Excretion of polycyclic aromatic hydrocarbon metabolites (OH-PAHs) in cattle urine in Ghana

Nesta Bortey-Sam¹, Yoshinori Ikenaka¹,², Osei Akoto³, Shouta M.M. Nakayama¹, Jemima Marfo¹, Aksorn Saengtienchai¹,⁴, Hazuki Mizukawa⁵, Mayumi Ishizuka¹*

¹Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo, 060–0818, Japan

²Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

³Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

⁴Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand

⁵Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita ku, Sapporo 060–0818, Japan

*Corresponding author: Mayumi Ishizuka, e–mail: ishizum@vetmed.hokudai.ac.jp

Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita–ku, Sapporo, 060–0818, Japan. Tel: +81–11–706–6949; Fax: +81–11–706–5105
Abstract

Previous studies of polycyclic aromatic hydrocarbons (PAHs) in particulate matter, soils and livers of wild rats indicated that the city centre of Kumasi, Ghana has been severely polluted with high cancer potency. Cattle urine were therefore collected from Kumasi (urban) and Offinso (rural), Ghana: to determine concentrations of urinary PAH metabolites (OH-PAHs); and find their association with sex; and to estimate exposure of cattle to PAHs from the different sites. From the results, geometric mean concentrations (adjusted by specific gravity), GMSG, showed that 2-OHNaphthalene (2-OH Nap) was the most abundant OH-PAH in cattle urine from all study sites, and naphthalene-containing-mothballs might have contributed significantly to the levels. There was no significant difference between urinary OH-PAHs concentrations in cattle from urban and rural sites except for 2-OHPhe and 4-OHPhe, and similar to urban areas, rural sites could also be polluted with PAHs. GMSG of 2-OHNap in cattle urine in Kokote (21.9 ± 6.51 ng/mL; a rural area), was significantly higher compared to the other sites followed by Oforikrom (4.15 ± 4.37 ng/mL; urban). The GM_{SG} concentration (ng/mL) of the sum of OH-PAHs decreased in the order, Kokote (44.7) > Oforikrom (7.87) > Saboa (6.98) > Santasi (6.68) > and Twumasen Estate (5.23). The high concentrations of urinary 2-OHNap, 2-3-OHFlu, 2-OHPhe, 3-OHPhe and 4-OHPhe in Kokote indicated high PAHs exposure to cattle in this area or different/specific source of PAHs exposure. GM_{SG} of 2-OHNap was significantly higher in male cattle compared to females while 1-9-OHPhe was significantly higher in females.

Capsule:
PAH metabolites were measured in cattle urine in urban and rural areas in Ghana; 2- \textit{OH}Naphthalene (2-OHNap) was the most abundant PAH metabolites.

\textbf{Keywords:} OH-PAHs; Kumasi; Metabolites; Cattle; Urine

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are pollutants formed during incomplete combustion of organic materials. They are found in vehicle exhaust, wood and cigarette smoke, and also in grilled foods. Human and animal exposure to PAHs occur mainly through inhalation of contaminated air or ingestion of soil, food and/or drinking contaminated water (Barranco et al., 2004; Dissanayake and Galloway, 2004). According to the Agency for Toxic Substances and Disease Registry’s (ATSDR, 2013) priority list of hazardous chemicals, PAHs were classified as the 9th most hazardous chemical. In humans and animals, PAHs are metabolized by cytochrome P450 enzymes and excreted in urine. One of the major metabolites is monohydroxylated PAH (OH-PAHs) (Burczynski et al., 1998) and urinary levels of 1-hydroxypyrene has been used as biomarker of PAHs exposure (Bouchard and Viau, 1999; Jongeneelen, 2001). However, since ratios of different PAHs may vary depending on the source and personal enzymatic capacity, concentration profiles of multiple OH-PAHs biomarkers are necessary and required to assess the environmental exposure risk. Urinary metabolites of naphthalene, fluorene and phenanthrene are also commonly used as biomarkers to assess the exposure level and environmental risk (Li et al., 2008; Fan et al., 2012; 2012b).
The assessment of health risk to humans exposed to PAHs is primarily based on results from animal studies, which indicated that PAHs can produce carcinogenic and mutagenic effects. Recent studies also indicated that some PAH metabolites have strong correlation with atherosclerosis and cardiovascular diseases (Xu et al., 2010), and exposure of rats and mice to naphthalene caused nasal and bronchiolar tumors, respectively (NTP, 1992; 2000).

As a developing country, the economic and population growth rates in Ghana have seen tremendous increases over the past few years. The growing rate of industrialization is gradually leading to contamination and deterioration of the environment and pollution is likely to reach disturbing levels (Bortey-Sam et al., 2014). Studies by Bortey-Sam et al. (2013; 2014; 2015) in particulate matter (PM10) and soils indicated that the city centre of Kumasi, Ghana has been polluted with PAHs when compared with recommended levels, and fuel and wood/grass combustion were the dominant sources. The total benzo(a)pyrene equivalent concentration and estimated carcinogenicity of PAHs in PM10 and soil from the city centre was approximately 18 and 150 times higher, respectively, as compared to a pristine site. Rats were therefore used as sentinels to measure the environmental pollution state, and higher levels of PAHs were detected in the livers of wild rats in the city centre of Kumasi. Naphthalene was detected in 80% of those samples, and levels of phenanthrene and pyrene (the first and second most abundant, respectively) were significantly higher than other PAHs measured (Bortey-Sam et al., 2015b).

Based on the high levels and cancer potency of PAHs in PM10, soils and the levels found in livers of wild rats (Bortey-Sam et al. 2013; 2014; 2015; 2015b), cattle urine was collected because cattle is known to excrete large amount of PAH metabolites due to high
intake of the parent compound through feed or inhalation (Saengtienchai et al., 2014). PAHs in the atmosphere are known to settle in soil (Rey-Salgueiro et al. 2008) and this could increase the levels of exposure in Kumasi, Ghana, because these free-range cattle also pick food and/or water from the ground. Urinary levels of PAHs could be widely used as biological indicator of exposure (Jongeneelen, 2001), and there is limited/no data from literature that addresses the excretory levels of OH-PAHs in cattle in Ghana. The objectives of the present study were therefore: to determine the concentrations of OH-PAHs in cattle urine in Kumasi (urban) and Offinso (rural), Ghana; find the association between urinary OH-PAHs concentrations and sex; and to estimate cattle’s exposure to PAHs from the different sites.

2. Materials and methods

2.1. Sampling

In August 2014, urine samples of healthy cattle (West African Shorthorn) were randomly collected from 5 communities in Kumasi and Offinso, both in the Ashanti Region of Ghana. Offinso is about 33 km from the city centre of Kumasi (Fig. 1). Samples were collected from Oforikrom and Santasi in Kumasi (urban), which are 5.1 and 3.5 km from the city centre, respectively (Fig. 1), where previous studies reported high levels of PAHs in PM10, soils and livers of wild rats (Bortey-Sam et al., 2013; 2014; 2015; 2015b). On the other hand, the three sites in Offinso (Twumasen Estate, Saboa and Kokote) selected for cattle urine sampling (Fig. 1) are in rural and agricultural areas where bush burning is rampant and the use and sometimes abuse of pesticides such as carbaryl (1-naphthyl-N-methylcarbamate), which could be metabolized to 1-hydroxy naphthalene, was possible...
(Meeker et al., 2007; Orjuela et al., 2012). In addition, due to the lack of background urine and interferences during OH-PAHs quantification, 500 mL of cattle urine (blank stock) was collected from Hokkaido University School farm. Hokkaido University is a public university located in Sapporo, Japan, and because of the low vehicular movement and industrial activities around the farm, PAHs exposure from point sources were assumed to be negligible. However, because cattle could be exposed to PAHs through feed and/or inhalation the sample collected was measured several times to confirm levels of OH-PAHs.

From the sample sites in Ghana, spot urine (n = 95; with 30 males and 65 females) were collected, transferred into labelled corning tubes (Corning Incorporated, New York, USA) and stored at −20 °C in the Department of Chemistry, Kwame Nkrumah University Science and Technology (KNUST), Ghana. Of the 5 sites, only ages of some cattle in 2 sites (Twumasen Estate and Saboa) were obtained from the herdsmen. The average ages (ranges) of cattle were 2.9 ± 1.0 years (1-4.5 years) in Twumasen Estate and 4.2 ± 2.9 years (1-12 years) in Saboa, respectively. Samples were later transported to the Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Japan where they were stored at −30 °C until analysis (quarantine number for importing is 26 douken 383).

2.2. Sample extraction and analysis

20 µL each of β-glucuronidase (bovine liver, type B-1; 1240 U/mg; Sigma Aldrich) and arylsulfatase (limpets Type V; 34 units/mg; Sigma Aldrich) enzymes, and 5 mL of 0.1 M sodium acetate buffer (pH 5.6) were added to 5 mL urine sample after spiking with three PAH internal standards (13C6-2-OHFluorene, 3-OHPhenanthrene-d9, and 13C6-
1OHPyrene). The pH of sample was adjusted to 5.5 using 1 M acetic acid (Wako Pure
Chemicals, Osaka, Japan) and incubated overnight at 37 °C. The sample was diluted with 4
mL of Milli-Q water and extracted twice (liquid-liquid extraction) with 10 mL each of n-
pentane (Kanto Chemical Corp., Tokyo, Japan) by shaking for 1 h. To reduce the
interference of sulfur metabolites, the combined extracts were washed with 2 mL of 1 N
AgNO₃ solution (Wako Pure Chemicals, Osaka, Japan), concentrated to 50-100 µL,
redissolved to 0.5 mL using methanol and filtered (0.20 µm DISMIC-13JP membrane filter,
ADVANTEC, Toyo Roshi Kaisha Ltd., Japan) prior to instrumental analysis. All sample
preparation steps were performed in darkness (by covering tubes completely with
aluminum foil) to avoid possible photodegradation of target analytes. A total of 13 OH-
PAHs; 2-hydroxynaphthalene (2-OHNap), 2-hydroxyfluorene (2-OHFlu), 3-
hydroxyfluorene (3-OHFlu), 9-hydroxyfluorene (9-OHFlu), 1-hydroxyphenanthrene (1-
OHPhe), 2-hydroxyphenanthrene (2-OHPhe), 3-hydroxyphenanthrene (3-OHPhe), 4-
hydroxyphenanthrene (4-OHPhe), 9-hydroxyphenanthrene (9-OHPhe), 1-hydroxypyrene
(1-OHPyr), 6-hydroxychrysene (6-OHChry), 3-hydroxybenzo(e)pyrene (3-OHBeP) and 9-
hydroxybenzo(a)pyrene (9-OBaP), were analyzed in each sample. The standards (purity ≥
98%) were purchased from Cambridge Isotope Laboratories Inc. (Andover, MA, USA) and
Toronto Research Chemical Inc. (Brisbane Road, North York, Canada). Difficulties were
often associated with the separation of 1-OHPhe and 9-OHPhe, for this reason, the sum of
these isomers was used as an abbreviation, 1-9-OHPhe. Similarly, 2-3-OHFlu was used as
sum of 2-OHFlu and 3-OHFlu. All results were adjusted by specific gravity and expressed
in ng/mL.
A Shimadzu 8030 triple quadrupole mass spectrometer, upgraded to 8040 with UF lens, (ESI MS-MS; Shimadzu, Kyoto, Japan), equipped with a Prominence UFLC system (Shimadzu, Kyoto, Japan) was used for analysis. Chromatographic separation was achieved using an Agilent Eclipse PAH column (150 mm × 2.1 mm, 3.5 μm). The mobile phases were methanol:water (2:3, v:v) (A) and methanol (B), pumped at a flow rate of 250 μL/min. The mobile phase gradient was maintained as follows: 0.0−2.0 min, 5% B; 2.0−20 min, 40% B; 20−25 min, 40% B; 25−30 min, 95% B; 30−35 min, 95% B; 35−35.01 min, 5% B. Target compounds were determined by multiple-reaction monitoring (MRM) in the negative ionization mode.

2.3. Specific gravity (SG) of cattle urine

To compensate for variations in urine dilution, urinary OH-PAH concentrations were adjusted by specific gravity (SG). Urinary SG was measured by a hand refractometer (ATAGO, PAL-095, Tokyo, Japan). Obtained mean and ranges of SG in urine of cattle in Oforikrom (1.013; [1.004-1.029]), Santasi (1.035; [1.03-1.041]), Twumasen Estate (1.035; [1.028-1.04]), Saboa (1.036; [1.026-1.049]) and Kokote (1.037; [1.029-1.042]) were used to adjust urinary OH-PAHs concentrations as illustrated by Nermell et al (2008). The correction formula applied to each urine concentration was as follows:

\[
SG_{\text{corrected concentration}} = \text{urinary OH–PAH concentration} \times \frac{(SG_{\text{target}} - 1.0)}{(SG_{\text{sample}} - 1.0)}
\]

Where, \(SG_{\text{target}}\) is the mean specific gravity of cattle urine per community; \(SG_{\text{sample}}\) is the specific gravity of a particular sample.
2.4. Quality control and quality assurance

A mixture of three 13C-isotopically labelled OH-PAHs (13C6-2-OHFlu, 3-OHPhe-d9, and 13C6-1-OHPyr) was spiked into urine samples as internal standard prior to sample preparation and extraction. 13C6-2-OHFlu was used for quantification of metabolite of naphthalene and three metabolites of fluorene. 3-OHPhe-d9 was used for quantification of the five metabolites of phenanthrene and 13C6-1-OHPyr was used for quantification of 1OHPyr, 6-OHChry, 3-OHBeP and 9-OHBaP.

Quantitation was performed using internal standard method (five-point calibration; 1, 5, 10, 50 and 100 ng/mL), and average correlation coefficients (r^2) for the calibration curves in cattle urine were greater or equal to 0.99. The standard solutions (spiked with internal standards) for the calibration curves were prepared in urine in order to normalize differences in interferences between standards and samples. Concentrations of OH-PAHs in urine sample used for this purpose were below the limits of detection (LOD) and differences between this and sample concentration was used in this study. Analytical methods were checked for precision and accuracy. Limits of quantification (LOQs) were calculated based on 10SD/S (SD is the standard deviation of the response of seven replicate standard solution measurements and S is the slope of the calibration curve). LOQs (ng/mL) of OH-PAHs were, 0.29 (2-OHNap), 0.24 (2-3-OHFlu), 0.60 (9-OHFlu), 0.23 (2-OHPhe), 0.71 (1-9-OHPhe), 1.16 (3-OHPhe), 0.15 (4-OHPhe), 0.87 (1-OHPyr), 0.73 (6-OHChry), 0.54 (3-OHBeP) and 0.32 (9-OHBeP), respectively. Internal standard recoveries (13C6-2OHFlu, 3-OHPhe-d9, and 13C6-1-OHPyr) ranged from 89 ± 5.8–96 ± 11.4% (Table 1).
For every batch of 10 samples, a solvent blank, a spiked solvent blank (internal standards spiked into solvent), a matrix spike (internal standards spiked into blank urine), and duplicate sample were analyzed. The average recoveries in spiked solvents blanks ranged from 92 ± 4.6–$98 \pm 8.3\%$, and that for matrix spikes was 85 ± 9.1–$96 \pm 7.1\%$. Blanks were run periodically and contained no detectable amount of target analyte. The coefficients of variation of OH-PAH in duplicate samples were less than 15%.

1.5. Data analysis

Data analysis was performed using IBM SPSS v 20 for windows (SPSS Inc., Illinois, USA). Kolmogorov–Smirnov (K–S) and Shapiro-Wilks tests were used to determine the normality of data and were considered statistically significant if p value was less than 0.05. Concentrations of OH-PAH below their respective LOQs were replaced with a value of LOQ/2. Geometric mean concentrations were used to represent the central tendency of OH-PAH in this study (Wayne, 1999). ANOVA and Tukey analyses of log transformed data were used to compare concentrations of OH-PAH in cattle urine from the study areas and differences were considered statistically significant with p value < 0.05. Student’s T-Test was also used to compare distribution of OH-PAHs between male and female cattle; and, urban and rural sites.

3. Results and discussion

3.1. Excretory levels of OH-PAH in cattle urine

As shown in Table 2, there was no significant difference ($p > 0.05$) between urinary OH-PAHs concentrations in cattle from urban and rural sites except for 2-OHPhe and 4-OHPhe. Data for 3-OHPhe was not included because concentrations from urban sites and 2
rural sites were below the LOQ (Table 3). The significant differences (p < 0.05) could indicate differences in cattle’s exposure to PAHs from urban and rural sites. Table 3 shows the distribution of OH-PAHs in cattle urine from the 5 sample sites. From the results, 2-OH Nap, 2-3-OH Flu, 1-9-OH Phe, 2-OHPhe, 3-OHPhe, 4-OHPhe and 1-OHPyr were detected. 9-OH Flu and the high molecular weight, HMW (≥ 4 rings) PAHs (6-OHChry, 3-OHB(e)P and 9-OHB(a)P) were however not detected in the cattle urine and could be due to low detection sensitivity (Campo et al., 2008) and/or because the HMW PAHs, such as BaP, are mainly excreted through feces (Burgaz et al. 1992; Li et al., 2008).

Specific gravity adjusted geometric mean concentrations (GM$_{SG}$) showed that 2-OHNap (2.77 ± 5.91 ng/mL; p < 0.01) was the most abundant OH-PAH in cattle urine from all study sites followed by 1-9-OHPhe (2.02 ± 1.16 ng/mL) > 4-OHPhe (1.74 ± 1.87 ng/mL) > 1-OHPyr (1.22 ± 0.87 ng/mL) > 2-3-OH Flu (1.08 ± 1.75 ng/mL) > 2-OHPhe (0.489 ± 0.555 ng/mL) > and 3-OHPhe (0.278 ± 0.553 ng/mL) (Fig. 2). The GM$_{SG}$ concentration (ng/mL) of the sum of OH-PAHs (2-OHNap, 2-3-OH Flu, 1-9OHPhe, 2-OHPhe, 3-OHPhe, 4-OHPhe and 1-OHPyr) decreased in the order, Kokote (44.7 ± 10.4) > Oforikrom (7.87 ± 7.41) > Saboa (6.98 ± 3.86) > Santasi (6.68 ± 2.701) > and Twumase Estate (5.23 ± 1.55).

High urinary concentrations of 2-OHNap, 2-3-OH Flu, 2-OHPhe, 3-OHPhe and 4-OHPhe were detected in Kokote (Table 3) indicating high exposure of cattle to the parent PAHs within the sample site. Kokote is a rural area filled with many farmlands, with high agricultural and burning activities compared to the other sites, and the levels of OH-PAHs could mean that there were different or specific sources of PAHs exposure to cattle in the area.
3.2. 2-OHNaphthalene

The GM$_{SG}$ of 2-OHNap in cattle urine in Kokote (21.9 ± 6.51 ng/mL) was significantly higher ($p < 0.05$) compared to the other sites followed by Oforikrom (4.15 ± 4.37 ng/mL) (Table 3). However, the least GM$_{SG}$ concentration for 2-OHNap was recorded in Santasi (0.61 ± 0.23 ng/mL). Although 1-OHNap could be derived from both naphthalene and carbaryl, 2-OHNap is derived only from naphthalene (Orjuela et al., 2012). The high levels of 2-OHNap could be due to exposure through ingestion and/or inhalation, although it has been proposed as a biomarker of inhalation (Kim et al. 2000). Naphthalene is ubiquitous in ambient air with high volumes in vehicular traffic, cigarette smoke (ATSDR, 2005) and is elevated when mothballs or stoves burning biomass fuels are used (Griego et al., 2008; Riojas-Rodriguez et al., 2011). Urinary levels of 2-OHNap are markers of vehicular traffic (Li et al., 2010) and mothball exposure (Owa et al., 1993). Naphthalene is most likely the primary ingredient of mothballs in Ghana (Soghoian et al., 2012), and is frequently used in driving away insects both in and outdoors. This practice could also contribute to 2-OHNap being the most abundant metabolite in cattle urine since exposure through ambient air was also possible because of its volatile nature.

3.3. 1-OHPyrene

The highest GM$_{SG}$ concentration of 1-OHPyr were detected in cattle in Kokote (2.29 ± 1.28 ng/mL) and Oforikrom (1.37 ± 1.18 ng/mL). Levels in Kokote were significantly higher ($p < 0.05$) compared to other sites except Oforikrom and Santasi (Table 3). GM concentrations (not adjusted by SG) of 1-OHPyr in this study (1.02 ng/mL [Twumases] to 2.41 ng/mL [Kokote]) were generally higher compared to study by Saengtienchai
et al. (2014) using cattle from Japan and Thailand (non-adjusted). A study by Ferrari et al. (2002) on determination of 1-OHPyr in bovine urine from three farms located near rural and urban areas recorded non-adjusted average concentrations of 0.66 ng/mL (urban area); 1.52 ng/mL (rural) and 5.09 ng/mL (highway). Similar to the present study, Ferrari et al. (2002) indicated higher levels of 1-OHPyr in rural areas compared to urban and suggested that other important sources besides traffic could contribute to the PAHs burden of animals. Results of non-adjusted 1-OHPyr concentrations from the present study was higher compared to study by Ferrari et al. (2002) except for levels recorded in cattle raised on farms located in the vicinity of a highway (5.09 ng/mL).

The levels in the present study could be due to vehicular activities or traffic. At high temperature combustion (that is during vehicular emissions) the HMW PAH compounds are dominant (Laflamme and Hites, 1978). Previous studies by Bortey-Sam et al. (2014; 2015) in PM10 and soils indicated pyrene as the eighth and second most abundant PAH in Kumasi, respectively, and combustion of fuel (74%) and wood/grass (23%) were the dominant sources in the region. In Ghana, some farms are generally located close to major roads with high vehicular activities or traffic (Tay and Biney, 2013), and exposure to domestic and grazing animals could be through inhalation, or picking food or water from the ground.

3.4. OHPhenanthrenes and OHFluorenes

The distribution of 2-OHPhe, 4-OHPhe and 2-3-OHFlu were significantly higher \((p < 0.05) \) in Kokote than the other sites (Table 3). Urinary levels of 1-9-OHPhe in Kokote was however significantly higher \((p < 0.05) \) than levels found in Oforikrom. 3-OHFlu in cattle
urine from all sites were below the LOQ except Kokote (Table 3). In this study, the most
dominant OHPhe isomer from all sites was 1-9-OHPhe, which is similar to results obtained
by Fan et al. (2012) in humans. However, in Kokote, 4-OHPhe was most abundant (Table
3). In human urine, Thai et al. (2016) and Levine et al. (2015) found 1-OHPhe as most
dominant while Guo et al. 2013 also reported 3-OHPhe as the most dominant of four
phenanthrene metabolites. These variations could be due to differences in metabolic
pathway among species. The possible source of phenanthrene and fluorene exposure to
cattle in Kokote could be due to inhalation during combustion at low temperatures such as
wood or grass combustion since the low molecular weight, LMW (< 4 rings) PAH
compounds are abundant during low temperature combustion (Lake et al., 1979). Because
Kokote is mainly agricultural area with many farmlands, resident farmers frequently
practice bush burning. Another possible source could be due to ingestion of soil or water
since the cattle graze freely and the soil from which they pick food or water may be bound
to PAHs from burning activities. Previous study by Tay and Biney (2013) indicated that
agricultural soils in Accra, Ghana were dominated by LMW PAHs through which domestic
animals could be exposed. PAHs tend to adsorb tightly to organic matter in soil rendering
them less susceptible to biological and chemical degradation (Hatzinger et al., 1997) and in
general, LMW PAHs are more water soluble than HMW PAHs (Nam et al., 2008).

3.5. Association between urinary OH-PAHs concentrations and sex

Gender differences have been used in various studies to predict differences in OH-PAHs
concentrations in human (Sul et al. 2012; Levine et al., 2015; Bartolomé et al., 2015; CDC,
2015). Study by Thai et al. (2016) in human urine showed no association between sex and
urinary OH-PAHs concentrations. In this study, 2-OHNap was significantly higher ($p < 0.05$) in male cattle ($GM_{SG} = 4.43 \pm 7.16 \text{ ng/mL}$) compared to females ($GM_{SG} = 2.01 \pm 5.12 \text{ ng/mL}$) (Table 4). Kim et al. (2013) suggested that rates of intake, accumulation, and excretion of chemicals differ in male and female cattle, although ADME (absorption, distribution, metabolism, and excretion) data would be needed to support that assertion. Differences could also be due to different rearing systems from the various sites.

Several non pharmacogenetic factors such as age, gender, species, disease factors or exposure to environmental pollutants might contribute to the expression and regulation of hepatic P450 in man, laboratory species and domestic animals (Guengerich, 2002; Nebbia, 2001). In a study by Dacasto et al. (2005), male piedmontese cattle showed significantly higher CYP3A-dependent drug metabolizing enzymes, erythromycin N-demethylase (ERDEM), ethylmorphine N-demethylation (ETDEM) and testosterone 6β-hydroxylation (6β-OHT), activities compared to females, with the exception of testosterone 2β-hydroxylase, 2β-OHT, (whose enzymatic activity was yet lower in females). On the other hand, no gender-difference was noticed in limousin cattle.

In human, Sul et al. (2012) observed significantly higher levels of urinary 2-OHNap in men than females, and suggested that gender were predictors of urinary 2-OHNap concentrations. 1-9-OHPhe on the other hand was significantly higher in female cattle ($GM_{SG} = 2.17 \pm 1.18 \text{ ng/mL}$) than males ($GM_{SG} = 1.71 \pm 1.07 \text{ ng/mL}$) (Table 4), while $\sum\text{OHPhes}$ in women were low compared to men (Bartolomé et al., 2015). These differences could be due to variations in metabolism, levels and route of exposure to PAHs. The urinary levels of 1-OHNap, 2-OHNap, $\sum\text{OHNap}$, 1-OHPhe, 9-OHPhe, $\sum\text{OHPhe}$, 1-OHPyr,
and \(\sum \text{OHPAHs} \) among women were all significantly or marginally higher than those among men workers (Guo et al. 2014). In consistency, Guo et al. (2014) found that, when exposed to similar levels of PAHs, women had significantly higher micronuclei frequencies than men. Emerging evidence also indicates that women may be at greater risk of lung cancer than men, probably because the elevated activity of CYP1A1 enzymes in women can produce higher levels of DNA adducts, and women have lower DNA repair capacity than men (Mollerup et al., 2006; Uppstad et al., 2011).

4. Conclusions

Cattle urine samples were collected from both urban (Kumasi) and rural (Ofinso) sites in the Ashanti Region, Ghana, and \(\text{GM}_{\text{SG}} \) concentration of OH-PAHs indicated that, 2-OHNap was the most abundant followed by; 1-9-OHPhe > 4-OHPhe > 1-OHPyr > 2-3OHFlu > 2-OHPhe > 3-OHPhe. The results of the present study showed that cattle in Kokote (rural area) were exposed to significantly higher levels of PAHs than the other sites, and naphthalene-containing-mothballs might have contributed significantly to 2-OHNap levels detected in cattle urine. There was no significant difference between urinary OH-PAHs concentrations in cattle in urban and rural sites except for 2-OHPhe and 4-OHPhe and similar to urban areas, rural sites could also be polluted with PAHs. Levels of 2-OHNap was significantly higher in male cattle compared to females, while the opposite was for 1-9-OHPhe.
Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan awarded to M. Ishizuka (No. 16H0177906), Y. Ikenaka (No. 26304043, 15H0282505, 15K1221305), S. Nakayama (16K16197), and the foundations of Sumitomo and JSPS Core to Core Program (AA Science Platforms) and Bilateral Joint Research Project (PG36150002 and PG36150003). We also acknowledge the financial support by The Mitsui & Co., Ltd. Environment Fund, the Soroptimist Japan Foundation and the Nakajima Foundation. We are grateful to Mr. Takahiro Ichise (Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University) for technical support.
References

aromatic hydrocarbons (PAHs) and heavy metals in wild rats in Kumasi, Ghana.
Proceedings of the 7th International Toxicology Symposium in Africa, Johannesburg,
South Africa. 31st August, 2015. Available online:
http://aa.vetmed.hokudai.ac.jp/en/uploads/2015/10/7th_International_Toxicology_Sym
posium_in_Africa.pdf pp. 67-68.

Bouchard, M., Viau, C., 1999. Urinary 1-hydroxypyrene as a biomarker of exposure to
polycyclic aromatic hydrocarbons: Biological monitoring strategies and methodology
for determining biological exposure indices for various work environments.
Biomarkers 4, 159–187.

Four Recombinant Human Dihydrodiol Dehydrogenase Isoforms: Oxidation of
trans7,8-Dihydroxy-7,8-dihydrobenzo[a]pyrene to the Activated o-Quinone Metabolite

1-hydroxypyrene and thioethers in workers exposed to bitumen fumes. Int. Arch. Occup.

spectrometry method to quantify several urinary monohydroxy metabolites of
polycyclic aromatic hydrocarbons in occupationally exposed subjects, J. Chromatogr.
B 875, 531–540.

CDC, 2015. Fourth National Report on Human Exposure to Environmental Chemicals,
December 2015).

Dacasto, M., Eeckhoutte, C., Capolongoa, F., Dupuy, J., Carletti, M., Calléja, C., Nebbia,
cytochrome P450 3A (CYP3A) expression and inter-species comparison with other

synchronous fluorescence spectrophotometry as a biomonitoring tool of environmental

monohydroxylated polycyclic aromatic hydrocarbons by liquid–liquid extraction and

Preliminary study of children's exposure to PAHs and its association with 8-hydroxy2'-

Kim, M., Kim, D.G., Bong, Y.H., Jang, J.H. and Son, S.W., 2013. Concentrations of PCDD/Fs, dioxin-like PCBs, PBDEs, and hexachlorobenzene in fat samples from cattle of different ages and gender in Korea. Food chem. 138(2), 1786-1791.

through personal air sampling and urinary biomonitoring. J. Environ. Monit. 12, 1110–
1118.

Li, Z., Sandau, C.D., Romanoff, L.C., Caudill, S.P., Sjodin, A., Needham, L.L., Patterson,
D.G., Jr. 2008. Concentration and profile of 22 urinary polycyclic aromatic

urinary 1-naphthol and 2-naphthol levels to assess environmental carbaryl and
(4), 314-320.

Haugen, A., 2006. Sex differences in risk of lung cancer: Expression of genes in the
PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int J
Cancer 119, 741–744.

PAHs in background soils from Western Europe: Influence of atmospheric deposition
and soil organic matter. Chemosphere 70 (9), 1596–1602.

Nebbia, C., 2001. Biotransformation enzymes as determinants of xenobiotic toxicity in

National Toxicology Program, NTP, 1992. Toxicology and Carcinogenesis Study of
Naphthalene in B6C3F1 Mice (Inhalation Studies). Research Triangle Park, NC.

National Toxicology Program, NTP, 2000. Toxicology and Carcinogenesis Study of
Naphthalene in F344/N Rats (Inhalation Studies). Research Triangle Park, NC.

2012. Urinary naphthol metabolites and chromosomal aberrations in 5-year-old

analysis of 1-naphthol in urine of neonates exposed to mothballs: the value in infants

Effects of a chemical company fire on the occurrence of polycyclic aromatic

Riojas-Rodríguez, H., Schilmann, A., Marron-Mares, A.T., Masera, O., Li, Z., Romanoff,
aromatic hydrocarbon biomarkers and carbon monoxide exposures in rural Mexican

Figure captions:

Fig. 1 Map showing cattle urine sampling locations in the Ashanti Region, Ghana (yellow pins indicate sampled locations and red pin indicate city centre in Kumasi)

Fig. 2 Geometric mean concentrations (adjusted by specific gravity) of OH-PAHs in cattle urine from 5 sample sites in Kumasi and Offinso, Ghana
Table 1: Quality assurance and control (QA/QC) for OH-PAHs analysis in cattle urine

<table>
<thead>
<tr>
<th>Compound name</th>
<th>LOD (ng/mL)</th>
<th>LOQ (ng/mL)</th>
<th>ISTD Recovery (%)</th>
<th>Spiked solvent blanks (%)</th>
<th>Matrix spikes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-OHNaphthalene</td>
<td>0.0898</td>
<td>0.295</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-OHFluorene</td>
<td>0.181</td>
<td>0.603</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3-OHFluorene</td>
<td>0.0745</td>
<td>0.248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C6-2-OHFluorene</td>
<td></td>
<td></td>
<td>94</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>1-9-OHPhenanthrene</td>
<td>0.214</td>
<td>0.714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-OHPhenanthrene</td>
<td>0.0696</td>
<td>0.232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-OHPhenanthrene</td>
<td>0.348</td>
<td>1.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-OHPhenanthrene</td>
<td>0.0437</td>
<td>0.145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-OHPhenanthrene-d9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-OHPyrene</td>
<td>0.259</td>
<td>0.865</td>
<td>96</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>13C6-1-OHPyrene</td>
<td></td>
<td></td>
<td>89</td>
<td>92</td>
<td>85</td>
</tr>
<tr>
<td>6-OHChrysene</td>
<td>0.220</td>
<td>0.733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-OHBenzo(e)Pyrene</td>
<td>0.162</td>
<td>0.542</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-OHBenzo(a)Pyrene</td>
<td>0.0959</td>
<td>0.319</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Italicized compounds are internal standards (ISTD); LOD: Limit of detection; LOQ: Limit of quantification.
Table 2: Specific gravity adjusted urinary OH-PAHs concentrations (ng/mL) in cattle from urban and rural sites in Kumasi and Offinso, Ghana

<table>
<thead>
<tr>
<th>Site</th>
<th>n</th>
<th>2-OHNap (GM<sub>SG</sub> ± SD)</th>
<th>2-3-OHFlu (GM<sub>SG</sub> ± SD)</th>
<th>2-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>1-9-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>4-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>1-OHPyr (GM<sub>SG</sub> ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>17</td>
<td>2.29 ± 3.40<sup>a</sup></td>
<td>0.919 ± 0.462<sup>a</sup></td>
<td>0.245 ± 0.171<sup>a</sup></td>
<td>1.96 ± 1.14<sup>a</sup></td>
<td>1.09 ± 0.841<sup>a</sup></td>
<td>1.52 ± 0.873<sup>a</sup></td>
</tr>
<tr>
<td>Rural</td>
<td>78</td>
<td>2.91 ± 6.37<sup>a</sup></td>
<td>1.24 ± 1.97<sup>a</sup></td>
<td>0.552 ± 0.598<sup>b</sup></td>
<td>2.03 ± 1.17<sup>a</sup></td>
<td>1.88 ± 2.01<sup>b</sup></td>
<td>1.27 ± 0.824<sup>a</sup></td>
</tr>
</tbody>
</table>

n: number of samples; GM_{SG}: geometric mean concentration adjusted by specific gravity; SD: standard deviation; different letters (a and b) within a column indicate significant differences (Student’s T-Test; <i>p</i> < 0.05)
Table 3: Specific gravity adjusted OH-PAHs concentrations (ng/mL) in cattle urine

<table>
<thead>
<tr>
<th>Sample site</th>
<th>n</th>
<th>Location</th>
<th>2-OHNap (GM<sub>SG</sub> ± SD)</th>
<th>2-3-OHFlu (GM<sub>SG</sub> ± SD)</th>
<th>1-9-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>2-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>3-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>4-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>1-OHPyr (GM<sub>SG</sub> ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oforikrom</td>
<td>8</td>
<td>urban</td>
<td>4.15 ± 4.37<sup>b</sup></td>
<td>0.99 ± 0.62<sup>b</sup></td>
<td>1.67 ± 1.21<sup>b</sup></td>
<td>0.17 ± 0.10<sup>c</sup></td>
<td>nd</td>
<td>0.73 ± 0.41<sup>c</sup></td>
<td>1.37 ± 1.18<sup>ab</sup></td>
</tr>
<tr>
<td>Santasi</td>
<td>9</td>
<td>urban</td>
<td>0.61 ± 0.23<sup>cd</sup></td>
<td>0.75 ± 0.35<sup>b</sup></td>
<td>2.26 ± 1.14<sup>ab</sup></td>
<td>0.32 ± 0.20<sup>bc</sup></td>
<td>nd</td>
<td>1.14 ± 0.33<sup>bc</sup></td>
<td>1.33 ± 0.80<sup>ab</sup></td>
</tr>
<tr>
<td>Twumasen Estate</td>
<td>31</td>
<td>rural</td>
<td>0.69 ± 0.57<sup>d</sup></td>
<td>0.31 ± 0.13<sup>c</sup></td>
<td>1.73 ± 0.58<sup>ab</sup></td>
<td>0.29 ± 0.26<sup>c</sup></td>
<td>nd</td>
<td>1.50 ± 0.86<sup>b</sup></td>
<td>0.99 ± 0.73<sup>b</sup></td>
</tr>
<tr>
<td>Saboa</td>
<td>40</td>
<td>rural</td>
<td>1.24 ± 0.67<sup>c</sup></td>
<td>0.80 ± 0.79<sup>b</sup></td>
<td>2.07 ± 1.43<sup>ab</sup></td>
<td>0.41 ± 0.16<sup>b</sup></td>
<td>nd</td>
<td>1.27 ± 0.91<sup>bc</sup></td>
<td>1.16 ± 0.74<sup>b</sup></td>
</tr>
<tr>
<td>Kokote</td>
<td>7</td>
<td>rural</td>
<td>21.9 ± 6.51<sup>a</sup></td>
<td>6.74 ± 1.41<sup>a</sup></td>
<td>3.12 ± 0.79<sup>a</sup></td>
<td>2.26 ± 0.51<sup>a</sup></td>
<td>2.1±0.57</td>
<td>7.49 ± 1.73<sup>a</sup></td>
<td>2.29 ± 1.28<sup>a</sup></td>
</tr>
</tbody>
</table>

n: number of samples; nd: below limits of quantification (LOQ); different letter (a, b, c and d) within a column indicate significant difference (p < 0.05) among communities; GM_{SG}: geometric mean concentration adjusted by specific gravity; SD: standard deviation
Table 4: Specific gravity adjusted urinary OH-PAHs concentrations (ng/mL) in male and female cattle in Kumasi and Offinso, Ghana

<table>
<thead>
<tr>
<th>Sex</th>
<th>2-OHNap (GM<sub>SG</sub> ± SD)</th>
<th>2-3-OHFlu (GM<sub>SG</sub> ± SD)</th>
<th>1-9-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>2-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>3-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>4-OHPhe (GM<sub>SG</sub> ± SD)</th>
<th>1-OHPyr (GM<sub>SG</sub> ± SD)</th>
<th>∑OHPAHs (GM<sub>SG</sub> ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>4.43 ± 7.16<sup>a</sup></td>
<td>1.36 ± 1.94<sup>a</sup></td>
<td>1.71 ± 1.07<sup>a</sup></td>
<td>0.534 ± 0.650<sup>a</sup></td>
<td>0.364 ± 0.658<sup>a</sup></td>
<td>1.91 ± 2.22<sup>a</sup></td>
<td>1.19 ± 0.981<sup>a</sup></td>
<td>11.5 ± 14.6<sup>a</sup></td>
</tr>
<tr>
<td>Female</td>
<td>2.01 ± 5.11<sup>b</sup></td>
<td>0.950 ± 1.65<sup>a</sup></td>
<td>2.16 ± 1.18<sup>b</sup></td>
<td>0.468 ± 0.510<sup>a</sup></td>
<td>0.237 ± 0.499<sup>a</sup></td>
<td>1.65 ± 1.69<sup>a</sup></td>
<td>1.22 ± 0.827<sup>a</sup></td>
<td>8.71 ± 10.0<sup>a</sup></td>
</tr>
</tbody>
</table>

GM_{SG}: geometric mean concentration adjusted by specific gravity; SD: standard deviation; ∑OHPAHs: sum of OHPAHs; different letters (a and b) within a column indicate significant differences (Student’s T-Test; <i>p < 0.05</i>)
Fig. 1
Fig. 2