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Chapter 1  Introduction  

 

This chapter presents concepts concerning agricultural automation. It briefly describes the autonomous 

navigation systems for agricultural vehicles as a solution for current agricultural problems in Japan. It 

also introduces the motivation of this work and the research objectives pursued. 

 

1.1 Research background 

 

Agriculture is mankind’s oldest economic activity, providing necessary food and fuel for our survival. 

With the global population expected to keep increasing in the future, agricultural production must also 

increase in order to meet the new demands for food and bioenergy. In Japanese society, aging and 

population decline have been progressing; and this tendency is more significantly seen in rural areas 

than in urban areas (Hashimoto et al., 2001). 

 

In order to protect food production in Japan, encouraging the development of technologies in the field 

of agriculture automation such as autonomous guidance systems for agricultural vehicles seems to be 

an effective strategy to deal with the dwindling farming labor force, in addition to increase production 

efficiency and safer operation (Kondo et al., 2011). 

 

1.1.1 Agriculture automation 

 

Trends in the evolution and development of agricultural field machinery are often shaped by the 

technological development in other sectors of the world’s economy such as defense and transportation. 

Robots have played a fundamental role in increasing the efficiency and reducing the cost of industrial 

production and products. In the past twenty years, a similar trend has started to take place in agriculture, 

with GPS- and vision-based self-guided tractors and harvesters already being available commercially. 

Robotics and automation can play a significant role in society by meeting the future agricultural 

production needs. To cope with the aging population and labor force reduction problems in agriculture, 

the agriculture automation field is devoted to increase productivity, reduce production cost and 

improve the quality of agricultural products.  
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Looking towards the future to a point in time when humans are removed from field machinery, there 

are several emerging technologies that will be essential for autonomous operation. In some cases 

infrastructure development such as densification of Real-Time Kinematic (RTK) GPS networks to 

generate Virtual Reference Stations (VRS) correction data along with the development of Internet 

connectivity via Wi-Fi and WLAN to support data transfer. What follows is a brief overview of the 

status of many of the allied technologies that are essential for totally agriculture automation. 

 

Space-Based Positioning Systems: Advancements in sensing, communication and control 

technologies coupled with Global Navigation Satellite Systems (GNSS) and Geographical Information 

Systems (GIS) are aiding the progression of agricultural machines from the simple, mechanical 

machines of yesterday to the intelligent, autonomous vehicles of the future. 

 

Wireless Communications: For large scale high-tech agricultural operations, establishing vehicle to 

vehicle and vehicle to office communication is becoming imperative to manage the logistics of the 

tasks and to ensure the safety of the machines working in the field. The capability to wirelessly transfer 

data can help monitor the working statuses of these machines and allow dynamic reallocation of tasks 

in the event of malfunctions. Point to point and point to multi-point communication can specifically be 

used for leader-follower systems.  

 

On-Vehicle Communications: With the introduction of microcontrollers to agricultural filed 

machinery it was not long until equipment designers realized the need to share and manage information 

between controllers. Following the lead of the truck, bus and automotive industries, equipment 

designers began looking for bus configurations and data structures to support continuing machinery 

development. Quickly, most designers realized the need for standardization to facilitate interoperability 

and interchangeability the industry came to grips with for hitching (ISO 730, 2009) and hydraulic 

systems (ISO 5675, 2008).  

 

Data Structures: While on-vehicle communication has relatively well defined data structures (ISO 

11783), standards for transfer of data between the farm office and field machinery continue to evolve. 

The latter is being driven for the most part by software developers who recognize the need to reconcile 

data transfer from a farm office to a field machinery and back again. Today, the need to reconcile data 

is being driven by map-based application. “Prescription maps” direct where and how inputs will be 
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applied to crop production systems. Data regarding input metering and placement is further 

complicated by the nature of field equipment apply inputs. Crop production managers and suppliers 

have multifaceted data transfer needs that range from moving prescription maps form the farm office 

to field equipment and then returning plans field operations verification files along sensor data for 

summarizing crop health and performance to the field office. 

 

By implementing these technologies, agriculture automation has achieved a rapid development in the 

execution of all the agricultural tasks. More recently, farmers have started feasible tests with 

autonomous systems that automate or augment operations such as pruning, thinning, and harvesting, 

as well as mowing, spraying, and weed removal.  

 

Advances in sensors and control systems allow for optimal resource and integrated pest and disease 

management. This is just the beginning of what will be a revolution in the way that food is grown, 

tended, and harvested. 

 

1.1.2 Automatic navigation systems for agricultural vehicles 

 

Systems designed to accomplish automated guidance on agricultural vehicles can be seen back as far 

as the 1920s when furrows were used to guide tractors across fields with reduced effort from the 

operator. Since that time, as technology has improved, automated guidance has evolved from 

mechanical sensing to electronic sensors, machine vision, and global positioning systems (GPS) to 

successfully navigate equipment across the field (Reid et al., 2000). In most cases, operators utilize 

automatic guidance to follow parallel paths through the field. At the beginning of field operations, an 

A-B line is input into the control console, and the GPS coordinates are stored. As the operator continues 

to cover the field, the automatic guidance system can be engaged and the equipment will attempt to 

follow parallel paths to cover the field based on steering sensor feedback and GPS data. Many systems 

also provide the ability to follow curved paths which are input in much the same way. 

 

Agricultural vehicles, such as tractors, are designed to provide some drivability over fields and off-

road surfaces. The counterpart is their propensity to roll over the ground. As a result, the development 

of on-board systems preventing agricultural machinery from rollover situations is encouraged. Several 

solutions (Anderson et al., 2005) have already been proposed for road vehicles: steering and braking 
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control or Electronic Stability Program (ESP) systems are some examples. In modern agriculture, 

tractors and other agricultural machinery are essential. The Laboratory of Vehicle Robotics (VeBots) 

of Hokkaido University School of Agriculture has succeeded conducting researches on unmanned 

tractors and developing new technologies. Sensors are installed on a tractor, and its position is 

measured by satellite (GPS). A computer commands its movement, replacing manual operation and 

thus giving birth to robot tractors. 

 

Two basic types of automated guidance systems are typically used today by producers. The first system 

consists of a steering actuator which is mounted to the tractor’s steering wheel. The second system is 

integrated into the tractor’s steering system and utilizes a control valve to actuate the hydraulic steering 

cylinder directly. The overall accuracy of these systems relies heavily on the type of GPS technology 

used (RTK GPS provides the highest accuracy) as well as proper installation and setup. Ultimately, 

these systems benefit producers by reducing operator effort and pass-to-pass overlap during field 

applications. In the field of agricultural vehicles, the implementation of advanced sensor technologies 

and GPS has given as a result autonomous agricultural machines with high navigation accuracy. Since 

the early 1990s, the GPS receivers have been widely used as space-based satellite navigation system 

to provide longitude and latitude position coordinates anywhere on the earth. 

 

For some years now, governments, researchers and farmers have become increasingly conscious of the 

important role Precision Agriculture (PA) will play in the near future (Burgos-Artizzu et al., 2011). 

With the current projections of expected world population growth and the subsequent decrease of 

available land and natural resources, there will be a pressing need for a cheaper, more efficient and 

environmentally friendly agriculture (Srinivasan, 2006). PA seeks to avoid applying the same 

management practices to a crop regardless of site conditions and may be used to improve field 

management from several perspectives; for example, it can help to minimize the wastage of pesticides 

required for the effective control of weeds, diseases and pests and to ensure that crops receive adequate 

nutrients, leading to more efficient and greener agriculture (Kropff et al., 1997; Earl et al., 1996). 

 

1.1.3 Terramechanics: Applications to Terrain-Vehicle Systems 

 

Information on the state of an agricultural vehicle such as its location, and tire parameters like the 

cornering stiffness can be estimated using a Global Positioning System (GPS). Methods using a GPS 
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and an Inertial Measurement Unit (IMU) integration have been developed (Bevly et al., 2006) to predict 

critical tire parameters in the limits of handling. Previously GPS/IMU solutions (Sienel, 1997) have 

been shown to estimate a vehicle’s sideslip angle and tire slip angle. Using these estimates, the tire 

cornering stiffness can be estimated for the linear region of the tire (Bouton et al., 2007). In this regard, 

some researches involve the study of a wheeled vehicle running on various surfaces and the soil-wheel 

interaction (Ospina and Noguchi, 2018). This area of engineering is known as Terramechanics. The 

tire’s operating range and the soil properties are topics of particular interest. 

 

The tire’s operating range is divided into three regions: linear, transitional and sliding. A linear tire 

model can be used to predict the properties in the linear region, but generally cannot be employed in 

transitional and sliding regions since they are nonlinear (Baffet et al., 2006). 

 

Linear tire models that consider only the linear region of the tire’s operating range have been 

successfully implemented in road vehicles. However, since road vehicles are supposed to move on 

high grip ground, such systems consider only pseudo-sliding phenomenon with constant parameters 

(Pepy et al., 2006). Most of active devices focused on vehicle stability concerns road cars and cannot 

be applied satisfactorily in an off-road context, as in path planning of autonomous agricultural vehicles 

like tractors and utility vehicles (Noguchi et al., 1998); since the variability and nonlinearities of the 

tire/ground contact are often neglected.  

 

For off road vehicles, the nonlinearities of the interaction between the tires and the road surface gives 

as result a hysteresis loop in the linear region of the tire’s operating range. For this reason, it is very 

complicated to model the lateral tire forces due to the nonlinear dependence of the lateral forces on 

several parameters, such as longitudinal slip, sideslip angle, normal load, camber angle, tire pressure, 

wear, and road surface characteristics (Koo et al., 2004). Even thought, the nonlinearities of the 

interaction between the tires and the road surface should not be ignored for off road vehicles. Therefore, 

there is a necessity of a precise vehicle model that does not depend on the parameters mentioned above; 

namely a “non-parametric” vehicle model, that fills the gaps existing in current models applied to 

autonomous vehicle development. 

 

Some works consider the nonlinear behavior of the tire by estimating the lateral force and tire slip 

angle over the tire’s entire operating range (linear, transitional and sliding) obtaining a non-parametric 

vehicle model using mathematical expressions that account for the sliding nonlinear behavior in the 
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vehicle dynamics (Ospina and Noguchi, 2016). This thesis aims to use this tire information in order to 

improve the navigation model of an automatic steering controller based on machine vision applied to 

an agricultural test vehicle. 

 

1.1.4 Machine vision systems for agricultural vehicles 

 

Machine vision systems onboard robots have become increasingly important in Precision Agriculture 

(PA) in order to fully automate some in-field agricultural tasks; like automatic navigation of an 

agricultural vehicle. In addition, machine vision systems in precision agriculture are also used to gather 

data from the field in an automated manner at minimal cost; like crop mapping. Several researches 

(Pajares et al., 2016) have achieved good results performing either crop mapping or crop navigation 

separately. 

 

Research work in this area is difficult to classify and compare due to the variations among different 

crops species and to the different approaches taken to collect field data (Thorp and Tian, 2004). 

However, almost all existing crop row detection methods process the image in two steps: 1) 

segmentation of vegetation against the background (soil and/or harvest residues) and 2) detection of 

the vegetation pixels. 

 

The procedures for the segmentation of vegetation usually assume that all pixels belonging to 

vegetation can be easily extracted by some combination of the color planes on the RGB model 

(Woebbecke et al., 1995; Andreasen et al., 1997). Other approaches propose the use of the HIS color 

model combined with classification methods such as Bayes networks and clustering (Lee et al., 1996, 

Zheng et al., 2009). Segmentation can also be performed by selecting texture features based on their 

similarities with previous models encountered, stored in a database (Bosch et al., 2007). Moreover, 

segmentation can be performed by combining different cameras, such as conventional and NIR 

cameras (Gerhards and Christensen, 2003). 

 

In addition, weed detection by computer vision methods is also usually performed by combining 

information on differences in color, position, shape, texture, size or spectrum of weeds and crop. The 

use of only one or many of these characteristics depends on the way the photographic images are taken, 

the crop type, and the weed species involved. Some works present statistical studies of the features 
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involved (Van Evert et al., 2006). Others choose to distinguish between species by their different 

spectra, combining the information obtained from a conventional camera with a NIR camera, 

(Gerhards and Oebel, 2006). In lettuce, plants and weeds can be clearly distinguished by differences 

in their sizes and position. This is similar to the case of cauliflowers, where weeds can be located by 

their position and some shape characteristics (Onyango and Marchant, 2003), or in carrots and 

cabbages, where weeds have distinct differences in color and size (Hemming and Rath, 2001). Other 

studies make use of classification or feature extraction methods, including as many characteristics as 

necessary. This is used, for example, in Bayes networks (Granitto et al., 2005), or neuronal networks 

(Burks et al., 2005). Additionally, some studies process the images in the frequency domain (Vioix et 

al., 2002) or even using Fuzzy Logic. 

 

Crop row location in real time is often an important goal in the autonomous guidance of agricultural 

vehicles (Gottschalk et al., 2008). In this context, the crop rows are roughly approximated by lines. 

Some other works use the Hough transform (Gonzalez and Woods, 2003), to fully locate the crop rows. 

The drawback of this approach is the high computational complexity of the Hough transform, which 

makes it unsuitable for applications in which there is a need to process images in real-time, i.e. at 25 

fps (frames per second), the standard video camera frame rate. Finally, some other studies deal with 

simpler images, taken closer to the ground and in such a way that perspective is eliminated, so that 

crop rows can be more easily located and the processing adapted to real-time (Sogaard and Olsen, 

2003). 

 

In the other hand, accurate maps showing both weed location and crops density have numerous uses 

including monitoring the effectiveness of weed management strategies, understanding weed population 

dynamics and verifying model predictions. In particular, they can be the data source for sprayers, which 

can determine their location using a GPS receiver and apply treatments where data recommends it. 

These spatial information systems have the potential to allow farmers to fine-tune the locations and 

rates of herbicide application, thereby achieving sustainability and reducing treatment costs. 

 

Data gathering using a tractor or vehicle as a mobile platform requires only one operator and enables 

continuous field sampling. In continuous sampling, data are collected over the entire sample area, 

whereas with discrete sampling, data are collected only from pre-defined points throughout an area. 

Interpolation methods are then used to estimate the crop densities in the intervening areas. Continuous 

data can provide a qualitative description of abundance (i.e., presence or absence, or zero, low, 
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medium, or high) rather than the quantitative plant counts usually generated from discrete sampling. 

Moreover, acquiring video from a mobile platform may become a good opportunity to obtain accurate 

weed and crop maps, and also crop row location in real time has often been an important goal in the 

autonomous guidance of agricultural vehicles (Billingsley and Schoenfisch, 1997), which increments 

the advantages of the ground level approach. Mounting cameras on top of tractors or mobile platforms 

presents problems because the roughness of the terrain transfers to the camera mounting system and 

causes it to acquire images that are difficult to process, even to the human eye. Image sequence 

stabilization is the process of removing the effects of this unwanted motion from an input video 

sequence. It is a key pre-processing step in any serious application of computer vision, especially when 

images are acquired from a mobile platform. Based on the particular roughness of the terrain, motion 

in Precision Agriculture video sequences can include vibration, sway, roll and pitch. 

 

In conclusion, machine vision has been widely utilized for crop mapping because it offers the ability 

to instantly assess the target crops, and it does so in a non-destructive manner. Also, significant research 

has already been carried out in the machine vision-based guidance systems and field sensing systems 

since field images acquired from vehicle-mounted cameras provided baseline data for both navigation 

and mapping processes. 

 

However, current machine vision systems methods have limitations trying to perform both navigation 

and mapping processes at the same time. Methods for automatic navigation of an agricultural vehicle 

based in crop row detection (Romeo et al., 2013) focus into detecting crop rows as accurate as possible; 

typically shooting the central three crop rows at the same time. Detecting three crop rows might provide 

enough accuracy for navigation; however, only three crop rows do not seem to contain enough 

information to build a field map of practical use. On the other hand, a different approach (Slaughter et 

al., 2008) is to use several cameras on zenithal position, each camera shooting one crop row at the time 

giving as a result a high quality map containing several crop rows. This mapping method can be used 

in practical applications like spraying, but navigation from crop row detection becomes a more 

complex problem. In some cases (Bengochea-Guevara et al., 2016), precise detection of the central 

crop row might provide enough accuracy for navigation; but this method requires additional image 

processing steps and is not suitable to build a crop map. 

 



 

9 

 

1.2 Research objectives 

 

This thesis’ purpose is to enhance the navigation performance of an agricultural vehicle by integrating 

a nonlinear vehicle motion model with a unique machine vision system. To achieve this purpose, this 

thesis has two objectives. The first one is to use previous researches results concerning the vehicle’s 

tire dynamic properties in order to improve the motion model of an automatic steering controller system 

applied to a test vehicle. The second one is to integrate this improved navigation model with a machine 

vision method capable of provide automatic navigation with increased accuracy. To integrate the best 

aspects of the vehicle motion model estimations with the machine vision measurements, data fusion 

technique was used. 

 

To fulfill the first objective of this thesis, the measurements of the tire’s lateral forces as a function of 

the tire’s slip angle of a test vehicle traveling on a concrete surface are reported. A description about 

how these tire parameters can be used to improve the motion model of the test vehicle is given as well. 

To fulfill the second objective of this thesis, an explanation of the new machine vision method proposed 

is given in further chapters. 

 

The machine vision method proposed is capable of mapping several crop rows while performing 

simultaneous crop row detection with high accuracy. As aforementioned, the method is intended for 

use in automatic guidance systems of agricultural machinery. To achieve this goal, this research 

implemented a new camera developed by Fujifilm Corporation. This camera can shoot high definition 

wide-angle and telephoto images simultaneously. The camera was mounted in the top of a test vehicle, 

focused on the field surface from an inclined angle in order to obtain wide-angle images that cover up 

to eleven crop rows. At the same time, the camera provides accurate detection of the central crop row 

using telephoto images. The test vehicle was also equipped with an RTK-GPS and an FOG. An on-

board computer process the data from the camera, RTK-GPS and FOG. For accurate crop row detection 

this research used an image analysis method without segmentation instead of the Hough transformation 

method (Ji and Qi, 2011), in order to reduce the computational burden of the image processing 

software. 

 

Results show that the new machine vision method introduced in this research displays increased 

accuracy and noise reduction for crop row detection used in automatic navigation. In addition, the 
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resulting map covers up to eleven crop rows, compared to other mapping methods that cover up to five 

crop rows. These results imply that the method is ideal for practical applications like spraying, avoiding 

to travel additional paths along the field in order to build a crop map; while providing crop row 

detection with increased accuracy. Results also show the benefit of determining the test vehicle’s tire 

dynamic properties in order to improve the navigation model. 

 

1.3 Organization of thesis  

 

This thesis presents a navigation method applied to an agricultural vehicle based on an improved 

navigation model and a new machine vision method consisting in simultaneous mapping and crop row 

detection by fusing data from Wide-angle and Telephoto images. This thesis is organized into five 

chapters. 

In chapter 1, the research background and the importance of autonomous navigation systems for 

precision agriculture has been introduced. The objectives of this research were also stated. 

Chapter 2 presents the research platform used during the experiments. The test vehicle and the sensors 

implemented in the experiments are described. 

Chapter 3 describes the vehicle modeling strategy. An explanation of the tire dynamic parameters 

employed in this study and how they improve the vehicle navigation model is given. 

Chapter 4 describes the image processing algorithms employed in this study. It includes a description 

of the programming language and the libraries used. 

In chapter 5, experimental results for navigation are discussed. An approach to combine the vehicle 

navigation model and the machine vision method is described. 

In chapter 6, experimental results for crop row mapping are discussed. It includes the map accuracy 

calculation. 

Chapter 7 summarizes the achievement of this study and proposes future work. 
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Chapter 2  Research platform  

 

This chapter describes the equipment used during this research. The research platform implemented in 

the Kubota MD77 tractor used for the field experiments is introduced. Both the sensors and the test 

vehicle’s technical specifications are included. 

 

2.1 Kubota MD77 

 

The Kubota MD series is a family of utility tractors produced by the Kubota Corporation. These mid-

size tractors provide versatility in different agricultural tasks (lift, move, push, pull, and grade) with an 

environmentally responsible diesel engine. Among all the models of the MD series (77, 87, 97, 107, 

117) the MD77 was used. 

 

2.1.1 Vehicle overview 

 

The Kubota MD77 most important specifications are list on Table 2.1. The PTO specifications have 

been omitted. For a copy of the vehicle’s data sheet, please refer to Appendix A. 

Table 2.1. Kubota MD77 tractor specifications. 

Part Description 

Engine 

 

Type                            Four Cylinder Four Stroke Water Cooled Diesel 

Power output                    56.6 kW / 2400 rpm 

Total stroke volume           4.329 l 

Chamber configuration      Direct injection type 

Supercharger                      No 

Travel Speeds Typical travel speed-forward       1.2 ~ 29.1 km/h 

Typical travel speed-reverse       1.2 ~29.4 km/h 

Transmission gear 

 

Main clutch-type         Dry type, single plate 

Main speed                     8 gears 

Sub-speed                     2 gears 

Differential lock device       Yes 

Dimensions Overall Width                                        1.96 m 
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 Overall Length                                       3.88 m 

Overall Height                                       2.60 m 

Front Tread Centers                           1.43 m 

Rear Tread Centers                           1.52 m 

Wheelbase                                       2.30 m 

Vehicle Weight                          3265 kg 

Tires 

 

Front 9.5-24-6 PR 

Rear 16.9-30-6 PR 

 

The test vehicle was equipped with an on-board computer that logs the data from all the sensors. Fig. 

2.1 shows the vehicle and the sensors equipped for the experiments. 

 

 

Fig. 2.1. Experimental vehicle and equipped sensors. 

 

Both the GPS and the FOG have a direct serial port connection to the on-board computer. The 

potentiometer was connected to a microcontroller in order to process its analog signal. The 

microcontroller communicates with the on-board computer by serial port connection. The speed of all 

serial connections was 115200 bps. The 2-in-1 camera was connected using an HD-SDI to USB 3.0 
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converter (The Imaging Source, DFG/HDSDI) providing 30 frames per second at a resolution of 1280 

x 480 pixels. However, since the GPS NMEA data frames, the FOG data frames, the microcontroller 

data frames and the 2-in-1 camera video frames have different lengths, all the data was synchronized 

using the computer’s time stamp.  

The result was a measurement update rate of 10 Hz for all the sensors, in order to make the FOG, the 

2-in-1 camera and the potentiometer measurements coincide with the GPS measurement. Next sections 

provide a brief description of the sensors implemented in the platform shown in Fig.2.1. 

 

2.2. GPS  

 

The U.S. Global Positioning System (GPS) is maintained by the U.S. government and has been in 

operation since the late 1970s. The benefits of GPS, specifically in the agricultural industry, have been 

well documented as they have progressed from point location mapping (soil sampling or yield 

monitoring) to real-time equipment control (auto-steer or map-based automatic section control). To 

increase the accuracy of the existing GPS network, additional technologies have been developed by 

both public and private institutions. The Nationwide Differential GPS System (NDGPS) was 

developed for use in the U.S. and included beacons maintained by the U.S. Coast Guard and the 

Department of Transportation. There are other positioning systems, like the Global Navigation Satellite 

System (GLONASS) which is a Russian-operated satellite network that was developed in the late 

1970s and was extended to non-military use in 2007. GLONASS is comparable to the U.S. GPS system 

and was created to provide real-time positioning data to compatible receivers. The GLONASS system 

is continually upgraded as existing satellites exceed their service life and new series replace them. The 

GLONASS-M series is currently in operation, and the GLONASS-K1 series became operational since 

2011 (FSA-IAC, 2010). 

 

Also, the Galileo global navigation satellite system is currently being developed by the European 

Union (EU) to provide a separate network of satellites from the Russian and U.S. systems that are now 

in use. The Galileo system has been developed by the European Space Agency primarily to provide 

real-time positioning data for civilian use and was designed to be compatible with the Russian and U.S. 

systems. Two experimental satellites have been successfully launched and four additional satellites 

have been launched in 2011 to validate system operation (ESA, 2010). As of December 2017, 22 of 

the planned 30 active satellites are in orbit. The next launch, which will bring the system to operational 
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completion, is planned in mid-2018.Galileo started offering Early Operational Capability (EOC) on 15 

December 2016, providing initial services with a weak signal, and is expected to reach Full Operational 

Capability (FOC) in 2019. Table 2.2 lists a comparison of the GNSS systems. 

Table 2.2. Comparison of GNSS systems. 

 Political entity Number of satellites Orbital height Period 

GPS United States At least 24satellites 20,180 km 11.97 hours 

GLONASS Russian 

Federation 

31 (24 operational,1 in 

preparation, 2 on maintenance, 

3 reserve, 1 on tests) 

19,130 km 11.26 hours 

Compass China 5 geostationary earth orbit 

(GEO) satellites, 

30 medium earth orbit (MEO) 

satellites 

21,150 km 12.63 hours 

Galileo European 

Union 

22 satellites in orbit; 

30 operational satellites 

budgeted 

23,220 km 14.08 hours 

IRNSS India 7 geostationary earth orbit 

(GEO) satellites 

36,000 km N/A 

QZSS Japan 1 satellite in orbit, 

2 satellite in budget 

32,618km 23.96hours 

 

The accuracy of differential global position systems (DGPS) degrade with increasing distance to the 

reference station. For DGPS systems, an inter-receiver distance of a few hundred kilometers will yield 

a sub-meter level accuracy, whereas for Real Time Kinetic (RTK) systems a centimeter level accuracy 

is obtained for distances of less than 10 km. To service larger areas without compromising on the 

accuracy, several reference stations have to be deployed. Instead of increasing the number of real 

reference stations, Virtual Reference Stations (VRS) are created from the observations of the closest 

reference stations. The locations of the VRS can be selected freely but should not exceed a few 

kilometers from the rover stations. Typically one VRS is computed for a local area and working day. 

 

The observations from the real reference stations are used to generate models of the distance dependent 

biases. Individual corrections for the network of VRS are predicted from the model parameters and the 
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user’s position. This kind of network applied to DGPS and RTK systems is known as wide-area DGPS 

(WADGPS) and network RTK respectively. An example of a commercially available network RTK is 

Trimble’s VRS that provides high-accuracy RTK positioning for wider areas. A typical VRS network 

set up consists of GNSS hardware, communications interfacing and, modeling and networking 

software. Most of the existing network RTK systems have been installed in the densely populated areas 

of central Europe. 

 

RTK-GPS: 

The RTK-GPS (Topcon, Legacy-E) provides the position, direction of travel and speed of the vehicle. 

The low latency configuration (update rate: 10 Hz, latency: 0.02 seconds, data link: 9600 Baud) was 

chosen for the RTK mode. This configuration provides a horizontal position accuracy of 5mm + 0.5 

ppm, a vertical position accuracy of 3 cm + 2 ppm and a speed accuracy of 0.16 km/h. The RTK 

correction signal was obtained using a Virtual Reference System via an Internet Service Provider 

connected to the on-board computer that logs the data from the GPS receiver.  

 

Real-Time Kinematic (RTK) positioning is based on at least two GPS receivers—a reference receiver 

and one or more rover receivers. The reference receiver takes measurements from satellites in view 

and then broadcasts them, with its location, to the rover receiver(s). The rover receiver also collects 

measurements to the satellites in view and processes them with the reference station data. The rover 

then estimates its location relative to the reference. Typically, reference and rover receivers take 

measurements at regular 1 second epochs (events in time) and produce position solutions at the same 

rate. 

 

The key to achieving centimeter-level positioning accuracy with RTK is the use of the GPS carrier 

phase signals. Carrier phase measurements are like precise tape measures from the reference and rover 

antennas to the satellites. In the Legacy-E Series, carrier phase measurements are made with 

millimeter-precision. Although carrier phase measurements are highly precise, they contain an 

unknown bias, termed the integer cycle ambiguity, or phase ambiguity. The Legacy-E Series rover has 

to resolve, or initialize, the carrier phase ambiguities at power-up and every time the satellite signals 

are interrupted. 

 

The Legacy-E Series can automatically initialize the carrier phase ambiguities as long as at least 5 

common satellites are being tracked at reference and rover sites. Automatic initialization is sometimes 
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termed On-The-Fly (OTF) or On-The-Move, to reflect that no restriction is placed on the motion of 

the rover receiver throughout the initialization process. 

 

The Legacy-E Series uses L1 and L2 carrier measurements plus precise code range measurements to 

the satellites to automatically initialize the ambiguities. The initialization process takes between 25 

seconds to a few minutes. While the receiver is initializing the ambiguities it generates a float solution 

with meter-level accuracy. When the initialization process is complete, the solution mode switches 

from float to fix, and the precision changes from meter-level to centimeter-level accuracy. As long as 

at least 4 common satellites are continuously tracked after a successful initialization, the ambiguity 

initialization process does not have to be repeated. The number of position fixes delivered by an RTK 

system per second also defines how closely the trajectory of the rover can be represented and the ease 

with which position navigation can be accomplished. 

 

The number of RTK position fixes generated per second defines the update rate. Update rate is quoted 

in Hertz. For the Legacy-E receiver, the maximum update rate is 20 Hertz. Solution latency refers to 

the lag in time between when the position was valid and when it was displayed. For precise navigation, 

it is important to have prompt position estimates, not values from 2 seconds ago. Solution latency is 

particularly important when guiding a moving vehicle. For example, a vehicle traveling at 25 

kilometers/hour, moves approximately 7 meters per second. Thus, to navigate to within 1 meter, the 

solution latency must be less than 1/7 (= 0.14) seconds. For a copy of the GPS receiver data sheet, 

please refer to Appendix B. 

 

2.3 FOG 

 

A Fiber Optic Gyroscope (FOG) senses changes in orientation using the Sagnac effect, thus performing 

the function of a mechanical gyroscope. However its principle of operation is instead based on the 

interference of light which has passed through a coil of optical fiber, which can be as long as 5 km. 

Two beams from a laser are injected into the same fiber but in opposite directions. Due to the Sagnac 

effect, the beam travelling against the rotation experiences a slightly shorter path delay than the other 

beam. The resulting differential phase shift is measured through interferometry, thus translating one 

component of the angular velocity into a shift of the interference pattern which is measured 

photometrically. 
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Beam splitting optics launches light from a laser diode into two waves propagating in the clockwise 

and anticlockwise directions through a coil consisting of many turns of optical fiber. The strength of 

the Sagnac effect is dependent on the effective area of the closed optical path: this is not simply the 

geometric area of the loop but is enhanced by the number of turns in the coil. The FOG was first 

proposed by Vali and Shorthill (Vali and Shorthill, 1976). Development of both the passive 

interferometer type of FOG, or IFOG, and a newer concept, the passive ring resonator FOG, or RFOG, 

is proceeding in many companies and establishments worldwide (Lefèvre, 1993). 

 

The FOG (Japan Aviation Electronics Industry Ltd., JCS7402-A) provides the vehicle’s angular rates 

(accuracy ≤ ± 5 deg. /s), attitude (accuracy ≤ ± 0.15 deg.) and lateral acceleration (accuracy ≤ ± 1.5 

m/s2) readings. The advantage of using an FOG ever an IMU is that the drift effects in the FOG are 

smaller and therefore can be neglected. Both the FOG and the GPS antenna are placed parallel to the 

test vehicle’s center of gravity. Fig. 2.2 shows the coordinate system of the JCS7402-A. 

 

 

Fig. 2.2. JCS7402-A coordinate system. 

 

Table 2.3 lists the most important specifications of the FOG. For a copy of the FOG data sheet, please 

refer to Appendix C. 
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Table 2.3. JCS7402-A FOG specifications. 

Specification Value  

Attitude & Heading  

Range: Heading, Roll: ±180 deg. 

Range: Pitch : ±90 deg. 

Resolution: ≤ 0.1 deg. 

Accuracy: ≤ ± 0.15 deg. 

Baud rate: 19.2 kbps ~ 115.2 kbps. 

Output Rate : 50 Hz ~ 200 Hz 

Azimuth  

Range: ±180 deg. 

Resolution: ≤ 0.1 deg. 

Accuracy: 
≤ ± (1% of input+(2 

deg./min)) 

Acceleration  

Range: ±19.6 m/s2 

Resolution: ≤ 0.1 m/s2 

Accuracy: ≤ ± 1.5 m/s2 

Rate  

Range: ≤ ± 100 deg./s2 

Resolution: ≤ 0.1 deg./s2 

Accuracy: ≤ ± 5 deg./s2 

Input Voltage: 20 V ~ 30 V 

Current Draw: ≤ 1 A 

Digital Interface: Serial TTL, RS-232 

 

The FOG provides extremely precise rotational rate information, in part because of its lack of cross-

axis sensitivity to vibration, acceleration, and shock. Unlike the classic spinning-mass gyroscope, the 

FOG has no moving parts and doesn't rely on inertial resistance to movement. Hence, this is one 

alternative to the mechanical gyroscope. Because of their intrinsic reliability, FOGs are used for high 

performance space applications. The FOG typically shows a higher resolution than a ring laser 

gyroscope, but suffered from greater drift and worse scale factor performance until the end of the 

1990s. However, among other disadvantages, FOGs requires calibration (determining which indication 
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corresponds to zero angular velocity) while ring laser gyroscopes do not (zero beat frequency always 

means zero angular velocity). Also, FOG are somewhat sensitive to vibrations. 

 

2.4 Potentiometer 

 

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable 

voltage divider. If only two terminals are used, one end and the wiper, it acts as a variable resistor or 

rheostat. 

 

A potentiometer working as a measuring instrument is essentially a voltage divider used for measuring 

electric potential (voltage); the component is an implementation of the same principle, hence its name. 

Potentiometers are commonly used to control electrical devices such as volume controls on audio 

equipment. Potentiometers operated by a mechanism can be used as position transducers, for example, 

in a joystick. Potentiometers are rarely used to directly control significant power (more than a watt), 

since the power dissipated in the potentiometer would be comparable to the power in the controlled 

load.  

 

Potentiometers comprise a resistive element, a sliding contact (wiper) that moves along the element, 

making good electrical contact with one part of it, electrical terminals at each end of the element, a 

mechanism that moves the wiper from one end to the other, and a housing containing the element and 

wiper. 

 

A 10 k Ω Potentiometer (Midori Precisions, CPP-60, linearity ±0.05%) attached to the kingpin of one 

of the steering wheels provides the steering angle (alignment error: ±3.2 deg.).  

 

By 1970, CPP Series had been developed as Angle Sensor of the first precision conductive 

potentiometer in Japan. Today this model has typically 3 kinds of diameters; CPP-35 series (Φ

36.5mm), CPP-45 series (Φ45mm), CPP-60 series (Φ62mm). These models are available with many 

special specifications; for example, electrical & mechanical angle range, shaft shape, center tap, multi 

gangs, water proof type, and so on. Applications can be found in many areas in construction machinery, 

measuring instruments, factory automation, process automation, so on. 

Fig. 2.3 shows the layout of the potentiometer. 
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Fig. 2.3. Midori Precisions, CPP-60 potentiometer layout. 

 

Table 2.4 lists the electrical specifications of the CPP-60 potentiometer. 

Table 2.4. Electrical specifications of the CPP-60 potentiometer. 

Specification Value Units 

Effective Electrical Travel 355 +1, -2 ° 

Total Resistance 0.5, 1, 2, 5, 10, 20 kΩ 

Total Resistance Tolerance ±15 % 

Independent Linearity ±0.05  % 

Rated Dissipation 3/70℃ W 

Output Smoothness MAX. 0.1 % 

Insulation Resistance MIN. 100/DC1000V ＭΩ 

Dielectric Strength AC1000/1 Minute Ｖ 

Temperature Coefficient of Resistance ±400 ppm/K 

 

For a copy of the CPP-60 potentiometer data sheet, please refer to Appendix D. 

 

2.5 Bifocal imaging device (Fujifilm 2-in-1 Camera) 
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The bifocal imaging device is a non-commercial camera developed by Fujifilm Corporation. The 

innovation of the device consist of simultaneous shooting a wide-angle image and a telephoto image. 

Due to its capability of shooting two images at the same time, the developer refers to it as the Fujifilm 

2-in-1 camera. The 2-in-1 camera has a composite shooting lens with a maximum diameter of Φ70mm. 

The camera’s focal lengths are 25mm (35mm format equivalent) for the wide-angle image, and 330mm 

(35mm format equivalent) for the telephoto image. The camera’s image sensor is a 2/3 inch CMOS 

sensor, with a pixel size of 7.1μm and an actual number of pixels of 1280 x 480.  

 

It provides a digital video output of 30 frames per second under the HD-SDI format. For this research 

purposes, the Fujifilm 2-in-1 camera has two main advantages over the use of two separate 

conventional cameras. First, thanks to its composite shooting lens the wide-angle and telephoto video 

frames are synchronized; whereas two separate conventional cameras provide image frames with slight 

time differences. Second, the position of the telephoto image inside the wide-angle image is fixed and 

know for all video frames despite mechanical vibration of the test vehicle; whereas two separate 

conventional cameras will vibrate at different paces causing that the position of the telephoto image 

inside the wide-angle image changes randomly in each frame. Fig. 2.4 shows the layout of the camera. 

 

 

Fig. 2.4. Fujifilm 2-in-1camera layout. 
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Since the camera is a non-commercial prototype it has some hardware limitations; for example it does 

not have a diaphragm mechanism. The amount of incident light is adjusted by the selection and 

replacement of an ND filter in the front surface of the lens. Due to its automatic exposure, for outdoor 

shooting it is necessary to equip a 1% transmittance filter and for indoor shooting it is necessary to 

equip a 10% transmittance filter. However, both filters are generally suitable for a wide range of 

exposures. If the output image is too dark due to insufficient exposure amount, it is necessary to use 

the device selecting either the high transmittance filter or no filter at all. If the output image is in 

uniform white or gray this is because the exposure amount is excessive, making it necessary to use a 

low transmittance filter. The filter mount is a screw thread mounting. 

 

The focus adjustment of the telephoto lens uses an electric focusing mechanism attached to the camera 

body, as shown in Fig. 2.4. By the rotation of the internal shaft of an electric motor, the frontal part of 

the lens barrel is rotated along with the gear. Table 2.5 lists the specifications of the Fujifilm 2-in-1 

camera. For a copy of the Fujifilm 2-in-1 layout, please refer to Appendix E. 

Table 2.5. Specifications of the Fujifilm 2-in-1 camera 

Specification Value 

Shooting lens 
 

Diameter Φ70mm (max) 

Focal length Wide-angle: 25 mm 

 
Telephoto: 330 mm 

Image sensor 2/3 inch CMOS 

 
pixel size 7.1μ □ 

Video output 30fps color video 

Digital video HD-SDI x 1ch, 1280x720 

Power 12 V DC/ 3 W 

Weight 1.9 kg 

 

Fig. 2.5 shows the Fujifilm 2-in-1 camera field of view, the full size of the side by side image is 1280 

x 480 pixels. The left side corresponds to the wide-angle image and the right side corresponds to the 

telephoto image; both images have a size of 640 x 480 pixels respectively. The blue rectangle 

represents the Region of Interest (ROI) used for crop row detection, which has a size of 420 x 256 
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pixels. The red rectangle has a size of 53 x 40 pixels and it represents the position of the telephoto 

image inside the wide-angle image. 

 

 

Fig. 2.5. Fujifilm 2-in-1camera side by side images. 

 

The telephoto image was set to a zoom factor of twelve; magnifying the image area of 53 x 40 pixels 

represented by the red rectangle in Fig. 4 into an image area of 640 x 480 pixels. This shows an 

advantage in the use of the 2-in-1 camera, because an increased image resolution can be achieved for 

a specific area with fixed position inside the wide-angle image. Therefore, the wide-angle image was 

used for crop mapping and crop row detection while the telephoto image was used for correction of 

the central row crop row detection. Chapter 4 and 5 include a more detailed description concerning the 

application of the device. 

 

2.6 Conclusions 

 

This chapter described the equipment used during this research. The research platform used for the 

field experiments was described part by part. The test vehicle’s main technical specifications were 

introduced. Each one of the sensors used in the experiments were described, highlighting their most 

relevant aspects. 
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Chapter 3 Estimation of vehicle status using nonlinear vehicle 

motion model 

 

The increased performance of today’s agricultural vehicles can be attributed to the improved 

understanding of how vehicles behave throughout a wide range of operating conditions. This 

understanding has been achieved through the use of advanced analysis tools, which are able to model 

the most complex nonlinear behavior to a high level of fidelity. The change in development 

methodology has allowed manufacturers to introduce new agricultural vehicles to the market faster 

while at the same time reducing development costs. The extra development time and money can be 

used to optimize agricultural vehicle systems which ultimately results in the higher levels of quality 

and refinement that farmers have come to expect.  

 

This chapter presents the vehicle modeling framework used in this research. It presents a brief 

description of the most common vehicle control strategies. The vehicle dynamics are explained thru 

the description of the tire mechanics. Measurements of the tire’s lateral forces as a function of the tire’s 

slip angle of the test vehicle traveling on a concrete surface are reported. A description about how these 

tire parameters can be used to improve the navigation model of the test vehicle is given as well. 

 

3.1 Vehicle control strategies  

 

Control strategies applied to vehicles can be classified in many different ways. For example they can 

be grouped based on the design method used in their development (optimal, robust, neural networks) 

or by the type of actuation used (active, semi-active, etc.). However, in the area of vehicle robotics it 

is much more useful to group the various control approaches according to the type of vehicle behavior 

that they are designed to stabilize. By classifying control methods in this way, three primary areas are 

observed within vehicle handling: yaw rate control, roll mitigation, and lateral positioning control. 

These three areas have been the focus of most of the work over the last decade regarding vehicle 

handling, whereas roll mitigation has become more popular in recent years due to the popularity of 

larger vehicles such as SUV’s and trucks. 
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3.1.1 Yaw rate control 

 

The majority of control approaches that deal with vehicle handling revolve around the use of yaw rate 

feedback in calculating control functions. This is because most of the disturbances such as road 

irregularities and actuator nonlinearities can be by-passed through the use of the yaw rate measurement. 

The majority of commercially available chassis control technologies utilize yaw rate feedback in 

conjunction with other subsystems, such as anti-lock brakes (ABS), or traction control (TCS). The 

most popular term used by manufacturers who implement these technologies is electronic stability 

control (ESC).  

 

First developed by Bosch in 1995, ESC methods typically monitor yaw rate, lateral velocity and body 

accelerations in order to determine the state of the vehicle. These states are then compared to vehicle 

models in order to determine the vehicle’s stability state. Inputs from the driver, such as, steer angle 

and throttle position are used to determine the driver’s intent when calculating the response. The 

controller can then use the ABS or TCS systems to carry out the control function it deems necessary 

in order to maintain yaw stability. This system has been shown to be very successful at maintaining 

stability in low friction situations, such as in wet weather or icy conditions. 

 

3.1.2 Roll mitigation 

 

This control approach is also known as active rollover protection (ARP). Basically, it is a system that 

recognizes rollover and avoids it by selectively applying braking sequences. Excessive lateral force, 

generated by excessive speed in a turn, may result in a rollover. ARP systems automatically responds 

whenever it detects a potential rollover by rapidly applying the brakes with a high burst of pressure to 

the appropriate wheels and decreasing the engine torque to interrupt the rollover before it occurs. 

 

Additionally, rollover stability systems have begun to incorporate an active suspension systems in 

rollover protection. To accomplish this, the onboard computer uses data from an Inertial Measurement 

Unit (IMU) to determine when a vehicle is in a rollover condition independent of yaw rate and vehicle 

speed. When the computer determines that the vehicle is at risk of rollover, it calculates the direction 

of roll and activates the active suspension system. The force produced in the suspension creates a 

torque opposite to that created by the lateral force, and keeps the vehicle safe. Roll mitigation is 
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becoming increasingly popular on Sports Utility Vehicles (SUV) and trucks, since their high center of 

gravity makes them prone to rollovers. 

 

3.1.3 Lateral positioning control 

 

The purpose of lateral positioning control is to maintain the vehicle’s position on the road surface. In 

particular, this kind of steering controller is designed to track the center of the present lane on both 

curved and straight pathway sections without knowledge of the radius of curvature of the path. Also, a 

lane change maneuver can be completed on a curved road section using this scheme of control. 

 

For the most part the driver is not considered in this control method and therefore these control 

approaches are regulated to autonomous vehicle applications. The approaches are also broad in terms 

of feedback and actuation methods. For example GPS, radar, and vision systems are some of the 

common methods used to measure the vehicle’s state. 

 

3.2 Vehicle dynamics 

 

Modern agricultural vehicles have dramatically improved in key areas such as safety, performance, 

durability and efficiency. In order to realize these goals, manufacturers have relied heavily on advanced 

vehicle modeling and computer control.  

 

The implementation of computer control has had a profound impact on vehicle safety, with present 

control systems having the ability to monitor the state of a vehicle thousands of times per second. 

Whatever the implementation, there is no doubt that computer control has had a dramatic effect on 

how vehicles of today function and most importantly, on what customers have come to expect from 

manufacturers. No single area of vehicle development is this more evident than in vehicle dynamics, 

where these technologies have become common place. Any discussion on the topic of vehicle 

dynamics and control can be broken down into three fundamental areas; longitudinal dynamics, 

handling (planar dynamics) and ride (vertical dynamics). This thesis focuses on the handling dynamics 

of the test vehicle and therefore a brief development of important concepts associated with handling 

behavior will be presented.  
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3.2.1 Vehicle kinematic model 

 

The kinematic model gives an estimation of the vehicle’s position and heading, described by Eq. (3.1) 

(Zakaria et al., 2013 and Zhao et al., 2011): 

                                                               𝜑 = 𝜑0 + ∫𝜔𝑑𝑡                                                              (3.1) 

𝑥 = 𝑥0 +∫𝑉 sin(𝜑 + 𝛽) 𝑑𝑡 

𝑦 = 𝑦0 +∫𝑉 cos(𝜑 + 𝛽) 𝑑𝑡 

Where φ is the vehicle’s heading, obtained by integration of the yaw rate ω. Also, x and y are the 

position coordinates (x, y) of the vehicle's center of mass in an inertial frame (X, Y). As described in 

Eq. (3.1) the position coordinates (x, y) are obtained by integration of the vehicle’s body sideslip β and 

the yaw rate ω. The inertial frame (X, Y) describes the global position of the vehicle as shown in Fig. 

3.1. 

 

Fig. 3.1. Vehicle kinematic model. 

 

Several variations of the vehicle kinematic model shown in Fig. 3.1 have been used in numerous 

researches (Bevly et al., 2002); but it should be noted that the general form is the same and its accuracy 

depends on the vehicle’s body sideslip β and the yaw rate ω. 
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3.2.2 Tire dynamic properties  

 

The pneumatic tire might be the simplest part of a vehicle, but at the same time is one of the most 

complicated devices to model. Tire response is dependent on dozens of variables, some of which 

include: internal pressure, temperature, chemical compound and tread design. In terms of vehicle 

dynamics, the tire is one of the most important factors in determining how a vehicle responds to driver 

inputs. This is due to the fact that the only portion that connects a vehicle to the road is the contact 

patch of each tire. This situation is more complicated for tractors and other agricultural vehicles, since 

loose soil conditions differ from on road conditions. Therefore, an extensive amount of work has been 

conducted over the years in order to investigate how a tire behaves under various conditions. This 

section will highlight some of the basic concepts involved in their analysis.  

 

Slip angle:  

In order for a tire to produce the traction forces that are required to accelerate a vehicle in a straight 

line or around a corner, it is necessary for the tire to develop a slip angle. The slip angle can be 

explained by the fact that the elastic characteristics of a tire allow it to be pointed in a direction different 

from which the vehicle is heading. The angle between these two headings is known as the lateral slip 

angle. Fig. 3.2 (Wong, 1993) shows a bottom view of a tire contact patch which is being subjected to 

a slip angle. 

 

Due to elastic distortion within the contact patch, the wheel travels along a different heading than that 

which it is pointed. The angle between these two headings is known as the lateral slip angle. As tread 

enters the contact patch it builds up at the leading edge causing the lateral distortion shown above. In 

this region, the normal load is the highest allowing the tread to adhere to the road. As the tread moves 

rearward through the contact patch, the normal load decreases causing the tread to start slipping before 

it is allowed to recover back into the main tread, assuming its original undistorted shape. The lateral 

traction is a result of the elastic reaction forces created by the distortion in the contact patch, which 

means that tires cannot produce traction forces without first assuming a slip angle.  

When a rolling tire is subjected to a slip angle, the leading edge of the tread contacts the ground slightly 

to one side of the rest of the contact patch. As the tire continues to roll, each small increment of tread 

rubber coming into the contact patch contacts the road a small distance toward the direction the tire is 
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pointed. When all of the small deviations in the tire’s contact patch are added up, it results in the vehicle 

moving along a curved path.  

 

Fig. 3.2. Bottom view of a tire contact patch subjected to a lateral slip angle. 

 

Traction forces:  

A tire does not generate traction forces until it is steered away from its current course and develops a 

slip angle. Fig. 3.3 (Liburdi, 2010) shows a typical lateral force curve of a radial tire. The shape of this 

curve is not the same for all tires, but rather is a specific characteristic of the design of the tire.  

 

 

Fig. 3.3. Lateral traction force curve of a pneumatic tire. 
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Notice that this curve has three distinct regions. First there is a straight section at small slip angles, 

where an increase in slip angle gives a proportional increase in lateral force. The slope of this section 

of the curve is the cornering stiffness of the tire. In this region of the curve, the tread is not sliding on 

the road at any point in its contact patch. At higher slip angles, portions of the tire patch are sliding and 

there is less of an increase in lateral force with respect to slip angle. This is called the transitional 

region. As the curve reaches its peak, more of the contact patch is sliding and the tire produces less 

lateral force. After the peak of the curve, lateral force can reduce a lot within a few degrees of extra 

slip angle. At these high slip angles, most of the contact patch is sliding; producing an increased amount 

of heat and wear. This high slip angle region is also known as tire saturation or frictional region, since 

the tire is no longer able to generate any extra lateral force. The force curve decreases with increases 

to slip angle which is known as tire saturation. A similar situation exists for longitudinal traction forces.  

 

Normal load dependency:  

One of the unique properties of the pneumatic tire is known as normal load dependency. Referring to 

Fig. 3.4 (Liburdi, 2010), it is seen that as the normal load on a tire increases, the maximum traction 

force that the tire can produce also increases; however, this occurs in a nonlinear way.  

 

 

Fig. 3.4. Normal load dependency of a pneumatic tire. 

 

This concept is critical in the design of an agricultural vehicle chassis for specific handling behavior. 

The reasoning behind this is that as a vehicle corners and starts generating lateral acceleration, a portion 

of the weight that was once on the inside tires is transferred to the outside tires. Due to the normal load 

dependency of the tire, load transferred across an axle results in a larger reduction of traction forces on 
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the inside tires than that which is gained by the outside tires. The result is a net decrease in the traction 

capability of the two tire combined.  

 

3.2.3 Vehicle dynamic model  

 

The area of vehicle handling primarily deals with motions within the plane of the road surface; which 

include lateral and longitudinal speeds, and the yaw rate. However, handling also encompasses out of 

plane dynamics such as roll and pitch motions, which generally need to be included when load transfer 

is an important factor in dictating tire performance.  

 

Vehicle handling models can be grouped into two main areas: linear and nonlinear. Linear models have 

the benefit of using frequency response methods, such as transfer function representations and 

eigenvalue analysis. These methods can be used to investigate the stability of the system and are very 

valuable in demonstrating any fundamental dynamic modes that may exist. Linear models are generally 

a result of a system simplification, which usually limits their application to narrow operating ranges. 

 

Nonlinear modeling is generally more accurate over a wider operating range, but requires a more 

complicated system representation. Usually nonlinearities introduced into handling models are due to 

the method in which tire traction forces are calculated or how the suspension system is modeled. 

Modern software tools use nonlinear models of suspension elements, such as springs, bushings, 

dampers and tires in order to predict behavior over the vehicle’s entire operating range. Although these 

software tools are very powerful, the vast majority of vehicle models used within controller design are 

linear. This is due to the fact that they do not require large computational resources to calculate vehicle 

states and are generally accurate enough to capture the important dynamics involved. 

 

Fig. 3.5 shows the typical configuration of the bicycle model for a four wheeled vehicle (Wong, 1993). 

The input of the system is given by the vehicle’s velocity V and the steering angle δ. The output of the 

system is given by the vehicle’s body sideslip angle β and the yaw rate ω. 
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Fig. 3.5. Schematic of the bicycle model. 

 

In addition the Fig. 3.6 shows the relation between the movement of the vehicle’s center of gravity CG 

and the yaw rate ω. In this thesis, the most common model associated to the bicycle model is presented 

as follows. 

 

 

Fig. 3.6. Geometric relation of the yaw rate. 

 

Bicycle dynamic model:  

The vehicle motion is derived from a kinematic representation based on the assumption of rolling 

without sliding at the tire/ground contact point. If such a hypothesis is relevant in the urban vehicle 
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context, its direct transposition to all-terrain vehicles leads to inaccurate results. Consequently, low-

grip conditions have to be properly modeled. The bicycle dynamic model incorporates variables 

representative of sliding phenomena, namely tire sideslip angles (Liljedahl et al., 1989). These 

variables denote the difference between wheel plane orientation and actual speed vector direction. In 

other words, we need to consider the sliding in the vehicle’s lateral dynamics.  

 

Since we are describing a dynamic framework, agricultural vehicles (and thus, agricultural mobile 

robots) dynamics can also be described using the bicycle model shown in Fig. 3.5. As depicted in Fig. 

3.5, the angles f and r are the slip angles on the front and rear wheel respectively and are defined as 

the difference between a wheel’s direction of heading and its direction of travel. Since this model lumps 

the wheels on each axis together, equal slip angles and road wheel angles are assumed on the left and 

right wheels on both axis. The tires are assumed to generate lateral forces that are directly proportional 

to the tire slip angle. Hence, the lateral forces are modeled as shown in Eq. (3.2): 

 

         𝐹𝑦𝑓 = 2𝐶𝛼𝑓
𝑡𝑖𝑟𝑒𝛼𝑓 = 𝐶𝛼𝑓

𝑎𝑥𝑙𝑒𝛼𝑓,        𝐹𝑦𝑟 = 2𝐶𝛼𝑟
𝑡𝑖𝑟𝑒𝛼𝑟 = 𝐶𝛼𝑟

𝑎𝑥𝑙𝑒𝛼𝑟           (3.2) 

 

Where 𝐶𝛼𝑓
𝑎𝑥𝑙𝑒 and 𝐶𝛼𝑟

𝑎𝑥𝑙𝑒 represent the cornering stiffnesses on each axis, which here equals two times 

the cornering stiffness on each wheel, and is defined as the slope of the curve seen in Fig. 3.3 for the 

elastic region. The bicycle model consists of two degrees of freedom; namely the vehicle’s body 

sideslip angle β, and the vehicle yaw rate ω. By analyzing the free body diagram shown in Fig. 3.5, the 

governing equations of motion can be derived from Newton’s second law yielding Eq. (3.3): 

 

∑𝐹𝑦 = 𝑚(𝑉𝑥𝜔 + 𝑉�̇�) = 𝐹𝑦𝑓 cos 𝛿 + 𝐹𝑦𝑟 ,        ∑𝑀𝑧 = 𝐼𝑧𝑧�̇� = 𝑎𝐹𝑦𝑓 cos 𝛿 − 𝑏𝐹𝑦𝑟             (3.3) 

 

Where m represents the vehicle mass and IZZ represents the vehicle moment of inertia around the z-

axis. The distances between the vehicle’s center of gravity (CG) and the front and rear axis are labeled 

as a and b respectively. From Fig. 3.5, the relationship tan 𝛽 =
𝑉𝑦
𝑉𝑥
⁄  can be found at the center of 

gravity. By assuming small angles ( tan 𝛽 ≈ 𝛽 ), 𝑉�̇�  can be written as  𝑉�̇� =
𝑑

𝑑𝑡
(𝛽𝑉𝑥) = 𝑉𝑥�̇� + 𝑉�̇�𝛽 . 

Inserting this relationship together with the expressions for the lateral forces given by Eq. (3.2) into 

Eq. (3.3), we obtain Eq. (3.4): 
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𝑚(𝑉𝑥𝜔 + 𝑉𝑥�̇� + 𝑉�̇�𝛽) = 𝐶𝛼𝑓
𝑎𝑥𝑙𝑒𝛼𝑓 cos 𝛿 + 𝐶𝛼𝑟

𝑎𝑥𝑙𝑒𝛼𝑟        

 𝐼𝑧𝑧�̇� = 𝑎𝐶𝛼𝑓
𝑎𝑥𝑙𝑒𝛼𝑓 cos 𝛿 − 𝑏𝐶𝛼𝑟

𝑎𝑥𝑙𝑒𝛼𝑟              (3.4) 

 

The slip angles can be defined in terms of the vehicle motion variables, β and ω. The expression for 

the front wheel side slip angle can be formulated by considering the velocity of the center point of the 

front wheel being (𝑉𝑥, 𝑉𝑦 + 𝑎𝜔), and then:  

tan(𝛿 − 𝛼𝑓) =
𝑉𝑦+𝑎𝜔

𝑉𝑥
           (3.5) 

And similarly for the rear wheel: 

tan 𝛼𝑟 =
−𝑉𝑦+𝑏𝜔

𝑉𝑥
           (3.6) 

 

Assuming small angles, and again recognizing 
𝑉𝑦
𝑉𝑥
⁄ ≈ 𝛽 yields the final slip angle expressions used 

by the bicycle dynamic model as given in Eq. (3.7): 

 

𝛼𝑓 = −𝛽 − 𝑎
𝜔

𝑉𝑥
+ 𝛿 ,     𝛼𝑟 = −𝛽 + 𝑏

𝜔

𝑉𝑥
            (3.7) 

Inserting the expressions given by Eq. (3.7) into Eq. (3.4), and assuming small steering angles we 

obtain the following equations of lateral and yaw motion, summarized as Eq. (3.8): 

 

                            𝑚𝑉𝑥𝜔 +𝑚𝑉𝑥�̇� + 𝑚𝑉�̇�𝛽 = 𝐶𝛼𝑓
𝑎𝑥𝑙𝑒(−𝛽 − 𝑎

𝜔

𝑉𝑥
+ 𝛿) + 𝐶𝛼𝑟

𝑎𝑥𝑙𝑒(−𝛽 + 𝑏
𝜔

𝑉𝑥
)  

                           𝐼𝑧𝑧�̇� = 𝑎𝐶𝛼𝑓
𝑎𝑥𝑙𝑒(−𝛽 − 𝑎

𝜔

𝑉𝑥
+ 𝛿) − 𝑏𝐶𝛼𝑟

𝑎𝑥𝑙𝑒(−𝛽 + 𝑏
𝜔

𝑉𝑥
)      (3.8) 

 

Which can be rewritten into Eq. (3.9) as: 

 

                          𝑚𝑉𝑥�̇� = −𝛽(𝐶𝛼𝑓
𝑎𝑥𝑙𝑒 + 𝐶𝛼𝑟

𝑎𝑥𝑙𝑒 +𝑚𝑉�̇�) − 𝜔 (𝑚𝑉𝑥 +
𝑎𝐶𝛼𝑓

𝑎𝑥𝑙𝑒

𝑉𝑥
−

𝑏𝐶𝛼𝑟
𝑎𝑥𝑙𝑒

𝑉𝑥
) + 𝛿𝐶𝛼𝑓

𝑎𝑥𝑙𝑒  

                          𝐼𝑧𝑧�̇� = −𝛽(𝑎𝐶𝛼𝑓
𝑎𝑥𝑙𝑒 − 𝑏𝐶𝛼𝑟

𝑎𝑥𝑙𝑒) − 𝜔 (
𝑎2𝐶𝛼𝑓

𝑎𝑥𝑙𝑒+𝑏2𝐶𝛼𝑟
𝑎𝑥𝑙𝑒

𝑉𝑥
) + 𝛿𝑎𝐶𝛼𝑓

𝑎𝑥𝑙𝑒      (3.9) 

 

The vehicle’s longitudinal velocity 𝑉𝑥 is supposed to be slow varying, so that longitudinal forces can 

be disregarded. Moreover, this longitudinal velocity can be considered as constant, since this is the 
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typical case for tractors and agricultural vehicles, were the vehicle’s operation speed do not change 

and thus the longitudinal acceleration 𝑉�̇�  can be considered as cero. We can then rewrite Eq. (3.9) on 

state space form, as shown in Eq. (3.10): 

 

[�̇�
�̇�
] = [

−𝐶𝛼𝑓
𝑎𝑥𝑙𝑒−𝐶𝛼𝑟

𝑎𝑥𝑙𝑒

𝑚𝑉𝑥

−𝑎𝐶𝛼𝑓
𝑎𝑥𝑙𝑒+𝑏𝐶𝛼𝑟

𝑎𝑥𝑙𝑒

𝑚𝑉𝑥
2 − 1

−𝑎𝐶𝛼𝑓
𝑎𝑥𝑙𝑒+𝑏𝐶𝛼𝑟

𝑎𝑥𝑙𝑒

𝐼𝑧𝑧

−𝑎2𝐶𝛼𝑓
𝑎𝑥𝑙𝑒−𝑏2𝐶𝛼𝑟

𝑎𝑥𝑙𝑒

𝐼𝑧𝑧𝑉𝑥

] ∗ [
𝛽
𝜔
] + [

𝐶𝛼𝑓
𝑎𝑥𝑙𝑒

𝑚𝑉𝑥

𝑎𝐶𝛼𝑓
𝑎𝑥𝑙𝑒

𝐼𝑧𝑧

] ∗ 𝛿                (3.10) 

 

For this model, it is assumed that the cornering stiffnesses 𝐶𝛼𝑓
𝑎𝑥𝑙𝑒 and 𝐶𝛼𝑟

𝑎𝑥𝑙𝑒 are entirely representative 

of sliding effects. Table 3.1 gives a summary of the parameters used in this model. 

Table 3.1. Parameters of the bicycle dynamic model. 

Variable Description  Units 

Vx longitudinal velocity  m/s 

β sideslip angle  deg 

ω yaw rate  deg/s 

m vehicle mass  kg 

Izz yaw moment of inertia  kg*m^2 

𝐶𝛼𝑓
𝑎𝑥𝑙𝑒 frontal axle cornering stiffness  N/deg 

𝐶𝛼𝑟
𝑎𝑥𝑙𝑒 rear axle cornering stiffness  N/deg 

a distance between front axle and CG   m 

b distance between rear axle and CG  m 

δ front wheel steering angle   deg 

 

Parameters like m, a and b where taken from the vehicle’s technical specifications, as described in 

section 2.1.1. Taking into account this model, the next section describes some of the most common 

control strategies. 

 

3.3 Tire dynamic properties determination method 

 

As mentioned in section 3.1.1, the majority of control approaches that deal with vehicle handling 

revolve around the use of yaw rate feedback in calculating control functions. Therefore this section 

describes the procedure to determine the tire’s dynamic properties and the vehicle motion variables β 

and ω (Ospina and Noguchi, 2016). 
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The experimental runs were taken in a flat, dry concrete surface performing extreme cornering 

maneuvers. For this tests, the tire–road friction dynamics can be ignored because the road surface 

conditions did not change during the experiments.  The cornering maneuvers consisted of the vehicle 

being driven in a sinusoidal trajectory; performing a hard left turn followed by a hard right turn while 

the velocity is held fairly constant. The experimental path was outlined by using reference landmarks 

so the driver knew how to steer the vehicle. A total of three runs following the same trajectory were 

performed. The results of all the three runs were quite similar, and the overall behavior of the outputs 

in response to the input is roughly the same. Therefore, this thesis summarizes the results from one 

experiment. 

 

The parameters listed in Table 3.1 were used in combination with Eqns. (3.2) to (3.10) to simulate the 

vehicle behavior for comparison with the experimentally measured states. The vehicle’s yaw moment 

of inertia was obtained using the approximation Izz=mfa
2+mrb

2; where mf=1260 kg is the vehicle’s 

mass in the front axle and mr=2005 kg is the vehicle’s mass in the rear axle. The yaw moment of inertia 

Izz plays a key role in the dynamic model shown in Eq. (3.10) since it is a divisor factor that modifies 

the former values of both the sideslip β and the yaw rate ω into the current value of the yaw rate ω. 

The yaw moment of inertia Izz is an important parameter, due to the fact that it reflects the vehicle’s 

resistance to change its direction; this means that a big yaw moment of inertia Izz makes the vehicle 

slower to swerve or go into a tight curve, and it also makes it slower to turn straight again. 

 

The vehicle’s longitudinal velocity Vx was intended to be constant during the maneuvers because this 

is the case for most agricultural vehicles during actual operation. Moreover, the main input of the 

models is the steering angle δ; the vehicle has to be turning in order to produce a yaw rate ω and a 

sideslip angle β. The vehicle’s longitudinal velocity V has an effect over the outputs ω and β, but the 

vehicle’s longitudinal velocity Vx operates as a divisor in Eq. (3.10). Changing the magnitude of the 

vehicle’s longitudinal velocity Vx will change the magnitude of the outputs ω and β but not their way 

of oscillation; this is a reflection of the input δ. Although the vehicle’s top speed is 8 m/s (29 km/h), 

the test were performed at an average speed of 2 m/s (7.5 km/h) for safety reasons. 

 

3.3.1 Improvement of the estimations of the vehicle dynamic model 

 

The model input all over the trajectory is the steering angle δ, shown in Fig. 3.7. 
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Fig. 3.7. Time series of steering angle δ input. 

 

The body sideslip β was calculated as the difference of the direction of travel given by the GPS and 

the heading given by the FOG (Bevly, 2004), as shown in Eq. (3.11). 

                                                                  𝛽 = 𝜑𝐺𝑃𝑆 − 𝜑𝐼𝑀𝑈                                                     (3.11) 

The yaw rate ω was obtained directly from the FOG. The measured sideslip β and yaw rate ω will be 

considered as the true data, and it will be compared with the data obtained from the model. The tire’s 

slip angle can be calculated for both the front axle and the rear axle as shown in Eq. (3.12): 

                                               𝛼𝑓 = 𝛽 + 𝑎
𝜔

𝑉
− 𝛿 ,      𝛼𝑟 = 𝛽 − 𝑏

𝜔

𝑉
                                                (3.12) 

Using the measurement given by Eq. (3.11) and the steering angle δ shown in Fig. 3.7; it is possible to 

obtain measurement estimations for the tire slip angles (Baffet et al., 2006). We can calculate the lateral 

forces (Bevly et al., 2006) by analyzing the bicycle model shown in Fig. 3.5 with the parameters listed 

in Table 3.1 and using Newton’s equations as shown in Eq. (3.13). The lateral acceleration �̇� was 

obtained directly from the FOG and it was numerically differentiated to obtain �̈�. 

                     ∑𝐹𝑦 = 𝑚�̈� = 𝐹𝑦𝑓 cos 𝛿 + 𝐹𝑦𝑟  ,        ∑𝑀𝑧 = 𝐼𝑧�̇� = 𝑎𝐹𝑦𝑓 cos 𝛿 − 𝑏𝐹𝑦𝑟                    (3.13) 

Solving the equations simultaneously, it is possible to obtain relationships for the frontal and rear 

lateral forces as shown in Eq. (3.14): 

                                      𝐹𝑦𝑓 =
𝐼𝑧�̇�+𝑏𝑚�̈�

(𝑎+𝑏) cos𝛿
 ,                 𝐹𝑦𝑟 = 𝑚�̈� − 𝐹𝑦𝑓 cos 𝛿                                    (3.14) 
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The lateral tire forces are a function of the cornering stiffness (Baffet et al., 2009), as shown in Eq. 

(3.15): 

                           𝐹𝑦𝑓 = 2𝐶𝛼𝑓
𝑡𝑖𝑟𝑒𝛼𝑓 = 𝐶𝛼𝑓

𝑎𝑥𝑙𝑒𝛼𝑓,        𝐹𝑦𝑟 = 2𝐶𝛼𝑟
𝑡𝑖𝑟𝑒𝛼𝑟 = 𝐶𝛼𝑟

𝑎𝑥𝑙𝑒𝛼𝑟                                (3.15) 

It is necessary to consider a multiplier factor of 2 in Eq. (3.15) because the bicycle model considers 

both the left and right tires as one single tire for each axle. It is possible to estimate the cornering 

stiffness for the rear and frontal axles using the lateral forces calculated in Eq. (3.14) and the tire slip 

angles obtained from the sensors in Eq. (3.12) and computing them in Eq. (3.15). 

It possible to estimate a constant cornering stiffness from Eq. (3.15), which is the typical approach for 

on-road vehicles; the estimated front and rear tire cornering stiffness are Cf = 1.342 x103 N/deg. and 

Cr = 4.065 x103 N/deg. respectively. These values were used into the dynamic model described in Eq. 

(3.10). However, contrary to on-road vehicles for off-road vehicles it is difficult to determine a constant 

cornering stiffness from the experimental data due to the differences between the lateral force Fy and 

the tire sideslip angle α. Moreover, due to the transitory nature of the pneumatic tire, for a given value 

of α there are multiple values of Fy and thus it is not possible to obtain the tire lateral force as a linear 

function of the tire sideslip angle from the measured data. 

Several methodologies (Burhaumudin et al., 2012; Pacejka et al., 1992; and Pacejka, 2006) have been 

implemented in order to obtain a linear Fy /α relation from the experimental data. However, in 

agricultural applications a linear model is not the right approach since it considers ideal conditions that 

might not apply to muddy and slippery soils. We are interested into consider the hysteresis behavior 

of the Fy /α relation experimental data. Since no simple parametric models can effectively describe the 

tire force generating functions Fyf (αf) and Fyr (αr) (Ospina and Noguchi, 2016), “non-parametric” tire 

functions (this means functions that do not depend on several parameters, such as longitudinal slip, 

sideslip angle, normal load, camber angle, tire pressure, wear, and road surface characteristics) are 

proposed in this thesis to represent the non-linear characteristic curves. The methodology is quite 

simple (Ospina and Noguchi, 2018); by applying the method of the least squares to the experimental 

data, we find that a polynomial of degree 4 will fit the behavior of the cornering maneuver. The results 

of this regression are shown in Fig. 3.8 and Fig. 3.9. 
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 Fig. 3.8. Frontal lateral force vs rear tire sideslip. 

 

 

Fig. 3.9. Rear lateral force vs rear tire sideslip. 

 

The equations found using the regression are included in Fig. 3.8 and Fig. 3.9 for the increasing (FyUP) 

and decreasing (FyDOWN) portion of the Fy /α relation. The increasing (FyUP) portion corresponds to the 

top part of the loop, marked with the increasing arrow. The decreasing (FyDOWN) portion corresponds 

to the bottom part of the loop, marked with the decreasing arrow. 
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In order to validate the functionality of the proposed regression model, it is necessary to perform a 

simulation using the equations included in Fig. 3.8 and Fig. 3.9 evaluating them for the values of the 

tire sideslip angles αf and αr all over the trajectory. By recombining Eq. (3.12) and Eq. (3.15), it is 

possible to obtain the body sideslip β and the yaw rate ω in terms of the lateral forces Fyf  and Fyr, as 

shown in Eqns. (3.16) and (3.17): 

                                             𝜔 = (
𝑉

𝑎+𝑏
) [

𝐹𝑦𝑓

𝐶𝛼𝑓
𝑎𝑥𝑙𝑒 −

𝐹𝑦𝑟

𝐶𝛼𝑟
𝑎𝑥𝑙𝑒 + 𝛿]                                                            (3.16) 

                                              𝛽 =
𝐹𝑦𝑟

𝐶𝛼𝑟
𝑎𝑥𝑙𝑒 + (

𝑏

𝑎+𝑏
) [

𝐹𝑦𝑓

𝐶𝛼𝑓
𝑎𝑥𝑙𝑒 −

𝐹𝑦𝑟

𝐶𝛼𝑟
𝑎𝑥𝑙𝑒 + 𝛿]                                                (3.17) 

The resulting force values obtained from the equations included in Fig. 3.8 and Fig. 3.9 are then 

evaluated into Eq. (3.16) and Eq. (3.17) to obtain the regression modeled body sideslip βREG and yaw 

rate ωREG. 

The constant cornering stiffness Cf = 1.342 x103 N/deg. and Cr = 4.065 x103 N/deg. were used in Eq. 

(3.10) in order to obtain the dynamic modeled body sideslip βDYN and yaw rate ωDYN. As stated before, 

constant cornering stiffness are a typical approach for on-road vehicles but might not the right approach 

in agricultural applications. 

Fig. 3.10 shows in purple the body sideslip βREG and yaw rate ωREG obtained from the modeled 

regression equations in comparison to the measured body sideslip β and the measured yaw rate ω 

shown in blue. The dynamic modeled body sideslip βDYN and yaw rate ωDYN are shown in red. It can be 

seen how the behavior of each data is consistent to the measured data.  

It is necessary to calculate the error in order to evaluate the accuracy improvement of the body sideslip 

βREG and yaw rate ωREG obtained from the regression model. The RMS error for both the body sideslip 

βREG and yaw rate ωREG is also shown in Fig. 3.10. The RMS error for both the body sideslip βDYN and 

yaw rate ωDYN is included as well. 
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Fig. 3.10. Body sideslip β and yaw rate ω comparison. 

 

Table 3.2 summarizes the calculated RMS errors of the body sideslip β and the yaw rate ω obtained 

from the dynamic model and the regression model. 

Table 3.2. Summary of RMS errors. 

Model type  ω RMSE (deg./s) β RMSE (deg.) 

Dynamic 7.30 4.95 

Regression 4.58 3.38 

 

From Table 3.2, it can be noted how using the values obtained from the regression model, the accuracy 

improved for both the sideslip β and the yaw ω rate in contrast with the dynamic model. Smaller error 

values might be obtained applying more sophisticated filtering techniques to the measured data; 

especially to the sideslip β data set, due to its characteristic noise inherited from to subtraction of the 

GPS and FOG data sets. Moreover, measured data accuracies might be affected by the inherent error 

caused by the mechanical installation of the sensors. Despite all, this methodology has proven to be a 
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correct approach to show that the measurements performed can be used to estimate the tires parameters, 

and also has proven to account for the sliding nonlinear behavior in the vehicle dynamics. 

 

3.3.2 Improvement of the estimations of the vehicle kinematic model 

 

Following section 3.3.1, it is possible to estimate both the vehicle’s body sideslip βREG and the yaw 

rate ωREG with improved accuracy thanks to the regression model. The vehicle’s body sideslip βREG and 

the yaw rate ωREG can in turn be used to improve the navigation model. Several researches (Pepy et al., 

2006) have compared the performance of a pure kinematic model and a dynamic kinematic model, 

concluding that a pure kinematic model has an overall poor performance for most conditions. Despite 

having its own restrictions; like an inherent error caused by numerical integration, the dynamic 

kinematic model provides better position estimations for most experimental conditions, even in 

experiments with big tractors (Bevly et al., 2002). 

 

It is possible to estimate the dynamic kinematic model improvement by using the data summarized in 

Fig. 3.10; this means to compute the body sideslip βREG and yaw rate ωREG into Eq. (3.1) to obtain the 

position and heading of the vehicle estimated from the regression model. Similarly, it is possible to 

compute the body sideslip βDYN and yaw rate ωDYN into Eq. (3.1) to obtain the position and heading of 

the vehicle estimated from the dynamic model with constant cornering stiffness. 

Fig. 3.11 shows in purple the heading φREG obtained by computing the body sideslip βREG and yaw rate 

ωREG into Eq. (3.1). The measured heading φ is shown in blue for comparison purposes. The dynamic 

modeled heading φDYN is shown in red. Again, it is evident how the behavior of each data set is 

consistent to the measured data.  

It is necessary to calculate the error in order to evaluate the accuracy improvement of the navigation 

model. The RMS error for both headings φREG and φDYN respect to the measured data are also shown in 

Fig. 3.11. It can be noted how using the values obtained from the regression model, the accuracy 

improved for the heading φREG in contrast with the dynamic model φDYN. 
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Fig. 3.11. Heading comparison. 

Fig. 3.12 shows in purple the position of the vehicle obtained by computing the body sideslip βREG and 

yaw rate ωREG into Eq. (3.1). Note that Fig. 3.12 is plotted in Easting and Northing coordinates. The 

measured position is shown in blue for comparison purposes. The dynamic modeled position is shown 

in red. Again, it can be observed how the behavior of each data set is consistent to the measured data. 

The RMS error for both the regression modeled position and the dynamic modeled position respect to 

the measured data are also shown in Fig. 3.12. It can be noted how using the values obtained from the 

regression model, the accuracy improved for the regression modeled position in contrast with the 

dynamic modeled position. 
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Fig. 3.12. Navigation path comparison. 

From Figs. 3.11 and 3.12, it can be observed how by using the data obtained from the regression model 

the accuracy improved for both the heading and the position of the vehicle. This result was expected 

due to the fact that the accuracy improved for both the sideslip β and the yaw ω rate in contrast with 

the dynamic model as described in section 3.3.1. As stated before, one important drawback of the 

dynamic navigation model described by Eq. (3.1) is its inherent integration error; however, this does 

not interfere with the purpose of comparing the results obtained by computing the body sideslip βREG 

and yaw rate ωREG with the results obtained by computing the body sideslip βDYN and yaw rate ωDYN 

because the same Eq. (3.1) is being used; only the input data sets are different. 

In conclusion, smaller RMS errors mean that tire parameters can be used to obtain better estimations 

of the body sideslip βREG and yaw rate ωREG; which in turn can be used to improve the navigation model 

of the test vehicle. 
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3.4 Conclusions 

 

This chapter has described the theory framework used in this research. It also presented a brief 

description of the most common vehicle control strategies. The description of the tire mechanics was 

used to explain the vehicle dynamics. The vehicle handling was described using the bicycle dynamic 

model. These experimental results have shown the effectiveness of a measurement methodology for 

estimating a vehicle’s dynamic parameters β and ω using an RTK-GPS, and an FOG. The comparison 

between the data measured experimentally and the data yield by the models validates the effectiveness 

of this measurement methodology. The data measured experimentally have verified that this 

measurement methodology can be applied to off-road vehicles used in agriculture to estimate the tire 

dynamic properties like the tire slip angle, the lateral forces and the tire cornering stiffness.  

 

A vehicle tire model that does not depend on several parameters, such as longitudinal slip, sideslip 

angle, normal load, camber angle, tire pressure, wear, and road surface characteristics was development 

for the experimental vehicle. Such model was obtained using a regression model technique consisting 

on applying the method of least squares to the data obtained experimentally; in order to account for the 

nonlinear relationship between the tire slip angle and the lateral force observed as a hysteresis loop. 

 

The vehicle’s dynamic parameters β and ω were computed into the dynamic navigation model to obtain 

estimations of the heading and position of the vehicle. The tire dynamic properties described by a 

regression model technique allowed to obtain better estimations of the vehicle motion model, reducing 

its RMS error by 30%. However, these estimations alone are not accurate enough to guide the vehicle 

through a field because there is a wide range of environment factors present in the tire-soil interaction; 

like soil moisture and cone index, which change from field to field and cannot be predicted by the 

vehicle motion model. Therefore, it is necessary to integrate the vehicle motion model estimations with 

some sensing method such as machine vision. 
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Chapter 4 Image processing algorithm development of a machine 

vision with both wide-angle and telephoto images 

 

Computer technologies have been shown to improve agricultural productivity in a number of ways. 

Image processing has emerged as a powerful tool among those computer technologies. Several image 

processing techniques have been used to assist researchers and farmers to improve agricultural 

practices (Saxena and Armstrong, 2014). As a result, image processing has been used in different 

agricultural industry contexts to assist with precision agriculture practices like weed and herbicide 

technologies, plant growth monitoring and plant nutrition management, and agricultural machinery 

autonomous navigation. This optimize agricultural vehicle systems which ultimately results in the 

higher levels of quality and refinement that farmers have come to expect. 

 

This chapter presents the image processing algorithms used in this research. The algorithms are briefly 

described with examples. 

 

4.1 Image processing in the agricultural context 

 

Image processing techniques can be used to enhance agricultural practices, by improving accuracy and 

consistency of processes while reducing farmers’ manual monitoring. Often, it offers flexibility and 

effectively substitutes the farmers’ visual decision making. Table 4.1 summarizes some of the image 

processing terminologies applicable in agricultural practices (Saxena and Armstrong, 2014). 

Table 4.1. Image processing terminology applicable in agriculture. 

Image processing term Description 

Image acquisition Process of retrieving a digital image from a physical source capture 

using image sensors 

Gray scale conversion Process of converting a color or multi-channel digital image to a 

single channel where image pixel possess a single intensity value 

Image background 

extraction 

Separation of image background, retrieving foreground objects 

Image enhancement Improvement in perception of image details for human and machine 

analysis 

Image histogram 

analysis 

Pixel plot analysis in terms of peaks and valleys formed by pixel 

frequency vs pixel intensities 

Binary image 

segmentation 

Foreground objects separation from background in a binary (black-

and-white) image 
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Color image 

segmentation 

Image objects separation in a color image, regions of interests 

Image filtering Process of distorting an image in a desired way using a filter 

Feature extraction Process of defining a set of features, or image characteristics that 

efficiently or meaningfully represent the information important for 

analysis and classification 

Image registration Process of transforming different sets of data into one coordinate 

system 

Image transition Process of changing state or defining a condition between two or more 

images 

Image object detection Process of finding instances of real-world objects such as weeds, 

plants, and insects in images or video sequences 

Image object analysis Process extracting reliable and meaningful information from images 

 

Computer-vision applied to Precision Agriculture by using Image Processing techniques typically 

involves five basic processes such as image acquisition, preprocessing, segmentation, object detection 

and classification. At first, these terms and all the terminology summarized in Table 4.1 might sound 

confusing for the inexpert. This chapter, however does not pretend to be a detailed Image Processing 

programming guide; its scope is to describe the Image Processing algorithms applied in this research. 

 

4.2 Open CV 

 

OpenCV (Open Source Computer Vision) is a library of programming functions mainly aimed at real-

time computer vision (Brahmbhatt, 2013). Originally developed by Intel, it was later supported by 

Willow Garage and is now maintained by Itseez. The library is cross-platform and free for use under 

the open-source BSD license. OpenCV supports the deep learning frameworks TensorFlow, 

Torch/PyTorch and Caffe. 

 

Officially launched in 1999, the OpenCV project was initially an Intel Research initiative to advance 

CPU-intensive applications, part of a series of projects including real-time ray tracing and 3D display 

walls. The main contributors to the project included a number of optimization experts in Intel Russia, 

as well as Intel’s Performance Library Team. In the early days of OpenCV, the goals of the project 

were described as: 

 

 Advance vision research by providing not only open but also optimized code for basic vision 

infrastructure. No more reinventing the wheel. 
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 Disseminate vision knowledge by providing a common infrastructure that developers could 

build on, so that code would be more readily readable and transferable. 

 

 Advance vision-based commercial applications by making portable, performance-optimized 

code available for free – with a license that did not require code to be open or free itself. 

 

The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer 

Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 

1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second 

major release of the OpenCV was in October 2009. OpenCV 2 includes major changes to the C++ 

interface, aiming at easier, more type-safe patterns, new functions, and better implementations for 

existing ones in terms of performance (especially on multi-core systems). Official releases now occur 

every six months and development is now done by an independent Russian team supported by 

commercial corporations. In August 2012, support for OpenCV was taken over by a non-profit 

foundation OpenCV.org, which maintains a developer and user site. OpenCV's application areas 

include: 

 

 2D and 3D feature toolkits. 

 Egomotion estimation. 

 Facial recognition system. 

 Gesture recognition. 

 Human–computer interaction (HCI). 

 Mobile robotics. 

 Motion understanding. 

 Object identification. 

 Segmentation and recognition. 

 Stereopsis stereo vision: depth perception from 2 cameras. 

 Structure from motion (SFM). 

 Motion tracking. 

 Augmented reality. 
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To support some of the above areas, OpenCV includes a statistical machine learning library that 

contains: 

 

 Boosting. 

 Decision tree learning. 

 Gradient boosting trees. 

 Expectation-maximization algorithm. 

 k-nearest neighbor algorithm. 

 Naive Bayes classifier. 

 Artificial neural networks. 

 Random forest. 

 Support vector machine (SVM). 

 Deep neural networks (DNN). 

 

OpenCV is written in C++ and its primary interface is in C++, but it still retains a less comprehensive 

though extensive older C interface. There are bindings in Python, Java and MATLAB/OCTAVE. The 

API for these interfaces can be found in the online documentation. Wrappers in other languages such 

as C#, Perl, Ch, Haskell and Ruby have been developed to encourage adoption by a wider audience. 

All of the new developments and algorithms in OpenCV are now developed in the C++ interface. 

 

OpenCV runs on the following desktop operating systems: Windows, Linux, macOS, FreeBSD, 

NetBSD, OpenBSD. OpenCV can also run on the following mobile operating systems: Android, iOS, 

Maemo, BlackBerry 10. The user can get official releases from SourceForge or take the latest sources 

from GitHub. OpenCV uses CMake for managing the build process of software using a compiler-

independent method. This research implemented the OpenCV library in Microsoft Visual Studio 2013 

Community running on Windows 7 and Windows 8. 

 

4.3 Image acquisition and RGB color space 

 

There are multiple ways to acquire digital images from the real world: digital cameras, scanners, 

computed tomography, and magnetic resonance imaging to name a few. In every case what we humans 
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see are images. However, when transforming this to our digital devices what we record are numerical 

values for each of the points of the image. 

 

A digital image is nothing more than a 2D matrix containing all the intensity values of its pixel points. 

Each pixel point position in the image matrix is identified by a pair of Cartesian coordinates p(x,y). 

How to get and store the pixels values may vary according to the needs, but in the end all images inside 

a computer world may be reduced to numerical matrices and other information describing the matrix 

itself. OpenCV is a computer vision library whose main focus is to process and manipulate this matrix 

information. Fig. 4.1 illustrates this scheme. 

 

 

Fig. 4.1. Image acquisition scheme. 

 

To acquire digital images is equivalent to store the pixel values; i.e. store the value of a pixel in the 

position p(x,y). It is possible to select the color space and the data type used. The color space refers to 

the combination of color components in order to code a given color. The simplest one is the gray scale 

where the only colors at available are black and white. The combination of these two make it possible 

to create many shades of gray. 

 

For colorful ways there are a lot more methods to choose from. Each of them breaks it down to three 

or four basic components and it is possible to use the combination of these to create the others 

components. The most popular color space is RGB, mainly because this is also how the human eye 

builds up colors. Its base colors are Red, Green and Blue. Each of the color components has its own 

valid domains; which makes it necessary to define the data type used. The smallest data type possible 

is char, which means one byte or 8 bits. This may be unsigned (containing values from 0 to 255) or 
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signed (values from -127 to +127). In the case of three components such as RGB, 8 bits data type gives 

as a result 16 million representable colors. It is possible to acquire an even finer control by using the 

float (4 byte = 32 bits) or double (8 byte = 64 bits) data types for each one of the RGB components. 

However, increasing the size of a color component also increases the size of the whole picture in the 

memory. In summary, to represent color images in the RGB color space, separate Red, Green and Blue 

components must be specified for each pixel p(x,y), and so the pixel value is actually a vector of three 

numbers. This means that each pixel at the image position p(x,y) has a pixel value (R, G, B). Often the 

three different components are stored as three separate grayscale images known as color planes (one 

for each of Red, Green and Blue), which have to be recombined when displaying or processing. Due 

to its 3 components, the RGB color space can be represented as a three-dimensional volume described 

by treating the component values as ordinary Cartesian coordinates in a Euclidean space. This 

representation is shown in Fig. 4.2. 

 

 

Fig. 4.2. RGB color space mapped to a cube. 

 

For the RGB color space, the cube shown in Fig. 4.2 uses non-negative values within a 0-255 range, 

assigning black to the origin at the vertex (0, 0, 0), and with increasing intensity values running along 

the three axes up to white at the vertex (255, 255, 255), diagonally opposite black. An RGB triplet (R, 

G, B) represents the three-dimensional coordinate of the given color within the cube or its faces or 

along its edges. This approach allows computations of the color similarity of two given RGB colors 

by simply calculating the distance between them: the shorter the distance, the higher the similarity. 

 

4.4 HSV color space 
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The Hue, Saturation, Value (HSV) color space is an alternative representation of the RGB color space, 

designed in the 1970s by computer graphics researchers to more closely align with the way human 

vision perceives color-making attributes (Agoston, 2005). In this color space, colors of each hue are 

arranged in a radial slice, around a central axis of neutral colors which ranges from black at the bottom 

to white at the top. This representation is shown in Fig. 4.3. The HSV color space models the way 

liquid paints of different colors mix together, with the saturation dimension resembling various shades 

of brightly colored paint, and the value dimension resembling the mixture of those paints with varying 

amounts of black or white paint. 

 

 

Fig. 4.3. HSV color space mapped to a cylinder. 

 

In this research, the HSV color space was chosen for color filtering instead of the RGB color space 

because it provided a better contrast for different illumination conditions. Unlike the RGB color space, 

the HSV color space separates luma, or the image intensity, from chroma or the color information. 

Therefore, the HSV color space filtering provided a better contrast because the HSV color space uses 

only one channel to describe color (H), making the filtering very intuitive to specify the crops color in 

contrast to the soil. 

 

To convert an RGB image into an HSV image let MAX be the maximum value of the components RGB 

and MIN the minimum value of those same values; then, the components of the color HSV space can 

be calculated (Agoston, 2005) according to Eq. (4.1): 
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𝐻 =

{
 
 
 
 

 
 
 
 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 𝑀𝐴𝑋 = 𝑀𝐼𝑁

60 ×
𝐺−𝐵

𝑀𝐴𝑋−𝑀𝐼𝑁
+ 0, 𝑖𝑓 𝑀𝐴𝑋 = 𝑅 𝑎𝑛𝑑 𝐺 ≥ 𝐵

60 ×
𝐺−𝐵

𝑀𝐴𝑋−𝑀𝐼𝑁
+ 360, 𝑖𝑓 𝑀𝐴𝑋 = 𝑅 𝑎𝑛𝑑 𝐺 < 𝐵

60 ×
𝐵−𝑅

𝑀𝐴𝑋−𝑀𝐼𝑁
+ 120, 𝑖𝑓 𝑀𝐴𝑋 = 𝐺

60 ×
𝑅−𝐺

𝑀𝐴𝑋−𝑀𝐼𝑁
+ 240, 𝑖𝑓 𝑀𝐴𝑋 = 𝐵

𝑆 = {
0, 𝑖𝑓 𝑀𝐴𝑋 = 0

1 −
𝑀𝐼𝑁

𝑀𝐴𝑋
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑉 = 𝑀𝐴𝑋

 (4.1) 

 

Fig. 4.4 illustrates the result of the RGB to HSV conversion of a field sample image. Fig. 4.4 a) shows 

the input image in the RGB color space. The image shows crop rows vegetation and inter crop row soil 

from the point of view of the tractor’s cabin. A portion of the tractor’s capot is also shown. Several 

crops shadows are also visible. The output image in the HSV color space is shown in Fig. 4.4 b). Note 

that the resulting HSV color space output image shown in Fig. 4.4 b) does not show useful information 

by itself since the crop rows are not visible emphasized in contrast to the inter-row space; but it does 

provides the HSV values necessary to separate the crop rows from the rest of the image. 

 

 

Fig. 4.4. RGB to HSV color space conversion. a) RGB input image. b) HSV output image. 

 

The HSV color space was developed in the late 1970s, for the hardware that was available at the time, 

and was used in most mid-end computers in the 1990s. Its design sacrificed perceptual relevance for 

computation speed which made it less demanding on systems. Therefore, it also has some general 

disadvantages; for example, saturation and lightness are confounded, so a saturation scale may also 

contain a wide range of lightness’s. This means that it may progress from white to green which is a 
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combination of both lightness and saturation. Likewise, Hue and lightness are confounded so a 

saturated yellow and a saturated blue may be designated as the same lightness; but in reality they have 

wide differences in perceived lightness. 

 

4.5 Binary threshold 

 

The Binary threshold is performed by means of a simple segmentation method. Segmentation methods 

are useful to separate out regions of an image corresponding to objects of interest; in the case of this 

research, the objects of interest are the crop rows. This separation is based on the variation of intensity 

between the object pixels and the background pixels. To differentiate the pixels corresponding to the 

objects of interest from the rest, it is possible to perform a comparison of each pixel intensity value 

with respect to a threshold (Bradski, and Kaehler, 2008). This threshold value is determined according 

to the problem to solve. In the case of this research, a threshold value is required for each one of the 

HSV color space components. Once the important pixels have been identified and separated properly, 

it is possible to set them with a determined value to identify them. This means, assign them a value of 

(0, 0, 0) corresponding to black, or (255, 255, 255) corresponding to white. 

 

To illustrate how thresholding process work consider a source image in the HSV color space; i.e., each 

pixel from the source image src(x,y) has intensity values (H, S, V). The HSV intensity values can be 

obtained from the RGB values by using Eq. (4.1).For explanation purposes, consider only one of the 

three HSV components. For example, choose the Hue value and plot its distribution for all the pixels 

in the source image Hsrc(x,y), as shown in Fig 4.5 a). The horizontal red line represents the threshold 

value fixed for the Hue. The binary thresholding operation can be expressed by Eq. (4.2) as: 

 

 𝐻𝑑𝑠𝑡(𝑥, 𝑦) = {
255, 𝑖𝑓 𝐻𝑠𝑟𝑐(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.2) 

 

Therefore, if the Hue intensity of the pixel Hsrc (x,y) in the source image is higher than the threshold, 

then the new pixel intensity is set to 255 (white). Otherwise, the pixels are set to 0 (black). This means 

that the resulting image; the destiny image, is a binary image because it contains only 2 colors, black 

or white. The plot of the Hue value distribution for all the pixels in the destiny image Hdst(x,y), is 

shown in Fig 4.5 b). 
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Fig. 4.5. Binary threshold representation. a) Hue input distribution Hsrc. b) Hue output distribution 

Hdst. 

 

Note that the binary threshold operation has to be performed on each one of the three components of 

the HSV color space; Eq. (4.2) and Fig. 4.5 show the situation for only one component for explanation 

purposes. In the case of this research, the threshold value is determined by means of fine tuning 

according to the HSV values present in the crop rows. Fig 4.6 shows the result of the Binary threshold 

operation. 

 

 

Fig. 4.6. HSV to binary conversion. a) HSV input image. b) Binary output image. 
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Fig. 4.6 a) shows the input image in the HSV color space. As mentioned before, in the HSV color space 

image the crop rows are not visible emphasized in contrast to the inter-row space; but it does provides 

the HSV values necessary to estimate their respective thresholds and separate the crop rows from the 

rest of the image. Fig. 4.6 b) shows the resulting binary image; it is evident how the crops rows have 

an overall good contrast to other elements like shadows and soil. However, due to the shape of each 

leaf of the plants, the vegetation appears as disparate elements in the binary image making the crops 

rows look noisy. This noise makes the center line from the crop row difficult to detect (Ji and Qi, 2011). 

 

4.6 Morphological operations 

 

Morphological operations are defined as a set of operations that process images based on shapes; a 

structuring element is applied to an input image to generate a smoothed output image. The most basic 

morphological operations are Erosion and Dilation. These two operations can be combined to obtain a 

wide range of applications in the image, like: 

 

 Removing noise. 

 Isolation of individual elements. 

 Fusion of disparate elements. 

 Detection of intensity bumps or holes. 

 

A brief description of each operation is given in the lines below. A more detailed explanation can be 

found at (Gonzalez and Woods, 2002). 

 

4.6.1 Dilation 

 

The Dilation operator takes two pieces of data as inputs (Fisher et al., 2003). The first is the image 

which is to be dilated. The second is a usually small set of coordinate points, known as a structuring 

element. This structuring element that determines the precise effect of the Dilation on the input image. 

As an example of Binary Dilation, suppose that the structuring element is a 3×3 square, with the origin 

at its center, as shown in Fig. 4.7. The 3×3 square is probably the most common structuring element 

used in Morphological operations, but others can be used. Also, as shown in Fig. 4.6 b) in the input 

image the foreground pixels are represented by 1 (white) and background pixels by 0 (black). To 
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compute the Dilation of a Binary input image by a 3×3 square structuring element, consider each of 

the background pixels in the input image. For each background pixel of the input image (the input 

pixel), superimpose the structuring element on top of the input image so that the origin of the 

structuring element coincides with the input pixel position. If at least one pixel in the structuring 

element coincides with a foreground pixel in the image underneath, then the input pixel is set to the 

foreground value. If all the corresponding pixels in the image are background, however, the input pixel 

is left at the background value. The effect of the Dilation operation using a 3×3 square structuring 

element on a binary image is shown in Figure 4.7. 

 

 

Fig. 4.7. Effect of Dilation using a 3×3 square structuring element. 

 

4.6.2 Erosion 

 

The Erosion operator also takes an input image which is to be eroded and a structuring element as 

inputs (Fisher et al., 2003). Similar to the Dilation operation, consider a 3×3 square structuring element 

and each of the foreground pixels in the input image. For each foreground pixel; the input pixel, 

superimpose the structuring element on top of the input image so that the origin of the structuring 

element coincides with the input pixel coordinates. If for every pixel in the structuring element, the 

corresponding pixel in the image underneath is a foreground pixel, then the input pixel is left as it is. 

If any of the corresponding pixels in the image are background, however, the input pixel is also set to 

background value. The effect of this operation is to remove any foreground pixel that is not completely 

surrounded by other white pixels. Such pixels must lie at the edges of white regions, and so the practical 

upshot is that foreground regions shrink and holes inside a region grow. The effect of the Erosion 

operation using a 3×3 square structuring element on a binary image is shown in Figure 4.8. 
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Fig. 4.8. Effect of Erosion using a 3×3 square structuring element. 

 

Therefore, by combining both Erosion and Dilation operations it is possible to smooth the noise of the 

crop rows shown in Fig. 4.6 b). The erosion operation eliminates small isolated white pixel areas. The 

dilation operation merges the areas where large groups of white pixels are found next to each other. 

The erosion operation uses a rectangular shape structuring element of 11 x 22 pixels. The dilation 

operation makes white crop rows denser and eliminates breaks using a rectangular shape structuring 

element of 7 x 14 pixels. These morphological operations transform the binary image shown in Fig. 

4.9 a) into the smoothed result shown in Fig. 4.9 b). It can be seen how the small white pixel areas 

within the inter-row space have been eliminated and the black pixels in the crops rows have been 

replaced by white pixels producing a continuous white area. Note that the central five rows were 

selected to remain in Fig 4.9 b), discarding the four outside rows. This is because the central five rows 

are present in every frame and they can be seen with good resolution after binary conversion. 

 

 

Fig. 4.9. Morphological operations result. a) Binary input image. b) Smoothed output image. 
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A common approach used to detect the crop rows is to thin down the white pixels area using Erosion 

operations. The crop rows represented by the white areas in the smoothed binary image shown in Fig. 

4.9 b) could be thinned down until they look like a line, in order to detect the contours of the thinned 

crop rows. Then it is possible to apply the Hough transform (Rovira-Más et al., 2005) to obtain a 

straight line representing the crop row. However, since the computational load of the Hough 

transformation method is quite high (Søgaard and Olsen, 2003), this research used a least squares 

method based on the geometric centers of the crop rows instead of the Hough transformation. 

 

4.7 Contours and geometric centers 

 

The geometric centers of the crop rows can be detected thanks to the fact that dispersed white pixels 

shown in Fig. 4.9 a) have been connected in the output image giving as a result the wider crop row 

areas shown in Fig. 4.9 b). To find the geometric centers of the crop rows, it is necessary to find the 

horizontal crop segments. The smoothed binary image shown in Fig.4.9 b) has a size of 420 x 256 

pixels; it is divided into 16 horizontal strips of 420x16 pixels, where maximum white values indicate 

the presence of a candidate row. The 16 horizontal strips are separated by the green lines, as shown in 

Fig. 4.10 a); it can be seen how each horizontal strip contains a segment of each crop row represented 

as a white square. 

 

 

Fig. 4.10. Morphological operations result. a) Segments of each crop row. b) Geometric centers. 

 

It is possible to retrieve the contour of each white square from the binary image shown in Fig. 4.10 a) 

using the algorithm of topological structural analysis by border following (Suzuki, and Abe, 1985). 
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The resulting contours are shown in red in Fig. 4.10 b). These red contours represent the white squares 

obtained from each one of the 16 horizontal strips; although the white areas are not perfect squares it 

is guaranteed that they are inside the crop row region. The mass centers of each one of these red 

contours were calculated using an algorithm included in the OpenCV library; which is based on the 

Green’s formula (Green, 1828). Fig. 4.10 b) also shows the result of each block mass center; the blue 

points represent their respective geometric centers. Fig. 4.10 b) also shows that the size of the red 

contours might vary; however, since their geometric centers are contained inside the crop row they can 

be used to calculate the crop’s center line anyway.  

 

These centers are distributed over the five central crop rows, so the next step is to fit each line to each 

set of the point’s coordinates by using the least squares method. Since least squares method is a well-

known procedure its explanation is not included in this thesis. The least squares method results in the 

estimates of the slope and intercept of the center line of the guiding row as shown in Fig. 4.11. 

 

 

Fig. 4.11. Lines from least squares regression. 

 

Some factors might affect the accuracy of this method (Søgaard and Olsen, 2003). For example, if 

weeds grow beside the crop row, the points in the image strip containing the weed will be offset from 

their correct position. Moreover, due to the natural variation in the plant growth, the width and position 

of the canopy make it difficult to determine the center line of a crop row. Therefore, accuracy of the 

method can be improved by obtaining correction data from the Telephoto image as described in the 

next section. 

 

4.8 Centers of gravity 
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In order to improve the accuracy of the crop row detection method it is possible to obtain correction 

data from the Telephoto image of the 2-in-1 camera. Fig. 4.12 a) shows the Telephoto image capture 

of the central crop row; thanks to its increased resolution there is a bigger contrast between crops and 

the soil, to the point that some of the leaves veins can be identified in the image. 

 

 

Fig. 4.12. Telephoto image crop row detection. a) Input image. b) Binary image. c) Vertical sum of 

white values. d) Line from the center of gravity. 

 

The same HSV color space conversion used in the Wide-angle image was used for color filtering of 

the Telephoto image as well, giving as result the binary image shown in Fig. 4.12 b). The advantage 

of using the Telephoto image becomes obvious by looking at Fig. 4.12 b); where the leaves’ silhouettes 

are easily differentiated as white pixels from the rest of the elements in the image. Since the central 

crop row does not look noisy and the leaves are well defined, it is not necessary to apply the 

morphological operations of dilation and erosion described in sections 4.6.1 and 4.6.2 respectively. 
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The Telephoto binary image shown in Fig. 4.12 b) is then processed in order to find the crop’s center 

line. Since the plants are represented as white pixels, the white intensities of the image are calculated 

by vertical integration (Facciolo et al., 2014). This means to calculate the vertical sum of the white 

pixel values in the image column by column. Since the Telephoto image has a size of 640 x 480 pixels, 

it is necessary to sum the 480 rows of each one of the 640 columns of the image. This gives as a result 

the white pixels intensity distribution with the form of a histogram shown by the red plot in Fig. 4.12 

c). This white pixels intensity distribution contains a total of 640 elements, which can be stored in a 

vector. The crop’s center line could be found from the distribution maximum value or by fitting a 

sinusoidal curve by means of a least squares fit (Olsen, 1995). However, the center of the crop row 

was obtained by calculating the center of gravity of the white pixels intensity distribution because it 

gave as a result a more stable value. To calculate the center of gravity, the histogram shown by the red 

plot in Fig. 4.12 is arranged on a unit circle evenly distributed, as illustrated by the cut cylinder in Fig. 

4.13. 

 

 

Fig. 4.13. Circular representation of the sum curve and determination of the center of gravity. 

 

As the number of elements in the histogram is m=640, the angular distance between two consecutive 

elements on the circle will be 2π/m, and in a plane rectangular co-ordinate system with origin in the 

circle’s center, the position, (xl, yl), of each element l (l=1, 2, … , m) can be defined by Eq. (4.3) as: 

 

                               𝑥𝑙 = cos (2𝜋
𝑙−1 2⁄

𝑚
)     𝑦𝑙 =  sin (2𝜋

𝑙−1 2⁄

𝑚
)      𝑙 = 1,… ,𝑚                               (4.3) 
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Now, regarding the elements of the distribution as point masses with masses Wl , (i.e. Wl is the 

numerical value of each one of the elements of the distribution) the center of gravity A (xA, yA) of the 

circular arrangement shown in Fig. 4.13 will be given by Eq. (4.4) as: 

 

                                                   𝑥𝐴 = 
∑ 𝑊𝑙𝑥𝑙
𝑚
𝑙=1

∑ 𝑊𝑙
𝑚
𝑙=1

     𝑦𝐴 = 
∑ 𝑊𝑙𝑦𝑙
𝑚
𝑙=1

∑ 𝑊𝑙
𝑚
𝑙=1

                                                     (4.4) 

 

After obtaining the center of gravity A (xA, yA) it is possible to calculate the direction angle φ (0 ≤ φ 

<2π) of the vector CA from the circle center C to the center of gravity A shown in Fig. 4.13 by using 

Eq. (4.5) as: 

                                         𝜑 =

{
 
 
 
 

 
 
 
 

tan−1
𝑦𝐴

𝑥𝐴
𝑖𝑓 𝑥𝐴 > 0 𝑎𝑛𝑑 𝑦𝐴 ≥ 0

2π + tan−1
𝑦𝐴

𝑥𝐴
𝑖𝑓 𝑥𝐴 > 0 𝑎𝑛𝑑 𝑦𝐴 < 0

π + tan−1
𝑦𝐴

𝑥𝐴
𝑖𝑓 𝑥𝐴 < 0 

1

2
𝜋 𝑖𝑓 𝑥𝐴 = 0 𝑎𝑛𝑑 𝑦𝐴 > 0

3

2
𝜋 𝑖𝑓 𝑥𝐴 = 0 𝑎𝑛𝑑 𝑦𝐴 < 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 𝑥𝐴 = 0 𝑎𝑛𝑑 𝑦𝐴 = 0

                                                     (4.5) 

 

From the angle φ the index l* corresponding to the center of the rows can be computed by Eq. (4.6) as: 

 

                                                                   𝑙∗ = 𝑟𝑜𝑢𝑛𝑑 (
𝜑

2𝜋
𝑚)                                                                        (4.6) 

 

In Eq. (4.6) the round operation indicates rounding to the nearest integer in the interval from 1 to 

m=640. Fig. 4.12 d) shows the crop row central line obtained from the center of gravity, represented 

by the red line. Thanks to the shape of the white pixels intensity distribution, it is guaranteed that this 

red line will be contained inside the crop row. 

 

4.9 Downscaling 

 

The final step is to take the detected crop row central line obtained from the Telephoto image and 

downscale it into the Wide-angle image. This allows to correct the position of the crop row central line 

obtained from the Wide-angle image shown in Fig 4.11. This situation is shown Fig. 4.14; the blue 

lines represent the crop rows detected inside the Wide-angle image ROI by following the procedure 
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described in section 4.7. The red line represent the central crop row detection obtained from the 

Telephoto image by following the procedure described in section 4.8. The red line can be extended 

along the Wide-angle ROI due to the fact that most of the crop rows are seldom curved; they are usually 

straight and parallel due to the geometry of agriculture implements like plows and planters, to a point 

that it is even possible to build perspective models to guide a row crop navigation vehicle (Pla et al., 

1997). 

 

 

Fig. 4.14. Wide-angle and Telephoto image crop row detection comparison. 

 

Fig. 4.14 also shows that the central blue line corresponding to the central crop row detected inside the 

Wide-angle image ROI has some slope inclination, although it is contained within the limits of the 

central crop row. This is the result of the natural variation in the plants, which can create some line 

offset from their ideal position. The method used to improve this situation is explained in the following 

section. 

 

4.10 Camera calibration and image recording 

 

Accuracy of detection is an important issue to be addressed in image processing (Romeo et al., 2013). 

There are two main types of parameters affecting the accuracy of the images, namely: extrinsic, related 

to the camera’s positioning in the test vehicle; and intrinsic, related to the camera’s specifications, such 

as CCD resolution, focal length or iris aperture, among others. Therefore, correct camera sensor 

arrangement is required to adjust the extrinsic parameters by means of appropriate camera calibration. 
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4.10.1 Camera calibration 

 

Before recording the video frames in the field, the Fujifilm 2-in-1 camera was calibrated by shooting 

an image of a rectangular whiteboard. The whiteboard had distance points marked on it, forming a 10 

cm by 10 cm square grid. The camera was placed in the top of the test vehicle, 2.75m aboveground at 

a pitch angle of 23.2 deg. from a horizontal orientation. Fig. 4.15 shows the Fujifilm 2-in-1 camera 

calibration setup. The whiteboard was placed on the ground, in the center of the image field of both 

wide-angle and telephoto images with the purpose of relating the image pixel position with the 

whiteboard distance points, which correspond to the real world distances in cm. 

 

The top right portion of Fig. 4.15 shows the relation between the image pixel position and the real 

world distance points drawn on the white board obtained from the telephoto image. The 10 cm by 10 

cm square grid looks like a trapezoid due to perspective from the top of the test vehicle. 

 

Fig. 4.15. Fujifilm 2-in-1 camera calibration setup. 

 

The resulting pixel-distance relation allowed transformation of coordinates between the image plane 

and the ground plane. As mentioned in section 4.2, in this research the camera calibration and all the 

image processing was developed in C++ language using the OpenCV library (Bradski and Kaehler, 

2008). 
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4.10.2 Image recording 

 

Series of video frames were acquired in a soybean test field, located in the experimental farm of 

Hokkaido University. The test field was 150 m long and it had 40 crop rows with 0.70 m inter row 

spacing. The test vehicle was driven as parallel to the crop rows as possible so that, ideally, the 

calculated lateral offset, i.e. the lateral distance between the row and the image vertical center line, 

should have a constant value (Søgaard and Olsen, 2003). 

 

The test vehicle traveled four paths along the test field at an average speed of 0.75 m/s. When the test 

vehicle is traveling, mechanical vibration and unevenness of the soil might affect the image stability. 

However, the video frames recorded during the experiments were smooth enough so neither image 

stabilization algorithms nor gimbal support was necessary. This statement can be verified by observing 

the experimental vehicle’s sensors measurements, depicted in Fig. 4.16. The experimental path 

recorded by the RTK-GPS in Easing and Northing coordinates is shown in Fig. 4.16 a); this path data 

was used to build the crop map describe in Chapter 5 and to verify that the vehicle traveled with a 

small lateral offset. The vehicle’s attitude recorded by the FOG is shown in Fig. 4.16 b). Note that 

since the FOG range of measurement is 0 deg. to 360 deg. the glitches in the plots actually represent 

the same direction; i.e. 0 deg. is equal to 360 deg. in the FOG reference frame of measurement. The 

yaw is equivalent to the heading of the vehicle, and it is evident how changes 180 deg. for each one of 

the four experimental paths. The attitude data recorded by the FOG was originally intended to stabilize 

the images required in the mapping process, in case there were abrupt changes in the vehicle’s attitude; 

particularly in the pitch. However, it can be seen in Fig. 4.16 b) that the yaw, pitch and roll values have 

an overall stable behavior. 

 

The experiments were conducted on two different days; at different hours of the day, in order to account 

for different illumination conditions. Fig. 4.17 shows the Fujifilm 2-in-1 camera field of view, as shown 

in Chapter 2, section 2.5. The full size of the side by side image is 1280 x 480 pixels. The left side 

corresponds to the Wide-angle image and the right side corresponds to the Telephoto image; both 

images have a size of 640 x 480 pixels respectively. The blue rectangle represents the Region of Interest 

(ROI) used for crop row detection, which has a size of 420 x 256 pixels. The red rectangle has a size 

of 53 x 40 pixels and it represents the position of the Telephoto image inside the wide-angle image. 
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Fig. 4.16. Sensors measurements. a) Experimental path from RTK-GPS. b) Experimental vehicle 

attitude from FOG. 

 

 

Fig. 4.17. Fujifilm 2-in-1 camera field of view; wide-angle image (left) and telephoto image (right). 

 

As described in section 2.5 the telephoto image was set to a zoom factor of twelve; magnifying the 

image area of 53 x 40 pixels represented by the red rectangle in Fig. 4.17 into an image area of 640 x 

480 pixels. This shows an advantage in the use of the 2-in-1 camera, because an increased image 

resolution can be achieved for a specific area with fixed position inside the wide-angle image. 

Therefore, the wide-angle image was used for crop row detection while the telephoto image was used 

for correction of the central row crop row detection. The wide-angle image was used for crop mapping 

as well, but this method will be introduced in Chapter 5. It is possible to perform crop row correction 
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(Guerrero et al., 2013) by using the Theil-Sen estimator or the Pearson product–moment correlation 

coefficient considering the dispersion of plants; however, these methods result in an increment of the 

image processing time. 

 

4.11 Crop row detection 

 

To analyze the crop row detection accuracy, the lateral offset from the central crop row real position 

was recorder for both wide-angle and telephoto images. To understand better the lateral offset 

estimation Fig. 4.18 shows the crop row detection results for one of the four experimental paths. The 

yellow line represent the ideal center of the central crop row; which correspond to the zero position of 

the left and right lanes. This means that any deviation to the left of the ideal center will be considered 

as a negative value and any deviation to the right will be considered as a positive value. 

 

The blue lines represent the detected crop rows obtained from the Wide-angle image using the 

procedure described in section 4.7. Similarly, the red line represent the detected central crop row 

obtained from the telephoto image using the procedure described in section 4.8. The white line 

represent the maximum value of the distribution also described in section 4.8; as mentioned before this 

maximum value quite unstable, therefore is actually not used in the correction process. The position of 

the telephoto image inside the wide-angle image is represented by the white square. The white circle 

represent the center of the image frame. Note that lines have been downscaled using the procedure 

explained in section 4.9. 

 

 

Fig. 4.18. Crop row detection results. 
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The pixel position of each one of the lines is then recorded for each one of the video frames; again, 

consider that any deviation to the left of the ideal center will be considered as a negative value and any 

deviation to the right will be considered as a positive value. 

 

To visualize better this situation, Fig. 4.19 shows a detail of the crop row detection with a plot of the 

lanes pixel position shown in the top left portion of the figure. The plot vertical axis represents the 

image frame horizontal position in pixels. This means the detected crop rows are found within the 

range 280-280 pixels. This 100 pixels window is used to show the lateral offset of the detected crop 

rows. As mentioned in Fig. 4.18 the yellow line represents the central crop row ideal position. The 

green line represents the central crop row real position measured manually frame by frame based on 

an expert criterion (Bengochea-Guevara et al., 2016). The blue line represents the wide-angle image 

central crop row detection and the red line represents the telephoto image central crop row detection. 

 

 

Fig. 4.19. Crop row detection detail. 

 

The next step is to take these pixel values and convert them to real world units, thanks to the calibration 

process described in section 4.10.1. The plot of the crop rows center is shown in Fig. 4.20. The lateral 

offset is shown in cm. The yellow line represents the central crop row ideal position. The blue line 

represents the wide-angle image central crop row detection and the red line represents the telephoto 

image central crop row detection. 
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Fig. 4.20. Crop row detection plot. 

 

To analyze the crop row detection accuracy, the Root Mean Square Error and the Standard Deviation 

respect to the central crop row ideal position were calculated. From Fig. 4.20 it can be seen how the 

wide-angle image central crop row detection represented by the blue line shows a standard deviation 

of 0.8491 and Root Mean Square Error of 0.8345; which are comparable to traditional crop row 

detection methods (Romeo et al., 2012). Also from Fig. 4.20, it is evident how the telephoto image 

central crop row detection represented by the red line shows a smaller standard deviation of 0.3352 

and Root Mean Square Error of 0.2492 compared to the crop row detection from the wide-angle image 

(Kise et al., 2005). This can be interpreted as an improvement to traditional crop row detection 

methods. This research took advantage of the telephoto image data and applied data fusion to correct 

the wide-angle image data as described in next section. 

 

4.12 Wide angle and telephoto images data fusion 

 

Data fusion is the process of integrating multiple data sources to produce more consistent, accurate, 

and useful information than that provided by any individual data source (Hall and Llinas, 1997). Data 

fusion processes are often categorized as low, intermediate, or high, depending on the processing stage 

at which fusion takes place (Blasch et al., 2006). Low-level data fusion combines several sources of 

raw data to produce new raw data. The expectation is that fused data is more informative and synthetic 

than the original inputs.  
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There has been an ever-increasing interest in multi-disciplinary research on multisensor data fusion 

technology, driven by its versatility and diverse areas of application. Data fusion is a wide ranging 

subject and many terminologies have been used interchangeably. These terminologies and ad hoc 

methods in a variety of scientific, engineering, management, and many other publications, show the 

fact that the same concept has been studied repeatedly. As a result, the terms data fusion and 

multisensor data fusion are used interchangeably (Khaleghi et al., 2013). The data fusion research 

community have achieved substantial advances, especially in recent years. Nevertheless, realizing a 

perfect emulation of the data fusion capacity of the human brain is still far from accomplished. 

 

In conclusion, several data fusion methodologies have been developed with their respective advantages 

and disadvantages according to their field of application. Table 4.2 summarizes some of the most 

common data fusion techniques (Castanedo, 2013) as quick reference of how wide this field of 

knowledge has become. 

Table 4.2. Data fusion methods summary. 

Data Association Techniques State Estimation Methods Decision Fusion Methods 

1. Nearest Neighbors and 

K-Means 

2. Probabilistic Data 

Association 

3. Joint Probabilistic Data 

Association 

4. Multiple Hypothesis 

Test 

5. Distributed Joint 

Probabilistic Data 

Association 

6. Distributed Multiple 

Hypothesis Test 

7. Graphical Models 

1. Maximum 

Likelihood and 

Maximum Posterior 

2. The Kalman Filter 

3. Particle Filter 

4. The Distributed 

Kalman Filter 

5. Distributed Particle 

Filter 

6. Covariance 

Consistency 

Methods: 

Covariance 

Intersection/Union 

1. The Bayesian Methods 

2. The Dempster-Shafer 

Inference 

3. Abductive Reasoning 

4. Semantic Methods 
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After reviewing some if these data fusion techniques, the simplest solution found was a complementary 

filter (Higgins, 1975). Deep explanation of the complementary filter is beyond the scope of this 

research. For this research purposes in particular, the complementary filter has a considerable 

advantage over other data fusion techniques; like the Kalman filter, because the Riccati equation and 

Kalman gains are not computed. 

 

Therefore, the update rate of the complementary filter can be higher than the update rate of the Kalman 

filter. The basic complementary filter is shown in Fig. 4.21; where x and y are noisy measurements of 

some signal z, and �̂� is the estimate of z produced by the filter. Assume that the noise n2 in y is mostly 

high frequency, and the noise n1 in x is mostly low frequency. Then G(s) can be made a low-pass filter 

to filter out the high-frequency noise in y. If G(s) is low-pass, [1 - G(s)] is the complement, i.e., a high-

pass filter which filters out the low-frequency noise in x. No detailed description of the noise processes 

are considered in complementary filtering (Stewart and Parks, 1957). 

 

 

Fig. 4.21. Basic complementary filter. 

 

The inputs of complementary filter are defined as follows. Consider the data shown in Fig. 4.22, the 

input y corresponds to the wide-angle image data shown in blue and the input x corresponds to the 

telephoto image data shown in red. Therefore, the estimate output of the complementary filter is given 

by Eq. (4.7): 

                                                            �̂� = 𝑥[1 − 𝐺(𝑠)] + 𝑦[𝐺(𝑠)]                                                  (4.7) 
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Fig. 4.22. Complementary filter result. 

 

The purple line in Fig. 4.22 represents the complementary filter fusion result  �̂�. The gain of the 

complementary filter was found by means of fine tuning. It can be seen how the complementary filter 

fusion result combines the best qualities of the two input signals x and y, evident as an overall noise 

reduction. The comparison of this overall noise reduction is shown in detail in Fig. 4.23 a); again, the 

yellow line represents the central crop row ideal position; i.e. the center of the image frame. The green 

line represents the central crop row real position measured frame by frame based on an expert criterion. 

It can be seen how the complementary filter result has a reduced Root Mean Square Error and Standard 

Deviation compared to the wide-angle image data. 

 

It is also important to consider the stability of the error. This result is shown in detail in Fig. 4.23 b) 

which compares the central crop row real position, represented by the green line, with the 

complementary filter fusion result represented by the purple line. The error of the complementary filter 

fusion result respect to the central crop row real position is represented by the black line, which is 

within a margin of ±1cm. The Mean of the error is -0.0623 and the Variance is 0.0855; these values 

show a meaningful performance improvement in comparison to other approaches (Åstrand and 

Baerveldt, 2005). 

 

Although correction is performed only in the central crop row, the accuracy of the method can be used 

to build perspective models to guide a row crop navigation vehicle (Pla et al., 1997). This is possible 
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based on extraction of the scene structure from perspective information that a set of coplanar parallel 

lines, representing the crop rows, generate in the image. This means that correction of the central crop 

row can be extrapolated to other crop rows; however, that is part of future work. 

 

Fig. 4.23. Crop row detection results comparison. a) Wide-angle and Telephoto RMSE. b) Mean and 

variance of the complementary filter error. 

 

4.13 Conclusions 

 

This chapter has described the image processing methods used in this research. The context of image 

processing or precision agriculture was explained as an introduction. The software used was briefly 

explained. The image processing methods used to detect the crop rows from the experimental field 

where explained step by step including their mathematical models. The differences between the RGB 

color space and the HSV color space were described. Morphological operations and their relevance 

were examined. The contours and geometric centers calculation lead to the conclusion that the crop 

rows position can be estimated by using a combination of point estimation and weighted linear 

regression. 

 

The camera calibration method was introduced; giving as a result the pixel-distance relation that 

allowed transformation of coordinates between the camera’s image plane and the ground plane. The 

image recording section explained how series of video frames were acquired in the soybean test field, 

located in the experimental farm of Hokkaido University. 
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From the figures included it was found that the traditional method for detecting the crop rows from a 

wide-angle image can be improved by the use of correction data from a telephoto image. Thanks to the 

telephoto image’s increased resolution, accuracy of the image recognition algorithm can be improved 

by fusing the wide-angle image data with the telephoto image data using a complementary filter, 

reducing the lateral position deviation range from 0.061 m to 0.028 m. Although results display 

increased accuracy for the lateral position calculated from crop row detection, the machine vision 

measurements still have some inherent noise that can affect the navigation performance of the vehicle. 

Next chapter discusses how to integrate the best aspects of the vehicle motion model estimations 

described in chapter 3 with the machine vision measurements in order to clean this inherent noise. 
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Chapter 5 Application to automatic navigation and crop 

mapping 

 

This chapter describes how to apply the machine vision system integrated with the vehicle motion 

model to a smart agricultural vehicle capable of performing automatic navigation and crop mapping. 

To achieve automatic navigation, it is explained how to measure the vehicle’s heading φ from the 

detected crop rows. A complementary filter was used in order to integrate the best aspects of the vehicle 

motion model estimations with the machine vision measurements. Some sections of this Chapter refer 

to the equations models described in Chapter 3 in order to account to the vehicle’s motion model 

improvement in combination with the machine vison method.  

 

In addition; this research goes a step beyond the automatic navigation from crop row detection adding 

a crop mapping method. This chapter describes the methodology to build a crop map taking advantage 

of the Fujifilm 2-in-1 camera wide-angle lens. Limitations of the current crop mapping methods are 

explained in order to justify the purpose of this method. Results of the proposed approach are discussed 

according to the theoretical error found between the processed images and the RTK-GPS path data. It 

is concluded that the mapping method has a reasonable error and also has a clear advantage over 

mapping methods that employ conventional cameras. 

 

5.1 Heading detection 

 

In order to apply the machine vision method described in chapter 4 to an automatic navigation system, 

it is necessary to estimate the vehicle’s lateral position y and the heading φ from the detected crop rows 

(Pinto et al., 2000). The method to measure the vehicle’s lateral position y (also called offset y) from 

the detected crop rows was described in section 4.11, concluding that the machine vision measurements 

still have some inherent noise that can affect the navigation performance of the vehicle.  

 

Despite the noise each combination of the vehicle guidance parameters; lateral position y and heading 

angle φ, can be treated as a pose of the crop rows. An image sensing technique using image plane 

analysis to measure the heading angle φ of the vehicle based on the crop rows viewed from the camera 

was used (Yeh et al., 1994).  
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To measure the heading angle φ from the straight crop rows the geometric relationship of the test 

vehicle relative to the crop rows is shown in Fig. 5.1 a). The vehicle’s lateral position y is the same as 

the offset shown in Fig. 5.1 a). The nearest distance that the camera can capture is located at baseline 

l1 with distance d ahead of the Center of Gravity C.G. of the vehicle. The crop rows shown in Fig. 5.1 

a) and the center line between them are parallel. Therefore, from the perspective of the top of the test 

vehicle they converge to a vanishing point P located in the horizon line P1P2. This vanishing point P 

is shown in Fig. 5.1 b). According to the analysis illustrated in Fig. 5.1, the heading angle can be 

obtained from the position of vanishing point P as described by Eq. (5.1): 

 

tan𝜑

tan 𝜃
=
𝑂𝑃̅̅ ̅̅

𝑂𝑃2̅̅ ̅̅ ̅
≅
𝜑

𝜃
 

                                                           𝜑 = tan−1 (𝑂𝑃̅̅ ̅̅ × tan 𝜃
𝑂𝑃2̅̅ ̅̅ ̅⁄ )                                               (5.1) 

 

In Eq. (5.1), the angle θ is the field of view of the camera, also known as the visual angle. Only the 

calculation of the heading angle φ from the wide-angle image was considered. This is because the 

visual angle of the telephoto image is too narrow and fits only the central crop row; it does not contain 

the vanishing point P shown in Fig. 5.1 b). 

 

 

Fig. 5.1. Heading detection. a) Geometric relation of the vehicle relative to the crop rows. b) 

Corresponding view in image plane. 
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The plot of the heading angle φWA from the wide-angle image is shown in Fig. 5.2 as the green line. 

The blue line represents the measured heading φ from the FOG. It can be seen in Fig. 5.2 that although 

the measurement from the wide-angle image is noisy, it is within a range of 2 deg. and both the 

Standard Deviation and the Root Mean Square Error have reasonable values. 

 

Fig. 5.2. Heading measurement comparison. 

 

As described in section 2.3 the FOG (Japan Aviation Electronics Industry Ltd., JCS7402-A) provides 

both the vehicle’s angular rates (accuracy ≤ ± 5 deg. /s) and the attitude (accuracy ≤ ± 0.15 deg.). This 

means that a high precision sensor like the FOG has an accuracy that is difficult (if not impossible) to 

match with the heading angle φ estimation calculation from Eq. (5.1). Even so, a range of 2 deg. seems 

reasonable for this kind of approach (Pinto et al., 2000). Next section discusses how to clean the 

inherent noise of the machine vision measurements. 

 

5.2 Navigation system by sensor fusion integration 

 

Following the results from section 5.1, it is possible to clean the machine vision inherent noise using a 

complementary filter that integrates the machine vision measurements with the vehicle motion model 

estimations. Remember that the vehicle motion model estimations were described in sections 3.3.1 and 

3.3.2. The vehicle’s heading φ and lateral position y are the critical parameters for automatic navigation 

systems (Zhang et al., 1999). However, there are many problems in developing a robust automatic 

navigation system based only on machine vision, mainly because the environment in which the vehicle 



 

79 

 

navigates is an outdoor space with many disturbances resulting from variable soil and weather 

conditions. Moreover, this environment also include various disturbances such as shadows, weed 

infestation and different soil colors and types. 

 

Even thought, machine vision has been widely investigated and implemented in crop row detection 

systems (Burgos-Artizzu et al., 2011) in combination with an RTK-GPS for the vehicle’s automatic 

navigation system. This has become possible thanks to the decreasing costs of RTK-GPS. 

Nevertheless, RTK-GPS also has low reliability issues caused by the interference of the GPS signals 

by trees and buildings. Therefore, to improve stability of the automatic navigation system, redundant 

sensing systems are required. The typical approach (Noguchi et al., 1998) is to develop the navigation 

system by sensor fusion integration with machine vision, RTK-GPS and some attitude sensor like a 

geometric a direction sensor (GDS) or an IMU. A data fusion methodology like the Kalman Filter or a 

Probability Density Function is then applied to combine data from the sensors. 

 

In this research however, the RTK-GPS position and the FOG attitude data was used in the 

measurement methodology described in section 3.3.1 for estimating the vehicle’s dynamic parameters 

β and ω. These dynamic parameters were used to describe the tire dynamic properties by means of a 

regression model technique, resulting in a model that does not depend on several parameters, such as 

longitudinal slip, sideslip angle, normal load, camber angle, tire pressure, wear, and road surface 

characteristics. The tire dynamic properties described by this regression model technique can be 

applied to obtain better model estimations of the vehicle’s dynamic parameters β and ω. In turn, this 

vehicle’s improved estimations were used to improve the motion model estimations of the test vehicle 

given by the kinematic model described by Eq. (3.1) giving as a result more precise estimations of the 

heading φ and position (x, y) of the vehicle, as described in section 3.3.2.  

 

In other words, the purpose of this research is not to fuse de data from the machine vison system with 

the RTK-GPS data as typical approaches have achieved. The purpose of this research is to fuse the 

improved motion model estimations with measurements from the machine vison system and then 

compare them to the real position of the vehicle measured by the RTK-GPS and the real heading 

measured by the FOG. 
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5.2.1 Vehicle dynamic model estimations for a straight path  

 

The experimental image recording was introduced in section 4.10.2, showing in Fig. 4.16 a) the four 

experimental paths recorded by the RTK-GPS in Easing and Northing coordinates. For simplicity, 

section 4.11 shows the crop row detection results for one of the four experimental paths. Similarly, this 

section shows the vehicle navigation model improvement results for one of the four experimental paths, 

following the method described in section 3.3.1. Fig. 5.3 shows in purple the body sideslip βREG and 

yaw rate ωREG obtained from the modeled regression equations in comparison to the measured body 

sideslip β and the measured yaw rate ω shown in blue.  

 

The dynamic modeled body sideslip βDYN and yaw rate ωDYN are shown in red. It can be seen how the 

behavior of each data is consistent to the measured data. It is necessary to calculate the error in order 

to evaluate the accuracy improvement of the body sideslip βREG and yaw rate ωREG obtained from the 

regression model. The RMS error for both the body sideslip βREG and yaw rate ωREG is also shown in 

Fig. 5.3. The RMS error for both the body sideslip βDYN and yaw rate ωDYN is included as well. 

 

 

Fig. 5.3. Straight path dynamic parameters. a) Body sideslip β. b) Yaw rate ω. 

 

Although the body sideslip β and the yaw rate ω are more notorious for a sinusoidal path described in 

section 3.3.1 (where the RMS error of the modeled body sideslip angle was reduced from 5.0 deg. to 

3.4 deg.; and the modeled yaw rate RMS error was reduced from 7.3 deg/s to 4.6 deg/s.); determination 
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of both the body sideslip β and the yaw rate ω is also necessary for a straight path. This is because in 

farm machinery; like tractors, constant lateral velocities (known as vehicle ‘‘crab’’) can occur from 

traveling on sloped terrain, tires getting caught in a furrow, or pulling a heavy implement. Additionally, 

an apparent crab angle can occur from misalignment of the heading sensor (Bevly et al., 2002). 

 

5.2.2 Heading integration results 

 

Again, as described in section 3.3.2 it is possible to estimate the navigation model improvement by 

using the data summarized in Fig. 5.3; this means to compute the body sideslip βREG and yaw rate ωREG 

into Eq. (3.1) to obtain the position (x, y)REG and heading φREG of the vehicle estimated from the 

regression model. Similarly, it is possible to compute the body sideslip βDYN and yaw rate ωDYN into 

Eq. (3.1) to obtain the position (x, y)DYN and heading φDYN of the vehicle estimated from the dynamic 

model with constant cornering stiffness. 

 

Fig. 5.4 shows in purple the heading φREG obtained by computing the body sideslip βREG and yaw rate 

ωREG into Eq. (3.1). The measured heading φ obtained from the FOG is shown in blue for comparison 

purposes. The dynamic modeled heading φDYN is shown in red. It is evident how the dynamic modeled 

heading φDYN has an overall bigger deviation in comparison with the other data sets. Similarly to the 

plot shown in Fig. 5.2, the heading angle φWA from the wide-angle image is shown in Fig. 5.4 as the 

green line.  

 

It is necessary to calculate the error in order to evaluate the accuracy improvement of the navigation 

model. The RMS error for both headings φREG and φDYN respect to the measured data are also shown in 

Fig. 5.4. It can be noted how using the values obtained from the regression model, the accuracy 

improved for the heading φREG in contrast with the dynamic model φDYN. 

 

The next step is to combine the heading φREG from the regression model with the heading angle φWA 

from the wide-angle image. The black line in Fig. 5.4 represents the complementary filter fusion 

result �̂�. The gain of the complementary filter was found by means of fine tuning. It can be seen how 

the complementary filter fusion result combines the best qualities of the two input signals φREG and 

φWA, evident as an overall noise reduction. It can be seen how the complementary filter result has a 

reduced Root Mean Square Error and Standard Deviation compared to the other data sets. 
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Fig. 5.4. Heading comparison. 

In conclusion, the RMS error of the heading angle φWA from the wide-angle image was reduced from 

0.75 deg. to 0.42 deg., i.e. the RMS error was reduced over 30%. 

 

5.2.3 Position integration results 

 

Fig. 5.5 shows in purple the position of the vehicle obtained by computing the body sideslip βREG and 

yaw rate ωREG into Eq. (3.1). Note that Fig. 5.5 is plotted in Easting and Northing coordinates. The 

measured position from the RTK-GPS is shown in blue for comparison purposes. The dynamic 

modeled position is shown in red. Again, it can be observed how the behavior of each data set is 

consistent to the measured data. However, in order to compare the path with the lateral offset measured 

with the machine vision system it is necessary to rotate it respect to the horizontal axis. 

 

The rotated path is plotted in Fig. 5.6; which shows in purple the position obtained by computing the 

body sideslip βREG and yaw rate ωREG into Eq. (3.1). Same as Fig. 5.5, the measured position from the 

RTK-GPS is shown in blue for comparison purposes. The dynamic modeled position is shown in red. 

It is evident how the dynamic modeled position has an overall bigger deviation in comparison with the 

other data sets. The complementary filter result obtained from fusing the wide-angle and telephoto 

images shown as the purple line in Fig. 4.23 is represented in Fig. 5.6 as the green line. The RMS error 
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for both the regression modeled lateral position and the dynamic modeled position respect to the 

measured data are also shown in Fig. 5.6. It can be noted how using the values obtained from the 

regression model, the accuracy improved for the regression modeled lateral position in contrast with 

the dynamic modeled lateral position. 

 

 

Fig. 5.5. Navigation path comparison. 

The next step from Fig. 5.6 is to integrate the position from the regression model shown in purple with 

the position from machine vision shown in green. The black line in Fig. 5.6 represents the 

complementary filter fusion result �̂�. The gain of the complementary filter was found by means of fine 

tuning. It can be seen how the complementary filter fusion result integrates the best qualities of the two 

input data sets of position, evident as an overall noise reduction. It can be seen how the complementary 

filter result has a reduced Root Mean Square Error and Standard Deviation compared to the other data 

sets. In other words, the machine vision lateral position RMS error was reduced from 0.028 m to 0.024 

m; therefore reducing the RMS error around 20%. 
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Fig. 5.6. Navigation path rotated comparison. 

From Figs. 5.4 and 5.6, it can be observed how by using the data obtained from the regression model 

the accuracy improved for both the heading and the lateral position of the vehicle. This result was 

expected due to the fact that the accuracy improved for both the sideslip β and the yaw rate ω in contrast 

with the dynamic model as shown in Fig. 5.3. As stated before, one important drawback of the dynamic 

navigation model described by Eq. (3.1) is its inherent integration error; however, this does not 

interfere with the purpose of comparing the results obtained by computing the body sideslip βREG and 

yaw rate ωREG with the results obtained by computing the body sideslip βDYN and yaw rate ωDYN because 

the same Eq. (3.1) is being used; only the input data sets are different. 

 

As concluded before, smaller RMS errors mean that tire parameters can be used to obtain better 

estimations of the body sideslip βREG and yaw rate ωREG; which in turn can be used to improve the 

vehicle motion model estimations. It can also be noted how to reduce Root Mean Square Error of the 

machine vision lateral position measurement; by fusing the machine vision result shown in green with 

the improved navigation model result shown in purple. As explained in section 2.2, the RTK-GPS has 

an inherent error of approximately 3cm; and it is evident that the position plot shown blue in Fig. 5.6 

is between 0 and 5 cm. Therefore, RMSE will be very small because lateral deviations are really small 

(~3 cm) in contrast to the path length of the test field (~150 m). 
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5.3 Crop mapping background 

 

Machine vision systems onboard robots have become increasingly important in precision agriculture 

in order to fully automate some in-field agricultural tasks; like automatic navigation of an agricultural 

vehicle. In addition, machine vision systems in precision agriculture are also used to gather data from 

the field in an automated manner at minimal cost; like crop mapping. Several researches (Pajares et 

al., 2016) have achieved good results performing either crop mapping or crop navigation separately. 

 

However, current machine vision systems methods have limitations trying to perform both navigation 

and mapping processes at the same time. Methods for automatic navigation of an agricultural vehicle 

based in crop row detection (Romeo et al., 2013) focus into detecting crop rows as accurate as possible; 

typically shooting the central three crop rows at the same time. Detecting three crop rows might provide 

enough accuracy for navigation; however, only three crop rows do not seem to contain enough 

information to build a field map of practical use. This situation is illustrated in Fig. 5.7 a) showing a 

top view of the tractor in the field. The vertical green lines represent the soybean crop rows and the 

triangle represents the angle of view of the camera. It is shown that the main limitation of this method 

comes from the fact that conventional camera lens have an angle of view less than 65 deg. On the other 

hand, a different approach (Slaughter et al., 2008) is to use several cameras on zenithal position, each 

camera shooting one crop row at the time giving as a result a high quality map containing several crop 

rows. This mapping method can be used in practical applications like spraying, but navigation from 

crop row detection becomes a more complex problem. 

 

Considering these limitations, this research proposes a machine vision method capable of mapping 

several crop rows while simultaneously performing the crop row detection describe in section 4.7. As 

described in section 4.10.1 the camera was mounted in the top of the test vehicle, focused on the field 

surface from an inclined angle in order to obtain wide-angle images that cover up to eleven crop rows. 

This situation is illustrated in Fig. 5.7 b); the main advantage of the 2-in-1 camera and is the wide-

angle lens increased angle of view of 105 deg. The camera parameters were obtained from the 

manufacturer’s user guide and were confirmed during the calibration process described in section 

4.10.1. 
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Fig. 5.7. Mapping method comparison. a) Conventional lens. b) 2-in-1 camera wide-angle lens. 

 

Fig. 5.8 shows an overview of the wide-angle image. It can be seen how eleven crop rows fit in the 

image with a reasonable good resolution since the wide-angle image has a size of 640 x 480 pixels. 

 

 

Fig. 5.8. Overview of the Wide-angle image. 

 

5.4 Crop mapping method 

 

As described in section 4.10.2, series of video frames were acquired in a soybean test field, located in 

the experimental farm of Hokkaido University. The test field was 150 m long and it had 40 crop rows 

with 0.70 m inter row spacing. The test vehicle traveled four paths along the test field at an average 
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speed of 0.75 m/s. As mentioned in section 4.10.2, the attitude data recorded by the FOG was originally 

intended to stabilize the images required in the mapping process, in case there were abrupt changes in 

the vehicle’s attitude; particularly in the pitch. However, it was shown in Fig. 4.16 b) that the yaw, 

pitch and roll values have an overall stable behavior. 

 

The experimental path recorded by the RTK-GPS in Easing and Northing coordinates was shown in 

Fig. 5.5; this path data was used to build the crop map and to verify that the vehicle traveled with a 

small lateral offset. Since the purpose of this section is to build a map of the crop field using recorded 

video sequences, it is necessary to integrate the information contained in each video frame into a 

complete map of the entire field length (Sainz-Costa et al., 2011). This map consists of a grid of specific 

dimensions, with each of its elements corresponding to a cell of a given size in the real field as 

represented in Fig. 5.9. Since the 2-in-1 camera is mounted on the top of test vehicle; which is traveling 

forwards, each new video frame covers a slightly different field area, and the map’s frame of reference 

must be updated according to the RTK-GPS position coordinates. Remember that section 4.10.1 

described the 2-in-1 camera calibration process; by using a whiteboard it is possible to relate the image 

pixel position with the real world position. 

 

Fig. 5.9. Crop map grid scheme. 

The distance in pixels in which the crops move between frames depends on the speed of the test vehicle, 

which was also obtained from the RTK-GPS. Mapping was not performed by using the raw series of 

video frames acquired in the test field because the images taken with cameras are 2D projections of 

the 3D world, and the recovery of 3D information such as depth, length or area requires a model of the 

projection transformation (Sonka et al., 2008). Therefore, the original images taken in the camera’s 
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image plane coordinate system were transformed into the ground coordinate system, corresponding to 

the image view from above (Okamoto et al., 2002) or bird’s-eye view. 

 

This coordinate system transformation requires to understand the camera perspective projection in the 

ground plane, illustrated in Fig. 5.10. Consider a point p in the ground plane, perspective projection 

means that we draw a line through this point p and the center of projection of the camera and intersect 

it with the image plane to find the corresponding image point p’ (Mallot et al., 1991). 

 

 

Fig. 5.10. Fujifilm 2-in-1 camera perspective projection in the ground plane. 

 

Therefore, any point in the ground plane p(X, Y, Z) shown in Fig. 5.10 can be projected into the image 

plane as a point p’(x, y, z) using Eq. (5.2) (Barnard, 1983): 

 

                                                                        𝑝′ = 𝑀𝑝                                                                    (5.2) 

 

In Eq. (5.2) the variable M is the 3×3 perspective transformation matrix. The calculation of M can be 

achieved by establishing direct correspondences between the ground plane points and the image plane 

points (Szeliski, 2010). For example; in Fig. 5.10 the point p1 in the ground plane corresponds to the 

point p1’ in the image plane, the point p2 in the ground plane corresponds to the point p2’ in the image 

plane and so on. The calculation of M requires at least four point correspondences of which no more 

than two are collinear (Brahmbhatt, 2013). The set of four points (p1, p2, p3, p4) shown in Fig. 5.10 are 

the coordinates of the quadrangle vertices from the input image frame that we want to relate to the 



 

89 

 

coordinates of the corresponding quadrangle vertices (p1’, p2’, p3’, p4’) in the transformed image frame. 

Therefore, Eq. (5.2) can be rewritten as Eq. (5.3) considering that the coordinate z can be set to one 

because the transformation is a 2D projection: 

 

 [

𝑥𝑖
𝑦𝑖
𝑧𝑖
] = [

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] [
𝑋𝑖
𝑌𝑖
1
] , (𝑖 = 1, 2, 3, 4) (5.3) 

 

Fig 5.11 shows the Region of Interest (ROI) of 617 x 72 pixels inside the Wide-angle image that was 

selected to cover eleven crop rows. Inside the ROI the set of four points (p1, p2, p3, p4) were selected 

as the vertices of the green trapezoid shown in the top right portion of Fig. 5.11. The corresponding 

points (p1’, p2’, p3’, p4’) in the transformed image were chosen to be the vertices of a rectangle of 

selected dimensions, as shown in the bottom right portion of Fig. 5.11. The dimensions of this 

rectangle; which corresponds to approximately 7.0 m width and 0.95m height, were obtained from 

calibration by the measurement of a known object as described in sections 4.10.1. 

 

 

Fig. 5.11. Coordinates of quadrangle vertices in the source image. 

 

After using Eq. (5.3) with the sets of four points (p1, p2, p3, p4) and (p1’, p2’, p3’, p4’) to calculate the 

3×3 perspective transformation matrix M, all the remaining n points pi(Xi, Yi) of the image input frame 

can be computed to obtain the n points pi’(xi, yi) of transformed frame by using Eq. (5.4): 
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 [
𝑥𝑖
𝑦𝑖
] = [

𝑀11𝑋𝑖+𝑀12𝑌𝑖+𝑀13

𝑀31𝑋𝑖+𝑀32𝑌𝑖+𝑀33
𝑀21𝑋𝑖+𝑀22𝑌𝑖+𝑀23

𝑀31𝑋𝑖+𝑀32𝑌𝑖+𝑀33

] , (𝑖 = 1,… , 𝑛) (5.4) 

 

Each transformed frame is then updated with the coordinates obtained from the RTK-GPS while the 

vehicle is traveling forward; as represented in Fig. 5.9, in order to build the mosaic map. 

 

5.5 Crop mapping results 

 

Concerning crop mapping results, traditional approaches map either four crop rows per traveled path 

(Kise et al., 2008) or three crop rows per traveled path (Sainz-Costa et al., 2011). Conceptually, this 

approaches work well but in real applications like spraying an agricultural vehicle typically covers 

more than four crop rows per traveled path (Hassen et al., 2014). Traveling additional paths in order to 

build a crop map might have undesirable effects in the field like soil compaction. Using a traditional 

approach mapping only three crop rows per path (Tillett et al., 2001.) means that the machine has to 

travel three times to cover nine crop rows. In the other hand, the method proposed in this research 

implementing the Fujifilm 2-in-1 camera can cover eleven crop rows travelling only one path. 

 

Fig. 5.12 shows a segment of the resulting map. Since the test field was 150 m long and it had 40 crop 

rows with 0.70 m inter row spacing, the complete map is too big to show in the figure. Instead, a 

segment of the resulting map corresponding to one of the four experimental paths is shown. The 

equivalent size of the map segment in meters is shown as well; remember that the pixels-meters size 

relation was obtained from calibration. The eleven mapped rows are numbered from left to right. Fig. 

5.12 also shows that the map has a resolution good enough to detect the absence of crops in a specific 

line. However, due to the inverse perspective transformation the map has obvious limitations because 

it does not offer a real top view of the field; therefore, detection of pests or weeds hidden from the 

camera’s point of view is not possible. 

 

 

 



 

91 

 

 

Fig. 5.12. Resulting crop map segment. 

 

The map precision was also calculated from the camera calibration parameters in order to obtain the 

theoretical error. However, testing of the map’s accuracy is not very straight-forward because there 

exists no true position and direction for the center line of a crop row due to the natural variation in the 

plant growth (Søgaard and Olsen, 2003). A row may locally develop more on one side than the other 

(Olsen, 1995) and the apparent row position at one particular point of the map may differ from the 

overall row position. Therefore, to evaluate the map theoretical error, the crop row values of the map 

image pixels are summed in the top-down direction of the map image. This gave as a result a crop row 

intensity distribution data set, where the mean position of each crop row can be compared with the map 

grid position obtained from the camera calibration parameters in combination with the RTK-GPS 

position data. 

 

A map segment corresponding to one of the four experimental paths was used to estimate the map 

precision. The segment was 150 m length equivalent, containing eleven mapped rows. The RGB map 

segment was converted to a binary image so the crop rows values were easier to identify and sum. 
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Then again, the 150m length map segment is too big to fit in a figure; so instead, a sub-segment of 7 

m length equivalent is shown in Fig. 5.13 a). 

 

 

Fig. 5.13. Calculation of the map crop row intensity distribution. a) Binary map image with position 

grid. b) Crop row intensity distributions. 

 

The eleven mapped crop rows are numbered from left to right in Fig 5.13 a). The map grid in green 

color represents the real world distances, the grid size is equivalent to 0.7 m by 0.7 m. This is the same 

grid represented in Fig. 5.9. The numbers in red color show the distance traveled by the experimental 

vehicle recorded by the RTK-GPS, represented as the horizontal lines of the grid. It can be observed 

how the vertical lines of the grid coincide at some degree with the crop rows. The difference between 

the vertical lines of the grid and the mean position of the crop rows make it possible to evaluate the 
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theoretical error of the map; i.e. to evaluate the lateral offset of each one of the mapped crop rows from 

the ideal map grid. Fig. 5.13 b) shows the crop row intensity distribution calculated for the 150m length 

map segment; remember that a sub-segment of only 7 m is shown in Fig. 5.13 a). The vertical green 

lines represent the map grid row position, and are on the same line as the vertical grid lines shown in 

Fig. 5.13 a). The red vertical lines represent the mean calculated for each one of the eleven 

distributions, which are equivalent to the mean position each one of the eleven mapped crop rows. It 

can be seen how the crest and valleys in the distribution have a clear difference for the central crop 

rows, represented by rows 4 to 8. However, the valleys are less deep for the outside crop rows, 

represented by rows 1 to 3 and 9 to 11. It is not possible to asset if this caused by the inverse perspective 

transformation, or if it is a mere coincidence produced by the random position of the crops leaves all 

along the map. It is possible to make the valleys more differentiated by setting a threshold along the 

distribution (Jiang et al., 2015), creating more space between the crests. Even thought, the crests do 

not seem to have a significant height difference; therefore, the crests give a good estimation of the 

mean position of each one of the eleven mapped crop rows. The images shown in Fig.5.13 are 617 

pixels wide, and the pixel positions of the map grid represented by the green vertical lines and the row 

mean represented by the red vertical lines are known. This situation is more evident in Fig. 5.14, which 

shows in detail the data from Fig. 5.13 b). The plot of the distribution is represented by the blue line. 

Again, the map grid is represented by the green vertical lines, which have a constant inter-space of 60 

pixels equivalent to 0.7 m. The crop rows mean positions are represented by the red vertical lines, 

whose inter-space pixel position is not constant. 

 

Fig. 5.14. Mean of the map crop row intensity distributions. 
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A summary of the theoretical error of the map, expressed as the error of the mean position for each 

crop row is shown in Table 5.1. The ideal map grid position in pixels for each one of the eleven crop 

rows is shown in the second column. In comparison, the third column shows the crop row mean 

position in pixels calculated from the distribution; as depicted in Fig.5.14. The error of the mean 

position in pixels was obtained as the difference between the crop row mean position and ideal map 

grid position, and it is summarized in the fourth column. The negative values represent a deviation 

towards the left side of the ideal map grid position, whereas positive values represent a deviation 

towards the right side. The same error of the mean position converted to cm is shown in the fifth 

column. The average error of all eleven mean position values is -2 pixels; equivalent to -2.3 cm. An 

average of the error of 2 pixels corresponds to 0.3 % of the 617 pixels frame width; which is the same 

as stating that an average of the error of 2.3 cm corresponds to 0.3 % of the 7 m frame width. Under 

the experimental conditions, a 0.3 % deviation margin seems to be a reasonable amount of theoretical 

error for the resulting map. Note that the biggest error comes from the eleventh crop row; again, it is 

not possible to asset if this caused by the inverse perspective transformation, or if it is a mere 

coincidence produced by the random position of the crops leaves all along the map. In addition, 

mapping accuracy is affected by environmental factors (Nguyen et al., 2015) like illumination changes 

and even wind; which interfere with accurate inverse perspective transformation (Bevilacqua et al., 

2008). 

 

Table 5.1. Map theoretical error. 

Crop row 

number 

Map Grid 

Position 

[Pixels] 

Crop row mean position 

from distribution [Pixels] 

Error of the mean 

position [Pixels] 

Error of the mean 

position [cm] 

1 9 18 9 10.5 

2 69 72 3 3.5 

3 129 129 0 0.0 

4 189 193 4 4.7 

5 249 250 1 1.2 

6 309 312 3 3.5 

7 369 368 -1 -1.2 

8 429 430 1 1.2 

9 489 480 -9 -10.5 

10 549 540 -9 -10.5 

11 609 585 -24 -28.0 
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In some cases (Sainz-Costa et al., 2011) sideslip of the experimental vehicle caused by the natural 

unevenness of the terrain gives as result a map that requires lateral sway stabilization. Particularly if 

the lateral deviation of the central crop row respect to center of the image frames is on average 20 

pixels or 20 cm equivalent. However, crop row detection accuracy results discussed in section 4.12 

showed that the lateral deviation of the central crop row respect to center of the image frames is within 

2 cm equivalent; which is not significant enough to make the stabilization process meaningful. 

 

5.6 Conclusions 

 

The heading detection section showed that a high precision sensor like the FOG has an accuracy that 

is almost impossible to match with the heading angle φ obtained from machine vision, but the results 

have an error that seems reasonable for this kind of approach. It is possible to clean the machine vision 

inherent noise using a complementary filter that integrates the vehicle motion model estimations with 

the machine vision measurements. These integration results were verified by calculating their RMS 

error from the RTK-GPS position and the FOG heading. As a result, the RMS error of the heading was 

reduced from 0.75 deg. to 0.42 deg.; and the lateral position RMS error was reduced from 0.028 m to 

0.024 m. Thanks to this improvement, these integration results can be applied to a smart agricultural 

vehicle; producing a method capable of performing automatic navigation from crop row detection with 

increased accuracy. 

 

At the same time; thanks to the unique capabilities of the 2-in-1 camera, it is possible to build a field 

map that covers more crop rows than other mapping methods. An inverse perspective transformation 

in combination with the RTK-GPS coordinates gave as a result a map that covers up to eleven crop 

rows with a resolution good enough to detect the absence of plants in a specific crop row. The map 

precision was calculated from the camera calibration parameters in order to obtain the theoretical error. 

The calculated average lateral deviation of the mapped crop rows was 0.023 m. Thanks to the Fujifilm 

2-in-1 camera wide-angle lens; and since the resulting mosaic map covers up to eleven crop rows, this 

method is ideal to use in practical applications like spraying, avoiding to travel additional paths. 
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Chapter 6  Research summary 

 

This chapter gives a summary of this research, highlighting the most important aspects of this thesis 

chapter by chapter. 

 

6.1 Introduction 

 

This chapter presents concepts concerning agricultural automation. It briefly describes the autonomous 

navigation systems for agricultural vehicles as a solution for current agricultural problems in Japan. It 

also introduces the motivation of this work and the research objectives pursued. The research 

background introduces the fact that in Japanese society, aging and population decline have been 

progressing. In order to protect food production in Japan, encouraging the development of technologies 

in the field of agriculture automation such as autonomous guidance systems for agricultural vehicles 

seems to be an effective strategy to deal with the dwindling farming labor force, in addition to increase 

production efficiency and safer operation. 

 

Several technologies used in agriculture are described. By implementing these technologies, 

agriculture automation has achieved a rapid development in the execution of all the agricultural tasks. 

For example, some autonomous navigation systems for agricultural vehicles are needed to prevent 

agricultural machinery from rollover situations. The Laboratory of Vehicle Robotics (VeBots) of 

Hokkaido University School of Agriculture has succeeded conducting researches on unmanned tractors 

and developing new technologies. Sensors are installed on a tractor, and its position is measured by 

satellite (GPS). A computer commands its movement, replacing manual operation and thus giving birth 

to robot tractors. 

 

To improve autonomous navigation systems for agricultural vehicles it is possible to apply an area of 

engineering known as Terramechanics; which describes the vehicle’s tire-soil interactions. Therefore, 

a precise vehicle model that does not depend on several parameters can fill the gaps existing in current 

models applied to autonomous vehicle development. It is also possible to combine this model with 

machine vision. 
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Therefore, this thesis purpose is to enhance the navigation performance of an agricultural vehicle by 

integrating a nonlinear vehicle motion model with a unique machine vision system. To achieve this 

purpose, this thesis has two objectives. The first one is to use previous researches results concerning 

the vehicle’s tire dynamic properties in order to improve the vehicle motion model estimations. The 

second one is to use this improved motion model in combination with a machine vision method capable 

of provide crop row detection with increased accuracy. To integrate the best aspects of the vehicle 

motion model estimations with the machine vision measurements, data fusion technique was used. 

 

To fulfill the first objective of this thesis, the measurements of the tire’s lateral forces as a function of 

the tire’s slip angle of a test vehicle traveling on a concrete surface are reported. A description about 

how these tire parameters can be used to improve the motion model of the test vehicle is given as well. 

To fulfill the second objective of this thesis, an explanation of the new machine vision method proposed 

is given. 

 

It is introduced how experiments were conducted using a test vehicle consisting of a conventional 

tractor equipped with a Real-Time Kinematic Global Positioning System (RTK-GPS), a Fiber Optic 

Gyroscope (FOG), a Potentiometer and a new type of camera developed by Fujifilm Corporation. 

 

6.2 Research platform 

 

This chapter describes the equipment used in this research. The research platform implemented in the 

Kubota MD77 tractor used for the field experiments is introduced. Both the sensors and the test 

vehicle’s technical specifications are included. The test vehicle was also equipped with an RTK-GPS 

and an FOG. An on-board computer process the data from the camera, RTK-GPS and FOG. 

 

The RTK-GPS (Topcon, Legacy-E) provides the position, direction of travel and speed of the vehicle. 

The low latency configuration (update rate: 10 Hz, latency: 0.02 seconds, data link: 9600 Baud) was 

chosen for the RTK mode. The FOG (Japan Aviation Electronics Industry Ltd., JCS7402-A) provides 

the vehicle’s angular rates (accuracy ≤ ± 5 deg. /s), attitude (accuracy ≤ ± 0.15 deg.) and lateral 

acceleration (accuracy ≤ ± 1.5 m/s2) readings. A 10 k Ω Potentiometer (Midori Precisions, CPP-60, 

linearity ±0.05%) attached to the kingpin of one of the steering wheels provides the steering angle 

(alignment error: ±3.2 deg.). 
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The bifocal imaging device is a non-commercial camera developed by Fujifilm Corporation. The 

innovation of the device consist of simultaneous shooting a wide-angle image and a telephoto image. 

Due to its capability of shooting two images at the same time, the developer refers to it as the Fujifilm 

2-in-1 camera. In conclusion, this chapter described the equipment used during this research. The 

research platform used for the field experiments was described part by part. The test vehicle’s main 

technical specifications were introduced. Each one of the sensors used in the experiments were 

described, highlighting their most relevant aspects. A reference for each one of the sensors’ data sheets 

was also included. 

 

6.3 Estimation of vehicle status using nonlinear vehicle motion model 

 

This chapter presents the vehicle modeling framework used in this research. The handling dynamics 

of the test vehicle and therefore a brief development of important concepts associated with handling 

behavior are presented. The tire basics section explains that in terms of vehicle dynamics, the tire is 

one of the most important factors in determining how a vehicle responds to driver inputs. It is explained 

how in order for a tire to produce the traction forces that are required to accelerate a vehicle in a straight 

line or around a corner, it is necessary for the tire to develop a slip angle. It is shown how the traction 

forces and the normal load dependency are concepts critical in the design of an agricultural vehicle for 

specific handling behavior. It is shown that the area of vehicle handling primarily deals with motions 

within the plane of the road surface; which include lateral and longitudinal speeds, and the yaw rate. 

Therefore, in this thesis, the most common model associated to the bicycle model is introduced. 

 

The vehicle dynamics are explained thru the description of the tire mechanics. This chapter also 

presents a brief description of the most common vehicle control strategies introducing that 

understanding how vehicles behave in the field can be achieved thanks to the vehicle motion model, 

which gives an estimation of the vehicle’s position and heading (described by the kinematic model) 

taking into account the lateral forces acting on the vehicle (described by the dynamic model). It is 

possible to measure the vehicle’s tire dynamic properties in field tests; namely the tire’s lateral forces 

Fy  as a function of the tire’s slip angle α and describe them using a regression model in order to account 

for the vehicle’s lateral offset caused by the tire-soil interaction. This gives as a result a regression 
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model that accounts for the hysteresis behavior of the Fy /α relation. A description about how these tire 

parameters can be used to improve the motion model estimations of the test vehicle is given as well.  

 

As a result, the RMS error of the modeled body sideslip angle βREG was reduced from 5.0 deg. to 3.4 

deg.; and the modeled yaw rate ωREG RMS error was reduced from 7.3 deg/s to 4.6 deg/s. Then, the 

vehicle’s dynamic parameters βREG and ωREG were computed into the kinematic model to obtain 

estimations of the heading φREG and position (x, y)REG of the vehicle. It was verified that the tire dynamic 

properties described by this regression model technique can be applied to obtain better estimations of 

the vehicle’s position and heading over time; verified by calculating the RMS error from the real 

position measured by the RTK-GPS and the real heading measured by the FOG. The model estimations 

without using the tire dynamic properties had an RMS error of 0.059 m for lateral position yDYN and 

2.8 deg. for heading φDYN; whereas the model estimations using the tire dynamic properties had an 

RMS error of 0.022 m for lateral position yREG and 1.2 deg. for heading φREG. However, these 

estimations alone are not accurate enough to guide the vehicle through a field because there is a wide 

range of environment factors present in the tire-soil interaction; like soil moisture and cone index, 

which change from field to field and cannot be predicted by the vehicle motion model. Therefore, it is 

necessary to integrate the vehicle motion model estimations with some sensing method such as 

machine vision. 

 

In summary, the tire dynamic properties described by a regression model technique allowed to obtain 

better estimations of the vehicle motion model, reducing its RMS error by 30%. 

 

6.4 Image processing algorithm development of a machine vision with both wide-angle and 

telephoto images 

 

This chapter presents the image processing algorithms used in this research. The algorithms are briefly 

described with examples. It is briefly explained how image processing techniques can be used to 

enhance agricultural practices, by improving accuracy and consistency of processes while reducing 

farmers’ manual monitoring. 

 

The machine vision method implemented a new type of camera developed by Fujifilm Corporation. 

This 2-in-1 camera can shoot high definition wide-angle and telephoto images simultaneously. The 
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camera was mounted on the top of the test vehicle, focused on the field surface from an inclined angle 

in order to calculate the vehicle’s heading φ and lateral position y from the crop rows covered by the 

wide-angle images by using an image recognition algorithm. 

 

The OpenCV (Open Source Computer Vision) library is introduced; due to the fact that all the 

algorithms used in this research were developed in this library. Image acquisition is explained 

establishing that a digital image is nothing more than a 2D matrix containing all the intensity values of 

its pixel points. Each pixel point position in the image matrix is then identified by a pair of Cartesian 

coordinates p(x,y). The RGB color space is introduced as the most popular, because it resembles how 

the human eye builds up colors. Its base colors are Red, Green and Blue. Each of the color components 

has its own valid domains; which makes it necessary to define the data type used. It is explained that 

for this research the HSV color space was chosen for color filtering instead of the RGB color space 

because it provided a better contrast for different illumination conditions. 

 

The Binary threshold is explained in terms of a simple segmentation method. Segmentation methods 

are useful to separate out regions of an image corresponding to objects of interest; in the case of this 

research, the objects of interest are the crop rows. Morphological operations are defined as a set of 

operations that process images based on shapes; a structuring element is applied to an input image to 

generate a smoothed output image. The Erosion and Dilation operations are explained with examples. 

The contours and geometric centers calculation is briefly described, and the line fitting to each set of 

the point’s coordinates by using the least squares method is explained as well. 

 

The center of gravity section describes how in order to improve the accuracy of the crop row detection 

method it is possible to obtain correction data from the telephoto image of the 2-in-1 camera. The 

downscaling section shows how to take the detected crop row central line obtained from the telephoto 

image and downscale it into the wide-angle image. The camera calibration method was introduced; 

giving as a result the pixel-distance relation that allowed transformation of coordinates between the 

camera’s image plane and the ground plane. The image recording section explained how series of video 

frames were acquired in the soybean test field, located in the experimental farm of Hokkaido 

University. 

 

From the figures included it was found that the traditional method for detecting the crop rows from a 

wide-angle image can be improved by the use of correction data from a telephoto image; mainly 
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because weeds growing beside the crop rows and natural variation in the plant growth affect the 

accuracy of this image recognition algorithm.. Thanks to the telephoto image’s increased resolution, 

accuracy of the image recognition algorithm can be improved by fusing the wide-angle image data 

with the telephoto image data using a complementary filter, reducing the lateral position deviation 

range from 0.061 m to 0.028 m. In summary, thanks to the unique capabilities of the 2-in-1 camera, 

the crop row detection lateral offset deviation was reduced over 40% by fusing the wide-angle image 

data with the telephoto image data. Although results display increased accuracy for the lateral position 

calculated from crop row detection, the machine vision measurements still have some inherent noise 

that can affect the navigation performance of the vehicle.  

 

6.5 Application to automatic navigation and crop mapping 

 

This chapter describes how to apply the machine vision system integrated with the vehicle motion 

model to a smart agricultural vehicle capable of performing automatic navigation and crop mapping. 

To achieve automatic navigation, it is explained how to measure the vehicle’s heading φ from the 

detected crop rows. A complementary filter was used in order to integrate the best aspects of the vehicle 

motion model estimations with the machine vision measurements. In other words, this chapter 

combines models described in chapter 3 Estimation of vehicle status using nonlinear vehicle motion 

model with the machine vison method described in chapter 4 Image processing algorithm development 

of a machine vision with both wide-angle and telephoto images. 

 

The heading detection section showed that a high precision sensor like the FOG has an accuracy that 

is almost impossible to match with the heading angle φ obtained from machine vision, but the results 

have an error that seems reasonable for this kind of approach. It is possible to clean the machine vision 

inherent noise using a complementary filter that integrates the vehicle motion model estimations with 

the machine vision measurements. These integration results were verified by calculating their RMS 

error from the RTK-GPS position and the FOG heading. As a result, the RMS error of the heading φ 

was reduced from 0.75 deg. to 0.42 deg.; and the lateral position y RMS error was reduced from 0.028 

m to 0.024 m. Thanks to this improvement, these integration results can be applied to a smart 

agricultural vehicle; producing a method capable of performing automatic navigation from crop row 

detection with increased accuracy. In summary, in order to clean the inherent noise from the machine 
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vision measurements, the improved estimations of the vehicle motion model were integrated with the 

machine vision data; reducing the RMS error around 20%. 

 

In addition; this research goes a step beyond the automatic navigation from crop row detection adding 

a crop mapping method. This chapter describes the methodology to build a crop map taking advantage 

of the Fujifilm 2-in-1 camera wide-angle lens. Limitations of the current crop mapping methods are 

explained in order to justify the purpose of this method. Thanks to the unique capabilities of the 2-in-

1 camera, it is possible to build a field map that covers more crop rows than other mapping methods. 

An inverse perspective transformation in combination with the RTK-GPS coordinates gave as a result 

a map that covers up to eleven crop rows with a resolution good enough to detect the absence of plants 

in a specific crop row. 

 

Results of the proposed approach are discussed according to the theoretical error found between the 

processed images and the RTK-GPS path data. The map precision was calculated from the camera 

calibration parameters in order to obtain the theoretical error. The calculated average lateral deviation 

of the mapped crop rows was 0.023 m. Thanks to the Fujifilm 2-in-1 camera wide-angle lens; and since 

the resulting mosaic map covers up to eleven crop rows, this method is ideal to use in practical 

applications like spraying, avoiding to travel additional paths. It is concluded that the mapping method 

has a reasonable error and also has a clear advantage over mapping methods that employ conventional 

cameras. 

 

6.6 Conclusions 

 

In order to protect food production in Japan, encouraging the development of technologies in the field 

of agriculture automation such as autonomous navigation systems for agricultural vehicles has proven 

to be an effective strategy to deal with the dwindling farming labor force. The purpose of the research 

was to enhance the navigation performance of an agricultural vehicle by integrating a nonlinear vehicle 

motion model with a unique machine vision system. To integrate the best aspects of the vehicle motion 

model estimations with the machine vision measurements, data fusion technique was used. 

Experiments were conducted using a test vehicle consisting of a conventional tractor equipped with a 

Real-Time Kinematic Global Positioning System (RTK-GPS), a Fiber Optic Gyroscope (FOG), a 

Potentiometer and a new type of camera developed by Fujifilm Corporation. 
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The tire dynamic properties described by a regression model technique allowed to obtain better 

estimations of the vehicle motion model, reducing its RMS error by 30%. Thanks to the unique 

capabilities of the 2-in-1 camera, the crop row detection lateral offset deviation was reduced over 40% 

by fusing the wide-angle image data with the telephoto image data. In order to clean the inherent noise 

from the machine vision measurements, the improved estimations of the vehicle motion model were 

integrated with the machine vision data; reducing the RMS error around 20%. These integration results 

can be applied to a smart agricultural vehicle to build a field map with an average lateral deviation of 

0.023 m for the mapped crop rows. 
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Appendix E 

 

 

 

Appendix F 

 

This is the c++ source code used to analyze the video recorded in the field. It requires the OpenCV 

library. It was executed on Visual Studio 2013 Community on Windows 7. 

 

#include <iostream> // for standard I/O 
#include <string>   // for strings 
#include <fstream>  // for .csv 
#include <sstream>  // for .csv 
#include <stdio.h>  
#include <conio.h>  
#include <stdlib.h> 
#include <ctime> // for time 
#include <windows.h> 
#include <math.h>  // for atan  
#include <iomanip>   
#include <algorithm> // std::min_element,std::max_element   
#include <numeric> 
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#include <opencv2/core/core.hpp>        // Basic OpenCV structures (cv::Mat) 
#include <opencv2/highgui/highgui.hpp>  // Video write 
#include "opencv2/imgproc/imgproc.hpp" 
#include <opencv\highgui.h> 
#include <opencv\cv.h> 
 
using namespace std; 
using namespace cv; 
 
# define M_PI 3.14159265358979323846  /* pi */ 
 
void tiempo(SYSTEMTIME &stime){ 
 
 //structure to store system time (in usual time format) 
 FILETIME ltime; 
 //structure to store local time (local time in 64 bits) 
 FILETIME ftTimeStamp; 
 
 GetSystemTimeAsFileTime(&ftTimeStamp); //Gets the current system time 
 
 FileTimeToLocalFileTime(&ftTimeStamp, &ltime);//convert in local time and store in 
ltime 
 FileTimeToSystemTime(&ltime, &stime);//convert in system time and store in stime 
} 
 
void findcenter(Mat &threshld, int &lindex){ 
 
 // Define Vector used to store the thresholded image white intensity values o 
 vector<double> binint(threshld.cols); 
 
 // Calculate sumatory of weights 
 // See "Determination of crop rows by image analysis without segmentation", 
H.T.Søgaard, H.J.Olsen  
 double sumx = 0; 
 double sumy = 0; 
 double sum_of_elems = 0; 
 
 // Add values of each column of TP threshold image 
 for (int j = 0; j < threshld.cols; j++){ 
  for (int i = 0; i < threshld.rows; i++){ 
   binint[j] = binint[j] + (int)threshld.at<uchar>(i, j); 
  } 
  // Calculate sumatory of weights 
  sumx = sumx + binint[j] * cos(2 * M_PI*((j - 0.5) / (binint.size()))); 
  sumy = sumy + binint[j] * sin(2 * M_PI*((j - 0.5) / (binint.size()))); 
  sum_of_elems = sum_of_elems + binint[j]; 
 } 
 
 // Calculate center of gravity 
 double xa = sumx / sum_of_elems; 
 double ya = sumy / sum_of_elems; 
 
 // Calculate direction angle phi (0 <= phi < 2pi) 
 double phi = 0; 
 if ((xa > 0) && (ya >= 0)){ 
  phi = atan(ya / xa); 
 } 
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 else if ((xa > 0) && (ya < 0)){ 
  phi = 2 * M_PI + atan(ya / xa); 
 } 
 else if (xa < 0){ 
  phi = M_PI + atan(ya / xa); 
 } 
 else if ((xa == 0) && (ya > 0)){ 
  phi = M_PI / 2; 
 } 
 else if ((xa == 0) && (ya < 0)){ 
  phi = (3 * M_PI) / 2; 
 } 
 else if ((xa == 0) && (ya == 0)){ 
  phi = 0; // in reality is undefined, but is set to zero fro practical 
purposes 
 } 
 
 //Calulate index l from vector binint corresponding to the centre of the row  
 lindex = (phi / 2 * M_PI)*binint.size()*0.1; 
} 
 
void morphOps(Mat &thresh){ 
 //Opening Morphology Transformation: It is obtained by the erosion of an image 
followed by a dilation. 
 //create structuring element that will be used to "dilate" and "erode" image. 
 //the element chosen here is a 11px by 22px rectangle 
 Mat erodeElement = getStructuringElement(MORPH_RECT, Size(11, 22)); //Size(11, 
11)); 
 //dilate with larger element so make sure object is nicely visible 
 Mat dilateElement = getStructuringElement(MORPH_RECT, Size(7, 14)); //Size(7, 7)); 
 // in this particular case, better results were obtained dilating first and then 
eroding 
 dilate(thresh, thresh, dilateElement); 
 erode(thresh, thresh, erodeElement); 
} 
 
 
// Find lane centers into the ROI's subregion 
vector<Point2f> trackFilteredObject(Mat threshold, Mat &cameraFeed, Point offs){ 
 
 Mat temp; 
 threshold.copyTo(temp); 
 //these two vectors are needed for the output of findContours 
 vector< vector<Point> > contours; 
 vector<Vec4i> hierarchy; 
 //find contours of filtered image using openCV findContours function 
 findContours(temp, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE); 
 
 // Draw contours 
 //for (int i = 0; i< contours.size(); i++) 
 //{ 
 // drawContours(cameraFeed, contours, i, Scalar(0, 0, 255), 2, 8, hierarchy, 
0, offs); 
 //} 
 
 // Get the moments 
 vector<Moments> mu(contours.size()); 
 for (int i = 0; i < contours.size(); i++) 



 

118 

 

 { 
  mu[i] = moments(contours[i], false); 
 } 
 
 //  Get the mass centers: 
 vector<Point2f> mc(contours.size()); 
 vector<Point2f> myvec; 
 for (int i = 0; i < contours.size(); i++) 
 {   // Offset to Point(160, 480) 
  mc[i] = Point2f((mu[i].m10 / mu[i].m00) + offs.x, (mu[i].m01 / mu[i].m00) + 
offs.y); 
  // Check that the point is inside the ROI 
  if ((mc[i].x > offs.x) && (mc[i].x < offs.x + 420) && (mc[i].y > offs.y) && 
(mc[i].y < offs.y + 256)){ 
   myvec.push_back(mc[i]); 
  } 
  else if ((mc[i].x > offs.x) && (mc[i].x < offs.x + 640) && (mc[i].y > 
offs.y) && (mc[i].y < offs.y + 439)){ 
   myvec.push_back(mc[i]); 
  } 
 } 
 
 //for (int i = 0; i < myvec.size(); i++) 
 //{ 
 // circle(cameraFeed, myvec[i], 4, Scalar(255, 0, 0), -1, 8, 0); 
 //} 
 
 return myvec; 
} 
 
 
// Separate centers in left, center and right lanes 
void separador(vector<vector<Point2f>> &centers, vector<vector<Point2f>> &lineas){ 
 
 for (int i = 0; i < centers.size(); i++){ 
  for (int j = 0; j < centers[i].size(); j++){ 
   // Evaluate if a point P(x,y) is on the left side or right side of 
the line AB; A(x1,y1) B(x2,y2)  
   // d = (x-x1)*(y2-y1)-(y-y1)*(x2-x1) 
   // if d<0 ->left side; if d>0 ->right side; if d=0 ->on the line 
   // Keep the x=110 y=360 (shift of ROI) addition terms for future 
reference. The commmented equations are equivalent to the uncommented ones 
   // i.e. The uncommmented equations are the simplifications of the 
commented ones 
   //double L1 = (centers[i][j].x - (150 + 110))*((256 + 360) - (0 + 
360)) - (centers[i][j].y - (0 + 360))*((70 + 110) - (150 + 110)); 
   //double L2 = (centers[i][j].x - (200 + 110))*((256 + 360) - (0 + 
360)) - (centers[i][j].y - (0 + 360))*((155 + 110) - (200 + 110)); 
   //double R1 = (centers[i][j].x - (240 + 110))*((256 + 360) - (0 + 
360)) - (centers[i][j].y - (0 + 360))*((285 + 110) - (240 + 110)); 
   //double R2 = (centers[i][j].x - (290 + 110))*((256 + 360) - (0 + 
360)) - (centers[i][j].y - (0 + 360))*((370 + 110) - (290 + 110)); 
 
   double L1 = (centers[i][j].x - 260)*(256) - (centers[i][j].y - 
360)*(-80); 
   double L2 = (centers[i][j].x - 310)*(256) - (centers[i][j].y - 
360)*(-45); 
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   double R1 = (centers[i][j].x - 350)*(256) - (centers[i][j].y - 
360)*(45); 
   double R2 = (centers[i][j].x - 400)*(256) - (centers[i][j].y - 
360)*(80); 
 
   if (L1 < 0){ 
    lineas[0].push_back(centers[i][j]); //lineas[0]=left 1 
   } 
   else if ((L1 > 0) && (L2 < 0)){ 
    lineas[1].push_back(centers[i][j]); //lineas[1]=left 2 
   } 
   else if ((L2 > 0) && (R1 < 0)){ 
    lineas[2].push_back(centers[i][j]); //lineas[2]=center 
   } 
   else if ((R1 > 0) && (R2 < 0)){ 
    lineas[3].push_back(centers[i][j]); //lineas[3]=right 1 
   } 
   else if (R2 > 0){ 
    lineas[4].push_back(centers[i][j]); //lineas[0]=right 2 
   } 
  } 
 } 
} 
 
// Extend the calculated lines to the ROI limits y=360 to y=616 
void linearizer(Point2f &A, Point2f &B, Point2f &A0, Point2f &B0){ 
 
 // Calculate line slope 
 float m = (B.y - A.y) / (B.x - A.x); 
 // Calculate line intercept 
 float b = A.y - m*A.x; 
 // Calculate line's end points 
 A0.x = (360 - b) / m; 
 A0.y = 360; 
 B0.x = (616 - b) / m; 
 B0.y = 616; 
 
} 
 
int main(int argc, char *argv[]) 
{ 
 // Matrices 
 // Store input frame 
 Mat dsp; 
 Mat dsp2; 
 // Separate Wide-angle from Telephoto image 
 Mat croppedWA; 
 Mat croppedTP; 
 // Convert frame from BGR to HSV colorspace 
 Mat HSV; 
 Mat HSVTP; 
 // Filter HSV image between values and store filtered image to threshold matrix 
 Mat threshld; 
 Mat threshldTP; 
 
 // Range min and max HSV filter values for WA image 
 int H_MIN = 21; 
 int H_MAX = 117; 
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 int S_MIN = 51; 
 int S_MAX = 256; 
 int V_MIN = 72; 
 int V_MAX = 256; 
 
 //  0 - based index of the frame to be decoded / captured next 
 double Findex = 0; 
 
 // Windows names 
 char* image_window = "VIDEO INPUT"; 
 
 // Time stamp variable 
 SYSTEMTIME stime; 
 
 // Input video 
 VideoCapture invid; 
 
 // Open Input video 
 invid.open("C:/Users/vebots/Desktop/SYNCDATA/OUT_2017-10-16_01-09-34_PM.avi"); 
 
 if (!invid.isOpened()) 
 { 
  cout << "Could not open the input from file" << endl; 
  return -1; 
 } 
 
 // Define output size 
 Size S = Size((int)1280, (int)720); 
 Size So = Size((int)1260, (int)512); 
 
 // Output video 
 VideoWriter outputVideo; 
 
 // Open Output video 
 outputVideo.open("C:/Users/vebots/Desktop/SYNCDATA/OUT/2017-10-16_01-09-
34_PM_LNMP.avi", CV_FOURCC('m', 'p', '4', 'v'), 24, S, true); 
 
 if (!outputVideo.isOpened()) 
 { 
  cout << "Could not open the output video for write " << endl; 
  return -1; 
 } 
 
 // Timer 
 clock_t start; 
 double duration; 
 
 // Split ROI into 16 subregions of 420x16 pixels 
 // Vector of Matrices for the threshold segments 
 vector <Mat> strips(16); 
 // Vector of Vectors of Points for areas centers 
 vector<vector<Point2f>> centers(16); 
 
 //Masking points for filled triangle 
 Point tr_left[1][3]; 
 tr_left[0][0] = Point(0, 0); 
 tr_left[0][1] = Point(0, 192); 
 tr_left[0][2] = Point(105, 0); 
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 const Point* ppt_tr_left[1] = { tr_left[0] }; 
 int npt_tr_left[] = { 3 }; 
 
 Point tr_right[1][3]; 
 tr_right[0][0] = Point(420, 0); 
 tr_right[0][1] = Point(420, 192); 
 tr_right[0][2] = Point(315, 0); 
 
 const Point* ppt_tr_right[1] = { tr_right[0] }; 
 int npt_tr_right[] = { 3 }; 
 
 // Declare input .csv file 
 ifstream myfile; 
 string values; 
 string Frindex, Line, GPGGA, Time, Latitude, LatDec, Northing, N, Longitude, 
LonDec, Easting, E, RTK, Nsat, HDoP, Altitude, M, Geoid, M2, lastT, Chksum, GPVTG, TTMG, 
T, MTMG, M3, GSk, N2, Kph, K, mps, Chksum2, Roll, Pitch, Heading, XAccel, YAccel, ZAccel, 
XRate, YRate, ZRate, hh, mm, ss, ms, PCtimer, timerfr, durtion; 
 //Findex, Line, $GPGGA, Time, Latitude, LatDec, Northing, N, Longitude, LonDec, 
Easting, E, RTK, #sat, HDoP, Altitude, M, Geoid, M, lastT, Chksum, $GPVTG, TTMG, T, MTMG, 
M, GSk, N, Kph, K, m / s, Chksum, Roll, Pitch, Heading, XAccel, YAccel, ZAccel, XRate, 
YRate, ZRate, hh, mm, ss, ms, PCtimer, timerfr, duration 
 
 double east = 0; 
 double north = 0; 
 double velocity = 0; 
 double Yaw = 0; 
 
 // Initial values to set to zero 
 double east0 = 0; 
 double north0 = 0; 
 double velocity0 = 0; 
 double distance = 0; 
 
 // Input file 
 myfile.open("C:/Users/vebots/Desktop/SYNCDATA/OUT_2017-10-16_01-09-34_PM.csv"); 
 // Read the whole 1st line to jump headers 
 getline(myfile, values, '\n'); 
 // Read the whole 2nd line to get initial values 
 getline(myfile, values, '\n'); 
 // Get initial values of Easting, Northing and Velocity 
 std::size_t pos = values.find(",N,");      // position of ",N," in values 
 north0 = stod(values.substr(pos - 11, 11)); // get from ",N,"-11 to ",N," 
 pos = values.find(",E,");      // position of ",E," in values 
 east0 = stod(values.substr(pos - 10, 10)); // get from ",E,"-11 to ",E," 
 pos = values.find(",K,");      // position of ",K," in values 
 velocity0 = stod(values.substr(pos + 3, 5)); // get from ",K,"+3 to ",Chksum" 
 // Reset begining of file 
 myfile.clear(); 
 myfile.seekg(0, myfile.beg); 
 // Read the whole 1st line to jump headers 
 getline(myfile, values, '\n'); 
 
 // Open output .csv file 
 ofstream framet; 
 framet.open("C:/Users/vebots/Desktop/SYNCDATA/OUT/2017-10-16_01-09-
34_PM_LNMP.csv"); 
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 // Write to output.csv file 
 framet << "FRAME, Easting, E, Northing, N, velocity, m/s, distance, m, Heading, 
Deg,TIMESTAMP, PCtimer, CenterWA, CenterTP, CenterMan" << endl; 
 
 // Counter of mapped frames 
 int mpcutwA = 1; 
 
 // Set the temporal matrix type and size as input 
 // 148 frames -> 439*148=64972 (maximum matrix size is 640x65400) 
 // This temporal matrix stores the stitched image 
 Mat temporalWA = Mat::zeros(72 * 67, 617, CV_8UC3); 
 
 // Output image declaration 
 string out_mapWA = "C:/Users/vebots/Desktop/SYNCDATA/OUT/2017-10-16_01-09-
34_PM_LNMP_mapWA.png"; 
 
 int pos_lane = 332; 
 
 // Data vector to plot 
 
 vector<Point2i> centerWA(64); 
 vector<Point2i> centerTP(64); 
 vector<Point2i> centerMAN(64); 
 
 // Set Data vector to zero 
 for (int i = 0; i < centerWA.size(); i++) 
 { 
 
  centerWA[i].x = i * 10 + 10; 
  centerWA[i].y = 310; 
  centerTP[i].x = i * 10 + 10; 
  centerTP[i].y = 310; 
  centerMAN[i].x = i * 10 + 10; 
  centerMAN[i].y = 310; 
 } 
 
 // Start Timer, execute loop 
 start = clock(); 
 for (;;){ 
 
  // Read a new frame 
  bool bok = invid.read(dsp); 
  if (!bok) { 
   cout << "Cannot read frame from file" << endl; 
   break; 
  } 
 
  dsp.copyTo(dsp2); 
 
  // Input .csv variables 
  //Read the whole line 
  getline(myfile, values, '\n'); 
  // Asign the whole line to a new stringstream  
  stringstream linestream(values); 
  // Decompose the stringstream on each one of the values 
  getline(linestream, Frindex, ','); 
  getline(linestream, Line, ','); 
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  getline(linestream, GPGGA, ','); 
  getline(linestream, Time, ','); 
  getline(linestream, Latitude, ','); 
  getline(linestream, LatDec, ','); 
  getline(linestream, Northing, ','); 
  getline(linestream, N, ','); 
  getline(linestream, Longitude, ','); 
  getline(linestream, LonDec, ','); 
  getline(linestream, Easting, ','); 
  getline(linestream, E, ','); 
  getline(linestream, RTK, ','); 
  getline(linestream, Nsat, ','); 
  getline(linestream, HDoP, ','); 
  getline(linestream, Altitude, ','); 
  getline(linestream, M, ','); 
  getline(linestream, Geoid, ','); 
  getline(linestream, M2, ','); 
  getline(linestream, lastT, ','); 
  getline(linestream, Chksum, ','); 
 
  getline(linestream, GPVTG, ','); 
  getline(linestream, TTMG, ','); 
  getline(linestream, T, ','); 
  getline(linestream, MTMG, ','); 
  getline(linestream, M3, ','); 
  getline(linestream, GSk, ','); 
  getline(linestream, N2, ','); 
  getline(linestream, Kph, ','); 
  getline(linestream, K, ','); 
  getline(linestream, mps, ','); 
  getline(linestream, Chksum2, ','); 
  getline(linestream, Roll, ','); 
  getline(linestream, Pitch, ','); 
  getline(linestream, Heading, ','); 
  getline(linestream, XAccel, ','); 
  getline(linestream, YAccel, ','); 
  getline(linestream, ZAccel, ','); 
  getline(linestream, XRate, ','); 
  getline(linestream, YRate, ','); 
  getline(linestream, ZRate, ','); 
  getline(linestream, hh, ','); 
  getline(linestream, mm, ','); 
  getline(linestream, ss, ','); 
  getline(linestream, ms, ','); 
  getline(linestream, PCtimer, ','); 
  getline(linestream, timerfr, ','); 
  getline(linestream, durtion, '\n'); 
 
  // Convert string to double. Set to zero (initial values) 
  east = stod(Easting) - east0; 
  north = stod(Northing) - north0; 
  velocity = stod(mps) - velocity0; 
  Yaw = stod(Heading); 
 
  // Calculate linear distance 
  distance = sqrt(pow(east, 2) + pow(north, 2)); 
 
  // Capture frame each 2.20 meters 
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  if (distance >= 2.20*mpcutwA){ 
   dsp(Rect(23, 360, 617, 72)).copyTo(temporalWA(Rect(0, 4824 - (72 * 
mpcutwA), 617, 72))); 
   mpcutwA++; 
  } 
 
  //  0 - based index of the frame to be decoded / captured next 
  Findex = invid.get(CV_CAP_PROP_POS_FRAMES); 
 
  // Select region of interest, separate Wide-angle from Telephoto image 
  croppedWA = dsp(Rect(110, 360, 420, 256)); 
  croppedTP = dsp(Rect(640, 118, 640, 439)); 
 
  // Convert frame from BGR to HSV colorspace 
  cvtColor(croppedWA, HSV, COLOR_BGR2HSV); 
  cvtColor(croppedTP, HSVTP, COLOR_BGR2HSV); 
 
  // Filter HSV image between values and store filtered image to threshold 
matrix 
  inRange(HSV, Scalar(H_MIN, S_MIN, V_MIN), Scalar(H_MAX, S_MAX, V_MAX), 
threshld); 
  inRange(HSVTP, Scalar(H_MIN, S_MIN, V_MIN), Scalar(H_MAX, S_MAX, V_MAX), 
threshldTP); 
 
  // Lateral index from TP image  
  int lindex = 0; 
  findcenter(threshldTP, lindex); 
 
  // Plot index l 
  line(dsp, Point(640 + lindex, 105), 
   Point(640 + lindex, 615), Scalar(0, 0, 255), 2, CV_AA); 
 
  line(dsp, Point((lindex / 12) + 302, 360), 
   Point((lindex / 12) + 302, 616), Scalar(0, 0, 255), 2, CV_AA); 
  
  // Draw solid triangles and lines to fit ROI 
  fillPoly(threshld, ppt_tr_left, npt_tr_left, 1, Scalar(0, 0, 0), 8, 0); 
  fillPoly(threshld, ppt_tr_right, npt_tr_right, 1, Scalar(0, 0, 0), 8, 0); 
  line(threshld, Point(150, 0), Point(70, 256), Scalar(0, 0, 0), 4); 
  line(threshld, Point(200, 0), Point(155, 256), Scalar(0, 0, 0), 4); 
  line(threshld, Point(240, 0), Point(285, 256), Scalar(0, 0, 0), 4); 
  line(threshld, Point(290, 0), Point(370, 256), Scalar(0, 0, 0), 4); 
 
  // Go to "dilate" and "erode" image function. 
  morphOps(threshld); 
 
  // Split ROI into 16 subregions of 420x16 pixels 
  for (int i = 0; i < strips.size(); i++){ 
   strips[i] = threshld(Rect(0, 16 * i, 420, 16)); 
   // Find lane centers into the ROI's 16 subregions of 420x16 pixels 
   centers[i] = trackFilteredObject(strips[i], dsp, Point(110, 360 + 16 
* i)); 
  } 
 
  // Separate centers in left, center and right lanes  
  // lineas[0]=left 1; lineas[1]=left 2; lineas[2]=center; lineas[3]=right 1; 
lineas[4]=right 2 
  vector<vector<Point2f>> lineas(5); 
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  separador(centers, lineas); 
 
  // Find the line that fits each lane's detected points 
  // Vec4f = (vx, vy, x0, y0); (vx, vy) is a normalized vector collinear to 
the line and (x0, y0) is a point on the line 
  // linerizado[0]=left 1; linerizado[1]=left 2; linerizado[2]=center; 
linerizado[3]=right 1; linerizado[4]=right 2 
  vector<Vec4f> linerizado(5); 
  Point2f A0; 
  Point2f B0; 
  Point2f auxcenterWA; 
  for (int i = 0; i < linerizado.size(); i++){ 
   if (lineas[i].size() >= 2){ 
    fitLine(lineas[i], linerizado[i], CV_DIST_L2, 0, 1, 0.01); 
    linearizer(Point2f(linerizado[i][2] - 60 * linerizado[i][0], 
linerizado[i][3] - 60 * linerizado[i][1]), Point2f(linerizado[i][2] + 60 * 
linerizado[i][0], linerizado[i][3] + 60 * linerizado[i][1]), A0, B0); 
    line(dsp, A0, B0, Scalar(255, 0, 0), 2, CV_AA); 
    if (i == 2){ auxcenterWA = B0; } // center lane coordinate 
   } 
  } 
  line(dsp, Point((auxcenterWA.x - 302) * 12 + 640, 105), 
Point((auxcenterWA.x - 302) * 12 + 640, 615), Scalar(255, 0, 0), 2, CV_AA); // Show in TP 
 
  // Central row 
  //line(dsp, Point(332, 105), Point(332, 615), Scalar(0, 255, 255), 1, 
CV_AA);   // WA 
  //line(dsp, Point(1002, 105), Point(1002, 615), Scalar(0, 255, 255), 2, 
CV_AA); // TP 
 
  // Location of TP inside WA  
  //rectangle(dsp, Point(302, 360), Point(355, 400), Scalar(255, 255, 255), 
1, CV_AA); 
  //circle(dsp, Point(327, 380), 1, Scalar(255, 255, 255), 1, CV_AA); 
  //circle(dsp, Point(960, 348), 4, Scalar(255, 255, 255), 4, CV_AA); 
 
  int tecla = waitKey(1); 
 
  if (tecla == 97) { 
   pos_lane = pos_lane - 1; 
  } 
  else if (tecla == 115){ 
   pos_lane = pos_lane + 1; 
  } 
 
  //line(dsp, Point(pos_lane, 345), Point(pos_lane, 615), Scalar(0, 255, 
255), 1, CV_AA); 
  //line(dsp, Point(pos_lane+12, 345), Point(pos_lane+12, 615), Scalar(0, 
255, 255), 1, CV_AA); 
  //line(dsp, Point(pos_lane-12, 345), Point(pos_lane-12, 615), Scalar(0, 
255, 255), 1, CV_AA); 
 
  // Display result image 
  //imshow(image_window, dsp); 
 
  // Save output video 
  //outputVideo.write(dsp); 
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  // Time stamp 
  tiempo(stime); 
  // Compute program execution time 
  duration = (clock() - start) / (double)CLOCKS_PER_SEC; 
 
  // Write to .csv file 
  framet << 
   std::fixed << std::setprecision(0) << Findex << "," << 
   std::fixed << std::setprecision(3) << east << ",E," << 
   std::fixed << std::setprecision(3) << north << ",N," << 
   std::fixed << std::setprecision(3) << velocity << ",m/s," << 
   std::fixed << std::setprecision(3) << distance << ",m," << 
   Heading << ",Deg," << 
   hh << ":" << mm << ":" << ss << ":" << ms << "," << duration << "," 
<< 
   (int)auxcenterWA.x << "," << 
   lindex << "," << 
   pos_lane << endl; 
 
  // Show in cmd window 
  system("CLS"); 
  cout << " Processing! " << endl << endl; 
  cout << " FRAME: " << Findex << endl; 
  cout << " TIMER: " << duration << endl; 
  cout << " FPS: " << Findex / duration << endl; 
  cout << " lindex: " << lindex << endl; 
  cout << " auxcenterWA: " << (int)auxcenterWA.x << endl; 
  cout << " POS: " << pos_lane << endl; 
  cout << " Press ESC to close" << endl; 
 
  // Matrix to show plot, refresh on each loop 
  cv::Mat plot_centers = Mat::zeros(320, 640, CV_8UC3); 
 
  // Update data 
  for (int i = 0; i < centerWA.size() - 1; i++) 
  { 
   centerWA[i].y = centerWA[i + 1].y; 
   centerTP[i].y = centerTP[i + 1].y; 
   centerMAN[i].y = centerMAN[i + 1].y; 
  } 
  // Scale to fit in plot range (plot range 0~320) (input range 280~380) 
  // y = ((x - xmin)/(xmax - xmin))*(ymax - ymin) + ymin 
  centerWA[centerWA.size() - 1].y = 320 - ((auxcenterWA.x - 280.0) / 100.0 * 
320.0); 
  centerTP[centerTP.size() - 1].y = 320 - ((((lindex / 12) + 302) - 280.0) / 
100.0 * 320.0); 
  centerMAN[centerMAN.size() - 1].y = 320 - ((pos_lane - 280.0) / 100.0 * 
320.0); 
 
  // Plot lines 
  for (int i = 0; i < centerWA.size() - 1; i++) 
  { 
   line(plot_centers, centerMAN[i], centerMAN[i + 1], Scalar(0, 255, 
0), 4); // Plot centerTP 
   line(plot_centers, centerTP[i], centerTP[i + 1], Scalar(0, 0, 255), 
4); // Plot centerTP 
   line(plot_centers, centerWA[i], centerWA[i + 1], Scalar(255, 0, 0), 
4); // Plot centerWA 
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  } 
  line(plot_centers, Point(10, 154), Point(630, 154), Scalar(0, 255, 255), 
2); // Plot center of frame 
  arrowedLine(plot_centers, Point(10, 310), Point(630, 310), Scalar(255, 255, 
255), 2, 8, 0, 0.01); // x axis 
  arrowedLine(plot_centers, Point(10, 310), Point(10, 10), Scalar(255, 255, 
255), 2, 8, 0, 0.01); // y axis 
  putText(plot_centers, "380", Point(15, 20), FONT_HERSHEY_SIMPLEX, .5, 
Scalar(255, 255, 255), 1, 8, false); // Plot y max 
  putText(plot_centers, "280", Point(15, 305), FONT_HERSHEY_SIMPLEX, .5, 
Scalar(255, 255, 255), 1, 8, false); // Plot y min 
  putText(plot_centers, "Center WA = " + to_string((int)auxcenterWA.x) + " 
[Pixels]", Point(200, 20), FONT_HERSHEY_SIMPLEX, .5, Scalar(255, 0, 0), 1, 8, false); // 
Plot centerWA 
  putText(plot_centers, "Center TP = " + to_string((lindex / 12) + 302) + " 
[Pixels]", Point(200, 40), FONT_HERSHEY_SIMPLEX, .5, Scalar(0, 0, 255), 1, 8, false); // 
Plot centerTP 
  putText(plot_centers, "Center MAN = " + to_string(pos_lane) + " [Pixels]", 
Point(200, 60), FONT_HERSHEY_SIMPLEX, .5, Scalar(0, 255, 0), 1, 8, false); // Plot 
centerTP 
  putText(plot_centers, "Ideal Center = 332 [Pixels]", Point(200, 80), 
FONT_HERSHEY_SIMPLEX, .5, Scalar(0, 255, 0), 1, 8, false); // Plot centerTP 
  // Plot centers WA & TP 
  imshow("Centers comparison", plot_centers); 
 
  rectangle(dsp, Point(110, 360), Point(530, 615), Scalar(255, 0, 0), 2, 
CV_AA); 
  rectangle(dsp, Point(302, 360), Point(355, 400), Scalar(0, 0, 255), 2, 
CV_AA); 
 
  plot_centers.copyTo(dsp(Rect(0, 0, 640, 320))); 
 
  // Display result image 
  imshow(image_window, dsp); 
 
  // Draw markers 
  //  Outline ROI WA 
  rectangle(dsp2, Point(110, 360), Point(530, 615), Scalar(255, 0, 0), 2, 
CV_AA); 
  // Location of TP inside WA  
  rectangle(dsp2, Point(302, 360), Point(355, 400), Scalar(0, 0, 255), 2, 
CV_AA); 
  //// Show trapezoid ROI WA 
  //line(dsp2, Point(554, 360), Point(640, 432), Scalar(0, 255, 0), 2); 
  //line(dsp2, Point(23, 432), Point(640, 432), Scalar(0, 255, 0), 2); 
  //line(dsp2, Point(23, 432), Point(97, 360), Scalar(0, 255, 0), 2); 
  //line(dsp2, Point(554, 360), Point(97, 360), Scalar(0, 255, 0), 2); 
  imshow("input", dsp2); 
 
  // Save output video 
  outputVideo.write(dsp); 
 
 
  // Wait for 'esc' key press for 30ms. If 'esc' key is pressed, break loop 
  if (waitKey(1) == 27) 
  { 
   cout << "ESC key pressed by user" << endl; 
   break; 
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  } 
 } 
 
 // Close .csv input file 
 myfile.close(); 
 // Close .csv output file 
 framet.close(); 
 
 // Save stitched image 
 cout << " Saving, please wait... " << endl; 
 
 // Input Quadilateral or Image plane coordinates 
 Point2f inputQuad[4]; 
 // Output Quadilateral or World plane coordinates 
 Point2f outputQuad[4]; 
 
 // These four pts are the sides of the trapezoid used as input  
 inputQuad[0] = Point2f(74, 0); 
 inputQuad[1] = Point2f(531, 0); 
 inputQuad[2] = Point2f(617, 72); 
 inputQuad[3] = Point2f(0, 72); 
 // The 4 points where the mapping is to be done , from top-left in clockwise order 
 outputQuad[0] = Point2f(-10, 0); 
 outputQuad[1] = Point2f(622, 0); 
 outputQuad[2] = Point2f(627, 72); 
 outputQuad[3] = Point2f(0, 72); 
 
 // Lambda Matrix 
 Mat lambda(2, 4, CV_32FC1); 
 
 // Output Image 
 Mat TWA = Mat::zeros(72 * 67, 617, CV_8UC3); 
 
 // Set the lambda matrix the same type and size as input 
 lambda = Mat::zeros(72, 617, CV_8UC3); 
 
 // Get the Perspective Transform Matrix i.e. lambda  
 lambda = getPerspectiveTransform(inputQuad, outputQuad); 
 
 // Reset Counter of mapped frames 
 mpcutwA = 0; 
 
 // Transform Temporal Mosaic using warpPerspective into Output Image Mosaic 
 for (int i = 0; i< 67; i++){ 
  warpPerspective(temporalWA(Rect(0, 72 * mpcutwA, 617, 72)), TWA(Rect(0, (72 
* mpcutwA), 617, 72)), lambda, temporalWA(Rect(0, 72 * mpcutwA, 617, 72)).size()); 
  mpcutwA++; 
 } 
 
 // Save stitched-warped image 
 cv::imwrite(out_mapWA, TWA); 
 cout << " Press Enter  to exit " << endl; 
 std::cin.get(); 
 
 return 0; 
} 

 


