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Brudno’s theorem for Zd (or Zd+) subshifts

Toru Fuda ∗and Miho Tonozaki †

Department of Mathematics, Hokkaido University
Sapporo 060-0810, Japan

Abstract

We generalize Brudno’s theorem of 1-dimensional shift dynamical system to Zd
(or Zd+) subshifts. That is to say, in Zd (or Zd+) subshift, the Kolmogorov-Sinai
entropy is equivalent to the Kolmogorov complexity density almost everywhere for
an ergodic shift-invariant measure.

Keywords. Brudno’s theorem, Kolmogorov-Sinai entropy, Kolmogorov complexity,
Shannon-McMillan-Breiman theorem, Subshifts, Zd-action, Universally typical sets

1 Introduction

In a topological dynamical system, A. A. Brudno defined a complexity of the trajectory
of a point in the space by using the notion of Kolmogorov complexity, and showed the
relationship between this quantity and the Kolmogorov-Sinai entropy [2]. As a preliminary
step, Brudno considered the 1-dimensional shift dynamical system and showed that, for
an ergodic shift-invariant measure, the Kolmogorov complexity density is equal to the
Kolmogorov-Sinai entropy almost everywhere [2, Theorem 1.1].

A partial approach to generalize this theorem to a d-dimensional case is found in [10].
S. G. Simpson showed that, in Zd (or Zd+) subshifts, there exists a point such that its
Kolmogorov complexity density is coincident with the topological entropy [10]. Examin-
ing Simpson’s proof, we see that what he showed substantively is that the Kolmogorov
complexity density is equal to the Kolmogorov-Sinai entropy almost everywhere only for
a measure of maximal entropy.

The purpose of this paper is to generalize the Brudno’s theorem of the Z1
+-action shift

dynamical system to Zd (or Zd+) subshifts. The main theorem is the following:

∗Corresponding author. E-mail: t-fuda@math.sci.hokudai.ac.jp
†Present affiliation: NEC Corporation, 5-7-2, Shiba, Minato, Tokyo, Japan.
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Theorem 3.1 If µ ∈ EM(S, ς), then

K(ω) = hς(µ), µ-a.e.ω ∈ S.

Here S denotes Zd (or Zd+) subshift, ς denotes the shift action on S, EM(S, ς) denotes
the set of all ergodic shift-invariant measures on the topological dynamical system (S, ς),
K(ω) denotes the Kolmogorov complexity density of ω, and hς(µ) denotes the Kolmogorov-
Sinai entropy of the measure preserving dynamical system (S,B(S), µ, ς). We give the
rigorous definition of these terms in Section 2.

In Section 2, we introduce some basic mathematical notions in ergodic theory, Kol-
mogorov complexity and shift dynamical systems. We used [4, 7, 9, 11] as main references
for this section. Using these basic notions, we define the Kolmogorov complexity density
of each point of ΣZd

(or ΣZd
+) naturally. In Section 3, we prove the main theorem and

give some examples. The proof essentially uses Shannon-McMillan-Breiman therem and
universally typical sets.

2 Some Mathematical Preliminaries

We first give quick reviews for some mathematical results related to the main theorem.
We will not give proofs of theorems, see e.g. [4, 8]. We write N = {1, 2, · · · }, Z =
{· · · ,−2,−1, 0, 1, 2, · · · }, Z+ = {0, 1, 2, · · · }. For an arbitrary fixed d ∈ N, we set G := Zd
or G := Zd+. For all n ∈ N, let Λn := {g = (gi)

d
i=1 ∈ G : ∀i ∈ {1, · · · , d}, |gi| < n}. Then

we have

|Λn| =

{
(2n− 1)d (G = Zd),
nd (G = Zd+),

where we denote by |A| the cardinality of a set A.

2.1 Ergodic theory

Let (X,B, µ,T) be a measure preserving dynamical system (m.p.d.s.), namely, (X,B, µ)
be a probability space and T = (T g)g∈G be a measurable µ-invariant action of G on X.
A set A ∈ B is said to be T-invariant mod µ if and only if µ(T−gA △ A) = 0 holds
for all g ∈ G, where △ denotes the symmetric difference. We write Iµ(T) := {A ∈ B :
A is T-invariant mod µ}. If µ(A) = 0 or µ(A) = 1 for all A ∈ Iµ(T), then the m.p.d.s.
(X,B, µ,T) is said to be ergodic. A family of measurable sets α = {Ai}i∈I is called a
µ-partition of X if µ(Ai ∩ Aj) = 0 (i ̸= j), µ

(
X \

∪
i∈I Ai

)
= 0 and µ(Ai) > 0 (∀i ∈ I).

Let α be a µ-partition of X. The information of α is the function Iα on X defined by
Iα(x) := −

∑
A∈α(log2 µ(A)) · 1A(x) (∀x ∈ X). The entropy of α is defined by the average

information, i.e., Hµ(α) :=
∫
X
Iαdµ =

∑
A∈α φ(µ(A)) where φ(t) := −t log2 t. From

Kolmogorov complexity’s point of view, we choose the binary logarithm log2 instead of
loge. Let β be another µ-partition. The common refinement of α and β is α∨β := {A∩B :
A ∈ α,B ∈ β, µ(A∩B) > 0}. We set T−gα := {T−gA : A ∈ α} for each g ∈ G and αΛ :=
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∨
g∈Λ T

−gα for a finite subset Λ ⊂ G. The dynamical entropy of the m.p.d.s. (X,B, µ,T)

relative to the partition α is h(µ, α,T) := infn>0
1

|Λn|Hµ(α
Λn) = limn→∞

1
|Λn|Hµ(α

Λn).

Theorem 2.1 (Shannon-McMillan-Breiman) Let (X,B, µ,T) be an ergodic m.p.d.s.
and α be a µ-partition of X with Hµ(α) <∞. Then

h(µ, α,T) = lim
n→∞

1

|Λn|
IαΛn in L1(X,µ).

Moreover, if α is finite, then this convergence holds also for µ-a.s. x ∈ X.

The Kolmogorov-Sinai entropy of the m.p.d.s (X,B, µ,T) is defined by

hT(µ) := sup{h(µ, α,T) : α is a µ-partition with Hµ(α) <∞}.

We denote by αG the σ-algebra generated by all T−gα, g ∈ G. A µ-partition α is
called a µ-generator if αG = B mod µ, where this equation means that ∀A ∈ B,∃B ∈
αG, µ(A△B) = 0.

Theorem 2.2 (Kolmogorov-Sinai) Let (X,B, µ,T) be a m.p.d.s. and α be a µ-generator
such that H(α) <∞. Then hT(µ) = h(µ, α,T).

Let (X,T) be a topological dynamical system (t.d.s.), namely, X be a compact metriz-
able space and T = (T g)g∈G be a continuous action of G on X. In this setting we denote
by B(X) the Borel σ-algebra of X. We denote by M(X) the set of all probability mea-
sures on the Borel measurable space (X,B(X)), by M(X,T) the set of all T-invariant
probability measures on (X,B(X)) and by EM(X,T) the set of all ergodic members in
M(X,T), respectively.

2.2 Kolmogorov complexity

Let Σ be a finite set and |Σ| ≥ 2. Without loss of generality, we set Σ := {0, 1, · · · , N}
where N ∈ N. We define the set of all finite strings over Σ as

Σ∗ :=
∞∪
n=0

Σn = {λ, 0, 1, · · · , N, 00, 01, · · · , 0N, 10, · · · , 1N, · · · , NN, 000, · · · },

where Σ0 = {λ} and λ denote the empty string. The length of x ∈ Σ∗ is denoted by l(x).
For all x, y ∈ Σ∗, we call x a prefix of y if there exists z ∈ Σ∗ such that y = xz. A set
A ⊂ Σ∗ is said to be prefix-free if, for all x ∈ A, the elements of A \ {x} are not prefixes
of x. Let D be a subset of {0, 1}∗ and let f be a function from D to Σ∗. If D ⊊ {0, 1}∗,
we call such a function f a partial function and write f : {0, 1}∗ ⇝ Σ∗, and if D = {0, 1}∗
then we call f a total function. A partial function ϕ : {0, 1}∗ ⇝ Σ∗ is said to be partial
recursive if and only if there exists a Turing machine M such that ϕ is computed by M ,
i.e., for all x ∈ {0, 1}∗, M on input x halts if and only if x ∈ dom(ϕ), in that case, M
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outputs ϕ(x). Moreover, if dom(ϕ) is prefix-free, then we call ϕ a partial recursive prefix
function. Let ϕ : {0, 1}∗ ⇝ Σ∗ be a partial recursive prefix function. For all x ∈ Σ∗, the
complexity of x with respect to ϕ is defined by

Kϕ(x) :=

{
min{l(p) : p ∈ ϕ−1(x)}, (ϕ−1(x) ̸= ∅),
∞ (ϕ−1(x) = ∅).

A partial recursive prefix function ϕ : {0, 1}∗ ⇝ Σ∗ is said to be additively optimal if for
all partial recursive prefix functions ψ : {0, 1}∗ ⇝ Σ∗, there exists a constant cϕ,ψ ∈ R
such that for all x ∈ Σ∗, Kϕ(x) ≤ Kψ(x) + cϕ,ψ. We fix such a function ϕ and define the
prefix Kolmogorov complexity of x ∈ Σ∗ by K(x) := Kϕ(x).

2.3 Shift dynamical system

Let Σ := {0, 1, · · · , N} (N ∈ N) and we set Ω := ΣG. By Tychonoff’s theorem, Ω endowed
with the product topology of the discrete topology on Σ is a compact topological space.
For all n ∈ N and for all s ∈ ΣΛn , we define the cylinder set of s by [[s]] := {ω ∈ Ω : ω ↾
Λn = s}. We set

ΣΛ∗ :=
∞∪
n=0

ΣΛn

where ΣΛ0 := {λ} and write [[V ]] :=
∪
s∈V [[s]] for all V ⊂ ΣΛ∗ . Let σg : Ω → Ω denote

the shift by g ∈ G, i.e., (σgω)i := ωi+g for all ω = (ωi)i∈G, and we write σ := (σg)g∈G.
Since σ is a continuous action of G on Ω, (Ω, σ) is a t.d.s.. Note that for all µ ∈M(Ω, σ),
the partition {[[s]]}s∈ΣΛ1 is a µ-generator. A nonempty subset S ⊂ Ω is called a subshift
if and only if S is shift-invariant and closed. If S ⊂ Ω is a subshift, then (S, σ ↾ S) is
a t.d.s., where σ ↾ S := (σg ↾ S)g∈G. We fix an arbitrary bijective computable function
f : Z+ → G such that for all n ∈ N, f({0, 1, · · · , |Λn|−1}) = Λn and define G : ΣΛ∗ → Σ∗

as follows:

G(s) :=

{
sf(0) · · · sf(|Λn|−1), s = (sg)g∈Λn ∈ ΣΛn (n ∈ N),
λ, s = λ.

We define the prefix Kolmogorov complexity of s ∈ ΣΛ∗ by K(s) := K(G(s)).

Lemma 2.3 For all n, k ∈ N, |{s ∈ ΣΛn : K(s) < k}| < 2k.

Proof. By [3, Theorem 7.2.4], we have for all n, k ∈ N,

|{s ∈ ΣΛn : K(s) < k}| = |{G(s) ∈ Σ|Λn| : K(G(s)) < k}|
≤ |{x ∈ Σ∗ : K(x) < k}| < 2k.

□
The upper and lower Kolmogorov complexity density of ω ∈ Ω are defined by

K(ω) := lim sup
n→∞

K(ω ↾ Λn)
|Λn|

, K(ω) := lim inf
n→∞

K(ω ↾ Λn)
|Λn|

.
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If K(ω) = K(ω), we simply denote them by K(ω). The quantities K(ω) and K(ω) are
independent of the choice of additively optimal partial recursive prefix function ϕ and G,
and uniquely defined.

Lemma 2.4 The functions K,K : Ω → R are measurable.

Proof. Let us show that K is measurable. For all x ∈ R, we have

K
−1
((−∞, x)) =

{
ω ∈ Ω : lim sup

n→∞

K(ω ↾ Λn)
|Λn|

< x

}
=
∪
k∈N

∪
N∈N

∩
n≥N

{
ω ∈ Ω :

K(ω ↾ Λn)
|Λn|

< x− 1

k

}
.

Here{
ω :

K(ω ↾ Λn)
|Λn|

< x− 1

k

}
=

{∪⌈|Λn|(x− 1
k)−1⌉

l=0 {ω : K(ω ↾ Λn) = l} , x− 1
k
> 0,

∅, x− 1
k
≤ 0.

Since the set {ω ∈ Ω : K(ω ↾ Λn) = l} is cylinder, then the set K
−1
((−∞, x)) is measur-

able. Hence the function K is measurable. The proof for K is similar. □

Remark 2.5 Let C be a plain Kolmogorov complexity (that is not conditioned on prefix
function). By [7, Example 3.1.4], we have for all s ∈ ΣΛ∗

C(G(s)) ≤ K(G(s)) ≤ C(G(s)) + 2 logC(G(s)).

It means that C and K are asymptotically equal. Then we may use C to define K,K.

3 Relation between KS entropy and Kolmogorov com-

plexity

Let d ∈ N, G = Zd or G = Zd+, Σ = {0, 1, · · · , N} (N ∈ N) and S ⊂ Ω (:= ΣG) be a
subshift. Other notations are the same as before. We set ς := σ ↾ S. Note that (S, ς) is
a t.d.s.. We now state the main result.

Theorem 3.1 If µ ∈ EM(S, ς), then

K(ω) = hς(µ), µ-a.e.ω ∈ S. (3.1)

Remark 3.2 Brudno’s original result is on the case G = Z+ only [2]. In the case G = Zd
or G = Zd+, Simpson showed that if µ is a measure of maximal entropy, then (3.1) holds
[10]. Our theorem is a generalization of them.
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It is sufficient to prove the theorem for the case S = Ω. Because, if µ ∈ EM(Ω, σ)
and µ(S) = 1, then µ ↾ S ∈ EM(S, ς) and hς(µ ↾ S) = hσ(µ) hold where µ ↾ S denotes
the restriction of µ to S. So we prove the theorem about full shift (Ω, σ).

Theorem 3.3 (µ-typical sets) Let µ ∈ EM(Ω, σ). For all ϵ > 0 and n ∈ N, we set

T(n)
ϵ :=

{
s ∈ ΣΛn : 2−|Λn|(hσ(µ)+ϵ) < µ([[s]]) < 2−|Λn|(hσ(µ)−ϵ)

}
,

Tϵ := lim inf
n→∞

[[T(n)
ϵ ]].

Then the following holds:

µ(Tϵ) = lim
n→∞

µ([[T(n)
ϵ ]]) = 1 and lim sup

n→∞

log2 |T
(n)
ϵ |

|Λn|
≤ hσ(µ) + ϵ.

Proof. It follows from Shannon-McMillan-Breiman theorem (Theorem 2.1). □

Lemma 3.4 If µ ∈ EM(Ω, σ), then

K(ω) ≥ hσ(µ), µ-a.e.ω ∈ Ω. (3.2)

Proof. If hσ(µ) = 0, then (3.2) is obvious. Let hσ(µ) > 0 and fix an arbitrary k ∈ N such

that 1
k
< hσ(µ). For all n ∈ N, we set Dn,k :=

{
s ∈ ΣΛn : K(s)

|Λn| ≤ hσ(µ)− 1
k

}
. By Lemma

2.3, we have

|Dn,k| ≤ 2|Λn|(hσ(µ)− 1
k
)+1. (3.3)

We fix an arbitrary ϵ ∈
(
0, 1

k

)
and set T

(n)
1
k
−ϵ as in Theorem 3.3. Then, by Theorem 3.3,

we have for µ-a.e. ω ∈ Ω,

∃Nω ∈ N,∀n ≥ Nω, ω ∈ [[T
(n)
1
k
−ϵ]]. (3.4)

On the other hand, by (3.3) and the definition of T
(n)
1
k
−ϵ, we have

µ([[Dn,k]] ∩ [[T
(n)
1
k
−ϵ]]) = µ

 ∪
s∈Dn,k∩T

(n)
1
k
−ϵ

[[s]]

 ≤
∑

s∈Dn,k∩T
(n)
1
k
−ϵ

µ([[s]])

≤ 2|Λn|(hσ(µ)− 1
k
)+1 · 2−|Λn|(hσ(µ)− 1

k
+ϵ) = 2−|Λn|ϵ+1.

Hence
∑∞

n=1 µ([[Dn,k]] ∩ [[T
(n)
1
k
−ϵ]]) < ∞ holds. Therefore, by the Borel-Cantelli lemma, for

µ-a.e. ω ∈ Ω,

∃N ′
ω ∈ N,∀n ≥ N ′

ω, ω /∈ [[Dn,k]] ∩ [[T
(n)
1
k
−ϵ]]. (3.5)
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By (3.4) and (3.5), for µ-a.e. ω ∈ Ω, we have

∃N ′′
ω ∈ N,∀n ≥ N ′′

ω , ω /∈ [[Dn,k]].

Since ω /∈ [[Dn,k]] means K(ω↾Λn)
|Λn| > hσ(µ)− 1

k
, we have for all k ≥ ⌈ 1

hσ(µ)
⌉+ 1,

K(ω) ≥ hσ(µ)−
1

k
, µ-a.e.ω ∈ Ω. (3.6)

Hence

µ ({ω : K(ω) < hσ(µ)}) = µ

 ∞∪
k=⌈ 1

hσ(µ)
⌉+1

{
ω : K(ω) < hσ(µ)−

1

k

}
≤

∞∑
k=⌈ 1

hσ(µ)
⌉+1

µ

({
ω : K(ω) < hσ(µ)−

1

k

})
= 0.

Therefore (3.2) holds. □
The following theorem plays a key role to prove the inverse direction.

Theorem 3.5 (Universally typical sets) For all rational number h0 ∈ (0, log2 |Σ|],
there exists a sequence of subsets {U(n)

h0
⊂ ΣΛn}n such that the following conditions hold:

(1) For all µ ∈ EM(Ω, σ) with hσ(µ) < h0,

µ(Uh0) = lim
n→∞

µ([[U
(n)
h0

]]) = 1 and lim
n→∞

log2 |U
(n)
h0

|
|Λn|

= h0

hold where Uh0 := lim infn→∞[[U
(n)
h0

]].

(2) The sequence of subsets {U(n)
h0

⊂ ΣΛn}n is computable.

Proof. See [5, Thoerem 3.1] and its proof. □

Lemma 3.6 If µ ∈ EM(Ω, σ), then

K(ω) ≤ hσ(µ), µ-a.e.ω ∈ Ω. (3.7)

Proof. Let n ∈ N and h0 ∈ (hσ(µ), log2 |Σ|] be a rational number. We set U
(n)
h0

and Uh0 as
in Theorem 3.5. By its definition, for all ω ∈ Uh0 , we have

∃N ∈ N, ∀n > N, ω ∈ [[U
(n)
h0

]]. (3.8)
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Note that ω ∈ [[U
(n)
h0

]] means ω ↾ Λn ∈ U
(n)
h0

, and here we can encode each s ∈ U
(n)
h0

into

⌈log2 |U
(n)
h0

|⌉ bits code. Then the following holds for all ω ∈ Uh0 :

∃N ∈ N, ∀n > N,
C(G(ω ↾ Λn))

|Λn|
≤

log2 |U
(n)
h0

|+ log2 n+ const.

|Λn|
, (3.9)

where C be a plain Kolmogorov complexity. As previously stated in Remark 2.5, C and
K are asymptotically equal. Then by Theorem 3.5 and (3.9), we have K(ω) ≤ h0 for all
ω ∈ Uh0 , namely, Uh0 ⊂ {ω ∈ Ω : K(ω) ≤ h0}. Let h0,k ∈ (hσ(µ), log2 |Σ|] (k ∈ N) be
rational numbers with limk→∞ h0,k = hσ(µ). Then we have

µ({ω : K(ω) > hσ(µ)}) = µ

(
∞∪
k=1

{
ω : K(ω) > h0,k

})

≤
∞∑
k=1

µ
({
ω : K(ω) > h0,k

})
≤

∞∑
k=1

µ(Uch0,k) = 0.

Therefore (3.7) holds. □
Theorem 3.1 follows from Lemma 3.4 and Lemma 3.6.

Remark 3.7 In Theorem 3.1, µ is not necessarily computable. Especially if µ is a com-
putable measure, then Theorem 3.1 is easily seen by the following way: Let ν ∈ M(ΣZ+)
be a computable measure such that for all ω ∈ Ω, µ([[ω ↾ Λn]]) = ν([[G(ω ↾ Λn)]]). By
[6, THEOREM 5.1, LEMMA 5.2], if G(ω)(:= limn→∞ G(ω ↾ Λn), ω ∈ Ω) is Martin-Löff
random with respect to ν, then there exist c1, c2 > 0 such that for all n ∈ N

− log2 ν([[G(ω ↾ Λn)]])− c1 < K(G(ω ↾ Λn))
≤ − log2 ν([[G(ω ↾ Λn)]]) + 2 log2 l(G(ω ↾ Λn)) + c2.

Then we have for µ-a.e. ω ∈ Ω

K(ω) = lim
n→∞

− log2 µ([[ω ↾ Λn]])
|Λn|

= hσ(µ).

The last equality is derived from Shannon-McMillan-Breiman theorem.

Example 3.8 (d-dimensional Bernoulli shifts) Let (Ω, σ) be the Zd or Zd+ shift space
as before. We fix a probability vector q = (qi : i ∈ Σ) on Σ and denote the corresponding
Bernoulli measure on B(Ω) by µ := q×G. Then, by Kolmogorov-Sinai theorem (Theorem
2.2), we can show that hσ(µ) =

∑
i∈Σ φ(qi). By Theorem 3.1, we have for µ-a.e. ω ∈ Ω

K(ω) =
∑
i∈Σ

φ(qi).
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Corollary 3.9 If µ ∈M(Ω, σ), then there exists K(ω) = limn→∞
K(ω↾Λn)

|Λn| for µ-a.e. ω ∈ Ω
and the following holds:

hσ(µ) = µ(K) = lim
n→∞

1

|Λn|
∑
s∈ΣΛn

K(s)µ([[s]]).

Proof. Let µ =
∫
EM(Ω,σ)

νdρ(ν) be the ergodic decomposition, where ρ be a probability

measure on EM(Ω, σ) (see [4, 9, 11]). By Jacobs’s theorem [11, Theorem 8.4] and Theorem
3.1, we have

µ(K) =

∫
EM(Ω,σ)

{∫
Ω

K(ω)dν(ω)

}
dρ(ν) =

∫
EM(Ω,σ)

hσ(ν)dρ(ν) = hσ(µ)

and µ(K) = hσ(µ) is also the same. Hence for µ-a.e. ω ∈ Ω there exists K(ω) and
µ(K) = hσ(µ) holds. On the other hand, by (3.9) and Lebesgue’s convergence theorem,
we have

lim
n→∞

1

|Λn|
∑
s∈ΣΛn

K(s)µ([[s]]) = lim
n→∞

∫
Ω

K(ω ↾ Λn)
|Λn|

dµ(ω)

=

∫
Ω

lim
n→∞

K(ω ↾ Λn)
|Λn|

dµ(ω) = µ(K).

□

Remark 3.10 In the case G = Z+, Corollary 3.9 can be found in [1].

Example 3.11 (d-dimensional Ising model) Let d ∈ N and Σ := {+1,−1}. Here +1
and −1 represent “spin up” and “spin down” at the sites of a “lattice gas” on G := Zd,
respectively. Let Ω := ΣG be a configuration space and σ be a shift action of G on Ω. For
d-dimensional Ising model, the local energy function ψ : Ω → R is defined by

ψ(ω) := −β

(
−

d∑
j=1

(ω0ωej + ω0ω−ej)−Bω0

)
, ω ∈ Ω,

where 0 := (0, · · · , 0), ej := (0, · · · ,
jth

1 , · · · , 0) ∈ G. Here −
∑d

j=1(ω0ωej + ω0ω−ej) repre-
sents the interaction between neighboring spins, −Bω0 represents the effect of a magnetic
field B ∈ R on the spin at site 0 and β ≥ 0 denote the inverse temperature. Then the
pressure of this model is given by

p(ψ) = sup
µ∈M(Ω,σ)

µ(K+ ψ).

In mathematical point of view, this example is just a replacement of hσ(µ) by µ(K),
but it shows that the generalization of Brudno’s theorem to Zd-action (especially d = 2
or 3) has a physical background.

By using Brudno’s theorem for multidimensional subshifts, we can construct a univer-
sally typical sets of multidimensional data as follows.
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Theorem 3.12 (Universally typical sets using Brudno’s theorem) Let h0 > 0 and
n ∈ N. We set

K
(n)
h0

=

{
s ∈ ΣΛn :

K(s)

|Λn|
< h0

}
and Kh0 := lim inf

n→∞
[[K

(n)
h0

]].

Then for all µ ∈ EM(Ω, σ) with hσ(µ) < h0 the following holds:

µ(Kh0) = lim
n→∞

µ([[K
(n)
h0

]]) = 1 and lim sup
n→∞

log2 |K
(n)
h0

|
|Λn|

≤ h0.

Proof. For all µ ∈ EM(Ω, σ) with hσ(µ) < h0, by Theorem 3.1, we have

1 = µ

({
ω ∈ Ω : lim

n→∞

∣∣∣∣K(ω ↾ Λn)|Λn|
− hσ(µ)

∣∣∣∣ = 0

})
= µ

(∩
ϵ>0

∪
N∈N

∩
n>N

{
ω ∈ Ω : hσ(µ)− ϵ <

K(ω ↾ Λn)
|Λn|

< hσ(µ) + ϵ

})

≤ µ

(∪
N∈N

∩
n>N

{
ω ∈ Ω :

K(ω ↾ Λn)
|Λn|

< h0

})
= µ(Kh0) ≤ lim inf

n→∞
µ([[K

(n)
h0

]]).

Then µ(Kh0) = limn→∞ µ([[K
(n)
h0

]]) = 1 holds. Since limn→∞ µ([[K
(n)
h0

]]) = 1, |K(n)
h0

| ̸= 0 holds

for sufficiently large n ∈ N. Therefore, by Lemma 2.3, we have 0 ̸= |K(n)
h0

| < 2h0|Λn|+1 (n≫

1). Hence
log2 |K

(n)
h0

|
|Λn| < h0 +

1
|Λn| (n≫ 1). This completes the proof. □
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