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Abstract 

 

To understand the effects of urban growth on land use change and ecosystems, the 

following information is required:  1) detecting accurate land use changes at fine scale, 2) 

finding out the habitats for endangered species, and 3) investigating the structure and 

function of ecosystems.  I conducted a series of field surveys in Purbachal, Bangladesh, 

for examining these issues.   I hypothesized that fine scale data (less than 1 meter in the 

resolution) identify land use types precisely and detect land use types that are not detected 

by coarse resolution. These are confirmed by fine scale data from two satellites.  There are 

various vegetation indices (VIs) proposed to classify land use types, suggesting that each 

VI has advantages and disadvantages on the classification of land use types.  To solve this, 

a hierarchical land use classification was used with four popular VIs (Chapter 1).  Based 

on this research, the present distribution of S. robusta forests is clarified.  Secondly, I 

focused on the potential distribution of S. robusta, because this species is an umbrella 

species for ecosystem conservation (Chapter 2).  The predictable distribution of S. robusta 

forest was examined by Maxent model, using two global warming scenarios, RCP4.5 

(mean temperature increase 1.4 °C and 1.8°C) and RCP8.5 (mean temperature increase 

2.0 °C and 3.7 °C) to the year of 2046-2065 and 2081-2100.  The global warming 

scenarios supported the conservation and management strategies for protecting S. robusta 

forests by predicting the future potential localities of S. robusta forests and the impact of 

increased temperature and decreased precipitation on S. robusta forests ecosystem. To 

conserve the ecosystems and biodiversity in relation to land use change and endangered 

species, finally, ecosystem structures and functions are investigated by plant functional 

groups (PFGs) developed by the patterns of leaf reflectance spectra of 112 species. Then, I 

characterized the PFGs based on 48 species attributes (Chapter 3).   
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Detecting fine-scale spatiotemporal land use changes is a prerequisite for 

understanding and predicting the effects of urban growth and its related human impacts on 

the ecosystem. Land use changes are frequently examined using vegetation indices (VIs), 

although the validation of these indices has not been conducted at a high resolution. 

Therefore, a hierarchical classification was constructed to obtain accurate land use types at 

a fine scale (Chapter 1). The four VIs are the normalized difference VI (NDVI), green-red 

VI (GRVI), enhanced VI (EVI), and two-band EVI (EVI2). The reflectance data were 

obtained by the IKONOS (0.8-m resolution) and WorldView-2 sensor (0.5-m) in 2001 and 

2015, respectively. The hierarchical classification of land use types was constructed using 

a decision tree (DT) utilizing all of the four examined VIs. The DT showed overall 

accuracies of 96.1% and 97.8% in 2001 and 2015, respectively, while single VI showed 

less than 91.2% of accuracy.  These results indicate that each VI exhibits unique 

advantages. In addition, the DT was the best classifier of land use types, particularly for 

native ecosystems represented by Shorea forests and homestead vegetation, at the fine 

scale. Since the conservation of these native ecosystems is of prime importance, DTs 

based on hierarchical classifications should be used more widely.   

Detecting the determinants of spatio-temporal distribution of species is 

prerequisite for ecological conservation and restoration. Maximum entropy (Maxent) 

modeling was applied to investigate the present and future potential distributions of an 

endangered canopy-tree, S. robusta, under urban growth in Purbachal, Bangladesh 

(Chapter 2). The model was constructed by 165 location records that cover the whole 

distributional range of S. robusta.  Eight environmental variables in relation to climate, 

geography and soil were included in the models.  Two scenarios proposed by IPCC 

(representative concentration pathways, RCP) were used for the prediction of distribution 

altered by global warming (from 2046 to 2065 and from 2081 to 2100). The accuracy of 
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predicted distributions was supported sufficiently by the binomial test of omission (P ≈ 

0.00) and area under the curve analysis (AUC > 0.97). The distributions were mostly 

determined by precipitation and soil nitrogen because S. robusta requires high 

precipitation and soil nitrogen.  Maxent predicts that the suitable areas for S. robusta forest 

that will decline to 86.5% by 2100 in the RCP8.5 scenario.  

Although plant functional group (PFG) is used broadly for analyzing ecological 

aspects, the relationships between PFGs and spectral reflectance, which is determined by 

photosynthesis and its related factors, have not been examined well. PFG and spectral 

reflectance were examined by using 48 traits of 112 plants in the central Bangladesh 

where plant species were diverse.  Four PFGs were detected by Ward cluster analysis 

based on the spectral reflectance.  Ten traits were statistically different between the four 

PFGs, those are: growth form (tree, herb and grass), wood, height, diameter at breast 

height (DBH), branching pattern (erect, spreading) and leaf hair.  The four PFGs were 

represented by sub-canopy plant (Group A), hairy plant (B), slim-stemmed tree (C) and 

large tree (D). Group B showed the highest reflectance at visible and NIR spectra, while 

Group D did the lowest reflectance spectra at NIR. The overall reflectance was ordered as: 

groups D < C < A < B.  These results suggested that the PFGs classified by reflectance 

spectra was associated with not only growth form but also branching pattern and leaf 

surface structure and characterized the ecosystems structure and function.    

I concluded that urban growth (i.e. road construction, lake excavation etc.) was a 

trigger of S. robusta deforestation and changed the diverse landscapes and ecosystems. 

Although the S. robusta forest has been at risk of deterioration induced by global 

warming, the Maxent model suggested that the preservation of endangered forests is 

possible by finding out the potentially-suitable regions of S. robusta forests. The 
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substantial species and habitats can be preserved by identifying the PFGs and highlighting 

the environmental management. 
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General introduction 
 
 

Land use change is an eminent feature in developing countries (Noss and Csuti 1994). 

Noticeable anthropogenic impacts on land use change are the reduction and fragmentation 

of habitats that isolate endangered populations and extinct native species (Zipperer 1993). 

Of anthropogenic activities, urban development causes the greatest loss of ecosystems 

and/or habitats (Marzluff 2001). When urbanization deteriorates various ecosystems, the 

species diversity and ecosystem function are also decreased through landscape 

fragmentation and climate change (Arnfield 2003; Wilby and Perry 2006; Barros et al. 2016; 

Booth et al. 2004). Due to urban growth in Purbachal, Bangladesh, forest and other land use 

types have been deteriorated (Hasnat and Hoque 2016). 

Since urbanization deteriorates natural ecosystem for a short term, an up-to-date 

information on land use change is crucial to assess the impacts (Poh Sze Choo et al. 2005). 

One technique is remote sensing that detect land use change promptly when appropriate 

data are available   (Boyle et al. 2014; Cotter et al. 2004). In addition, high-resolution 

sensors are desirable to detect fine-scaled land use changes (Ramankutty et al. 2006). Fine 

scale multispectral data extracts detailed spatial information to investigate land use types by 

reducing mixed-pixel problem and classification error (Lu and Weng 2009). Vegetation 

indices (VIs) are often used to classify land use types (Shivashankar and Hiremath 2011). 

In this research, I used normalized difference vegetation index (NDVI), enhanced 

vegetation index (EVI), two band enhanced vegetation index (EVI2) and green red 

vegetation index (GRVI) to detect the land use changes (Singh et al. 2016; Huete et al. 2002; 

Jiang et al. 2008; Motohka et al. 2010), because these VIs have the advantages to improve 

the classification accuracy and minimize the classification errors (Evrendilek and Gulbeyaz 

2008). I made a hierarchical classification based on these four VIs to detect land use types, 

because single VI was not capable to separate all land use types. The hierarchical 
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classification used the combination of all the four VIs by selecting the suitable VI for each 

land use type according to the classification and accuracy.  

Remote sensing technique is used widely in the conservation and management at 

species, ecosystem and landscape levels. Land use classification by fine scale data enhance 

and develop the decisions of the planners, ecologist and decision-maker involved in the 

management of environment for sustainable development (John and Chen 2003; Mustapha 

et al. 2010; Malinverni et al. 2010). Integration of GIS and remote sensing technology 

provides all-out information and analysis proficiencies regarding land use plan, 

conservation and management of ecosystems (Nellis et al. 1990).  

The possible potential distributions and the vital environmental factors of an 

endangered tree species, S. robusta, were analyzed using Maxent modeling. Detecting 

distributions of endangered ecosystems is a key concern in conservation, management and 

restoration of biodiversity (Ferrier 1984; Purvis et al. 2000), including screening of 

biodiversity hotspots (Myers et al. 2000).  Maxent is used for predicting species distribution 

based on the environmental predictors (Phillips et al. 2004; Elith and Leathwick 2006). The 

advantage of this model is that only the presence data is required with the environmental 

factors to predict the environmental conditions (Elith et al. 2011).  Maxent modeling was 

applied and suitable in this study, because of the unavailability of the absence data. 

Therefore, I applied Maxent model to detect the potential distributions of S. robusta forests 

and to predict the existence of this forest under the global warming scenarios (RCP4.5 and 

RCP8.5).  The impact of global warming on Shorea robusta forests was investigated, 

because global warming is responsible for the drastic changes in the distributions of species 

and ecosystems due to the projected temperature rise (Pacifici et al. 2015). S. robusta was 

used because this species is an umbrella species and least concern species recorded in the 

Red List (IUCN 2015). I focused on the essential environmental factors determining the S. 

robusta distributions followed by the impacts of RCP scenarios and urban growth on S. 
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robusta ecosystems. Because, not only climatic factors but also edaphic factors were 

essential to predict the possible distributions of the S. robusta forests. These results is likely 

to assist the S. robusta conservation by preserving existing habitats and restoring the suitable 

localities.  

Finally, this research examined plant functional groups (PFGs) using 48 species 

traits of 112 species. Spectral reflectance of leaves was measured by a portable 

spectroradiometer. The reflectance patterns were related to PFGs that were basically 

developed by growth form.  These results suggested that photosynthetic characteristics was 

related to the growth forms. Therefore, the PFGs characterized the ecosystems function and 

were related to the land use types. The essential ecosystems (e.g., S. robusta) can be 

conserve by the identification of this PFGs.  
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Study site 

 

Field researches were conducted in Purbachal (23°49'45.53" - 23°52'30.72"N and 

90°28'20.18" - 90°32'43.26"E), Bangladesh, because of urbanizing area (Figure S-1). 

Purbachal is located in the eastern-central part of Bangladesh. The study site is 2,489 ha 

and is drained by the two major rivers to the west and east (Zaman 2016). The site falls 

within the physiographic unit of Pleistocene terrace named as Madhupur tract and the 

Brahmaputra-Jamuna Floodplain (Brammer 2012) that form dendritic drainage systems 

(Rashid 1991). The terrace consists of low gentle-edged hills and ridges separated by 

shallow valleys and depression which floods extensively in the rainy season. The 

lithological landforms of Purbachal consists of Madhupur clay deposit of the Pleistocene 

age and alluvial deposit of recent age. The alluvial deposit was associated with valleys and 

depression characterized as silty clay, silt, fine sand, gray-light gray, and dark gray soil. 

The Madhupur clay deposit consisted of silty clay with fine sand, red, reddish-brown, and 

yellowish-brown soil found mostly in the hills. Oxidized soil with the accumulation of 

nodules was one of the soil characteristics at the Madhupur clay deposit (BBS 2013).  

In the bottom of valleys and depression one-crop is cultivated in a year. The 

scattered homesteads (i.e., settlement and residential areas) and homestead vegetation 

(vegetation consisting of trees, shrubs and herbs on and around the settlement) observed in 

the hilly areas (Shapla et al. 2015). On the adjacent slopes, vegetables were cultivated in 

the winter season (Anonymous 2013).  

This area is in a tropical monsoon climate (BBS 2013). The annual rainfall in the 

study site averages 2400 mm and the mean annual temperature is 28°C with the minimum 

monthly temperature 12.7°C in winter and maximum monthly temperature 36.3°C in 

summer. The summer is prolonged, with the intermittent monsoon and short winter. Period 

during March and November usually shows high temperature higher than 28°C (Shapla et 
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al. 2015).  In addition air moisture is over 80% from March to June.  Period from June to 

November is humid and rainy monsoon.  Period from December to February is a cold and 

dry (Rafiuddin 2010).    

The potentially-natural vegetation in Purbachal is S. robusta forest that now 

covers 7.8% of the forest areas (Hasan and Mamun 2015).  The associated tree species 

are Dipterocarpus turbinatus Gaertn. f., Albizzia lebbeck (L.) Benth., Dillenia indica 

L., Ficus benghalensis L. , Ficus religiosa L., Terminalia bellirica (Gaertn.) Roxb., 

Terminalia chebula Retz., Syzygium cumini (L.), etc.  Common shrub, herb and grass 

are Flacourtia indica (Burm. f.) Merr., Lipocarpha squarrosa (L.) Goetgh., mimosa 

pudica L., Murdannia keisak (Hassk.) Hand.-Maz, Chrysopogon aciculatus (Retz.) 

Trin., etc. The trees of fruits and crops are also grown, such as Mangifera indica L., 

Artocarpus heterophyllus Lam. and Psidium guajava L.  Although the crop lands are 

developed, Purbachal is a sanctuary of natural ecosystems supporting ecologically 

important species and habitats (Mamun 2007). The rapid urban growth triggers massive 

ecosystem damages and forest reduction in the area.  In particular, the S. robusta forest 

is rapidly disappearing (Roy 2012).  
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Figure S-1: A land use map of study site in 2015. The inset map shows the location of Purbachal in 

Bangladesh.  
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Chapter 1 
 
 
 

 

Hierarchical classification of land use types using multiple vegetation indices to 

measure the effects of urban growth 

 

1.1. Introduction 
 
 
 

Since the construction of new towns within natural ecosystems can cause the rapid 

deterioration of endangered and threatened ecosystems and landscape diversities 

therein, it is necessary to predict the effects of land use changes to promote the 

conservation and restoration of ecosystems prior to urbanization. Fine-resolution data 

are desirable for detecting land use changes as a result of urbanization; accordingly, the 

resolution of land use maps should be sufficiently fine for detecting the effects of road 

networks and of related human impacts on adjacent areas (Nigam 2000; Erener et al. 

2012; Akay and Sertel 2016). However, due to the lack of high-resolution data, such 

detailed analyses are scarce (Fonji and Taff 2014; Kalyani and Govindarajulu 2015). 

Two satellites, namely, IKONOS and WorldView-2 (WV2), recently provided high-

resolution data with a resolution of less than 1 m (Aguilar et al. 2013). Such a resolution 

is likely to be suitable for analyzing land use changes caused by urbanization (Nouri et 

al. 2014), although the effectiveness of these datasets has not been examined. Therefore, 

the prime objective of the present study is to validate the applicability of these high-

resolution satellite data to the detection of land use changes caused by urban growth.  

The vegetation index (VI) was developed to detect the characteristics of 

vegetation and land use via the combination of two or more wavelength bands related to 

photosynthesis, i.e., the blue, green, red and near-infrared bands (Huete et al. 1999). A 

high VI indicates a high vegetation greenness related to the high activities and low 
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stresses of plants, and vice versa (Rocha and Shaver 2009). Therefore, VIs are often 

applied to analyses of land use and vegetation changes, e.g., to detect spatial 

variabilities (Matsushita et al. 2007), plant cover distributions and densities (Myneni et 

al. 1997; Saleska et al. 2007) and temporal changes (Lunetta et al. 2006). To evaluate 

the greenness of the ground surface, various VIs have been proposed (Joshi and 

Chandra 2011; Barzegar et al. 2015), and they are represented by the normalized 

difference vegetation index (NDVI), enhanced vegetation index (EVI), two-band 

enhanced vegetation index (EVI2) and green-red vegetation index (GRVI) (Jiang et al. 

2007).   

The NDVI is widely used to detect land use-land cover (LULC) changes 

(Sahebjalal and Dashtekian 2013; Singh et al. 2016). Additionally, measurements of the 

NDVI are employed to broadly assess the spatiotemporal characteristics of LULC, 

including the vegetation cover (Kinthada et al. 2014). The principle of the NDVI is 

derived from the reflectance characteristics of photosynthesis, i.e., through an 

examination of the vegetation greenness by using red band signals absorbed by plants 

and near-infrared band signals reflected by plants (Rouse et al. 1974). The weakness of 

this index lies in the fact that atmospheric and/or ground surface conditions, such as 

clouds and soils, often distort its accuracy (Kushida et al. 2015; Miura et al. 2001). 

Three indices, namely, the EVI, EVI2 and GRVI, were developed to reduce these 

obstacles, and they are popularly employed in addition to the NDVI (Phompila et al. 

2015). The EVI enhances the greenness signal of the ground surface, which includes 

forest canopy structures, by using the blue band (Huete et al. 2002) and therefore 

reduces soil and atmospheric interference (Holben and Justice 1981). The EVI2 was 

modified from the EVI by removing the blue band to improve the auto-correlative 

defects of surface reflectance spectra between the red and blue wavelengths (Jiang et al. 
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2008), particularly when the background soil reflectance fluctuates (Kushida et al. 

2015). The GRVI is often applied to evaluate forest degradation and canopy tree 

phenology, because this index is sensitive to changes in the leaf color at the canopy 

surface by using green wavelengths (Motohka et al. 2010).  

The effectiveness of each of the abovementioned VIs has been compared well 

at coarse scales, e.g., at 30 m with Landsat TM5 data and at 250 m with both 

MOD13Q1 and NOAA-AVHRR imagery (Julien et al. 2011). However, only a few 

studies have been conducted to investigate LULC changes using VI time series 

(Markogianni et al. 2013). Land use classification schemes using VIs at a fine scale 

should be validated prior to examining land use changes, because the accuracies of 

these VIs at higher resolutions have not been examined thoroughly. A new planned 

township, namely, Purbachal New Town, is being prepared on the northeastern side of 

Dhaka, Bangladesh (Rahman et al. 2016a). High-resolution data are available for a land 

use comparison between the pre- and post-urbanization periods. Therefore, the 

effectiveness of each of the four popular vegetation indices, namely, the EVI2, EVI, 

GRVI and NDVI, were examined at a high resolution by comparing the two phases of 

urban growth (i.e., pre-urbanization and present-day) in the new township. Each VI has 

both strong and weak points with regard to the classification of land use types (Dibs et 

al. 2017). To solve this issue, a decision tree (DT) was also utilized in this study. The 

application of DTs has been increased for image classification purposes because of their 

accuracy and interpretation capabilities. DTs are effective for categorizing and selecting 

each class in a classification tree (Laliberte et al. 2007), and they have performed 

successfully with remotely sensed data for the analysis of land use changes at coarse 

resolutions (Brown de Colstoun et al. 2003; Sesnie et al. 2008), although their accuracy 
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was not examined for fine resolutions (high-resolution satellite imagery < 30 m and 

very high‐resolution ≤ 5 m) (Fisher et al. 2017).   

The first objective in this study was to examine the efficiencies of the VIs with 

regard to land use classification at a fine scale, because their efficiencies may differ 

between coarse and fine resolutions. The second objective was to characterize the VIs 

for each land type and to develop a hierarchical classification using a DT utilizing the 

characteristics of the examined VIs. Finally, the third objective was to characterize the 

land use changes induced by urban growth.   

 

1.2. Materials and methods 
 

 
 

1.2.1. Study area 

 

Purbachal New Town, Bangladesh (23°49'45.53" - 23°52'30.72"N and 90°28'20.18" - 

90°32'43.26"E) was selected as the study area (Figure 1-1). At a large scale, Purbachal 

New Town is located within eastern-central Bangladesh between large floodplains (i.e., 

the Old Brahmaputra Floodplains) and terraces and is sandwiched by two rivers, 

namely, the Balu and Sitalakkhya Rivers, on the west and east sides. The maximum 

mean monthly temperature is 26.3°C in August, and the minimum is 12.7°C in January 

(Shapla et al. 2015). The annual precipitation is 2,030 mm. The dry season generally 

ranges from December to February, and the rainy season lasts from June to September 

(Rahman et al. 2016b). The new town project was established to reduce the 

overpopulation in the capital city of Dhaka, the population density of which was 

57,167/km² in 2011 (Khatun et al. 2015). The planned area of the new town is 2,489 ha 

(Zaman 2016). The construction started in 1995, and it did not cease until 2015. Prior to 

urbanization, the major land use types were forest (Shorea robusta Gaertner f., in the 
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Dipterocarpaceae family), homestead, homestead vegetation, cropland, and various 

others (Rahman et al. 2016a).   

The expansion of urban areas in Bangladesh was inadequately planned and 

controlled due to truncated laws (Hossain 2013). Per the Environmental Conservation 

Act of 1995 and the Bangladesh Environmental Conservation Rules, 1997, the 

preservation of natural forests and privately owned commercial forests dominated by S. 

robusta should take priority during the land development planning of Purbachal New 

Town. The major forest products are edible fruits, timber and medicines. These 

preserved forests are expected to sustain endemic and/or invaluable flora and fauna, 

although land development activities often neglect these perspectives (Zaman 2016). 

Although the emphasis during the pre-planning stage was the in situ preservation of 

entire forests, the idea to maintain all of the patches of Shorea forest was later rejected 

because those isolated patches had already been exposed to human activities. To 

compensate for the loss of forested area, a green belt with a width of 15 m to be 

produced through afforestation was planned for the full perimeter of the township area 

(24.2 km²) with a few exceptions. There were no interferences with the natural drainage 

systems that had maintained the pristine ecosystems in the region.   

In total, the land use types of the study area were classified into eight categories 

(Table 1-4). Of those land use types, native forests with a maximum height of 36 m 

dominated by S. robusta have maintained the highest biodiversity, and they contain 

numerous endangered species (Gautam et al. 2006; Mandal et al. 2013). Therefore, the 

accurate detection of the distribution of Shorea forest was the priority for this land use 

analysis. The other land use types were homestead (i.e., settlement and residential areas), 

homestead vegetation (vegetation consisting of trees, shrubs and herbs on and around the 

settlement), cropland, grassland, agricultural low land, bare land and water bodies. In 
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general, therefore, homestead vegetation is larger than homestead. The homestead 

vegetation and agricultural low land types also support a high biodiversity (Hasnat and 

Hoque 2016). Currently, the forest ecosystems in the region are decreasing rapidly due to 

economical demands and human interferences, such as overexploitation, deforestation, 

excessive trash buildup and encroachment (Salam et al. 1999; Hassan 2004). Among the 

artificial land use types, cropland, the major products of which are rice, jute and 

vegetables (e.g., cultivars consisting of gourds, beans, cabbage, cauliflower and tomatoes), 

was distributed broadly prior to urbanization (Shapla et al. 2015). 

 

1.2.2. IKONOS and WV2 data 

 

The data were obtained from the satellite imagery of IKONOS at 04:35 (GMT) on May 1, 

2001, and at 04:44 on February 16, 2002, prior to urbanization and from WV2 imagery at 

04:41 on December 9, 2015 (Digital Globe - Apollo Mapping, Longmont, Colorado, USA) 

at present stage, since IKONOS terminated data acquisition after 2014 and WV started 

data collection in October 2009. The resolutions of the IKONOS and WV2 sensors are 0.8 

m (true color) and 0.5 m (natural color), respectively. All of the images were devoid of 

clouds.   

These remote sensing data were integrated via ArcGIS (version 10.2). 

Integrated analyses were conducted after checking the quality of the pre-processed data 

to remove noise and unify the georeferences. These images were re-projected onto the 

Bangladesh Transverse Mercator (BTM) projection to record the statistics of landscape 

changes, because of the projected coordinate system in Bangladesh (Dewan and 

Yamaguchi 2009).   
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1.2.3 Evaluation of the vegetation indices and hierarchical classification 

 

The categories of land use types were matched with the land use map published by the 

Ministry of Housing and Public Works of Bangladesh (Anonymous 2013) with a few 

modifications adjusted to recently developed land use patterns. The modification was 

made by establishing three land use types, cropland, grassland and bare land, all of which 

were cultivable land in the original map (Anonymous 2013). Because the map was 

manufactured based on various datasets consisting of topographical, geographical and 

historical data at a fine scale, this map was utilized as a reference during the evaluation of 

land use classifications.    

A total of eleven VIs was investigated to confirm the accuracy of land use change 

detection by using error matrix prior to the construction of DT. These eleven VIs were 

NDVI, EVI2, EVI, GRVI, atmospherically resistant vegetation index (ARVI), green 

difference vegetation index (GDVI), green normalized difference vegetation index 

(GNDVI), difference vegetation index (DVI), normalized green (NG),  ratio vegetation 

index (RVI) and enhanced normalized difference vegetation  index (ENDVI). The four 

examined VIs showed higher than 65% overall accuracy, while the other VIs showed less 

than 50%. Therefore, the four VIs, NDVI, EVI2, EVI, and GRVI were used for the further 

analysis.    

The four examined vegetation indices were as follows:  

                           NDVI = (NIR − red)/(NIR + red)                                    (1) 

                           GRVI = (green − red)/(green + red)                                             (2) 

    EVI = G × (NIR − red)/(NIR + C1 × red − C2 × blue + L)                     (3) 

                EVI2 = 2.5 × (NIR − red)/(NIR + 2.4 × red + 1.0),                                (4) 
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where near-infrared (NIR), red, green and blue represent (partially) atmospherically 

corrected surface reflectances, L denotes the canopy background adjustment used to 

address the nonlinear, differential transmittance of NIR and red wavelength radiances 

through a canopy, and C1 and C2 are the coefficients of the aerosol resistance term that 

uses the blue band to calibrate the aerosol influences in the red wavelength. The blue 

wavelength ranges from 445 nm to 516 nm on IKONOS and from 450 nm to 510 nm on 

WV2, the green wavelength ranges from 506 nm to 595 nm on IKONOS and from 510 nm 

to 580 nm on WV2, the red wavelength ranges from 632 nm to 698 nm on IKONOS and 

from 630 nm to 690 nm on WV2, and the NIR wavelength lies between 757 nm and 863 

nm on IKONOS and between 765 nm and 901 nm on WV2. Therefore, the data collected 

by WV2 were comparable to the data acquired using the IKONOS sensor (Table 1-1).   

 

Table 1-1.  The four wavelength bands on IKONOS and WV2 images. 

 
Band  

                    Wavelength (nm) 

  IKONOS WV2 

  
 

 

Blue 
Min 445 450 

Max 516 510 

Green 
Min 506 510 

Max 595 580 

Red 
Min 632 630 

Max 698 690 

Near-infrared (NIR) 
Min 757 765 

Max 863 901 

 

The NDVI refers to two spectral bands of the photosynthetic output, i.e., the red 

and near-infrared bands (Huete et al. 1997). The NDVI ranges from -1 to +1 and increases 

with an increase in the vegetation greenness. However, the NDVI is skewed by 

background reflectances and atmospheric interference (Karnieli et al. 2013). In addition, 

the NDVI is saturated in regions with a high biomass (Miura et al. 2001). To reduce these 
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disadvantages of the NDVI, multiple VIs modified from the NDVI have been developed 

(Phompila et al. 2015).   

The GRVI uses green and red bands to assess deforestation, forest degradation 

and canopy tree phenology (Motohka et al. 2010; Tucker 1979). The GRVI often focuses 

on seasonal fluctuations in the greenness by evaluating the colors of leaves at the canopy 

surface using the green band (Nagai et al. 2012).  

The EVI was modified from the NDVI by adopting numerous coefficients within 

the EVI algorithm (Equation 3): L = 1, C1 = 6, C2 = 7.5, and gain factor (G) = 2.5 (Rouse 

et al. 1974; Huete et al. 1994). These parameters are used to improve the sensitivity to 

high biomass regions and the vegetation monitoring capability of the EVI by dissociating 

the canopy background signal and diminishing atmospheric influences (Huete et al. 1999).  

Although the EVI2 measures the vegetation greenness without a blue band 

(Equation 4), it resembles the 3-band EVI when the data quality is high and atmospheric 

effects are insignificant (Jiang et al. 2008).   

A DT classifier was applied to identify the land use types using the four examined 

VIs. The DT was implemented depending on multiple levels of decisions based on the 

properties of the input datasets (Mountrakis et al. 2011).  

 

1.2.4. Accuracy assessment of the land use classification 

 

Validating the land use classification is a prerequisite for confirming temporal land use 

changes (Foody 2002). Ground truth data of stratified land use classes at 182 locations 

marked with GPS were used for the validation (Figure 1-1). The ground truth points were 

selected by using a land use map (Anonymous 2013). These locations and their adjacent 

areas were recorded more than once to inspect the eight land use types. Based on the 

measurements, the land use types on the maps were repeatedly reclassified to minimize 
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classification errors. The accuracies of the land use classification schemes using the four 

VIs and of the hierarchical classification using the DT classifier were tested using an error 

matrix represented by an overall accuracy and a kappa ( coefficient at each ground truth 

point. The ESRI ArcMap (version 10.2) software was used for the data processing, 

including the statistical analysis.   

 

 

Figure 1-1. Image of Purbachal New Town in 2015 from the WV2 satellite. Two rivers, namely, 

the Balu and Sitalakhya Rivers, are distributed along the west and east sides of the township, 

respectively. The inset map at the top left shows Purbachal New Town in the country of 

Bangladesh. The 182 ground truth locations recorded via GPS in Purbachal New Town are shown 

on the WV2 natural color image using different colored circles for different land use types. The 

land use types were verified to assess the accuracy of the land use classification via satellite 

imagery and reference vegetation maps.  
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1.2.5. Relationships between land use types and VIs 

One-way analysis of variance (ANOVA) was used to investigate the significant 

differences in the VI values among the land use types. When the ANOVA was significant, 

Tukey post hoc multiple comparison tests were applied to determine the significant 

differences in the VIs among the land use types confirmed using ground truth data (Zar 

1999).  

  

1.3. Results 
 
 
 

1.3.1. Surface reflectances in the VIs 

 

The spatial patterns of the surface greenness in 2001 and 2015 were different among the 

VIs (Figure 1-2). The GRVI effectively diagnosed the distributions of homestead 

vegetation and Shorea forest but often failed to discern cropland. The EVI detected the 

grassland distribution most correctly but could not clearly detect the Shorea forests. The 

NDVI differentiated water bodies and bare land but did not delineate the Shorea forest and 

homestead vegetation land use types, showing that the NDVI is not appropriate for 

classifying regions with dense green vegetation. The EVI2 distinguished vegetated land 

use types from non-vegetated land use types and clearly identified the homestead 

distribution.  

The lowest NDVI value of -0.05 was obtained for water bodies due to the lack 

of vegetation (Figure 1-3). Homestead was detected within a few small patches with a 

low NDVI of 0.31 in 2001 and 0.21 in 2015, confirming that a fine-scale classification 

is required to detect these land use types. Homestead vegetation (i.e., vegetation 

enclosing homesteads) showed an NDVI of 0.91 in 2001 and 0.82 in 2015. Croplands 

had higher a NDVI than grassland of 0.67 in 2001 and 0.59 in 2015.   

The lowest EVI values were shown for water bodies, while the second-lowest 

values were displayed over bare land (Table 1-2). The EVI did not separate these two 
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land use types clearly. The EVI of grassland was an average of 0.37, which is 

intermediate between the EVI values for bare land and forests. EVI values between 

0.37 and 0.48 were associated with cropland and occasionally grassland, while EVI 

values ranging from 0.48 to 0.57 represented dense and/or deeply green vegetation.   
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Figure 1-2. Surface greenness distributions evaluated using the four VIs based on multi-temporal 

information from the IKONOS and WV2 images in 2001 (left side) and 2015 (right side), 

respectively. 
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The highest EVI2 value, i.e., 1, represented dense vegetation, including 

homestead vegetation. The EVI2 value for Shorea forest was 0.97, which was the highest 

of the examined VIs (0.77 with the NDVI, 0.53 with the EVI and 0.25 with the GRVI). 

The EVI2 value for grassland ranged from 0.10 to 0.49, which is higher than those 

obtained with the EVI, NDVI and GRVI. The EVI2 sometimes misclassified cropland as 

grassland, probably because of double cropping. An EVI2 value lower than 0.10 indicated 

poorly vegetated land use types, such as bare land and sparse grassland. The GRVI 

demonstrated an appropriate detection of densely vegetated land use types, mostly due to 

the discrimination of Shorea forest and homestead vegetation. However, the GRVI did not 

effectively discriminate among water bodies, bare land and homestead (Figure 1-2). Non-

vegetated land, i.e., water bodies and bare land, showed GRVI values of less than 0.18. 

Bare land and water bodies showed the lowest GRVI values of -0.04 and 0.01, 

respectively, while water bodies showed the lowest VI values overall. These results 

indicate that the GRVI performed better while distinguishing dense vegetation than other 

land use types characterized by sparse greenness.   

In total, the NDVI had higher values than the EVI and GRVI, particularly when 

the reflectance was high (Figure 1-3). The GRVI occasionally showed negative values 

over bare land when it should have been higher than 0, which was probably due to soil 

interference. All of the VIs showed a clear gap between non-vegetated and vegetated land 

use types. However, in areas with a high vegetation, the VIs exhibited different responses 

to greenness. 
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Figure 1-3. Spectral reflectance in the VIs extracted from 182 ground truth points for eight land 

use classes. The y-axis indicates the spectral reflectance among the four VIs, while the x-axis 

represents the eight land use types.   

 

 

I.3.2. Validation of the VIs 

 

The accuracies of the land type classification schemes were different among the VIs 

(Table 1-3). Each of the four VIs showed different values among the land use types 

(ANOVA, p < 0.0001) (Table 1-2). All of the VIs showed stable values over homesteads. 

The EVI2 and NDVI responses to grassland and cropland fluctuated, and the EVI 
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fluctuated largely over Shorea forest and homestead vegetation. Although the GRVI 

responses to Shorea forest and homestead vegetation were stable, the GRVI responses 

were lower than the responses of the other VIs.  

The EVI2 exhibited different pairs of land use types except for grassland-

agricultural low land, agricultural low land-homestead and bare land-water body (Tukey 

test, p < 0.05). The NDVI exhibited different pairs of land use types except for homestead 

vegetation-Shorea forest, agricultural low land-homestead and grassland-agricultural low 

land. The homestead vegetation-Shorea forest and agricultural low land-homestead pairs 

were not significantly different in the EVI, although the rest of the pairs were different. 

The GRVI was capable of distinguishing between homestead vegetation and Shorea 

forest, but the other three VIs could not differentiate these two land use types. The GRVI 

did not reveal significant differences in the comparisons between the other land use types 

(p < 0.05). The GRVI was most effective at differentiating the Shorea forest-homestead 

vegetation pair; meanwhile, the EVI2 and NDVI effectively detected homestead, bare land 

and water bodies, and the EVI effectively detected the distributions of agricultural low 

land, grassland and cropland.  
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   Water body  Bare land  Homestead  Agricultural low land  Grassland  Cropland  
Forest (Shorea 

robusta)  
Homestead 
vegetation  

2
0

0
1

 

EV
I2

 

0.04 ±0.02 
a 

0.06 ±0.01 
a 

0.32 ±0.00 
b 

0.42 ±0.01 
c 

0.42 ±0.03 
c 

0.74 ±0.01 
d 

0.96 ±0.00 
e 

0.96 ±0.01 
e 

N
D

V
I 

0.01 ±0.01 
a 

0.14 ±0.01 
b 

0.30 ±0.00 
c 

0.31 ±0.01 
cd 

0.42 ±0.02 
d 

0.62 ±0.01 
e 

0.73 ±0.01 
f 

0.79 ±0.02 
f 

EV
I 0.02 ±0.01 

a 
0.09 ±0.01 

b 
0.22 ±0.00 

c 
0.26 ±0.01 

c 
0.34 ±0.01 

d 
0.43 ±0.01 

e 
0.51 ±0.01 

f 
0.51 ±0.01 

f 

G
R

V
I 0.01 ±0.00 

a 
0.01 ±0.01 

a 
0.17 ±0.00 

b 
0.27 ±0.01 

cef 
0.21 ±0.00 

dfg 
0.27 ±0.01 

e 
0.23 ±0.01 

f 
0.19 ±0.00 

g 

         

2
0

1
5

 

EV
I2

 

0.03 ±0.01 
a 

0.06 ±0.01 
a 

0.32 ±0.00 
b 

0.40 ±0.01 
bc 

0.42 ±0.03 
c 

0.72 ±0.01 
d 

0.92 ±0.01 
e 

0.95 ±0.01 
e 

N
D

V
I 

-0.02 ±0.01 
a 

0.14 ±0.01 
b 

0.25 ±0.00 
c 

0.27 ±0.02 
cd 

0.41 ±0.02 
d 

0.56 ±0.02 
e 

0.71 ±0.01 
f 

0.77 ±0.02 
f 

EV
I 0.01 ±0.00 

a 
0.08 ±0.01 

b 
0.2 ±0.00 

c 
0.24 ±0.01 

c 
0.33 ±0.02 

d 
0.41 ±0.01 

e 
0.50 ±0.01 

f 
0.48 ±0.01 

f 

G
R

V
I 

0.01 ±0.00 
a 

0.01 ±0.01 
a 

0.14 ±0.00 
b 

0.18 ±0.02 
bcdf 

0.18 ±0.01 
ce 

0.26 ±0.00 
f 

0.22 ±0.01 
d 

0.17 ±0.00 
e 

 

 

Table 1-2.  Mean and standard error (SE) of each VI for the eight land use types. All of the VIs obtained in 2001 and 2015 among the land use 

types are significantly different (one-way ANOVA, p < 0.0001). Identical letters indicate that the VIs are not significantly different between 

those land use types (Tukey test, p < 0.05).  
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1.3.3. Hierarchical classification of land use types 
 

 

A hierarchical land use classification was developed using a DT classifier with the four 

VIs (Figure 1-4).      

 

 

Figure 1-4. A DT constructed using the hierarchical classification of land use types. Numerals 

with inequality signs indicate the VI values that represent the thresholds of the classifiers.  

  

 
 

The DT begins with the EVI2, which then separates the land use types into 

vegetated and non-vegetated land use types. The NDVI then separates the non-vegetated 

land uses into water bodies and bare land. Meanwhile, among the vegetated land use types, 

the EVI2 extracts the homestead distribution and the EVI detects agricultural low land, 

grassland and cropland. Among the four VIs, homestead vegetation and Shorea forest were 

separated only through the GRVI. 
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Figure 1-5. Land use maps produced through a hierarchical classification using the DT approach. 

These maps show the temporal changes in the land use-land cover throughout Purbachal New 

Town from 2001 to 2015. a) Land use patterns detected using the IKONOS sensor in 2001. The 

land use patterns were verified using a pre-project land use map (Anonymous 2013). b) Land use 

patterns in 2015 were detected using WV2 multi-spectral imagery. The land use types are 

represented by their respective colors.   
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Table 1-3. Classification accuracies examined using an error matrix of  coefficients.     

 2001 2015 

Classification 
Overall 

accuracy (%) 

 

coefficient 

Overall 

accuracy (%) 
  

coefficient 

EVI2 90.1 0.88 91.2 0.89 

NDVI 88.5 0.86 89. 6 0.87 

EVI 66.5 0.60 67.6 0.61 

GRVI 74.2 0.69 77.5 0.73 

DT 96.1 0.95 97.8 0.97 

 

 

The DT approach showed the highest accuracy (with an accuracy greater than 

95% and a  of greater than 0.95, see Table 1-3) during the land use classification, 

indicating that the DT constructed using the four VIs was the most effective at predicting 

the land use types (Figure 1-5).  The second-highest accuracy and  values (91.2% and 

0.89, respectively) were exhibited by the EVI2 measurements from 2015, indicating that 

the DT effectively improved the land use classification scheme.   

 

1.3.4. LULC changes 

 
 

Based on the land use changes from 2001 to 2015 (Figure 1-5), the characteristics of the 

land use changes were examined (Table 1-4). Road networks and their adjacent areas were 

clearly observed. Homestead vegetation, grassland, cropland and homestead were the 

dominant land use types prior to urbanization, but more than three-quarters of the area of 

each land use type was lost thereafter. Approximately one-half of the area of Shorea forest 

was lost subsequent to urban growth. Since the distribution of bare land increased greatly, 

the reduction in the area of each land use type can be derived according to an increase in 

bare land originating from road construction and other related construction projects, and 
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the water body area was also increased due to the excavation of artificial lakes and canals. 

Grasses colonized in the filed up agricultural low land and consequently, the grassland 

increased. Since most of the water bodies were small and/or narrow, those changes were 

detectable only at a high resolution.  

 

Table 1-4. Changes in the eight land use types from 2001 to 2015 based on satellite imagery. 

Land use types 
     2001                2015   

Area (km2)   (%)     Area (km2)     (%) 

Water body 0.59 2.37 2.12 8.52 

Bare land 0.14 0.56 16.97 68.17 

Homestead 3.02 12.13 0.86 3.46 

Agricultural low land  0.67 2.69 0.04    0.16 

Grassland 1.03 4.14 1.06 4.26 

Cropland 6.26 25.15 0.59 2.37 

Forest (Shorea robusta) 0.77 3.09 0.42 1.69 

Homestead vegetation  12.41 49.86 2.83 11.37 

 

 

1.4. Discussion 
 
 

 

1.4.1. Effectiveness of the VIs and the DT approach 

 

A comparison among the DT and VIs indicates that all four of the examined VIs showed 

specific advantages and disadvantages with regard to the land use classification at a fine 

resolution. The reflectances of the blue and green wavelengths can characterize the 

spatiotemporal fluctuation patterns of VIs (Huete 1988). The EVI2 differentiated between 

vegetated and non-vegetated land use types without using the blue band. Only the GRVI 

classified dense vegetation, i.e., homestead vegetation and Shorea forests, probably 

because the GRVI is sensitive to the canopy surfaces of forests (Nagai et al. 2012).  

Therefore, the GRVI constituted a prerequisite for the classification of deeply green areas, 

i.e., forests, although the overall accuracy of the associated classification was low.   
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The EVI2 showed the highest accuracy among the examined VIs at a fine 

resolution (Kushida et al. 2015). However, the EVI2 did not effectively differentiate 

between homestead vegetation and Shorea forest. The EVI2 maintains a high sensitivity 

and linearity to high phytomass densities (Rocha and Shaver 2009). However, there are 

many difficulties when using the EVI2 to conduct a land use classification in tropical/sub-

tropical regions such as Bangladesh, because persistent evergreen forests show high 

reflectances both in and out of season (Cristiano et al. 2014). The accuracy of the NDVI 

land classification was slightly lower than that of the EVI2 results. The NDVI is skewed 

by the background reflectance, including those of bright soils and non-photosynthetic plant 

organs (i.e., trash and tree trunks) (Van Leeuwen and Huete 1996). Because the examined 

data did not contain a substantial amount of clouds, the EVI2 and NDVI seemed to 

synchronize their fluctuations.   

The EVI effectively classified the grassland, cropland and agricultural low land 

types, but it did not distinguish the other land use types, suggesting that the blue band used 

only by the EVI influenced the resulting land use classification. However, the EVI is 

distorted by the soil adjustment factor L in Equation (3), making it more sensitive to 

topographic conditions (Wardlow et al. 2007). Therefore, the EVI did not seem to function 

well.  

The DT using the four VIs largely improved the accuracy of the land use 

classification. The accuracy of the DT was slightly different between the two surveyed 

years (96.1% in 2001 and 97.8% in 2015, see Table I-3). One cause of this difference was 

probably derived from differences in the quality of the data, i.e., with regard to the 

resolution, photographing conditions and sensors, from IKONOS in 2001 and from WV2 

in 2015.    
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1.4.2. Temporal land use changes caused by urban growth 

 

This research used highly resolved, multi-temporal satellite data to develop a methodology 

for assessing land use changes. The results of the VIs vary between fine and coarse 

resolution. The fine-scale land use classification scheme clearly detected fine-scale land 

use patches generated by the development of road networks subsequent to urban growth 

that cannot be detected during coarse-scale analysis. Accordingly, land use classification 

schemes are often dependent upon the resolution (O’Connell et al. 2013). Since roadways 

are a few tens of meters wide, high-resolution data are required for the classification of 

urban landscapes. Fine-scale data can delineate land cover classes more accurately, 

because such data can identify small and/or linear patches while retaining their shapes 

(Boyle et al. 2014). Ongoing urbanization has been followed by drastic changes in the land 

use types, biodiversity and fragile ecosystems of urbanized areas (Merlotto et al. 2012; 

Zhou and Zhao 2013; Pigeon et al. 2006). The urban growth of Purbachal New Town was 

characterized by a substantial loss of homestead vegetation and cultivable land. 

Furthermore, approximately one-half of native Shorea forests were lost, even though the 

master plan of urbanization considered their conservation (Hasnat and Hoque 2016). Land 

use changes associated with deforestation have not been detected well. The endangered 

Shorea forests are likely to be restored and conserved through the identification of small 

and isolated patches using the fine-scale analysis. The species distribution modeling 

should be executed for the restoration of the threatened ecosystems using the identified 

distinct small patches. Also, land transformation model would be implemented using fine-

scale data to show the process of land use changes (Pijanowski et al. 2002). These 

approaches are the pronounced concern for the planners to protect and preserve the 

endangered ecosystems from being extinction.  
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Imagery acquired by two or more satellites is often used to examine temporal land 

use changes depending on the data availability. This study used two sets of satellite 

imagery, namely, from the IKONOS and WV2 sensors. Using multiple sensors can often 

cause errors in the land use classification due to heterogeneities in the spatial resolution of 

the data (Joshi et al. 2016; Xie et al. 2008). However, integrating the IKONOS and WV2 

data resulted in a smaller error and higher accuracy; this was probably because of the finer 

resolutions and greater overlap of the wavelength bands. Fine-resolution data may partly 

resolve such errors by reducing the mismatches in the overlays of wavelength bands.   

 

 

1.5. Conclusion 

 

A DT constructed using a hierarchical classification greatly improved the classification of 

land use types at a fine resolution. The DT was developed using all of the four examined 

VIs because each VI demonstrated unique strengths and limitations. For example, the 

GRVI showed the lowest overall accuracy, but it was retained in the DT because the GRVI 

can effectively classify areas with a high greenness. The land use classification scheme 

using the DT clarified that the changes in Purbachal New Town are characterized by the 

effects of road networks on deeply green ecosystems, which are unlikely to be detected 

clearly at coarse resolutions. Therefore, this research showed a significant monitoring 

source to investigate the continuous changes in land use types and assist the planners and 

decision makers to develop land use management plans. 
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Chapter 2 
 
 
 
 

Potential distribution and conservation of threatened Shorea robusta forest examined 

by Maxent modeling 

 
 
 
 
 

2.1. Introduction 
 
 

Anthropogenic activities, particularly alteration, reduction and fragmentation of habitats 

decline forest ecosystems and the biodiversity (Popradit et al. 2015; Tittensor et al. 2014). 

Urbanization postures one of the threats to global biodiversity alters the distribution of 

endemic species and forests (Seto et al. 2012; McDonald et al. 2008). Shorea robusta C. F. 

Gaertn. (Dipterocarpaceae) is a deciduous tall tree, naturally distributed on the Pleistocene 

tracts (Madhupur tracts) in Bangladesh (Rashid et al. 2006). The S. robusta developing the 

largest forest patches in this region acts a vital role in maintaining the balance of the 

ecosystems (Rahman et al. 2007). Nowadays, the total area of S. robusta forest is  

0.12 million hectares of land in Bangladesh.  The area explains 0.8% of the country area 

and 7.8% of the forest area (Hasan and Mamun 2015). The S. robusta forests have been 

declined owing to the utilization for economic and medicinal use by the agrarian rural 

people (Deb et al. 2014), although S. robusta is recorded as a “least concern” species in 

the Red List (IUCN 2015). This species is a keystone species to support various 

endangered species (Hasnat and Hoque 2016). The genus Shorea includes 192 species in 

the world, in particular, in tropical regions (Tsumura et al. 2011).  Of these Shorea species, 

34 species are endangered (IUCN 2015). Most of all Shorea species develop large forests 

and thus they can be umbrella species (Gautam et al. 2014). This also means that the 
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conservation of S. robusta forests leads the protection of endangered species on the forest 

floors. The S. robusta forests, developing more than 30 m tall, have kept the highest 

biodiversity and contain numerous endangered species in the region (Gautam et al. 2006; 

Mandal et al. 2013). Therefore, S. robusta was used for the representative species to 

examine the characteristics of the distribution of endangered and umbrella species that can 

be applied to decide the conservation plans. 

I used maximum entropy (Maxent) model to analyze the present and future 

geographic distributions, because of the high precision of distribution prediction derived 

by the combination of locations of species and the environments  (Phillips et al. 2004; 

Peterson and Shaw 2003). Therefore, Maxent was applied to find out the potential 

distributions of S. robusta forests, some of which had been already lost and will be altered 

more by global warming (Elith et al. 2006). Maxent is developed by the deterministic 

algorithms that are guaranteed to converge to the optimal (maximum entropy) probability 

distribution (Phillips et al. 2006). Maxent uses only presence data of species distribution, 

while the other popular distribution models, such as the genetic algorithm for rule set 

production (GARP) and generalized linear model (GLM), need the absence data (Elith et 

al. 2011; Marcer et al. 2013; Stockwell and Peters 1999).  In all the models includes 

Maxent, the species distribution is predicted by the environmental determinants.  These are 

climatic variables (temperature and precipitation), geology, soil property, soil type, 

vegetation type, etc. Since the absence data of S. robusta is not available, models requiring 

the absence data cannot be applied.   

Global warming alters the distributions of species and ecosystems, owing to 

drastic changes in the appropriate habitats and regions (Pacifici et al. 2015; Pearson et al. 

2014). The present climate in Purbachal is that the annual mean temperature is 28oC and 

the annual precipitation is 2400 mm (Shapla et al. 2015).  The urbanization in Purbachal 
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will increase the temperature up to 39.6ºC in maximum and decrease the precipitation < 

2000 mm (EIA 2013).  Two RCP scenarios of RCP4.5 and RCP8.5 were used to predict 

the potential distribution of S. robusta. RCP4.5 that means radiative forcing increase 4.5 

W/m2, which assumes that greenhouse gas emissions soothe through mid-century and 

decrease abruptly afterward.  RCP8.5 corresponds to persistent increases in greenhouse 

gas emissions up to the end of the 21st century (Fisher et al. 2007; IPCC 2008).  The 

projected temperature of RCP4.5 for 2046-2065 and 2081-2100 was 0.9 to 2.0 °C and 1.1 

to 2.6 °C, while RCP8.5 was 1.4 to 2.6°C and 2.6 to 4.8 °C respectively (IPCC AR5 WG1 

2013). The predicted temperature rise in Purbachal induced by urbanization matches with 

the IPCC scenarios of RCP4.5 and RCP8.5. Therefore, these two scenarios were applied to 

predict the changes in S. robusta forest in this century.  

The major objectives of this study were: 1) assessing the distribution and 

vulnerability of S. robusta forests in Purbachal and the environmental determinants by 

Maxent model, 2) predicting the potential future distribution of S. robusta forest under 

RCP4.5 and RCP8.5 at local scale, and 3) discussing the conservation and management 

strategies for protecting the S. robusta forests.   

 
 
 

2.2. Materials and methods 
 
 
 

2.2.1. Study area and species 
 

S. robusta is distributed in Purbachal (23°49'45" - 23°52'30"N and 90°28'20" - 

90°32'43"E) and its neighboring areas, Bangladesh (Figure 2-1). Purbachal covers an area 

of 2489 ha which includes a large terrace area of Madhupur tracts developed in the 

Pleistocene Era in the central part of Bangladesh (Zaman 2016). The monthly average 

temperature varies from 10 ºC to 34ºC and annual precipitation is from 2000 mm to 2700 
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mm with acidic, red-brown terrace soil and low organic matter content (BBS 2013). The 

expansion of urban areas in Bangladesh leads the reduction of natural ecosystems, 

represented by S. robusta forests. Therefore, the prediction of the future distributions of S. 

robusta forests was the priority for saving the biodiversity.   

 

S. robusta exists as a large continuous belt and supports diverse biological 

resources (Alam et al. 2008). There are 24 climbers, 27 grasses, 3 palms, 105 herbs, 19 

shrubs and 43 trees in S. robusta forests of Madhupur tracts in Bangladesh (Green 1981). 

S. robusta often grows on deep, moist, acidic (5.1 - 6.0), fine-textured (sandy to silty loam) 

and productive soils in south-ecntral Asia, including Bangladesh, with high temperature 

and rainfall (Dhar and Mridha 2006). S. robusta facilitates the diversity of forest floors in 

the regions (Kabir and Ahmed 2005). When the forest canopy is dominated by S. robusta, 

the forest allows the establishment of numeral associated species with various growth 

forms, trees, shrubs, herbs and climbers (Banglapedia 2008).   

For silvicultural management, S. robusta forests has been maintained as coppice 

forest (Rahman et al. 2010). Nowadays, the agroforestry, as well as coppice forestry, is 

applied in a few regions (Alam et al. 2008).  

 

2.2.3. Data sampling 
 

The localities of S. robusta in the Purbachal were collected in 2016 and 2017 by field 

investigations. I recorded 165 localities that included all inhabitants and isolated patches 

of S. robusta forests using GPS (Garmin 64, Garmin Corporation, Taipei, Taiwan). The 

localities of S. robusta before the urbanization were extracted from the satellite imagery of 

IKONOS at 04:35 (GMT) on May 1, 2001 and 4:44 on February 16, 2002 and 

WorldView-2 (WV2) at 04:41 on December 9, 2015 (Digital Globe - Apollo Mapping, 

Longmont, Colorado, USA). These GPS data and remote sensing data were integrated via 
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ESRI Arc-map (version 10.2) for data processing. The analyses were conducted after 

checking the quality of pre-processing data to remove the noise and unify the geo-

references (Dewan and Yamaguchi 2009).   

Pearson’s correlation coefficients, r, were used to detect the multi-collinearity 

concerning 11 environmental variables. When r was higher than 0.81 the two variables 

considered to be autocorrelated. Based on the importance of variables on S. robusta 

regeneration, the weaker variables were excluded (Sarma and Das 2009). These variables 

were: soil organic matter, phosphorus (P) and potassium (K).   

Finally, I selected 8 environmental variables, including two climatic, two 

physicals and four soil variables to investigate species-environmental relationships. The 

climatic data, i.e., precipitation and temperature, were provided by BMD (2017). The data 

of elevation and geomorphology were obtained from RAJUK (2016). Geomorphology was 

defined as (RAJUK 2016): the physical features of landscape considered as the graphical 

inventories of landforms and surface (i.e., road, canal, marshland, homestead, homestead 

vegetation, water bodies, agriculture low land, and Shorea forest etc.).  Therefore, the unit 

of geomorphology is meter.  The data of pH, organic matter, phosphorus (P) and 

potassium (K) in soil were obtained from SRDI (2015). Organic carbon (OC), calcium 

(Ca) and nitrogen (N) in soil were derived from BCA (2006). All of these data were 

converted into the format of ASCII raster grids with the same geographic boundary of 

which cell size was 9.99 × 9.99 m2 followed by WGS 1984 Longitude-Latitude projection.  
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2.2.4. Analyses of species distribution 

 

Green-red vegetation index (GRVI) was used to evaluate the density of S. robusta (Xue 

and Su 2017) because GRVI detected the large canopy density and coverage more 

precisely.  The equation of GRVI is: 

GRVI = (green − red)/(green + red), range: -1 to 1  (1), 

 

where green and red means the reflectance of green and red bands, 

respectively.  GRVI ranging from 0.22 to 0.23 showed the most plausible distribution of S. 

robusta forests.  The presence of S. robusta forests in the previous (2001) and current 

(2015) stages was examined by GRVI under ArcGIS to investigate the accuracy of 

distributions predicted by Maxent. The sensors of two satellites, IKONOS and WV2, were 

used. The data in 2001 and 2015 were obtained from IKONOS and WV2, respectively, 

depending on the data availability. The green bands range from 506 nm to 595 nm on 

IKONOS and from 510 nm to 580 nm on WV2.  The red bands range from 632 nm to 698 

nm on IKONOS and from 630 nm to 690 nm on WV2. The resolution is 0.8 m on 

IKONOS and 0.5 m on WV2.  Therefore, the quality and quantity of data were not 

different largely between the data obtained from the two satellites.   

 

 

2.2.5. Maxent modeling 
 
 

Maxent (version 3.4.1) was used to predict the species distribution (Phillips et al. 2018), 

because it performs well even with small sample sizes (Kumar and Stohlgren 2009). In 

this model, 75% of data are selected for the occurrence localities as training data and 25% 

are reserved for testing the model (Phillips 2008). The algorithms run on the 10 selected 

localities, taking advantage of these available data to provide the best estimates of the 
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species potential distributions. I used the threshold-independent options on the model 

including the regressions of linear, quadratic, product and hinge features (Merow et al. 

2013) to estimate the effects of environmental variables on S. robusta. The logistic 

threshold with 10 percentile training presence was selected to explain the least possibility 

of suitable habitat because the data were combined from various sources with some 

probable errors. The suitable habitat was predicted by this threshold using 90% of the data 

to develop the model (Phillips et al. 2006). Jackknife analyses were executed to determine 

variables that reduce the reliability of the model while omitted. Receiving Operator Curve 

(ROC) was used to evaluate the confidence of model results (Qin et al. 2017).  When Area 

Under the Curve (AUC), ranging from 0 to 1, is over 0.50, it specifies that the distribution 

is not random.  The value of 1 specifies the complete discrimination (Fielding and Bell 

1997). The optimal distribution areas were predicted from 0.62 to 1.00 as the most suitable 

regions (Yang et al. 2013).The results were imported into ArcGIS for the further analysis.  

 

 

 

2.3. Results 
 
 
 

2.3.1. Previous and present occurrences of S. robusta 

 

GRVI indicated that the forests were distributed mostly in the northern part of Purbachal 

(Figure 2-1).  The distribution of S. robusta forests in 2001 was larger than the distribution 

in 2015. The area of S. robusta was 0.77 km2 in 2001 before the urbanization and was 0.42 

km2 in 2015 at recent stage.  These indicated that about a half of forests were lost by the 

urban growth. The major patches of S. robusta were distributed including a few dissected 

small patches in 2001. One of the patches including all the dissected minor patches has 

been removed by the urban growth. 
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Figure 2-1.  Densities of Shorea robusta in Purbachal, estimated by GRVI; a) density of S. robusta in 2001 

at 0.8 m resolution, b) density of S. robusta in 2015 at 0.5 m resolution.  

 

 

 

2.3.2. Models and evaluation 
 
 

The algorithm in Maxent converged at 400 iterations.  At the time, threshold-independent 

ROC analysis indicated that the distribution of forest was not random before and at the 

recent stage. The training AUC was 0.97 ± 0.01 (mean with standard deviation) and testing 

AUC was 0.96 ± 0.01. Therefore, the distributions obtained by Maxent were accurate and 

were used to the further analyses without the conjecture forests.  
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2.3.3. Potential distribution in current stage 
 
 

Maxent indicated that the suitable regions for S. robusta were distributed in the central 

northwestern part, associated with the current distribution (Figure 2-2). S. robusta 

potentially developed the forests in the north-western, central-northern and central-south-

eastern parts. The models showed 1.02 km2 of distributional areas but the present area was 

0.42 km2. The most suitable regions were predicted > 0.62. 

 

 

Figure 2-2.  Predicted potential geographic distributions of S. robusta determined by 165 location 

records and eight examined environmental variables in Purbachal, Bangladesh. Warmer colors 

show the prediction of presence is more accurate. White squares show the presence locations used 

for training and violet squares show test locations.  

 

 
 

2.3.4. Analysis of variable contributions 
 
 

I checked the relative significance of these variables for S. robusta by a Jackknife test 

(Figure 2-3).  These results showed that soil pH achieved the least gain while N explained 

the distribution well. The precipitation was the most important environmental variable. Of 
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the eight examined environmental variables, annual precipitation and N showed the 

highest contribution percentages, > 30% (Table 2-1).  The cumulative contribution of 

annual precipitation and N were 67.9%.  These indicated that the distribution of S. robusta 

was predicted mostly by these two variables. Ca and OC in the soil showed approximately 

10% of contribution. 

 

Table 2-1. The contribution percentages of the eight environmental variables used to predict the 

distribution of S. robusta in Purbachal.  

 

      Environmental variables Contribution (%) 

 Annual mean temperature  (oC) 6.2 

 Annual precipitation (mm) 37.8 

 Geomorphology (m) 5.2 

 Elevation (m) 0.3 

 Soil calcium (meq/100g) 11.1 

 Soil organic carbon (kg/Acre) 9.1 

 Soil nitrogen (kg/Acre)  30.1 

 Soil pH 0.2 

 

   

Figure 2-3.  The relative importance of environmental variables for Shorea robusta in Purbachal 

evaluated by Jackknife test. 

 

The response curves of the environmental variables on the prediction of S. robusta 

distribution showed that the precipitation, the prime determinant on the distribution of S. 

robusta (Table 2-1), was optimal in 2700 mm (Figure 2-4).  In addition, the distribution 
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was limited in the areas with high precipitation. The optimum mean annual temperature 

was 28°C, although the contribution was low probably because of the narrow range 

between 25°C and 28°C. The ground levels in Purbachal varied with the dominating 

average land level at +6.0m which occurs above the normal flood level. Geomorphology 

showed the concentration of S. robusta forests in the ground level from a minimum of < 

2m to a maximum of > 9m. Of the soil variables, N determined the tree distribution well.  

The forest tended to develop with high N.  Although Ca and OC in the soils had lower 

contributions than N, the forests favored the high concentrations. The forests established in 

areas with moderate elevation, ranging from 400 m to 900 m and showed that the forests 

were not developed at low and high elevation. 

 

Figure 2-4.  Response curves of the eight environmental variables for predicting the future 

distributions of S. robusta forests. 
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2.3.5. Predicted potential distribution 
 

The area of S. robusta forest was 0.42 km2 in 2015. The two RCP scenarios predicted the 

two types of future distribution of S. robusta, e.g. RCP4.5 in 2046-2065 > RCP4.5 in 

2081-2100 > RCP8.5 in 2046-2065 > Current > RCP8.5 in 2081-2100. The forest areas 

predicted by RCP4.5 increased 0.09 km² in 2046-2065 and 0.06 km² in 2081-2100 (Figure 

2-5). 

 

Figure 2-5.   Distributions of S. robusta predicted based on two RCP scenarios. a. RCP4.5 (2046-

2065), b. RCP4.5 (2081-2100), c. RCP8.5 (2046-2065), and d. RCP8.5 (2081-2100).  

 

 

The scenario of RCP8.5 predicted 0.04 km² increase in S. robusta forests in 2046-2065 

and 0.05 km2 decrease in 2081-2100. However, the S. robusta forests present in the 

southern parts will be decreased even if the RCP4.5 scenario is applied. These indicated 

that the effects of climate change on the distribution of S. robusta were different regionally 
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even at a large scale within 24.9 km2. Maxent results showed that climatically-suitable 

habitats for S. robusta decline by 86.5% by 2100 under RCP8.5. 

 

 

 

2.4. Discussion 
 

 

2.4.1. Distribution of S. robusta forests and its environmental factors 

 

Since the potential distribution of S. robusta forests enclosed the current distribution, the 

current distribution was restricted or reduced by human disturbances rather than natural 

disturbances.  In fact, various human activities, such as exploitation, deforestation, 

encroachment, litter collection and cultivation, are observed frequently in this region 

(Salam et al. 1999).   

The global warming may not change their distribution and area greatly, except for 

the worst scenario for the long term.  Of the two climatic variables, precipitation, and 

temperature, the precipitation was the prime determinant for the distribution of S. robusta 

forests. The structures, such as forest height and canopy area of tropical rainforests are 

primarily determined by the amount of precipitation (Powers et al. 2009).  Since S. robusta 

becomes more than 30 m tall, high precipitation is required to develop the forests.  In 

addition, rainfall and humidity determine the species richness, diversity and floristic 

composition in S. robusta forests (Kushwaha and Nandy 2012).  In contrast, the 

temperature weakly affected the distribution, because of the narrow range.     

Of the soil chemistry, N was the most important factor that determined the 

distribution of S. robusta.  Large tree species, including S. robusta, require the high 

amount of N in the soil (Hasan and Mamun 2015).  Since N is often supplied by 

precipitation in tropical regions (Cape et al. 2001), N in soil acted as the determinant 

of distribution as well as precipitation.  N distribution was likely to be matched with 
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the precipitation distribution, although N in the soil is transferred by rain and the resultant 

movement by erosion (Cregger et al. 2014).  Therefore, the N was not autocorrelative to 

the precipitation at the scale of present study and affected the distribution, independent of 

the precipitation patterns. Ca and OC in the soil affected the distribution, although these 

two chemicals contributed to the distribution lower than N. OC improves soil structure, 

water-nutrient relationships, and supplies carbon in the soil, and Ca increase the ability of 

soil to support regeneration of S. robusta (Ankanna and Savithramma 2012).  

Geomorphology contributed slightly to the S. robusta distribution. S. robusta forests prefer 

to grow in the ground level from 2.5 m to 7.5 m above the normal flood level and at the 

moderate elevation of 500 m - 900 m, because this species does not tolerate waterlogging 

in the lowlands (Rai and Rai 1994). The S. robusta is intolerant to low temperature, low 

fertility, and low water availability to the hilltops even in the study site (Ulvdal 2016). Soil 

pH contributed least to the forest distribution because of homogeneity. 

 

2.4.2. Impact of RCP scenarios 

  
When the annual temperature was over 34°C, S. robusta colonization became difficult. 

The RCP4.5 predicted an increased area of S. robusta habitat for both 2046-2065 and 

2081-2100. The rises of mean temperature caused positive influence on habitat 

regeneration of S. robusta, while this species colonizes well up to 34°C (Rahman et al. 

2007). Therefore, the impacts of climate change predicted by RCP4.5 were not strong on 

the distribution of S. robusta. A few small patches of S. robusta forests will disappear in 

the southern part, even though the RCP4.5 scenario is conservative.   

The most serious scenario, RCP8.5, predicted that S. robusta forests decrease 

greatly, owing to the extremely high temperature, while the optimal annual mean 

temperature for the growth of S. robusta is around 28°C (Das and Alam 2001; Gautam and 

Devoe 2006). RCP 8.5 scenario predict the reduction of precipitation while temperature 
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increases by the end of the 21st Century (Seneviratne et al. 2012). The amount of rainfall 

is decreasing in the central and northern parts of Bangladesh over the time and will 

decrease up to 5 mm in the future (Shahid and Khairulmaini 2009; Endo et al. 2015). Even 

in the present, rainfall in Bangladesh tends to decrease (2 mm/100 years) (Rouf et al. 

2011). Increase in temperature and decrease in rainfall resulted in unsuitable climate for S. 

robusta.  

 

2.4.3. Conservation planning implication 

 

Maxent generated exquisite information for conservation and management of S. robusta 

by predicting the potential distributions with detecting the important environmental 

variables, precipitation and N.  Of these, precipitation is often determinant on ecosystem 

distribution at small scale (Lewis et al. 2017).  However, N has not been focused well, 

probably because the distribution of soil types is tightly related to the precipitation at small 

scale (Cregger et al. 2012).  Here, I investigated at relatively large scale.  At the large 

scale, soil factors are often more important with climatic factors (Rennenberg 2002).  

Therefore, I have to consider the scale-dependent environmental factors when I handle the 

models for the prediction of species distribution that can predict the potential distribution 

precisely (Sandman et al. 2013).  By using Maxent, I construct valid plans on conservation 

and restoration of vulnerable forests. A precise inventory of the encroached S. robusta 

forest is essential to develop a feasible land reclamation plan.  

 

2.4.4. Limitation and uncertainty of model prediction 

 

Although Maxent detected the localities and environmental factors of S. robusta, the 

interpretation should consider a few limitations. The limitation and uncertainty in 

interpretation are mostly derived from the prediction of climate change induced by 
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greenhouse gases and aerosols (Seneviratne et al. 2012). In this study, the scenario is 

decrease in rainfall.   However, the prediction of temperature and rainfall has been 

controversial (Schneider 1989).   As Maxent model indicated, the distribution of S. robusta 

was sensitive to precipitation even at a narrow range.  Therefore, the model prediction had 

a cascade structure from climate change model to species distribution model.  This means 

the precise model is required to predict species distribution.   

 

 

2.5. Conclusion 
 

Precipitation was found as a key driver to the distribution of S. robusta for 2020 under 

HadClim Emission scenario SRES-A1B (Chitale and Behera 2012). Increased temperature 

and decreased precipitation causes unsuitable climate conditions for S. robusta forests, 

which lead to local extinctions of this species (Shahid 2010). Maxent results suggested that 

not only climatic factors but also edaphic factors are important for the potential 

distribution of S. robusta, which was not stated by previous researches. Maxent in South 

and Southeast Asia suggests that the S. robusta distribution will decline in Bangladesh by 

2070 under RCP4.5 and RCP8.5 (Deb et al. 2017). Our results derived from Maxent model 

predicted that the suitable habitats for S. robusta were likely to be affected most by the 

climate change and will decline under the scenario of RCP8.5 by 2100. These differences 

are related to the observed scales and should be considered for the conservation of 

threatened tropical and sub-tropical forests. 
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Chapter 3 
 
 
 
 

Leaf reflectance spectra and species traits towards plant functional groups 
 
 
 
 
 

3.1. Introduction 
 
 
 

Plant functional group (PFG) is developed by grouping species attributes, such as 

morphology, physiology and life-history, to investigate the structure and function of 

ecosystems (Boutin and Keddy 1993).  PFG is likely to be characterized by spectral 

reflectance patterns because of photosynthesis abilities, represented by vegetation index 

(VI) (Ustin 2004). Most VIs use two or three wavelength bands, e.g., red and near-infrared 

(NIR) bands used by normalized difference vegetation index (NDVI) and green and NIR 

by green-red vegetation index (GRVI).  These suggest that the reflectance patterns are 

tightly related to the photosynthetic strategies of plants (Evans 2013).  Each plant species 

has each specific spectral reflectance patterns, depending on the leaf and stem structure 

and morphology, such as growth form, leaf trait and phenology to adapt the environments 

(Kooyman and Rossetto 2008; Tsuyuzaki and del Moral 1995).  The other traits related to 

photosynthesis should also be investigated, e.g., phenology, morphology, structure, 

branch, flower, fruit, propagation, seed, soil pH and elevation (Cortois et al. 2016; 

Baxendale et al. 2014), because these traits specifies the structure and functions of the 

species resulting varied leaf spectral reflectance (Klančnik et al. 2015; Noda et al. 2016).  

However, few researches have been conducted to clarify the relationships between PFG 

and spectral reflectance (Asner et al. 2008).  
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There are two approaches to develop PFGs, inductive and deductive methods (Duckworth 

et al. 2000).  Here, the deductive method was applied to develop PFGs to examine PFGs 

that are classified by numerical similarities between the species.  

I hypothesized that PFGs were related to the spectral reflectance patterns. To 

examine this, PFGs were constructed only by spectral reflectance patterns of 112 species 

of which taxonomical and ecological traits were diverse.  Then, PFGs were investigated by 

48 traits, including growth form, morphology, phenology and others described above. The 

growth form trait is the structural pattern of individual plant species consisting of the 

similar common habit of growth. Finally, the leaf spectrum variabilities was discussed 

with the PFGs. 

 

 

3.2. Materials and methods 
 
 
 

3.2.1. Study area 

 

Purbachal is located in eastern-central Bangladesh (2,489 ha , 23°49'45" - 23°52'30"N and 

90°28'20" - 90°32'43"E) (Figure 3-1).  The area includes floodplains and terrace developed 

in Pleistocene Era. The study area is surrounded by two rivers on the west and east sides. 

The monthly temperature varies from 15° - 24°C in January (winter) and 26° -  33°C in 

May (summer).   The annual precipitation is approximately 2400 mm (Shapla et al. 2015).  

The dry season is usually from December to February and the wet season is from June to 

September (Rahman et al. 2016b).  The soil type is an acidic red-brown terrace soil (pH = 

4.5 - 6.5) with low organic matter content (0.8 - 1.8%) (Begum et al. 2009; Khan et al. 

1997). The area is consisted of old alluvium and elevated plateau covered by jungles with 

hillocks (9 -19 m) (Harun-Er-Rashid 2012).  
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Figure 3-1. Plot locations for spectral measurements of trees and shrubs shown by green dots and 

herbs shown by yellow dots in Purbachal enclosed by yellow line, (b) location of Purbachal in 

Bangladesh, and (c) location of Purbachal in Gazipur and Narayanganj District adjacent to Capital 

Dhaka.  

 
 

 

Most plants are deciduous in the study area. The potential climax forest is 

dominated by tall trees, such as Mangifera indica L., Shorea robusta C. F. Gaertn, 

Artocarpus heterophyllus Lam., Albizia lebbeck (L.) Benth.  The coordinate shrubs are 

Clerodendrum infortunatum L., Grewia serrulata DC., Melastoma malabathricum L. 

Herbs are Axonopus compressus (Sw.) P. Beauv., Agrostis canina L., etc. (Basak and 

Alam 2016).  

 

 

3.2.2. Acquisition and processing of spectral data 
 

The spectral reflectance data were collected from three or more leaf samples on each of 

112 species in the summer of 2017 in 32 randomly-selected sites based on WorldView-2 
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satellite image (Figure 3-1). The spectral signatures were obtained by a portable 

spectroradiometer (PSR-1100F, Spectral Evolution Inc., Lawrence, USA) with an optical 

fiber.  This spectroradiometer measures the reflectance between 320 nm and 1100 nm at 

1.5 nm intervals. The reflectance was calibrated for radiance and/or irradiance by the 

standard using NIST (National Institute of Standards and Technology) traceable sources 

(Marshall 1998).  

Single reference was scanned and the dark current of instrument was measured 

before scanning each target under the equivalent illumination for the same sample under 

the darkness. The measurement was undertaken during 10 AM and 3 PM under sunny 

skies at 5- minute intervals. The measurements were acquired directly with no fore-optics 

mounted and held at 2.5 cm above the adaxial leaf surface. The spectral data were 

analyzed using DARWin Sp software (version 1.4.6247, Spectral Evolution, Inc., 

Lawrence, USA). The radiometric calibration coefficients of fiber optic field of view 8° 

lens with enabling reflectance spectroscopy were used to record the adaxial reflectance 

spectra of the leaves. The spectral reflections were measured from 320 nm to 1100 nm 

with 3.2 nm resolution, 1.5 nm sampling band width by a fiber optic cable with right angle 

diffuser (6-12V power, 5.5"× 2.5" × 6.5"  dimensions and 7.5-1000 ms integration time).  

 

 

3.2.3. Analysis of spectral data and species traits to PFGs 
 

Species traits were vegetative, growth form, phenology, morphology and seed biology 

(Leishman and Westoby 1992).  The species traits were collected from the references 

(Ahmed et al. 2009a; Ahmed et al. 2009b; Ahmed et al. 2009c; Ahmed et al. 2008a; 

Ahmed et al. 2008b; Ahmed et al. 2008c; and Siddiqui et al. 2007). The cluster groups of 

112 examined species were developed by Ward’s cluster method using Euclidean distance 
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of reflectance patterns. The size of the trees in four groups were calculated by shape index 

(SI). 

SI = Tree height/DBH 

 

Where, DBH is the diameter at breast height. When one-way ANOVA showed significant 

differences among the groups, Steel-Dwass multiple comparisons were used to 

characterize each cluster group based on the 48 species traits at p < 0.05 (Table A-1)  (Zar 

1999).   

 
 

 

3.3. Results 
 
 
 

3.3.1. Species groups using leaf reflectance spectra 
 

There were 68 trees, 17 shrubs, 12 herbs, 10 grasses and 5 climbers of the 112 examined 

species.  The 112 species were classified into four groups A - D (Figure 3-2).  Groups A to 

D included 17, 11, 34 and 50 species.   

There were three peaks of reflectance as a whole (Figure 3-3), one peak was at 

and around 550 nm (hereafter, i.e., GREEN), the other two peaks were in NIR wavelength 

between 700 nm and 900 nm and between 1000 nm and 1100 nm.  The division of groups 

was derived mostly from these two wavelength ranges.  Groups A and B, separated firstly 

from groups C and D, showed higher reflectance at GREEN, and NIR than Groups C and 

D.  Group B was separated from Group A by the highest reflectance at all of the bands.  

Group D was separated from Group C by the lowest reflectance throughout the examined 

range of wavelengths.   In particular, Group D did not form clear peaks of reflectance at 

GREEN. 
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Figure 3-2. Four PFGs grouped by Ward clustering method with the Euclidean distance of spectral 

reflectance patterns of 112 species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. The spectral irradiance of the four PFGs. The left vertical axis is scaled for calibrated 

irradiance data in units of simple number labels (e.g. 100 nW/m²/nm instead of 1.0×10-7 

W/m²/nm). The unit area can be used by meter squared or centimetre squared. The wavelength of 

UV, visible and NIR spectrum is plotted on the horizontal axis of the plot.   
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3.3.2. The characteristics of four PFGs 

 

The reflectance of leaves was different with the functions and structures examined by 

growth form, plant size, leaf phenology and leaf morphology (Table 3-1).  Ten of the 48 

traits were significantly different among the four PFGs.  These were growth form (tree, 

herb and grass), wood, height, DBH, branching pattern, leaf hair and leaf glabrousness.  

Two environmental factors, soil pH and elevation, did not differ among the cluster groups.   

The dominance of herbs and grasses was common characteristics in groups A and 

B, while tree and shrub were dominant in groups C and D. Group A (sub-canopy plant and 

shrub) was composed of seven trees, five shrubs, two herbs and three graminoids (two 

perennials and one annual).  The mean plant height was 9.3 m and was intermediate 

between group A and groups B and C.  These implied that most species in this group 

occupied sub-canopy.   

Group B (hairy plant) included five herbs, one tree, two shrubs and two climbers. 

This group included only one tree species (9.1%) while the other groups showed that more 

than 40% of species were tree.  Of these 11 species, 10 species developed hairy leaf.  
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Table 3-1. The number of species in each group obtained by cluster analysis based on 48 traits.  The 

differences between the four PFGs are examined by ANOVA. Bold letters indicate the results of 

ANOVA are significant at p < 0.05.  The integer indicates number of species and decimal shows 

mean ± standard error. The same letters indicate that the PFGs are not significantly different between 

the groups (Steel-Dwass test, p > 0.05). 

 

         

Species traits 

A (sub-canopy 

plant) 

 

B (hairy plant) 

C (slim-

stemmed tree) 

D (large 

tree) 

ANOVA 

(P value) 

Number of species 17 11 34 50  

Growth 

form  

Tree      7 ab 1 a 19 b 41 c 0.000 

Shrub  4            4            7          4 0.160 

Herb      2 abc 5 ab 6 bc 3 c 0.007 

Grass  4 a 1 ab  2 abc   2 bc 0.012 

Wood  2 a 1 ab 11 ac 27c 0.001 

Height (m) 9.3 ± 3.1 ab               6.0 ± 3.8 b                         16.1 ± 2.2 abc                                           19.0 ± 1.8 c                   0.004 

DBH (m) 0.46 ± 0.2 a                          0.06 ± 0.3 ab                        0.49 ± 0.2 abc                                              0.82 ± 0.1 c                  0.046 

 SI  140.26 ± 39.9 174.62 ± 49.6 96.99 ± 28.2 86.30 ± 23.2 0.329 

Branching 

pattern 

Erect        8 abc       4 bcd      12 cd   8 d 0.049 

Spreading      6 ab       7 bcd     16 ac    39 d 0.002 

Drooping 3 0 6 3 0.181 

Thorny/spiny  2  2 2 8 0.530 

Leaf hair  Hairy       7 acd    10 ab   10 cd   18 d 0.003 

Glabrous        10 acd    1 ab 24 c     32 cd 0.001 

Leaf 

phenology 

Deciduous  13 7 22 26 0.598 

Evergreen  4 4 12 24 0.311 

Leaf shape Petiolate  9 8 17 33 0.285 

Elliptical  4 3 10 18 0.776 

Oblong  4 2 12 11 0.512 

Ovate  8 4 11 11 0.251 

Lanceolate  5 5 11 10 0.340 

Alternate  2 0 3 6 0.673 

Base rounded  3 4 6 9 0.548 

Cordate  3 0 7 2 0.470 

Acute  3 6 12 19 0.242 

Acuminate  6 4 10 11 0.632 

Coriaceous  4 2 5 16 0.320 

Flower Axillary 

inflorescence 

7 2 9 21 0.287 

Bisexual  2 0 6 13 0.207 

Panicle  5 1 9 12 0.641 

White-cream or 

white colored  

3 4 17 29 0.059 

Pedicellate  7 1 10 19 0.254 

 

Fruit  

Drupe  3 0 7 22 0.007 

Berry  3 2 3 6 0.768 

Fruit shape Oblong  4 3 5 4 0.234 

Globose  7 1 8 13 0.293 

 

 

Fruit color 

Green  4  1  7  17  0.477 

Yellowish  3 0 5 10 0.489 

Reddish  2 0 5 6 0.353 

Blackish 4 2 7 17 0.484 

Reproduc- 

tion 

Seed  15 10 28 45 0.797 

Sprout 2 1 6 5 0.535 
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Seed Single  9 4 15 27 0.226 

Plural  8 7 19 23 0.440 

Flowering 

and  

Jan-Jun  9 5 20 29 0.081 

fruiting 

period 

July-December  8 6 14 21 0.495 

Soil pH  6.06 ± 0.20 6.03±0.3 6.15 ± 0.2 6.29 ± 0.1 0.711 

Elevation High > 7 m  5 1 16 23 0.085 

Medium 4 -7 m  12 10 23 37 0.508 

Low < 4 m  6 5 5 9 0.081 

• Leaf shape included multiple characteristics of leaf, i.e., petiole, shape of leaf, the type of leaf 

base and apex, and the structure of lamina. 

 

Group C, consisted of slim-stemmed trees with mean SI 97. This group included 

71% glabrous leaves that was highest of the four groups. This group included twenty trees, 

six shrubs, four herbs, two perennial grasses and two climbers. 

Group D (large tree) had three herbs two grasses, two shrubs and trees. The 78% 

of species were explained by large trees with spreading branches. This group showed the 

largest DBH and height of the four groups, indicating that this group was occupied by 

large trees.   The most of these trees were used for wood.   

 
 

 

3.4. Discussion 
 
 
 

The growth forms were tightly related to the reflectance patterns of PFGs.  The leaf 

reflectance was determined by leaf phenology, morphology and physiology (Barret and 

Curtis 1992).  Although soil, light and climate influence leaf reflectance (Baret et al. 

2007), soil pH and elevation were not related to the PFGs.  These results suggested that the 

innate species characteristics represented by growth form determine the spectral 

reflectance patterns more than the environments where they grow. An increase in solar 

radiation causes decreases in chlorophyll content and consequently the reflection changes 

(Zhang et al. 2009).  The stem height was also different among the PFGs.  Stem height is 



62 
 

related to the acquisition of solar energy (Shen et al. 2018).  Therefore, the PFGs showed 

differences in GREEN and NIR.    

Most species in Group B developed hairy leaves and showed the highest 

reflectance shown by the three peaks.  When leaf is hairy, the reflectance becomes high at 

the wavelengths between 700 nm and 900 nm (Holmes and Keiller 2002). Leaf hair 

increases the leaf reflectance at NIR wavelengths by reducing evapotranspiration resulting 

high photosynthetic water use efficiency (Hamaoka et al. 2017).  All of these suggested 

that the leaf hairiness greatly increases spectral reflectance.  Therefore, group B was 

clearly separated from the other groups by leaf hairiness.   

The reflectance of in groups C and D respectively were low.  Leaf reflectance 

depends on the amount of obtained light energy and the exposure of the leaf surface (Lin 

et al. 2013). Plant species growing under fluctuated solar energy vary chlorophyll 

concentrations (Cao 2000).  The high contents of chlorophyll and accessory pigments can 

absorb more light energy and therefore show low reflectance (Bündchen et al. 2016).  

The acquisition of sun light is quite different between erect and spreading 

branching patterns. Plants with the spreading branches allows sun light to penetrate 

correspondingly to the leaves and thus, the leaves absorbed sufficient sunlight (Lee et al. 

1990). The spreading branches influenced lower reflection in group D. On the contrary, 

the light penetration into the leaves under erect branches was complex and impeded the 

direct light acquisition. Therefore, light acquisition capacity determined by the branching 

patterns were important for photosynthetic activity of plants and spectral reflectance 

pattern (Gitelson et al. 2003).  

The examined species were grouped into herbs and grasses (groups A and B) and 

trees (C and D).  The penetration of solar radiation into leaves is determined by the 

structures of leaf foliage (Badarnah and Knaack 2008).  Since the structures differ between 
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trees and herbs, the reflectance patterns should differ between the trees and herbs.  The 

leaves of large trees (group D) had the lowest reflection throughout the entire spectral 

range.  

The leaf reflectance spectra varied among the PFGs that were developed by 

species characteristics.  Therefore, the PFGs were classified basically by the growth forms. 

The branching patterns categorized the PFGs, because the light absorption capacity of leaf 

depended on the patterns of branch and influenced the chlorophyll content and 

photosynthetic activity. The leaf hair also determined the PFGs due to the high reflectivity 

in NIR wavelengths, because leaf hair enhance photosynthetic activity by conserving 

water. 
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General discussion 

 

 

Fundamental information on the impacts of urban growth on landscapes and 

ecosystems were provided by exploiting fine-scale land use classification (Chapter 1), 

predicting the potential distribution of S. robusta forests (Chapter 2), and detecting the 

relationships between plant functional groups and spectral reflectance patterns (Chapter 

3).  The present locations of S. robusta ecosystems were detected by hierarchical land 

use classification. Maxent model predicted the potential locations of S. robusta and 

suggested that the precipitation was the prime importance for the conservation. The 

structures and functions of plant species were examined by the PFGs clustered by the 

spectral reflectance. 

 

Land use change and forest cover damage by urban growth 

 The fine scale analysis succeeded in the detection of land use types well.  The urban 

growth was conducted based on road networks, small patches of land use types were not 

detected at coarse scale (O’Connell et al. 2013). Although VIs were used in land use 

classification, no single VI was efficient to separate the land use types. A hierarchical 

classification of the four VIs with DT improved the classification and was able to 

distinguish them.  

 
 

S. robusta forests distribution, global warming impact and conservation  

S. robusta in tropical rainforests is endangered not only due to anthropogenic disturbances 

but also natural disturbances, including global warming. Maxent predicted that the 

RCP8.5 scenario showed a shrinkage in S. robusta forest patches to the 21st century, due 

mostly to tolerance to temperature and reduced precipitation. In addition, N concentration 

in soil and precipitation were determinants on S. robusta forest distribution.  The suitable 
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distributions of S. robusta forest was controlled by edaphic factors more than the climatic 

factors at local scale.   

 
 

Role of species traits on leaf reflection spectra  

The species traits depended on the corresponding environments, while the leaf reflectance 

spectra depended on the growth form, branching pattern, phenological and morphological 

characteristics of species.  Photosynthesis was the most important factors to control the 

process of light absorption for photosynthesis (Baret et al. 2007). The light absorption of 

leaf depended on the branching pattern that should be related to the photosynthetic activity 

of leaf. In the NIR spectrum, the reflectance was high due to the scattering solar energy 

and leaf cell structure (Artigas and Yang 2005). Hairy plants showed the highest 

reflectance because of the presence of less absorption pigments and hair on leaf.  The 

variability of light penetration and light absorption caused the low reflectance in the trees. 

Because the growth form determined the capability of leaf to absorb sunlight and 

consequently the leaf reflectance varied.    

This study clearly confirmed the land use types and the potential distribution of 

endangered forest by using newly-proposed hierarchical land use classification with 

decision tree and Maxent model with global warming scenarios.  In addition, the 

relationships between growth form and spectral reflectance are detected by using plant 

functional groups classified by spectral reflectance patterns.  PFGs characterized the 

structure and function of S. robusta ecosystem. The results can be applied to the other 

regions of tropical forest to predict and conserve the key tropical tree species. It is 

worthwhile for planners and decision makers to evaluate the promises and limitations of 

further urban development to reduce the detrimental land exploitation and urban 

expansion.  
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Seven figures: Figure A-1 to A-7 

 

One table: Table A-1  
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Figure A-1: A visual representation of original land use types reflected by the spectral bands of satellite 

data in Purbachal. 

 

 

 

 

Figure A-2: Detection of land use change using swipe tool in Arc-GIS by overlapping two satellite data, 

IKONOS in 2001 at previous phase and WV2 in 2015 at recent phase. This technique has generated from 

EVI2 measurements. 
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Figure A-3: Map of general LULC (Land Use Land Cover) of Purbachal with vegetation types. a) 

illustrates the potentiality of IKONOS (0.8 m) data for detecting LULC patterns in Purbachal. These 

data were modified and recorded from both of existing pre-project land use map of Purbachal 

(Anonymous 2013) and satellite data of IKONOS as well. b) Similar LULC patterns of current stage 

2015 were detected in figure 4.b, derived from WV2 (0.5 m) multi-spectral imagery. General land 

cover types (e.g., vegetation and cropland), specific vegetation types (e.g., homestead vegetation, 

shorea forest), and water body with agricultural low land were visually demonstrated here. 
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b) 
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Figure A-4: Relationships between EVI2, EVI, NDVI and GRVI in 2001 and 2015 examined on the 182 

ground truth points.  All the linear regressions are significant at P < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-5: The dynamic responses of the VIs for the representative conditions of the sites based on the 

wavelength of IKONOS and WV2 data. The range of minimum and maximum reflectance on each land 

use type was plotted based on each wavelength of the satellite data.   
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Table A-1: The plant species list of the four PFGs 
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T=Tree, S=Shrub, H=Herb, G=Grass, W=Wood, H (m)=Height, DBH (m)=Diameter at breast height, SI=Shape Index, Er=Erect, Sp=Spreading, Dr=Drooping, Ts=Thorny/spiny, 

Ha=Hairy, G=Glabrous, D=Deciduous, E=Evergreen, P=Petiolate, El=Elliptical, O=Oblong, Ov=Ovate, L=Lanceolate, A=Alternate, R=Rounded, C=Cordate, Ac= Acute, 

Acu=Acuminate, Co=Coriaceous, Ax=Axillary inflorescence, Pa=panicle, B=Bisexual, Wc/W=White-cream or white, Pe=Pedicellate,  Dr=Drupe, Be=Berry, Ob=Oblong fruit, 

Gl=Globose, Gr=Green, Y=Yellowish, R=Reddish, B=Blackish, Se=Seeder, Sp=Sprouter, Si=Single, Pl=Plural, Jan-Jun=January-June, Jul-Dec=July-December, pH=Soil pH, Hi=High >7 

m, Me=Medium 4-7 m, Lo=low < 4 m. 
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Figure A-6: Descriptive statistics of species spectral responses. Horizontal axis represents the 

wavelength range and vertical axis represents the mean and standard deviation of spectra 

reflectance of the 112 plant species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-7: RDA biplots show the relationships between the species biological and morphological traits 

(filled triangles) and the wavelength of leaf reflectance spectra (open squares) within the four PFGs 

(open circles) of 112 species. The significant variables (P < 0.05) are represented by the arrows. 

Distances between samples in the plots reflect differences among them regarding to explanatory 

variables that significantly correlated with spectral bands. 


