Driving and photo-regulation of myosin-actin motor at molecular and macroscopic level by photo-responsive high energy molecules.

Halley M. Menezes,1,2 Md. Jahirul Islam,1,2 Masayuki Takahashi3 and Nobuyuki Tamaoki1,2*

1Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.

2Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.

3Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

E-mail: tamaoki@es.hokudai.ac.jp
Abstract

We employed azobenzene based non-nucleoside triphosphate, AzoTP, in myosin-actin motile system and demonstrated its efficiency as an energy molecule to drive and photo-regulate the myosin-actin motile function at macroscopic level along with in-vitro motility assay. AzoTP in its trans state induced the shortening of glycerinated muscle fibre whilst cis isomer had no significant effect. Direct photoirradiation of cis-AzoTP infused muscle fibre induced the shortening triggered by locally photo-generated trans-AzoTP in the muscle fibre. Furthermore we designed and synthesized three new derivatives of AzoTPs that served as substrates for myosin by driving and photo-regulating the myosin-actin motile function at molecular as well as macroscopic level with varied efficiency.
Introduction

Energy of nucleotide hydrolysis fuels the biomolecular motors to lug a myriad of cargos through the cytoplasm and perform a range of cellular tasks. A purine nucleotide, adenosine triphosphate (ATP) is hydrolysed by cytoskeleton motors such as myosin, kinesin, dynein and the engendered energy is converted into mechanical work with high efficiency by undergoing conformational changes. Harnessing these robust and versatile molecular motors for nanotechnology involves the dynamic control over their motile properties including velocity, direction of motion, processivity and on/off switching. Light impelled modulation of ATP function is one of the pronounced approaches towards achieving the motor control. Uncaging of inactive caged ATP by photo-irradiation (UV) to switch ON the motility from the OFF state is a remarkable study in this direction. However, the irreversibility of this system made way for the development of high-efficiency reversible ATP analogues to control the motility. In recent past, our group has reported photo-sensitive ATP analogues for reversible control of the motility through illumination with two different wavelengths of light. Azobenzene based non-nucleoside triphosphate, AzoTP, in its trans state could drive kinesin motor, conversely, the cis isomer was unable to drive kinesin; thus facilitating the photo-control of gliding velocity of microtubules on immobilized kinesin between trans and cis state of AzoTP.

In-vitro motility assays provide an insight into the functioning of motor proteins on a molecular level where the motile interaction of only two isolated proteins under biochemical conditions is studied. Contrary to this, in the physiological macroscopic system motor proteins work collectively in large numbers along with other cellular components or enzymes, thus increasing the number of interacting molecules. In our present study we explore the potential of AzoTP to photo-control such complex macroscopic system of molecular motors, hence extending its applicability over different scales. Myosin II, a muscle protein is a convenient candidate for our study since one of its chief task, muscle contraction, is studied extensively via in-vitro motility assay as well as muscle fibre shortening. Myosin II ATPase translocates along actin filament and the ATP dependent cyclic sliding interaction between them powers muscle contraction as well as movement. To substantiate this concept, glycerol extracted muscle preparation akin to living muscle was developed and evolved over the years to carry out a number of muscle contraction regulation studies. Three-dimensional orderly array of myofilaments and presence of actin-associated proteins like troponin, tropomyosin render the glycerinated muscle fibre system complex than in-vitro motility system which involves isolated myosin and actin proteins without an orderly array. Ca$^{2+}$ triggered regulation of glycerinated skeletal muscle fibre contractility is studied extensively. However, regulating the contraction by photoisomerizing the substrate locally in the muscle fibre by direct irradiation isn’t studied copiously.
Recently Christian Hoppmann et al. reported the photo-control of living skeletal muscle fibre shortening in which a photo-switchable peptide ligand inhibited the electrically stimulated fibre shortening in cis state whilst trans state had no effect on shortening.26

Herein, we report the AzoTP triggered driving of myosin and photo-regulation of myosin based macroscopic motile system in glycerinated skeletal muscle fibre by direct photo-irradiation of muscle fibre. Cis form of AzoTP fails to initiate significant shortening; following irradiation with 510nm light, the muscle fibre shortens remarkably in response to the photo-induced trans state. Furthermore we synthesized derivatives of AzoTP and employed them in myosin-actin motile system to investigate the correlation between the structure of substrate and its ability to perform as a photo-responsive energy molecule. We surveyed the efficiency of newly synthesized three derivatives of AzoTP to reversibly photo-control the in-vitro actin filament gliding velocity as well as the shortening of glycerinated muscle fibre. Amongst the newly synthesized AzoTP derivatives, the AzoTP with ether group bridging the azobenzene and triphosphate moieties performed as higher efficiency substrate for myosin motor.

Result and discussion:

Synthesis and photoisomerization of AzoTP derivatives:

The derivatives of AzoTP were synthesized by modifying the bridging group between azobenzene and triphosphate and by substitution on azobenzene moiety of previously reported parent AzoTP (4a). Substituting the amide linkage with ether and ethyl linkage resulted in AzoethoxyTP (4b) and AzoethylTP (4d) respectively, while the substitution of methyl groups at meta and para on azobenzene moiety resulted in DimethylAzoTP (4c) (Fig.1). These modifications in the parent AzoTP were done to probe the critical significance of the amide linkage in functioning of AzoTP as an energy molecule and for exploring the possibility of a further efficient azobenzene based photochromic non-nucleoside triphosphate.

<table>
<thead>
<tr>
<th>Non-nucleoside triphosphate</th>
<th>UV PSS</th>
<th>Visible PSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cis</td>
<td>trans</td>
</tr>
<tr>
<td>4a</td>
<td>92%</td>
<td>8%</td>
</tr>
<tr>
<td>4b</td>
<td>93%</td>
<td>7%</td>
</tr>
<tr>
<td>4c</td>
<td>93%</td>
<td>7%</td>
</tr>
<tr>
<td>4d</td>
<td>87%</td>
<td>13%</td>
</tr>
</tbody>
</table>

Table 1. Ratio of cis and trans isomers at UV and Visible photo stationary state (PSS).
Fig. 1. a) Structures of azobenzene based non-nucleoside triphosphates, AzoTP (4a), AzoethoxyTP (4b), DimethylAzoTP (4c) and AzoethylTP (4d). b) Reversible photo-isomerization of 4a.

The reversible photoisomerization of these AzoTPs was confirmed by consecutive irradiation with 365 nm UV light and 436 nm visible light (Fig.S1). At UV photo stationary state (PSS) the AzoTPs attain their cis-rich state which is reversed at visible PSS resulting in thermodynamically stable trans-rich state. Our previous study of 4a in kinesin-microtuble motile system suggested that trans isomer of 4a was an efficient energy molecule that triggered the faster velocity of microtubules by driving kinesin motor whereas the cis isomer was inefficient to drive kinesin. Table 1 shows the ratio of cis:trans isomers of 4a, 4b, 4c and 4d at PSS induced by 365 nm and 436 nm light irradiation, determined by H1NMR (Fig.S2). The thermal isomerization from cis to trans was evaluated by observing the changes in absorption spectra when kept in dark at room temperature. About 2% of trans isomer was recovered after 3h dismissing the possibility of thermal-back reactions during our experiments.

Reversible photo-control of in-vitro motility of myosin-actin motile system:
To assess the generalizability of 4a to drive and control the cytoskeletal motor systems, we employed 4a and its derivatives to myosin-actin motile system as differing from our previously reported kinesin-microtuble system. HMM (heavy meromyosin) is a soluble fragment of myosin consisting of two heads (containing nucleotide binding site and actin binding site) and a part of myosin rod; hence it was used as an ATPase motor in our in-vitro motility assay experiments. All the four AzoTPs tested, served as substrates for myosin by driving HMM induced gliding motility of F-actin on HMM immobilized glass surface, of which 4a and 4b functioned at concentrations as low as 10 µM. The average velocity of F-actin triggered by 4a, 4b, 4c and 4d are 1.25 µm/s, 1.50 µm/s, 1.24 µm/s and 0.73 µm/s respectively at saturated concentration of 0.5 mM for 4a, 4c, 4d and 0.25 mM for 4b. Photo-induced reversible control of the gliding velocity of F-actin prompted by the photo-isomerization of AzoTPs was observed as the flow cell of motility solution was irradiated with 365 nm and 436 nm light alternatingly to the PSS. The velocity decreased remarkably after irradiation with 365 nm light for 5 s corresponding to cis-rich state, the subsequent irradiation with 436 nm for 20 s recovered the velocity, comparable to that of initial velocity before irradiation. This phenomenon of reversible switching between the faster and slower velocity could be repeated over many cycles as represented in Fig. 2. We carried out in-situ photo-regulation of F-actin velocity by repeated alternating irradiation of flow cell with 365 nm UV and 510 nm visible light for 3 s and 5 s respectively captured in the 5 min long video (ESI-Mv01). Speeding actin filaments slowed down following the UV irradiation at a time interval and these slowly moving filaments recovered their speed after irradiation with 510 nm light. The magnitude of distance treaded by selected actin filaments facilitated by consecutive UV and Visible light irradiation at different time intervals is depicted in Fig. 3.

Fig. 2. Repeatability of the complete and reversible photoregulation of F-actin gliding velocity induced by 4b (AzoethoxyTP) at saturated concentration (0.25 mM). (BI: before irradiation; UV: after irradiation with 365 nm light; Vis: after irradiation with 436 nm light). Error bars: standard deviation for 10 actin filaments.
The change in velocity between the two photoisomerized states of AzoTP molecules is 54%, 79%, 81%, 80% for 4a, 4b, 4c, 4d respectively at saturated concentrations. However, at 0.1mM concentration the magnitude of switching is higher for all AzoTPs as the difference in velocity is about 87 – 90%. The gliding velocities fuelled by AzoTPs in their trans state (black solid circles) and cis-rich state (blue solid circles) with respect to the range of concentrations are shown in Fig.4.

Fig. 3. Fluorescence images of F-actin motility driven by trans and cis state of 4a (40 µM) by in-situ photo-regulation experiment with alternating irradiation at 365 nm (3 s) and 510 nm (5 s). The distance moved by two actin filaments is indicated in lines by tracking the path of filament heads; red circles denote the position of actin filament heads before irradiation (trans state), green and red lines denote the distance treaded by F-actin after UV (365 nm) and Vis (510 nm) irradiations respectively.
Concentration dependent velocity of actin filaments obeys the Michaelis-Menten equation and the obtained apparent K_m (K_{app}) values indicate that the apparent binding affinity of AzoTP for myosin ($1/K_{app} = 9.9 \text{ mM}^{-1}$) is twenty five times higher than that for kinesin motor ($1/K_{app} = 0.4 \text{ mM}^{-1}$) (as obtained in our previous work). The maximum gliding velocity (V_{max}) of F-actin induced by 4a, 4b, 4c and 4d are 1.5 µm/s, 1.9 µm/s, 1.7 µm/s and 1.0 µm/s respectively, which are 53%, 68%, 59% and 35% of that of ATP ($V_{max} = 2.9 \text{ µm/s}$) at saturated concentration. Our previous report on AzoTP explained that the microtubule velocity driven by cis-rich state of AzoTP is due to the remaining trans at cis-rich PSS, which corresponded to 8%. In our current study too we plotted a theoretical curve corresponding to remaining trans of all the four AzoTP molecules at their respective cis-rich PSS to validate this explanation. Fig.4 shows the Michaelis-Menten plot for concentration dependent velocity of all four AzoTPs and theoretical curve (red lines) for remaining trans amounting for 8%, 7%, 7% and 13% (table 1) in cis-rich state of 4a, 4b, 4c and 4d respectively. These observations insinuate that AzoTPs in their cis state intrinsically have no ability to function as energy molecules to drive the motor proteins.

![Fig. 4. Gliding velocity of actin filaments as a function of AzoTPs concentration. (Black solid circles: velocities before irradiation; black line: curve fitted using Michaelis–Menten equation; Blue circles: velocities after irradiating at 365 nm;](image-url)
Although the K_{app} of 4a and 4b is almost threefold less than 4c, the V_{max} of these three AzoTPs is comparable, since all three K_{app} were in submillimolar range. However, 4d has considerably lower V_{max} though its K_{app} is in the same range as that of 4a, 4b and 4c. These results imply that the substrates 4b and 4a bind to the myosin motor with higher affinity than that of 4c and 4d. Structural studies of chicken skeletal myosin subfragment 1 revealed that the nucleotide binding pocket is formed by the residues from the N-terminal, central, and C-terminal sections of myosin motor head domain.27,28 The adenine binding pocket is formed by amino acid residues Phe129-Tyr135 and Glu187-Lys191 contributed by the N-terminal segment as seen in the X-ray structural studies of Dictyostelium discoideum myosin II complex (S1dC.MgADP.BeF$_3$).29 Despite the presence of several water molecules with the potentiality for hydrogen bonding, very few specific interactions were seen between the adenine base and myosin heavy chain except the hydrogen bond between N6 of adenine and sidechain of Tyr135. This is in line with the observations that myosin utilizes a wide range of nucleotides and organic triphosphates,30,31 thus substantiating the functionality of our AzoTP molecules as substrates for myosin. Also the ribose moiety which bridges the adenine and triphosphate moieties forms very few interactions with the protein, enabling the myosin to utilize nucleotides and organic triphosphates with ribose ring replaced by variety of functional groups. However, ribose ring oxygen, 04' forms a hydrogen bond with Asn127 sidechain.29 Comparing the chemical structures of our AzoTP molecules with that of ATP suggests that the linker groups (ether, amide, ethyl) might fulfill the role of ribose and azobenzene takes adenine’s place. This presumption provides an insight into the varied binding affinity of our four AzoTP substrates as well as their cis and trans isomers. Higher binding affinity of 4b ($1/K_{app} = 11.0$ mM$^{-1}$) could be attributed to the ether group bridging the triphosphate moiety and azobenzene, where the oxygen of ether forms a hydrogen bond with the side chain of Asn127, analogous to the ribose oxygen of ATP.29 Similarly the carbonyl oxygen of amide group in 4a could participate in the hydrogen bonding by acting as a hydrogen acceptor. Absence of any potential hydrogen bond forming atoms in the bridging ethyl group elicits the lower binding affinity ($1/K_{app}= 5.7$ mM$^{-1}$) in 4d than 4a and 4b. Although there is carbonyl oxygen in 4c with the potentiality for hydrogen bond formation, yet the binding affinity ($1/K_{app} = 3.7$ mM$^{-1}$) is almost three fold lower than 4a and 4b. We assume this weaker binding affinity is resulted by the bulkiness of the substrate due to the presence of two methyl substituents on azobenzene moiety which might sterically interfere in the binding of substrate and myosin. AzoTPs in their cis state show no intrinsic ability as substrates for myosin unlike the active trans state. It is well established that the isomerization of azobenzene from trans to cis changes the geometry from flat to bent or round shape resulting in bulkiness. We surmise that the inability of cis isomer to bind
in the nucleotide binding pocket could be ascribed to its bulkiness. In addition the adenine binding site is relatively hydrophobic32,33 thus the hydrophilic \textit{cis} isomer isn’t favoured.

Photo induced regulation of macroscopic motile system of myosin motor:

As an approach to probe the efficiency of AzoTPs at macroscopic level to drive and control the motile functions, we conducted the simple glycerinated muscle fibre shortening experiments where the extent of shortening was assessed by unaided eye. The fibres used were of ~ 0.5 mm thickness and 7- 8 mm in length. First we tested our parent AzoTP molecule \textbf{4a} for macroscopic studies. \textbf{4a} in its \textit{trans} state induced the shortening of muscle fibre accounting for 40 – 45% shortening of muscle fibre’s initial length. Pre-generated \textit{cis} isomer of \textbf{4a} didn’t induce any significant shortening, thus affirming the poor activity of \textbf{4a} in its \textit{cis}-form as evidenced in our molecular \textit{in-vitro} motility experiments (Fig.5a, ESI-Mv02). When the \textit{cis} isomer infused muscle fibre was irradiated with 510 nm light for 10 s, remarkable shortening of about 40% of its initial length was observed, thus confirming the efficiency of \textbf{4a} to drive and photocontrol the myosin motor function in the macroscopic system (Fig.5b, ESI-Mv04). To corroborate that the shortening was resulted by the photoisomerization of \textbf{4a} and not by the thermal energy of illumination, we irradiated the muscle fibre infused in buffer solution without \textbf{4a} at 510 nm, which exhibited no shortening (ESI-Mv03).

![Fig. 5.](image)

Fig. 5. Non-nucleoside triphosphate \textbf{4a} induces and photo-controls the shortening of glycerinated muscle fibre. a) buffer solution with \textit{trans}-\textbf{4a} (3 mM) induces shortening while \textit{cis}-\textbf{4a} has no significant effect on shortening. b) \textit{cis}-\textbf{4a} infused muscle fibre shortens after irradiation with 510 nm light, no significant change in length in non-irradiated fibre. Red arrows point at the two edges of the fibre. The scale seen in the photographs is 1 mm.

Further, the ability of all three newly synthesized AzoTPs to initiate and photo-control the shortening was investigated. Fig. 6 represents the percentage change in muscle fibre length with respect to time, induced by all the four AzoTPs at 3 mM (total). Shortening of muscle fibre with respect to time
increases with the order of $4a \sim 4b > 4c > 4d$, where the substrates $4a$ and $4b$ induce the shortening swiftly with evidently larger magnitude of length change than $4c$ and $4d$ over the time range. Similar to $4a$, the cis-form of energy molecules $4b$, $4c$ and $4d$ was unable to induce any significant shortening and the 510 nm light irradiation of cis infused muscle fibres induces the shortening except $4d$. Experiments involving the $4a$ concentration dependent shortening rate showed that there is no significant change in muscle length below 0.5 mM of trans-$4a$ (Fig. S3). This explains the no significant shortening induced by cis-rich state of $4a$ at 3 mM (total) despite the presence of expected 8% (0.25 mM) of remained trans. The order of performance of four AzoTP substrates ($4a \sim 4b > 4c > 4d$) in macroscopic system is consistent with the K_{app} values obtained by the molecular level studies. Unlike the molecular in-vitro motility system, the glycerinated muscle fibre system involves the ordered array of myofibrils which could furnish the steric hindrance, but the AzoTPs efficiently replicated the photo-regulation of motor function in the glycerinated muscle fibre as well. AzoTP energy molecules photo-regulate the muscle fibre shortening by photoisomerizing to active trans state from inactive cis state locally in the muscle fibre by direct photo-irradiation.

Fig. 6. Muscle fibre length change $(L(t) - L(0) / L(0))$ with respect to the time for AzoTPs (3 mM) $4a$, $4b$, $4c$ and $4d$ induced fibre shortening. Black, red, green, blue and pink circles represent the % length change induced by ATP, $4a$, $4b$, $4c$ and $4d$ respectively; the lines are best-fit through the data trend. Error bars: standard deviation for 4 fibres.

Conclusion

In a step towards employing our AzoTP energy molecules to regulate the macroscopic systems, we have demonstrated the photo-regulated initiation of shortening in glycerinated skeletal muscle fibre induced by the photoisomerization. Direct irradiation with visible light initiated the shortening in the inactive cis-AzoTPs infused muscle fibre by locally photo-generated trans-AzoTPs. The trans form of AzoTPs initiates the contraction and shortens the muscle fibre to almost half of its initial length, whilst cis isomer’s contribution is insignificant. Also, we demonstrated the functionality of $4a$ as an
efficient substrate for myosin motor in addition to kinesin as reported previously, thus implying its
generalizability for cytoskeletal motors. The newly designed and synthesized three AzoTPs serve as
the substrate for myosin motor and photoregulate the motility at molecular as well as macroscopic
level. All the four AzoTP molecules drive myosin triggered in-vitro gliding velocity of F-actin with
50 to 60% efficiency of that obtained with ATP and photo-control the velocity between fast/slow
states by undergoing photoisomerization. Our demonstration of the photocontrol of macroscopic
glycerinated muscle fibre system is a promising indication towards regulating the much complex
intact in vivo systems and organisms by utilizing photoresponsive energy molecules. The regulation
of complex biological systems could benefit in investigating the disorders and targeted drug delivery.
Efficient functionality of our AzoTP molecules in myosin-actin and kinesin-microtubule motile
system at molecular as well as macroscopic level makes them interesting photoswitches which could
find potential in various biomolecular tasks.

Experimental

Instrumentation

1H, 13C and 31P NMR spectra were recorded using ECX-400 (400 MHz) spectrometer (JEOL).
Analysis of the AzoTPs was carried out in a Shimadzu reversed-phase (RP) HPLC system. An
EYELA FDU-2200 lyophilisation system was used for freeze-drying. Electrospray ionization time-
of-flight Mass Spectrometry (ESI-TOF MS) was performed using a JMS-T100CS instrument (JEOL)
operated in the negative-ion mode. High-resolution mass spectrometry was measured on a Thermo
Scientific Exactive mass spectrometer with Electrospray Ionization (ESI). Column chromatography
was performed using silica gel 60 N (neutral, 60-120 µm, Kanto chemicals). Thin layer
chromatography (TLC) was carried out on precoated silica gel 60 F$_{254}$ aluminium sheets (Merck).
UV-Vis absorption spectra were recorded using an Agilent 8453 single-beam spectrophotometer and
a Shimadzu UV-1800 absorption spectrophotometer. A mercury lamp (Ushio) with band pass filters
for 436 and a Hamamatsu LED Controller (model C11924-101) for 365 nm light was used for
photoisomerization and in-vitro motility experiments. Hayasaka LED Controller (model CS_LED
3W_510) for 510 nm light was used for photoregulation of in-situ motility and muscle fibre
shortening experiments. An inverted fluorescence optical microscope (Olympus IX71) equipped with
a UPlan F1 100x/1.30 oil C1 objective lens (Olympus) was used for the motility experiments in
conjunction with appropriate filters (640 nm excitation filter). An EMCCD digital camera (Andor
Solis Technology, model DL-604M-0EM-H1) was used to record videos.

Chemicals
All chemical and biochemical reagents were purchased from commercial sources (Tokyo Chemical Industry; Watanabe Chemical Industries; Wako Pure Chemical Industries; Dojindo Molecular Technologies) and used without purification.

Protein preparation

All experiments were performed in compliance with the relevant laws and institutional (Hokkaido University, Japan) guidelines. Skeletal muscle myosin was prepared from chicken pectoralis muscle according to the literature and was stored at -20°C in 50% glycerol from which the HMM was prepared on the next day. HMM was produced by α-chymotrypsin digestion of myosin for 10 min at 25°C, followed by dialysis and aliquots were quickly frozen in liquid N2 and stored at -80°C. F-actin was prepared from rabbit skeletal muscle as described by Pardee and Spudich and then labelled with phalloidin -CF633 dye conjugate (Biotium) for performing in-vitro motility assays. Concentration of proteins was determined by measuring absorption at 280 nm with extinction coefficients of 0.63 and 1.1 for HMM and actin respectively. The purity of proteins was confirmed by SDS-PAGE.

In-vitro motility assay

Flow cell preparation and motility assay techniques were followed according to the literature. Gliding velocities were measured with ImageJ plugin MTrackJ. Average of velocity of 10 filaments was determined in each experiment. All the assays were performed at 23.5°C. The motility solution consisted of 100 mM HEPES (pH 7.4), 25 mM NaCl, 4 mM MgCl2, 1 mM EGTA, 10 mM DTT, 0.5 mg/ml BSA and a 20 mM glucose, 20 µg/ml catalase, 0.1 mg/ml glucose oxidase. Calculated ionic strength was 38 mM. The flow cell was directly irradiated with 365 nm (LED) light for 5 s and with 436 nm (Hg lamp) for 20 s alternatingly.

Muscle fibre preparation and shortening experiments

The chicken skeletal muscle stripes were prepared by glycerol extraction method and stored at -20°C in 50% glycerol-buffer. Transferred to a 20% glycerol-buffer solution 20 min before conducting the experiment and then transferred to the buffer solution without ATP/AzoTP 3 min before starting the experiment. The buffer consisted of 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4; pH 7.4. The muscle stripe was teased into ~0.5 mm thick and 7 mm-8 mm long fibres which were then mounted on the glass slide and the buffer solution containing AzoTPs (4 µL) was added. The changes in the length were observed by unaided eyes and analysed the change in length by recording the video for shortening process using a Canon digital camera. The length change vs
time was measured by dividing the net change in the length of the fibre with respect to its initial
length at a time interval by the initial length \(\frac{L(t) - L(0)}{L(t) - L(0)} \). For the photo-regulation experiments, the muscle fibres mounted on the slide were directly irradiated with 510 nm (LED) light after adding the buffer solution containing cis-rich state AzoTP substrates.

Synthesis of new derivatives of AzoTP

Photochromic non-nucleoside triphosphate 4a was synthesized as reported in our previous report.\(^{13}\) The general synthetic route for AzoTP molecules involves two major steps: step 1) synthesis of hydroxyl attached functional group tethered azobenzene; 2) Phosphorylation of this functionalized azobenzene to obtain azobenzene based triphosphate. The new derivatives of AzoTP, 4b and 4d were synthesized by functionalizing azobenzene with ethoxy and ethyl groups; likewise 4c was synthesized by functionalizing dimethyl substituted azobenzene with amide group as represented in scheme 1. Detailed synthetic scheme of all the three derivatives is presented in ESI.

Scheme 1. General synthetic route for AzoTP molecules. Reaction conditions; i) di-tert-butyl N,N-diisopropylphosphoramidite, 1H-tetrazole, dry THF, Ar atmosphere, RT, 6h and then mCPBA, 0°C, 1h followed by RT, 40 min; ii) Trifluoroacetic acid, dry CH\(_2\)Cl\(_2\), Ar atmosphere, RT, 6 h; iii) Tributylamine, carbonyldiimidazole, pyrophosphate, dry DMF, Ar atmosphere, RT, overnight.

Synthesis of 1b: Azobenzene (1.0 g, 5.49 mmol), Pd(OAc)\(_2\) (0.123 g, 0.549 mmol), PhI(OAc)\(_2\) (3.536 g, 10.98 mmol), AcOH (6.3 ml, 109.8 mmol) were all added to ethylene glycol (22 ml) in a RB flask and heated at 80°C for 24 h. AcOH was removed by rotary evaporation and the reaction mixture was partitioned between organic (EtOAc) and aqueous layer. The organic phase was dried over MgSO\(_4\) and concentrated in a rotary evaporator and the purified compound obtained through column chromatography (SiO\(_2\), Hexane/EtOAc 7:3). Dark red crystals of 1b were obtained (1.03 g, 77%). \(R_f \) = 0.33 (Hexane/EtOAc 7:3). Mp: 74.5-76 °C; \(^1\)H NMR [400MHz, CDCl\(_3\)]: \(\delta \) 7.88 (dd, \(J_1 = 24\)
1. 8.3 Hz, $J_2 = 2.7$ Hz, 2H), 7.69 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.7$ Hz, 1H), 7.43-7.52 (m, 4H), 7.18-7.1 (m, 2H), 4.34 (t, $J = 4.4$ Hz, 2H), 3.96 (q, $J = 6.4$ Hz, 2H), 3.09 (t, $J = 6.5$ Hz, 1H). 13C NMR [100.5 MHz, CDCl$_3$] $\delta = 156.10, 153.00, 143.42, 132.64, 131.18, 129.26, 122.97, 122.24, 118.00, 116.76, 72.55, 61.19$. HRMS (ESI, m/z) calculated for C$_{14}$H$_{16}$N$_2$O$_2$Na [M + Na]$^+$: 265.09475; found: 265.09473 (observed error of -0.07 ppm is within the range of instrumental error of ±5.00 ppm).

1c was synthesized via three steps via 5 and 6 (scheme 2).

Scheme 2. Synthetic route for 1c; Reaction conditions: i) Acetoxyactyl chloride, Triethylamine, DCM, RT, 3h; ii) K$_2$CO$_3$, MeOH, RT, Overnight.

Synthesis of 5: m-CPBA (9.40 g, 60.02 mmol) was added to a solution of 3,4-dimethylaniline (3.64 g, 30 mmol) in EtOAc (300 mL) at 0°C in an ice bath. The reaction mixture was stirred for 3 h and extracted with EtOAc and saturated NaHCO$_3$ then washed with water. Organic phase was dried with MgSO$_4$ and then reduced the volume using a rotovap. When the volume was reached to approx. 150 mL, the evaporation was stopped and the solution was degassed with dry N$_2$ for 15 min. 1,2-phenylenediamine (3.2 g, 30 mmol) and acetic acid (1 mL) were added to this solution under N$_2$-atmosphere. The reaction mixture was stirred at 50 °C for 89 h. After 89 h the reaction mixture was extracted with water and EtOAc. The organic part was dried with MgSO$_4$ and concentrated in a rotovap. The residue was purified by silica gel column chromatography. The compound was eluted with hexane/EtOAc, 9:1 to afford the dark red crystals of 5 (2.70 g, 40%). $R_f = 0.30$ (Hexane/EtOAc 9:1). Mp: 128-130 °C. 1H NMR [400MHz, CDCl$_3$] δ 7.80 (dd, $J = 8.1, 1.5$ Hz, 1H), 7.63 – 7.58 (m, 2H), 7.25 – 7.17 (m, 2H), 6.81 (dd, $J = 8.2, 7.1, 1.3$ Hz, 1H), 6.76 (dd, $J = 8.2, 1.1$ Hz, 1H), 5.83 (br, 2H), 2.35 (s, 3H), 2.33 (s, 3H). 13C NMR [100.5 MHz, CDCl$_3$] δ 151.42, 142.99, 139.27, 137.46, 137.26, 131.94, 130.34, 127.27, 123.14, 120.10, 117.49, 117.06, 20.03, 19.92. HRMS (ESI, m/z) calculated for C$_{14}$H$_{16}$N$_3$ [M + H]$^+$: 226.13387; found: 226.13383 (observed error of -0.19 ppm is within the range of instrumental error of ±5.00 ppm).

Synthesis of 6: Triethylamine (2.54 mL, 18.15 mmol) was added to a solution of 5 (2.70 g, 12.10 mmol) in DCM (90 mL) at 0°C in an ice bath. While stirring, acetoxyactyl chloride (1.95 mL, 18.15 mmol) was added dropwise to the reaction mixture at 0°C in an ice bath. Then the reaction mixture was kept in ice bath for 15 min followed by 3 h at room temperature. The reaction mixture was extracted with DCM and water. The organic part was dried with MgSO$_4$ and all the solvents were removed using the rotovap. The residue was purified by washing with hexane several times and with DCM twice, then finally dried under vacuum to afford 3.51 g (89%) of orange solid of 6. $R_f = 0.1$
(Hexane/EtOAc 9:1). Mp 148-149 °C. 1H NMR (400 MHz, DMSO-D6) δ 10.23 (s, 1H), 8.32 (dd, $J = 8.3, 1.1$ Hz, 1H), 7.82 – 7.71 (m, 3H), 7.56 – 7.52 (m, 1H), 7.38 (d, $J = 8.1$ Hz, 1H), 7.28 – 7.24 (m, 1H), 4.81 (s, 2H), 2.35 (s, 3H), 2.33 (s, 3H), 2.15 (s, 3H). 13C NMR [100.5 MHz, DMSO-D6] δ 169.74, 165.85, 150.57, 141.03, 140.70, 137.55, 136.00, 132.25, 130.35, 124.41, 124.20, 121.79, 120.47, 116.42, 63.00, 20.53, 19.54, 19.45. HRMS (ESI, m/z) calculated for C$_{18}$H$_{19}$N$_3$O$_3$Na [M + Na]$^+$: 348.13186; found: 348.13154 (observed error of -0.93 ppm is within the range of instrumental error of ±5.00 ppm).

Synthesis of 1c: K$_2$CO$_3$ (2.79 g, 20.0 mmol) was added to a solution of 6 (3.48 g, 10.69 mmol) in MeOH/DMSO (40 mL+10 mL) at room temperature. The reaction mixture was stirred for overnight. Then the reaction mixture was partitioned between EtOAc and water. The EtOAc part was dried with MgSO$_4$ and all the solvents were removed using a rotovap. The residue was washed with hexane several times and with DCM twice and finally dried under vacuum to afford orange solid of compound 1c (2.91 g, 96%). $R_f = 0.13$ (Hexane/EtOAc 7:3). Mp 170-172 °C. 1H NMR (400 MHz, DMSO-D6) δ 11.10 (s, 1H), 8.64 (dd, $J = 8.4$, 1.1 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.71 (dd, $J = 8.0$ Hz, 1H), 7.27 – 7.23 (m, 1H), 6.40 (s, 1H), 4.09 (s, 2H), 2.34 (s, 3H), 2.33 (s, 3H). 13C NMR [100.5 MHz, DMSO-D6] δ 170.99, 150.42, 141.22, 138.78, 137.73, 135.46, 132.77, 130.53, 123.65, 123.26, 120.67, 119.42, 118.95, 61.98, 19.59, 19.56. HRMS (ESI, m/z) calculated for C$_{16}$H$_{17}$N$_3$O$_2$Na [M + Na]$^+$: 306.12130; found: 306.12127 (observed error of -0.09 ppm is within the range of instrumental error of ±5.00 ppm).

Synthesis of 1d: A solution of 2-(2-aminophenyl)ethanol (4.65 g, 33.90 mmol) in toluene (200 mL) was degassed under a stream of N$_2$ for 15 min then nitrosobenzene (3.63 g, 33.89 mmol) and acetic acid (0.8 mL) were added under Ar-atmosphere. The reaction mixture was stirred at 60 °C for 72 h. The solvent of the reaction mixture was evaporated in rotovap and partitioned between water and CH$_2$Cl$_2$ (DCM). The DCM part was dried (with MgSO$_4$) and concentrated in a rotovap. The residue was purified by column chromatography (SiO$_2$, Hexane/EtOAc 6:4) to afford dark red viscous liquid of 1d (5.75 g, 75%). $R_f = 0.30$ (Hexane/EtOAc 7:3). 1H NMR [400 MHz, CDCl$_3$]: δ 7.91 – 7.88 (m, 2H), 7.71 (dd, , $J_1 = 8.0$ Hz, $J_2 = 1.0$ Hz, 1H), 7.55 – 7.45 (m, 3H), 7.44 – 7.39 (m, 2H), 7.37 – 7.33 (m, 1H), 3.96 (dd, $J_1 = 12.2$ Hz, $J_2 = 6.4$ Hz, 2H), 3.40 (t, $J = 6.4$ Hz, 2H), 2.02 (t, $J = 5.6$ Hz, 1H). 13C NMR [100.5 MHz, CDCl$_3$] δ 152.72, 150.55, 138.70, 131.34, 131.23, 131.08, 129.14, 127.29, 122.94, 115.72, 63.87, 35.09. HRMS (ESI, m/z) calculated for C$_{14}$H$_{14}$N$_2$ONa [M + Na]$^+$: 249.09983; found: 249.09957 (observed error of -1.06 ppm is within the range of instrumental error of ±5.00 ppm).

General synthetic procedure for phosphorylation (step 2):

A) Monophosphate formation: 1H-Tetrazole (3 eq.) was added to a solution of 1a-d (1 eq.) and di-tert-butyl N,N-diisopropylphosphoramidite (1.3 eq.) in dry THF. This reaction mixture was stirred
for 6 h at room temperature. A solution of mCPBA (65%, 1.7 eq.) in dry CH₂Cl₂ was added and stirred for 1 h in an ice bath followed by stirring at room temperature for 25 min. Saturated aqueous NaHCO₃ was added and the mixture was stirred further for 40 min. The reaction mixture was extracted in an organic (EtOAc) and aqueous solution (NaCl). The organic phase separated, dried over MgSO₄ and concentrated in a rotary evaporator, passed through column chromatography to obtain the purified tert-butyl protected monophosphates 2a-d. Trifluoroacetic acid (16 eq.) was added to the solution of this protected monophosphate (1 eq.) in dry CH₂Cl₂ and stirred for 6 h at room temperature followed by solvent evaporation. For the complete removal of CF₃COOH, the procedure of addition of MeOH and evaporation was repeated thrice followed by CH₂Cl₂ wash. Vacuum dried the obtained residue of monophosphate (3a-d) and dissolved in water by adjusting the pH to 7.5 using 1M NaOH. This solution was eluted through a DEAE Sephadex A-25 column with 0.5M triethylammonium hydrogencarbonate solution at 4 °C to convert the monophosphate into its triethylammonium salt. Triethyl ammonium hydrogencarbonate was removed by evaporation with EtOH several times.

2b: Reddish orange viscous liquid. Yield = 0.15 g (14%). \(R_f = 0.10 \) (Hexane/EtOAc 7:3). \(^1\)H NMR (400 MHz, CDCl₃): \(\delta = 8.6 \) (br, 1H), 7.91 (d, \(J = 8.0 \) Hz, 2H), 7.65 (d, \(J = 8.0 \) Hz, 1H), 7.52–7.40 (m, 4H), 7.12 (d, \(J = 8.2 \) Hz 1H), 7.05 (t, \(J = 7.6 \) Hz, 1H), 4.43–4.37 (m, 4H), 1.46 (s, 18 H). \(^13\)C NMR \([100.5 MHz, CDCl₃] \delta = 156.22, 153.07, 142.88, 132.38, 130.89, 129.05, 123.12, 121.64, 117.13, 115.34, 82.66 (d, \(J = 7.4 \) Hz), 68.99 (d, \(J = 8.5 \) Hz), 64.95 (d, \(J = 6.0 \) Hz), 29.88 (d, \(J = 4.3 \) Hz). HRMS (ESI, m/z) calculated for C₂₂H₃₁N₂O₅PNa \([M + Na]⁺\): 457.18628; found: 457.18634 (observed error of 0.13 ppm is within the range of instrumental error of ±5.00 ppm).

2c: Orange solid. Yield = 1.54 g (42%). \(R_f = 0.25 \) (Hexane/EtOAc 7:3). Mp: 132-133 °C. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta = 10.71 \) (s, 1H), 8.69 (dd, \(J₁ = 8.4 \) Hz, \(J₂ = 1.2 \) Hz, 1H), 7.87 – 7.80 (m, 3H), 7.49 – 7.45 (m, 1H), 7.31 (d, \(J = 7.8 \) Hz, 1H), 7.23 – 7.18 (m, 1H), 4.60 (d, \(J = 7.0 \) Hz, 2H), 2.41 (s, 3H), 2.35 (s, 3H), 1.46 (s, 18 H). \(^13\)C NMR \([100.5 MHz, CDCl₃] \delta = 166.16 (d, \(J = 8.9 \) Hz), 150.95, 141.13, 139.82, 137.72, 135.50, 132.30, 130.64, 125.38, 124.21, 120.27, 120.30, 118.56, 83.64 (d, \(J = 7.1 \) Hz), 65.72 (d, \(J = 6.7 \) Hz), 29.92 (d, \(J = 4.2 \) Hz), 20.04, 19.90. HRMS (ESI, m/z) calculated for C₂₄H₃₄N₃O₅PNa \([M + Na]⁺\): 498.21283; found: 498.21237 (observed error of -0.92 ppm is within the range of instrumental error of ±5.00 ppm).

2d: Reddish orange viscous liquid. Yield = 1.3 g (38%). \(R_f = 0.19 \) (Hexane/EtOAc 7:3). \(^1\)H NMR (400 MHz, CDCl₃): \(\delta = 7.93 – 7.90 \) (m, 2H), 7.70 (d, \(J = 7.6 \) Hz 1H), 7.54 – 7.39 (m, 3H), 7.43 – 7.39 (m, 2H), 7.36 – 7.31 (m, 1H), 4.23 (q, \(J = 7.1 \) Hz, 2H), 3.53 (t, \(J = 7.2 \) Hz, 2H), 1.40 (s, 18 H). \(^13\)C NMR \([100.5 MHz, CDCl₃] \delta = 152.82, 150.45, 137.49, 131.52, 131.62, 131.02, 129.08, 127.52, 123.03, 115.46, 82.09 (d, \(J = 7.3 \) Hz), 67.55 (d, \(J = 6.7 \) Hz), 32.73 (d, \(J = 8.0 \) Hz), 29.77 (d, \(J = 4.2 \) Hz).
Hz). HRMS (ESI, m/z) calculated for C_{22}H_{31}N_{2}O_{4}PNa [M + Na]^+: 441.19137; found: 441.19107 (observed error of -0.67 ppm is within the range of instrumental error of ±5.00 ppm).

3b: Reddish orange semi solid. Yield = 0.11 g (96%). 1H NMR (400 MHz, CD$_3$OD): δ = 9.27 (br, 1H), 7.91 (d, $J = 6.9$ Hz, 2H), 7.64 (d, $J = 8.0$ Hz, 1H), 7.55 – 7.45 (m, 4H), 7.26 (d, $J = 8.3$ Hz, 1H), 7.06 (t, $J = 8.2$ Hz, 1H), 4.43 (t, $J = 5.1$ Hz, 2H), 4.39 – 4.37 (m, 2H). 13C NMR [100.5 MHz, CD$_3$OD] δ 157.72, 154.39, 143.83, 133.81, 132.08, 130.21, 123.98, 122.57, 117.84, 116.57, 70.48 (d, $J = 7.7$ Hz), 66.06 (d, $J = 5.4$ Hz). HRMS (ESI, m/z) calculated for C$_{14}$H$_{14}$N$_{2}$O$_{5}$P [M - H]: 321.06458; found: 321.06483 (observed error of 0.77 ppm is within the range of instrumental error of ±5.00 ppm).

3c in its triethyl ammonium salt: Orange solid. Yield = 0.77g (94%). Mp: 139-141°C. 1H NMR (CD$_3$OD, 400 MHz): δ = 8.58 (dd, $J = 8.3$, 1.1 Hz, 1H), 7.90 – 7.82 (m, 3H), 7.49 – 7.46 (m, 1H), 7.36 (d, $J = 8.0$ Hz, 1H), 7.24 – 7.19 (m, 1H), 4.54 (d, $J = 6.1$ Hz, 2H), 3.17 (q, $J = 7.3$ Hz, 6H), 2.41 (s, 3H), 2.35 (s, 3H), 1.28 (t, $J = 7.3$ Hz, 9H). 13C NMR [100.5 MHz, CD$_3$OD] δ 169.94 (d, $J = 9.1$ Hz), 152.27, 142.33, 141.41, 138.92, 137.07, 133.06, 131.83, 127.02, 125.30, 121.50, 120.88, 118.24, 65.71 (d, $J = 4.7$ Hz), 47.71, 19.94, 19.86, 9.16. HRMS (ESI, m/z) calculated for C$_{16}$H$_{17}$N$_{3}$O$_{5}$P [M – C$_6$H$_{17}$N(TEA)]: 362.09113; found: 362.09140 (observed error of 0.74 ppm is within the range of instrumental error of ±5.00 ppm).

3d in its triethyl ammonium salt: Reddish orange solid. Yield = 0.59g (51%). Mp: 130-132 °C. 1H NMR (CD$_3$OD, 400 MHz): δ = 7.94 – 7.92 (m, 2H), 7.67 (dd, $J = 8.1$, 1.2 Hz, 1H), 7.56 – 7.49 (m, 4H), 7.43 (td, $J = 7.4$, 1.3 Hz, 1H), 7.32 – 7.29 (m, 1H), 4.14 (dd, $J = 14.0$, 7.3 Hz, 2H), 3.51 (t, $J = 7.4$ Hz, 2H), 3.16 (q, $J = 7.3$ Hz, 6H), 1.28 (t, $J = 7.3$ Hz, 9H). 13C NMR [100.5 MHz, CD$_3$OD] δ 154.31, 151.69, 139.79, 132.72, 132.41, 132.24, 130.31, 128.36, 124.00, 116.18, 67.24, 59.54, 34.02, 8.12. HRMS (ESI, m/z) calculated for C$_{14}$H$_{14}$N$_{2}$O$_{4}$P [M - C$_6$H$_{16}$N(TEA)]: 305.06967; found: 305.06991 (observed error of 0.13 ppm is within the range of instrumental error of ±5.00 ppm).

B) Triphosphate formation: The triethylammonium salt of monophosphate, 3b, 3c, 3d (1 eq.) was converted into its tributylammonium salt through the addition of tributylamine (3.3 eq.) in dry MeOH. Triethylamine and MeOH were removed through rotary evaporation. The tributylammonium salt was dissolved in dry DMF, a solution of 1,1’-carbonyldiimidazole (6.3 eq.) in dry DMF was added under Ar atmosphere with stirring and then kept at room temperature for 16 h to proceed the reaction. Excess of 1,1’-carbonyldiimidazole was destroyed by the addition of dry MeOH (0.25 eq.) and stirring for 1hr. This solution was then added dropwise with stirring to a solution of the tributylammonium salt of pyrophosphate in dry DMF. After reacting overnight at room temperature, the mixture was cooled to 0°C in an ice bath. Cold water (4°C) was added with stirring and the pH was brought to 7.5 using 1M NaOH. The reaction mixture was extracted with ether and H$_2$O; the aqueous phase was evaporated with EtOH at 30°C and dried. The residue was dissolved in 0.2 M
triethylammonium hydrogencarbonate, applied to a DEAE-Sephadex A-25 column (2.5 × 30 cm, 20 g) and eluted with a linear gradient (0.2–1.0 M; total volume: 1 L) of triethylammonium hydrogencarbonate at 4°C. The product eluted in the 0.67–0.86 M range was collected and evaporated with EtOH several times to remove triethylammonium hydrogencarbonate. The obtained residue of product was converted into its sodium salt using 1M NaI in acetone and freeze dried.

4b as sodium salt: Reddish orange solid. Yield = 0.05 g (44%). Mp 161-163 °C (color changes from reddish orange to dark brown at 110 °C). 1H NMR (D$_2$O, 400 MHz): $\delta = 7.27$ (d, $J = 6.6$ Hz, 2H), 7.06 – 7.02 (m, 5H), 6.86 (d, $J = 7.0$ Hz, 1H), 6.69 (t, $J = 6.6$ Hz, 1H), 4.56 (m, 2H), 4.48 (m, 2H).

13C NMR [100 MHz, D$_2$O (CD$_3$OD)] δ 156.22, 153.33, 142.86, 134.54, 132.67, 130.48, 123.58, 122.92, 118.18, 116.19, 70.16 (d, $J = 7.9$ Hz), 65.71 (d, $J = 5.2$ Hz).

31P NMR [160 MHz, D$_2$O (H$_3$PO$_4$)] δ -10.89 – -11.20 (m, 2P), -23.03 – -23.19 (m, 1P).

HRMS (ESI, m/z) calculated for C$_{14}$H$_{14}$N$_2$O$_{11}$Na$_4$P$_3$ [M + H]$^+$: 570.93957; found: 570.93993 (observed error of 0.62 ppm is within the range of instrumental error of ±5.00 ppm).

RP-HPLC [Column - CN-80Ts, 4.6 × 250 mm (TOSOH); Eluent - CH$_3$CN/0.1M aq. NaPi (pH 6.5); flow rate – 0.5mL/min] retention time = 55.01.

4c as sodium salt: Orange solid. Yield = 0.46 g (95%). Mp 168-170 °C (color changes from orange to dark brown at 118 °C). 1H NMR (D$_2$O, 400 MHz): $\delta = 7.95$ (d, $J = 7.1$ Hz, 1H), 7.76 – 7.68 (m, 3H), 7.63 – 7.59 (m, 1H), 7.45 – 7.40 (m, 2H), 4.69 (d, $J = 7.4$ Hz, 2H), 2.39 (s, 3H), 2.36 (s, 3H).

13C NMR [100 MHz, D$_2$O (CD$_3$OD)] δ = 170.93 (d, $J = 9.6$ Hz), 151.35, 143.78, 143.16, 139.35, 134.64, 133.11, 131.58, 127.47, 125.56, 124.48, 120.54, 118.18, 65.73 (d, $J = 5.6$ Hz), 20.03, 19.92.

31P NMR [160 MHz, D$_2$O (H$_3$PO$_4$)] δ -10.90 (d, 1P, $J = 18.6$ Hz), -12.48 (d, 1P, $J = 19.3$ Hz), -23.06 (t, 1P, $J = 17.8$ Hz).

HRMS (ESI, m/z) calculated for C$_{14}$H$_{17}$N$_3$O$_{11}$Na$_4$P$_3$ [M + H]$^+$: 611.96612; found: 611.96757 (observed error of 2.36 ppm is within the range of instrumental error of ±5.00 ppm).

RP-HPLC [Column - CN-80Ts, 4.6 × 250 mm (TOSOH); Eluent - CH$_3$CN/0.1M aq. NaPi (pH 6.5); flow rate – 0.5mL/min] retention time = 76.68.

4d as sodium salt: Dark orange solid. Yield = 0.181 g (64%). Mp 153-155 °C (color changes from reddish orange to dark brown at 110 °C). 1H NMR (D$_2$O, 400 MHz): $\delta = 7.96$ – 7.93 (m, 2H), 7.64 – 7.59 (m, 3H), 7.56 – 7.52 (m, 2H), 7.44 – 7.41 (m, 1H), 4.24 (q, $J = 8.0$ Hz, 2H), 3.48 (t, $J = 6.9$ Hz, 2H).

13C NMR [100 MHz, D$_2$O (CD$_3$OD)] δ 153.31, 151.51, 138.15, 132.69, 132.60, 130.51, 128.75, 123.67, 116.61, 68.12 (d, $J = 6.1$ Hz), 32.82 (d, $J = 6.8$ Hz).

31P NMR [160 MHz, D$_2$O (H$_3$PO$_4$)] δ -10.71 – -11.19 (m, 2P), -23.28 (t, 1P, $J = 19.6$ Hz).

HRMS (ESI, m/z) calculated for C$_{14}$H$_{14}$N$_2$O$_{10}$Na$_4$P$_3$ [M + H]$^+$: 554.94466; found: 554.94501 (observed error of 0.63 ppm is within the range of instrumental error of ±5.00 ppm).

RP-HPLC [Column - CN-80Ts, 4.6 × 250 mm (TOSOH); Eluent - CH$_3$CN/0.1M aq. NaPi (pH 6.5); flow rate – 0.5 mL/min] retention time = 73.09.
Acknowledgements

Authors thank the Research Foundation for Opto-Science and Technology for the financial support.

References