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HAAGERUP APPROXIMATION PROPERTY VIA BIMODULES

RUI OKAYASU, NARUTAKA OZAWA, AND REIJI TOMATSU

Abstract. The Haagerup approximation property (HAP) is defined for finite von Neu-
mann algebras in such a way that the group von Neumann algebra of a discrete group
has the HAP if and only if the group itself has the Haagerup property. The HAP has
been studied extensively for finite von Neumann algebras and it is recently generalized for
arbitrary von Neumann algebras by Caspers–Skalski and Okayasu–Tomatsu. One of the
motivations behind the generalization is the fact that quantum group von Neumann alge-
bras are often infinite even though the Haagerup property has been defined successfully
for locally compact quantum groups by Daws–Fima–Skalski–White. In this paper, we fill
this gap by proving that the von Neumann algebra of a locally compact quantum group
with the Haagerup property has the HAP. This is new even for genuine locally compact
groups.

1. Introduction

The notion of the Haagerup property for locally compact groups is introduced after the
celebrated work of U. Haagerup ([Ha]) on the reduced group C∗-algebras of the free groups.
This notion is a very useful generalization of amenability and has been extensively studied
in various settings (see [CC+]). Like the case of amenability, it is only natural to capture
this property through operator algebras. Indeed, M. Choda ([Ch]) has defined a property
now called the Haagerup approximation property (we will abbreviate it as HAP) for finite
tracial von Neumann algebras and proved that the group von Neumann algebra LG of
a discrete group G has the HAP if and only if G has the Haagerup property. The HAP
(or its relative version) has been exploited extensively in the study of finite von Neumann
algebras as means of deformations in Popa’s deformation-vs-rigidity strategy ([Po2]).

The HAP is recently generalized for general von Neumann algebras independently by
Caspers–Skalski [CS1, CS2] and by Okayasu–Tomatsu [OT1, OT2]. Their definitions vary,
but turn out to be equivalent (see [CO+]) and seem to lay a satisfactory foundation for the
study of the HAP for general von Neumann algebras. One of the motivations behind the
generalization is the fact that quantum group von Neumann algebras are often infinite even
though the Haagerup property has been defined successfully for locally compact quantum
groups by Daws–Fima–Skalski–White ([DF+]). In this paper, we fill this gap by proving
that the von Neumann algebra of a locally compact quantum groups with the Haagerup
property has the HAP, and the converse also holds true for strongly inner amenable locally
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compact quantum groups. This extends the same result obtained by Daws–Fima–Skalski–
White ([DF+]) for the case of discrete quantum groups. Another motivation would be to
incorporate Popa’s deformation-vs-rigidity strategy to the study of general von Neumann
algebras.

To pursue the latter motivation and to deal with locally compact (quantum) group von
Neumann algebras, we take Connes’s view ([Co, V.B]) that theory of bimodules is to von
Neumann algebras what theory of unitary representations is to groups. So, we will give yet
another characterization of the HAP in terms of bimodules, which is preceded by the work
of Bannon–Fang ([BF]) for finite von Neumann algebras. Thus, we introduce the strict
mixing property for bimodules and prove that a von Neumann algebra has the HAP if and
only if it admits a strictly mixing bimodule which is amenable and that the von Neumann
algebra of a locally compact quantum group with the Haagerup property admits such a
bimodule.

Conventions. By (M,φ), etc., we will mean a pair of von Neumann algebra M and a
distinguished fns (faithful normal semifinite) weight φ on it. The symbol ⊙ means the
algebraic tensor product, while ⊗ means the von Neumann algebraic, Hilbert space, or
the spatial C∗-algebraic tensor product. All ∗-representations are assumed to be non-
degenerate.

2. Preliminary on bimodules

In this section, we will review the theory of bimodules over von Neumann algebras. See
[Co, V.B], [Po1], or [Ta, XI.3] for a comprehensive treatment. In literature, bimodules are
also called correspondences.

Let M and N be von Neumann algebras. A Hilbert space H is said to be an M-N
bimodule if it comes together with a ∗-representation πH ofM⊙Nop that is normal in each
variable. Here Nop denotes the opposite von Neumann algebra of N . We refer πH|M as the
left M -action and πH|Nop as the right N -action, and simply write aξx = πH(a⊗ xop)ξ for
a ∈ M , x ∈ N , and ξ ∈ H. The complex conjugate H̄ of an M -N bimodule is naturally
an N -M bimodule. The notation MHN will indicate that H is an M -N bimodule.

An M -N bimodule H is weakly contained in another M -N bimodule K (denoted by
H ⪯ K) if the identity map on M ⊙ Nop extends to a continuous ∗-homomorphism from
C∗(πK(M ⊙Nop)) to C∗(πH(M ⊙Nop)), that is to say, if for any ξ ∈ H, any finite subsets
E ⊂ M and F ⊂ N , and any ε > 0, one can find η1, . . . , ηn ∈ K such that |⟨aξx, ξ⟩ −∑

i⟨aηix, ηi⟩| < ε for all (a, x) ∈ E × F .
The identity bimodule over M is the M -M bimodule L2(M), given by aξx = aJx∗Jξ,

where L2(M) is the standard form for M and J is the modular conjugation. When an fns
weight φ on M is fixed, we identify L2(M) with L2(M,φ) and J with Jφ. The vector in
L2(M) that corresponds to x ∈ nφ := {x ∈ M : φ(x∗x) < ∞} is denoted by xφ1/2. Also,
φ1/2x := Jx∗φ1/2 for x ∈ n∗φ.

For M -N bimodules (or just right N -modules) H and K, the Banach space of bounded
right N -module maps from H into K is denoted by B(HN ,KN). In case H and K coincide,
we simply denote it by B(HN). Thus, B(L2(N)N) coincides with N acting on L2(N) from
the left.
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Let us fix fns weights φ on M and ψ on N . A vector ξ ∈ MHN is said to be left
ψ-bounded if Lψ(ξ) : ψ

1/2x 7→ ξx, x ∈ n∗ψ, is bounded and hence defines an element in

B(L2(N,ψ)N ,HN). The subspace D(H, ψ) of left ψ-bounded vectors is dense in H ([Ta,
Lemma IX.3.3]). We note that if ξ ∈ D(H, ψ) and a ∈ M , then aξ ∈ D(H, ψ) and
Lψ(aξ) = aLψ(ξ). For ξ1, ξ2 ∈ D(H, ψ), we denote by Lψ(ξ

∗
2 × ξ1) the element in N that

corresponds to Lψ(ξ2)
∗Lψ(ξ1) ∈ B(L2(N)N) = N . It in fact belongs to n∗ψnψ and satisfies

ψ(Lψ(ξ
∗
2 × ξ1)) = ⟨ξ1, ξ2⟩ (see [Ta, p.199]). Similarly, ξ is said to be right φ-bounded if

Rφ(ξ) : aφ
1/2 7→ aξ, a ∈ nφ, is bounded. It is (φ, ψ)-bounded (or simply bounded) if it

is simultaneously left ψ- and right φ-bounded. The bounded vectors are dense in H (see
Theorem 1).

Let θ : M → N be a normal completely positive map. Associated to it is the M -N
bimodule L2(M ⊗θ N) which is defined to be the Hilbert space completion of M ⊙ L2(N)
under the semi-inner product ⟨b1 ⊗θ η1, b2 ⊗θ η2⟩ = ⟨θ(b∗2b1)η1, η2⟩ on simple tensors. Here
the symbol ⊗θ is used for mnemonic reason. The left M -action and the right N -action
are given by a(b ⊗θ η)x = (ab) ⊗θ (ηx). Suppose now that ψ ◦ θ ≤ Cφ for some constant
C > 0, and fix analytic elements b ∈ nφ and y ∈ nψ. Then, the vector ξ = b ⊗θ (yψ

1/2) is
(φ, ψ)-bounded. Indeed, one has ∥ξx∥ ≤ ∥y∗θ(b∗b)y∥1/2∥ψ1/2x∥ and

∥aξ∥ = ∥θ(b∗a∗ab)1/2ψ1/2σψi/2(y)∥

≤ C1/2∥σψi/2(y)∥∥abφ
1/2∥ ≤ C1/2∥σφi/2(b)∥∥σ

ψ
i/2(y)∥∥aφ

1/2∥.
LetM , N , and P be von Neumann algebras. The the relative tensor product MHN⊗NKP

of the bimodules MHN and NKP is the M -P bimodule which is defined to be the Hilbert
space completion of D(H, ψ) ⊙ K under the semi-inner product ⟨ξ1 ⊗ψ η1, ξ2 ⊗ψ η2⟩ =
⟨Lψ(ξ∗2 × ξ1)η1, η2⟩ on simple tensors. If moreover ηi’s are right ψ-bounded, then one also
has ⟨ξ1⊗ψ η1, ξ2⊗ψ η2⟩ = ⟨ξ1, ξ2R̄ψ(η

∗
2×η1)⟩, where R̄ψ(η

∗
2×η1) = JψRψ(η2)

∗Rψ(η1)Jψ ∈ N
([Ta, Proposition 3.15]). The leftM -action and the right P -action are given by a(ξ⊗ψη)x =
(aξ) ⊗ψ (ηx). We note that if ξ and η are left ψ- and left ω-bounded (here ω is an
fns weight on P ), then ξ ⊗ψ η is left ω-bounded with ∥Lω(ξ ⊗ψ η)∥ ≤ ∥Lψ(ξ)∥∥Lω(η)∥.
Also, if ξ and η are (φ, ψ)- and (ψ, ω)-bounded, then ξ ⊗ψ η is (φ, ω)-bounded with
∥Rφ(ξ ⊗ψ η)∥ ≤ ∥Rφ(ξ)∥∥Rψ(η)∥. The relative tensor product construction is associa-
tive and continuous with respect to the weak containments, i.e., NKP ⪯ NK′

P implies

MHN⊗NKP ⪯ MHN⊗NK′
P , and likewise for the first variable. We note that there is a

canonical isomorphisms MHN⊗NL
2(N)N ∼= MHN via ξ ⊗ψ ψ

1/2x ↔ ξx for ξ ∈ D(H, ψ)
and x ∈ n∗ψ. Likewise ML

2(M)M⊗MHN
∼= MHN via aφ1/2⊗φ ξ ↔ aξ for a ∈ nφ and ξ ∈ H.

The following fact is well-known in the case of finite von Neumann algebras and the
general case is probably also known to the specialists, but the authors did not find it in
literature.

Theorem 1 (cf. [Po1, 1.2.2]). Let (M,φ) and (N,ψ) be von Neumann algebras and MHN

be an M-N bimodule. Then the (φ, ψ)-bounded vectors are dense in H.

Proof. We first prove the theorem assuming thatM is semifinite (but φ need not be a trace).
For this, we claim that for every ξ ∈ H there is a net (ci)i of contractions in M such that
ciξ are right φ-bounded and ciξ → ξ. Indeed, fix an fns trace τ on M and view normal
states on M as τ -measurable operators on L2(M, τ) affiliated with M (see [Ta, XI.2] for
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an account of measurable operators). Thus the vector functional ωξ on M corresponds to
h ∈ L1(M, τ)+ in such a way that ⟨aξ, ξ⟩ = τ(ha) for a ∈M . Similarly, take an increasing
net (φj)j of normal positive functionals on M such that φ = supφj, and denote by kj the
element in L1(M, τ)+ that corresponds to φj. Let cn,j = χ[n−1,∞)(kj)(1 + n−1h)−1/2 ∈ M .
Since φ is faithful, one has cn,j → 1 ultrastrongly. Moreover, the inequality

cn,jhc
∗
n,j = χ[n−1,∞)(kj)

h

1 + n−1h
χ[n−1,∞)(kj) ≤ n2kj

implies that ∥acn,jξ∥ = τ(hc∗n,ja
∗acn,j)

1/2 ≤ nφj(a
∗a)1/2 ≤ n∥aφ1/2∥ for every a ∈ nφ. Thus

we obtain the claim. Since the space D(H, ψ) of left ψ-bounded vectors is dense and is a
left M -module, we see by the claim that the bounded vectors are dense in H.

Now let (M,φ) be an arbitrary von Neumann algebra and denote the modular action by
σ. Let M̃ =M ⋊σR and φ̃ denote the corresponding crossed product and the dual weight.
We will denote by π : M → M̃ the canonical inclusion and by {us : s ∈ R} the unitary
elements in M̃ that implement the modular action. Thus usπ(a)u

∗
s = π(σs(a)) for a ∈ M

and M̃ = (π(M)∪uR)′′. Since M̃ is semifinite, the result of the previous paragraph says that
(φ̃, ψ)-bounded vectors are dense in the relative tensor product H̃ := M̃L

2(M̃, φ̃)M⊗MHN .

We identify H̃ with L2(R,H) where the left M̃ -action is given by (usξ)(t) = ξ(t−s) for s ∈ R
and (π(a)ξ)(t) = σ−1

t (a)ξ(t) for a ∈M ; and the right N -action is given by (ξx)(t) = ξ(t)x
for x ∈ N . For every f ∈ K(R) (compactly supported continuous functions), we define
Lf ∈ B(HN , L

2(R,H)N) by Lfξ = f ⊗ ξ where (f ⊗ ξ)(t) = f(t)ξ. Since {f ∗ ∗ g : f, g ∈
K(R)} has dense span in L2(R), the proof of the theorem will be done once we prove that
L∗
f∗∗gζ ∈ H is (φ, ψ)-bounded for every f, g ∈ K(R) and every (φ̃, ψ)-bounded ζ ∈ H̃. That

L∗
f∗∗gζ is left ψ-bounded is obvious. A direct computation shows that aL∗

f∗∗gζ = L∗
gãζ for

every a ∈M . Here ã =
∫
f(s)aus ds ∈ M̃ . Indeed, for every ξ ∈ H one has

⟨aL∗
f∗∗gζ, ξ⟩ =

∫
⟨ζ(t),

∫
f̄(s)g(t+ s) ds a∗ξ⟩ dt

=

∫∫
f(s)⟨aζ(t− s), g(t)ξ⟩ dt ds = ⟨ãζ, Lgξ⟩.

It follows that ∥aL∗
f∗∗gζ∥ ≤ ∥Lg∥∥Rφ̃(ζ)∥∥ãφ̃1/2∥ = ∥g∥2∥Rφ̃(ζ)∥∥f∥2∥aφ1/2∥ for every

a ∈ nφ, and hence L∗
f∗∗gζ is right φ-bounded also. □

Lemma 2. Let (M,φ) and (N,ψ) be von Neumann algebras and ξ ∈ MHN be a (φ, ψ)-
bounded vector. Then, the completely positive map

θξ : M ∋ a 7→ Lψ(ξ)
∗aLψ(ξ) = Lψ(ξ

∗ × aξ) ∈ N

satisfies ψ ◦ θξ ≤ ∥Rφ(ξ)∥2φ. The corresponding operator

Tφ,ψ(ξ) : L
2(M,φ) ∋ aφ1/2 7→ θξ(a)ψ

1/2 ∈ L2(N,ψ), a ∈ nφ,

is equal to Lψ(ξ)
∗Rφ(ξ). Moreover, for every a ∈ nφ and x ∈ nψ, one has

⟨θξ(a)ψ1/2, ψ1/2x∗⟩ = ⟨aξ, ξx∗⟩ = ⟨Lψ(ξ)∗Rφ(ξ)aφ
1/2, ψ1/2x∗⟩.

In particular, the M-N bimodules MξN and L2(M ⊗θξ N) are isomorphic via the corre-

spondence aξx↔ a⊗θξ ψ
1/2x for a ∈M and x ∈ n∗ψ.
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Proof. That the map is completely positive is clear. For a ∈M , one has

ψ(θξ(a
∗a)) = ψ(Lψ((aξ)

∗ × (aξ))) = ∥aξ∥2 ≤ ∥Rφ(ξ)∥2φ(a∗a).

This proves the first assertion. It follows that for every a ∈ nφ and x, y ∈ nψ, one has
θξ(a) ∈ nψ and

⟨θξ(a)ψ1/2, ψ1/2x∗y⟩ = ⟨aξy∗, ξx∗⟩ = ⟨aξ, ξx∗y⟩ = ⟨Rφ(ξ)aφ
1/2, Lψ(ξ)ψ

1/2x∗y⟩.

Note that n∗ψnψ is L2-dense in nψ. The proof of the last assertion is routine. □

Hence, every M -N bimodule is isomorphic to a direct sum of bimodules of the form
L2(M ⊗θN). To complete the picture, recall from a previous paragraph that if ψ ◦ θ ≤ Cφ
for some constant C > 0 and b ∈ nφ and y ∈ nψ are analytic elements, then ξ = b⊗θ (yψ

1/2)
is (φ, ψ)-bounded. The completely positive map θξ arising from Lemma 2 is related to the
original θ by the relation θξ(a) = y∗θ(b∗ab)y. Indeed, one has

⟨θξ(a)ψ1/2x1, ψ
1/2x2⟩ = ⟨aξx1, ξx2⟩ = ⟨θ(b∗ab)yψ1/2x1, yψ

1/2x2⟩

for every x1, x2 ∈ n∗ψ. Also, it is not difficult to see that the maps arising in Lemma 2 are
compatible with the relative tensor product, as follows.

Lemma 3. Let (M,φ), (N,ψ), and (P, ω) be von Neumann algebras, and ξ ∈ MHN and
η ∈ NKP be bounded vectors. Then, θξ⊗ψη = θη ◦ θξ and Tφ,ω(ξ ⊗ψ η) = Tψ,ω(η)Tφ,ψ(ξ).

3. Mixing bimodules and the Haagerup approximation property

Recall that a von Neumann algebraM is amenable (or injective) if and only if the identity
bimodule ML

2(M)M is weakly contained in the coarse bimodule ML
2(M)⊗L2(M)M . The

coarse bimodule has a very strong mixing property. The precise notion of mixing property
for bimodules has been introduced in [BF] in the case of finite von Neumann algebras under
the name of “C0-correspondences.” There it is proved that a finite von Neumann algebra
M has the HAP if and only if the identity correspondence L2(M) is weakly contained in
a C0-correspondence ([BF, Theorem 3.4]). In this section, we extend this to the general
setting.

Definition 4. Let (M,φ) and (N,ψ) be von Neumann algebras with distinguished fns
weights. An M -N bimodule H is said to be strictly mixing if the family

Hmix = {ξ ∈ H : ξ is (φ, ψ)-bounded and Tφ,ψ(ξ) is compact}

is M -N cyclic in H (i.e., MHmixN has a dense span in H). As we will see in Corollary 8,
the strict mixing property of H does not depend on the choices of fns weights (but the
subset Hmix does).

It is not clear whether Hmix is always a linear subspace, or at least it contains a linear
subspace with the same closed linear span. However, the infinite multiple of H has the
latter property, as we will prove below. Hence, we may assume that H has this property
in all cases which are dealt in this paper.
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Lemma 5 (cf. [BF, Definition 3.1]). Let θ : M → N be a normal completely positive map
such that ψ ◦ θ ≤ Cφ for some constant C > 0 and such that Tθ : L

2(M,φ) → L2(N,ψ)
defined by Tθaφ

1/2 = θ(a)ψ1/2 is compact. Then, the M-N bimodule L2(M⊗θN) is strictly
mixing. Conversely, if H is a strictly mixing M-N bimodule such that MHN

∼=
⊕

κ MHN

for the density character κ of H, then H is isomorphic to a direct sum
⊕

i L
2(M ⊗θi N) of

bimodules as above. In particular, the subset Hmix contains a dense linear subspace of H.

Proof. We will prove that L2(M⊗θN)mix contains a dense linear subspace. We stick to the
notations used in the previous section and put ξ =

∑
k bk ⊗θ (ykψ

1/2) for finite sequences
bk ∈ nφ, yk ∈ nψ of analytic elements. Then, by the remark following Lemma 2, one has

θξ(a)ψ
1/2 =

∑
k,l

y∗kθ(b
∗
kabl)ylψ

1/2 =
∑
k,l

y∗kJψσ
ψ
i/2(yl)

∗Jψθ(b
∗
kabl)ψ

1/2

=
∑
k,l

y∗kJψσ
ψ
i/2(yl)

∗JψTθb
∗
kJφσ

φ
i/2(bl)

∗Jφaφ
1/2.

Since Tθ is compact, the operator Tφ,ψ(ξ) =
∑

k,l y
∗
kJψσ

ψ
i/2(yl)

∗JψTθb
∗
kJφσ

φ
i/2(bl)

∗Jφ is also.

Now let {ξi : i ∈ κ} be an M -N cyclic family in Hmix and Ki := MξiN ⊂ H. Then, H
is isomorphic to a subbimodule of

⊕
Ki, and Ki

∼= L2(M ⊗θξi
N) for each i by Lemma 2.

Since H has infinite multiplicity, H ∼= H⊕Ki for each i and H⊕
⊕

iKi
∼=

⊕
iKi. It follows

that H ∼=
⊕

i(H ⊕ Ki) ∼=
⊕

iKi. Note that for any finite sequence ξi ∈ (Ki)mix, one has∑
i ξi ∈ (

⊕
iKi)mix, since Tφ,ψ(

∑
i ξi) =

∑
i Tφ,ψ(ξi). □

Although it will not be used, we note the following fact. The converse is not clear.

Lemma 6 (cf. [PT, Definition 2.3]). A strictly mixing M-N bimodule H is mixing in the
sense that ⟨anξxn, ξ⟩ → 0 for any ξ ∈ H and any bounded nets (an)n in M and (xn)n in
N , one of which is ultraweakly null.

Proof. Since (an)n and (xn)n are bounded nets, we may assume that ξ ∈ Hmix. Given
ε > 0, take p ∈ nφ and q ∈ nψ such that ∥pξ − ξ∥ + ∥ξ − ξq∗∥ < ε. Then, (anpφ

1/2)n and
(ψ1/2q∗x∗n)n are bounded nets respectively in L2(M) and L2(N), one of which is weakly
null. Hence ⟨anpξxn, ξq∗⟩ = ⟨Tφ,ψ(ξ)anpφ1/2, ψ1/2q∗x∗n⟩ → 0, by the strict mixing property.
Since ε > 0 was arbitrary, one concludes that ⟨anξxn, ξ⟩ → 0. □
Proposition 7. Let (M,φ), (N,ψ), and (P, ω) be von Neumann algebras. Then the relative
tensor product bimodule MHN⊗NKP is strictly mixing if one of MHN and NKP is strictly
mixing.

Proof. This follows from Theorem 1 and Lemma 3. □
Corollary 8. The strict mixing property of an M-N bimodule H does not depend on the
choices of fns weights.

Proof. Let H be a strictly mixing (M,φ)-(N,ψ) bimodule, and let φ0 be another fns weight
on M . Let us view L2(M) as an (M,φ0)-(M,φ) bimodule. Then by Proposition 7, the
relative tensor product ML

2(M)M⊗MHN is a strictly mixing (M,φ0)-(N,ψ) bimodule, but
it is canonically isomorphic to H as an M -N bimodule. So the strict mixing property does
not depend on the choice of φ, and similarly neither on ψ. □



HAAGERUP APPROXIMATION PROPERTY VIA BIMODULES 7

There are several equivalent definitions of the Haagerup approximation property (HAP)
for a von Neumann algebra M , but in the end they are equivalent to that the finite von
Neumann algebra p(M ⋊σ R)p has the HAP for a modular action σ and a finite projection
p with full central support (see [CO+, CS1, CS2, Jo, OT1, OT2]). We recall that such
p(M ⋊σ R)p is amenably equivalent (in the sense of Anantharaman-Delaroche [A-D]) to
the original M . Here we say an M -N bimodule H is left amenable if the identity bimodule

ML
2(M)M is weakly contained in MHN⊗NH̄M ; and M and N are amenably equivalent

if there exist a left amenable M -N bimodule and a left amenable N -M bimodule. See
[A-D] for the details. In fact, it is not too difficult to see that, for any crossed product
M̃ = M ⋊σ G of a von Neumann algebra M by an amenable locally compact group G,
both ML

2(M̃)M̃ and M̃L
2(M̃)M are left amenable. We note that the relative tensor product

of two left amenable bimodules is again left amenable by continuity ([A-D, 2.13]). The
following theorem is reminiscent of the fact ([EL]) that a von Neumann algebra M is
semi-discrete if and only if it is amenable: ML

2(M)M ⪯ ML
2(M)⊗ L2(M)M .

Theorem 9. For a von Neumann algebra M , the following are equivalent.

(1) M has the HAP.
(2) The identity bimodule L2(M) is weakly contained in a strictly mixing M-M bimodule.
(3) There are a von Neumann algebra N and a strictly mixing M-N bimodule which is left

amenable.

Proof. Proposition 7 implies the equivalence (2) ⇔ (3), as well as invariance of (3) under
the amenable equivalence. Now the proof of (1) ⇔ (3) reduces to the case of finite von
Neumann algebras, but in which case it is done by [BF, Theorem 3.4]. □

4. Locally compact quantum group von Neumann algebras

In this section, we study the relationship between the unitary representations of a locally
compact quantum group G and the bimodules of the group von Neumann algebra LG.

For a locally compact group G, there are the function algebras C0(G) ⊂ L∞(G) and the
group operator algebras C∗

λ(G) ⊂ LG. A locally compact quantum group G also comes with
pairs of a ultraweakly dense C∗-subalgebra of a von Neumann algebra, C0(G) ⊂ L∞(G)

and C∗
λ(G) ⊂ LG. The latter is often written as C0(Ĝ) ⊂ L∞(Ĝ). See [Ku2, KV] for

a comprehensive treatment of theory of locally compact quantum groups. We denote by
W ∈M(C0(G)⊗C∗

λ(G)) the multiplicative unitary of G, by φ the left Haar weight (which
is unique up to a scalar multiple) on L∞(G), and by φ̂ the dual weight on LG. The

modular conjugations are written respectively by J and Ĵ . The map R̂ : a 7→ Ja∗J defines
an anti-∗-automorphism on C∗

λ(G) and is called the unitary antipode ([Ku2, 5.3]).
The map λ from L1(G) := L∞(G)∗ to C∗

λ(G), given by λ(ω) = (ω ⊗ id)(W ), has a
dense range and is called the left regular representation. More generally, a unitary rep-
resentation of G (or a unitary corepresentation of C0(G)) on HU is a unitary element
U ∈ M(C0(G)⊗K(HU)) which satisfies (∆⊗ id)(U) = U13U23 (see [Ku2, Definition 3.5]).
There exist the universal group C∗-algebra C∗

u(G) and the universal unitary representation
Wu ∈ M(C0(G) ⊗ C∗

u(G)), with λu : L
1(G) → C∗

u(G) given by λu(ω) = (ω ⊗ id)(Wu) (see
[Ku1]). Thus, there is a bijective correspondence between the unitary representations U of
G and the ∗-representations ϕU of C∗

u(G) onHU , which is given by ϕU(λu(ω)) = (ω⊗id)(U),
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or equivalently U = (id⊗ϕU)(Wu) (see [Ku1, Proposition 5.2]). A coefficient of U is defined
to be fω ∈ L∞(G), which is given by fω = (id ⊗ ω)(U) for ω ∈ B(HU)∗. When ω = ωη
is the vector functional associated with η ∈ HU , we simply write fη = fω. The LG-LG
bimodule associated with a unitary representation U is the bimodule H := L2(G) ⊗ HU

which is given by the tensor product representation W ⊤⃝U := W12U13 of G on L2(G)⊗H.
Namely, λ(ω) ∈ LG acts on H from the left by

ϕW ⊤⃝U(λu(ω)) = (ω ⊗ id⊗ id)(W ⊤⃝ U) = U(λ(ω)⊗ 1)U∗

and from the right by Ĵλ(ω)∗Ĵ ⊗ 1. Let V be another unitary representation of G. Then,
U is said to be weakly contained in V (denoted by U ⪯ V ) if ϕU is weakly contained in
ϕV , i.e., if the identity map extends to a continuous ∗-homomorphism σ from ϕV (C

∗
u(G))

to ϕU(C
∗
u(G)), which will satisfy (id⊗ σ)(V ) = U .

Proposition 10. Let U and V be unitary representations of G such that U ⪯ V . Then
one has LG(L

2(G)⊗HU)LG ⪯ LG(L
2(G)⊗HV )LG.

The following lemma will be used in the proof and later. The operator Tφ̂,φ̂(ξ) appearing
in Lemma 2 is simply written as Tφ̂(ξ).

Lemma 11. Let ζ = ξ ⊗ η ∈ LG(L
2(G)⊗HU)LG be a simple tensor such that ξ is (φ̂, φ̂)-

bounded. Then, ζ is (φ̂, φ̂)-bounded and satisfies Tφ̂(ζ) = Tφ̂(ξ)fη.

Proof. We recall here the definition of the dual weight φ̂. Let I be the collection of
ω ∈ L1(G) such that there is C > 0 satisfying |ω(x∗)| ≤ C∥xφ1/2∥ for x ∈ nφ. By Riesz
representation theorem, there is ξ(ω) ∈ L2(G) such that ω(x∗) = ⟨ξ(ω), xφ1/2⟩ for x ∈ nφ.
Note that I is a left L∞(G)-module and one has ξ(aω) = aξ(ω) for every a ∈ L∞(G) and
ω ∈ I. The dual weight φ̂ is defined in such a way that every ω ∈ I satisfies λ(ω) ∈ nφ̂
and λ(ω)φ̂1/2 = ξ(ω) ([Ku2, Proposition 5.22]). It follows that, for every x ∈ nφ̂, one has

⟨λ(ω)ζ, ζx∗⟩ = ⟨(ω ⊗ id⊗ id)(W12U13)(ξ ⊗ η), ξx∗ ⊗ η⟩
= ⟨(ω ⊗ id)(W (fη ⊗ 1))ξ, ξx∗⟩
= ⟨λ(fηω)ξ, ξx∗⟩ = ⟨Rφ̂(ξ)ξ(fηω), Lφ̂(ξ)φ̂

1/2x∗⟩
= ⟨Tφ̂(ξ)fηλ(ω)φ̂1/2, φ̂1/2x∗⟩.

Since λ(I) is dense in nφ̂, this proves the lemma. □
Proof of Proposition 10. Let a simple tensor ζ = ξ⊗ η ∈ L2(G)⊗HU such that ξ is (φ̂, φ̂)-
bounded and ∥ξ∥ = ∥η∥ = 1 be given. Since ϕU is weakly contained in ϕV , there is a net
(ωi)i of normal states on B(HV ) such that ωi ◦ ϕV → ωη ◦ ϕU pointwise on C∗

u(G). Then,
one has fωi → fω ultraweakly, since for every ξ, η ∈ L2(G), one has

⟨fωξ, η⟩ = (ωξ,η ⊗ (ω ◦ ϕU))(Wu) = lim
i
(ωξ,η ⊗ (ωi ◦ ϕV ))(Wu) = lim

i
⟨fωiξ, η⟩.

Here note that (ωξ,η ⊗ id)(Wu) ∈ C∗
u(G). We may assume that ωi =

∑n(i)
j=1 ωηi,j for some

ηi,j ∈ HV . Let ζi,j = ξ⊗ηi,j ∈ L2(G)⊗HV . Then, by Lemmas 2 and 11, for every a, x ∈ nφ̂,
one has

⟨aζ, ζx∗⟩ = ⟨Tφ̂(ζ)aφ̂1/2, φ̂1/2x∗⟩ = ⟨Tφ̂(ξ)fηaφ̂1/2, φ̂1/2x∗⟩
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= limi

∑n(i)
j=1⟨Tφ̂(ξ)fηi,jaφ̂1/2, φ̂1/2x∗⟩

= limi

∑n(i)
j=1⟨aζi,j, ζi,jx∗⟩.

Since max{|⟨aζ, ζx∗⟩|, |
∑n(i)

j=1⟨aζi,j, ζi,jx∗⟩|} ≤ ∥Tφ̂(ξ)∥∥aφ̂1/2∥∥φ̂1/2x∗∥, the above equal-
ity in fact holds for all a, x ∈ LG. This means that ωζ ◦ πL2(G)⊗HU

is continuous on
πL2(G)⊗HV

(LG ⊙ LGop). Since such states ωζ form a cyclic family, we conclude that
L2(G)⊗HU ⪯ L2(G)⊗HV . □

We will prove the partial converse to Proposition 10. For this, we have to consider the
comultiplication ∆̂max : C

∗
u(G) → C∗

u(G) ⊗max C
∗
u(G) with respect to the maximal tensor

product. Let πi : C
∗
u(G) →M(C∗

u(G)⊗maxC
∗
u(G)) be the embeddings given by π1(a) = a⊗1

and π2(a) = 1⊗ a. Then, we consider the unitary representation

X := (id⊗ π2)(Wu)(id⊗ π1)(Wu) ∈M(C0(G)⊗ (C∗
u(G)⊗max C

∗
u(G))).

Since the second variables of (id ⊗ π1)(Wu) and (id ⊗ π2)(Wu) commute, X is indeed a

unitary representation. We put ∆̂max := ϕX . Namely, ∆̂max is the ∗-homomorphism that
satisfies (id⊗ ∆̂max)(Wu) = X. The coassociativity of ∆̂max follows from

(id⊗ (∆̂max ⊗ id))(X) = (id⊗ (∆̂max ⊗ id))((id⊗ π2)(Wu) · (id⊗ π1)(Wu))

= (id⊗ π′
3)(Wu) · (id⊗ π′

2)(Wu)(id⊗ π′
1)(Wu)

= (id⊗ (id⊗ ∆̂max))(X).

Here π′
i : C

∗
u(G) → M(C∗

u(G) ⊗max C∗
u(G) ⊗max C∗

u(G)) denote the obvious embeddings.

Moreover, for the quotient map q : C∗
u(G)⊗maxC

∗
u(G) → C∗

u(G)⊗C∗
u(G), the map q ◦ ∆̂max

is equal to the usual comultiplication ∆̂u on C∗
u(G) (see [Ku2, p.311]).

Let H be an LG-LG bimodule with the ∗-representation πH : LG⊙ LGop → B(H). We
define the unitary representation UH associated with H to be the one given by

ϕUH = πH ◦ (λ⊗ λop) ◦ ∆̂max : C
∗
u(G) → B(H).

Here we identify the ∗-homomorphisms from C∗
u(G) with the corresponding representations

from L1(G), and define λop : C∗
u(G) → C∗

λ(G)
op by λop(ω) := R̂(λ(ω))op, where R̂ is the

unitary antipode. Let us define π
(i)
H : C∗

u(G) → B(H) by π
(1)
H (λu(ω)) = πH(λ(ω) ⊗ 1) and

π
(2)
H (λu(ω)) = πH(1⊗ λop(ω)). Then, it follows from the definition that

UH = (id⊗ π
(2)
H )(Wu)(id⊗ π

(1)
H )(Wu) ∈M(C0(G)⊗ C∗(πH(C

∗
λ(G)⊙ C∗

λ(G)
op))).

Proposition 12. If H and K are LG-LG bimodules such that H ⪯ K, then UH ⪯ UK.

Proof. This is obvious from the definition. □

The conjugation representation Vc := UL2(G) is the one that is associated with the identity

bimodule of LG and is given by Vc = (1 ⊗K)W (1 ⊗K)∗W , where K = ĴJ . Indeed, one

has (id⊗ π
(1)

L2(G))(Wu) = W and (id⊗ π
(2)

L2(G))(Wu) = (1⊗K)W (1⊗K)∗, since

(ω ⊗ π
(2)

L2(G))(Wu) = ĴR̂(λ(ω))∗Ĵ = Kλ(ω)K∗ = (ω ⊗ id)((1⊗K)W (1⊗K)∗)
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for every ω ∈ L1(G). We say a locally compact quantum groupG is strongly inner amenable
(in the locally compact setting, see [LP]) if the trivial representation 1 is weakly contained
in Vc. This property is formally stronger than the inner amenability as introduced in
[GN-I]. All inner amenable locally compact groups, strongly amenable locally compact
quantum groups, and unimodular discrete quantum groups are inner amenable. Since it is
irrelevant to the present work, we omit the rather routine proofs of “strong amenability ⇒
strong inner amenability ⇒ inner amenability.”

Proposition 10 implies the well-known fact ([BCT]) that if G is strongly amenable (i.e.,
1 ⪯ W ), then LG is amenable (i.e., LGL

2(G)LG ⪯ LG(L
2(G) ⊗ L2(G))LG). Conversely,

if LG is amenable, then Vc ⪯ W by Proposition 12. Hence if G is moreover strongly
inner amenable, then G is strongly amenable (cf. [LP]). It would be interesting to know
whether every discrete quantum group is strongly inner amenable (cf. [To]), and whether
the property Vc ⪯ W is equivalent to amenability of LG.

Proposition 13. The following hold.

(1) Let U be a unitary representation of G on H and H = L2(G) ⊗HU be the associated
LG-LG bimodule. Then, the unitary representation UH associated with H is equal to
Vc ⊤⃝ U . In particular, if G is strongly inner amenable, then U ⪯ UH.

(2) Let H be an LG-LG bimodule and UH be the associated unitary representation of G on
H. Then, the LG-LG bimodule L2(G) ⊗H associated with UH is unitarily equivalent
to ∆̂(LG)(H⊗ L2(G))∆̂(LG).

Proof. Ad(1): A routine computation shows

UH = (id⊗ π
(2)
H )(Wu)(id⊗ π

(1)
H )(Wu) = ((1⊗K)W (1⊗K)∗)12 · (W ⊤⃝ U)

= ((1⊗K)W (1⊗K)∗W )12U13 = Vc ⊤⃝ U.

This proves the first assertion. If 1 ⪯ Vc, then U = 1 ⊤⃝ U ⪯ Vc ⊤⃝ U .

Ad(2): To ease the notation, write Ui = (id⊗π(i)
H )(Wu) and πH(a⊗xop) = π1(a)π2(x

op),
and denote by Σ the flip either on L2(G)⊗L2(G) or on H⊗L2(G). Note that UH = U2U1

and that ∆̂(a) = ΣW (a⊗ 1)W ∗Σ for a ∈ LG ([Ku2, Theorem 5.17]). Thus for the unitary
operator Y := U2Σ from H⊗ L2(G) onto L2(G)⊗H, one has

Y ∗πL2(G)⊗H(a⊗ 1)Y = Σ∗U∗
2UH(a⊗ 1)U∗

HU2Σ = Σ∗U1(a⊗ 1)U∗
1Σ = (π1 ⊗ id)(∆̂(a)).

We abuse the notation and view π
(2)
H as a ∗-homomorphism from LG into B(H), which is

given by π
(2)
H (x) = π2(R̂(x)

op). The right action of LG on L2(G) is denoted by ρ(yop) =

Ĵy∗Ĵ . Note that

(π2 ⊗ ρ)(xop ⊗ yop) = π
(2)
H (Jx∗J)⊗ Ĵy∗Ĵ = (π

(2)
H ⊗ id)((J ⊗ Ĵ)(x⊗ y)∗(J ⊗ Ĵ)).

Since (Ĵ ⊗ J)W (Ĵ ⊗ J) = W ∗ ([Ku2, Section 5.3]), it follows that

Y ∗πL2(G)⊗H(1⊗ xop)Y = Σ∗U∗
2 (Ĵx

∗Ĵ ⊗ 1)U2Σ = (π
(2)
H ⊗ id)(ΣW ∗(Ĵx∗Ĵ ⊗ JJ)WΣ)

= (π
(2)
H ⊗ id)((J ⊗ Ĵ)∆̂(x∗)(J ⊗ Ĵ)) = (π2 ⊗ ρ)(∆̂(x)op).

This proves the assertion. □
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Recall from [DF+] that a unitary representation U is said to be mixing if the coefficient
fω = (id⊗ ω)(U) belongs to C0(G) for every ω ∈ B(HU)∗.

Proposition 14. If U is a mixing unitary representation of a locally compact quantum
group G, then the LG-LG bimodule L2(G) ⊗HU is strictly mixing. Conversely, if H is a
strictly mixing LG-LG bimodule, then the unitary representation UH is mixing.

Proof. Let ω ∈ I (see Proof of Lemma 11) be an element which is analytic with respect
to t 7→ ρt(ω) := ω(δ−itτ−t( · )) (see [Ku2, 5.22] or [KV, 8.7] for the notation). Then, the

vector ξ := λ(ω)φ̂1/2 is bounded with Lφ̂(ξ) = λ(ω) ∈ C∗
λ(G) and Rφ̂(ξ) = Ĵλ(ρi/2(ω))

∗Ĵ ∈
ĴC∗

λ(G)Ĵ . Hence, by Lemma 11, the vector ζ := ξ ⊗ η is bounded for every η ∈ HU and
satisfies

Tφ̂(ζ) = Lφ̂(ξ)
∗Rφ̂(ξ)fη ∈ C∗

λ(G) · ĴC∗
λ(G)Ĵ · C0(G) ⊂ K(L2(G)),

where the last inclusion is by [BSV, Lemma 5.5]. Since such ζ’s have a dense span, this
proves that L2(G)⊗HU is strictly mixing.

For the converse, it suffices to show (id⊗ ωaη,ηx∗)(UH) ∈ C0(G) for every η ∈ Hmix and
a, x ∈ nφ. Let us fix ξ ∈ L2(G) and we will compute

⟨(id⊗ ωaη,ηx∗)(UH)ξ, ξ⟩ = ⟨(id⊗ π
(1)
H )(Wu)(ξ ⊗ aη), (id⊗ π

(2)
H )(W ∗

u )(ξ ⊗ ηx∗)⟩.
Let ζ ∈ L2(G) be given and consider Lζ : H ∋ η′ 7→ ζ ⊗ η′ ∈ L2(G)⊗H. Then,

L∗
ζ(id⊗ π

(2)
H )(W ∗

u )(ξ ⊗ ηx∗) = π
(2)
H ((ωξ,ζ ⊗ id)(W ∗

u ))ηx
∗ = ηx∗R̂((ωξ,ζ ⊗ id)(W ∗))

= Lφ̂(η)ĴR̂((ωξ,ζ ⊗ id)(W ∗))∗Ĵ φ̂1/2x∗

= Lφ̂(η)K(ωξ,ζ ⊗ id)(W ∗)K∗φ̂1/2x∗

= L∗
ζ(1⊗ Lφ̂(η)K)W ∗(1⊗K)∗(ξ ⊗ φ̂1/2x∗).

Since ζ ∈ L2(G) was arbitrary, it follows that

(id⊗ π
(2)
H )(W ∗

u )(ξ ⊗ ηx∗) = (1⊗ Lφ̂(η)K)W ∗(1⊗K)∗(ξ ⊗ φ̂1/2x∗).

A similar but much easier computation shows

(id⊗ π
(1)
H )(Wu)(ξ ⊗ aη) = (1⊗Rφ̂(η))W (ξ ⊗ aφ̂1/2).

Therefore, by Lemma 2,

⟨(id⊗ ωaη,ηx∗)(UH)ξ, ξ⟩ = ⟨(1⊗K)W (1⊗K∗Tφ̂(η))W (ξ ⊗ aφ̂1/2), (ξ ⊗ φ̂1/2x∗)⟩.
Since ξ ∈ L2(G) was arbitrary, this implies

(id⊗ ωaη,ηx∗)(UH) = (id⊗ ωφ̂1/2x∗,aφ̂1/2)((1⊗K)W (1⊗K∗Tφ̂(η))W ).

Since Tφ̂(η) is compact, we conclude that (id⊗ωaη,ηx∗)(UH) ∈ C∗{(id⊗ω)(W ) : ω} = C0(G).
This finishes the proof of the converse. □

Recall from [DF+] that a locally compact quantum group is said to have the Haagerup
property if the trivial unitary representation 1 is weakly contained in a mixing unitary
representation. The following theorem extends the same result for discrete quantum groups
in [DF+, Theorems 7.4 and 7.7].
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Theorem 15. Let G be a locally compact quantum group. If G is has the Haagerup
property, then LG has the HAP. Conversely, if G is strongly inner amenable and LG has
the HAP, then G has the Haagerup property.

Proof. First suppose that G has the Haagerup property, i.e., there is a mixing unitary rep-
resentation U such that 1 ⪯ U . Then, LGL

2(G)LG ⪯ LG(L
2(G)⊗HU)LG by Proposition 10,

but the latter bimodule is strictly mixing by Proposition 14. Now, Theorem 9 applies and
we conclude that LG has the HAP. Conversely, suppose that LG has the HAP. Then by
Theorem 9 there is a strictly mixing bimodule H such that LGL

2(G)LG ⪯ LGHLG. By
Proposition 14, the associated unitary representation UH is mixing and, by Proposition 12,
it satisfies Vc ⪯ UH. Hence, if G is moreover strongly inner amenable, then the mixing
representation UH weakly contains the trivial representation. □

While it may be true that the HAP (resp. amenability) of LG implies the Haagerup
property (resp. amenability) of G for discrete quantum groups, this need not be true for
general locally compact quantum groups. For example, a simple connected higher rank Lie
group, such as SL(3,R), has a type I and hence amenable group von Neumann algebra, but
it does not have the Haagerup property because of Kazhdan’s property (T) (see [CC+]).
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