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Hypergeometric Series with
Gamma Product Formula∗

Katsunori Iwasaki†

April, 2017

Abstract

We consider non-terminating Gauss hypergeometric series with one free parameter.
Using various properties of hypergeometric functions we obtain some necessary conditions
of arithmetic flavor for such series to admit gamma product formulas.

1 Introduction

Given a data λ = (p, q, r; a, b;x) ∈ C5 × D, we consider an entire meromorphic function

f(w;λ) := 2F1(pw + a, qw + b; rw; x), (1)

where D is the unit disk in C and 2F1(α, β; γ; z) is the Gauss hypergeometric series.
We say that f(w;λ) admits a gamma product formula (GPF), if there exist a rational

function S(w) ∈ C(w); a constant d ∈ C×; two integersm,n ∈ Z≥0; m numbers u1, . . . , um ∈ C;
and n numbers v1, . . . , vn ∈ C such that

f(w;λ) = S(w) · dw · Γ (w + u1) · · ·Γ (w + um)

Γ (w + v1) · · ·Γ (w + vn)
, (2)

where Γ (w) is the Euler gamma function. We are interested in the following.

Problem I Find a data λ = (p, q, r; a, b;x) for which f(w;λ) admits a GPF.

An abundance of solutions can be found in Apagodu and Zeilberger [2], Bailey [3], Brychkov
[4], Ebisu [7], Ekhad [8], Erdélyi [9], Gessel and Stanton [10], Gosper [11], Goursat [13], Karlsson
[15], Koepf [16], Maier [17], Vidunas [18] etc. To illustrate what this problem is all about, we
present some examples of solutions at the end of the Introduction (see Tables 1 and 2).

Problem I has a close relative. We say that f(w;λ) is of closed form if

f(w + 1;λ)

f(w;λ)
=: R(w;λ) ∈ C(w) : a rational function of w. (3)
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Problem II Find a data λ = (p, q, r; a, b;x) for which f(w;λ) is of closed form.

Any solution to Problem I is a solution to Problem II. Indeed, by the recursion formula for
the gamma function Γ (w + 1) = wΓ (w), the condition (2) implies (3) with

R(w;λ) =
S(w + 1)

S(w)
· d · (w + u1) · · · (w + um)

(w + v1) · · · (w + vn)
.

It is natural to ask when a solution to Problem II leads back to a solution to Problem I.
A data λ = (p, q, r; a, b;x) is said to be integral if its principal part p := (p, q, r) ∈ Z3.

There is a method of finding integral solutions to Problem II due to Ebisu [5, 6, 7], which we
call the method of contiguous relations. It relies on the fifteen contiguous relations of Gauss
(see e.g. Andrews et. al. [1, §2.5]). Composing a series of contiguous relations yields

2F1(α + p, β + q; γ + r; z) = r(α, β; γ; z) 2F1(α, β; γ; z)

+ q(α, β; γ; z) 2F1(α + 1, β + 1; γ + 1; z),
(4)

where q(α, β; γ; z) and r(α, β; γ; z) are rational functions of (α, β; γ; z) depending uniquely on
p. Vidunas [19] and Ebisu [5] showed how to compute q(α, β; γ; z) and r(α, β; γ; z) rapidly and
efficiently. Given a data λ = (p, q, r; a, b;x) we put

f̃(w;λ) := 2F1(pw + a+ 1, qw + b+ 1; rw + 1; x). (5)

When λ is integral, substituting (α, β; γ; z) = (pw + a, qw + b; rw;x) into (4) yields

f(w + 1;λ) = R(w;λ) f(w;λ) +Q(w;λ) f̃(w;λ), (6)

where Q(w;λ) and R(w;λ) are rational functions of w depending uniquely on λ. If λ is a data
such that Q(w;λ) vanishes in C(w), then three-term relation (6) reduces to a two-term one (3)
so that λ is a solution to Problem II. Such a solution is said to come from contiguous relations.
It is interesting to ask when an integral solution comes from contiguous relations.

The hypergeometric series enjoys well-known symmetries (see [1, Theorem 2.2.5]):

2F1(α, β; γ; z) = 2F1(β, α; γ; z) (trivial), (7a)

= (1− z)γ−α−β
2F1(γ − α, γ − β; γ; z) (Euler), (7b)

= (1− z)−α
2F1(α, γ − β; γ; z/(z − 1)) (Pfaff), (7c)

= (1− z)−β
2F1(γ − α, β; γ; z/(z − 1)) (Pfaff). (7d)

Compatible with Problems I and II, they induce symmetries on their solutions:

λ = (p, q, r; a, b;x) 7→ (q, p, r; b, a;x), (8a)

7→ (r − p, r − q, r; −a, −b; x), (8b)

7→ (p, r − q, r; a, −b; x/(x− 1)), (8c)

7→ (r − p, q, r; −a, b; x/(x− 1)), (8d)

which are referred to as classical symmetries for these problems.
We are interested in finding necessary conditions for a given data λ to be a solution to

Problem I or II. In this article we discuss this issue when λ lies in a real domain

p, q, r ∈ R, 0 < p < r or 0 < q < r; a, b ∈ R; −1 < x < 1.
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By Pfaff’s transformation (8c) or (8d) this domain can be reduced to

p, q, r ∈ R, 0 < p < r or 0 < q < r; a, b ∈ R; 0 < x < 1, (9)

where the trivial case x = 0 is excluded. According to the location of (p, q) relative to r the
domain (9) is partitioned into three parts D (central square), E (wings) and I (borders), where
D is further divided into three components D± and D0 (anti-diagonal) as in Figure 1, while E
resp. I is decomposed into four components E⋆⋆ resp. I⋆⋆ as in Figure 2. For example,

D− = { p > 0, q > 0, p+ q < r }, D0 = { p > 0, q > 0, p+ q = r },
E∗− = { 0 < p < r, q < 0 }, I∗− = { 0 < p < r, q = 0 }.

The trivial symmetry (8a) or Euler transformation (8b) permutes these components in one way
or another and we have only to deal with D−, D0, E∗− and I∗− up to classical symmetries.

In Table 1 we present nine examples of integral solutions λ = (p, q, r; a, b;x) ∈ D− to
Problem I, each of which has a gamma product formula of the form:

f(w;λ) = C · dw · Γ (w + u1) · · ·Γ (w + um)

Γ (w + v1) · · ·Γ (w + vm)
, (10)

where 1 ≤ m ≤ r and {u1, . . . , um} is a subset of
{

0
r
, 1
r
, . . . , r−1

r

}
. The data of λ, d, u1, . . . , um

and v1, . . . , vm are presented in Table 1, while C can easily be evaluated by putting w = −a/p
or w = −b/q into (10). Solutions 1–8 can be found in (1,3,4-4,iii), (1,3,4-4,xx), (1,3,4-3,iii),
(1,5,6-1,iii), (1,5,6-1,xx), (2,4,6-4,iii), (3,5,6-1,xvii), (3,5,6-1,ii) of Ebisu [7] up to affine changes
of variable w. Solutions 1, 2, 3 also appear in formulas (3.4), (3.5), (3.1) of Karlsson [15], while
solution 9 is in Brychkov [4, §8.1, formula (172)], all up to classical symmetries (8) and affine
changes of variable w. In Table 2 we present two non-integral solutions in D− to Problem I,
either of which also has a gamma product formula of the form (10). The (A)-solutions 4 and
5 in Table 1 are the duplications of (B)-solutions 4 and 5 in Table 2, respectively, where the
concepts of (A)-solution, (B)-solution and duplication will be introduced in Theorem 2.2.

3



r p q x d a b
u1 · · · um
v1 · · · vm

No.

4 1 1
8

9

4

3
0

1

4

2
4

3
4

7
12

2
3

1

1

2

1

4

0 3
4

1
6

7
12

2

0
1

2

1
4

3
4

1
3

2
3

3

6 1 1
4

5

36

54
0

1

2

1
6

2
6

4
6

5
6

1
5

3
10

7
10

4
5

4

2

3

1

6

0 2
6

3
6

5
6

1
15

4
15

17
30

23
30

5

2 2 3
4
(3−

√
3) 3

2

√
3 0

1

3

2
6

5
6

5
12

3
4

6

3 1 4(
√
5− 2) 27

125
(5 + 2

√
5) 0

1

6

3
6

5
6

17
30

23
30

7

0
1

2

1
6

5
6

3
10

7
10

8

8 4 2 4(3
√
2− 4) 4

27
(17 + 12

√
2) 0

1

4

3
8

7
8

11
24

19
24

9

Table 1: Nine examples of (A)-solutions in D−.

r p q x d a b
u1 · · · um
v1 · · · vm

No.

3
1

2

1

2

4

5

33

52
0

1

2

1
3

2
3

2
5

3
5

4

2

3

1

6

0 2
3

2
15

8
15

5

Table 2: Two examples of (B)-solutions in D−.
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2 Main Results

In this section we state the main results together with an outline of this article.

Theorem 2.1 In region D∪I∪E any solution to Problem II leads back to a solution to Problem
I and hence the two problems are equivalent.

Thus in this region we can speak of a solution without specifying to which problem it is a
solution. A solution λ is said to be elementary if f(w;λ) has at most finitely many poles in Cw.

Theorem 2.2 Let λ = (p, q, r; a, b;x) ∈ D.

(1) Every solution in D0 is elementary, while every solution in D± is non-elementary. All
elementary solutions are at the center • of the square D in Figure 1, or more precisely,

p = q = r/2 > 0; a = i, b = j − 1/2, i, j ∈ Z; 0 < x < 1, (11)

where a and b are exchangeable by symmetry, while r and x are free. The corresponding
f(w;λ) is a degenerate hypergeometric function with a dihedral monodromy group,

f(w;λ) = Sij(rw;x) ·
(

1+
√
1−x
2

)1−rw

, (12)

due to Vidunas [20, Theorem 3.1], where Sij(w;x) is a rational function of w defined by

Sij(w;x) = (1− x)−
i+j
2 F3

(
i+ j, j − i; 1− i− j, 1 + i− j; w; −1−

√
1−x

2
√
1−x

, 1−
√
1−x
2

)
,

with F3(α1, α2; β1, β2; γ;u, v) being Appell’s hypergeometric series F3 in two variables.

(2) Any solution λ ∈ D± falls into one of the following two types:

(A) p, q, r ∈ Z, 0 ̸= r − p− q ≡ 0 mod 2, (B) p, q ∈ 1
2
+ Z, r ∈ Z.

(3) Any (A)-solution in D± comes from contiguous relations.

(4) If λ ∈ D± is a (B)-solution then its duplication 2λ := (2p, 2q, 2r; a, b;x) ∈ D± is an
(A)-solution, so any (B)-solution in D± essentially comes from contiguous relations.

For assertion (2) we give more detailed conditions involving (a, b) in Theorem 6.10. The
principal part of any (A)-solution in D− must lie in the integer domain

D−
A := {p = (p, q, r) ∈ Z3 : p > 0, q > 0, 0 < r − p− q ≡ 0 mod 2 }. (13)

Theorem 2.3 Let λ = (p, q, r; a, b;x) ∈ D− be any (A)-solution with p = (p, q, r) ∈ D−
A.

(1) Let Y (z) = Y (z;p) ∈ Z[z] be defined via the expansion

Z±(z) = X(z)± Y (z)
√
∆, (14)

where ∆ = ∆(z) = ∆(z;p) and Z±(z) = Z±(z;p) are given by

∆(z) := (p− q)2z2 − 2{(p+ q)r − 2pq}z + r2, (15)

Z±(z) :=
{
r + (p− q)z ±

√
∆
}p{

r − (p− q)z ±
√
∆
}q{

(2r − p− q)z − r ∓
√
∆
}r−p−q

. (16)

Then x must be an algebraic number as a root in 0 < z < 1 of the algebraic equation

Y (z;p) = 0. (17)
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(2) There exists a positive constant C > 0 such that a gamma product formula

f(w;λ) = C · dw ·
∏r−1

i=0 Γ
(
w + i

r

)∏r
i=1 Γ (w + vi)

(18)

holds true, where the number d is given by

d =
rr√

ppqq(r − p)r−p(r − q)r−qxr(1− x)p+q−r
, (19)

while v1, . . . , vr are such numbers that sum up to

v1 + · · ·+ vr = (r − 1)/2, (20)

and that admit a division relation in C[w],

r∏
i=1

(w + vi)
∣∣∣ p−1∏

i=1

(
w + i+a

p

) q−1∏
i=1

(
w + i+b

q

) r−p−1∏
j=0

(
w + j−a

r−p

) r−q−1∏
j=0

(
w + j−b

r−q

)
. (21)

Theorems 2.2 and 2.3 are illustrated by the examples presented in Tables 1 and 2. We
conjecture that a and b must be rational and the solutions with a prescribed p are finite in
cardinality. As for I∗− and E∗− we have the following results corresponding to Theorem 2.2.

Theorem 2.4 Let λ = (p, q = 0, r; a, b;x) ∈ I∗−.

(1) λ is an elementary solution if and only if b ∈ Z≤0, in which case the hypergeometric series
that defines f(w;λ) is terminating, so f(w;λ) itself is a rational function of w.

(2) For any non-elementary solution λ ∈ I∗− we have p, r ∈ Z, p ≡ r mod 2 and b = 1/2.

(3) Any non-elementary solution in I∗− comes from contiguous relations.

Theorem 2.5 Let λ = (p, q, r; a, b;x) ∈ E∗−.

(1) Every solution in E∗− is non-elementary.

(2) For any solution λ ∈ E∗− we must have p, r ∈ Z and p ≡ r mod 2.

(3) Any solution λ ∈ E∗− with q ∈ Z comes from contiguous relations.

It is not known whether E∗− contains any solution with a non-integral or irrational q. We
have a plan to obtain results on I∗− and E∗− corresponding to Theorem 2.3. The main results
in this section are presented in a manner suitable for citations in forthcoming papers, e.g. [14].
They can readily be established by combining or rearranging the theorems and propositions to
be proved in the main body of this article (§3–§10).
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3 Saddle Point Method for Euler’s Integral

In this section f(w;λ) is just the function defined by formula (1), that is, λ may or may not
be a solution to Problem I or II. When λ = (p, q, r; a, b;x) ∈ D ∪ I∗− ∪ E∗−, that is,

p, q, r ∈ R, 0 < p < r and q < r; a, b ∈ R; 0 < x < 1, (22)

we study the asymptotic behavior of f(w;λ) as w → ∞ on a right half-plane in Cw. Euler’s
integral representation for the hypergeometric function (see e.g. [1, Theorem 2.2.1]) allows us
to write f(w;λ) = ψ(w)f1(w), where ψ(w) and f1(w) are given by

ψ(w) =
Γ (rw)

Γ (pw + a)Γ ((r − p)w − a)
, (23)

f1(w) =

∫ 1

0

tpw+a−1(1− t)(r−p)w−a−1(1− xt)−qw−bdt. (24)

The improper integral in (24) converges if pRe(w) + a > 0 and (r − p) Re(w) − a > 0. By
assumption (22) this condition is fulfilled on the right half-plane Re(w) ≥ R1, provided

R1 > max{−a/p, a/(r − p)} (≥ 0). (25)

The gamma factor ψ(w) can be estimated by Stirling’s formula, which states that Γ (t) ∼√
2π e−t tt−1/2 as t→ ∞ uniformly on every proper subsector of the sector | arg(t)| < π, where

∗ ∼ ∗∗ indicates that the ratio of ∗ and ∗∗ tends to 1 as t → ∞. It is convenient to note a
slightly generalized version of Stirling’s formula: for any α > 0 and β ∈ C,

Γ (αt+ β) ∼
√
2π αβ−1/2 (α/e)αt tαt+β−1/2 as t→ ∞, (26)

which is valid on the same sector as above and is easily derived from the original formula.

Lemma 3.1 The function ψ(w) in (23) is holomorphic and admits a uniform estimate

ψ(w) ∼ A1 ·Bw
1 · w1/2,

on the right half-plane Re(w) > 0, where A1 and B1 are given by

A1 =
1√
2π

· (r − p)a+1/2

pa−1/2 r1/2
, B1 =

rr

pp (r − p)r−p
.

Proof. The poles of ψ(w) are contained in the arithmetic progression {−j/r}∞j=0 and so ψ(w)
is holomorphic on Re(w) > 0. By Stirling’s formula (26) we have

ψ(w) ∼
√
2π r−1/2 (r/e)rw wrw−1/2

√
2π pa−1/2 (p/e)pw wpw+a−1/2 ·

√
2π (r − p)−a−1/2 ((r − p)/e)(r−p)w w(r−p)w−a−1/2

=
1√
2π

· (r − p)a+1/2

pa−1/2 r1/2
·
(

rr

pp (r − p)r−p

)w

· w1/2 = A1 ·Bw
1 · w1/2,

as w → ∞ uniformly on Re(w) > 0. 2
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The integral in formula (24) can be rewritten

f1(w) =

∫ 1

0

Φ(t)w η(t) dt =

∫ 1

0

e−wϕ(t) η(t) dt, (27)

where Φ(t), ϕ(t) and η(t) are defined by

Φ(t) = tp(1− t)r−p(1− xt)−q, ϕ(t) = − log Φ(t),

η(t) = ta−1(1− t)−a−1(1− xt)−b.
(28)

We apply the saddle point method to estimate the integral (27). Observe that

ϕ′(t) =
ϕ1(t)

t(1− t)(1− xt)
, ϕ1(t) := −(r − q)xt2 + {(p− q)x+ r}t− p,

where ϕ1(t) is a concave quadratic function by assumption (22). The roots of quadratic equation
ϕ1(t) = 0 are the saddle points for the the integral (27). We remark that the discriminant of
ϕ1(t) is just ∆(x) in formula (15). Since ϕ1(0) = −p < 0 and ϕ1(1) = (r− p)(1− x) > 0, there
is a unique saddle point t0 in the interval 0 < t < 1. Note that ϕ′

1(t0) > 0 and hence

ϕ′′(t0) =
ϕ′
1(t0)

t0(1− t0)(1− xt0)
=

−2(r − q)xt0 + (p− q)x+ r

t0(1− t0)(1− xt0)
> 0,

because t0 lies strictly to the left of the axis of symmetry for the parabola ϕ1(t).

Lemma 3.2 The function f1(w) in (24) is holomorphic and admits a uniform estimate

f1(w) ∼
√
2π

η(t0)√
ϕ′′(t0)

Φ(t0)
w w−1/2 as w → ∞, (29)

on the right half-plane Re(w) ≥ R1, where R1 is any number satisfying condition (25).

Proof. The function f1(w) is holomorphic on Re(w) ≥ R1 by the convergence condition for the
improper integral (24) mentioned above. Asymptotic formula (29) is obtained by the standard
saddle point method, so only an outline of its derivation will be included below. Suppose that
argw = 0 for simplicity. Then the path of integration is just the real interval 0 < t < 1 as
taken in (27), where the phase function ϕ(t) attains its minimum at t = t0 so that the vicinity
of this point has the greatest contribution to the integral (27). Observing that

ϕ(t) = ϕ(t0) +
1

2
ϕ′′(t0)(t− t0)

2 +O((t− t0)
3), η(t) = η(t0) +O(t− t0), as t→ t0,

we have for any sufficiently small positive number ε > 0,

f1(w) ∼
∫ t0+ε

t0−ε

e−w{ϕ(t0)+ 1
2
ϕ′′(t0)(t−t0)2} η(t) dt ∼ Φ(t0)

w

∫ t0+ε

t0−ε

e−
1
2
wϕ′′(t0)(t−t0)2 η(t0) dt

∼ η(t0) Φ(t0)
w

∫ ∞

−∞
e−

1
2
wϕ′′(t0)t2 dt =

η(t0)√
1
2
wϕ′′(t0)

Φ(t0)
w

∫ ∞

−∞
e−t2dt,

from which formula (29) follows, where we made a change of variable t
√

1
2
wϕ′′(t0) 7→ t to

obtain the last equality. This argument carries over for a general complex variable w on the
right half-plane Re(w) ≥ R1 if the path of integration is deformed as in Figure 3. 2
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Figure 3: A path of steepest descent in the t-plane.

Proposition 3.3 The function f(w;λ) is holomorphic and admits a uniform estimate

f(w;λ) ∼ A ·Bw as w → ∞, (30)

on the right half-plane Re(w) ≥ R1, where A and B are given by

A =
(r − p)a+1/2

pa−1/2 r1/2
· η(t0)√

ϕ′′(t0)
, B =

rr

pp (r − p)r−p
· Φ(t0). (31)

Proof. This proposition follows immediately from Lemmas 3.1 and 3.2. 2

4 Poles and Their Residues

Also in this section f(w;λ) is just the function defined by formula (1), which may or may not
be a solution to Problem I or II, while condition (22) is retained. We discuss the pole structure
of the function f(w;λ). Any pole of it is simple and must lie in the arithmetic progression

W := {wj := −j/r}∞j=0, (32)

but f(w;λ) may be holomorphic at some points of (32). In order to know whether a given
point wj is actually a pole or not, we need to calculate the residue of f(w;λ) at w = wj.

Lemma 4.1 The residue of f(w;λ) at w = wj admits a hypergeometric expression

Res
w=wj

f(w;λ) = Cj · 2F1(aj, bj; j + 2; x) (j = 0, 1, 2, . . . ), (33)

where aj := pwj + j + a+ 1, bj := qwj + j + b+ 1 and

Cj :=
(−1)j

r
· (pwj + a)j+1 (qwj + b)j+1

j! (j + 1)!
xj+1, (z)j :=

Γ (z + j)

Γ (z)
. (34)

Proof. Let j and k be nonnegative integers. At the point w = wj the k-th summand of the
hypergeometric series f(w;λ) = 2F1(pw + a, qw + b; rw;x) has residue

Res
w=wj

(pw + a)k(qw + b)k
(rw)k k!

xk =


0 (k ≤ j),

1

r
· (−1)j

j!
· (pwj + a)k(qwj + b)k

(k − j − 1)! k!
xk (k ≥ j + 1).

9



Sum of these numbers over k ≥ j+1 gives the residue of f(w;λ) at w = wj. Putting k = i+j+1,

Res
w=wj

f(w;λ) =
xj+1

r
· (−1)j

j!

∞∑
i=0

(pwj + a)i+j+1 (qwj + b)i+j+1

(i+ j + 1)! i!
xi

=
xj+1

r
· (−1)j

j!

∞∑
i=0

(pwj + a)j+1(pwj + a+ j + 1)i · (qwj + b)j+1(qwj + b+ j + 1)i
(j + 1)! (j + 2)i i!

xi

= Cj

∞∑
i=0

(aj)i (bj)i
(j + 2)i i!

xi = Cj · 2F1(aj, bj; j + 2; x),

where (t)i+j+1 = (t)j+1 (t+ j + 1)i is used in the second equality. 2

For every sufficiently large integer j, Lemma 4.1 reduces it to an elementary arithmetic to
know whether f(w;λ) is holomorphic or has a pole at w = wj.

Lemma 4.2 There exists a positive integer j0 such that for any integer j ≥ j0 the function
f(w;λ) is holomorphic at w = wj if and only if either condition (35a) or (35b) below holds:

r(a+ i) = pj for some i ∈ {0, . . . , j}, (35a)

r(b+ i) = qj for some i ∈ {0, . . . , j}. (35b)

Proof. Observe that aj = {(r− p)j + r(a+1)}/r and bj = {(r− q)j + r(b+1)}/r, where r− p
and r − q are positive by assumption (22). Take an integer j0 so that

j0 > max

{
−r(a+ 1)

r − p
, −r(b+ 1)

r − q
, 0

}
.

Then aj and bj are positive for every j ≥ j0 so that (aj)i and (bj)i are also positive for every
i ≥ 1. Since 0 < x < 1 by assumption (22), we have 2F1(aj, bj; j+2;x) ≥ 2F1(aj, bj; j+2; 0) = 1.
Thus formula (33) tells us that Res

w=wj

f(w;λ) = 0, that is, f(w;λ) is holomorphic at w = wj if and

only if Cj = 0. In view of definition (34) this condition is equivalent to (pwj+a)j+1 (qwj+b)j+1 =
0, which in turn holds true exactly when either condition (35a) or (35b) is satisfied. 2

The following theorem enumerates all elementary solutions in domain (22).

Theorem 4.3 For any λ ∈ D ∪ I∗− ∪ E∗− the function f(w;λ) has at most a finite number of
poles in Cw if and only if λ satisfies either condition (11) or

q = 0, b ∈ Z≤0, (36)

in which case λ actually gives an elementary solution to Problems I and II. In particular, in
this region elementary solutions can exist only on D0 ∪ I∗−.

Proof. The proof below is due to the anonymous referee and is simpler than the author’s original
proof. Suppose that f(w;λ) has at most a finite number of poles. By Lemma 4.2 there exists
an integer j1 ≥ j0 such that any integer j ≥ j1 satisfies either condition (35a) or (35b), where
j0 is the positive integer mentioned in Lemma 4.2.

Claim 1. For any j ≥ j1, if j satisfies condition (35a) then j + 1 must satisfy condition (35b).

10



Indeed, if both j and j +1 satisfy (35a) then we have r(a+ i) = pj and r(a+ i′) = p(j +1)
for some i ∈ {0, . . . , j} and i′ ∈ {0, . . . , j + 1}. Taking their difference yields r(i′ − i) = p and
hence p/r = i′ − i ∈ Z, which is impossible since 0 < p < r and so 0 < p/r < 1. Hence j + 1
cannot satisfy (35a) and thus must satisfy (35b) instead.

Claim 2. Condition (35b) is satisfied by infinitely many j ≥ j1. Moreover we must have q ≥ 0.

Suppose the contrary that those j ≥ j1 which satisfy (35b) are finite in cardinality. There
then exists an integer j2 ≥ j1 such that any j ≥ j2 satisfies (35a) but not (35b). This is
impossible by Claim 1, so (35b) must be satisfied by infinitely many j ≥ j1. Let J be the
infinite set of such j’s. For each j ∈ J condition (35b) yields qj = r(b + i) ≥ rb, that is,
q ≥ rb/j, since r > 0, j ≥ j1 > 0 and i ≥ 0. Letting j → ∞ in J , we have q ≥ 0.

Claim 3. If q = 0 then b ∈ Z≤0, in which case we are in condition (36).

By Claim 2 condition (35b) is satisfied by an integer j3 ≥ j1. Since q = 0 and r > 0, we
have r(b+ i) = 0 for some i ∈ {0, . . . , j3} and hence b = −i ∈ Z≤0.

Claim 4. When q > 0, if j ≥ j1 satisfies (35b) then j + 1 must satisfy (35a).

This claim can be proved in the same manner as Claim 1.

Claim 5. When q > 0, we have p = q = r/2 and either a ∈ Z, b ∈ 1
2
+ Z or a ∈ 1

2
+ Z, b ∈ Z,

in which case we are in condition (11).

By Claims 1, 2, 4, there exists an integer k ≥ j1 such that k and k + 2 satisfy (35a) while
k + 1 and k + 3 satisfy (35b). Thus there exist integers i0, i1, i2, i3 ∈ Z such that

r(a+ i0) = pk, r(a+ i2) = p(k + 2), (37a)

r(b+ i1) = q(k + 1), r(b+ i3) = q(k + 3), (37b)

Taking the differences in (37a) and (37b) yields r(i2 − i0) = 2p and r(i3 − i1) = 2q, that is,
2p/r = i2 − i0 ∈ Z and 2q/r = i3 − i1 ∈ Z, respectively. But, since 0 < 2p/r < 2 and
0 < 2q/r < 2, we must have 2p/r = 2q/r = 1. From the first equations in (37a) and (37b),

a =
2p

r
· k
2
− i0 =

k

2
− i0, b =

2q

r
· k + 1

2
− i1 =

k + 1

2
− i1.

If k is an even integer then a ∈ Z and b ∈ 1
2
+ Z, while if k is an odd integer then a ∈ 1

2
+ Z

and b ∈ Z. This proves Claim 5.
The “only if” part of the theorem is now established by Claims 3 and 5. Conversely, if

λ satisfies condition (11) then f(w;λ) becomes a dihedral function (12) due to Vidunas [20,
Theorem 3.1], while if λ satisfies (36) then f(w;λ) is clearly a rational function of w. In either
case f(w;λ) has at most a finite number of poles, which proves the“if” part of the theorem. 2

5 Gamma Product Formula

Given a nontrivial rational function R(w) ∈ C(w), we consider a representation of the form

R(w) =
S(w + 1)

S(w)
· d · P (w)

Q(w)
, (38a)

P (w) = (w + u1) · · · (w + um), Q(w) = (w + v1) · · · (w + vn), (38b)
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with a rational function S(w) ∈ C(w), d ∈ C× and ui, vj ∈ C, where if R(w) is real then S(w),
d, P (w), Q(w) should also be real; such an expression is always feasible (but not unique).

Let λ ∈ D ∪ I∗− ∪ E∗− be a solution to Problem II and write R(w;λ) in the form (38).
Consider an entire meromorphic function defined by

g(w) := S(w) · dw · Γ (w + u1) · · ·Γ (w + um)

Γ (w + v1) · · ·Γ (w + vn)
. (39)

Put u := u1 + · · ·+ um and v := v1 + · · ·+ vn; they are real because R(w;λ) is real.

Lemma 5.1 There exists a constant R2 ∈ R such that on the right half-plane Re(w) ≥ R2 the
function g(w) is holomorphic, nowhere vanishing, and admits a uniform estimate

g(w) ∼ S0 · (2π)(m−n)/2
(
den−m

)w · w−(m−n)/2+u−v+s0 · e(m−n)w logw,

where S0 ∈ R× and s0 ∈ Z are defined by the asymptotics S(w) ∼ S0w
s0 as w → ∞.

Proof. Take a number R2 ∈ R in such a manner that all the points −u1, . . . ,−um;−v1, . . . ,−vn
as well as all the zeros and poles of S(w) are strictly to the left of the vertical line Re(w) = R2.
Then it is clear from the locations of its poles and zeros that g(w) is holomorphic and non-
vanishing on the half-plane Re(w) ≥ R2. By Stirling’s formula (26), we have

g(w) = S(w) · dw
∏m

i=1 Γ (w + ui)∏n
j=1 Γ (w + vj)

∼ S0w
s0 · dw

∏m
i=1

√
2π e−w ww+ui−1/2∏n

j=1

√
2π e−w ww+vj−1/2

= S0w
s0 · dw · (2π)(m−n)/2 e(n−m)w w(m−n)(w−1/2)+u−v

= S0 · (2π)(m−n)/2 · (den−m)w · w−(m−n)/2+u−v+s0 · w(m−n)w

= S0 · (2π)(m−n)/2 · (den−m)w · w−(m−n)/2+u−v+s0 · e(m−n)w logw.

uniformly on the right-half plane Re(w) ≥ R2. 2

Observe that g(w) satisfies the same recurrence relation (3) as the function f(w;λ). So it
is natural to compare f(w;λ) with g(w) or in other words to think of the ratio

h(w) := f(w;λ)/g(w). (40)

It is clear that h(w) is an entire meromorphic function that does not vanish identically.

Lemma 5.2 h(w) is an entire holomorphic function which is periodic of period one. For any
R3 > max{R1, R2, 1} there exists a constant A2 > 0 such that

|h(w)| ≤ A2 ·KRe(w) · |w|(n−m){Re(w)−1/2}+v−u−s0 · e−(n−m) arg(w)·Im(w), (41)

on Re(w) ≥ R3, where K := em−nB/d with B being the positive constant in (31).

Proof. Since f(w;λ) and g(w) satisfy the same recurrence relation (3), their ratio h(w) must
be a periodic function of period one. From Proposition 3.3 and Lemma 5.1 the function h(w)
has no poles on Re(w) ≥ R3 and so holomorphic there. The periodicity then implies that
h(w) must be holomorphic on the entire complex plane. In view of

∣∣ew logw
∣∣ = eRe(w logw) =

eRe(w)·log |w|−Im(w)·arg(w) = |w|Re(w)e−Im(w)·arg(w), Lemma 5.1 implies that

|g(w)| ∼ |S0| · (2π)(m−n)/2
(
den−m

)Re(w) · |w|(m−n){Re(w)−1/2}+u−v+s0 · e−(m−n)Im(w)·arg(w),
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uniformly on Re(w) ≥ R3. Since g(w) has no zero there, there is a constant A3 > 0 such that

|g(w)| ≥ A3 ·
(
den−m

)Re(w) · |w|(m−n){Re(w)−1/2}+u−v+s0 · e−(m−n)Im(w)·arg(w),

on Re(w) ≥ R3. On the other hand, by Proposition 3.3 there is a constant A4 > 0 such that
|f(w;λ)| ≤ A4 ·BRe(w) on Re(w) ≥ R3. Thus (41) holds true with constant A2 := A4/A3. 2

Lemma 5.3 h(w) must be a nonzero constant and m = n in formulas (38b) and (39).

Proof. First we show m ≤ n. Suppose the contrary m > n. Estimate (41) with real w reads
|h(w)| ≤ A2 ·Kw · w−(m−n)(w−1/2)+v−u−s0 for every w ≥ R3. Fix any w ∈ R and take a positive
integer k0 such that w + k0 ≥ R3. Since h(w) is periodic of period one, for any integer k ≥ k0,

|h(w)| = |h(w + k)| ≤ A2 ·Kw+k · (w + k)−(m−n)(w+k−1/2)+v−u−s0

= A2 ·Kw · (1 + w/k)ρ · (1 + w/k)−(m−n)k · kρ · (K/km−n)k

∼ A2 ·Kw · e−(m−n)w · kρ · (K/km−n)k as k → +∞,

where ρ := −(m − n)(w − 1/2) + v − u − s0. Since we are assuming that m − n > 0 there
exists an integer k1 ≥ k0 such that 0 < K/km−n

1 ≤ 1/2. Then there exists a constant A5 >
A2 ·Kw · e−(m−n)w such that |h(w)| ≤ A5 · kρ · 2−k for every k ≥ k1. Letting k → +∞ we have
h(w) = 0 for every w ∈ R. By the unicity theorem for holomorphic functions, h(w) must vanish
identically. But this is absurd because h(w) is nontrivial and thus we have proved m ≤ n.

Next we show that h(w) is a nonzero constant. We make use of estimate (41) on the
strip R3 ≤ Re(w) ≤ R3 + 1, where we recall R3 > 1. On this strip KRe(w) are bounded
while |w|(n−m){Re(w)−1/2}+v−u−s0 ≤ |w|µ ≤ A6(1 + |Im(w)|µ) for some constant A6, where µ is a
nonnegative number with µ ≥ (n−m)(R2−1/2)+v−u−s0. On the strip, if |Im(w)| ≥ R3+1
then | arg(w)| ≥ π/4 and arg(w) · Im(w) ≥ (π/4)|Im(w)|. So there is a constant A7 such that

|h(w)| ≤ A7(1 + |Im(w)|µ)e−π(n−m)|Im(w)|/4, (42)

for any w on the strip R3 ≤ Re(w) ≤ R3+1, provided |Im(w)| ≥ R3+1. Estimate (42) remains
true on the entire strip if A7 is chosen sufficiently large. This estimate extends to the entire
complex plane, since both sides of (42) are periodic functions of period one. In particular, in
view of m ≤ n, estimate (42) yields |h(w)| ≤ A7 · (1 + |Im(w)|µ) ≤ A7 · (1 + |w|µ) for every
w ∈ C. Liouville’s theorem then implies that h(w) must be a polynomial. But a polynomial
can be a periodic function only when it is a constant. Hence h(w) must be a constant, which is
nonzero as h(w) is nontrivial. Finally we shall show m = n; we already know m ≤ n. If m < n
then the right-hand side of (42) would tend to zero as |Im(w)| → ∞. But this contradicts the
fact that h(w) is a nonzero constant. Thus we must have m = n. 2

Theorem 5.4 Let λ ∈ D∪I∗−∪E∗− be a solution to Problem II and write R(w;λ) in the form
(38). Then m = n and after multiplying S(w) by a nonzero constant we have

f(w;λ) = S(w) · dw · Γ (w + u1) · · ·Γ (w + um)

Γ (w + v1) · · ·Γ (w + vm)
. (43)

In particular λ is a solution to Problem I. If A and B are the constants defined in (31) and
S0 ∈ R× and s0 ∈ Z are defined by the asymptotics S(w) ∼ S0w

s0 as w → ∞, then

S0 = A, d = B, v1 + · · ·+ vm = u1 + · · ·+ um + s0. (44)
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Proof. We have m = n by Lemma 5.3. We can multiply S(w) by any nonzero constant without
changing the expression (38). So after multiplying S(w) by a suitable constant if necessary, we
may put h(w) ≡ 1 in Lemma 5.3, then (39) and (40) yield (43). The asymptotic formula in
Lemma 5.1 reads g(w) ∼ S0 · dw · wu−v+s0 as w → ∞ on Re(w) ≥ R2. Compare this with the
formula f(w;λ) ∼ A ·Bw in Proposition 3.3. Then f(w;λ) ≡ g(w) implies equations (44). 2

Remark 5.5 By classical symmetries Theorem 5.4 extends to D ∪ I ∪ E and gives Theorem
2.1, implying that Problems I and II are equivalent in this domain. Hereafter, always working
there, we can and shall refer to a solution without specifying to which problem it is a solution.

Representation (38) is said to be canonical if P (w) and Q(w + j) are coprime in C[w] for
every j ∈ Z. Gosper [12] considered a similar situation where P (w) and Q(w+ j) were coprime
for every j ∈ Z≥0 with S(w) being a polynomial instead of a rational function.

Lemma 5.6 Any rational function R(w) ∈ C(w) admits a canonical representation (38). If
R(w) ∈ R(w) then d, P (w), Q(w) and S(w) can be taken to be real.

Proof. Start with the reduced representation R(w) = dP (w)/Q(w), where P (w), Q(w) ∈ C[w]
are monic and coprime. We work inductively on the degree of P (w). If P (w) and Q(w+ j) are
coprime for every j ∈ Z then we are done. Otherwise, P (w) has a root α such that α + j is
a root of Q(w) for some nonzero j ∈ Z. Obviously (w − α)/(w − α − j) = S1(w + 1)/S1(w),
where S1(w) := (w − α− j)j if j > 0 and S1(w) := 1/(w − α)|j| if j < 0. Thus we can rewrite

R(w) =
S1(w + 1)

S1(w)
R1(w) with R1(w) = d

P1(w)

Q1(w)
, degP1(w) = degP (w)− 1.

We then proceed with R1(w). The case of R(w) can be dealt with by using “irreducible factors”
(affine or irreducible quadratic polynomials) over R instead of w − α. 2

Proposition 5.7 Let λ ∈ D ∪ I∗− ∪ E∗− be a non-elementary solution and write R(w;λ) in a
canonical form (38). Then we must have r ∈ Z, 1 ≤ m = n ≤ r and there exist s1, . . . , sm ∈ Z
mutually distinct modulo r such that the numbers u1, . . . , um in (38b) are represented as

ui = si/r (i = 1, . . . ,m). (45)

Proof. Let Wpole be the set of all poles of f(w;λ). It is an infinite set since f(w;λ) is assumed
to be non-elementary. In gamma product formula (43) the poles of Γ (w + u1) · · ·Γ (w + um)
and those of Γ (w + v1) · · ·Γ (w + vm) constitute two families of arithmetic progressions:

Ui := {−ui − k}∞k=0 (i = 1, . . . ,m), (46a)

Vj := {−vj − k }∞k=0 (j = 1, . . . ,m), (46b)

respectively. Since representation (38) is canonical, Ui and Vj are disjoint for every i, j =
1, . . . ,m, and hence Wpole is commensurable to the union

∪m
i=1 Ui, which is disjoint because all

poles of f(w;λ) are simple so that ui − uj ̸∈ Z for every i ̸= j, that is,

Wpole
◦
=

m⨿
i=1

Ui. (47)
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Thus when expression (38) is canonical, λ is non-elementary if and only if m ≥ 1.
Take i = 1 and k to be sufficiently large in the arithmetic progression (46a). Formula

(43) then shows that w = −u1 − k and w = −u1 − k − 1 are poles of f(w;λ), so they must
lie in the arithmetic progression (32). Thus there exist j1, j2 ∈ Z≥0 with j1 < j2 such that
−u1 − k = −j1/r and −u1 − k − 1 = −j2/r. Their difference gives 1 = (j2 − j1)/r, which
shows that r = j2 − j1 must be a positive integer. In a similar manner for each i = 1, . . . ,m
there exists an integer ki such that w = −ui − ki is a pole of f(w;λ). So it must lie in the
arithmetic progression (32), namely, we can write −ui − ki = −ji/r for some ji ∈ Z. If we put
si := ji + rki then formula (45) holds. Note that s1, . . . , sm are mutually distinct modulo r,
because Ui, . . . , Um are disjoint. 2

6 Asymptotics of the Residues

Throughout this section λ = (p, q, r; a, b, x) ∈ D ∪ I∗− ∪ E∗− is a non-elementary solution with
R(w;λ) being in a canonical form (38). By formula (47) the poles of f(w;λ) are commensurable
to the disjoint union of m arithmetic progressions Ui (i = 1, . . . ,m). In view of formulas (32)
and (45) the general term of Ui is represented as −ui−k = −(rk+ si)/r = wj with j = rk+ si.
In this situation formula (33) reads

Res
(i)
k = C

(i)
k · F (i)

k , (48)

where using the notation of Lemma 4.1 we put

Res
(i)
k := Res

w=wj

f(w;λ), C
(i)
k := Cj, F

(i)
k := 2F1(aj, bj; j + 2; x).

We study the asymptotic behavior of Res
(i)
k as k → ∞ for a fixed i = 1, . . . ,m.

Lemma 6.1 Let B and t0 be the same constants as in (31) and put

ξ(t) := t−2p/r−1(1− t)2p/r−3(1− xt)2q/r−1, (49)

Ã :=
pa+2p/r−1/2

(r − p)a+2p/r−3/2 · r1/2
· ξ(t0)

η(t0)
√
ϕ′′(t0)

, (50)

where ϕ(t) and η(t) are defined by (28). Then for each i = 1, . . . ,m, we have

F
(i)
k ∼ {(1− x)(p+q−r)ui−a−bÃBui+2/r} · {(1− x)p+q−rB}k as k → ∞. (51)

Proof. Euler’s transformation (7b) and the definitions of aj and bj in Lemma 4.1 yield

F
(i)
k = (1− x)j+2−aj−bj

2F1(j + 2− aj, j + 2− bj; j + 2; x) with j = rk + si

= (1− x)(p+q−r)(k+ui)−a−b
2F1(pw

(i)
k + ã, q w

(i)
k + b̃; r w

(i)
k ; x),

where ã := 1 − a − 2p/r, b̃ := 1 − b − 2q/r and w
(i)
k := k + ui + 2/r. Asymptotic behavior of

F (pw
(i)
k +ã, q w

(i)
k +b̃, r w

(i)
k ; x) can be extracted from that of f(w;λ) = 2F1(pw+a, qw+b, rw;x)
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in formula (30) by substituting a 7→ ã, b 7→ b̃, w 7→ w
(i)
k , where p, q, r, x and so Φ(t), ϕ(t), t0,

B in formula (31) are left unchanged. This substitution replaces η(t) with

η̃(t) := t−a−2p/r(1− t)a+2p/r−2(1− xt)b+2q/r−1 =
t−1−2p/r(1− t)2p/r−3(1− xt)2q/r−1

ta−1(1− t)−a−1(1− xt)−b
=
ξ(t)

η(t)
,

where ξ(t) is defined by (49), which in turn induces the change of constant A 7→ Ã in (50).

Proposition 3.3 then yields F
(i)
k ∼ (1 − x)(p+q−r)(k+ui)−a−b · Ã · Bk+ui+2/r as k → ∞. After a

rearrangement, it just gives the desired formula (51). 2

We proceed to investigating C
(i)
k . Substituting j = rk + si into formula (34) yields

C
(i)
k =

(−1)rk+si

r
· (−(pk + αi))rk+si+1(−(qk + βi))rk+si+1

(rk + si)! (rk + si + 1)!
xrk+si+1, (52)

where αi and βi are defined in terms of ui in (45) by

αi := pui − a, βi := qui − b (i = 1, . . . ,m). (53)

We study the asymptotic behavior of C
(i)
k as k → ∞ by dividing condition (22) into three cases.

Lemma 6.2 For each i = 1, . . . ,m, according to the value of q we have

C
(i)
k ∼ D

(i)
1 · Ek

1 · (−1)rk+si · sin π(pk + αi) · sin π(qk + βi) (0 < q < r), (54a)

C
(i)
k ∼ D

(i)
2 · Ek

2 · kb−1/2 · (−1)rk+si+1 · sin π(pk + αi) (q = 0 < r), (54b)

C
(i)
k ∼ D

(i)
3 · Ek

3 · (−1)rk+si+1 · sinπ(pk + αi) (q < 0 < r), (54c)

as k → ∞, where D
(i)
ν and Eν, ν = 1, 2, 3, are constants defined by

D
(i)
1 := 2 pαi+1/2(r−p)si−αi+1/2qβi+1/2(r−q)si−βi+1/2

π r2si+3 xsi+1, E1 :=
pp(r−p)r−pqq(r−q)r−q

r2r
xr, (55a)

D
(i)
2 :=

√
2
π
· pαi+1/2(r−p)si−αi+1/2

Γ (b) rsi−b+5/2 xsi+1, E2 :=
pp(r−p)r−p

rr
xr, (55b)

D
(i)
3 := pαi+1/2(r−p)si−αi+1/2|q|βi+1/2(r−q)si−βi+1/2

π r2si+3 xsi+1, E3 :=
pp(r−p)r−p|q|q(r−q)r−q

r2r
xr. (55c)

Proof. For t ∈ R we denote by [t] the largest integer not exceeding t and by {t} := t − [t] the
fractional part of t. It follows from 0 < p < r that [pk + αi] + 1 and rk + si − [pk + αi] are
positive integers for every sufficiently large integer k. Since pk + αi = [pk + αi] + {pk + αi},

(−(pk + αi))rk+si+1 =

[pk+αi]+1︷ ︸︸ ︷
(−(pk + αi))(1− (pk + αi)) · · · (−{pk + αi})

×
rk+si−[pk+αi]︷ ︸︸ ︷

(1− {pk + αi})(2− {pk + αi}) · · · (rk + si − (pk + αi))

= (−1)[pk+αi]+1({pk + αi})[pk+αi]+1 (1− {pk + αi})rk+si−[pk+αi]

= (−1)[pk+αi]+1Γ (pk + αi + 1)

Γ ({pk + αi})
· Γ ((r − p)k + si − αi + 1)

Γ (1− {pk + αi})

= −sin π(pk + αi)

π
Γ (pk + αi + 1)Γ ((r − p)k + si − αi + 1),
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by the recursion and reflection formulas for the gamma function. By Stirling’s formula (26),

Γ (pk + αi + 1)Γ ((r − p)k + si − αi + 1)

Γ (rk + si + 3/2)
∼

√
2π

pαi+1/2(r − p)si−αi+1/2

rsi+1

(
pp(r − p)r−p

rr

)k

as k → ∞. Using this asymptotic formula in the above equation we have

(−(pk + αi))rk+si+1

Γ (rk + si + 3/2)
∼ −

√
2
π
· pαi+1/2(r−p)si−αi+1/2

rsi+1

(
pp(r−p)r−p

rr

)k
sin π(pk + αi) (56)

as k → ∞. Exactly in the same manner, if 0 < q < r then we have as k → ∞,

(−(qk + βi))rk+si+1

Γ (rk + si + 3/2)
∼ −

√
2
π
· qβi+1/2(r−q)si−βi+1/2

rsi+1

(
qq(r−q)r−q

rr

)k
sin π(qk + βi). (57)

Next we consider the case q ≤ 0 < r. For every sufficiently large integer k,

(−(qk + βi))rk+si+1

Γ (rk + si + 3/2)
=


Γ (b+ rk + si + 1)

Γ (b)Γ (rk + si + 3/2)
(q = 0 < r),

Γ ((r − q)k + si − βi + 1)

Γ (|q|k − βi)Γ (rk + si + 3/2)
(q < 0 < r).

Applying Stirling’s formula (26) to the right-hand side above we have as k → ∞,

(−(qk + βi))rk+si+1

Γ (rk + si + 3/2)
∼

(rk)b−1/2/Γ (b) (q = 0 < r),

1√
2π

· |q|βi+1/2(r−q)si−βi+1/2

rsi+1

(
|q|q(r−q)r−q

rr

)k
(q < 0 < r),

(58)

Notice that (rk+ si)! (rk+ si+1)! ∼ Γ (rk+ si+3/2)2 as k → ∞ by Stirling’s formula (26).
Thus substituting formulas (56) and (57) into (52) yields formula (54a). Similarly substituting
formulas (56) and (58) into (52) yields formulas (54b) and (54c). 2

Remark 6.3 When q = 0, we have b ̸∈ Z≤0 since elementary solutions (36) are excluded from

our consideration. Thus the constant D
(i)
2 in (55b) is nonzero.

Lemma 6.4 For each i = 1, . . . ,m, according to the value of q we have

Res
(i)
k ∼ D

(i)
4 · Ek

4 · (−1)rk+si · sin π(pk + αi) · sin π(qk + βi) (0 < q < r), (59a)

Res
(i)
k ∼ D

(i)
5 · Ek

5 · kb−1/2 · (−1)rk+si+1 · sin π(pk + αi) (q = 0 < r), (59b)

Res
(i)
k ∼ D

(i)
6 · Ek

6 · (−1)rk+si+1 · sinπ(pk + αi) (q < 0 < r), (59c)

as k → ∞, where D
(i)
ν and Eν, ν = 4, 5, 6, are constants defined by

D(i)
ν := (1− x)(p+q−r)ui−a−bÃBui+2/rD

(i)
ν−3, Eν := (1− x)p+q−rB · Eν−3 (ν = 4, 5, 6). (60)

Proof. In view of (48) this lemma is proved by putting Lemmas 6.1 and 6.2 together. 2
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Lemma 6.5 In the circumstances of Theorem 5.4, we have for each i = 1, . . . ,m,

Res
(i)
k ∼ K(i) ·B−k as k → ∞, K(i) :=

(−1)s0A

πBui
·
∏m

j=1 sinπ(vj − ui)∏∗m
j=1 sin π(uj − ui)

, (61)

where
∏∗m

j=1 denotes the product taken over all j = 1, . . . ,m but j = i.

Proof. Applying the reflection formula for the gamma function to formula (43) yields

f(w;λ) = S(w) ·Bw ·
∏m

j=1 Γ (1− vj − w)∏m
j=1 Γ (1− uj − w)

·
∏m

j=1 sin π(w + vj)∏m
j=1 sin π(w + uj)

,

where d = B in (44) is also used. Taking its residue at w = −k − ui gives

Res
(i)
k = S(−(k + ui)) ·B−k−ui

∏m
j=1 Γ (k + ui − vj + 1)∏m
j=1 Γ (k + ui − uj + 1)

×
∏m

j=1 sin π(vj − ui − k)∏∗m
j=1 sinπ(uj − ui − k)

lim
w→−k−ui

w + k + ui
sin π(w + ui)

=
1

π
S(−(k + ui))B

−k−ui

∏m
j=1 Γ (k + ui − vj + 1)∏m
j=1 Γ (k + ui − uj + 1)

·
∏m

j=1 sin π(vj − ui)∏∗m
j=1 sin π(uj − ui)

.

By (44) we have S(−(k + ui)) ∼ S0(−k)s0 = A(−1)s0ks0 and by Stirling’s formula (26),∏m
j=1 Γ (k + ui − vj + 1)∏m
j=1 Γ (k + ui − uj + 1)

∼ ku−v = k−s0 as k → ∞.

Substituting these asymptotic formulas into the above equation we get formula (61). 2

It follows from (61) that K(i) ̸= 0 for i = 1, . . . ,m, because A > 0 and B > 0 by (31) and
vj −ui ̸∈ Z, i, j = 1, . . . ,m, as (38) is assumed to be canonical. Since asymptotic formulas (59)
and (61) must be equivalent, taking the ratio of them gives the following.

Proposition 6.6 We have asymptotic formulas

D
(i)
7 · Ek

7 · (−1)rk+si · sin π(pk + αi) · sinπ(qk + βi) → 1 (0 < q < r), (62a)

D
(i)
8 · Ek

8 · kb−1/2 · (−1)rk+si+1 · sinπ(pk + αi) → 1 (q = 0 < r), (62b)

D
(i)
9 · Ek

9 · (−1)rk+si+1 · sinπ(pk + αi) → 1 (q < 0 < r), (62c)

as k → ∞, where D
(i)
ν and Eν, ν = 7, 8, 9, i = 1, . . . ,m, are constants defined by

D(i)
ν := D

(i)
ν−3/K

(i), Eν := B · Eν−3. (ν = 7, 8, 9). (63)

To extract important information from Proposition 6.6 we need a couple of lemmas.

Lemma 6.7 Let w1, . . . , wm ∈ C× be mutually distinct, c1, . . . , cm ∈ C and δ ∈ R. If

kδ
m∑
i=1

ciw
k
i → c ∈ C× as k → ∞, (64)

then δ = 1 and there exists a unique index µ ∈ {1, . . . ,m} such that wµ = 1, cµ = c and for
any index i = 1, . . . ,m with i ̸= µ either |wi| < 1 or ci = 0 holds.
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Proof. Replacing k with k + j − 1 in (64) and using (k + j − 1)δ/kδ → 1 as k → ∞, we have

kδ
m∑
i=1

ciw
k+j−1
i → c ∈ C× as k → ∞ (j = 1, . . . ,m).

Since the Vandermonde matrix
(
wj−1

i

)m
i,j=1

is invertible, this implies that for each i = 1, . . . ,m,

the sequence kδ ciw
k
i has a limit γi ∈ C as k → ∞, which must satisfy wiγi = γi. Since c ̸= 0

in (64), there exists an index µ ∈ {1, . . . ,m} such that γµ ̸= 0 and hence wµ = 1, cµ ̸= 0 and so
δ = 0. As w1, . . . , wm are distinct, such an index µ is unique and γi = 0 for any index i other
than µ. Then cµ = c and either |wi| < 1 or ci = 0 holds for every index i ̸= µ. 2

Lemma 6.8 Let r ∈ Z, E > 0 and p, q, α, β ∈ R. If the sequence

σk := (−1)rk · Ek · sin π(pk + α) · sin π(qk + β) has a nonzero limit as k → ∞,

then E = 1 and there exists a dichotomy:

(A) p, q ∈ Z, p+ q − r must be even, α, β ∈ R \ Z,

(B) p, q ∈ 1
2
+ Z, α− (−1)p+q−rβ ∈ 1

2
+ Z, α, β ∈ R \ Z.

Proof. If we put z1 = E eiπ(p+q−r), z2 = E e−iπ(p+q−r), z3 = E eiπ(p−q−r), z4 = E e−iπ(p−q−r),
b1 = −eiπ(α+β), b2 = −e−iπ(α+β), b3 = eiπ(α−β), b4 = e−iπ(α−β) with i :=

√
−1, then

4σk = b1 z
k
1 + b2 z

k
2 + b3 z

k
3 + b4 z

k
4 = c1w

k
1 + · · ·+ cmw

k
m, (65)

where w1, . . . , wm are the mutually distinct members of z1, z2, z3, z4 and cµ is the sum of those
bj’s with zj = wµ. Since sequence (65) satisfies condition (64) with δ = 0, we have zj = 1
for some j ∈ {1, 2, 3, 4} by Lemma 6.7. Then E = 1 and z1z2 = z3z4 = 1, thus z1 = z2 = 1
or z3 = z4 = 1. First, if z1 = z2 = z3 = z4 = 1, then p + q − r ∈ 2Z, p − q − r ∈ 2Z and
4σk = b1 + b2 + b3 + b4 = 4 sin πα · sin πβ ̸= 0, which falls into case (A). Secondly, if z1 = z2 = 1
but z3 ̸= 1, then 4σk = (b1+ b2)+ b3 z

k
3 + b4 z

k
4 with b3b4 ̸= 0 and |z3| = |z4| = 1, which together

with Lemma 6.7 and z3z4 = 1 forces z3 = z4 = −1 and 4σk = (b1 + b2) + (b3 + b4) · (−1)k, so
that b1 + b2 = −2 cos π(α+ β) ̸= 0 and b3 + b4 = 2 cos π(α− β) = 0, and hence p+ q − r ∈ 2Z,
p− q − r ∈ 2Z+ 1, α+ β ̸∈ 1/2 + Z and α− β ∈ 1/2 + Z, which falls into case (B). Finally, if
z3 = z4 = 1 but z1 ̸= 1, then a similar reasoning shows that p+ q− r ∈ 2Z+ 1, p− q− r ∈ 2Z,
α + β ∈ 1/2 + Z and α− β ̸∈ 1/2 + Z, which again falls into case (B). 2

Lemma 6.9 Let r ∈ Z, E > 0 and δ, p, α ∈ R. If the sequence

τk := (−1)rk · Ek · kδ · sin π(pk + α) has a nonzero limit as k → ∞,

then E = 1, δ = 0, p ∈ Z, p− r must be even, and α ∈ R \ Z.

Proof. If we put z1 = E eiπ(p−r), z2 = E e−iπ(p−r), b1 = eiπα, b2 = −e−iπα, then 2iτk =
kδ(b1 z

k
1 + b2 z

k
2 ), where z1 and z2 may or may not be equal. In either case Lemma 6.7 implies

that δ = 1 and at least one of z1 and z2 must be 1, which in turn forces E = 1, p− r ∈ 2Z and
hence p ∈ Z, z1 = z2 = 1 and 2iτk = b1 + b2 = 2i sin πα ̸= 0, that is, α ∈ R \ Z. 2

The author’s original proofs of Lemmas 6.8 and 6.9 are more cumbersome. The present
proofs based on Lemma 6.7 are due to Hiroyuki Ochiai and the anonymous referee, to whom
the author is very grateful.
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Theorem 6.10 Let λ = (p, q, r; a, b;x) ∈ D ∪ I∗− ∪ E∗− be a non-elementary solution and αi,
βi (i = 1, . . . ,m) be the numbers defined in (53). Then r must be a positive integer and

d =
rr√

pp · |q|q · (r − p)r−p · (r − q)r−q · xr · (1− x)p+q−r
, (66)

where |q|q := 1 when q = 0; this convention is reasonable since |q|q → 1 as q → 0.

(1) If λ ∈ D then there is a dichotomy:

(A) p, q ∈ Z, p+ q − r must be even, αi, βi ∈ R \ Z (i = 1, . . . ,m),

(B) p, q ∈ 1
2
+ Z, αi − (−1)p+q−r βi ∈ 1

2
+ Z, αi, βi ∈ R \ Z (i = 1, . . . ,m).

(2) If λ ∈ I∗− ∪ E∗− then p ∈ Z, p− r must be even, αi ∈ R \ Z (i = 1, . . . ,m).

(3) If moreover λ ∈ I∗−, that is, q = 0, then we must have b = 1/2.

Proof. Applying a part of Lemma 6.8 or 6.9 to Proposition 6.6 yields Eν = 1 (ν = 7, 8, 9) in
(62) and b = 1/2 in (62b). Combining Eν = 1 with (63), (60) and (55) in this order we observe
that B2 is equal to the square of the right-hand side of (66). Formula (66) then follows from
d = B in (44) and B > 0 in (31). The remaining assertions of the theorem are also obtained
by applying Lemma 6.8 or 6.9 to Proposition 6.6. 2

Remark 6.11 If λ = (p, q, r; a, b;x) ∈ D is a non-elementary (B)-solution, then its duplication
2λ := (2p, 2q, 2r; a, b;x) is an (A)-solution with R(w; 2λ) = R(2w;λ) ·R(2w + 1;λ).

7 Rational Independence

Finding when an integral solution comes from contiguous relations relies on the following.

Proposition 7.1 If λ ∈ D ∪ I ∪ E is a non-elementary solution, then f(w;λ) and f̃(w;λ) in
(1) and (5) are linearly independent over the rational function field C(w).

Proof. If γ is not an integer then the Gauss hypergeometric equation admits

u1 := 2F1(α, β; γ; z), u2 := z1−γ
2F1(α− γ + 1, β − γ + 1; 2− γ; z)

as a fundamental set of local solutions around z = 0, whose Wronskian is given by

W := u1u
′
2 − u′1u2 = (1− γ)z−γ(1− z)γ−α−β−1,

where u′ = du/dz. From Erdélyi [9, Chapter II, §2.8, formulas (20) and (22)] we have

u′1 =
αβ

γ
2F1(α + 1, β + 1; γ + 1; z), u′2 = (1− γ)z−γ

2F1(α− γ + 1, β − γ + 1; 1− γ; z).

Substituting these into the Wronskian formula above we have

(1− z)γ−α−β−1 = 2F1(α, β; γ; z) 2F1(α− γ + 1, β − γ + 1; 1− γ; z)+

αβz

γ(γ − 1)
2F1(α + 1, β + 1; γ + 1; z) 2F1(α− γ + 1, β − γ + 1; 2− γ; z).

(67)
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By symmetries we may assume λ = (p, q, r; a, b;x) ∈ D ∪ I∗− ∪ E∗−. Theorem 5.4 and
Proposition 5.7 then imply that f(w;λ) has a GPF (43) such that m ≥ 1 and ui − vj ̸∈ Z,
i, j = 1, . . . ,m. If f(w;λ) and f̃(w;λ) were linearly dependent over C(w), then there would be
a rational function T (w) such that f̃(w;λ) = T (w)f(w;λ). Putting (α, β; γ; z) = (pw+a, qw+
b; rw;x) into (67) yields f(w;λ)f1(w) = (1− x)(r−p−q)w−a−b−1, where f1(w) is defined by

f1(w) := 2F1((p− r)w + a+ 1, (q − r)w + b+ 1; 1− rw; x)

+
(pw + a)(qw + b)x

rw(rw − 1)
· T (w) · 2F1((p− r)w + a+ 1, (q − r)w + b+ 1; 2− rw; x).

Take a number R5 < 0 so that all poles of T (w) and S(w) are in the right half-plane Re(z) > R5,
where S(w) is the rational function in (43). Since r is positive, f1(w) is holomorphic on
the left half-plane Re(z) < R5. Choose a positive integer j so that −j − v1 < R5. Then
f(w;λ) has a zero at w = −j − v1 while f1(w) is holomorphic at this point. Therefore,
0 = f(−j − v1;λ)f1(−j − v1) = (1− x)−(r−p−q)(j+v1)−a−b−1 ̸= 0, which is a contradiction. 2

Theorem 7.2 Any non-elementary integral solution in D∪I ∪E comes from contiguous rela-
tions.

Proof. For such a solution λ there exists a rational function R̃(w) such that f(w + 1;λ) =

R̃(w)f(w;λ). Subtracting this from three-term relation (6) yields a linear relation {R(w;λ)−
R̃(w)}f(w;λ) + Q(w;λ)f̃(w;λ) = 0 over the field C(w). By Proposition 7.1 one must have

R(w;λ)− R̃(w) = Q(w;λ) ≡ 0 in C(w), so that three-term relation (6) reduces to a two-term
one (3). Thus the solution λ comes from contiguous relations. 2

8 Contiguous Matrices

It is convenient to recast contiguous relations into a matrix form by putting

F (a) := t(2F1(a; z), 2F1(a+ 1; z)), a := (a1, a2, a3) = (α, β, γ), 1 := (1, 1, 1),

and e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). From formulas in Erdélyi [9, Chapter II, §2.8]
we observe that the contiguous relation raising parameter ai by one can be written

F (a+ ei) = Ai(a)F (a) (i = 1, 2, 3), (68)

where the matrix Ai(a) is given in Table 3 together with its determinant detAi(a). As the
compatibility conditions for three relations (68) one has the commutation relations:

Ai(a+ ej)Aj(a) = Aj(a+ ei)Ai(a) (i, j = 1, 2, 3). (69)

Given a lattice point p = (p1, p2, p3) = (p, q, r) ∈ Z3
≥0, a lattice path in Z3

≥0 from 0 = (0, 0, 0)
to p can be represented by a sequence i = (i1, . . . , ik) of indices 1, 2, 3 such that p = ei1+· · ·+eik

where k = p+ q + r. By compatibility conditions (69) the matrix product

A(a;p) := Aik(a+ ei1 + · · ·+ eik−1
) · · ·Ai3(a+ ei1 + ei2)Ai2(a+ ei1)Ai1(a)

is independent of the path i = (i1, . . . , ik), that is, depends only on the initial point a and the
terminal point a+ p. The matrix version of three-term relation (4) is given by

F (a+ p) = A(a;p)F (a). (70)
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A1(a) :=

(
1 βz

γ

− γ
(α+1)(z−1)

γ−α−1−βz
(α+1)(z−1)

)
detA1(a) =

γ − α− 1

(α + 1)(z − 1)

A2(a) :=

(
1 αz

γ

− γ
(β+1)(z−1)

γ−β−1−αz
(β+1)(z−1)

)
detA2(a) =

γ − β − 1

(β + 1)(z − 1)

A3(a) :=

 γ(γ−α−β)
(γ−α)(γ−β)

− αβ(z−1)
(γ−α)(γ−β)

γ(γ+1)
(γ−α)(γ−β)z

γ(γ+1)(z−1)
(γ−α)(γ−β)z

 detA3(a) =
γ(γ + 1)(z − 1)

(γ − α)(γ − β)z

Table 3: Contiguous matrices and their determinants.

Lemma 8.1 If 1 ≤ p ≤ r and 1 ≤ q ≤ r then A(a;p) admits a representation

A(a;p) =
1

(γ − α)r−p (γ − β)r−q

 (γ)r ϕ
(r−2)
11

(α+1)p−1 (β+1)q−1

(γ+1)r−1 ϕ
(r−1)
12

(α+1)p−1 (β+1)q−1

(γ)r+1 ϕ
(r−1)
21

(α+1)p (β+1)q

(γ+1)r ϕ
(r)
22

(α+1)p (β+1)q

 , (71)

where ϕ
(−1)
11 = 0 and ϕ

(k)
ij = ϕ

(k)
ij (a;p) stands for a polynomial of degree at most k in a = (α, β, γ)

with coefficients in the ring Z[z±1, 1/(z − 1)]. The determinant of A(a;p) is given by

detA(a;p) =
z−r(z − 1)r−p−q · (γ)r (γ + 1)r

(α + 1)p (β + 1)q (γ − α)r−p (γ − β)r−q

. (72)

Proof. Formula (71) is proved by induction on r, where the main claim is the assertion about

the degrees of ϕ
(r)
ij , i, j = 1, 2, in a = (α, β, γ). A direct check shows that it is true for r = 1,

that is, for p = 1. Assuming the assertion is true for r we show it for r + 1, that is, for
(p, q, r + 1) with 1 ≤ p ≤ r + 1 and 1 ≤ q ≤ r + 1, where symmetry allows us to assume p ≤ q.
There are three cases to deal with: (i) p ≤ q ≤ r; (ii) p < q = r + 1; and (iii) p = q = r + 1. In
case (i) the relation A(a;p+ e3) = A3(a+ p)A(a;p) with p = (p, q, r) leads to the recurrence(

ϕ
(r−1)
11 ϕ

(r)
12

ϕ
(r)
21 ϕ

(r+1)
22

)
=

(
γ − α− β + r − p− q 1− z

(α+p)(β+q)
z

(γ+r)(z−1)
z

)(
ϕ
(r−2)
11 ϕ

(r−1)
12

ϕ
(r−1)
21 ϕ

(r)
22

)
,

by which the assertion for r + 1 follows from induction hypothesis. In case (ii) the relation
A(a;p+ e2 + e3) = A2(a+ p+ e3)A3(a+ p)A(a;p) with p = (p, r, r) leads to(

ϕ
(r−1)
11 ϕ

(r)
12

ϕ
(r)
21 ϕ

(r+1)
22

)
=

(
β + r z − 1

− (α+p)(β+r)
z

γ+r−(α+p)z
z

)(
ϕ
(r−2)
11 ϕ

(r−1)
12

ϕ
(r−1)
21 ϕ

(r)
22

)
,

by which the assertion follows from induction hypothesis. Finally, in case (iii) the relation
A(a;p+ 1) = A1(a+ p+ e2 + e3)A2(a+ p+ e3)A3(a+ p)A(a;p) with p = (r, r, r) yields(

ϕ
(r−1)
11 ϕ

(r)
12

ϕ
(r)
21 ϕ

(r+1)
22

)
=

 0 1

(α+r)(β+r)
z(1−z)

γ+r−(α+β+2r+1)z
z(z−1)

(ϕ(r−2)
11 ϕ

(r−1)
12

ϕ
(r−1)
21 ϕ

(r)
22

)
,

22



by which the assertion follows and the induction completes itself.
Determinant formula (72) is obtained by taking the determinant of matrix products

A(a;p) = A1(α + p− 1, β + q; γ + r) · · ·A1(α + 1, β + q; γ + r)A1(α, β + q; γ + r)

· A2(α, β + q − 1; γ + r) · · ·A2(α, β + 1; γ + r)A2(α, β; γ + r) (73)

· A3(α, β; γ + r − 1) · · ·A3(α, β; γ + 1)A3(α, β; γ),

and by using determinant formulas in Table 3. 2

Formula (70) leads to a matrix version of three-term relation (6):

f(w + 1;λ) = A(w;λ)f(w;λ), f(w;λ) := t(f(w;λ), f̃(w;λ)), (74)

for an integral data λ = (p, q, r; a, b;x), where A(w;λ) is the matrix A(a;p) evaluated at
a = α(w) := (pw + a, qw + b; rw) and z = x.

Lemma 8.2 If 1 ≤ p ≤ r and 1 ≤ q ≤ r then A(w;λ) admits a representation

A(w;λ) =
1

((r − p)w − a)r−p ((r − q)w − b)r−q

×

 (rw)r ϕ
(r−2)
11 (w)

(pw+a+1)p−1 (qw+b+1)q−1

(rw+1)r−1 ϕ
(r−1)
12 (w)

(pw+a+1)p−1 (qw+b+1)q−1

(rw)r+1 ϕ
(r−1)
21 (w)

(pw+a+1)p (qw+b+1)q

(rw+1)r ϕ
(r)
22 (w)

(pw+a+1)p (qw+b+1)q

 ,

(75)

where ϕ
(−1)
11 (w) = 0 and ϕ

(k)
ij (w) is a polynomial of degree at most k in w. Moreover,

detA(w;λ) =
x−r(x− 1)r−p−q · (rw)r (rw + 1)r

(pw + a+ 1)p (qw + b+ 1)q ((r − p)w − a)r−p ((r − q)w − b)r−q

. (76)

Proof. Substitute a = α(w) and z = x into (71) and (72). 2

Remark 8.3 Notice that R(w;λ) = A11(w;λ) and Q(w;λ) = A12(w;λ) in formula (6), where
Aij(w;λ) is the (i, j)-th entry of A(w;λ). Thus an integral solution λ = (p, q, r; a, b;x) comes

from contiguous relations exactly when A12(w;λ) or equivalently ϕ
(r−1)
12 (w) vanishes in C(w).

If this is the case, taking the determinant of (75) and comparing the result with (76) we find

ϕ
(r−2)
11 (w) · ϕ(r)

22 (w) = x−r(x− 1)r−p−q · (pw + a+ 1)p−1(qw + b+ 1)q−1((r − p)w − a)r−p((r − q)w − b)r−q. (77)

This implies deg ϕ
(r−2)
11 = r− 2 and deg ϕ

(r)
22 = r, since deg ϕ

(r−2)
11 ≤ r− 2 and deg ϕ

(r)
22 ≤ r while

the right side of (77) is of degree 2r − 2. Using (77) in R(w;λ) = A11(w;λ) yields

R(w;λ) = x−r(x− 1)r−p−q · (rw)r

ϕ
(r)
22 (w)

. (78)
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9 Principal Parts of Contiguous Matrices

Given an integral data λ = (p, q, r; a, b;x), the principal part of Ai(w;λ) is defined by

Bi = Bi(λ) := lim
w→∞

Ai(w;λ) (i = 1, 2, 3).

A little calculation using Table 3 shows that

B1 =

(
1 qx

r

− r
p(x−1)

r−p−qx
p(x−1)

)
, B2 =

(
1 px

r

− r
q(x−1)

r−q−px
q(x−1)

)
, B3 =

 r(r−p−q)
(r−p)(r−q)

− pq(x−1)
(r−p)(r−q)

r2

(r−p)(r−q)x
r2(x−1)

(r−p)(r−q)x

 .

Compatibility condition (69) implies that B1, B2, B3 are commutative to each other.

Lemma 9.1 In formula (75) we have

lim
w→∞

A(w;λ) = Bp
1B

q
2B

r
3 = c

(
X(x)− {r − (p+ q)x}Y (x) 2(pq/r)x(x− 1)Y (x)

−2r Y (x) X(x) + {r − (p+ q)x}Y (x)

)
, (79)

where X(z), Y (z) ∈ Z[z] are the polynomials defined in (14) and c is the constant

c :=
rr

2rppqq(r − p)r−p(r − q)r−qxr
.

Proof. Putting a = α(w) and z = x into (73) and letting w → ∞, we have lim
w→∞

A(w;λ) =

Bp
1B

q
2B

r
3 by the commutativity of B1, B2, B3. From the explicit formulas for Bi,

B1B3 =

(
r

r−q
q(x−1)
r−q

− r2

p(r−q)x
r(r−qz)
p(r−q)x

)
, B2B3 =

(
r

r−p
p(x−1)
r−p

− r2

q(r−p)x
r(r−px)
q(r−p)x

)
.

Observe that B1B3, B2B3 and B3 are simultaneously diagonalized as

T−1(B1B3)T =
r

2p(r − q)x
· diag

{
r + (p− q)x+

√
∆, r + (p− q)x−

√
∆
}
,

T−1(B2B3)T =
r

2q(r − p)x
· diag

{
r − (p− q)x+

√
∆, r − (p− q)x−

√
∆
}
,

T−1B3T =
r

2(r − p)(r − q)x
· diag

{
(2r − p− q)x− r −

√
∆, (2r − p− q)x− r +

√
∆
}
,

where ∆ = ∆(x) is the quadratic polynomial (15) (evaluated at z = x) and

T =

(
r−(p+q)x−

√
∆

2r
r−(p+q)x+

√
∆

2r

1 1

)
.

In view of (14) and (16) the matrix Bp
1B

q
2B

r
3 = (B1B3)

p(B2B3)
qBr−p−q

3 is diagonalized as

T−1(Bp
1B

q
2B

r
3)T = c · diag

{
X(x) + Y (x)

√
∆, X(x)− Y (x)

√
∆
}
.

Then (79) follows from Bp
1B

q
2B

r
3 = c · T · diag

{
X(x) + Y (x)

√
∆, X(x)− Y (x)

√
∆
}
· T−1. 2
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Lemma 9.2 Let p, q, r ∈ Z, p > 0, q > 0 and r − p − q ≥ 0. Then Y (z) is a nontrivial
polynomial of degree at most r − 1 resp. r − p− 1 if p ̸= q resp. p = q.

(1) If r − p− q = 0 then Y (z) has no root in 0 ≤ z < 1.

(2) If r − p− q is a positive even integer then Y (z) has at least one root in 0 < z < 1.

Proof. We have ∆(0) = r2 > 0 and ∆(1) = (r − p− q)2 ≥ 0. If p ̸= q then ∆(z) is a quadratic
polynomial with axis of symmetry at z = 1+ (p− q)−2{p(r− p) + q(r− q)} > 1. If p = q then
∆(z) is an affine polynomial with slope −4p(r − p) < 0. In either case ∆ = ∆(z) is strictly
decreasing and positive in 0 ≤ z < 1. We take the branch of

√
∆ so that

√
∆ > 0. Since

Z+(0) = (−1)r−p−q (2r)r, Z−(0) = 0 and hence Y (0) = (−1)r−p−q(2r)r−1 ̸= 0, the polynomial
Y (z) is nontrivial. The assertion for the degree of Y (z) is easy to see.

To prove assertion (1) we assume p+q = r. Let 0 ≤ z < 1 and put s := p−q ≥ 0. Formulas
(15) and (16) yield ∆ = (1−z)(r2−s2z) > 0 and Z±(z) = (r+sz±

√
∆)p(r−sz±

√
∆)q. Since

(r−sz)2−∆ = 4q2z ≥ 0, we have r+sz ≥ r−sz ≥
√
∆ > 0, so r+sz+

√
∆ > r+sz−

√
∆ ≥ 0

and r − sz +
√
∆ > r − sz −

√
∆ ≥ 0. Thus formula (14) yields

2Y (z)
√
∆ = (r + sz +

√
∆)p(r − sz +

√
∆)q − (r + sz −

√
∆)p(r − sz −

√
∆)q > 0,

which implies Y (z) > 0. Therefore Y (z) has no root in 0 ≤ z < 1.
To show assertion (2) we assume r − p − q > 0. Since

√
∆(0) = r > 0, formula (16) gives

Z+(0) = (2r)p(2r)q(−2r)r−p−q = (−1)r−p−q(2r)r and Z−(0) = 0p · 0q · 0r−p−q = 0, which are
valid even if r − p − q = 0. Similarly, since

√
∆(1) = r − p − q > 0, formula (16) yields

Z+(1) = {2(r − q)}p{2(r − p)}q · 0r−p−q = 0 and Z−(1) = (2p)p(2q)q{2(r − p − q)}r−p−q =
2rppqq (r − p− q)r−p−q. Thus it follows from (14) that

Y (0) = (−1)r−p−q (2r)r−1, Y (1) = −2r−1ppqq (r − p− q)r−p−q−1 < 0.

Accordingly, if r− p− q is positive and even, then Y (0) > 0 and Y (1) < 0, so Y (z) has at least
one root in the interval 0 < z < 1 by the intermediate value theorem. 2

Theorem 9.3 Let λ = (p, q, r; a, b;x) ∈ D− ∪ D0 be a non-elementary integral solution. Then
x must be a root in 0 < z < 1 of the algebraic equation Y (z;p) = 0 and hence be an algebraic
number of degree at most r − 1 resp. r − p− 1 if p ̸= q resp. p = q. Moreover r − p− q must
be positive and even. Any solution on D0, integral or not, must be elementary.

Proof. Any non-elementary integral solution λ ∈ D− ∪ D0 comes from contiguous relations by
Theorem 7.2, so A12(w;λ) ≡ 0 by Remark 8.3. Thus formula (79) yields 0 = lim

w→∞
A12(w;λ) =

2(pq/r)x(x− 1)Y (x), namely, Y (x) = 0 and hence x must be algebraic. The degree bound for
x comes from the corresponding statement in Lemma 9.2. Note that r− p− q must be even by
Theorem 6.10 and nonnegative by assumption λ ∈ D− ∪ D0. Assertion (1) of Lemma 9.2 then
rules out the possibility r − p − q = 0, which means that there is no non-elementary, integral
i.e. (A)-solution on D0. By Remark 6.11 there is no non-elementary (B)-solution either. 2

Remark 9.4 The degree bound for x in Theorem 9.3 is by no means optimal. In fact x is
either rational or quadratic for any solution known to the author. As a root of Y (z;p) the
number x depends only on p = (p, q, r) and so does d by formula (66).
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10 Truncated Hypergeometric Products

Emphasizing the dependence on p = (p, q, r) we rewrite three-term relation (4) as

2F1(a+ p; z) = r(a;p; z) 2F1(a; z) + q(a;p; z) 2F1(a+ 1; z). (80)

Then the matrix A(a;p) in formula (70) can be represented as

A(a;p) =

(
r(a;p; z) q(a;p; z)

r(a;p+ 1; z) q(a;p+ 1; z)

)
.

Ebisu [5] made an extensive study of three-term relation (80), whose results enable us to
express q(a;p) and r(a;p) in terms of truncated hypergeometric products. For a nonnegative
integer τ we denote by ⟨φ(z) ⟩τ :=

∑τ
j=0 cjz

j the truncation at degree τ of a power series

φ(z) =
∑∞

j=0 cjz
j. In what follows truncation is always taken with respect to variable z.

Lemma 10.1 Let p = (p, q, r) ∈ Z3. If 0 ≤ q ≤ p and p+ q ≤ r then

q(a;p; z) = z1−r(z − 1) · C(a;p) · ⟨2F1(a
∗; z) · 2F1(v − a∗ − p∗; z)⟩r−q−1, (81)

while if −1 ≤ q ≤ p and p+ q ≤ r − 1 then

q(a;p+ 1; z) = z−r(z − 1) · C(a;p+ 1) · ⟨2F1(a
∗; z) · 2F1(1− a∗ − p∗; z)⟩r−q−1, (82)

where a∗ := (γ − α, γ − β; γ), p∗ := (r − p, r − q; r), v := (1, 1; 2) and

C(a;p) := (−1)r−p−q (γ)r−1 (γ + 1)r−1

(α + 1)p−1(β + 1)q−1(γ − α)r−p(γ − β)r−q

.

Proof. By case (ii) of Ebisu [5, Proposition 3.4, Theorem 3.7, Remark 3.11], if p ≥ q and
r ≥ max{p+ q, 0} then q(a;p; z) = z1−r(z − 1) q0(a;p; z), where q0(a;p; z) is a polynomial of
degree at most r − q − 1 in z and is explicitly given by

q0(a;p; z) = C(a;p) 2F1(a
∗; z) 2F1(v − a∗ − p∗; z)− αβ

γ(γ − 1)
zr 2F1(v − a; z) 2F1(a+ p; z).

In particular, if p ≥ q ≥ 0 and p+ q ≤ r then we have r − q − 1 < r so that

q0(a;p; z) = C(a;p) ⟨2F1(a
∗; z) · 2F1(v − a∗ − p∗; z)⟩r−q−1, (83)

which yields (81). Formula (82) follows from the formula (83) with p replaced by p+ 1, which
remains true provided p+ 1 ≥ q+ 1 ≥ 0 and (p+ 1) + (q+ 1) ≤ r+ 1, that is, p ≥ q ≥ −1 and
p+ q ≤ r − 1. Here we used the equality v − a∗ − (p+ 1)∗ = 1− a∗ − p∗. 2

Given an integral data λ = (p, q, r; a, b;x) with p ≥ 0, q ≥ 0 and p+ q ≤ r, we define

V (w;λ) := (rw)r−1 ⟨ 2F1(α
∗(w); z) · 2F1(v −α∗(w + 1); z) ⟩τ

∣∣
z=x

= (rw)r−1 ⟨ (1− z)r−p−q · 2F1(α(w); z) · 2F1(v −α(w + 1); z) ⟩τ
∣∣
z=x

, (84)

P (w;λ) := (rw)r ⟨ 2F1(α
∗(w); z) · 2F1(1−α∗(w + 1); z) ⟩τ

∣∣
z=x

= (rw)r ⟨ (1− z)r−p−q−1 · 2F1(α(w); z) · 2F1(e3 −α(w + 1); z) ⟩τ
∣∣
z=x

, (85)
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where α(w) := (pw + a, qw + b; rw), α∗(w) := ((r − p)w − a, (r − q)w − b; rw), v := (1, 1, 2),

τ := max{r − p− 1, r − q − 1}, (86)

and the second equalities in (84) and (85) are due to Euler’s transformation (7b). An inspection
shows that V (w;λ) and P (w;λ) are polynomials over Q in (w;λ) = (w; p, q, r; a, b;x) with
degrees at most 2r−min{p, q}−2 and 2r−min{p, q}−1 in w respectively. By trivial symmetry
we may suppose q ≤ p and hence τ = r − q − 1 in (86).

Lemma 10.2 Let ϕ
(r)
ij (w) be as in (75). If p = (p, q, r) ∈ Z3 satisfies 0 ≤ q ≤ p, p + q ≤ r,

then
ϕ
(r−1)
12 (w) = (−1)r−p−q · x1−r(x− 1) · V (w;λ), (87)

in particular V (w, λ) is of degree at most r− 1 in w. If moreover p satisfies p+ q ≤ r− 1, then

ϕ
(r)
22 (w) = (−1)r−p−q−1 · x−r(x− 1) · P (w;λ), (88)

in particular P (w;λ) is of degree at most r in w.

Proof. Substituting a = α(w) := (pw + a, qw + b; rw) and z = x into formula (81) we find

A12(w;λ) =
(−1)r−p−q · x1−r(x− 1) · (rw + 1)r−1 · V (w;λ)

(pw + a+ 1)p−1(qw + b+ 1)q−1((r − p)w − a)r−p((r − q)w − b)r−q

. (89)

Comparing this with (75) yields formula (87), which shows that V (w;λ) is of degree at most

r − 1 in w since so is ϕ
(r−1)
12 (w) by Lemma 8.2. Next, formula (82) is compared with (75) to

yield formula (88), from which degw P (w;λ) ≤ r also follows. 2

Since V (w;λ) is of degree at most r − 1 in w, we can write

V (w;λ) =
r−1∑
j=0

Vj(λ)w
k, Vj(λ) ∈ Q[λ]. (90)

Theorem 10.3 Let λ = (p, q, r; a, b;x) ∈ D− be an integral data.

(1) λ is a solution coming from contiguous relations if and only if V (w;λ) vanishes as a
polynomial of w, that is, if and only if λ is a simultaneous root of algebraic equations:

Vj(λ) = 0 (j = 0, 1, . . . , r − 1), (91)

where the last equation Vr−1(λ) = 0 is equivalent to Y (x;p) = 0 in Theorem 9.3.

(2) If λ is a non-elementary solution then the polynomial P (w;λ) is exactly of degree r and
must satisfy the division relation in C[w],

P (w;λ)
∣∣ (pw + a+ 1)p−1(qw + b+ 1)q−1((r − p)w − a)r−p((r − q)w − b)r−q, (92)

and the rational function R(w;λ) is given by

R(w;λ) = (1− x)r−p−q−1 · (rw)r
P (w;λ)

. (93)
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Proof. Assertion (1). By Remark 8.3, λ is a solution coming from contiguous relations if and

only if ϕ
(r−1)
12 (w) ≡ 0 in C(w). By formula (87) this is equivalent to V (w;λ) ≡ 0 in C(w), which

in turn is equivalent to the system (91) in view of (90). Formulas (79) and (89) give

lim
w→∞

A12(w;λ) = 2c (pq/r)x(x− 1)Y (x) =
(−1)r−p−q · x1−r(x− 1) · rr−1 · Vr−1(λ)

pp−1qq−1(r − p)r−p(r − q)r−q
,

which yields Y (x) = (−1)r−p−q2r−1Vr−1(λ). Thus Y (x) = 0 is equivalent to Vr−1(λ) = 0.

Assertion (2). Since λ comes from contiguous relations by Theorem 7.2, ϕ
(r)
22 (w) is exactly

of degree r by Remark 8.3 and so is P (w;λ) by formula (88). Division relation (92) follows
from (77) and (88). Formula (93) is then obtained by substituting (88) into (78). 2

Remark 10.4 A few comments on Theorem 10.3 should be in order at this stage.

(1) If the principal part p = (p, q, r) of a data λ is a priori given then condition (91) gives an
overdetermined system of algebraic equations over Q for an unknown (a, b;x).

(2) Let P (w;λ) = const. (w+v1) · · · (w+vr), S(w) a constant and ui = (i−1)/r, i = 1, . . . , r.
Applying Theorem 5.4 to (93) then yields GPF (18) in Theorem 2.3, where the last
equality in (44) implies (20) while division relation (92) gives (21). Exactly r among all
the 2r − 2 factors on the right side of (21) appear as w + v1, . . . , w + vr. It is yet to be
decided which r should appear. This question seems hard in general, but it has something
to do with certain terminating hypergeometric sums in §11 and at least

w + r−p−1−a
r−p

; w + r−q−1−b
r−q

; w + a+p−1
p

(if p ≥ 2); w + b+q−1
q

(if q ≥ 2), (94)

must be among w + v1, . . . , w + vr (see Remark 11.4). In any case division relation (21)
or equivalently (92) provides us with some information about the numbers v1, . . . , vr. In
particular they must be real (rational if so are a and b).

(3) It often occurs in formula (93) that the numerator (rw)r and denominator P (w;λ) have
some factors in common which can be canceled to have a reduced expression. Or rather
the author knows no example for which such a cancellation does not occur.

11 Terminating Hypergeometric Sums

The content of this section is rather technical, but has a useful application in a forthcoming
paper [14]. We show that condition (91) leads to an algebraic system involving terminating
hypergeometric sums. To this end we employ a renormalized hypergeometric polynomial

Fk(β; γ; z) := (γ)k · 2F1(−k, β; γ; z) =
k∑

j=0

(−1)j
(
k

j

)
(β)j(γ + j)k−j z

j (k ∈ Z≥0), (95)

which is a polynomial of three variables (β; γ; z). By evaluating V (w;λ) in (84) at

w∗
k :=

a− k

r − p
(0 ≤ k ≤ r − p− 1); wj := −a+ j

p
(0 ≤ j ≤ p− 1), (96)

where k and j are integers, the assertion (1) of Theorem 10.3 yields the following.
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Proposition 11.1 The system (91) leads to a total of r algebraic equations for (a, b;x),

(γ∗k + k)p · Fk(β
∗
k ; γ

∗
k;x) · Fr−p−1−k(β̃

∗
k ; γ̃

∗
k;x) = 0 (0 ≤ k ≤ r − p− 1), (97a)

(γj + j)r−p · Fj(βj; γj;x) · Fp−1−j(β̃j + 1; γ̃j + 1;x) = 0 (0 ≤ j ≤ p− 1), (97b)

each of which consists of a factorial and two terminating hypergeometric factors, where

β∗
k := (r − q)w∗

k − b, γ∗k := rw∗
k, β̃∗

k := 1− (r − q)(w∗
k + 1) + b, γ̃∗k := 2− r(w∗

k + 1)

βj := qwj + b, γj := rwj, β̃j := −q(wj + 1)− b, γ̃j := 1− r(wj + 1).

Moreover, the system (97) leads back to and hence is equivalent to the original system (91), if

a ̸= p1
rp
(k + j)− j (0 ≤ ∀k ≤ r − p− 1, 0 ≤ ∀j ≤ p− 1), (98)

in particular, if rpa ̸∈ Z with p1/rp being the reduced expression of p/r ∈ Q.

Proof. If we substitute w = w∗
k in the first formula of definition (84), then the two hypergeo-

metric series inside the bracket ⟨· · · ⟩τ terminate at degrees k and r − p − 1 − k in z, so their
product is of degree at most k + (r− p− 1− k) = r− p− 1 ≤ τ by (86). Thus V (w;λ) can be
evaluated at w = w∗

k without taking truncation. A bit of calculation shows

V (w∗
k;λ) = (−1)r−p−1−k · (γ∗k + k)p · Fk(β

∗
k ; γ

∗
k;x) · Fr−p−1−k(β̃

∗
k ; γ̃

∗
k;x).

Thus the vanishing V (w;λ) ≡ 0 yields the r − p equations in (97a). Similarly, if we substitute
w = wj in the second formula of (84) then the two hypergeometric series inside the bracket
⟨· · · ⟩τ terminate at degrees j and p− 1− j in z, so (1− z)r−p−q times their product is of degree
at most (r − p− q) + j + (p− 1− j) = r − q − 1 ≤ τ . Thus V (w;λ) can also be evaluated at
w = wj without taking truncation. After some calculations,

V (wj;λ) = (−1)p−1−j · (1− x)r−p−q · (γj + j)r−p · Fj(βj; γj;x) · Fp−1−j(β̃j + 1; γ̃j + 1;x),

which together with the vanishing V (wj;λ) ≡ 0 leads to the p equations in formula (97b). Note
that (98) is the condition that any pair w∗

k, wj in (96) should be distinct. If this is the case
then equations (97) imply that V (w;λ), which is a polynomial of degree at most r − 1 in w,
vanishes at distinct r points and hence vanishes identically. This gives equations (91). 2

As in the proof of Proposition 11.1 the polynomial P (w;λ) in (85) can be evaluated as

P (w∗
k;λ) = (−1)r−p−1−k · (γ∗k + k)p+1 · Fk(β

∗
k ; γ

∗
k;x) · Fr−p−1−k(β̃

∗
k ; γ̃

∗
k − 1;x), (99a)

P (wj;λ) = (−1)p−j · (1− x)r−p−q−1 · (γj + j)r−p · Fj(βj; γj;x) · Fp−j(β̃j; γ̃j;x). (99b)

The question about the factors of P (w;λ) in Remark 10.4.(2) can be discussed by comparing
(99) with (97) and using the following.

Lemma 11.2 Let k ∈ N, β, γ ∈ C and x ∈ C \ {0, 1} be fixed, while z be a symbolic variable.

(1) Fk(β; γ; z) ≡ 0 in C[z] if and only if β, γ ∈ Z and 0 ≤ −β ≤ −γ ≤ k − 1.

(2) If Fk(β; γ;x) = Fk−1(β + 1; γ + 1;x) = 0 then Fk(β; γ; z) ≡ 0 in C[z].
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(3) If Fk(β; γ;x) = Fk(β; γ − 1;x) = 0 then Fk(β; γ; z) ≡ 0 in C[z].
Proof. By definition (95), Fk(β; γ; z) = 0 in C[z] if and only if (β)j(γ + j)k−j = 0 for every
j = 0, . . . , k. Putting j = 0 there implies γ = −j0 with some j0 ∈ {0, . . . , k − 1}. Putting
j = j0 + 1 then implies β = −i0 with some i0 ∈ {0, . . . , j0}. These are sufficient to have
condition (β)j(γ + j)k−j = 0 for every j = 0, . . . , k, and hence assertion (1) follows.

It follows from Andrews et al. [1, formulas (2.5.1) and (2.5.7)] and definition (95) that

d
dz
Fk(β; γ; z) = −kβ Fk−1(β + 1; γ + 1; z), (100a)

z d
dz
Fk(β; γ; z) = (γ + k − 1)Fk(β; γ − 1; z)− (γ − 1)Fk(β; γ; z). (100b)

Assumption of assertion (2) and formula (100a) yield a vanishing initial condition Fk(β; γ; z) =
d
dz
Fk(β; γ; z) = 0 at z = x. As a solution to a Gauss hypergeometric equation, which is regular

at z = x (̸= 0, 1), the polynomial Fk(β; γ; z) vanishes identically in C[z]. Thus assertion (2) is
established. Assertion (3) is proved in a similar manner by using formula (100b). 2

Assertion (1) of Lemma 11.2 leads us to think of the following conditions:

β̃∗
k , γ̃

∗
k ∈ Z, 0 ≤ −β̃∗

k ≤ −γ̃∗k ≤ r − p− k − 2, (101a)

β̃j, γ̃j ∈ Z, 0 ≤ −β̃j ≤ −γ̃j ≤ p− j − 1. (101b)

Each of (101) is an extremely restrictive condition which in particular implies rpa ∈ Z and
rqb ∈ Z, if p1/rp and q1/rq are the reduced expressions of p/r and q/r respectively.

Proposition 11.3 As to the question in Remark 10.4.(2),

(1) (w − w∗
k)|P (w;λ) if and only if (γ∗k + k)p+1 · Fk(β

∗
k ; γ

∗
k;x) = 0, unless (101a) is satisfied;

(2) (w − wj)|P (w;λ) if and only if (γj + j)r−p · Fj(βj; γj;x) = 0, unless (101b) is satisfied,

where the “unless” phrase is not needed for the “if” part.

Proof. The “if” part of assertion (1) follows directly from (99a). To show the “only if” part,
suppose that (w−w∗

k)|P (w;λ), that is, P (w∗
k;λ) = 0, but (γ∗k + k)p+1 · Fk(β

∗
k ; γ

∗
k;x) ̸= 0. Then

(97a) and (99a) imply Fr−p−1−k(β̃
∗
k ; γ̃

∗
k;x) = 0 and Fr−p−1−k(β̃

∗
k ; γ̃

∗
k−1;x) = 0. By assertion (3)

of Lemma 11.2, Fr−p−1−k(β̃
∗
k ; γ̃

∗
k; z) ≡ 0 in C[z]. Assertion (1) of the same lemma then yields

(101a). Similarly, assertion (2) can be proved by using (97b) and (99b). 2

Definitions (84) and (85) are symmetric in (p, a) and (q, b), so we can replace (p, a) with
(q, b) to obtain the (q, b)-versions of Propositions 11.1 and 11.3.

Remark 11.4 Each term in (94) appears as a factor of P (w;λ). Indeed, if we put k = r−p−1
in (97a) then (γ∗k + k)p · Fk(β

∗
k ; γ

∗
k;x) = 0 since Fr−p−1−k(β̃

∗
k ; γ̃

∗
k;x) = F0(β̃

∗
k ; γ̃

∗
k;x) = 1, so the

first term in (94) must be a factor of P (w;λ) by the “if” part of assertion (1) of Proposition
11.3. For the third term in (94), put j = p− 1 in (97a) (if p ≥ 2) and use assertion (2) of the
same proposition. As for the second and fourth terms, use the (q, b)-version of it.
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