Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period

Kobayashi, Daisuke; Yamamoto, Masanobu; Irino, Tomohisa; Nam, Seung-Il; Park, Yu-Hyeon; Harada, Naomi; Nagashima, Kana; Chikita, Kazuhisa; Saitoh, Sei-Ichi

Polar Science, 10(4), 519-531

https://doi.org/10.1016/j.polar.2016.07.005

2016-12

© 2016, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

article (author version)

15030 Final1+MY.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: changes in the provenance of western Arctic Ocean sediments since the last glacial period

Daisuke Kobayashi¹⁺, Masanobu Yamamoto¹²⁺, Tomohisa Irino¹², Seung-Il Nam³, Yu-Hyeon Park¹³, Naomi Harada⁴, Kana Nagashima⁴, Kazuhisa Chikita⁵, and Sei-Ichi Saitoh⁶

¹Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, Japan
²Faculty of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, Japan
³Korea Polar Research Institute, 26 Songdomiraero, Yongsu-gu, Incheon 406-840, Korea
⁴Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka 237-0061, Japan
⁵Faculty of Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, Japan
⁶Arctic Research Center, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Japan
⁷Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minatocho, Hakodate 041-8661, Japan
Keywords: Western Arctic Ocean, Chukchi Sea, Beaufort Gyre, Transpolar Drift, Bering Strait inflow, Mineral

Abstract

This paper describes the distribution of detrital minerals and sediment color in the surface sediments of the western Arctic Ocean and the northern Bering Sea and investigates the relationship between mineral composition and sediment provenance. This relationship was used to determine the provenance of western Arctic Ocean sediments deposited during the last glacial period. Sediment color is governed by water depth, diagenesis, and mineral composition. An a*-b* diagram was used to trace color change during diagenesis in the Arctic Ocean sediments. The mineral composition of surface sediments is governed by grain size and provenance. The feldspar/quartz ratio of the sediments studied was higher on the Siberian side than on the North American side of the western Arctic Ocean. The (chlorite+kaolinite)/illite and chlorite/illite ratios were high in the Bering Sea but decrease northwards in the Chukchi Sea. Thus, these ratios are useful for provenance studies in the Chukchi Sea area as indices of the Beaufort Gyre circulation and the Bering Strait inflow. The sediments deposited during the last glacial period have a lower feldspar/quartz ratio and a higher dolomite intensity than
Holocene sediments on the Chukchi Plateau, suggesting a greater contribution of North American grains during the last glacial period.

1. Introduction

Changes in the system of currents regulate the fate of sea ice in the Arctic Ocean, and are involved in the processes of global climate change via the ice-albedo feedback and the delivery of freshwater to the North Atlantic Ocean (Miller et al., 2010; Screen and Simmonds, 2010). The system of currents in the Arctic Ocean consists of the Beaufort Gyre (BG) and the Transpolar Drift (TPD), which are driven by surface winds (Proshutinsky and Johnson, 1997; Rigor et al., 2002). The Beaufort Sea exports much of its ice to the eastern Arctic Ocean via the BG. The TPD carries the sea ice from the eastern Arctic Ocean to the Atlantic via the Fram Strait. The Bering Strait inflow (BSI) is also an important element that transports heat and freshwater from the Bering Sea to the Chukchi Sea (e.g., Weingartner et al., 2005; Woodgate and Aagaard, 2005; Woodgate et al., 2005a, b; Shimada et al., 2006). Shimada et al. (2006) suggested that the inflow of warm Pacific water causes catastrophic changes in sea ice stability in the western Arctic Ocean.

The mineral composition of sediments has been used to reconstruct the ocean circulation, sea ice drift, and iceberg discharge in the Arctic Ocean (e.g., Bischof et al., 1996; Bischof and Darby 1997; Vogt, 1997). Spatial variation in mineral composition is found in Arctic shelf sediments. Accordingly, we can potentially identify the provenance of sediments by analyzing their mineral composition (e.g., Naidu et al., 1982; Naidu and Mowatt, 1983; Stein et al., 1994; Bischof et al., 1996; Vogt, 1997; Wahsner et al., 1999; Kalinenko, 2001; Stein, 2008; Ortiz et al., 2009; Darby et al., 2011; Nwaodua et al.,
Using the spatial variability of detrital minerals, the ocean circulation and ice drift patterns have been reconstructed to reveal late Pleistocene changes (Stein et al., 2010a; b), glacial–interglacial contrasts (Bischof and Darby 1997; Phillips and Grantz 2001; Vogt et al., 2001; Darby and Bischof, 2002), and Holocene changes in the TPD and BG configuration (Darby and Bischof, 2004; Darby et al., 2012) and the Bering Strait inflow (Ortiz et al., 2009).

The Chukchi Sea is located in the region where the BSI meets the BG circulation. Thus, the Chukchi Sea and the adjacent seas are suitable areas in which to investigate the evolution of the BG circulation and the BSI. In the present study, we examined the distribution of detrital minerals in surface sediments from the western Arctic Ocean, the Bering Sea, and the Yukon and Mackenzie River estuaries with the aim of determining the relationship between mineral composition and sediment provenance. We also examined changes in mineral composition in five short cores from the Chukchi Plateau, the Chukchi shelf, and the East Siberian slope to investigate changes in sediment provenance since the last glacial period.

Nagashima et al. (2012) and Park et al. (2014) analyzed the same sample set used in the present study, and showed that coarse sediments are distributed across the Yukon and Mackenzie River estuaries, the northern Bering Sea near Bering Strait, and some areas of the Bering Sea. In the western Arctic Ocean, silt dominates and becomes finer, from sandy silt to clayey silt, northwards. The dominance of coarse sediments in the inner shelf of the Chukchi and Bering seas is attributable to both coastal erosion and river discharge from small Alaskan and Siberian rivers, as well as the Yukon River, and also the selective removal of fine particles in high-energy environments. A gap exists in the grain size distribution of sediments between the areas south of 73.5°N and those
areas north of 75°N in the Chukchi Sea, which corresponds to the average position of
the seasonally minimum sea ice margin. In the area south of 73.5°N, well-sorted fine
particles advected from the south by northward flowing currents are deposited in
low-energy environments. The advection of fine particles is also suggested by the
northward increasing trend of the 87Sr/86Sr ratio (Asahara et al., 2012). In the area north
of 75°N, the sediments are a combination of well-sorted fine silt derived from the East
Siberian shelf, inner Chukchi shelf, and the Alaskan margin deposited by currents, and
very fine particles carried by sea ice drift from the North American margin via the BG
circulation.

2. Samples and Methods

2.1. Samples

In total, 58 core-top (0–0.5 or 0–1 cm depth) sediment samples were collected in the
western Arctic Ocean from the Chukchi shelf, the northern Chukchi slope, the
Northwind Ridge, the Northwind Abyssal Plain, the Chukchi Plateau, the Chukchi
Abyssal Plain, the Arlis Plateau, the East Siberian slope, the Makarov Basin, the Bering
shelf and slope, and the Yukon and Mackenzie River estuaries, using multiple and box
corers. These were obtained during the RV Araon cruises in 2010, 2011, and 2012
(ARA01B, ARA02B, and ARA03B, respectively), the RV Mirai cruises in 2000 and
2006 (MR00 and MR06 cruises, respectively), and the T/S Oshoro-maru cruise in 2009
(OS; Table 1 and Fig. 1).

Five short cores were retrieved using a multiple corer during the ARA02B cruise.
Cores ARA02B 01A MUC (28 cm long), 02 MUC (35 cm long), 03A MUC (32 cm
long), 06 MUC (32 cm long), and 13 MUC (25 cm long) were retrieved from the
western Arctic Ocean (Table 1). The sediments of core 01A MUC, from the Chukchi shelf, consist of dusty yellowish-brown clayey silt (0–3 cm) and olive-gray clayey silt (3–28 cm). The sediments of core 02 MUC, from the Chukchi slope, consist of grayish-brown clayey silt (0–7 cm) and dark greenish-gray clayey silt (7–35 cm). The sediments of core 03A MUC, from the Chukchi Plateau, consist of grayish-brown clayey silt (0–23 cm) and olive-gray silt with dolomite dropstones (23–32 cm). The sediments of core 06 MUC, from the Chukchi Plateau, consist of dark yellowish-brown silt with dolomite fragments (0–14 cm) and light olive-brown silt with dolomite fragments (14–32 cm). The sediments of core 13 MUC, from the East Siberian slope, consist of dark yellowish-brown silt (0–11 cm), light yellowish-brown silt (11–15 cm), dark yellowish-brown silt (15–20 cm), light yellowish-brown silt (20–23 cm), and dark yellowish brown silt (23–24.5 cm). The cores were subsampled and stored in a freezer on board and then freeze-dried in the laboratory. The samples were powdered prior to analysis.

2.2. Methods

2.2.1. Color measurement

The color of the dried and powdered sediment samples was analyzed using a Konica Minolta CM-2002 ultraviolet/visible spectrometer (400–700 nm wavelength range; 10 nm resolution; 8 mm spot size). The results are shown as colorimetric indices; i.e., the sediment brightness (L*), the red–green contrast (a*), and the yellow–blue contrast (b*).

2.2.2. X-ray diffraction
Analysis of the mineral composition of the bulk sediments was conducted using a MAC Science MX-Labo X-ray diffractometer (XRD) equipped with a CuKα tube and monochromator. A tube voltage of 40 kV and current of 20 mA were used. The scanning speed was 4° 20/min and the data sampling step was 0.02° 20. Each powdered sample was mounted on a glass holder with a random orientation and X-rayed from 2 to 40° 20. In this study, the background-corrected diagnostic peak intensity was used to determine the abundance of each mineral. The relative XRD intensities of illite including mica (“illite” hereafter) at 8.82° 20 (d = 10.1 Å), hornblende at 10.4° 20 (d = 8.5 Å), chlorite including kaolinite (“chlorite+kaolinite” hereafter) at 12.4° 20 (d = 7.1 Å), kaolinite at 24.8° 20 (d = 3.59 Å), chlorite at 25.1° 20 (d = 3.54 Å), quartz at 26.6° 20 (d = 3.4 Å), feldspar including both plagioclase and K-feldspar at 27.7° 20 (d = 3.2 Å), calcite at 29.4° 20 (d = 3.0 Å), and dolomite at 30.9° 20 (d = 2.9 Å) were determined based on the peak identification protocols of Biscaye (1965) and Elvelhøi and Rønningsland (1978).

3. Results

3.1. Surface sediments

3.1.1. Sediment Color

The brightness L* was higher (brighter) in the Bering Sea and decreased northwards in the western Arctic Ocean (Fig. 2). In the western Arctic Ocean north of 75°N, L* was high on the Arlis Plateau and decreased eastwards to the Northwind Plateau (Fig. 2). The red–green contrast a* was higher (more reddish) in the western Arctic Ocean north of 75°N than in the Chukchi and Bering seas (Fig. 2). The yellow–blue contrast b* was
high (yellowish) in the western Arctic Ocean north of 75°N and decreased southwards in the Chukchi Sea to the Bering Sea (Fig. 2). The b* value was lowest in the Yukon Estuary.

In the western Arctic Ocean, L* tended to decrease with increasing water depth to 600 m, and a* and b* tended to increase (Fig. 3). Below 600 m, these color indices were nearly constant, except for some western Arctic sediment around 1200 m that showed a higher L* (Fig. 3). In the Bering Sea, the L* and a* values of the slope sediments around 1000 and 2500 m were no different to those of the shelf sediments, and the b* values of the slope sediments corresponded to the values obtained from the outer shelf sediments (Fig. 3).

3.1.2. Minerals

Quartz, feldspar including plagioclase and K-feldspar, illite including mica, chlorite, kaolinite, hornblende, calcite, and dolomite were detected in the study samples (Fig. 4). Chlorite at 3.54 Å and kaolinite at 3.59 Å could be quantified separately in 46 of the 57 samples. The diffraction intensity of chlorite+kaolinite at 7.1 Å was significantly positively correlated with that of chlorite at 3.54 Å (r = 0.89), but not with that of kaolinite at 3.59 Å (r = 0.39; Fig. 5). This indicates that the diffraction intensity of chlorite+kaolinite is governed mainly by the amount of chlorite in the study area. Plagioclase ranged from anorthite to albite. Quartz and feldspar were most abundant in the northern Bering Sea, and their abundance decreased northwards in the shelf area of the Chukchi Sea to the western Arctic Ocean north of 75°N (Fig. 4). Smear-slide observations showed that quartz and feldspar are the major constituents of the sand and silt. Illite, chlorite+kaolinite, and chlorite were abundant in the western Arctic Ocean.
north of 75°N and the Mackenzie River estuary, but decreased in abundance southwards from the Chukchi Sea to the Bein Sea (Fig. 4). The areas with high illite, chlorite+kaolinite, and chlorite contents correspond to the areas dominated by fine sediments (fig. 3 in Park et al., 2014; Fig. 4). Kaolinite was abundant in the Northwind Ridge and Mackenzie Delta areas and abundantly found in one sample from the Yukon River estuary (Fig. 4). Hornblende was abundant in the Bering Sea, in particular in the Yukon River estuary, but its abundance declined northwards in the Chukchi Sea (Fig. 4). Calcite was abundant in the western Arctic Ocean north of 75°N, but was below the detection limit in other areas. Smear-slide observations showed that calcite is a constituent of the foraminifera and detrital grains. Dolomite was detected but became lower in abundance westwards in the western Arctic Ocean north of 75°N (Fig. 4). Dolomite was below the detection limit in the other areas (Fig. 4). Smear-slide observation showed that dolomite is a constituent of the detrital grains.

3.2. Cores

3.2.1. Sediment Color

In all five short cores, L* was lower (darker), a* was higher (more reddish), and b* was higher (more yellowish) in the upper horizon than in the lower horizon (Fig. 6). The color change occurred at a depth of 2 to 3 cm in core 01A MUC, 6 to 7 cm in core 02 MUC, 19 to 23 cm in core 03A MUC, 12 to 15 cm in core 06 MUC, and 11 cm in core 13 MUC (Fig. 6). The age–depth model of core ARA02B 01A GC retrieved at the same site as core 01A MUC indicated that the study interval (0–35 cm) covers the last 600 years (Masanobu Yamamoto and Song-II Nam, unpublished data). Therefore, the study interval corresponds to the late Holocene. The lithology of core 02 MUC is similar to
core 01A MUC, suggesting that the study interval (0–35 cm) was also deposited during
the Holocene. The color boundaries in these two cores do not correspond to lithological
boundaries, but reflect the redox boundary between the oxic layer [Fe(III) state] in the
upper horizon and the anoxic layer [Fe(II) state] in the lower horizon, as is often seen in
sediments in other oceans (Nagao and Nakashima, 1991). In contrast, the color changes
in cores 03A MUC and 06 MUC did correspond to the lithological boundaries. The
sediments of the upper horizon consisted of clayey silt, whereas the sediments of the
lower horizon consisted of silt with ice-rafted debris. The upper brownish layer was
assigned to the Holocene B1 layer, and the lower grayish layer was assigned to the last
glacial G1 layer, which is an established stratigraphy in the offshore area of the western
Arctic Ocean (Polyak et al., 2004). The boundary between the B1 and G1 layers has
been dated to 12.5 ka in core AR92-P25 on the Northwind Ridge (Polyak et al., 2009).
The color changes in core 13 MUC do not correspond to the lithological boundaries.
The sediments consist of silt throughout the entire core, but the color change is similar
to that of core 06 MUC. By correlating the color indices, the upper brownish layer (0–
11 cm) was tentatively assigned to the Holocene B1 layer, and the lower yellowish layer
(11–24.5 cm) was assigned to the last glacial G1 layer.

3.2.2. Minerals
Quartz, feldspar, illite, and chlorite+kaolinite were the major minerals detected in
cores 01A MUC and 02 MUC. The abundances of these minerals increased gradually
with increasing depth, but the relative abundances were almost constant (Fig. 7). In core
03A MUC, quartz, feldspar, illite, and chlorite+kaolinite were the major minerals in the
B1 layer, and dolomite and quartz increased in the G1 layer (Fig. 7). In core 06 MUC,
quartz, feldspar, illite, chlorite+kaolinite, calcite, and dolomite were the major minerals in the B1 layer, and dolomite and quartz increased while calcite decreased in the G1 layer (Fig. 7). In core 13 MUC, quartz, feldspar, illite, and chlorite+kaolinite were the major minerals in the B1 layer, and quartz increased in the G1 layer.

4. Discussion

4.1. Factors controlling sediment color

In the study area, the fine offshore sediments were dark brownish in color (lower L^*, and higher a^* and b^*), whereas the coarse inner shelf sediments were a light olive-gray. In the Arctic Ocean, manganese oxide forms the dark-brown sediments of the deep basins (Jakobsson et al., 2000; Löwemark et al., 2013). The dissolution of manganese in shelf sediments and precipitation of manganese in deeper sediments are the major processes influencing color differences between shelf and deeper sediments in the western Arctic Ocean (Löwemark et al., 2013). In the Bering Sea, the slope sediments have the same L^* values as the shelf sediments, which suggests that the dissolution and precipitation of manganese does not have a major influence on sediment color in this area.

L^* has a positive correlation with sand content as well as with the XRD intensities of quartz and feldspar, but a negative correlation with the XRD intensities of illite and chlorite+kaolinite (Table 2). Quartz and feldspar are more abundant, and clay minerals are less abundant, in sand than in clay (Table 3). As quartz and feldspar have a higher reflectance than clay minerals, the higher abundance of quartz and feldspar contributes to the higher L^* in the coarse shallower sediments.
The a*-b* diagram shows differences in the color indices between the Arctic inner shelf and basin surface sediments (Fig. 8A). It also shows that the Bering sediments have a lower a* (more greenish) and b* (more bluish) values than the Arctic sediments (Fig. 8). This difference seems to correspond to the rate of primary production in these areas; sediments with lower a* and b* values were sampled from the areas of higher productivity (Springer et al., 1996), and this can be attributed to the formation of bluish-greenish Fe(II) in the more reducing sedimentary environments generated by the high organic influx. On the a*-b* diagram, all of the Arctic cores show a decreasing trend in a* and b* with increasing sediment depth, but the decrease in a* is smaller in cores 03A MUC, 06 MUC, and 13 MUC than in cores 01A MUC and 02 MUC (Fig. 8B). We identified the deeper grayish layers of the former cores as the G1 layer that was deposited during the last glacial period (Polyak et al., 2004), whereas the deeper grayish layers of the latter cores consist of Holocene sediments and were identified as reducing layers. This diagram is useful to distinguish the origin of the grayish layers.

Based on these results, we infer that the sediment color in the Arctic samples studied here is governed by water depth, diagenesis, and mineral composition. The a*-b* diagram is useful for tracing the color change during diagenesis in these Arctic sediments.

4.2. Sources of quartz, feldspar, and hornblende

Quartz and feldspar were most abundant in the northern Bering Sea and their abundance decreased northwards across the Chukchi shelf to the western Arctic Ocean north of 75°N (Fig. 4). This trend is consistent with that of grain size (fig. 3 in Park et al., 2014). The intensities of quartz and feldspar are positively correlated with sand
content (Table 3). This is consistent with a smear-slide observation that both minerals are major constituents of sand. Park et al. (2014) showed that coarse sediments are distributed in the Yukon and Mackenzie River estuaries, the northern Bering Sea near the Bering Strait, and some areas of the Bering Sea. They attribute the dominance of coarse sediments in the inner shelf of the Chukchi and Bering seas to a combination of coastal erosion, river discharge from small Alaskan and Siberian rivers and the Yukon River, and the selective removal of fine particles in high-energy environments. The riverine discharge of sand grains and the selective removal of finer grains by re-suspension in the shelf areas of the Chukchi and Bering seas account for the high abundances of quartz and feldspar on the inner shelf of the Chukchi and Bering seas.

In the area north of 75°N, the feldspar/quartz ratio is higher in the western areas, such as the East Siberian slope, the Arlis Plateau, and the Makarov basin, than in the eastern areas such as the Chukchi Abyssal Plain, the Chukchi Plateau, the Northwind Abyssal Plain, and the Northwind Ridge (Fig. 9). This zonal gradient of the feldspar/quartz ratio suggests that feldspar-rich sediments are derived from the Siberian margin by the slope current that flows east along the East Siberian slope, as was recently suggested by a mooring observation on the East Siberian slope (Koji Shimada, unpublished data), whereas quartz-rich sediments are derived from the North American margin by the BG circulation (Vogt, 1997; Stein, 2008; Darby et al., 2011). The Laptev Sea sediments have a higher feldspar/quartz ratio than the sediments off the Canadian Arctic archipelago (Vogt, 1997). This suggests that the feldspar/quartz ratio can be used as a contribution index of East Siberian grains against North American grains.

Hornblende is abundant in the Bering Sea, particularly in the Yukon River estuary, but becomes less abundant northwards in the Chukchi Sea (Fig. 4). The intensity of
hornblende is correlated positively with sand content (Table 3). The distribution of hornblende suggests that it originated from intermediate igneous rocks and/or metamorphic rocks in the Yukon River drainage basin (Beikman, 1980; Brabets et al., 2000).

A high feldspar/quartz ratio is associated with a high intensity of hornblende in the Bering Sea (Figs 4 and 9). This association suggests that the detrital matter is derived from intermediate igneous rocks and/or metamorphic rocks. The restricted distribution of feldspar and hornblende-rich sediments suggests that the Yukon River discharge contributes to the supply of feldspar and hornblende.

4.3 Sources of illite, chlorite, and kaolinite

Illite and chlorite+kaolinite are abundant in the western Arctic Ocean north of 75°N and the Mackenzie River estuary, but their abundance decreases southwards across the Chukchi shelf to the Bering Sea (Fig. 4). The intensities of illite and chlorite+kaolinite are correlated positively with silt and clay contents (Table 3), reflecting that both illite and chlorite are constituents of the finer-grained material.

Illite is generally the most abundant clay mineral in marine sediments, and this can be explained by the high concentration of micas in many rock types, the widespread abundance of illite in many soils, and its relative resistance to chemical weathering (Biscaye, 1965). Illite commonly occurs in Arctic shelf sediments, and is the most abundant clay mineral on both the Alaskan and East Siberian margins (Naidu and Mowatt, 1983; Vogt, 1997; Kalinenko, 2001; Stein, 2008). Illite is the most abundant clay in the fluvial bed load of Alaskan and East Siberian rivers (Naidu et al., 1982;
Naidu and Mowatt, 1983), which contributes to the ubiquitous distribution of illite in the study area.

Chlorite is more prevalent in soil at higher latitudes, where chemical weathering is less intense, and is a major component of fresh glacial rock flour derived from basic rocks (Biscaye, 1965). Chlorite occurs abundantly near the coasts of Alaska, Canada, and the Aluetians (Griffin and Goldberg, 1963). The published chlorite abundance in the bed load from 10 Alaskan rivers and an East Siberian river shows that the rivers of western and southern Alaska contain more chlorite than those of northern Alaska and Canada (Fig. 10; Naidu and Mowatt, 1983), and this reflects the geology of the drainage basins, which are underlain in large part by basic rocks. Kalinenko (2001) suggested that chlorite grains are more mobile than illite grains under conditions of intense hydrodynamic activity. Consequently, chlorite grains can be transported the long distance from the northern Bering Sea to the Chukchi Sea.

The (chlorite+kaolinite)/illite and chlorite/illite ratios were high in the Bering Sea and decreased northwards from the Chukchi shelf to the western Arctic Ocean north of 75°N (Fig. 9). Previous studies indicated that illite is common in the Arctic Ocean, whereas chlorite is more abundant in the Bering Sea (Kalinenko, 2001). The chlorite/illite ratio was higher in the bed load of rivers and deltaic sediments from western Alaska than from other regions, and the value decreased northwards from the Yukon River in southwestern Alaska to the Canning River on the North Slope of Alaska (Fig. 10; Naidu and Mowatt, 1983). Naidu and Mowatt (1983) suggested that clay minerals delivered by the Yukon and Kuskokwim rivers in western Alaska enter Chukchi Sea sediments via the Bering Strait. Based on the distribution of chlorite in the Chukchi Sea, Kalinenko (2001) suggested that chlorite grains are transported from the
Bering Sea to the Chukchi Sea via the Bering Strait. Ortiz et al. (2009) used chlorite abundance in a northern Chukchi Sea core as a tracer of Pacific water. Our results are consistent with the observations of these previous studies and suggest that the (chlorite+kaolinite)/illite ratio is a useful contribution index for the Bering Strait inflow.

Kaolinite, which is found in soils that have formed from the chemical weathering of rocks in hot, moist climates (Biscaye, 1965), is abundant in the Northwind Ridge and Mackenzie Delta areas where the BG circulation exerts an influence (Fig. 4). As the study area is situated in a polar region where kaolinite formation in soils is negligible, the kaolinite here must originate from the erosion of outcrops of kaolinite-rich rocks. The kaolinite/illite ratio was higher in the bed load of rivers and deltaic sediments from the North Slope of Alaska and Canada (Fig. 10; Naidu and Mowatt, 1983). This suggests that kaolinite in the Northwind Ridge originated from ancient rocks exposed on the North Slope and was delivered by water or sea ice via the Beaufort Gyre circulation.

4.4. Source of dolomite

Dolomite was detected on the Northwind Ridge and the Chukchi Plateau (Fig. 4). Dolomite is exposed in the Canadian Arctic Archipelago and is abundant in glacial till on the southwestern Canadian Archipelago (Bischof et al., 1996). The dolomite debris in the western Arctic sediments is most probably delivered by icebergs via the BG circulation from the Canadian Arctic Archipelago (Bischof et al., 1996, Bischof and Darby, 1997, Phillips and Grantz, 2001). Dolomite was below the detection limit in the samples obtained from the shelf areas of the Chukchi and Bering seas in the present study. There is no significant source of dolomite grains in this area (Beikman, 1980).
4.5. The feldspar/quartz and (chlorite+kaolinite)/illite diagram

All of the surface sediment samples are plotted in the diagram of the feldspar/quartz against (chlorite+kaolinite)/illite ratios (Fig. 11). The samples from the western Arctic Ocean north of 75°N plot in the upper half of the diagram; those from the eastern areas, such as the Northwind Ridge and the Chukchi Plateau, plot on the right side; and those from the western area, that is, the Arlis Plateau, plot to the left. The Chukchi and Bering Sea samples plot in the lower half. This diagram aids our understanding of the provenance of the sediments in the western Arctic Ocean and helps us to evaluate the influence of the Bering Strait inflow and the BG circulation.

4.6. Provenance of the western Arctic sediments during the last glacial period

The mineral composition of the short cores from the Chukchi Plateau, the Chukchi shelf, and the East Siberian slope revealed the provenance of the sediments deposited since the last glacial period. All of the samples have a low (chlorite+kaolinite)/illite ratio (Fig. 12). This indicates that the contribution of the Bering Strait inflow was negligible in both the last glacial and Holocene periods in the study area. In cores 01A MUC and 02 MUC from the Chukchi Sea, Holocene sediments plot in relatively small areas, indicating that the depositional environments remained unchanged over the period of deposition (Fig. 12). On the other hand, in cores 03A MUC and 06 MUC from the Chukchi Plateau, and core 13 MUC on the slope of the East Siberian Sea, the sediments showed a relatively large fluctuation in the feldspar/quartz ratio, suggesting that the relative intensities of the subsurface slope current that flows east along the
Siberian margin, and also of the BG circulation, changed significantly during the depositional period (Fig. 12).

The abundance peaks of quartz and dolomite in the G1 layer can be correlated among cores 03A MUC, 06 MUC, and 13 MUC (Fig. 7). The peaks are most enhanced in core 06 MUC. This probably indicates that the site of core 06 MUC was more influenced by iceberg discharge because it was located closer to the main path of icebergs during the last glacial episode (Bischof and Darby, 1997).

A high abundance of calcite was seen in the B1 layer of Core 06 MUC (78°N, 453 m water depth), but not in cores 03A MUC (75°N, 423 m) and 13 MUC (75°N, 340 m). In the surface sediments, calcite abundance depends on the latitude and water depth, and calcite abundance was nearly below the detection limit in the sediments sampled from latitudes <76°N and water depths <400 m in the study area (Fig. 4). Previous observations have indicated the presence of corrosive water centered at 100 m on the shelf and slope (<76°N) in the Chukchi Sea and Chukchi Borderland areas (Steinacher et al., 2009). Cores 03A MUC and 13 MUC were recovered from areas covered by this corrosive water; consequently, these sediments might have been affected by carbonate dissolution.

5. Conclusions

The diagram of a* and b* is useful tool for tracing the color change in Arctic Ocean sediments during diagenesis. The zonal gradient of the feldspar/quartz ratio in the western Arctic Ocean suggests that the feldspar/quartz ratio can be used as a contribution index of East Siberian grains against North American grains. We found that the (chlorite+kaolinite)/illite ratio and the chlorite/illite ratios were high in the Bering
Sea but decreased northwards in the Chukchi Sea. This suggests that the (chlorite+kaolinite)/illite and chlorite/illite ratios could be useful as an index of the contribution of the Bering Strait inflow. The diagram of the feldspar/quartz against (chlorite+kaolinite)/illite ratios aids our understanding of the provenance of the western Arctic Ocean sediments. At the Chukchi Plateau sites, sediments deposited during the last glacial period have lower feldspar/quartz ratios and a higher dolomite intensity than do the Holocene sediments. This implies that the contribution of North American grains was greater on the Chukchi Plateau, and iceberg discharge was more important in sediment transport over the last glacial period than during the Holocene.

Acknowledgments

We thank all of the captains, crews, and scientists of RV Araon, RV Mirai, RV Oshoro-maru, and IB USCGC Healy for their help during the sampling cruises. We also thank So-Young Kim, Hyo-Sun Ji, Young-Ju Son, Duk-Ki Han, and Hyoung-Jun Kim of the Korean Polar Institute for assistance with the coring and subsampling, and Keiko Ohnishi of Hokkaido University for helping with the laboratory analysis. The comments of two anonymous reviewers improved our manuscript, for which we thank them. The study was supported by a Grant-in-aid for Scientific Research (B) from the Japan Society for the Promotion of Science, No. 25287136 (to MY), and from the K-Polar Program (PP130300) and Basic Research Project (PE14062) of the Korean Polar Research Institute (to SIN).

References

Global Planetary Change 68, 73–84.

Phillips, R.P., Grantz, A., 2001. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of
late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology 172, 91–115.

Table 1 Surface sediment samples.

<table>
<thead>
<tr>
<th>Leg</th>
<th>Core</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Water depth (m)</th>
<th>Location</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA03B</td>
<td>41</td>
<td>82.3200</td>
<td>171.5200</td>
<td>2758</td>
<td>Makarov Basin</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA03B</td>
<td>18</td>
<td>79.0000</td>
<td>174.0000</td>
<td>2452</td>
<td>Makarov Basin</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA03B</td>
<td>16</td>
<td>78.5000</td>
<td>-177.7500</td>
<td>1228</td>
<td>Arlis Plateau</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA02B</td>
<td>06*</td>
<td>78.0055</td>
<td>-168.3589</td>
<td>453</td>
<td>Chukchi Plateau</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA02B</td>
<td>09</td>
<td>77.9999</td>
<td>-179.3347</td>
<td>1577</td>
<td>Arlis Plateau</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA02B</td>
<td>11</td>
<td>77.9997</td>
<td>173.9981</td>
<td>1596</td>
<td>East Siberian slope</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA02B</td>
<td>08</td>
<td>77.9991</td>
<td>-175.6784</td>
<td>1375</td>
<td>Arlis Plateau</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA03B</td>
<td>19</td>
<td>77.9700</td>
<td>173.0400</td>
<td>1091</td>
<td>East Siberian slope</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA03B</td>
<td>30</td>
<td>77.0800</td>
<td>-172.2900</td>
<td>2013</td>
<td>Chukchi Abyssal</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA03B</td>
<td>29</td>
<td>77.0100</td>
<td>-177.3600</td>
<td>1396</td>
<td>Arlis Plateau</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA02B</td>
<td>15</td>
<td>76.4023</td>
<td>-179.3416</td>
<td>1803</td>
<td>Arlis Plateau</td>
<td>clayey silt</td>
</tr>
<tr>
<td>Site</td>
<td>Area</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Depth</td>
<td>Location</td>
<td>Type</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ARA02B 16A</td>
<td>76.3994</td>
<td>-176.2174</td>
<td>337</td>
<td></td>
<td>Chukchi Abyssal Plain</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA02B 16B</td>
<td>76.3994</td>
<td>-176.2174</td>
<td>1073</td>
<td></td>
<td>Chukchi Abyssal Plain</td>
<td>clayey silt</td>
</tr>
<tr>
<td>ARA02B 18A</td>
<td>76.2885</td>
<td>-167.1604</td>
<td>435</td>
<td></td>
<td>Chukchi Plateau clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA02B 18B</td>
<td>76.2885</td>
<td>-167.1604</td>
<td>406</td>
<td></td>
<td>Chukchi Plateau clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA03B 28</td>
<td>76.2200</td>
<td>-179.8400</td>
<td>1179</td>
<td></td>
<td>Arlis Plateau clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA02B 13*</td>
<td>76.0040</td>
<td>174.0003</td>
<td>340</td>
<td></td>
<td>East Siberian slope clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 25</td>
<td>76.0008</td>
<td>-159.0007</td>
<td>820</td>
<td></td>
<td>Northwind Ridge clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 21</td>
<td>75.9981</td>
<td>-156.0156</td>
<td>920</td>
<td></td>
<td>Northwind Ridge clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 27</td>
<td>75.9695</td>
<td>-160.0028</td>
<td>2100</td>
<td></td>
<td>Northwind Ridge clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA03B 27</td>
<td>75.5200</td>
<td>178.7800</td>
<td>678</td>
<td></td>
<td>East Siberian slope clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 32</td>
<td>75.4963</td>
<td>-163.0149</td>
<td>1920</td>
<td></td>
<td>Northwind Abyssal clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA03B 26</td>
<td>75.3700</td>
<td>177.2900</td>
<td>354</td>
<td></td>
<td>Arlis Plateau clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA02B 03B</td>
<td>75.1165</td>
<td>-166.3405</td>
<td>455</td>
<td></td>
<td>Chukchi Plateau clayey silt</td>
<td></td>
</tr>
<tr>
<td>Sample Code</td>
<td>Longitude</td>
<td>Latitude</td>
<td>Depth (m)</td>
<td>Location</td>
<td>Sediment Type</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>ARA02B 03A*</td>
<td>75.1079</td>
<td>-166.3405</td>
<td>423</td>
<td>Chukchi Plateau</td>
<td>clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 13</td>
<td>75.0175</td>
<td>-156.0072</td>
<td>3900</td>
<td>Northwind Ridge</td>
<td>clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 08</td>
<td>75.0006</td>
<td>-159.0005</td>
<td>1993</td>
<td>Northwind Ridge</td>
<td>clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 05</td>
<td>74.9987</td>
<td>-159.0167</td>
<td>940</td>
<td>Northwind Ridge</td>
<td>clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA02B 02*</td>
<td>74.2989</td>
<td>-167.6520</td>
<td>320</td>
<td>Chukchi slope</td>
<td>silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 04</td>
<td>73.7349</td>
<td>-167.0042</td>
<td>43</td>
<td>Chukchi shelf</td>
<td>clayey silt</td>
<td></td>
</tr>
<tr>
<td>ARA02B 01B</td>
<td>73.6343</td>
<td>-166.5065</td>
<td>119</td>
<td>Chukchi shelf</td>
<td>silt</td>
<td></td>
</tr>
<tr>
<td>ARA02B 01A*</td>
<td>73.6314</td>
<td>-166.5183</td>
<td>123</td>
<td>Chukchi shelf</td>
<td>silt</td>
<td></td>
</tr>
<tr>
<td>MR06 12EX</td>
<td>73.5998</td>
<td>-166.0007</td>
<td>53</td>
<td>Chukchi shelf</td>
<td>sandy silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 03</td>
<td>73.5193</td>
<td>-166.0163</td>
<td>113</td>
<td>Chukchi shelf</td>
<td>silt</td>
<td></td>
</tr>
<tr>
<td>ARA01B 01</td>
<td>73.1289</td>
<td>-168.0156</td>
<td>72.5</td>
<td>Chukchi shelf</td>
<td>silt</td>
<td></td>
</tr>
<tr>
<td>MR06 12</td>
<td>72.4322</td>
<td>-166.9642</td>
<td>51</td>
<td>Chukchi shelf</td>
<td>sandy silt</td>
<td></td>
</tr>
<tr>
<td>MR06 14</td>
<td>72.0007</td>
<td>-165.9995</td>
<td>46</td>
<td>Chukchi shelf</td>
<td>sandy silt</td>
<td></td>
</tr>
<tr>
<td>MR06 15</td>
<td>70.9997</td>
<td>-165.9975</td>
<td>43</td>
<td>Chukchi shelf</td>
<td>sandy silt</td>
<td></td>
</tr>
<tr>
<td>MR06 15</td>
<td>69.9998</td>
<td>-168.0002</td>
<td>48</td>
<td>Chukchi shelf</td>
<td>sandy silt</td>
<td></td>
</tr>
<tr>
<td>MR00 15</td>
<td>69.7562</td>
<td>-138.1627</td>
<td>163</td>
<td>Mackenzie estuary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>No.</td>
<td>Lat.</td>
<td>Long.</td>
<td>No.</td>
<td>Location</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>MR06</td>
<td>16</td>
<td>68.5005</td>
<td>-167.9992</td>
<td>54</td>
<td>Chukchi shelf</td>
<td>silty sand</td>
</tr>
<tr>
<td>MR06</td>
<td>17</td>
<td>66.9998</td>
<td>-166.9992</td>
<td>40</td>
<td>Chukchi shelf</td>
<td>sandy silt</td>
</tr>
<tr>
<td>MR06</td>
<td>18</td>
<td>63.9998</td>
<td>-169.0030</td>
<td>35</td>
<td>Bering shelf</td>
<td>sand</td>
</tr>
<tr>
<td>MR06</td>
<td>B52</td>
<td>63.9000</td>
<td>-166.2000</td>
<td></td>
<td>Bering shelf</td>
<td></td>
</tr>
<tr>
<td>MR00</td>
<td>7</td>
<td>63.5017</td>
<td>-165.4998</td>
<td>21.3</td>
<td>Bering shelf</td>
<td></td>
</tr>
<tr>
<td>MR06</td>
<td>19</td>
<td>63.0003</td>
<td>-167.4990</td>
<td>33</td>
<td>Bering shelf</td>
<td>sand</td>
</tr>
<tr>
<td>OS</td>
<td>5</td>
<td>62.9600</td>
<td>-164.9200</td>
<td></td>
<td>Yukon estuary</td>
<td>sand</td>
</tr>
<tr>
<td>OS</td>
<td>P2</td>
<td>62.8800</td>
<td>-165.0800</td>
<td></td>
<td>Yukon estuary</td>
<td>sand</td>
</tr>
<tr>
<td>OS</td>
<td>1</td>
<td>62.8500</td>
<td>-164.9600</td>
<td></td>
<td>Yukon estuary</td>
<td>sand</td>
</tr>
<tr>
<td>OS</td>
<td>P1</td>
<td>62.8400</td>
<td>-164.8800</td>
<td></td>
<td>Yukon estuary</td>
<td>sand</td>
</tr>
<tr>
<td>MR06</td>
<td>22</td>
<td>62.0052</td>
<td>-176.0027</td>
<td>98</td>
<td>Bering shelf</td>
<td>sandy silt</td>
</tr>
<tr>
<td>MR06</td>
<td>21</td>
<td>62.0007</td>
<td>-172.0005</td>
<td>56</td>
<td>Bering shelf</td>
<td>silty sand</td>
</tr>
<tr>
<td>MR06</td>
<td>23</td>
<td>60.1587</td>
<td>-179.4633</td>
<td>1004</td>
<td>Bering slope</td>
<td>silty sand</td>
</tr>
<tr>
<td>MR06</td>
<td>25</td>
<td>60.0748</td>
<td>-179.4632</td>
<td>1158</td>
<td>Bering slope</td>
<td>silty sand</td>
</tr>
<tr>
<td>MR06</td>
<td>26</td>
<td>59.9997</td>
<td>-176.0000</td>
<td>132</td>
<td>Bering shelf</td>
<td>sandy silt</td>
</tr>
<tr>
<td>MR06</td>
<td>30</td>
<td>58.5002</td>
<td>-172.0002</td>
<td>101</td>
<td>Bering shelf</td>
<td>sandy silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MR06</td>
<td>31</td>
<td>58.3832</td>
<td>−170.0007</td>
<td>74</td>
<td>Bering shelf</td>
<td>silty sand</td>
</tr>
<tr>
<td>MR06</td>
<td>32</td>
<td>57.0003</td>
<td>−167.5005</td>
<td>77</td>
<td>Bering shelf</td>
<td>sand</td>
</tr>
</tbody>
</table>

Whole core analyzed (rather than just core top as for other samples).
Table 2 Correlation coefficients between color indices and sand, silt and clay contents in surface sediment samples.

<table>
<thead>
<tr>
<th>Color</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
<th>Number of samples correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water depth</td>
<td>-0.54</td>
<td>0.56</td>
<td>0.48</td>
<td>52</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>0.80</td>
<td>-0.68</td>
<td>-0.87</td>
<td>40</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>-0.72</td>
<td>0.56</td>
<td>0.81</td>
<td>40</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>-0.84</td>
<td>0.88</td>
<td>0.83</td>
<td>40</td>
</tr>
<tr>
<td>Illite</td>
<td>-0.71</td>
<td>0.60</td>
<td>0.63</td>
<td>56</td>
</tr>
<tr>
<td>Hornblende</td>
<td>0.73</td>
<td>-0.63</td>
<td>-0.83</td>
<td>56</td>
</tr>
<tr>
<td>Chlorite+kaolinite</td>
<td>-0.63</td>
<td>0.47</td>
<td>0.58</td>
<td>56</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.72</td>
<td>-0.55</td>
<td>-0.83</td>
<td>56</td>
</tr>
<tr>
<td>Feldspar</td>
<td>0.70</td>
<td>-0.57</td>
<td>-0.83</td>
<td>56</td>
</tr>
<tr>
<td>Calcite</td>
<td>-0.38</td>
<td>0.52</td>
<td>0.52</td>
<td>56</td>
</tr>
<tr>
<td>Dolomite</td>
<td>-0.35</td>
<td>0.49</td>
<td>0.38</td>
<td>56</td>
</tr>
</tbody>
</table>

Sand, silt and clay contents refer to Nagashima et al. (2012) and Park et al. (2014).
Table 3 Correlation coefficients between mineral intensities and sand, silt and clay contents in 40 surface sediment samples.

<table>
<thead>
<tr>
<th>Intensity (cps)</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>0.90</td>
<td>-0.90</td>
<td>-0.66</td>
</tr>
<tr>
<td>Feldspar</td>
<td>0.91</td>
<td>-0.91</td>
<td>-0.68</td>
</tr>
<tr>
<td>Illite</td>
<td>-0.77</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>Chlorite+kaolinite</td>
<td>-0.77</td>
<td>0.76</td>
<td>0.60</td>
</tr>
<tr>
<td>Hornblende</td>
<td>0.84</td>
<td>-0.81</td>
<td>-0.70</td>
</tr>
<tr>
<td>Calcite</td>
<td>-0.36</td>
<td>0.27</td>
<td>0.56</td>
</tr>
<tr>
<td>Dolomite</td>
<td>-0.29</td>
<td>0.20</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Sand, silt, and clay contents refer to Nagashima et al. (2012) and Park et al. (2014).
Figure captions

Fig. 1. Map showing the locations of surface sediment samples. BG: Beaufort Gyre. ACC: Alaskan Coastal Current. SBC: Subsurface Boundary Current. ESCC: East Siberian Coastal Current. TPD: Transpolar Drift. NR: Northwind Ridge. NAP: Northwind Abyssal Plain. CR: Chukchi Ridge. CAP: Chukchi Abyssal Plain. AP: Arlis Plateau. 1: Mackenzie River. 2: Canning River. 3: Sagavanirktok River. 4: Kuparuk River. 5: Colville River. 6: Noatak River. 7: Kobuk River. 8: Yukon River. 9: Kuskokwim River. 10: Copper River. AO+ and AO– indicate the paths of currents in the positive and negative phases of the Arctic Oscillation, respectively.

Fig. 2. Spatial distributions of color indices L*, a*, and b* for the surface sediments.

Fig. 3. Depth plots of L*, a*, and b* for the western Arctic Ocean and Bering Sea sediments.

Fig. 4. Spatial distributions of the diffraction intensities of quartz, feldspar, illite, chlorite+kaolinite, chlorite, kaolinite, hornblende, calcite, and dolomite for the surface sediments.

Fig. 5. Plots of the diffraction intensities of (A) chlorite at 3.54 Å and (B) kaolinite at 3.59 Å against the diffraction intensity of chlorite+kaolinite at 7.14 Å.

Fig. 6. Vertical profiles of color indices L*, a*, and b* in cores 01A MUC, 02 MUC, 03A MUC, 06 MUC, and 13 MUC. Map indicates the locations of cores and currents.
Fig. 7. Vertical profiles of the diffraction intensities of quartz, feldspar, illite, chlorite+kaolinite, calcite, and dolomite in cores 01A MUC, 02 MUC, 03A MUC, 06 MUC, and 13 MUC.

Fig. 8. (A) The a*-b* diagram showing western Arctic Ocean and Bering Sea surface sediments and (B) the down-core sediments from cores 01A MUC, 02 MUC, 03A MUC, 06 MUC, and 13 MUC in the western Arctic Ocean.

Fig. 9. Spatial distributions of the diffraction intensity ratios of feldspar to quartz, and of chlorite+kaolinite and chlorite to illite.

Fig. 10. The chlorite/illite and kaolinite/illite ratios in the bed loads of Alaskan and East Siberian rivers and deltaic sediments (*) (after Naidu and Mowatt, 1983).

Fig. 11. Mineral composition of surface sediments on the plot of the feldspar/quartz against (chlorite+kaolinite)/illite ratios.

Fig. 12. Mineral composition of Holocene and the last glacial sediments in cores 01A, 02, 03A MUC, 06 MUC, and 13 MUC on the plot of the feldspar/quartz against (chlorite+kaolinite)/illite ratios. Map indicates the locations of cores and currents.
BG (AO+)
BG (AO-)
AP
CAP
CR
NAP
NR
TPD (AO+)
Western Arctic
BG Beaufort Sea
BG Beaufort Sea (AO-)
East Siberian Sea
ESCC
Chukchi Sea
SBC
ACC
5 432
Alaska
Bering St.
Bering Sea
Siberia
East Siberian Sea
Bering Sea
North Pacific
Ocean Data View
A

B

$\mathbf{r = 0.87}$
East Siberian grains

(Chlorite+kaolinite)/Illite

Feldspar/quartz

Makarov Basin, East Siberian Slope & Arlis Plateau
Chukchi Abyssal Plain & Plateau
Northwind Abyssal Plain & Ridge
Mackenzie River estuary
Chukchi Shelf and Slope
Bering Shelf and Slope
Yukon River estuary

Bering Sea grains

Arctic Ocean grains