely high satellite zenith angle of 62.6°, which is markedly 

different from our geometric assumption, leading to large errors in the spectral band 

correction. However, the errors would largely degrade after construction of the 

vegetation index (such as the NDVI) [40].  
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Figure 4.9 Experimental results of the Ubon_Ratchathani site. Aerosol-free vegetation 
(AFRI2.1) (Row 1) and corrected NIR-derived AFRI2.1 (Row 2) plotted against 
the atmospherically corrected Normalized Difference Vegetation Index (NDVI); 
the TOA reflectance at NIR (black plots) and corrected reflectance at NIR (green 
plots) against the surface reflectance at NIR (Row 3) for different aerosol loading 
conditions (AOD at 0.55 μm). 
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Figure 4.10 Experimental results of the Ussuriysk site. AFRI2.1 (Row 1) and corrected 
NIR-derived AFRI2.1 (Row 2) plotted against the atmospherically corrected 
NDVI; the TOA reflectance at NIR (black plots) and corrected reflectance at 
NIR (green plots) against the surface reflectance at NIR (Row 3) for different 
aerosol loading conditions (AOD at 0.55 μm). 
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Figure 4.11 Experimental results of the Gandhi_College site. AFRI2.1 (Row 1) and corrected 
NIR-derived AFRI2.1 (Row 2) plotted against the atmospherically corrected 
NDVI; the TOA reflectance at NIR (black plots) and corrected reflectance at NIR 
(green plots) against the surface reflectance at NIR (Row 3) for different aerosol 
loading conditions (AOD at 0.55 μm). 
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4.3.1.2 Validation of the corrected NDVI by the current algorithm 

The corrected NDVI is constructed using the corrected red and NIR bands based 

on our proposed strategy (Equation 9).  

NDVICorrected = (RNIR
Corrected − Rred

Corrected)/(RNIR
Corrected + Rred

Corrected)     (9) 

I also validated our method by comparing the corrected NDVI against the 

atmospherically corrected NDVI using the same experimental collocated 

MODIS/AERONET data described in Section 4.3.1.1. The experimental results are 

shown Tables 4.1 to 4.3. In Figures 4.12 to 4.14, the graphs in columns a to d show 

different AOD values; rows 1 and 2 display the TOA reflectance-derived NDVI 

(uncorrected NDVI) vs. the atmospherically corrected NDVI and the corrected NDVI 

vs. atmospherically corrected NDVI, respectively; row 3 shows TOA reflectance at 

0.65 µm (black scatter plots) vs. the surface reflectance and the corrected reflectance at 

0.65 µm (green scatter plots) vs. the surface reflectance.  

As shown in the graphs of row 1 in Figures 4.12 to 4.14, uncorrected NDVI is 

evidently susceptible to influences of atmospheric aerosols, and the uncorrected NDVI 

values typically decrease with increasing AOD. In addition to the influences in the NIR 

band (Section 4.3.1.1), atmospheric influences affect vegetation indices through 

increasing the ascending radiance over vegetation in the red portion of the spectrum 

[1].  

The removal of atmospheric influences in VI is conducted in the NIR and red 

bands. The correction of effects in the NIR band is presented in Section 4.3.1.1. The 

graphs of row 3 in Figures 4.12 to 4.14 also indicate that the higher AOD values render 

higher TOA reflectance in the red band (at 0.65 µm) than surface reflectance (black 

scatter plots). Compared with the TOA reflectance, the reflectance values of the 

corrected data are all much closer to surface reflectance values (green scatter plots), 

and the much better RMSE and MBE values suggest that our algorithm is also 

effective in correction of the red band. Consequently, the corrected red and NIR 

band-derived NDVI has the capacity to measure vegetation conditions when aerosols 

are present in the atmosphere. The performances of the corrected NDVI with different 

AOD values are shown in the graphs of row 2 in Figures 4.12 to 4.14. Obviously, a 

majority of the errors in TOA NDVI from atmospheric influences were rectified in the 

corrected NDVI. 
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Figure 4.12 Experimental results for the Ubon_Ratchathani site. Uncorrected NDVI (Row 1) 
and corrected NDVI (Row 2) plotted against the atmospherically corrected 
NDVI; the TOA reflectance at the red band (black plots) and corrected 
reflectance at the red band (green plots) against the surface reflectance at the red 
band (Row 3) for different aerosol loading conditions (AOD at 0.55 μm). 
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Figure 4.13 Experimental results for the Ussuriysk site. Uncorrected NDVI (Row 1) and 
corrected NDVI (Row 2) plotted against the atmospherically corrected NDVI; 
the TOA reflectance at the red band (black plots) and corrected reflectance at the 
red band (green plots) against the surface reflectance at the red band (Row 3) for 
different aerosol loading conditions (AOD at 0.55 μm). 
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Figure 4.14 Experimental results for the Gandhi_College site. Uncorrected NDVI (Row 1) and 
corrected NDVI (Row 2) plotted against the atmospherically corrected NDVI; 
the TOA reflectance at the red band (black plots) and corrected reflectance at the 
red band (green plots) against the surface reflectance at the red band (Row 3) for 
different aerosol loading conditions (AOD at 0.55 μm). 
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Table 4.1 The angle of observation and summary statistics for the experimental data near the 
Ubon_Ratchathani site (DOY is day of year, NDVIU is the uncorrected NDVI, 
NDVIC is the corrected NDVI using our method, and AFRI2.1

C is the corrected 
NIR-derived AFRI2.1). 

Site_Name: Ubon_Ratchathani 

Year/DOY 2010/047 2010/068 2010/324 2011/055 

AOD 0.590 1.211 0.121 0.868 

NDVIU 

RMSE 0.559  0.476  0.145  0.403  

MBE −0.557  −0.474  −0.143  −0.400  

NDVIC 

RMSE 0.174  0.134  0.113  0.141  

MBE −0.170  −0.129  0.093  −0.135  

AFRI2.1 

RMSE 0.281  0.240  0.071  0.247  

MBE −0.279  −0.238  0.054  -0.209  

AFRI2.1
C  

RMSE 0.210  0.151  0.101  0.141  

MBE −0.206  −0.146  0.084  −0.144  

𝐑𝟎.𝟔𝟓
𝐓𝐎𝐀  

RMSE 0.104  0.094  0.027  0.076  

MBE 0.103  0.093  0.027  0.075  

𝐑𝟎.𝟔𝟓
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.034  0.032  0.018  0.030  

MBE 0.034  0.031  −0.014  0.029  

𝐑𝟎.𝟖𝟔
𝐓𝐎𝐀  

RMSE 0.032  0.014  0.028  0.010  

MBE −0.033  −0.071  −0.009  −0.041  

𝐑𝟎.𝟖𝟔
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.033  0.071  0.010  0.041  

MBE 0.032 0.012 0.025 0.008 

Viewing 

Geometry 

(degree) 

Solar zenith angle 43.360  34.315  41.122  38.038  

Sensor zenith angle 62.617  43.038  42.903  43.138  

Relative azimuth angle 31.700  25.720  50.030  31.725  

 



104 

 

 

Table 4.2 The angle of observation and summary statistics for the experimental data near the 
Ussuriysk site (DOY is day of year, NDVIU is the uncorrected NDVI, NDVIC is the 
corrected NDVI using our method, and AFRI2.1

C is the corrected NIR-derived 
AFRI2.1). 

Site_Name: Ussuriysk 

Year/DOY 2008/159 2008/178 2008/210 2009/148 

AOD 0.328 0.554 0.183 0.792 

NDVIU 

RMSE 0.261  0.209  0.141  0.263  

MBE −0.260  −0.208  −0.140  −0.263  

NDVIC 

RMSE 0.073  0.057  0.037  0.027  

MBE −0.069  −0.054  −0.031  −0.020  

AFRI2.1 

RMSE 0.074  0.063  0.054  0.056  

MBE −0.072  −0.062  −0.048  −0.056  

AFRI2.1
C  

RMSE 0.059  0.050  0.051  0.030  

MBE −0.056  −0.047  −0.044  −0.026  

𝐑𝟎.𝟔𝟓
𝐓𝐎𝐀  

RMSE 0.052  0.045  0.027  0.053  

MBE 0.052  0.045  0.027  0.053  

𝐑𝟎.𝟔𝟓
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.015  0.013  0.007  0.006  

MBE −0.015  0.012  0.006  0.005  

𝐑𝟎.𝟖𝟔
𝐓𝐎𝐀  

RMSE 0.009  0.006  0.008  0.006  

MBE −0.037  −0.046  −0.016  −0.056  

𝐑𝟎.𝟖𝟔
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.037  0.046  0.016  0.058  

MBE 0.007  −0.002  −0.004  0.005  

Viewing 

Geometry 

(degree) 

Solar zenith angle 29.136 25.124 29.400 26.085 

Sensor zenith angle 54.640 18.318 18.542 18.188 

Relative azimuth angle 33.361  38.002  41.358  42.940  
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Table 4.3 The angle of observation and summary statistics for the experimental data near the 
Gandhi_College site (DOY is day of year, NDVIU is the uncorrected NDVI, NDVIC 
is the corrected NDVI using our method, and AFRI2.1

C is the corrected NIR-derived 
AFRI2.1). 

Site_Name: Gandhi_College 

Year/DOY 2012/036 2012/050 2012/056 2012/065 

AOD 0.829 0.236 0.456 1.086 

NDVIU 

RMSE 0.415  0.261  0.252  0.478  

MBE −0.412  −0.260  −0.252  −0.477  

NDVIC 

RMSE 0.041  0.060  0.059  0.120  

MBE −0.027  −0.057  −0.056  −0.118  

AFRI2.1 

RMSE 0.087  0.066  0.064  0.196  

MBE −0.077  −0.064  −0.063  −0.195  

AFRI2.1
C  

RMSE 0.061  0.050  0.050  0.154  

MBE −0.048  −0.047  −0.048  −0.153  

𝐑𝟎.𝟔𝟓
𝐓𝐎𝐀  

RMSE 0.069  0.046  0.039  0.082  

MBE 0.069  0.046  0.039  0.082  

𝐑𝟎.𝟔𝟓
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.007  0.011  0.009  0.020  

MBE 0.005  0.011  0.008  0.020  

𝐑𝟎.𝟖𝟔
𝐓𝐎𝐀  

RMSE 0.007  0.008  0.007  0.010  

MBE −0.037  −0.020  −0.025  −0.060  

𝐑𝟎.𝟖𝟔
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.037  0.021  0.025  0.060  

MBE 0.007  0.008  −0.007  −0.010  

Viewing 

Geometry 

(degree) 

Solar zenith angle 45.043  39.647  41.513  39.248  

Sensor zenith angle 40.210  54.772  6.795  19.758  

Relative azimuth angle 124.292  123.934  44.702  41.717  
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Figure 4.15 MODIS images of the case studies around the Aerosol Robotic Network 
(AERONET) Ussuriysk site: (a) True color composite (RGB = 0.65 µm, 0.56 
µm, 0.47 µm) from the TOA reflectance; (b) true color composite from the 
surface reflectance; (c) NDVI derived from the TOA reflectance product; (d) 
NDVI derived from the MODIS surface reflectance product; (e) AFRI2.1; (f) 
NDVI corrected by the proposed method. The red point is the location of the 
AERONET Ussuriysk site, and the corresponding AOD at 0.55 µm is 0.792. 
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Figure 4.15 displays the performances of TOA NDVI, AFRI2.1 and the corrected 

NDVI over the area with the measured AOD of 0.792. Figure 4.15a is the true color 

composite using the MODIS TOA reflectance bands, and Figure 4.15b shows the true 

color composite using the MODIS surface reflectance product. Figure 4.15d shows the 

NDVI map that was calculated using the MODIS surface reflectance product; the mean 

NDVI value is 0.751. Compared with the surface reflectance calculated NDVI map, 

the TOA NDVI map (Figure 4.15c) shows a much lower NDVI value. Due to aerosol 

scattering and absorption, the observed NDVI was reduced at the satellite level, and 

the mean TOA NDVI value is equal to 0.539. Both AFRI2.1 (Figure 4.15e) and the 

NDVI corrected by our method (Figure 4.15f) exhibited the ability of resist the aerosol 

influences; they have similar measurements in terms of the distribution with the 

surface reflectance-derived NDVI, and the mean vegetation indices values of 0.766 

(for AFRI2.1) and 0.769 (for corrected NDVI by our method) are similar to the surface 

reflectance-derived NDVI.  

4.3.2 Errors from the observation conditions 

The correction of atmospheric influences for our algorithm is performed under a 

given set of observation conditions (solar zenith angle of 30°, satellite zenith angle of 

30°, and relative azimuth angles of 90°). For the same vegetation type and 

phenological stage, the changes in observation conditions can result in reflectance 

differences, thereby impacting the vegetation index determination. Therefore, I 

estimated the errors caused by other viewing geometries that differed from our 

assumption. The estimation of errors was conducted with fifteen varieties of 

geometrical condition combinations (shown in Table 4.4) and different AOD values 

(ranging from 0 to 2.0). Under the different observation geometric cases, the errors of 

the corrected reflectance for the 0.65 µm and 0.86 µm bands are shown in Figures 4.16 

and 4.17, respectively. The color bar shows the error values that are the differences 

between the theoretical surface reflectance and the corrected reflectance using our 

approach. Based on the analysis, the observation geometries affect the accuracy of the 

reflectance correction in our algorithm, which could be concluded in the following 

manner: when the observation geometry is closer to our assumption conditions, the 

corrected reflectance is closer to the theoretical surface reflectance; when the solar 

zenith angle or satellite zenith angle is higher than the assumed angles, a relatively 

larger error can occur and vice versa. It should be noted that the errors in the NIR or 

red band from the observation conditions are greatly reduced after the construction in 

the NDVI calculation [40]. Therefore, the geometric errors of the new NDVI are much 

lower than those of the NIR or red band.  
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Table 4.4 Description of the different geometrical conditions set used in the simulation of the 
relationship between TANSO-CAI TOA reflectance and AOD with different surface 
conditions. 

Case 

name 

Solar zenith 

(degree) 

Satellite zenith 

(degree) 

Relative azimuth 

(degree) 

a 0 0 0 

b 0 30 0 

c 0 30 180 

d 0 60 0 

e 0 60 180 

f 30 0 0 

g 30 30 0 

h 30 30 180 

i 30 60 0 

j 30 60 180 

k 60 0 0 

l 60 30 0 

m 60 30 180 

n 60 60 0 

o 60 60 180 
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Figure 4.16 The simulated difference in the estimation of surface reflectance at 0.65 µm 
caused by different viewing geometries varying with AOD and TOA reflectance; 
(a to o) are the viewing geometries cases of (a to o) shown in Table 4.4.  
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Figure 4.17 The simulated difference in the estimation of surface reflectance at 0.86 µm 
caused by different viewing geometries varying with AOD and TOA reflectance; 
(a to o) are the viewing geometries cases of (a to o) shown in Table 4.4.  
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4.4 Conclusions 

In this study, I proposed a self-corrected approach to remove the atmospheric 

influence on vegetation indices based on predicted AOD values. Under a viewing 

geometric assumption with a relatively moderate solar zenith angle of 30°, satellite 

zenith angle of 30°, and relative azimuth angles of 90°, I used the 6S radiative transfer 

code to analyze the changes in surface reflectance of the MODIS red and NIR bands 

values along with different AOD and TOA reflectance values. Surface reflectance can 

be considered as a function of AOD and TOA reflectance. The surface reflectance 

estimation can be actualized based on the robust relationship between the surface 

reflectance at 0.65 µm and 2.1 µm, which is used in MODIS aerosol retrieval and 

surface reflectance algorithms. According to the changes in surface reflectance with 

varying AOD and TOA reflectances, I summarized three empirical functions to predict 

AOD and to correct the TOA reflectance in the NIR and red bands using the predicted 

AOD values.  

The presented method has the capacity to correct for the atmospheric influences 

on the NIR and red bands. As a result, the corrected NIR and red bands can be directly 

used in the construction of vegetation indices (e.g., NDVI, RVI); additionally, a single 

corrected band can be used to improve the accuracy of the SWIR-derived vegetation 

indices (e.g., AFRI, NDVIMIR). 

The corrected NDVI has been investigated with different levels of aerosol loading. 

Compared with the TOA NDVI, the corrected NDVI generated near-true values, and 

the atmospheric influences on the NIR and red bands were largely removed. With the 

correction in the NIR band, the corrected NIR-derived AFRI2.1 also showed 

improvement in vegetation condition measurement when aerosols are present in the 

atmosphere. 

In the step of AOD prediction, the surface reflectance estimation is based on the 

rule of R0.6 = 0.5R2.1. TOA reflectance at 2.1 µm is not sensitive to finemode aerosol 

particles and can be assumed as surface reflectance. However, this is not the case for 

dust aerosols, under which condition the atmosphere is no longer transparent [39]. In 

addition, a linear relationship of R0.6 = 0.5R2.1 can be used over dark vegetation or 

brighter sparse vegetation surface conditions [25]. Thus, limited success of the method 

is expected in the case of dust or non-vegetated surface conditions.  

Because the development of this method was under an assumed viewing geometry, 

the errors caused by the differences between actual and assumed viewing geometry can 

impact the correction in the NIR and red bands.  
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Chapter 5 A 1.6-µm band-based self-corrected method for correcting 

the atmospheric influences in vegetation indices 

 

5.1 Introduction 

Vegetation indices (VIs) has been considered precise optical measures of 

vegetation canopy “greenness”, a composite property of leaf chlorophyll, leaf area, 

canopy cover and structure, and are effectively used in the monitoring of the Earth’s 

vegetation coverage from regional to global scales [1–3]. VIs can provide meaningful 

information for studies of plant health, water content, environmental stresses, and other 

important characteristics. Vegetation interacts with solar radiation differently than 

other natural materials, and the different plant materials, water contents, pigments, 

carbon contents, nitrogen contents, and other properties cause further variations across 

the observed spectrum [4]. Therefore, VIs can distinguish different vegetative covers 

according to their unique spectral behaviors [5,6]. The Normalized Difference 

Vegetation Index (NDVI) is the most well-known and widely used VI. NDVI is 

computed from the spectral differences between the near-infrared (NIR) and red bands, 

since the green vegetation strongly reflects radiation in the NIR, while chlorophyll 

absorbs radiation in the red wavelengths [7,8]. The usefulness of NDVI has been 

demonstrated in phonological studies of vegetation growing seasons, land cover 

classifications and global climate models [9–12]. 

However, when using NDVI to detect vegetation dynamics from satellite or 

airborne sensors, the spectral ground response is considerably affected by the 

spatiotemporal variations of the atmosphere, subsequently leading to increased errors 

in the qualitative and quantitative evaluations of the vegetation [6]. Several advanced 

VIs have been developed to enhance the vegetation response and minimize the effects 

of the atmosphere (absorption and scattering). The Atmospherically Resistant 

Vegetation Index (ARVI) and Enhanced Vegetation Index (EVI) were created by 

employing the blue band to correct the red band [13,14]. The middle-infrared NDVI 

(NDVIMIR) used the 1.6 µm and 2.1 µm bands that have sensitivities to the vegetation 

and can replace the red band in the NDVI. Because 1.6 µm and 2.1 µm are longer 

wavelengths than those in the red band, they can penetrate atmospheric columns even 

when aerosols such as smoke or sulfates exist [12]. The Aerosol FRee vegetation Index 

(AFRI) that evolved from NDVI and NDVIMIR was developed based on the linear 

relationships between the visible and 2.1 µm (or 1.6 µm) bands. Under clear sky 
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conditions, AFRI closely resembles NDVI, and their values are almost identical. Since 

AFRI is less affected by atmospheric effects, its major application is in assessing 

vegetation in the presence of smoke, anthropogenic pollution, or volcanic plumes [15].  

The atmospheric influences in the easily affected red band have been corrected or 

modified by different approaches in these VIs. One concern is that the NIR band 

remains sensitive to aerosols, which cause drops of radiance in the NIR band and thus 

the vegetation index [6,12,16]. Particularly, for cases of heavy aerosol loading (e.g., 

smoke), these VIs may not be applicable for interpreting the surface conditions at high 

accuracies. As Figure 5.1 shows, AFRI2.1 is much less affected by atmospheric 

influences than NDVI, however, as the AOD values increase, the AFRI2.1 values 

decrease and are lower than the true values.  

 

 

Figure 5.1 The top-of-atmosphere (TOA) vegetation indices: Normalized Difference 
Vegetation Index (NDVI) and Aerosol FRee vegetation Index (AFRI), with 
varying AOD values. 

 

To overcoming this issue, in the Chapter 4, I introduced a self-corrected method, 

using a predicted AOD to correct the atmospheric influences in the red and NIR bands. 

It has been demonstrated that, through correcting the red and NIR bands, our method 

successfully improved the accuracy of the measuring of vegetation under aerosol 

loading conditions using NDVI and AFRI.  

In our corrected method, the predicted AOD is considered as the prior information 

correction. The prediction of the AOD is based on the relationship between the surface 

reflectance at the 0.65 µm and 2.1 µm bands, which is known as the “Dark Target” 

(DT) method. The DT method for estimating surface reflectance over "dark" surfaces 
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has been widely used in aerosol retrieval and atmospheric correction. By using aircraft 

images from the Landsat Thematic Mapper and the Airborne Visible/Infrared Imaging 

Spectrometer, and spectral data measured from the ground, Kaufman et al. (1997) 

summarized the linear relationship between surface reflectance in the blue (0.47 μm) 

and red (0.65 μm) bands, and reflectance in the 2.1-μm band, as follows [17,18]: 

                  {
R0.65 = R2.1/2
 R0.47 = R2.1/4

                        (1) 

where 𝑅2.1 is the reflectance at 2.1 μm. The 2.1-μm band is barely affected by aerosol 

path radiance and can penetrate most atmospheric aerosols. Therefore, the surface 

reflectance in the blue (0.47 μm) and red (0.65 μm) bands can be determined using 

Equation 1. This method was used to create the Moderate Resolution Imaging 

Spectroradiometer (MODIS) aerosol product of Collection 4.  

It should be noted that, in our method, the self-corrected process is based on the 

utilization of the 2.1 µm band. Therefore, the application of this method is limited to 

those sensors that observe near the shortwave infrared (SWIR) 2.1 µm wavelength. 

However, there are several satellite sensors that do not resolve the 2.1-µm band and 

only have the 1.6-µm SWIR band, such as the advanced along track scanning 

radiometer (AATSR), Satellite Pour l'Observation de la Terre 4 (SPOT 4), Indian 

Remote Sensing Satellites-1C/1D (IRS-1C/1D), and Thermal and Near-infrared Sensor 

for Carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) [19–22].  

Based on this background, this study aimed to adapt the correction method for 

applications using satellite sensors that resolve only the 1.6-µm SWIR band. I 

attempted to define a connection between the surface reflectance in the 1.6 µm and 2.1 

µm bands by analyzing the relationship between these two bands. Using the correlation 

between the 1.6 µm and 2.1 µm (1.6 vs. 2.1) bands, it is possible to conduct a 

2.1-µm-based self-correction method for the 1.6-µm sensors.  

 

5.2 Materials and methods 

5.2.1 Satellite data and ground-level data 

MODIS data are a reliable global-scale data source that observes the 1.6 µm and 

2.1 µm wavelengths, making it possible to expediently analyze the reflectance 

relationship of 1.6 vs. 2.1. In this study, the surface reflectance products from MODIS 

and the ground-level AOD data from the Aerosol Robotic Network (AERONET) were 

used. 
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5.2.1.1 MODIS surface reflectance product (MOD09) 

Each MODIS surface reflectance data set (MOD09) is a seven-band product 

computed from MODIS-Terra Level 1B land bands 1 (0.620–0.670 μm), 2 

(0.841–0.876 μm), 3 (0.459–0.479 μm), 4 (0.545–0.565 μm), 5 (1.230–1.250 μm), 6 

(1.628–1.652 μm), and 7 (2.105–2.155 μm). After adjusting for the effects of 

atmospheric gases, aerosols and thin cirrus clouds, the surface reflectance of MOD09 

is estimated as if it would have been measured at ground level [23–25]. Thus, MOD09 

surface reflectance is the source for the generation of downstream land surface 

products, such as the Vegetation Index (VI), Leaf Area Index (LAI), Fraction of 

Photosynthetically Active Radiation (FPAR), Bidirectional Reflectance Distribution 

Function (BRDF)/Albedo, Land Cover Snow Cover and Thermal Anomalies [26,27]. 

MOD09 Collection 5 has been validated, and for good quality retrievals (QA: no cloud, 

cloud shadow or high aerosol), the accuracy of the 1.6 μm and 2.1 μm channels is such 

that 97.69% and 98.64% of the observations were within the theoretical error bars of  

± (0.005+5%) for the responding reflectance band [27].  

5.2.1.2 AERONET AOD data 

The ground-level AOD data are from AERONET [28], a worldwide remote 

sensing aerosol network that provides information on various aerosol properties using 

direct sun measurements of spectral AOD and the use of multiangular and 

multispectral measurements of sun radiance [29]. Unlike satellite remote sensing, 

AERONET measurements are unaffected by the uncertainties associated with surface 

properties and aerosol type assumptions. AERONET AOD products have been 

validated with a low uncertainty of 0.01 at visible and NIR wavelengths [28,30]. Thus, 

AERONET level 2.0 (cloud screened and quality-assured) data were used in this study 

to validate AOD retrieval from the satellite. In addition, the AERONET data were 

utilized to assist in the selection of the experimental data. However, since the AOD 

retrievals in this study were at 0.55 μm, a wavelength that AERONET does not use to 

measure AOD, the AERONET AOD needs to be interpolated to 0.55 μm using the 

Angstrom exponent α [31], defined as, 

α = −
ln(

τλ
 τ0.55

)

ln(
λ

0.55
)

                              (2) 

5.2.2 The relationship between reflectances at 1.6 μm and 2.1 μm 

To analyze the reflectance relationship of 1.6 vs. 2.1, the MODIS surface 

reflectance product was used as the experimental data. Knowledge of AOD is an 

important factor that can affect the accuracy of the surface reflectance product [32,33]. 

As such, the experimental data selection referenced ground-level AOD measurements 
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taken from close proximity to AERONET sites to ensure the data used in the analyses 

were highly accurate. The experimental surface reflectance data were selected from 

nine AERONET sites in different global regions according to the following criteria: the 

MOD09 data should be obtained under cloud-free conditions, and from locations 

within 25-kilometers from AERONET sites; the MODIS-Terra overpasses within ±30 

min of AERONET measurements, and measured AOD values should be lower than 0.1 

(in order to minimize the influence of multiple aerosol scattering). 

The linear relationship of surface reflectances at 1.6 μm and 2.1 μm is shown in 

Fig. 1a, and has a correlation coefficient (r) value of 0.847. Despite the high r-value, 

the relationship of 1.6 vs. 2.1 shows considerable scatter. For example, when the 

surface reflectance value of the 1.6-μm channel is 0.2, the corresponding scatter plots 

show surface reflectance values of the 2.1-μm channel ranging from 0.055 to 0.175, 

obviously biased against the regression line. Such uncertainty could result in incorrect 

surface reflectance estimations, thereby leading to large errors in AOD retrieval [34].  

 

 

Figure 5.2 Scatter plots between Moderate Resolution Imaging Spectroradiometer (MODIS) 
surface reflectances at 1.6 μm and 2.1 μm. (a) The spectral linear relationship of 
surface reflectances at 1.6 μm and 2.1 μm. (b) Surface reflectances at 2.1 μm as a 
function of surface reflectance at 1.6 μm and NDVI. The color bar shows the 
NDVI values for each point. 

 

In light of this, the relationship between surface reflectance at 0.6 μm and 2.1 μm 

is more robust, while the relationship between surface reflectance at 0.6 μm and 1.6 

μm is very sensitive to the amount of surface vegetation [34–36]. It could be expected 

that the surface reflectance relationship of 1.6 vs. 2.1 may also be dependent on the 
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amount of vegetation. To confirm this conjecture and to develop a method for reducing 

scatter in the relationships of 1.6 vs. 2.1, I used the NDVI as a tuner to explore a new 

relationship. NDVI is a commonly applied numerical indicator used for evaluating 

vegetation conditions; it could be calculated with the reflectance of the red and NIR 

bands obtained from the space platform using Equation 3 [37]. NDVI values range 

from negative one to positive one; zero and negative values represent non-vegetated 

surfaces (such as soil, water, snow), and higher values indicate the higher possible 

densities of green vegetation. 

NDVI = (RNIR − Rred)/(RNIR + Rred)                 (3) 

where RNIR and Rred are the reflectances of the NIR and red bands respectively. 

Figure 5.2b shows the relationship of surface reflectances at 1.6 μm and 2.1 μm. 

The colors of the points are their corresponding NDVI values, according to the color 

bar. As the figure shows, the NDVI is a significant factor in the relationship of 1.6 vs. 

2.1. The exhibited evident regulation according to NDVI distribution is that the 

relationship of 1.6 vs. 2.1 seems to be vegetation dependent. As NDVI values vary 

from high to low, the slope of the corresponding linear relationship of 1.6 vs. 2.1 is 

continuously increasing. This verifies previous conjecture that the relationship of 1.6 

vs. 2.1 is also sensitive to the amount of vegetation. 

Compared with using the linear relationship of 1.6 vs. 2.1 directly, as shown in 

Figure 5.2a, it is possible to improve the accuracy of surface reflectance estimation 

through an NDVI-based correlation of 1.6 vs. 2.1. However, it is important to note that 

aerosols can influence NDVI with NDVI values typically decreasing as AOD increases, 

thus limiting its potential to evaluate surface conditions [35,38]. To overcome this 

drawback, other vegetation indices that are not sensitive to atmospheric aerosols could 

replace NDVI. In the MODIS DT algorithm Collection 5 and Collection 6, the 

NDVISWIR, a measure of vegetation “greenness” highly correlated with regular NDVI, 

was proposed. NDVISWIR (shown as Equation 4) is defined as a function of the 

MODIS-measured reflectances of the 1.24 μm and 2.12 μm channels. Because longer 

wavelengths are much less affected by aerosols, consequently, NDVISWIR is aerosol 

resistant [34,39].  

         NDVISWIR = (R1.24 − R2.12)/(R1.24 + R2.12)               (4) 

where R1.24 and R2.12 are the MODIS-measured reflectances at 1.24 μm and 2.12 μm. 
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Figure 5.3 The MODIS surface reflectances at 2.1 μm as a function of surface reflectance at 
1.6 μm and AFRI2.1. The color bar shows the values of AFRI2.1 for each point. 

 

Similarly, I attempted to employ the AFRI2.1 [15] to establish a new VI-based 

relationship for 1.6 vs. 2.1. AFRI2.1 is calculated by using the NIR and SWIR bands as 

follows: 

AFRI2.1 = (RNIR − 0.5 ∗ R2.1)/(RNIR + 0.5 ∗ R2.1)         (5)      

where RNIR and R2.1 are the reflectances of the NIR (MODIS channel 2) and 2.1 μm 

(MODIS channel 7) channels. In this equation, the coefficient 0.5 is determined based 

on the experiment results of Karnieli et al. (2001). They flew over a variety of ground 

surfaces in Israel, and performed measurements using a field spectrometer; under clear 

sky conditions. The empirical linear relationship between the SWIR spectral band 

around 2.1 μm and the red band around 0.6 μm was revealed as R0.65 = 0.5R2.1 [15]. 

One key difference that emerges when comparing AFRI2.1 (Equation 5) with the 

regular NDVI (Equation 3), is that the reflectance of the red band in NDVI has been 

replaced by the reflectance of the SWIR (2.1 μm) band, according to the mathematical 

relationship between the red and SWIR (2.1 μm) bands. Because the wavelength of 

SWIR is considered to have a much longer diameter than most aerosols, SWIR has the 

ability to penetrate atmospheric aerosols. In addition, SWIR is sensitive to vegetation. 

With these advantages, AFRI2.1 is less susceptible to aerosol influence [15,40,41]. 
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Figure 5.4 The relationship between surface reflectances at 2.1 μm and 1.6 μm vary with 
different AFRI2.1 values (All data points in each graph fall within AFRI2.1 value ± 
0.001). 
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Figure 5.5 The slopes and intercepts of regression functions (for each graph in Figure 5.4) as a 
function of AFRI2.1. 

 

I used the AFRI2.1 to interpret how the relationship of 1.6 vs. 2.1 changes with 

different surface conditions. The results are displayed in Figure 5.3, which also shows 

similarities to Figure 5.2b. To study in more quantitative detail how the relationship of 

1.6 vs. 2.1 varies with AFRI2.1, I picked out and grouped several experimental data 

from the sum of points in Figure 5.3, according to certain given AFRI2.1 values. Each 

of the selected points groups is displayed in Figure 5.3, in which the surface 

reflectance of the 2.1 μm band is a function of the surface reflectance at 1.6 μm and the 

given AFRI2.1 values. The given AFRI2.1 values are all from 0.400 to 0.900, with 

intervals of 0.05. Compared with the linear correlation of 1.6 vs. 2.1 (in Figure 5.2a), 

all the scatter plots in Figure 5.4 have stronger correlations, and their corresponding 

r-values are seemingly higher than those in Figure 5.2a, implying that such an 

AFRI2.1-based relationship has the potential capacity to describe the relationship of 1.6 

vs. 2.1 with higher accuracy than to just using the general linear relationship (as shown 

in Figure 5.2a). Considering the regression functions of these scatter plots in Figure 5.4, 

the slopes of their regression lines become distinctly smaller as their AFRI2.1 values 

increase. In order to understand the changes of these regression functions with varied 

AFRI2.1, the slopes and intercepts of these regression lines were compared with their 

corresponding AFRI2.1 values. Figure 5.5 shows that there is a very strong inverse 

relationship between the slope and AFRI2.1, and its r-value is as high as −0.964. In 

addition, the relationship between intercepts and AFRI2.1 has an r-value of −0.742. 

Based on these results, the slope and intercept for the relationship of 1.6 vs. 2.1 for 
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different AFRI2.1 values can be determined, allowing an AFRI2.1-based regression 

function (Equation 6) for estimating the reflectance in the 2.1 μm channel from 1.6 μm 

channel to be formulated as follows: 

R2.1 = Slope1.6/2.1 ∗ R1.6 + Intercept1.6/2.1 

with 

Slope1.6/2.1 = a1 ∗ AFRI2.1 + b1  

Intercept1.6/2.1 = a2 ∗ AFRI2.1 + b2                    (6) 

where the R2.1 and R1.6 are the surface reflectances at 2.1 μm and 1.6 μm, and the 

Slope1.6/2.1 and Intercept1.6/2.1 are the function of AFRI2.1, with the coefficients a1 = 

−0.7606, b1 = 0.9763, a2 = −0.0332, and b2 = 0.0286, which are decided according to 

the experiment results in Figure 5.5. I tested the performances of the linear regression 

function (as shown in Figure 5.2a) and the AFRI2.1-based regression function derived 

by our team. The estimated results using the linear and the AFRI2.1-based regression 

functions are compared with the true values, and results are shown in Figures 5.6a and 

5.6b, respectively. It is obvious that the AFRI2.1-based estimations correlate better with 

the true values. The comparisons in Figure 5.6b show much less scattering, and the 

r-value of the regression has clearly improved. 

 

 

Figure 5.6 Comparisons of the estimated and the true surface reflectance at 2.1 μm. (a) The 
estimated surface reflectance is derived using the linear relationship shown in 
Figure 5.2a; (b) The estimated surface reflectance is derived from the known 
AFRI2.1 using the AFRI2.1-based regression function (Equation 5). The color bar 
shows the number for each point. 
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5.2.3 Estimation of aerosol free vegetation index (AFRI2.1) using NIR and 1.6 μm bands 

Although the AFRI2.1-based approach performed well in testing, it is worth noting 

that the test results shown in Figure 5.6b are based on known AFRI2.1. For sensors 

equipped with 2.1 μm and NIR bands, the AFRI2.1 can easily be directly calculated 

using Equation 5. However, it is not feasible to derive the AFRI2.1 from unequipped 

sensors. To resolve this difficulty, I developed a new method to estimate AFRI2.1 using 

the 1.6 μm band. Equations 5 and (6) can be rewritten as Equations 7 and 8: 

AFRI2.1 = (R0.8 − 0.5 ∗ R2.1)/(R0.8 + 0.5 ∗ R2.1)             (7) 

R2.1 = (a1 ∗ AFRI2.1 + b1) ∗ R1.6 + a2 ∗ AFRI2.1 + b2         (8) 

where R0.8 is the reflectance of the MODIS NIR channel, of which the center 

wavelength is at 0.86 μm. To substitute Equation 8 into Equation 7, the unknown term 

R2.1 can be eliminated; after rearranging, a quadratic equation in AFRI2.1 can be 

obtained (Equation 9). The solutions are presented as Equation 10: 

AFRI2.1
2 ∗ 0.5 ∗ (a1 ∗ R1.6 + a2) + AFRI2.1 ∗ (R0.8 + 0.5 ∗ (a1 + b1) ∗ R1.6 + 0.5 ∗ (a2 + b2)) +

(0.5 ∗ b1 ∗ R1.6 + 0.5 ∗ b2 − R0.8) = 0                                           (9) 

 

AFRI2.1 =
−(R0.8+0.5∗(a1+b1)∗R1.6+0.5∗(a2+b2))

2∗0.5∗(a1∗R1.6+a2)
 ±

 
√(R0.8+0.5∗(a1+b1)∗R1.6+0.5∗(a2+b2))2−4∗0.5∗(a1∗R1.6+a2)∗(0.5∗b1∗R1.6+0.5∗b2−R0.8)

2∗0.5∗(a1∗R1.6+a2)
       (10) 

AFRI2.1 in Equations 9 and 10 can be estimated using the 0.8 μm and 1.6 μm 

bands. In actual application, AFRI2.1 solutions have two roots, because the AFRI2.1 

values should all be within the range of –1 to 1 (similar to the NDVI); thus there would 

be one reasonable root falling inside this range, with another unreasonable root falling 

outside of it. Using the estimated AFRI2.1 and Equation 8, the R2.1 can be calculated. 

The performances of the AFRI2.1 and R2.1 values estimated using the 1.6 μm-based 

approach were also tested by comparing them with their corresponding true values. 

Figure 5.7a shows the scatter plot of the estimated AFRI2.1 versus true AFRI2.1, and 

Figure 5.6b shows the scatter plot of the estimated R2.1 versus the true R2.1. All 

estimations show very good agreement with the true values, and the derived r-values 

are all above 0.92. The regression slope value is near to 1, and the intercept is close to 

0. 
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Figure 5.7 Comparisons of the estimated results and the true values. (a) Comparisons of the 
estimated AFRI2.1 and the true AFRI2.1. (b) Comparisons of the estimated and the 
true surface reflectance at 2.1 μm. The estimated surface reflectance at 2.1 μm is 
from the AFRI2.1 estimated using the proposed method (Equations 7 to 10). The 
color bars show the number for each point. 

 

5.2.4 A 1.6-μm band-based method for minimizing atmospheric influences in the NIR and 

red bands 

An overview of the strategy for correcting the atmospheric influence on the NIR 

and red bands, using the 1.6-μm band, is shown in Figure 5.8. The fundamental 

processing steps shown by the dashed line were introduced in the Chapter 4. Using the 

method mentioned in this chapter, I can estimate the reflectance at the 2.1 µm from that 

of the 1.6 µm band, and then accomplish the self-correction process in the red and NIR 

bands. The corrected bands can be used in the construction of VIs. 
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Figure 5.8 Flowchart of the 1.6-μm band-based self-correction method for removing the 
atmospheric influences in the MODIS near-infrared (NIR) and red bands, along 
with a newly derived method of vegetation indices construction. 

 

5.3 Results and discussion 

5.3.1 Accuracy assessment of the 1.6-μm band-based self-correction method 

The major applications of our correction method include correcting the 

atmospheric influences in the NIR and red bands; the corrected NIR band can be used 

alone to improve the accuracy of the aerosol resist vegetation indices (e.g., the AFRI, 

NDVIMIR); the corrected NIR and red bands can be used to calculate VIs (e.g., NDVI) 

and assess vegetation in the presence of aerosols. The performance of the 1.6-μm 

band-based self-correction method under different aerosol loadings (AOD) is assessed 

using the atmospherically corrected VIs. The selected spatially and temporally matched 

MODIS/AERONET collocated data in the Chapter 4 were used as the experimental 
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data in this work. The uncorrected VIs (top-of-atmosphere (TOA) VIs) were calculated 

using the reflectance data from the 6 collection of the MODIS/Terra calibrated 

radiances (MOD02HKM) products. According to the ground-level AOD measurements 

from AERONET, a pixel-by-pixel atmospheric correction was conducted using a 

second simulation of a satellite signal in the solar spectrum (6S) radiative transfer code, 

and the corrected VIs were calculated using the atmospherically corrected reflectances 

at the corresponding wavelengths.  

5.3.1.1 Application of 1.6-μm band-based correction method for AFRI 

Using the method introduced in Sections 5.2.2 and 5.2.3, the estimated AFRI2.1 

(Est-AFRI2.1) and estimated 2.1-μm reflectance can be obtained from the 1.6-μm 

reflectance. The main advantage of AFRI2.1 is in assessing vegetation in the presence 

of smoke, anthropogenic pollution, or volcanic plumes. The estimated 2.1-μm 

reflectance can help to adapt the self-correction method (in Chapter 4) to the sensors 

that possess only the 1.6 μm SWIR bands. Consequently, the correction of the NIR 

band can be accomplished by the implementation of the 1.6-μm band-based correction 

method, and the corrected NIR used in the AFRI was expected to outperform the 

original AFRI. There are two methods to calculate the corrected NIR-derived AFRI2.1. 

The first one (AFRI2.1
C1 ) is to replace the TOA NIR in Equation 10 with the corrected 

NIR, as shown in Equation 11: 

AFRI2.1
C1 =

−(RNIR
Corrected+0.5∗(a1+b1)∗R1.6+0.5∗(a2+b2))

2∗0.5∗(a1∗R1.6+a2)
 ±

√(RNIR
Corrected+0.5∗(a1+b1)∗R1.6+0.5∗(a2+b2))

2
−4∗0.5∗(a1∗R1.6+a2)∗(0.5∗b1∗R1.6+0.5∗b2−RNIR

Corrected

2∗0.5∗(a1∗R1.6+a2)
   (11)                     

where RNIR
Corrected is the corrected NIR, and AFRI2.1

C1  is the corrected NIR-derived 

AFRI2.1. There is another corrected NIR-derived AFRI2.1, proposed based on Equation 

7, which is written as Equation 12: 

AFRI2.1
C2 = (RNIR

Corrected − 0.5 ∗ R2.1
Estimated)/(RNIR

Corrected + 0.5 ∗ R2.1
Estimated)     (12) 

where R2.1
Estimated is the estimated reflectance at 2.1 μm using the 1.6 μm band, and 

AFRI2.1
C2  is the second version of the corrected NIR-derived AFRI2.1.  

Figures 5.9 to 5.11 show the experimental data from the Ubon Ratchathani, 

Ussuriysk, and Gandhi College sites, respectively; the graphs in the columns a-d have 

different AOD values.  

The comparisons of AFRI2.1 versus the atmospherically corrected NDVI, and the 

estimated AFRI2.1 (Est-AFRI2.1) versus the atmospherically corrected NDVI are shown 

in row 1 and row 2 in the Figures 5.9 to 5.11, respectively. It could be found that the 
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comparisons of AFRI2.1 and Est-AFRI2.1 show very strong similarities.  

The comparisons of AFRI2.1
C1  versus the atmospherically corrected NDVI, and 

AFRI2.1
C2  versus the atmospherically corrected NDVI are shown in row 3 and row 4 of 

Figures 5.9 to 5.11, respectively. The comparisons of the TOA versus surface 

reflectances in NIR band (black scatter plots), and the corrected versus surface 

reflectances (green scatter plots) in the NIR band are shown in row 5 in Figures 5.9 to 

5.11. The statistical root mean square error (RMSE) and mean bias error (MBE) were 

used to evaluate the errors between the TOA reflectance-derived values and the 

atmospherically corrected values, and the results for each graph in Figures 5.9 to 5.11 

are summarized in Tables 5.1 to 5.3. 

As the graphs of row 5 in Figures 5.9 to 5.11 show, except for one case (a-5 in 

Figure 5.9), all the corrected NIR band (green scatter plots) values had smaller RMSE 

and MBE (in absolute terms) values than the uncorrected NIR band (black scatter 

plots) values. Given higher AOD value conditions, larger improvements in accuracy 

were observed. This indicates that the 1.6-μm band-based correction method is 

effective for correcting the NIR band, even for high AOD levels. However, for light 

aerosol loadings, such as that in a-5 in Figure 5.9, which had an AOD value of 0.12, 

the atmospheric influences in the NIR band are easily overwhelmed by system errors 

from the correction process. 

Compared with the performance of the uncorrected Est-AFRI2.1, in most cases, 

the corrected AFRI2.1 (AFRI2.1
C1  and AFRI2.1

C2 ) is closer to the atmospherically corrected 

values. Only in two cases (a-5 in Figure 5.9 and b-5 in Figure 5.11) were poorer RMSE 

and MBE values observed for the corrected AFRI2.1 (AFRI2.1
C1  and AFRI2.1

C2 ). After 

further analysis, I found that the worst performance of case a-5 in Figure 5.9 was 

mainly due to errors in the correction of the NIR band, but the corrected NIR band in 

the case of b-5 in Figure 5.11 was much closer to the atmospherically corrected values. 

Therefore, the unsatisfactory performance in case b-5 in Figure 5.11 may have been 

caused by errors in the estimation of the reflectance at 2.1 μm.  
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Figure 5.9 Experimental results of the Ubon_Ratchathani site. AFRI2.1 (Row 1), estimated 
AFRI2.1 (Est-AFRI2.1) (Row 2), corrected NIR-derived AFRI2.1 based on Equation 
11 (Corrected AFRI2.1-1) (Row 3), and corrected NIR-derived AFRI2.1 based on 
Equation 12 (Corrected AFRI2.1-2) (Row 4) plotted against the atmospherically 
corrected NDVI; the TOA reflectance at NIR (black plots) and corrected 
reflectance at NIR (green plots) against the surface reflectance at NIR (Row 5) for 
different aerosol loading conditions (AOD at 0.55 μm). 
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Figure 5.10 Experimental results of the Ussuriysk site. AFRI2.1 (Row 1), estimated AFRI2.1 
(Est-AFRI2.1) (Row 2), corrected NIR-derived AFRI2.1 based on Equation 11 
(Corrected AFRI2.1-1) (Row 3), and corrected NIR-derived AFRI2.1 based on 
Equation 12 (Corrected AFRI2.1-2) (Row 4) plotted against the atmospherically 
corrected NDVI; the TOA reflectance at NIR (black plots) and corrected 
reflectance at NIR (green plots) against the surface reflectance at NIR (Row 5) 
for different aerosol loading conditions (AOD at 0.55 μm). 
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Figure 5.11 Experimental results of the Gandhi_College site. AFRI2.1 (Row 1), estimated 
AFRI2.1 (Est-AFRI2.1) (Row 2), corrected NIR-derived AFRI2.1 based on 
Equation 11 (Corrected AFRI2.1-1) (Row 3), and corrected NIR-derived AFRI2.1 
based on Equation 12 (Corrected AFRI2.1-2) (Row 4) plotted against the 
atmospherically corrected NDVI; the TOA reflectance at NIR (black plots) and 
corrected reflectance at NIR (green plots) against the surface reflectance at NIR 
(Row 5) for different aerosol loading conditions (AOD at 0.55 μm). 
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5.3.1.2 Corrected NIR and red bands-derived NDVI 

Through correcting the TOA reflectances in red and NIR bands, atmospheric 

influences in NDVI would be corrected or reduced. The corrected NDVI was 

calculated from the corrected red and NIR bands, as follows (Equation 13): 

NDVICorrected = (RNIR
Corrected − Rred

Corrected)/(RNIR
Corrected + Rred

Corrected)     (13) 

where NDVICorrected  stands for the corrected NDVI and Rred
Corrected stands for 

corrected NIR bands. The performance of our proposed correction method was 

evaluated by comparing the corrected NDVI against the atmospherically corrected 

NDVI under different AOD levels. The experimental results for Ubon_Ratchathani, 

Ussuriysk, and Gandhi_College sites are shown in Figures 5.12 to 5.14. The graphs in 

columns of a to d are with different AOD values. Rows 1 and 2 display the 

comparisons of TOA reflectance-derived NDVI vs. atmospherically corrected NDVI, 

and the corrected NDVI vs. atmospherically corrected NDVI. Row 3 shows the 

comparisons of surface reflectance vs. TOA reflectance at 0.65 µm (black scatter plots), 

and the surface reflectance vs. corrected reflectance at 0.65 µm (green scatter plots). 

Their statistical results are summarized in the Tables 5.1 to 5.3. 

In Figures 5.12 to 5.14, the green scatter plots in row 3 show that the corrected 

red reflectance is closer to the one-to-one line than uncorrected red reflectance. Much 

better statistical RMSE and MBE values derived for the corrected red reflectance 

means that the correction method removed most of atmospheric influences in the red 

band. In addition, graphs in row 1 show that TOA NDVI values are lower than the 

surface NDVI values, and the larger bias were observed for higher AOD. Finally, 

graphs in row 2 demonstrate that the corrected NDVI show lower RMSE and MBE (in 

absolute terms) values, which revealed that our correction method used in the 

application of NDVI is effective, after correction, the errors in NDVI caused by 

atmospheric effects have been obviously improved.  
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Figure 5.12 Experimental results for the Ubon Ratchathani site. Uncorrected NDVI (Row 1) 
and corrected NDVI (Row 2) plotted against the atmospherically corrected 
NDVI; the TOA reflectance at the red band (black plots) and corrected 
reflectance at the red band (green plots) against the surface reflectance at the red 
band (Row 3) for different aerosol loading conditions (AOD at 0.55 μm). 
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Figure 5.13 Experimental results for the Ussuriysk site. Uncorrected NDVI (Row 1) and 
corrected NDVI (Row 2) plotted against the atmospherically corrected NDVI; 
the TOA reflectance at the red band (black plots) and corrected reflectance at the 
red band (green plots) against the surface reflectance at the red band (Row 3) for 
different aerosol loading conditions (AOD at 0.55 μm). 
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Figure 5.14 Experimental results for the Gandhi_College site. Uncorrected NDVI (Row 1) and 
corrected NDVI (Row 2) plotted against the atmospherically corrected NDVI; 
the TOA reflectance at the red band (black plots) and corrected reflectance at the 
red band (green plots) against the surface reflectance at the red band (Row 3) for 
different aerosol loading conditions (AOD at 0.55 μm). 
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Table 5.1 The angle of observation and summarized statistics for the experimental data in 
Figures 5.9 and 5.12 (DOY is day of year, NDVIU is the uncorrected NDVI, NDVIC 
is the corrected NDVI, AFRI2.1

Est is the estimated AFRI2.1, AFRI2.1
C1  is the corrected 

AFRI2.1-1, AFRI2.1
C2  is the corrected AFRI2.1-2, R0.65

TOA and R0.65
Corrected are the TOA 

and surface reflectance at 0.65 μm, and R0.86
TOA and  R0.86

Corrected are the TOA and 
surface reflectance at 0.86 μm). 

Site_Name: Ubon_Ratchathani 

Year/DOY 2010/047 2010/068 2010/324 2011/055 

AOD 0.590 1.211 0.121 0.868 

NDVIU 
RMSE 0.559  0.476  0.145  0.403  

MBE −0.557  −0.474  −0.143  −0.400  

NDVIC 
RMSE 0.271  0.228  0.110  0.257  

MBE −0.266  −0.216  0.088  −0.251  

AFRI2.1 
RMSE 0.281  0.240  0.071  0.211  

MBE −0.279  -0.238  0.054  −0.209  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐄𝐬𝐭  

RMSE 0.351  0.309  0.069  0.296  

MBE −0.349  −0.305  0.049  −0.293  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐂𝟏   

RMSE 0.222  0.166  0.124  0.218  

MBE −0.217  −0.151  0.106  −0.206  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐂𝟐    

RMSE 0.284  0.232  0.098  0.255  

MBE −0.281  −0.224  0.079  −0.249  

𝐑𝟎.𝟔𝟓
𝐓𝐎𝐀  

RMSE 0.104  0.094  0.027  0.076  

MBE 0.103  0.093  0.027  0.075  

𝐑𝟎.𝟔𝟓
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.054  0.051  0.017  0.051  

MBE 0.052  0.049  −0.013  0.050  

𝐑𝟎.𝟖𝟔
𝐓𝐎𝐀  

RMSE 0.033  0.071  0.010  0.041  

MBE −0.033  −0.071  −0.009  −0.041  

𝐑𝟎.𝟖𝟔
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.021  0.017  0.027  0.018  

MBE 0.020  −0.006  0.025  −0.012  

Viewing 

Geometry 

Solar zenith angle 43.360  34.315  41.122  38.038  

Sensor zenith angle 62.617  43.038  42.903  43.138  

Relative azimuth angle 31.700  25.720  50.030  31.725  
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Table 5.2 The angle of observation and summarized statistics for the experimental data in 
Figures 5.10 and 5.13 (DOY is day of year, NDVIU is the uncorrected NDVI, 
NDVIC is the corrected NDVI, AFRI2.1

Est is the estimated AFRI2.1, AFRI2.1
C1  is the 

corrected AFRI2.1-1, AFRI2.1
C2  is the corrected AFRI2.1-2, R0.65

TOA and R0.65
Corrected are 

the TOA and surface reflectance at 0.65 μm, and R0.86
TOA and  R0.86

Corrected are the 
TOA and surface reflectance at 0.86 μm). 

Site_Name: Ussuriysk 

Year/DOY 2008/159 2008/178 2008/210 2009/148 

AOD 0.328 0.554 0.183 0.792 

NDVIU 
RMSE 0.261  0.209  0.141  0.263  

MBE −0.260  −0.208  −0.140  −0.263  

NDVIC 
RMSE 0.076  0.060  0.040  0.030  

MBE −0.071  −0.054  −0.034  −0.002  

AFRI2.1 
RMSE 0.074  0.063  0.054  0.058  

MBE −0.072  −0.062  −0.048  −0.056  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐄𝐬𝐭  

RMSE 0.079  0.066  0.066  0.043  

MBE −0.077  −0.063  −0.060  −0.040  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐂𝟏   

RMSE 0.056  0.046  0.063  0.030  

MBE −0.051  −0.039  −0.053  0.008  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐂𝟐    

RMSE 0.064  0.053  0.064  0.024  

MBE −0.060  −0.048  −0.056  −0.010  

𝐑𝟎.𝟔𝟓
𝐓𝐎𝐀  

RMSE 0.052  0.045  0.027  0.053  

MBE 0.052  0.045  0.027  0.053  

𝐑𝟎.𝟔𝟓
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.016  0.013  0.007  0.006  

MBE 0.015  0.012  0.006  0.001  

𝐑𝟎.𝟖𝟔
𝐓𝐎𝐀  

RMSE 0.037  0.046  0.016  0.056  

MBE −0.037  −0.046  −0.016  −0.056  

𝐑𝟎.𝟖𝟔
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.009  0.008  0.010  0.010  

MBE 0.007  −0.002  −0.006  0.008  

Viewing 

Geometry 

Solar zenith angle 29.136 25.124 29.400 26.085 

Sensor zenith angle 54.640 18.318 18.542 18.188 

Relative azimuth angle 33.361  38.002  41.358  42.940  
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Table 5.3 The angle of observation and summarized statistics for the experimental data in 
Figures 5.11 and 5.14 (DOY is day of year, NDVIU is the uncorrected NDVI, 
NDVIC is the corrected NDVI, AFRI2.1

Est is the estimated AFRI2.1, AFRI2.1
C1  is the 

corrected AFRI2.1-1, AFRI2.1
C2  is the corrected AFRI2.1-2, R0.65

TOA and R0.65
Corrected are 

the TOA and surface reflectance at 0.65 μm, and R0.86
TOA and  R0.86

Corrected are the 
TOA and surface reflectance at 0.86 μm). 

Site_Name: Gandhi_College 

Year/DOY 2012/036 2012/050 2012/056 2012/065 

AOD 0.829 0.236 0.456 1.086 

NDVIU 
RMSE 0.415  0.261  0.252  0.478  

MBE −0.412  −0.260  −0.252  −0.477  

NDVIC 
RMSE 0.029  0.039  0.034  0.065  

MBE −0.006  −0.030  −0.020  −0.057  

AFRI2.1 
RMSE 0.087  0.066  0.064  0.196  

MBE −0.077  −0.064  −0.063  −0.195  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐄𝐬𝐭  

RMSE 0.056  0.027  0.017  0.132  

MBE −0.042  −0.020  -0.006  −0.131  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐂𝟏   

RMSE 0.033  0.024  0.028  0.073  

MBE 0.000  0.005  0.019  −0.067  

𝐀𝐅𝐑𝐈𝟐.𝟏
𝐂𝟐    

RMSE 0.038  0.022  0.020  0.097  

MBE −0.017  −0.005  0.008  −0.094  

𝐑𝟎.𝟔𝟓
𝐓𝐎𝐀  

RMSE 0.069  0.046  0.039  0.082  

MBE 0.069  0.046  0.039  0.082  

𝐑𝟎.𝟔𝟓
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.005  0.008  0.005  0.011  

MBE 0.001  0.006  0.003  0.009  

𝐑𝟎.𝟖𝟔
𝐓𝐎𝐀  

RMSE 0.037  0.021  0.025  0.060  

MBE −0.037  −0.020  −0.025  −0.060  

𝐑𝟎.𝟖𝟔
𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝  

RMSE 0.009  0.012  0.004  0.005  

MBE 0.009  0.012  −0.003  −0.005  

Viewing 

Geometry 

Solar zenith angle 45.043  39.647  41.513  39.248  

Sensor zenith angle 40.210  54.772  6.795  19.758  

Relative azimuth angle 124.292  123.934  44.702  41.717  
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Figure 5.15 MODIS images of the case studies around the Aerosol Robotic Network 
(AERONET) Ussuriysk site: (a) True color composite (RGB = 0.65 µm, 0.56 
µm, 0.47 µm) from the TOA reflectance; (b) true color composite from the 
surface reflectance; (c) NDVI derived from the TOA reflectance product; (d) 
NDVI derived from the MODIS surface reflectance product; (e) NDVI 
corrected by the proposed method; (f) AFRI1.6; (g) AFRI2.1

C1 ; and (h) AFRI2.1
C2 . 

The red point is the location of the AERONET Ussuriysk site, and the 
corresponding AOD at 0.55 µm is 0.792. 
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5.3.1.3 Case study 

Figures 5.15a and b show two true color composites over the Ussuriysk sites 

using MODIS TOA reflectance bands, and MODIS surface reflectance bands 

respectively. The corresponding AERONET measurements is AOD at 0.55 µm with an 

interpolated value of 0.792. The MODIS TOA reflectance-derived NDVI and MODIS 

surface reflectance-derived NDVI maps are shown in Figures 5.15c and d. Because of 

heavy aerosol loading level, there are obviously differences between TOA NDVI and 

surface NDVI. The statistical results show that the MODIS surface reflectance-derived 

NDVI map has a mean NDVI value of 0.751, while the TOA NDVI map only has a 

mean NDVI value of 0.539. Figures 5.15e, g, and h illustrate the corrected NDVI, 

AFRI2.1
C1  and AFRI2.1

C2  maps, they all have much higher similarity with the surface 

NDVI map than the TOA NDVI. These three maps are closer to the surface NDVI with 

the mean VI values of 0.770, 0.810 and 0.786 respectively. Figure 5.15f illustrates the 

AFRI1.6 map, which shows an underestimated interpretation for vegetation condition in 

this case, with lower VIs value even than TOA NDVI. Therefore, for the 1.6-μm 

sensors, the use of estimated AFRI2.1 could perform better than directly using AFRI1.6. 

 

5.4 Conclusions 

In this study, I proposed an approach to adapt the 2.1-μm based self-corrected 

method to the 1.6-μm sensors. Using the MODIS surface reflectance product, I 

analyzed the reflectance relationship between 1.6 μm and 2.1 μm, and found that the 

relationship varies according to the surface condition. 

The vegetation index (NDVI or AFRI2.1) can be a very accurate indicator of 

surface conditions, and the surface reflectance at 2.1 μm has been parameterized as an 

empirically derived function of the 1.6 µm surface reflectance and vegetation index. I 

grouped experimental data with given AFRI2.1 values, and analyzed the changing 

characteristics of the regression functions (slope and intercept) obtained for the 

grouped data set. Our results show that the slopes of the regressions are extremely well 

correlated with AFRI2.1, with an r-value of –0.968, and the relationship between 

regression intercepts and AFRI2.1 is also high, with an r-value of –0.742. This means 

that the reflectance relationships at 1.6 μm and 2.1 μm are typically dependent on the 

amount of vegetation.  

In terms of experimental results, an AFRI2.1-based regression function for 

estimating reflectance at 2.1 μm from data observed at 1.6 μm was summarized. I 

tested and compared the performances in estimation with the linear regression function 

and the AFRI2.1-based regression function. This comparison of results indicated that 
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the AFRI2.1-based method has much better performance, and shows higher agreement 

with the true values.  

As the AFRI2.1 is calculated using the reflectance of the NIR and 2.1 μm bands, 

and because TANSO-CAI does not possess the 2.1 μm band, it is very difficult to 

directly use this AFRI2.1-based method in the application of TANSO-CAI. As such, I 

initially developed a method to estimate AFRI2.1 using the NIR and 1.6 μm bands. 

Then, using the estimated AFRI2.1, a reflectance connection between the 1.6 μm and 

visible bands can be compiled via the estimated reflectance in the 2.1 μm band. 

Based on the summarized relationship between the 1.6 and 2.1 μm bands, the 

2.1-μm based self-corrected method has been successfully adapted to 1.6-μm based 

sensors.  

The performance of the 1.6-μm based self-corrected method has been tested for 

different levels of AOD. For all experimental cases, the atmospheric influences in the 

red and NIR bands have been corrected by our correction method. Particularly with 

heavy aerosol loading conditions, most of errors caused by atmospheric effects have 

been reduced. 

The corrected red and NIR bands were used in calculation of AFRI2.1 and NDVI. 

Both corrected AFRI2.1 and NDVI showed evident improvements in accuracy by 

comparison with their uncorrected VIs. 
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Chapter 6 A dark target algorithm for the GOSAT TANSO-CAI 

sensor in aerosol optical depth retrieval over land 

 

6.1 Introduction 

Atmospheric aerosols are solid particles or liquid droplets suspended in the 

atmosphere with diameters ranging from 10–3 to 102 micrometers [1]. Aerosol is a 

major component of the atmosphere and plays an important role in global 

environmental and climate change [2]. Aerosols can absorb or scatter the incoming 

solar radiation and affect the Earth’s radiation budget, thus modulating the warming or 

cooling of the Earth [2,3]. Ground-level aerosols, also known as particulate matter 

(PM), are associated with human health and as such are regulated as a priority air 

quality pollutant [4,5]. Aerosol monitoring contributes significantly to the 

understanding of the Earth’s environmental systems. 

Satellites are increasingly being used to monitor the spatial and temporal 

distribution of aerosols from the local to a global scale, and to study their physical and 

chemical properties [6]. Spectral aerosol optical depth (AOD) is the most frequently 

used aerosol optical property. The main challenge of aerosol retrieval over land is to 

remove the surface contributions from the integrated reflectance signal at the satellite 

level [7–9].  

The mature and well-defined Moderate Resolution Imaging Spectroradiometer 

(MODIS) Dark Target (DT) algorithm is used to retrieve aerosol properties over the 

land and ocean twice a day with near-global coverage [10]. In theory, the MODIS DT 

algorithm can be applied to any sensor that measures reflectance in wavelength bands 

that cover visible (e.g., red or blue bands) and shortwave infrared (SWIR, 2.1 μm 

band) [13]. The DT group has already adapted the MODIS DT algorithm to run 

operationally on the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument 

aboard the Suomi-NPP polar orbiting satellite so as to create a long-term global AOD 

record [12,14]. However, it is worth noting that the operational MODIS DT algorithm 

is based on SWIR-visible surface relationships, with 2.1 μm being the key band for 

estimating surface reflectance. As such, adapting the MODIS DT algorithm to the 

sensors that do not have SWIR bands close the 2.1 μm band is difficult.  

The Thermal and Near-Infrared Sensor for Carbon Observation Cloud and 

Aerosol Imager (TANSO-CAI) is one of the observation instruments onboard the 
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Greenhouse gases Observing SATellite (GOSAT). The GOSAT was designed to 

measure the total columns of carbon dioxide and methane, which are observed by the 

Fourier Transform Spectrometer (TANSO-FTS) [15,16]. The TANSO-CAI visualizes 

atmospheric and ground surface conditions during the daytime. One of its missions is 

to detect clouds and aerosols in the FTS’s field of view to correct the obtained spectra 

with FTS [16]. However, because TANSO-CAI is a single-view sensor without any 

polarization information or SWIR bands near 2.1 μm, most of the conventional aerosol 

retrieval algorithms are not applicable [17]. For the time being, TANSO-CAI cannot 

provide any definitive aerosol data, so the aerosol-related information necessary for 

correcting TANSO-FTS data is derived from other platforms [18]. Although the 

challenges involved in developing an algorithm for retrieving AOD from GOSAT 

TANSO-CAI are considerable, such an algorithm is considered essential if precise 

aerosol information from the TANSO-CAI is ever to be obtained. It has the potential to 

reduce aerosol-related errors and improve the accuracy of TANSO-FTS data, and will 

also expand the scope of future aerosol-related research [19].  

In this study, I aimed to adapt a MODIS-like DT algorithm to the GOSAT 

TANSO-CAI, which has only one 1.6 μm SWIR band. Due to the lack of a SWIR band 

near 2.1 μm, determining the surface reflectance in the visible band is comparatively 

difficult [20]. To resolve the difficulty in determining the surface reflectance I explored 

the reflectance relationship between the 1.6 μm and 2.1 μm bands (1.6 vs. 2.1), and 

attempted to develop an operational algorithm for aerosol retrieval. 

 

6.2 Theoretical basis of AOD retrieval 

Assuming that the land surface is Lambertian surface and that the atmospheric 

and aerosol loading are horizontally uniform, the relationship between 

top-of-atmosphere (TOA) reflectance (RTOA), atmospheric contribution (RAtm), and 

surface reflectance RSurf can be described by Equation 1. 

RTOA(𝜆, 𝜇0, 𝜇, 𝜑)  = RAtm(𝜆, 𝜇0, 𝜇, 𝜑) +
RSurf(𝜆)Td(𝜆,𝜇0)Tu(𝜆,𝜇)

1−RSurf(𝜆)S(𝜆)
           (1) 

where 𝜆 is a given wavelength; 𝜇0, 𝜇, and 𝜑 are the cosine of the solar zenith angle, 

the cosine of the satellite zenith angle, and the relative azimuth angle between the sun 

and the satellite, respectively; S is the atmospheric hemispherical albedo; Td is the 

atmospheric transmittance from TOA to the surface; and Tu is the atmospheric 

transmission from the Earth’s surface to a satellite receiver [8,21]. The terms of RAtm, 

TdTu, and S are important atmospheric parameters that are functions of the AOD (τ) 

and can be extracted using the radiative transfer model. Therefore, as Equation 1 shows, 
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if the surface reflectance can be determined, then the AOD can be retrieved. Aerosol 

retrieval algorithms have been developed for many different satellite platforms based 

on this principle [22]. 

Kaufman et al. [8,23] summarized the linear relationship between surface 

reflectance in the blue (0.47 μm) and red (0.65 μm) bands, and reflectance in the 2.1 

μm band. The 2.1 μm band can penetrate most aerosols. Therefore, the surface 

reflectance in the blue (0.47 μm) and red (0.65 μm) bands can be determined using the 

2.1 μm band. This method was used to create the MODIS aerosol product of Collection 

4. Additional information that allows better estimation of the surface reflectance has 

recently been introduced into the MODIS DT algorithm. After several studies 

suggested that the surface reflectance relationships in the visible and 2.1 μm bands 

were angle dependent [24–26], Levy et al. [11] found that different surface types 

display different ratios between the surface reflectance of the visible and 2.1 μm bands 

(the complete regression including slope and y-intercept). To reduce errors in the 

existing method, Levy et al. proposed a second-generation operational algorithm for 

MODIS data (Collection 5), which took the dependencies of angular variability and 

surface type into account, as in Equations 2: 

 {
R0.65 = R2.1 ∗ slope0.65/2.1 + yint0.65/2.1     

R0.47 = R0.65 ∗ slope0.47/0.65 + yint0.47/0.65
                

where 

 {
slope0.65/2.1 = slope0.65/2.1

NDVISWIR + 0.002 ∗ Θ − 0.27

yint0.65/2.1 = −0.00025 ∗ Θ + 0.033                        
        

 {
slope0.47/0.65 = 0.49

yint0.47/0.65 = 0.005
                                

where in turn 

{
  
 

  
 slope0.65/2.1

NDVISWIR = 0.48; NDVISWIR < 0.25,                 
     

slope0.65/2.1
NDVISWIR = 0.58; NDVISWIR > 0.75,                 

       

slope0.65/2.1
NDVISWIR = 0.48 + 0.2 ∗ (NDVISWIR − 0.25);

0.25 ≤ NDVISWIR ≤ 0.75

        (2) 

where slope0.65/2.1  and yint0.65/2.1  are the slope and the intercept for the 

relationship of surface reflectance in the 0.65 μm and 2.1 μm channels, and 

slope0.47/0.65  and yint0.47/0.65  are the slope and intercept for the relationship 

between surface reflectance in 0.47 μm and 0.65 μm channels. Θ is the scattering angle, 
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defined as Equation 3. NDVISWIR is an aerosol resistant measure of vegetation 

“greenness”, defined in Equation 4. 

Θ = cos−1(−cos θ0 cos θ + sin θ0 sin θ cos∅)              (3) 

where θ0, θ, and ϕ are the solar zenith angle, satellite zenith angle, and the relative 

azimuth angle between the sun and the satellite, respectively. 

           NDVISWIR = (R1.2 − R2.1)/(R1.2 + R2.1)                (4) 

where R1.2 is the MODIS-measured reflectance at 1.2 μm. Surface reflectance 

estimations in both MODIS retrieval algorithm Collection 5 and the currently 

operational Collection 6 are based on this method. 

Due to the lack of any 2.1 μm band on board GOSAT TANSO-CAI, the MODIS 

and TANSO-CAI all measure reflectance at 1.6 μm. Note that 1.6 μm and 2.1 μm 

belong to longer wavelengths that are much less affected by aerosols; thus, if there was 

a reliable relationship between the reflectance of the 1.6 μm and the 2.1 μm channels, 

then the potential exists to develop a MODIS-like DT algorithm that uses the 1.6 μm 

band to estimate visible surface reflectance. 

 

6.3 Materials and methods 

6.3.1 Satellite data and ground-level data 

In this study, TANSO-CAI data from GOSAT, surface reflectance product and 

aerosol product data from MODIS, and ground-level AOD data from the Aerosol 

Robotic Network (AERONET) were used. 

6.3.1.1 GOSAT TANSO-CAI Data 

The GOSAT satellite is the world’s first spacecraft to measure greenhouse gases. 

A joint project of the Japan Aerospace Exploration Agency (JAXA), the Ministry of the 

Environment of Japan (MOE), and the National Institute for Environmental Studies 

(NIES) of Japan, it was successfully launched on 23 January, 2009. TANSO-CAI is 

aboard GOSAT, conducting daytime observations of the atmosphere and ground 

surfaces in four spectral bands: 1 (0.370–0.390 μm), 2 (0.664–0.684 μm), 3 

(0.860–0.880 μm), and 4 (1.560–1.650 μm). The spatial resolution at nadir is 500 m for 

bands 1–3, and 1500 m for band 4. GOSAT revisits the same point in space every 3 

days [17].  

GOSAT provides three processing-level products derived from TANSO-CAI 

observations: radiances, cloud flag, global radiance and reflectance distribution, as 
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well as Normalized Difference Vegetation Index (NDVI) products [16]. In our study, 

AOD retrieval uses CAI L1B+ radiance products, on which radiometric and geometric 

corrections (orthorectification, band-to-band registration, and resampling) are 

performed [27,28]. Before AOD retrieval, the radiance has to be converted to 

reflectance using Equation 5: 

RTOA = (π ∗ Lλ ∗ d
2)/(Eλ ∗ cos θ0 )                      (5) 

where L is the radiation brightness of the corresponding TANSO-CAI band, d is the 

distance between the sun and the Earth, and E is the solar irradiance with weighting 

response function of the corresponding TANSO-CAI band. In addition, the CAI L1B+ 

radiance product provides detailed observational information (such as the solar 

zenith/azimuth angles and satellite zenith/azimuth angles) [29]. 

6.3.1.2 AERONET AOD data 

The AERONET [30] AOD level 2.0 (cloud screened and quality-assured) data 

were used in this study to validate AOD retrieval from the satellite.  

6.3.2 Estimation of aerosol free vegetation index (AFRI2.1) using NIR and 1.6 μm bands 

In Chapter 5, I analyzed the relationship between reflectance at 1.6 µm and at 2.1 

µm using the MODIS surface reflectance product, and proposed a method to estimate 

Aerosol FRee vegetation Index (AFRI2.1) and 2.1-µm reflectance from 1.6 µm band 

using Equations 6. 

AFRI2.1
Est =

−(R0.8+0.5∗(a1+b1)∗R1.6+0.5∗(a2+b2))

2∗0.5∗(a1∗R1.6+a2)
 ±

 
√(R0.8+0.5∗(a1+b1)∗R1.6+0.5∗(a2+b2))2−4∗0.5∗(a1∗R1.6+a2)∗(0.5∗b1∗R1.6+0.5∗b2−R0.8)

2∗0.5∗(a1∗R1.6+a2)
        (6a) 

R2.1
Est = (a1 ∗ AFRI2.1

Est + b1) ∗ R1.6 + a2 ∗ AFRI2.1
Est + b2                     (6b) 

where the R0.8 and R1.6 are the reflectances at MODIS 0.8 μm and 1.6 μm bands, and 

the AFRI2.1
Est  and R2.1

Est  are the estimated AFRI2.1 and 2.1-µm reflectance. The 

coefficients values (a1 = −0.7606, b1 = 0.9763, a2 = −0.0332, and b2 = 0.0286) were are 

determined according to experiment results. 
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Figure 6.1 The relationship between shortwave infrared bands-derived vegetation index 
(NDVISWIR) and Aerosol FRee vegetation Index (AFRI2.1). Both NDVISWIR and 
AFRI2.1 are calculated using Moderate Resolution Imaging Spectroradiometer 
(MODIS) surface reflectance products. The color bars show the number for each 
point. 

 

An AFRI2.1-based regression function used to describe the reflectance relationship 

of 1.6 vs. 2.1 was established through experimentation with MODIS surface 

reflectance products. Following the method used in the MODIS DT algorithm, the 

surface reflectance for the 0.6 μm band can be obtained from the 1.6 μm band by using 

the estimated reflectance at 2.1 μm. In the operational MODIS DT algorithms version 

of Collection 5 and the current Collection 6, the reflectance relationship of the 0.6 μm 

and 2.1 μm bands is adjusted according to geometry and vegetation amount. The 

geometry is based on the scattering angle (Equation 3), and the vegetation amount is 

estimated by NDVISWIR (Equation 4), a variant of NDVI based on the SWIR bands 

[31]. When developing a MODIS-like AOD retrieval algorithm for TANSO-CAI, the 

scattering angle can be easily determined using observational information such as the 

solar zenith/azimuth angle and the satellite zenith/azimuth angle. AFRI2.1 can also 

accurately predict the vegetation amount. The relationship between NDVISWIR and 

AFRI2.1 was calculated using experimental MODIS surface products, and is presented 

in Figure 6.1. It is evident that AFRI2.1 correlates highly with NDVISWIR (r = 0.943). 

According to this relationship, AFRI2.1 can be considered an appropriate replacement 

for NDVISWIR and suitable for practical use in the surface reflectance estimation 
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method. Based on the previous analysis, a 1.6 μm band based method that follows the 

MODIS DT algorithm (Equations 2) for estimating surface reflectance at 0.6 μm can 

be described as follows:  

R0.6 = R2.1
Est ∗ slope0.6/2.1 + yint0.6/2.1                           

where 

{
slope0.6/2.1 = slope0.6/2.1

AFRI2.1 + 0.002 ∗ Θ − 0.27                  

yint0.6/2.1 = −0.00025 ∗ Θ + 0.033                                     
                    

where in turn 

{
  
 

  
 slope0.6/2.1

AFRI2.1 = 0.48; AFRI2.1 < 0.46,                                              
     

slope0.6/2.1
AFRI2.1 = 0.58; AFRI2.1 > 0.89,                                              

       

slope0.6/2.1
AFRI2.1 = 0.48 + 0.2 ∗ (1.154 ∗ AFRI2.1 − 0.281 − 0.25);

0.46 ≤ AFRI2.1 ≤ 0.89                   

 (7) 

where the AFRI2.1 and the estimated reflectance at 2.1 μm, R2.1
Est can all be determined 

using the 1.6 μm band, according to the method described in Chapter 5.  

 

Table 6.1 Parameters of the corresponding Greenhouse gases Observing SATellite Thermal 
and Near-Infrared Sensor for Carbon Observation Cloud and Aerosol Imager 
(GOSAT TANSO-CAI) and MODIS bands used in this study.  

GOSAT TANSO-CAI MODIS 

Band 

number 

Central 

wavelength 

(μm) 

Bandwidth 

(μm) 

Spatial 

resolution 

(m) 

Band 

number 

Central 

wavelength 

(μm) 

Bandwidth 

(μm) 

Spatial 

resolution 

(m) 

2 0.674 0.664−0.684 500 1 0.645 0.620−0.670 250 

3 0.870 0.860−0.880 500 2 0.859 0.841−0.876 250 

4 1.600 1.560−1.650 1500 6 1.640 1.628−1.652 500 

    7 2.130 2.105−2.155 500 
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Table 6.1 summarizes the specifications of the MODIS and GOSAT TANSO-CAI 

bands associated with this study. Although both GOSAT TANSO-CAI and MODIS 

have bands near the 0.6 μm, 0.8 μm, and 1.6 μm wavelengths, differences exist in their 

center wavelengths and bandwidths, as well as in their spectral response functions. 

When applying Equations 7 to GOSAT TANSO-CAI data, the differences between the 

two platforms should first be determined and then corrected. Moreover, because the 

proposed method was developed based on MODIS experimental data, it should be 

noted that in actual application the surface reflectance of 0.6 μm would be estimated 

from the TOA reflectances of the 0.8 μm and 1.6 μm bands. In order to adapt the 

method (shown as Equations 7) that was developed based on the MODIS data to 

TANSO-CAI, I compared the uncorrected surface reflectance generated by directly 

applying Equations 7 to the TANSO-CAI data against the theoretical surface 

reflectance. An empirical function for correcting platform differences was summarized 

as: 

R0.67
Corrected = 1.2 ∗ R0.67

Uncorrected + 0.015            (8) 

where R0.67
Corrected is the corrected surface reflectance in the TANSO-CAI 0.67 μm 

band, and 𝑅0.67
𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑is the uncorrected surface reflectance. Here, the theoretical 

surface reflectance is derived by the atmospheric correction with help from a Second 

Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [32], 

and the spatially and temporally matched AERONET data. Atmospheric correction is 

an important step to negate the atmospheric effects and derive surface reflectance 

values from satellite-observed data [11,33]. The 6S code is a physically based model 

and offers the atmospheric correction working modality to compute the surface 

reflectance [34]. For atmospheric correction, I selected spatially and temporally 

matched TANSO-CAI/AERONET collocated data according to the following criteria: 

AERONET sites measured within 30 min of the GOSAT overpasses; the selected 

TANSO-CAI data were located within a 25 kilometer radius around the AERONET 

sites. In addition, to ensure the accuracy of atmospheric correction and to avoid 

influence from multiple aerosol scattering, the selected collocated data for atmospheric 

correction should have a low AOD value (τ0.55 < 0.1).  
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Figure 6.2 Flow chart of the GOSAT TANSO-CAI retrieval procedure. Dashed lines indicate 
the analysis of the relationship between associated bands using MODIS surface 
reflectance products.   

 

6.3.3 AOD retrieval 

The flowchart for GOSAT TANSO-CAI AOD retrieval is illustrated in Figure 6.2. 

The surface contributions can be determined using the methods mentioned previously. 

We can derive the AOD by solving the Equation 1 using the following atmospheric 

parameters (RPath, TdTu, and S). As solving the equation is a time-consuming process, a 

look-up table method based on a large range of pre-computed atmospheric parameters 

using corresponding pre-set geometrical conditions (θ0, θ, and ϕ) and AOD values was 

prepared to improve the efficiency of the AOD retrieval procedure. The atmospheric 

parameters (RPath, TdTu, and S) can be pre-computed by repeatedly running the 6S 

radiative transfer code with different parameter combination inputs. The 6S radiative 

transfer code requires the following parameters as the input: spectral conditions, 

geometrical conditions, atmospheric model, aerosol model type, and AOD values. In 

the look-up table, the input parameters of the 6S radiative transfer code for 

pre-computing the atmospheric parameters (RPath, TdTu, and S) are shown in Table 6.2. 

For the GOSAT TANSO-CAI band 2, 21 solar zenith angles, 6 satellite zenith angles, 

and 9 relative azimuth angles were pre-set to describe different geometrical conditions. 

Three different atmospheric models (Tropical, Midlatitude Summer, and Midlatitude 

Winter) were taken into account. The continental aerosol model, a broadly used 

assumption for over land retrieval, was selected as the aerosol model. AOD values 
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were set from 0.01 to 2.00, with intervals of 0.01, and the smallest value was set as 

0.001.  

 

 

Table 6.2 The input parameters of the Second Simulation of a Satellite Signal in the Solar 
Spectrum radiation transfer code for a pre-computing look-up table. 

Parameters Values 

Spectral band GOSAT TANSO-CAI band 2 (central wavelength at 0.67 μm) 

Solar zenith angle From 0° to 60°, with a step of 3° 

Satellite zenith angle From 0° to 60°, with a step of 12° 

Relative azimuth angle From 0° to 168°, with a step of 24°; and 180° 

Atmospheric model  Midlatitude Summer, Midlatitude Winter and Tropical  

Aerosol models Continental aerosol model 

AOD at 0.55 μm Smallest with a value of 0.001, and from 0.01 to 2.00, with a step of 0.01 

 

 

Table 6.3 Description of the set of different geometrical conditions used to simulate the 
relationship between TANSO-CAI TOA reflectance and aerosol optical depth 
(AOD) with different surface conditions. 

Case name Solar zenith (degree) Satellite zenith (degree) Relative azimuth (degree) 

a 30 0 0 

b 30 30 0 

c 30 30 180 

d 30 60 0 

e 30 60 180 

f 60 0 0 

g 60 30 0 

h 60 30 180 

i 60 60 0 

j 60 60 180 
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When using this look-up table to retrieve AOD for satellite data, the pre-set solar 

zenith angle, satellite zenith angle and relative azimuth angle combination closest to 

the actual satellite observation would be sought. Under the targeted geometrical 

condition, there are multiple corresponding sets of atmospheric parameters (RPath, TdTu, 

and S) that have been pre-computed and recorded according to the different pre-set 

AOD values. Substituting every set of atmospheric parameters (RPath, TdTu, and S) and 

the estimated surface reflectance into Equation 1 in sequence, allows the theoretical 

TOA reflectance for each sequence to be calculated. In the calculated multiple 

theoretical TOA reflectance, the value that is closest to the actual TOA reflectance 

would be selected, and the AOD value of this selected set considered as the retrieved 

AOD.  

In the actual retrieval, however, not all the pixels meet the requirements of the 

retrieval algorithm; to ensure retrieval accuracy only the well-suited pixels should be 

taken into account during the retrieval. For example, it is possible to derive the AOD 

for pixels that have AFRI2.1 values less than 0.4. Our algorithm however, works best 

when the AFRI2.1 values are within the range of 0.4–0.9. Therefore, when the AFRI2.1 

values of pixels were outside this range, then errors in surface reflectance assumptions 

would increase, and the accuracy of the results would decrease. Additionally, regarding 

the limitations of the instrumentation, because the sensor receives TOA reflectance at 

certain wavelengths, values are variable with respect to the surface contributions, 

aerosol loading, and geometrical conditions (solar zenith angle, satellite zenith angle, 

and relative azimuth angle). In order to explore the application limitations of the 

TANSO-CAI band 2 in AOD retrieval, I simulated how TOA reflectance changes with 

different surface reflectances and different AOD values. The simulation was conducted 

with ten different geometrical condition combinations (shown in Table 6.3) and five 

different AOD values (τ0.55 = 0.1, 0.5, 1.0, 1.5, and 2.0). Figure 6.3a to j shows the 

simulation results according to the geometrical conditions cases of a to j in Table 6.3. 

Except for Figure 6.3j, which was simulated under extremely special geometrical 

conditions, all the other sub-figures demonstrated that lower surface reflectance has 

larger amplitudes of variation in TOA reflectance, with the AOD increasing. This 

indicated that when using TANSO-CAI band 2 in AOD retrieval, ground surfaces that 

have lower surface reflectance are more sensitive to AOD changes. Based on the 

experimental results, two thresholds have been set for selecting well-suited pixels in 

the retrieval scheme: the upper limit of surface reflectance in TANSO-CAI band 2 is 

set to 0.085, at the same time, the TOA reflectance of band 3 should be larger than 

0.225. 
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Figure 6.3 GOSAT TANSO-CAI TOA reflectance at 0.67 μm as a function of AOD under 
different surface reflectances; (a to j) are simulated under the corresponding 
observation geometric conditions cases of (a to j) shown in Table 6.3.   
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6.4 Results and discussion 

The performance of TANSO-CAI retrieval AOD values at 0.55 μm with our 

algorithm has been evaluated by comparison with ground-level measurements from the 

collocated AERONET. As the AERONET AOD product has very high accuracy, it is 

usually considered as “ground truth” and is widely used for the quantitative validation 

of satellite-based retrievals [35]. To ensure comparability between the ground and 

satellite levels, spatially and temporally collocated TANSO-CAI and AERONET data 

were chosen based on the following criteria: the AERONET measurements are 

conducted within ±15 minutes of the GOSAT overpass time, and the TANSO-CAI 

data are collected within a 10 kilometer radius circular validation area around the 

AERONET site.  

In this study, a total of 117 TANSO-CAI and AERONET collocated data were 

selected from five AERONET sites (Vientiane, Xinglong, Dhaka_University, 

Chiang_Mai_Met_Sta, and Ussuriysk) during the period from April 2009 to August 

2014. The geographical information (longitude, latitude, and elevation) of these 

AERONET sites is shown in Table 6.4. Both the Vientiane and Chiang_Mai_Met_Sta 

sites are located in Southeast Asia, and the Dhaka_University, Xinglong, and Ussuriysk 

sites are located in South Asia, East Asia, and North Asia, respectively. Figure 6.4 

illustrates the variations of matched TANSO-CAI and AERONET AODs, with 

observation dates for these five sites. Figure 6.5 shows the scatter plots between the 

TANSO-CAI AOD and AERONET AOD for individual and entire sites, and their 

corresponding summary statistics: the number of samples (N), mean AERONET AOD, 

root mean square error (RMSE), mean bias error (MBE), and expected error (EE) are 

shown in Table 6.4. As Figure 6.4 shows, the behavior of AODs from TANSO-CAI and 

AERONET is generally consistent for each site. In this regard, the retrievals are 

correlated with the overall AERONET sites, with r-values larger than 0.791. Even so, 

individual regions have their own particular characteristics. Apparently, the AODs 

retrieved from TANSO-CAI are slightly lower than the AERONET measurements over 

the Xinglong (Figure 6.4b) and Ussuriysk sites (Figure 6.4e), but conversely, the AODs 

retrieved over the Dhaka_University site (Figure 6.4c) are generally higher than the 

AERONET AODs. We could note that the AOD measurement data from the Xinglong 

and Ussuriysk sites are very low, with mean AOD values of 0.164 and 0.249, 

respectively. In addition, the dominant land cover type within a 10-kilometer radius 

around these two sites is tree cover (broadleaved and deciduous) [36]. Similarly, the 

studies of Xie et al. [37] show that, for vegetated sites under low aerosol AOD 

conditions, the MODIS DT tends to be underestimated. It could be due to an intrinsic 

system error in the algorithm or an instrument calibration issue. Alternately, the 

dominant land cover type around the Dhaka_University site is urban, with urban areas 



160 

 

comprising approximately 60% of the area within the 10 kilometer radius around the 

site [36]. Due to the complexity of urban type surfaces, this incorrect estimation of 

surface reflectance may impact the retrieval quality. On the other hand, the aerosol 

model assumption is also a critical factor closely associated with the retrieval results. 

The AOD over the Dhaka_University site is very high, with a mean value of 0.915. As 

Figure 6.4c shows, largely overestimated retrievals frequently occurred during the 

period from February to April for two consecutive years (2013 and 2014). This is 

possibly because the aerosol assumption cannot reflect the characteristics of 

atmospheric aerosols during this period. For these reasons, the retrievals over this site 

have the highest RMSE (0.328) and MBE (0.245). Very high correlation and low error 

rates are observed over the Vientiane (r-value = 0.921, RMSE = 0.141, and MBE = 

–0.059) and Chiang_Mai_Met_Sta (r-value = 0.974, RMSE = 0.140, and MBE = 

0.099) sites, which are under a high level of aerosol loading and have a mean 

AERONET AOD of more than 0.7 and 0.5, respectively. The high quality of retrieval is 

possibly due to the rural vegetated land cover type around the sites [38].  

The regression equations and lines of the TANSO-CAI versus AERONET AODs 

are displayed in Figure 6.5. In addition the dashed lines in the graphs are the EE lines. 

The EE is a confidence envelope that quotes the sum of the absolute and relative AOD 

errors, and is often used to estimate the uncertainty of aerosol products, such as the 

MODIS aerosol products. When 66% (one standard deviation) of the points fall within 

a bounding envelope of the EE as compared to AERONET, the products are considered 

“validated.” For the MODIS DT product (Collection 5 and Collection 6), the EE for 

the land AOD product is ± (0.05 + 0.15τ), where τ is the true AOD value [39,40]. The 

envelope of the EE as described in Equation 9 shows: 

AOD(AERONET) − |EE| ≤ AOD(TANSO−CAI) ≤ AOD(AERONET) + |EE|.      (9) 

In Table 6.4, two different EEs (EE1: ± (0.05 + 0.15τ) and EE2: ± (0.1 + 0.15τ)) 

have been tentatively defined to estimate the uncertainty values of our algorithm. 

According to our statistical analysis, only the retrievals over Vientiane were “validated” 

by the EE1 criterion, with 78.6% of match-ups falling within the EE envelope of ± 

(0.05 + 0.15τ). For the total data, only 52.1% of points fell within the EE1 envelope. 

This means that the current algorithm cannot qualify the accuracy defined by EE1. 

However, the uncertainties of this algorithm were in good agreement within EE2. 

Except for Dhaka_University, more than 66% of match-ups fell within the EE2 

envelope. For the overall data, 69.2% of the overall data fell within the EE2, and the 

retrievals highly agreed with the AERONET measurements with an r-value of 0.922.  
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Table 6.4 Geographical information and summary statistics for the entire data set and each individual site: longitude, latitude, elevation, number 
of samples (N), correlation coefficients (r), root mean square errors (RMSE), mean bias errors (MBE), and expected errors (EE). 

Site name 

Longitude 

(decimal 

degrees) 

Latitude 

(decimal 

degrees) 

Elevation 

(meters) 
N 

Mean 

AOD 
r RMSE MBE EE1 EE2 

Vientiane 102.57 17.99 170 28 0.716 0.921 0.141 –0.059 78.6% 82.1% 

Xinglong 117.58 40.40 970 19 0.164 0.791 0.136 –0.110 31.6% 73.7% 

Dhaka_ 

University 
90.40 23.73 34 31 0.915 0.855 0.328  0.245 41.9% 51.6% 

Chiang_Mai_

Met_Sta 
98.97 18.77 312 26 0.520 0.974 0.140  0.099 61.5% 73.1% 

Ussuriysk 132.16 43.70 280 13 0.249 0.904 0.119 –0.089 38.5% 69.2% 

Total    117 0.584 0.922 0.205  0.045 52.1% 69.2% 
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Figure 6.4 Variation curve of AODs from the spatially and temporally collocated TANSO-CAI 
and Aerosol Robotic Network (AERONET) data; (a) Vientiane site; (b) Xinglong 
site; (c) Dhaka_University site; (d) Chiang_Mai_Met_Sta site; and (e) Ussuriysk 
site. 
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Figure 6.5 Validation of TANSO-CAI retrievals against AERONET measurements over 
different regions. (a) Vientiane site; (b) Xinglong site; (c) Dhaka_University site; 
(d) Chiang_Mai_Met_Sta site; (e) Ussuriysk site; and (f) for all sites. The red 
solid and dashed lines are the regression line, and the expected error (± (0.1 + 
15% AODAERONET)) envelope line, respectively. 

         

Figure 6.6 Comparison of TANSO-CAI retrievals against MYD04_3K AOD over different 
regions. (a) Vientiane site; (b) Xinglong site; (c) Dhaka_University site; (d) 
Chiang_Mai_Met_Sta site; (e) Ussuriysk site; and (f) for all sites. The red solid 
and dashed lines are the regression line, and the expected error (± (0.1 + 15% 
AODAERONET)) envelope line, respectively. 
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Figure 6.7 TANSO-CAI TOA reflectance as a function of AOD and surface reflectance at 0.67 
μm under different aerosol models. The assumed surface reflectances are: (a) 0.02; 
(b) 0.04; (c) 0.06; and (d) 0.08. Simulation is performed under the observation 
geometric conditions with solar zenith angle = 30°, satellite zenith angle = 30°, and 
relative azimuth angles = 180°.  

 

As part of this algorithm was developed based on several studies using the 

MODIS DT algorithm, the retrievals made using our algorithm were also compared 

with the MODIS standard aerosol products. Here, a MODIS DT Collection 6 AOD 

product at 3 km (MYD04_3K) from Aqua with a similar overpass time to GOSAT was 

used. Figure 6.6 compares the TANSO-CAI and MODIS retrievals made at comparable 

times and areas. The comparison results (Figure 6.5) show that the current algorithm 

performs reasonably well overall and also for individual sites. The correlations of 

TANSO-CAI and MODIS AODs are very strong, and the statistical r-values are all 

higher than 0.87. MODIS has 36 channels, and the DT algorithm uses the blue (at 0.47 

µm), red (at 0.65 µm), and SWIR (at 2.1 µm) channels to account for the surface 

signals. Moreover, several additional aerosol models were also defined and used in 

AOD retrievals. However, compared with MODIS, the limitations of the TANSO-CAI 

spectral bands made aerosol retrieval very challenging. As GOSAT TANSO-CAI is not 
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equipped with the 2.1 μm band, the estimation of the surface reflectance has to rely on 

the relationship of 1.6 vs. 2.1. Although this relationship has proven to be extremely 

robust under low aerosol conditions, the associated uncertainty may in fact serve to 

increase actual AOD retrieval. Additionally, as MODIS DT is a multi-channel 

algorithm, the MODIS blue band is also employed in AOD retrieval. However, due to 

the lack of a blue band in TANSO-CAI, only one visible band is used for AOD 

retrieval. The single-band algorithm has no degree of freedom to select aerosol models 

[41].  

I used the 6S radiative transfer code to simulate the relationships between TOA 

and surface reflectance in the TANSO-CAI 0.67 μm band under five different aerosol 

models: continental, urban, biomass, desert, and maritime [42]. Figure 6.7 shows the 

simulation results for the different models when surface reflectances were 0.02, 0.04, 

0.06, and 0.08, respectively. We can see that under the urban aerosol model, the 

relationship between TOA and surface reflectance differs greatly from those of other 

aerosol models. With the exception of the urban aerosol model, there are only slight 

differences between each of the models. This implied that for the TANSO-CAI 0.67 

μm band based algorithm, the continental aerosol model could potentially be used as 

the common assumption to describe aerosol scattering and absorption properties, but 

actually doing so would lead to large errors when the aerosol properties were in 

accordance with the urban aerosol type. Consequently, these deficiencies can restrict 

the performance of TANSO-CAI in its accuracy and range of application.  

 

6.5 Conclusions 

In this study, I proposed a GOSAT TANSO-CAI adapted DT algorithm for aerosol 

retrieval based on ideas from the MODIS DT algorithm. TANSO-CAI measures 

reflectance near the 1.6 μm wavelength. It does not measure the 2.1 μm wavelength. In 

the MODIS DT algorithm, relationships between the 2.1 µm and visible (red and blue) 

bands are used to account for the surface signals. In order to take full advantage of 

these relationships in the TANSO-CAI retrieval algorithm, I analyzed the reflectance 

relationship between 1.6 μm and 2.1 μm with the help of a MODIS surface reflectance 

product, and found that their relationship varies according to the surface condition. 

In the MODIS DT algorithm, the estimation of visible surface reflectance is 

dependent on both geometry (scattering angle) and surface conditions (NDVISWIR). 

Our results show that AFRI2.1 is highly correlated with the NDVISWIR under low 

aerosol loading conditions (r-value of 0.943). Since both NDVISWIR and AFRI2.1 are 

defined by longer wavelengths that are much less influenced by aerosol than regular 
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NDVI, similar to the MODIS DT algorithm, I took the scattering angle and AFRI2.1 

into account to develop a method for estimating surface reflectance at 0.67 μm from 

the 1.6 μm band for TANSO-CAI. 

AOD retrieval over land from TANSO-CAI was conducted based on estimated 

surface reflectance. These retrievals were validated by comparison against 

measurements from five different AERONET sites. The retrievals displayed very high 

consistency with the AERONET measurements (r-value of 0.922). The uncertainty 

values for this algorithm were assessed using the expected error envelope of ± (0.1 + 

15% AODAERONET), and 69.2% of retrievals fell within this expected error lines. The 

mean bias error for the overall experimental data is 0.045.  

The demonstrated approaches for GOSAT TANSO-CAI AOD retrieval can be 

used in conjunction with other sensors that measure reflectance in corresponding 

wavelength bands, especially sensors which have SWIR bands near the 1.6 μm 

wavelength but lack the 2.1 μm band. This study offers a new idea for estimating 

surface reflectance in the visible band from the SWIR band. However, like the MODIS 

DT algorithm, this algorithm is also unable to work over bright land surfaces. In 

addition, although the 1.6 μm and 2.1 μm SWIR bands are not sensitive to fine-mode 

aerosol particles, under the dust aerosol condition, the atmosphere is no longer 

transparent. Therefore, use of the current algorithm is restricted to dust aerosols 

[43,44]. 
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Chapter 7 Summary and conclusions 

 

7.1 Summary of present work 

Atmospheric aerosols have been recognized as the main source of uncertainty in 

evaluating the climate change. Aerosols near the surface effect on air quality and 

human health. In addition, atmospheric aerosols have also been well known to 

introduce large variations in remote sensing of dynamics over Earth’s surface at 

satellite level. Aiming to derive atmospheric aerosols properties using satellite remote 

sensing technique, and to correct the atmospheric effects on the extracted information 

of Earth's surface at satellite-level, three main tasks have been undertaken: (1) 

Determination of surface contribution at satellite-level. (2) Establishment of aerosol 

retrieval algorithm (including assumptions of aerosol models, building of look-up table, 

and retrieval using look-up table). (3) Development of correction method for 

minimizing the atmospheric influences in spectral red and near-infrared (NIR) bands.  

The aerosol retrieval was based on the observation from Greenhouse gases 

Observing SATellite Thermal and Near-infrared Sensor for Carbon Observation-Cloud 

and Aerosol Imager (GOSAT TANSO-CAI). The ground measured aerosol optical 

depth (AOD) from Aerosol Robotic Network (AERONET) were used to validate our 

retrievals. Moderate-Resolution Imaging Spectroradiometer (MODIS) and AERONET 

collocated data were used in analysis of atmospheric effects on the remote sensing of 

surface conditions (e.g., vegetation), and in validating the performance of the 

developed correction method. The satellite top-of-atmosphere (TOA) and surface 

radiance data, and ground-level and satellite-level AOD data used for these analyses 

are listed in Table 7.1.  

    Two new AOD retrieval algorithms for GOSAT TANSO-CAI were developed, 

and two new correction method for minimizing the atmospheric influences in spectral 

red and NIR bands were proposed in this thesis. 
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Table 7.1 Overview of data used in this thesis. 

Chapter Data category Short name Time scale Cover areas 

Chapter 2 Radiance data 

 

 

AOD data 

 

TANSO CAI L1B+ 

 

 

AERONET Level 2.0 

2009–2014 

 

 

2009–2014 

Over 9 

AERONET 

stations globally 

Over 16 

AERONET 

stations globally 

Chapter 3 Radiance data 

 

 

AOD data 

 

 

Geolocation 

Fields 

 

MODIS MOD02HKM 

MODIS MOD09HKM 

 

AERONET Level 2.0 

 

 

MODIS MOD03 

2008–2014 

2008–2014 

 

2008–2014 

 

 

2008–2014 

Over 3 

AERONET  

stations in Asia 

Over 3 

AERONET  

stations in Asia 

Over 3 

AERONET  

stations in Asia 

Chapter 4 Radiance data 

 

 

AOD data 

 

 

Geolocation 

Fields 

 

MODIS MOD09HKM 

 

 

AERONET Level 2.0 

 

 

MODIS MOD03 

2008–2014 

 

 

2008–2014 

 

 

2008–2014 

Over 3 

AERONET  

stations in Asia 

Over 3 

AERONET  

stations in Asia 

Over 3 

AERONET  

stations in Asia 

Chapter 5 Radiance data 

 

 

AOD data 

 

 

Geolocation 

Fields 

 

MODIS MOD09HKM 

 

 

AERONET Level 2.0 

 

 

MODIS MOD03 

2008–2014 

 

 

2008–2014 

 

 

2008–2014 

Over 9 

AERONET 

stations globally 

Over 3 

AERONET  

stations in Asia 

Over 3 

AERONET  

stations in Asia 

Chapter 6 Radiance data 

 

 

AOD data 

 

TANSO CAI L1B+ 

MODIS MOD09HKM 

 

AERONET Level 2.0 

MODIS MYD04_3K 

 

2009–2014 

2009–2014 

 

2009–2014 

Over 9 

AERONET 

stations globally 

Over 5 

AERONET 

stations globally 
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7.2 Limitation of this study 

7.2.1 Limitations in AOD retrieval algorithms 

In Chapter 2 and Chapter 6, I introduced two new AOD retrieval algorithms for 

GOSAT TANSO-CAI sensor. Due to fewer spectral bands being available in GOSAT 

TANSO-CAI, only one visible band was used for aerosol retrieval, and its accuracy 

and ability has been limited. Because the single-band retrieval algorithm does not have 

the degree of freedom to choose aerosol type, the current algorithms used the 

continental aerosol model to describe the aerosol condition. Although the continental 

aerosol model is an often used assumption over land surfaces, it is obviously not 

satisfactory for all aerosols conditions. Improperly assuming aerosol type can lead to 

errors in retrieval.  

In these two algorithms, the surface signal in the visible wavelength is estimated 

based on the shortwave infrared (SWIR) band at 1.6 um. TOA reflectance in 1.6 um is 

not sensitive to finemode aerosol particles and can be assumed as surface reflectance. 

However, under the dust aerosol condition, the atmosphere is no longer transparent. 

Therefore, use of the proposed algorithms are restricted to dust aerosols. 

In addition, as typical vegetation-dependent algorithms (similar with MODIS 

Dark Target algorithm), these algorithms do not aim to work for bright surface (e.g., 

desert or urban). 

In theory, these two AOD retrieval algorithms can be implemented for any 

satellite sensor if provide reflectances in the appropriate bands. For other sensors, 

however, because the specification (such as center wavelength, bandwidth and spectral 

responses) of corresponding bands may be different with TANSO-CAI, the difference 

in the specification of bands must be corrected when applying to other satellites.  

7.2.2 Limitations in correction methods for atmospheric influences 

In Chapter 4 and Chapter 5, two self-corrected methods to minimize the 

atmospheric influences on vegetation indices were introduces. In these methods, 

surface reflectance estimation is an important step, which is based on the reflectance 

relationship between red and SWIR 2.1 µm bands. The linear relationship of R0.6 = 

0.5R2.1 can be used for dark surface target. However, the 2.1 µm band also cannot 

penetrate the dust aerosols. Limited success of the methods are expected in the case of 

dust or non-vegetated surface conditions. 
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7.3 Further study 

The proposed AOD algorithm is the first step towards the application of GOSAT 

data for the retrieval of AOD over land. I expect existing errors and the uncertainties in 

the algorithm to be improved in further studies by expanding experimental data, 

diversifying aerosol models in look-up tables, correcting elevated surface targets, and 

improving cloud detection algorithms. 

Expectedly, Greenhouse gases Observing SATellite 2 (GOSAT-2), the successor to 

GOSAT, which is scheduled for launch in the Japanese fiscal year 2017, will carry a 

new observation instrument: Cloud and Aerosol Imager 2 (CAI-2). CAI-2 will have 

greatly improved observation capabilities over CAI; 10 bands in the ultraviolet, visible, 

NIR, and SWIR region, and capacity to observe in both the forward and backward 

directions (Table 7.2). Hence, the current algorithm could be adapted to operate on 

next-generation instruments, greatly ameliorating the existing problems caused by the 

single-band algorithm. 

With regards to the second-generation sensor GOSAT CAI-2, this work could be a 

meaningful reference, and the existing deficiencies (e.g., the single-band based 

retrieval method) caused by current instrument limitations can be expected to improve 

in the future. Red and blue bands are used in the current MODIS DT algorithm, and 

GOSAT CAI-2 will provide new measurement capability in the blue band. According 

to Equation 2 in Chapter 6, an approach for estimating surface reflectance in the blue 

band from the 1.6 μm band could be developed, one which has the potential to modify 

the current algorithm for GOSAT CAI-2 by employing the blue band. Moreover, both 

CAI and CAI-2 possess the ultraviolet band, and the AOD at the ultraviolet band is an 

important parameter. The use of the ultraviolet band would be helpful for detecting 

absorbing aerosol, and offers a good opportunity for further studies to take the 

advantage of the GOSAT CAI ultraviolet band in aerosol retrieval.  

Table 7.2 Specification of GOSAT TANSO-CAI-2. 

+20 deg. (Forward viewing) –20 deg. (Backward viewing) 

Band 

number 

Bandwidth 

(μm) 

Spatial 

resolution (m) 

Band 

number 

Bandwidth 

(μm) 

Spatial 

resolution (m) 

1 0.333−0.353 460 6 0.370−0.390 460 

2 0.433−0.453 460 7 0.540−0.560 460 

3 0.664−0.684 460 8 0.664−0.684 460 

4 0.859−0.879 460 9 0.859−0.879 460 

5 1.585−1.675 920 10 1.585−1.675 920 
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7.4 Final conclusion 

The main objectives of this research are to develop an aerosol retrieval algorithm 

in order to retrieve aerosol properties from satellite observations, and to develop an 

atmospheric correction method for high-precision surface monitoring. For this, five 

main research tasks (from Chapter 2 to Chapter 6) have been undertaken: 

(1) Chapter 2 introduced a new algorithm for retrieving AOD over land, from the 

CAI. The GOSAT and AERONET collocated data from different regions over the 

globe were used to analyze the relationship between the TOA reflectance in the SWIR 

(1.6 μm) band and the surface reflectance in the red (0.67 μm) band. Our results 

confirmed that the relationships between the surface reflectance at 0.67 μm and TOA 

reflectance at 1.6 μm are not constant for different surface conditions. I combined the 

advantages of the Aerosol FRee vegetation Index (AFRI), which is aerosol resistant 

and highly correlated with regular Normalized Difference Vegetation Index (NDVI), 

with our regression function, which can preserve the various correlations of 0.67 μm 

and 1.6 μm bands for different surface types, and developed a new surface reflectance 

and aerosol-free NDVI estimation algorithm, which I named the Modified AFRI1.6 

algorithm. 

(2) Chapter 3 evaluated the performances of Atmospherically Resistant 

Vegetation Index (ARVI), Enhanced Vegetation Index (EVI), two-band-based EVI 

(EVI2), Visible Atmospherically Resistant Index (VARI) and AFRI for vegetation 

detection and monitoring with various AOD levels using the MODIS and AERONET 

data.  

(3) Chapter 4 proposed a self-correction method for correcting the atmospheric 

influences in red and NIR bands. The corrected NIR band could be singly utilized to 

improve the measurement accuracy of SWIR-based vegetation indices. The corrected 

NIR and red band pair could also be directly used in the construction of vegetation 

indices, which would have the capability to assess vegetation and even aerosols that 

are present in the atmosphere. This method was applied in the construction of the 

corrected NIR-derived AFRI2.1 and the corrected NDVI, the performances of which 

were investigated under different aerosol loading conditions. The results revealed that 

under different AOD values, the corrected NIR-derived AFRI2.1 was generally closer to 

the atmospherically corrected NDVI than the original AFRI2.1. Compared with the 

uncorrected NDVI, the NDVI corrected by our method exhibited an obviously better 

performance under aerosol loading conditions; the atmospheric influences on the NIR 

and red bands were largely removed, generating near-theoretical values. 

(4) Chapter 5 analyzed the reflectance relationship between the 1.6 µm and 2.1 
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µm bands using the MODIS surface reflectance product, and attempted to adapt the 

2.1-µm-based self-correction method to the 1.6-µm-based sensors, according to the 

reflectance relationship between the 1.6 µm and 2.1 µm bands. The analyzed results 

revealed that the reflectance relationship between the 1.6 µm and 2.1 µm bands is 

typically dependent on vegetation conditions. The performance of the 1.6-µm-based 

correction method has been tested with different levels of AOD by a comparison of the 

atmospherically corrected vegetation indices. The results showed that the atmospheric 

influences in the red and NIR bands were effectively corrected using the 1.6-µm-based 

correction method, and the corrected red and NIR band derived vegetation indices have 

obvious improvements in accuracy. 

(5) Chapter 6 introduced a Dark Target algorithm for GOSAT CAI based on the 

strategy of MODIS DT algorithm. Similar to the current MODIS DT algorithms 

(Collection 5 and Collection 6), a TANSO-CAI-applicable approach that uses AFRI2.1 

and the scattering angle to account for the visible surface signals was proposed. 

Validations show that retrievals from the CAI have high agreement with the 

AERONET measurements, with an r-value of 0.922, and 69.2% of the AOD retrieved 

data falling within the expected error envelope of ± (0.1 + 15% AODAERONET). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



177 

 

 

Acknowledgements 

 

First and foremost, I would like to give my deepest and sincerest gratitude to my 

venerable supervisor, Associate Prof. Wang Xiufeng, whose invaluable supervision, 

scholastic guidance, constant encouragement and extraordinary patience enable me to 

complete this research. Your intellectual suggestion, rigorous scientific attitude and 

far-sighted academic perspectives impact on all the stages of my study. Without your 

help, I would not be able to publish my papers and also would not have completed my 

Ph.D. thesis successfully. You are always concerned about my research progress, talk 

to me every week and give the valuable suggestions to my research. More importantly, 

you give meticulous care to my daily life. I learned a lot from you not only the 

academic knowledge, but also the correct way to deal with difficulties and things. Your 

goodness, generosity, selflessness are the guide and light of my further life. I just want 

to show my deeply appreciate that it’s my great honor to be one of your students. 

I am also grateful to Associate Prof. Tani Hiroshi for the meaningful advices in 

seminars, intermediate presentations and also advices for my Ph.D. thesis. Many 

thanks to Prof. Sameshima Ryoji, Prof. Noguchi Noboru and Prof. Hirota Tomoyoshi. I 

am grateful to yours critical comments and thoughtful suggestions.  

I am greatly indebted to Assistant Prof. Anthony R. Chittenden. He helps me to 

check the English grammar in my thesis and research paper manuscript and also gives 

me useful advices to my research work. I also sincerely thank Dr. Guo Meng 

(Northeast Normal University, China) for his encouragement, helpful suggestions 

throughout my study.  

Thanks also go to my lab mates Yin Shuai and Sun Zhongyi for their help and 

cooperation in making the laboratory atmosphere healthy. I feel happy and relaxed 

with them. Thank you for giving me a happy time. I also owe my sincere gratitude to 

my friends and my fellow classmates who gave me their help and time to find solutions 

to my problems during the difficult course of the thesis.  

I also would like to thank the GOSAT Project of Japan and NASA for providing 

data for my study.  

My Ph.D. Course was funded by Japanese Government Scholarship program. I 

am grateful to the Ministry of Education of Japan. With this support, I can focus all my 

attention on my research work. 



178 

 

I should finally like to express my gratitude to my beloved family who have 

always been helping me out of difficulties and supporting me consistently without a 

word of complaint. 

 

 

 

                                        Zhong Guosheng 

                  Hokkaido University, Sapporo, Japan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



179 

 

 

Abbreviations 

6S Second Simulation of a Satellite Signal in the Solar Spectrum 

AATSR Advanced Along-Track Scanning Radiometer 

ADEOS-1 Advanced Earth Observing Satellite 1 

AERONET Aerosol Robotic Network 

AFRI Aerosol FRee vegetation Index 

AOD Aerosol Optical Depth 

ARVI Atmospherically Resistant Vegetation Index 

AVHRR Advanced Very High Resolution Radiometer 

BRDF Bidirectional Reflectance Distribution Function 

CAI Cloud and Aerosol Imager 

DT Dark Target 

EE Expected Error 

ENVISAT Environmental Satellite 

EOS Earth Observing System 

EVI Enhanced Vegetation Index 

EVI2 Modified 2-band EVI 

FRAR Fraction of Photosynthetically Active Radiation 

FTS Fourier Transform Spectrometer 

GOSAT Greenhouse gases Observing SATellite 

IRS-1C/1D Indian Remote Sensing Satellites-1C/1D 

LAI Leaf Area Index 

MBE Mean bias error 

MIR Middle infrared 

MISR Multi-angle Imaging SpectroRadiometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSAVI Modified SAVI 

NDVI Normalized Difference Vegetation Index 

NIR Near-infrared 

PM Particulate Matter  

PM2.5 Particulate matter with a diameter less than 2.5 μm 

POLDER Polarization and Directionality of Earth’s Reflectance 

RGB Red, Green and Blue 

RVI Ratio Vegetation Index 

RMSE Root mean square error 



180 

 

SARVI Soil-adjusted and Atmospheric Resistant Vegetation Index 

SAVI Soil-Adjusted Vegetation Index 

SAVI2 Soil-Adjusted Ratio Vegetation Index 

SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric 

CHartographY 

SPOT Satellite Pour l'Observation de la Terre  

SWIR Shortwave infrared 

SYNAER SYNergetic Aerosol Retrieval 

TANSO Thermal and Near-Infrared Sensor for Carbon Observation 

TOA Top-of-atmosphere 

TOC Top-of-canopy 

TSAVI Transformed SAVI  

UV Ultraviolet  

VARI Visible Atmospherically Resistant Index 

VI Vegetation Index 

VIIRS Visible infrared Imaging Radiometer 

XCO2 Column-averaged dry-air mole fractions of CO2 

 


