Magnetic Interactions in Rhenium-containing Rare Earth Double Perovskites

Sr₂LnReO₆ (Ln = Rare Earths)

Atsuhide Nishiyama, Yoshihiro Doi and Yukio Hinatsu
Division of Chemistry, Hokkaido University, Sapporo 060-0810, Japan

*Corresponding author, tel/fax:+81-11-706-2702
E-mail address: hinatsu@sci.hokudai.ac.jp

Keywords: Magnetic properties; Perovskite; Rare earth; Rhenium
Abstract

The perovskite-type compounds containing both rare earth and rhenium Sr$_2$LnReO$_6$ (Ln = Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln$^{3+}$ and Re$^{5+}$ ions are structurally ordered at the B site of the perovskite SrBO$_3$. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6-20 K for Ln = Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re$^{5+}$ ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr$_2$YReO$_6$ and Sr$_2$LuReO$_6$ indicate that the antiferromagnetic interactions between Re$^{5+}$ ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr$_2$YbReO$_6$ shows that both the Yb$^{3+}$ and Re$^{5+}$ ions magnetically order at 20 K. For the case of Sr$_2$DyReO$_6$, magnetic ordering of the Re$^{5+}$ moments occurs at 93 K, and with decreasing temperature, the moments of Dy$^{3+}$ ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat.
1. Introduction

The perovskite-type oxides have the general formula ABO₃, in which A represents a large electropositive cation and B represents a small transition metal ions. This type of oxides are known to show interesting physical properties, such as ferroelectricity, electrical conductivity, superconductivity, and magnetoresistance, due to their diversity of crystal structure and electronic properties. We have been focusing our attention on the rare earth containing perovskite-type oxides. The rare earth ion is relatively large and tends to adopt a high coordination number. Therefore, the rare earth ion usually sits at the A site of the perovskite-type oxides ABO₃. Not the A site ions but the B site ions normally determine the physical properties of the perovskites [1]. The perovskites have the flexibility of chemical composition and the possibility of combination of many kinds of ions. By selecting large alkaline earth elements such as Ba and Sr at the A site atoms, one finds that the rare earths occupy the 6-coordinate B sites [2-8]. Double perovskite-type oxides have the formula A₂B'B"O₆, in which the primes indicate the different ions in different oxidation states, and the cations at the B-sites, B’ and B”, are regularly ordered, i.e., 1:1 arrangement of B’ and B” ions has been observed over the six-coordintate B sites. Different kinds of B’ and B” ion should show a variety of the physical properties of double perovskite oxides. Since highly oxidized cations from the second or third transition series sometimes show quite unusual magnetic behavior, it attracts great attention to study the preparation and magnetic properties of double perovskite oxides containing both rare earth and such transition metals, A₂LnMO₆ (A = Sr, Ba; Ln = rare earths; M = Ru, Os, Ir, Re) [9-27].

Among them, magnetic properties of pentavalent ruthenium-containing perovskite oxides have aroused a great deal of interest, because the Ru⁵⁺ ion has the largest possible spin (S = 3/2). Double perovskite-type oxides A₂LnRuO₆ have been prepared for A = Sr, Ba, and the Ln and Ru ions are arranged in an alternating manner (NaCl-type) at the B-site position of the perovskite.
All the A_2LnRuO_6 compounds show antiferromagnetic transitions at low temperatures (for $A = Ba$ compounds, $T_N = 30-117$ K and for $A = Sr$, $T_N = 25-44$ K) [13, 17, 18, 20]. For $A = Ba$ and Sr compounds, the Néel temperatures of the A_2LnRuO_6 ($Ln \neq Y, La, Eu$) compounds are higher than those for $Ln = Y, La, Eu$ compounds. This fact indicates that the magnetic transition is mainly due to the magnetic cooperative phenomena between $Ru^{5+} (4d^3)$ and $Ln^{3+} (4f^n)$ ions. When the A-site cation is changed from Ba to Sr to Ca, the Néel temperature for A_2LnRuO_6 compounds decreases considerably. With decreasing the size of A-site cation, the alignment of $Ln-O-Ru$ deviates from 180°, which results in weakening the magnetic super-exchange interaction between f and d electrons via oxygen ions [28, 29].

For iridium-containing double perovskites, Ba_2CeIrO_6, Ba_2PrIrO_6, Sr_2CeIrO_6, and Sr_2TbIrO_6 show antiferromagnetic transitions at 17, 71, 21, and 51 K, respectively [15, 19]. In these compounds, the Ce, Pr, Tb ions are not in the trivalent state, but are in the tetravalent state and the Ir ions are also tetravalent. The other compounds ($A_2Ln^{3+}Ir^{5+}O_6$) are paramagnetic down to 1.8 K [14].

Now, our attention has been focused on double perovskite oxides containing rhenium, A_2LnReO_6. In these compounds, the oxidation state of rhenium ions is expected to be in the pentavalent state. Their electronic configurations are $[Xe]5d^2$ ($[Xe]$: xenon electronic core), which is different from those for the above transition elements. Therefore, the magnetic properties of A_2LnReO_6 are expected to be quite different from those of other double perovskite oxides A_2LnMO_6, because in general, the effect of M^{5+} ions on the magnetic properties of A_2LnMO_6 is larger than that of Ln^{3+} ions. Previous studies on Ba_2LnReO_6 show that magnetic anomalies have been observed in their magnetic susceptibility and specific heat measurements, suggesting an antiferromagnetic ordering of Re^{5+} ions for Ba_2LnReO_6 ($Ln = Y, Nd, Sm, Gd-Ho, Lu$) at 27-100 K and that of Tb^{3+} ions for Ba_2TbReO_6 at 2.4 K [21]. Recently, magnetic properties of Ba_2YReO_6 have been discussed from the point of geometry frustrated structure [30].
In this study, we have paid our attention to the structural chemistry and magnetic properties of Sr-containing double perovskites Sr$_2$LnReO$_6$. Due to the smaller ionic radius of Sr$^{2+}$ compared with that of Ba$^{2+}$, the alignment of Ln-O-Re is expected to deviate from linearity for the case of Sr$_2$LnReO$_6$ compounds. Therefore, comparing the magnetic properties of Sr$_2$LnReO$_6$ with those of Ba$_3$LnReO$_6$ will elucidate the effect of the alignment of Ln-O-Re on the magnetic interaction between Ln$^{3+}$ and Re$^{5+}$ ions.

From the standpoint of tolerance factor for the perovskite structure, the number of the double perovskite oxides containing both rare earth and rhenium ions at the B-site of the perovskite Sr$_2$LnReO$_6$ is expected to be limited. Therefore, it is important to systematically study the formation of the double perovskite Sr$_2$LnReO$_6$ and their crystal structures.

2. Experimental

2.1. Sample preparation

Polycrystalline samples of Re-bearing double perovskites Sr$_2$LnReO$_6$ were prepared by the standard solid-state reaction. Strontium peroxide SrO$_2$, rare earth sesqui-oxides Ln$_2$O$_3$ (Ln = Y, La, Nd, Sm-Gd, Dy-Lu), rhenium metal (Re) and rhenium dioxide ReO$_2$ were used as starting materials. For the case of Ce, Pr, and Tb, CeO$_2$, Pr$_6$O$_{11}$, and Tb$_4$O$_7$ were used, respectively. In order to remove any moisture, La$_2$O$_3$ and Nd$_2$O$_3$ were preheated in air at 1,173 K. The stoichiometric mixtures were well ground in an agate mortar in an inert dry box. The mixtures were pressed into pellets and enwrapped with platinum foils, and they were sealed in evacuated silica tubes. The mixtures were annealed at 1,073-1,373 K for 6-24 h with several intervening re-grinding and re-pelletizing.

2.2. X-ray diffraction analysis

Powder X-ray diffraction profiles were measured using a Rigaku Multi-Flex diffractometer with Cu-Kα radiation equipped with a curved graphite monochromator. The data were collected by step-scanning in the angle range of 10° ≤ 2θ ≤120° at a 2θ step-size of 0.02°. The X-ray
diffraction data were analyzed by the Rietveld technique, using the program RIETAN-FP [31] and the crystal structure was drawn by VESTA program [32].

2.3. Magnetic susceptibility measurements

The temperature-dependence of the magnetic susceptibility was measured in an applied field of 0.1 T over the temperature range of 1.8 K \(\leq T \leq 400 \) K, using a SQUID magnetometer (Quantum Design, MPMS5S). The susceptibility measurements were performed under both zero-field-cooled (ZFC) and field-cooled (FC) conditions. The former was measured upon heating the sample to 400 K under the applied magnetic field of 0.1 T after zero-field cooling to 1.8 K. The latter was measured upon cooling the sample from 400 to 1.8 K in the applied field of 0.1 T.

2.4. Specific heat measurements

Specific heat measurements were performed using a relaxation technique by a commercial heat capacity measuring system (Quantum Design, PPMS) in the temperature range of 1.8-400 K. The sintered sample in the form of a pellet was mounted on a thin alumina plate with Apiezon for better thermal contact.

3. Results and Discussion

3.1. Crystal structure

The results of X-ray diffraction measurements show that \(\text{Sr}_2\text{LnReO}_6 \) (Ln = Y, Tb-Lu) compounds were formed as a single phase with perovskite-type structure. Due to the large ionic radius for Ln = La ~ Gd, the perovskite-type compounds were not obtained. The stability of perovskites is generally estimated by the tolerance factor \(t \). For the double perovskite compounds \(\text{A}_2\text{B}'\text{B}''\text{O}_6 \), this factor is defined by Eq. (1)

\[
t = \frac{(r_A + r_O)}{\sqrt{2((r_{B'} + r_{B''})/2 + r_O)}}
\]

where \(r_A, r_{B'}, r_{B''}, \) and \(r_O \) are radii of the A, B', B'' metal ions and oxygen ions, respectively. For an ideal cubic perovskite structure, the value of \(t \) is equal to unity, whereas for structures distorted
from cubic symmetry, the value of \(t \) becomes <1. The tolerance factors for Sr\(_2\)LnReO\(_6\) with Ln = La ~ Gd are calculated to be less than 0.93, which destabilizes the double perovskite-type structure.

Figure 1 shows the X-ray diffraction profile for Sr\(_2\)LuReO\(_6\). The super lattice reflection appears at \(2\theta \sim 19^\circ \), indicating that the compound is not single perovskite but double perovskite. The Rietveld analysis for the X-ray diffraction profile shows that the diffraction lines are indexed with the monoclinic structure with space group \(P2_1/n \). This space group allows two crystallographically distinct octahedral sites in the double perovskite structure, thus permitting 1:1 ordered arrangement between Ln\(^{3+}\) and Re\(^{5+}\) ions. The relation between the lattice constants of this unit cell \((a, b, c)\) with primitive perovskite unit cell \((a_p)\) are given by \(a \approx \sqrt{2}a_p, b \approx \sqrt{2}a_p, \) and \(c \approx 2a_p \). The atomic positional parameters for Sr\(_2\)LuReO\(_6\) are tabulated in Table 1. Figure 2 shows the crystal structure of Sr\(_2\)LuReO\(_6\). For other Sr\(_2\)LnReO\(_6\) (Ln = Y, Tb-Yb) compounds, the unit cell parameters and the reliability factors are listed in Table 2.

Figure 3 shows the variation of lattice parameter for Sr\(_2\)LnReO\(_6\) with the ionic radius of Ln\(^{3+}\). As the ionic radius of Ln\(^{3+}\) increases, all the lattice parameters \((a, b,\) and \(c)\) increase. The variation is nearly linear, so it is thought that the oxidation state of the rare earth is trivalent and that of rhenium is pentavalent for all the compounds Sr\(_2\)LnReO\(_6\) (Ln = Y, Tb-Lu). In the case that some of the rare earth ion is in the tetravalent state, the deviation from the linear relationship between the lattice parameters and the ionic radius of Ln\(^{3+}\) has been observed for Sr\(_2\)LnIrO\(_6\) [15] and Ba\(_2\)LnIrO\(_6\) [19]. Figure 3 also shows that the lattice parameter \(\beta \) increases and the differences among \(a, b, \) and \(c/\sqrt{2} \) spread with an increase of the Ln\(^{3+}\) ionic radius. This result indicates that the crystal structures of Sr\(_2\)LnReO\(_6\) are more distorted from the cubic symmetry as the size of the Ln\(^{3+}\) ion becomes larger.

Figure 4 shows the variation of average bond lengths Ln-O and Re-O for the Sr\(_2\)LnReO\(_6\) (Ln = Y, Tb-Lu). The average Ln-O length increases with the ionic radius of Ln\(^{3+}\) while the average Re-O bond length is nearly constant (1.94-1.94 Å). These bond lengths Ln-O and Re-O
are near to the bond lengths Ln^{3+}-O^{2-} and Re^{5+}-O^{2-} calculated from the Shannon’s ionic radii [33]. The bond valence sums (BVS) are calculated from the interatomic distances [34, 35], and they are listed in Table 3. These values also indicate that the Ln and Re ions are in the trivalent and pentavalent, respectively.

3.2. Magnetic properties

The results of the magnetic susceptibility measurements for Sr$_2$LnReO$_6$ ($\text{Ln} = \text{Y}, \text{Tb-Lu}$) in the temperature range between 1.8 and 400 K are summarized in Table 4. The Curie-Weiss law is valid for the magnetic susceptibilities of Sr$_2$LnReO$_6$ in high temperature ranges (> 100 K). The effective magnetic moments (μ_{eff}) and Weiss constants (θ) of these compounds are also listed in Table 4. Magnetic exchange interaction has been observed for $\text{Ln} = \text{Y}, \text{Tb}, \text{Dy}, \text{Yb}, \text{and Lu}$ compounds. The negative Weiss constant indicates that the predominant magnetic interactions observed for Sr$_2$LnReO$_6$ compounds are antiferromagnetic.

We will discuss magnetic properties of Sr$_2$LnReO$_6$ ($\text{Ln} = \text{Y}, \text{Tb-Lu}$) compounds in the followings.

3.2.1. Sr$_2$YReO$_6$, Sr$_2$LuReO$_6$

Figures 5 and 6 depict the magnetic susceptibility vs temperature curves for Sr$_2$YReO$_6$ and Sr$_2$LuReO$_6$, respectively in the temperature range between 1.8 and 300 K. An antiferromagnetic behavior has been observed at 6.0 and 12 K, respectively. The ZFC and FC susceptibilities begin to diverge when the temperature is decreased through ca. 40 K, i.e., Sr$_2$YReO$_6$ and Sr$_2$LuReO$_6$ are not ideal antiferromagnets. Figures 7 (a) and (b) show the magnetic hysteresis curves measured at 5.0 K for Sr$_2$YReO$_6$ and Sr$_2$LuReO$_6$, respectively. Small magnetic hysteresis has been observed for both the compounds, and the remnant magnetization is estimated to be 0.003 μ_0 at 5 K. The remnant magnetization completely disappears when the temperature is increased above 40 K. That is, the antiferromagnetic interactions at low temperatures have a weak ferromagnetic
component. In these Sr$_2$LnReO$_6$ compounds with low crystal symmetry, the Dzyaloshinsky-Moriya (D-M) interaction can exist between the magnetically ordered elements, which results in the existence of a weak ferromagnetic moment in their susceptibilities. On the other hand, Ba$_2$YReO$_6$ and Ba$_2$LuReO$_6$ show no divergence between the ZFC and FC susceptibilities in the whole temperature range, because their crystal symmetry is cubic [21].

The inset figures of Figs. 5 and 6 show the temperature dependence of the reciprocal ZFC magnetic susceptibility for Sr$_2$YReO$_6$ and Sr$_2$LuReO$_6$, respectively. The Curie-Weiss law is valid in the temperature range between 90 and 300 K. The effective magnetic moments of Sr$_2$YReO$_6$ and Sr$_2$LuReO$_6$ are 2.27 and 2.68 μ_B, respectively. In these compounds, only the Re$^{5+}$ ions are paramagnetic. Since the spin-orbit coupling cannot be ignored for the 5d2 ions, the expected moment of Re$^{5+}$ should be lower than the spin-only value of 2.83 μ_B. Comparable lower effective magnetic moment of Re$^{5+}$ has been observed in some Re-containing compounds [21, 36-39].

Figure 8 depicts the temperature dependence of the specific heat (C_p) for Sr$_2$LuReO$_6$ in the temperature range between 1.8 and 300 K, and the inset shows the specific heat divided by temperature (C_p/T) in low temperature region. A specific heat anomaly has been found at the same temperature at which the magnetic susceptibility shows the antiferromagnetic transition.

In this Sr$_2$LuReO$_6$ compound, only the Re$^{5+}$ ions are magnetic. The magnetic entropy change (S_{mag}) associated with the magnetic ordering of Re$^{5+}$ moments is estimated from the specific heat data. To evaluate the magnetic contribution to the specific heat (C_{mag}), we have to subtract the contribution of lattice specific heat (C_{lat}) from the total specific heat ($C_{mag} = C_p - C_{lat}$). The lattice specific heat was estimated by using the specific heat data for diamagnetic Sr$_2$LuTaO$_6$. From the temperature dependence of the magnetic specific heat, the magnetic entropy change (S_{mag}) for Sr$_2$LuReO$_6$ is calculated by integrating the magnetic specific heat divided by temperature (C_{mag}/T), i.e., $S_{mag} = \int \left(\frac{C_{mag}}{T} \right) dT$. The temperature dependence of S_{mag} is shown in Fig. 9. The obtained S_{mag} of Sr$_2$LuReO$_6$ at 40 K is 2.2 J/(mol K). In an octahedral
crystal field environment, the ground state of the Re$^{5+}$ ion ($5d^2$, the state 3F_2) degenerates to five-fold ($\Gamma_3 + \Gamma_5$) [40]. In the case of lower symmetry, the degeneracy is lifted and the ground state becomes doublet (Γ_3). Thus the magnetic entropy change is calculated to be $R \ln 2 = 5.76$ J/(mol K). The magnetic entropy change S_{mag} obtained experimentally is lower than that calculated. This result may indicate that the magnetic ordering of Re$^{5+}$ moments begins to occur at a higher temperature than the Néel temperature. Another reason for lower magnetic entropy change is due to inaccurate estimation for the lattice specific heat of Sr$_2$LuReO$_6$.

The results of the specific heat measurements for Sr$_2$YReO$_6$ are quite similar to those for Sr$_2$LuReO$_6$. A specific heat anomaly has been found at the same temperature at which the magnetic susceptibility shows the antiferromagnetic transition (Supplementary figure S1).

3.2.2. Sr$_2$YbReO$_6$

Figure 10 depicts the magnetic susceptibility vs. temperature curve for Sr$_2$YbReO$_6$. ZFC and FC susceptibilities begin to diverge when the temperature is decreased through 50 K. Magnetic anomaly has been observed in the ZFC susceptibility vs. temperature curve at 20 K.

The inset of Fig. 10 shows the temperature dependence of the reciprocal ZFC magnetic susceptibility for Sr$_2$YbReO$_6$. The Curie-Weiss law is valid in the temperature range between 90 and 300 K. The effective magnetic moment and Weiss constants are obtained to be 4.99 μ_B and -131 K, respectively. In this compound, not only the Re$^{5+}$ ions but also the Yb$^{3+}$ ions are magnetic. When we assume that the magnetic moment of the Re$^{5+}$ ion is 2.27 μ_B (which is the moment of Sr$_2$YReO$_6$), the effective magnetic moment of Sr$_2$YbReO$_6$ is calculated to be 5.08 μ_B from the equation $\mu_{\text{calc}} = \sqrt{\mu_{\text{Re}}^2 + \mu_{\text{Yb}}^2}$. Effective magnetic moment obtained experimentally for Sr$_2$YbReO$_6$ (μ_{eff}) agrees with this calculated moment (μ_{calc}).

Figure 11 shows the temperature dependence of the specific heat (C_p) for Sr$_2$YbReO$_6$. A clear λ-type specific heat anomaly has been observed at 20 K, which corresponds to the magnetic
anomaly observed by the magnetic susceptibility measurements. The magnetic specific heat \((C_{\text{mag}})\) of \(\text{Sr}_2\text{YbReO}_6\) was estimated by subtracting the contribution of the lattice specific heat \((C_{\text{lat}})\) from the total specific heat \((C_p)\). The magnetic entropy change \((S_{\text{mag}})\) associated with the magnetic ordering of \(\text{Sr}_2\text{YbReO}_6\) is calculated by integrating the magnetic specific heat divided by temperature \((C_{\text{mag}}/T)\), in the same way as is the case for \(\text{Sr}_2\text{LuReO}_6\). The temperature dependence of the \(S_{\text{mag}}\) for \(\text{Sr}_2\text{YbReO}_6\) is shown in Fig. 12. The obtained \(S_{\text{mag}}\) of \(\text{Sr}_2\text{YbReO}_6\) at 40 K is 6.0 J/(mol K). In this compound, both Re\(^{5+}\) and Yb\(^{3+}\) ions are magnetic and contribute to the magnetic ordering. From the specific heat measurements for \(\text{Sr}_2\text{LuReO}_6\), the magnetic entropy change \(S_{\text{mag}}\) is experimentally obtained to be 2.2 J/(mol K). Therefore, the entropy change for the magnetic ordering of Yb\(^{3+}\) ions is estimated to be 3.8 J/(mol K). In an octahedral crystal field environment, the ground state of the Yb\(^{3+}\) ion is doublet \(\Gamma_6\) [41]. Thus the magnetic entropy change for the magnetic ordering of Yb\(^{3+}\) ions is calculated to be \(R\ln2 = 5.76\) J/(mol K). Although the magnetic entropy change \(S_{\text{mag}}\) obtained experimentally is lower than that calculated, we believe that both the Re\(^{5+}\) and Yb\(^{3+}\) ions magnetically order at the same temperature from considering the results of the temperature dependence of the magnetic susceptibility and specific heat.

3.2.3. \(\text{Sr}_2\text{LnReO}_6\) (Ln = Ho, Er, Tm)

The results of the magnetic susceptibility measurements for Ln = Ho, Er, Tm compounds show that there exists no magnetic ordering down to 1.8 K. No divergence between ZFC and FC susceptibilities has been observed. No specific heat anomaly are found down to 1.8 K. Figure 13 shows the temperature dependence of the reciprocal magnetic susceptibilities for \(\text{Sr}_2\text{LnReO}_6\) (Ln = Ho, Er, and Tm). The Curie-Weiss law is valid for the magnetic susceptibilities above 100 K. In these compounds, not only the Re\(^{5+}\) ions but also the Ln\(^{3+}\) ions are magnetic. In the same way as the case for \(\text{Sr}_2\text{YbReO}_6\), the effective magnetic moments of \(\text{Sr}_2\text{LnReO}_6\) \((\mu_{\text{calc}})\) can be calculated
from the equation $\mu_{\text{calc}} = \sqrt{\mu_{\text{Re}}^2 + \mu_{\text{Ln}}^2}$, and they are also listed in Table 4. The moments experimentally obtained for Sr$_2$LnReO$_6$ (μ_{eff}) agree with those calculated moments.

3.2.4. Sr$_2$TbReO$_6$

Figure 14 depicts the magnetic susceptibility vs temperature curve for Sr$_2$TbReO$_6$, clearly indicating that Sr$_2$TbReO$_6$ is a typical antiferromagnet and that the Néel temperature (T_N) is 2.6 K. No divergence between ZFC and FC susceptibility has been observed below T_N. Figure 15 shows the temperature dependence of the specific heat for Sr$_2$TbReO$_6$, indicating the existence of the magnetic anomaly at the same temperature as that found by magnetic susceptibility measurements. The inset shows the specific heat divided by temperature (C_p/T) at low temperatures.

3.2.5. Sr$_2$DyReO$_6$

Figure 16 (a) shows the temperature dependence of the magnetic susceptibility for Sr$_2$DyReO$_6$. When the temperature is decreased through 5 K, the susceptibility steeply increases. The inset of Fig. 16 (a) shows the reciprocal susceptibility vs temperature curve in the temperature range between 1.8 and 100 K. If we apply the Curie-Weiss law below 50 K, the Weiss constant is obtained to be 10 K, which indicates the magnetic behavior at low temperatures is ferromagnetic.

Figure 17 shows the variation of magnetization as a function of magnetic field for Sr$_2$DyReO$_6$ at 5, 10, and 100 K. The magnetic moment is almost saturated to be ~5 μ_B at 5 K. The saturation moment is calculated to be 10 μ_B from the ground state of Dy$^{3+}$ ($^6H_{15/2}, g_J = 4/3$). The moment observed is much smaller than that calculated, indicating that the ground state of Dy$^{3+}$ should be split by the crystal field and that the ordered moment is lowered.

Figure 18 shows the temperature dependence of the specific heat measured for Sr$_2$DyReO$_6$, indicating the existence of two λ-type specific heat anomalies at 5 and 93 K. The anomaly
observed at 5 K corresponds to the results by magnetic susceptibility measurements. Another clear specific heat anomaly has been observed at 93 K, although no magnetic anomaly behavior has been found in its magnetic susceptibility vs temperature curve (Fig. 16 (a)). Since the magnetic moment of Dy\(^{3+}\) is much larger than that of Re\(^{5+}\), the magnetic ordering of Re\(^{5+}\) ions should be hindered by paramagnetic behavior of Dy\(^{3+}\) ions in the magnetic susceptibility vs temperature curve. Then, we performed the \(d(\chi T)/dT\) plots against temperature in the temperature range between 40 and 200 K in Fig. 16 (b), following the method by Fisher [42]. A change of \(d(\chi T)/dT\) has appeared when the temperature is decreased through 95 K, which accords with the specific heat measurements. We consider that the magnetic moments of Re\(^{5+}\) ions first order at 93 K, and then the moments of Dy\(^{3+}\) ions are ordered when the temperature is furthermore decreased through 5 K.

4. Summary

A series of perovskite-type compounds containing both rare earth and rhenium Sr\(_2\)LnReO\(_6\) (Ln = Y, Tb ~ Lu) have been prepared. The Ln\(^{3+}\) and Re\(^{5+}\) ions are structurally ordered at the B site of the perovskite SrBO\(_3\). An antiferromagnetic transition has been observed at 2.6 ~ 20 K for Ln = Y, Tb, Dy, Yb, and Lu compounds. Their magnetic interactions are due to mainly interactions between Re\(^{5+}\) moments. The analysis of the specific heat data for Sr\(_2\)YbReO\(_6\) shows that both the Yb\(^{3+}\) and Re\(^{5+}\) ions magnetically order at 20 K. For the case of Sr\(_2\)DyReO\(_6\), it was found that magnetic ordering of the Re\(^{5+}\) moments occurs at around 90K, and with furthermore decreasing temperature, Dy moments ferromagnetically order from the magnetic susceptibility and specific heat measurements.
References

Figure captions

Fig. 1 Powder X-ray diffraction profile for Sr$_2$LuReO$_6$. The calculated profiles based on the $P2_1/n$ model and the observed profiles are shown on the top solid line and cross markers, respectively. The bottom trace is a plot of the difference between calculated and observed intensities. The upper vertical marks in the middle show positions calculated for Bragg reflections. The lower vertical marks in the middle show positions calculated for Bragg reflections for Lu$_2$O$_3$ impurity. An arrow shows the super lattice reflection which is indexed to be 1 0 1 and 0 1 1.

Fig. 2 Crystal structure of double perovskite Sr$_2$LnReO$_6$. Red and black lines show cubic and monoclinic unit cells, respectively.

Fig. 3 Variation of lattice parameters for Sr$_2$LnReO$_6$ (Ln = Y, Tb-Lu) with Ln$^{3+}$ radius.

Fig. 4 Bond lengths Ln-O and Re-O and bond angle Ln-O-Re for Sr$_2$LnReO$_6$ against Ln$^{3+}$ radius.

Fig. 5 Temperature dependence of the magnetic susceptibility for Sr$_2$YReO$_6$ in the temperature range between 1.8 and 300 K. Filled circles are susceptibilities measured under ZFC conditions and open circles are those measured under FC conditions. The inset shows the temperature dependence of the reciprocal ZFC susceptibility for Sr$_2$YReO$_6$. The red solid line is the Curie-Weiss fitting.

Fig. 6 Temperature dependence of the magnetic susceptibility for Sr$_2$LuReO$_6$ in the temperature range between 1.8 and 300 K. Filled circles are susceptibilities measured under ZFC conditions and open circles are those measured under FC conditions. The inset shows the temperature dependence of the reciprocal ZFC susceptibility for Sr$_2$LuReO$_6$. The red solid line is the Curie-Weiss fitting.

Fig. 7 Magnetic hysteresis curves for (a) Sr$_2$YReO$_6$ and (b) Sr$_2$LuReO$_6$ measured at 5 K.

Fig. 8 Temperature dependence of the specific heat (C_p) for Sr$_2$LuReO$_6$ in the temperature range between 1.8 and 300 K. The inset shows the specific heat divided by temperature (C_p/T) in low temperature region.
Fig. 9 Temperature dependence of the C_p below 40 K and magnetic entropy change (S_{mag}) for Sr$_2$LuReO$_6$. The red solid line is the specific heat data for Sr$_2$LuTaO$_6$ and the black solid line is the magnetic entropy change (S_{mag}).

Fig.10 Temperature dependence of the magnetic susceptibility for Sr$_2$YbReO$_6$ in the temperature range between 1.8 and 300 K. Filled circles are susceptibilities measured under ZFC conditions and open circles are those measured under FC conditions. The inset shows the temperature dependence of the reciprocal ZFC susceptibility for Sr$_2$YbReO$_6$. The red solid line is the Curie-Weiss fitting.

Fig.11 Temperature dependence of the specific heat (C_p) for Sr$_2$YbReO$_6$. The inset shows the specific heat divided by temperature (C_p/T) in low temperature region.

Fig.12 Temperature dependence of the C_p below 50 K and magnetic entropy change (S_{mag}) for Sr$_2$YbReO$_6$. The red solid line is the specific heat data for Sr$_2$LuTaO$_6$ and the black solid line is the magnetic entropy change (S_{mag}).

Fig. 13 Temperature dependence of the reciprocal magnetic susceptibilities for Sr$_2$LnReO$_6$ (Ln = Ho, Er, and Tm).

Fig.14 Temperature dependence of the magnetic susceptibility for Sr$_2$TbReO$_6$ in the temperature range between 1.8 and 100 K. Filled circles are susceptibilities measured under ZFC conditions and open circles are those measured under FC conditions. The inset shows the temperature dependence of the reciprocal ZFC susceptibility for Sr$_2$TbReO$_6$ in the temperature range between 1.8 and 300 K. The red solid line is the Curie-Weiss fitting.

Fig.15 Temperature dependence of the specific heat (C_p) for Sr$_2$TbReO$_6$. The inset shows the specific heat divided by temperature (C_p/T) in low temperature region.

Fig.16 (a) Temperature dependence of the magnetic susceptibility for Sr$_2$DyReO$_6$ in the temperature range between 1.8 and 300 K. The inset shows the temperature dependence of the reciprocal ZFC susceptibility for Sr$_2$DyReO$_6$ in lower temperature region.
(b) Temperature dependence of the first derivatives of χT against temperature in the neighborhood of T_N.

Fig. 17 Field dependence of the magnetization for Sr$_2$DyReO$_6$ at 5, 10, and 100 K.

Fig. 18 Temperature dependence of the specific heat (C_p) for Sr$_2$DyReO$_6$. The inset shows the specific heat divided by temperature (C_p/T) in lower temperature region.
Fig. 2
Fig. 3
Bond length (Å)

Ln-O-Re

Ln-O

Re-O

Bond angle (degree)

Ionic radius of Ln³⁺ (Å)

Lu Yb Tm Er YHo Dy Tb

0.86 0.88 0.90 0.92

Fig. 4
Sr$_2$YReO$_6$

- **ZFC**
- **FC**

χ_M (emu·mol$^{-1}$)

χ_M^{-1} (emu$^{-1}$·mol)

Temperature (K)

Fig. 5
Sr$_2$LuReO$_6$

- ZFC
- FC

χ$_M$ (emu·mol$^{-1}$)

Temperature (K)

χ$_M$$^{-1}$ (emu$^{-1}$·mol)

Temperature (K)

Fig. 6
Fig. 7(a)
$\text{Sr}_2\text{LuReO}_6$

$T = 5 \text{ K}$

Fig. 7(b)
$C_p (\text{J mol}^{-1} \text{K}^{-1})$

Temperature (K)

$C_p T^{-1} (\text{J mol}^{-1} \text{K}^{-2})$

Temperature (K)

Fig. 8
C_p (J·mol$^{-1}$·K$^{-1}$)

S_{mag} (J·mol$^{-1}$·K$^{-1}$)

Sr_2LuReO_6

Fig. 9
Fig. 10
Sr$_2$YbReO$_6$

C_p (J mol$^{-1}$ K$^{-1}$)

Temperature (K)

$C_p T^{-1}$ (J mol$^{-1}$ K$^{-2}$)

Temperature (K)

Fig. 11
Fig. 13

Graphical Data

The graph depicts the variation of \(\chi^{-1} \) (emu\(^{-1}\)·mol) with temperature (K) for Sr\(_2\)TmReO\(_6\), Sr\(_2\)ErReO\(_6\), and Sr\(_2\)HoReO\(_6\). The data is represented by different markers:
- **Sr\(_2\)TmReO\(_6\)**: Black circles
- **Sr\(_2\)ErReO\(_6\)**: Green triangles
- **Sr\(_2\)HoReO\(_6\)**: Blue squares

The graph shows a linear increase in \(\chi^{-1} \) with temperature for all three compounds, indicating a decrease in magnetic susceptibility with rising temperature.
Fig. 14

Sr$_2$TbReO$_6$

- ZFC
- FC

χ$_M$ (emu·mol$^{-1}$)

Temperature (K)

χ$_M$$^{-1}$ (emu$^{-1}$·mol)

Temperature (K)
The graph shows the specific heat capacity (C_p) of Sr$_2$TbReO$_6$ as a function of temperature (T). The main graph displays C_p (J mol$^{-1}$ K$^{-1}$) on the y-axis against temperature (K) on the x-axis. The inset graph illustrates C_pT^{-1} (J mol$^{-1}$ K$^{-2}$) as a function of temperature (K).
Fig. 16 (a)

The figure shows a graph of magnetic susceptibility (χ_M) versus temperature (K) for Sr$_2$DyReO$_6$. The graph includes data points for zero-field cooling (ZFC) and field cooling (FC). The inset focuses on a higher temperature range, depicting χ_M^{-1} versus temperature (K).
Fig. 16 (b)
$\text{Sr}_2\text{DyReO}_6$

- $T = 5 \text{ K}$
- 10 K
- 100 K

M ($\mu_\text{B} \text{ mol}^{-1}$)

H (T)

Fig. 17
Fig. 18
Table 1. Structural parameters for Sr$_2$LuReO$_6$.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$B / \text{Å}^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>4e</td>
<td>0.008(4)</td>
<td>0.025(1)</td>
<td>0.243(1)</td>
<td>0.37(6)</td>
</tr>
<tr>
<td>Lu</td>
<td>2d</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>0.3(1)</td>
</tr>
<tr>
<td>Re</td>
<td>2c</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0.3(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>4e</td>
<td>0.255(2)</td>
<td>0.314(2)</td>
<td>0.030(2)</td>
<td>1.0(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>4e</td>
<td>0.186(3)</td>
<td>-0.238(2)</td>
<td>0.0254(3)</td>
<td>1.0</td>
</tr>
<tr>
<td>O(3)</td>
<td>4e</td>
<td>0.052(3)</td>
<td>0.498(3)</td>
<td>0.236(3)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note. Space group $P2_1/n$; $a = 5.7619(2) \text{ Å}$, $b = 5.7709(1) \text{ Å}$, $c = 8.1554(1) \text{ Å}$, $\beta = 90.11(1)^\circ$, $V = 271.175(8) \text{ Å}^3$, $R_{wp} = 13.33\%$, and $R_e = 10.85\%$, where

$$R_{wp} = \left(\sum_i w_i (y_i - f_i(x))^2 / \sum_i w_i y_i^2 \right)^{1/2}, \text{ and } R_e = \left(N - P / \sum_i w_i y_i^2 \right)^{1/2}.$$
Table 2. Lattice parameters for Sr$_2$LnReO$_6$ (Ln = Y, Tb-Lu).

<table>
<thead>
<tr>
<th></th>
<th>a/Å</th>
<th>b/Å</th>
<th>c/Å</th>
<th>β/°</th>
<th>R_{wp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr$_2$YReO$_6$</td>
<td>5.7933(6)</td>
<td>5.8162(4)</td>
<td>8.2649(4)</td>
<td>90.22(1)</td>
<td>14.06</td>
</tr>
<tr>
<td>Sr$_2$TbReO$_6$</td>
<td>5.8099(6)</td>
<td>5.8419(4)</td>
<td>8.2322(4)</td>
<td>90.24(1)</td>
<td>14.06</td>
</tr>
<tr>
<td>Sr$_2$DyReO$_6$</td>
<td>5.8015(2)</td>
<td>5.8287(1)</td>
<td>8.2175(1)</td>
<td>90.22(1)</td>
<td>14.54</td>
</tr>
<tr>
<td>Sr$_2$HoReO$_6$</td>
<td>5.7942(4)</td>
<td>5.8205(2)</td>
<td>8.2068(2)</td>
<td>90.21(2)</td>
<td>13.39</td>
</tr>
<tr>
<td>Sr$_2$ErReO$_6$</td>
<td>5.7868(3)</td>
<td>5.8064(2)</td>
<td>8.1920(2)</td>
<td>90.21(2)</td>
<td>12.44</td>
</tr>
<tr>
<td>Sr$_2$TmReO$_6$</td>
<td>5.7785(3)</td>
<td>5.7919(2)</td>
<td>8.1777(2)</td>
<td>90.19(1)</td>
<td>11.34</td>
</tr>
<tr>
<td>Sr$_2$YbReO$_6$</td>
<td>5.7710(3)</td>
<td>5.7799(2)</td>
<td>8.1633(2)</td>
<td>90.16(2)</td>
<td>13.01</td>
</tr>
<tr>
<td>Sr$_2$LuReO$_6$</td>
<td>5.7619(2)</td>
<td>5.7709(1)</td>
<td>8.1554(1)</td>
<td>90.11(1)</td>
<td>13.33</td>
</tr>
</tbody>
</table>

Definition of reliability factors R_{wp} is given as follows:

$$R_{wp} = \left(\frac{\sum_i w_i (y_i - f_i(x))^2}{\sum_i w_i y_i^2} \right)^{1/2}.$$
Table 3. The BVS for $\text{Sr}_2Ln\text{ReO}_6$

<table>
<thead>
<tr>
<th></th>
<th>Ln</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr_2YReO_6</td>
<td>3.22</td>
<td>4.83</td>
</tr>
<tr>
<td>$\text{Sr}_2\text{TbReO}_6$</td>
<td>3.31</td>
<td>4.70</td>
</tr>
<tr>
<td>$\text{Sr}_2\text{DyReO}_6$</td>
<td>3.02</td>
<td>4.76</td>
</tr>
<tr>
<td>$\text{Sr}_2\text{HoReO}_6$</td>
<td>3.23</td>
<td>4.86</td>
</tr>
<tr>
<td>$\text{Sr}_2\text{ErReO}_6$</td>
<td>2.99</td>
<td>4.89</td>
</tr>
<tr>
<td>$\text{Sr}_2\text{TmReO}_6$</td>
<td>3.22</td>
<td>4.85</td>
</tr>
<tr>
<td>$\text{Sr}_2\text{YbReO}_6$</td>
<td>3.12</td>
<td>4.88</td>
</tr>
<tr>
<td>$\text{Sr}_2\text{LuReO}_6$</td>
<td>3.06</td>
<td>4.92</td>
</tr>
</tbody>
</table>
Table 4. The effective magnetic moments (μ_{eff}: experimental, μ_{calc}: calculated) per formula unit and Weiss constants for Sr$_2$LnReO$_6$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>μ_{eff}/μ_B</th>
<th>μ_{calc}/μ_B</th>
<th>θ/K</th>
<th>T_N/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr$_2$YReO$_6$</td>
<td>2.27</td>
<td>2.83</td>
<td>-292</td>
<td>6.0</td>
</tr>
<tr>
<td>Sr$_2$TbReO$_6$</td>
<td>10.11</td>
<td>9.99</td>
<td>-17</td>
<td>2.6</td>
</tr>
<tr>
<td>Sr$_2$DyReO$_6$</td>
<td>10.13</td>
<td>10.88</td>
<td>10</td>
<td>5, 93</td>
</tr>
<tr>
<td>Sr$_2$HoReO$_6$</td>
<td>10.63</td>
<td>10.83</td>
<td>-11.0</td>
<td>para</td>
</tr>
<tr>
<td>Sr$_2$ErReO$_6$</td>
<td>9.39</td>
<td>9.86</td>
<td>-11.1</td>
<td>para</td>
</tr>
<tr>
<td>Sr$_2$TmReO$_6$</td>
<td>7.85</td>
<td>7.89</td>
<td>-33.6</td>
<td>para</td>
</tr>
<tr>
<td>Sr$_2$YbReO$_6$</td>
<td>4.99</td>
<td>5.08</td>
<td>-131</td>
<td>20</td>
</tr>
<tr>
<td>Sr$_2$LuReO$_6$</td>
<td>2.68</td>
<td>2.83</td>
<td>-649</td>
<td>12</td>
</tr>
</tbody>
</table>

*para: paramagnetic behavior in the whole temperature range.