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Chapter 1 General Introduction 

Advances in quantum chemical calculation have enabled accurate and efficient theoretical 

elucidations of chemical reaction mechanisms and kinetics[1]. Quantum chemical 

calculation has been used by many researchers.  

Chemical reaction mechanisms can be studied by exploring equilibrium (EQ) 

and transition state (TS) structure on the potential energy surface (PES). These structures 

have been investigated by geometry optimization. The most calculated reaction path is 

the intrinsic reaction coordinate (IRC)[2,3], the mass-weighted steepest decent path 

starting from TS. Geometry optimization requires a good guess about the EQ or TS. When 

there are multiple reaction paths, all of them should be examined and the most kinetically 

preferable pathway should be determined. However, making initial guess for all reaction 

paths is very difficult. Theoretical elucidation of unknown reaction mechanisms thus is 

difficult. 

In order to overcome this problem, automated reaction path search method is 

indispensable. Recently, global reaction route mapping (GRRM) program[4-14] and other 

reaction path search methods[15-27] have been developed. The GRRM/artificial force 

induced reaction (AFIR) method has been mainly applied to organic reactions[28-41] and 

various reactions[42-48] since 2010. 

Even if a reaction system is simple, there are a great number of structures and 

reaction paths. For example, there are 23 EQs and 66 TSs in Claisen rearrangement of 

allyl vinyl ether, which is one of the simplest organic reactions. EQs and reaction paths 

via TS form complex network[49,50]. This network includes conformers of reactant and 

product. Moreover, the network including byproducts generated via high energy TSs 

becomes very large[11]. In such networks, conformational rearrangement proceeds at 
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about 10−13 second and bond rearrangement at about 103 second. Then, it is difficult to 

achieve a time evolution covering experimental timescale (102−104 s). This problem has 

been known as stiff problem[51] in numerical analysis of differential equations.  

The author developed the method for kinetic analysis of complex network 

composed of many elementary steps in chemical reactions. This method is called rate 

constant matric contraction (RCMC) and contracts fast processes and allows for 

estimating overall rate constants between the obtained groups.  

On the other hand, when the reaction systems are complicated or the number of 

atoms in the system increases, the reaction path network becomes very large[52-54]. Then, 

obtaining the network becomes difficult even if automated reaction path search is used. 

A new algorithm for construction of the network is thus required. In the context of this 

background, the author also proposed a method for reducing the computational cost of 

construction of reaction path network using RCMC.  

This thesis consists of eight chapters including this chapter. Chapter 2 to 4 are 

described about kinetic analysis, and Chapter 5 to 7 are described about automated 

reaction path search. The outline of each chapter is as follows.  

In Chapter 2, the author describes the background of kinetic analysis. Chemical 

reactions are represented as a reaction path network composed of many elementary steps. 

The network has complex structure where many processes with a wide range of different 

rate constants coexist. Various methods for kinetic analysis have been proposed to 

analyze such reaction path network. In this chapter, the author introduce the transition 

state theory (TST) and methods for kinetic analysis which is commonly used. 

In Chapter 3, the author proposes a new method for calculating overall rate 

constant from a given reaction path network, which is called rate constant matrix 
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contraction (RCMC). Recently, advances in quantum chemical calculation and algorithm 

have enabled systematical search of reaction paths on PES. Nowadays, a method for 

analyzing reaction path networks is required. The RCMC contracts a rate constant matrix 

recursively and allows to estimate overall rate constant from a reactant to a product. In 

this chapter, the author applies the RCMC to two kinds of Claisen rearrangement.  

In Chapter 4, the author proposes f-RCMC as the extension of the RCMC. 

Unimolecular decomposition plays an important role in gas phase reactions, and a 

method for calculating the branching ratio is required. In principle, branching ratio can 

be obtained by solving all rate equations. However, there is a problem in terms of 

numerical analysis. When the elementary steps have a wide range of different rate 

constants, it is difficult to achieve a time evolution covering all of the timescales buried 

in an entire reaction path network due to the numerical stability and the computational 

cost. This problem is called stiff problem. The f-RCMC can be an alternative approach 

for overcoming this problem. This method allows to obtain the branching ratio without 

performing kinetic simulation. In this chapter, this method is applied to two kinds of 

unimolecular decompositions, C3H5 decomposition and C4H5 decompositions. 

In Chapter 5, the author introduces methods for reaction path search. Quantum 

chemical calculation has been a powerful tool for chemical research. However, there is a 

problem in geometry optimization. Namely, a good guess is required for finding reaction 

paths. It is thus difficult to make theoretical elucidation of unknown reaction mechanisms. 

A systematical approach, which can search important structures automatically, needs to 

be developed. In this chapter, the author introduces the history of the development of 

automated reaction path search.  
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In Chapter 6, the author proposes a way to construct reaction path networks 

based on AFIR and RCMC and reduce the computational cost. Total number of reaction 

paths increases exponentially according to the increase of the number of atoms in the 

system. Global search of reaction paths thus is difficult even in systems with a few atoms. 

Computational cost has to be reduced for further applications. The algorithm introduced 

in this chapter can extract paths behaving as reaction bottlenecks, and TS optimization 

and IRC calculation are applied to these paths. The other paths are calculated by the 

locally updated plane method. In this chapter, this approach is applied to the reaction of 

H2O on Cu(111) surface. 

In Chapter 7, the author proposes an algorithm based on AFIR and RCMC. This 

algorithm allows to reduce computational time for reaction path search by limiting search 

area. Since it takes computational time to search all reaction paths around an EQ, the 

overall computational time would be reduced by improving efficiency of this search. The 

algorithm introduced in this chapter allows to construct a reaction path network efficiently 

by automated reaction path search and kinetic analysis. Then, many elementary steps 

existing irrespective of the actual reaction are not searched. In this chapter, the author 

applies this algorithm to Passerini reaction.  

In Chapter 8, the author presents general conclusion.  
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Chapter 2 Background of Kinetic Analysis 

2.1 Introduction 

Chemical substances are generated by bond rearrangement in chemical reactions. 

Processes of conformational change such as internal rotation of methyl group could be 

also included in a broad sense. Chemical kinetics deals with reaction rate of these 

processes and is one of the foundations of basic chemistry. Modern chemical kinetics 

started with a paper submitted by Arrhenius in 1889[1]. In this paper, Arrhenius revealed 

that rate constant k is given by the following equation. 

𝑘 = 𝐴exp (
−𝐸𝑎

𝑅𝑇
)  (2.1) 

where T is temperature; A is pre-exponential factor; Ea is activation energy; R is gas 

constant. Through research on eq. (2.1), H. Eyring[2], M. Evans, and M. Polanyi[3] 

developed transition state theory (TST) in 1935 and the theory became the basis of 

reaction kinetics.  

 Chemical kinetics plays an important role in various fields such as organic 

chemistry, interface chemistry, cosmochemistry, and biochemistry. For example, it 

connects these fields and gives a common academic basis to help understanding at the 

molecular level. Chemical reactions in various fields proceed on highly different 

timescales. Slow reactions take more than a few hours. It is well known that organic 

reactions often take a few days; while if one interests the details of reactions based on 

individual motions of atoms and/or molecules, the timescale becomes extremely short. 

For example, molecular vibration reaction is about 10−14 s. 

 In recent years, a method to investigate landscape on potential energy surface 

(PES) calculated by quantum chemical calculation has been developed and has allowed 
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to construct reaction path network based on transition between energy minima[4]. The 

results obtained by this method showed that the reaction path network contains hundreds 

of molecular structures (energy minima) and elementary steps even in a small system with 

only about five atoms. The timescales of the elementary steps are often highly different, 

where the timescale of bond rearrangement is 104 s whereas local bond rotation is 10−12 

s. Namely, different timescales can be buried in a network. A systematic method for 

analyzing such a network is desired.  

 In this chapter, the author introduces the equations used in TST, and reviews the 

methods for kinetic analysis of reaction path network. Concretely, the author reviews (1) 

rate determining elementary step (RDES) model; (2) lowest reactant to transition state 

(LRTS) model; (3) quasi steady state approximation (QSSA); (4) generalized pre-

equilibrium approximation (GPEA); (5) TS sampling. (1) The RDES model only takes 

the rate determining elementary steps into account; (2) in LRTS model, it is assumed that 

the most stable reactant and transition states of the rate determining elementary steps are 

directly connected; (3) in QSSA, lifetime of intermediates is set to zero; (4) in GPEA, the 

thermal equilibrium in the reactant region is assumed; (5) TS sampling is convenient and 

can estimate selectivity with high accuracy.  

 

2.2 Rate Constant based on Transition state theory 

In transition state theory (TST), the rate constant can be estimated from information on 

the molecular structure of the first-order saddle point on the potential energy surface 

(PES). A minimum point on PES corresponds to an equilibrium structure (EQ) and the 

first-order saddle point corresponds to the transition state (TS). The mass-weighted 

steepest decent path leading from TS to EQ is called the intrinsic reaction coordinate 
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(IRC) path[5]. When EQ i and j are connected by IRC path through single TS, the rate 

constant ki→j of the elementary step is estimated by the following equation[6], 

𝑘𝑖→𝑗 = 𝛤
𝑘B𝑇

ℎ
exp (−

∆𝐺𝑇𝑆−∆𝐺𝑖

𝑅𝑇
) (2.2) 

where ∆GTS and ∆Gi are Gibbs free energies at the TS and EQ i, respectively, kB is the 

Boltzmann constant, h is the Planck constant, R is gas constant, and T is temperature. The 

transmission coefficient Γ is usually set to unity or the following value[7]. 

𝛤 = 1 +
1

24
(

ℎ𝜈‡

𝑘𝐵𝑇
)

2

 (2.3) 

In eq. (2.3), ν‡ is magnitude of imaginary frequency at the TS. These equations are used 

when the system is described by the canonical ensemble. In case the system follows the 

microcanonical ensemble, the TST rate constant is as follows[6].  

𝑘𝑖→𝑗 =
1

ℎ

𝐺𝑇𝑆

𝑁𝑖
     (2.4) 

In eq. 2.4, GTS and Ni are the sum of states at TSi-j and the density of states at EQ i, 

respectively. GTS and Ni were evaluated by Whitten-Rabinovitch equations [8]. 

When there are two or more elementary steps directly connecting EQs i and j, 

ki→j represents the sum of the rate constants for these elementary steps. The rate constant 

for an elementary step in which the TS has the symmetry different from the reactant was 

scaled by the factor ρX / ρTS, where ρX and ρTS are the numbers of permutational isomers 

of the EQ X and TS, respectively[9]. When there is no elementary step directly connecting 

EQs i and j, ki→j is zero. Rate constants between identical EQs, ki→i, are also zero. 

 With the above rate constant, first-order rate equations are represented as the 

product of the rate constant matrix and the population vector,  

𝑑

𝑑𝑡
[
[𝐴]
[𝐵]

⋮

] = [
− ∑ 𝑘𝐴→𝑋𝑋≠𝐴 𝑘𝐵→𝐴 ⋯

𝑘𝐴→𝐵 − ∑ 𝑘𝐵→𝑋𝑋≠𝐵 ⋯
⋮ ⋮ ⋱

] [
[𝐴]
[𝐵]

⋮

] (2.5) 
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where [i] denotes the population of EQ i.  

 

2.3 Rate Determining Elementary Step Model 

The concept of a rate determining step is central to the kinetics community[12]. The most 

typical definition is the slowest step, and is also regarded as the bottleneck. Here, consider 

Fig. 2.1 to illustrate the rate determining step. The EQ 1 and 2 are reactants; the EQ 3 is 

a product. The EQ 1 and 2 are connected by low energy barrier, and the EQ 2 and 3 are 

connected by high energy barrier. Then, the rate determining step is the elementary step 

from EQ 2 to EQ 3.  

  

 

Fig. 2.1 (a) Model reaction profile and (b) the reaction path network of elementary steps. 

Nodes and edges correspond to EQs and reaction paths via TS. The EQ 1 and EQ 2 are 

reactants, and EQ 3 is product. 

 

In kinetic analysis of reaction mechanisms, reactivity is often discussed from 

only important elementary steps such as rate determining steps. In the case of Fig. 2.1, 

the value of the rate constant k2→3 of the rate determining step is particularly noticed. The 
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value of k2→3 is calculated by substituting the free energy of TS2-3 and EQ 2 into eq. (2.2). 

𝑘2→3 = 𝛤
𝑘B𝑇

ℎ
exp (−

∆𝐺2−3−∆𝐺2

𝑅𝑇
) (2.6) 

This rate constant does not include the effect of the most stable EQ in reactant region. 

This thus does not correspond to the overall rate constant from the reactant region to the 

product region. This estimation of rate constant is called the rate determining elementary 

step (RDES) model. 

The reaction profile can also be represented by the graph as shown in Fig. 2.1(b), 

where node and edge are EQ and reaction pathway via TS, respectively. This graph 

equivalent to the reaction profile is called a reaction path network composed of 

elementary steps. This representation is convenient for visualization of complex reaction 

profiles and it helps to grasp the entire reaction.  

 

2.4 Lowest Reactant to Transition State Model 

The lowest reactant to transition state (LRTS) model is often used to estimate rate 

constants of chemical reactions. In this model, if the most stable EQ (the most stable 

conformer of the reactant or the most stable intermediate) in the reactant region is known, 

the overall rate constant can be estimated by substituting the free energy of the most stable 

EQ X and the TS at the rate determining step into eq. (2.2). 

𝑘𝑋→𝑃𝑛
= 𝛤

𝑘B𝑇

ℎ
exp (−

∆𝐺𝑖−𝑗−∆𝐺𝑋

𝑅𝑇
)  (2.7) 

Here, the rate determining step connects with EQ i in the reactant region and EQ j in the 

product Pn region. When there are two or more elementary steps directly connecting EQs 

i and j, 𝑘𝑋→𝑃𝑛
 represents the sum of each rate constant. In the case of Fig. 2.1, the overall 

rate constant is as follow: 
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𝑘1→3 = 𝛤
𝑘B𝑇

ℎ
exp (−

∆𝐺2−3−∆𝐺1

𝑅𝑇
)  (2.8) 

This estimation of the rate constant assumes that the most stable EQ and the TS 

of the rate determining step are directly connected and it is often used as better 

approximation than RDES model. It should be noted that this rate constant does not 

include the effect of EQ 2. 

 

2.5 Quasi Steady State Approximation 

Quasi steady state approximation (QSSA) is called the Bodenstein principle[13]. At first 

step of QSSA, species that can be regarded as quasi steady state is selected. Such a species 

is called quasi-steady-state (QSS) species. In QSSA, intermediates with high reactivity 

and low population are chosen as QSS species. In Fig. 2.1, EQ 2 is the QSS-species 

connecting reactant EQ 1 and product EQ 3. When QSSA is applied to EQ 2, following 

equation is assumed:  

𝑑[2]

𝑑𝑡
= 0  (2.9) 

where [2] is the concentration of EQ 2. Then, the following equation holds from the rate 

equation for EQ 2: 

𝑘1→2[1] + 𝑘3→2[3] − 𝑘2→1[2] − 𝑘2→3[2] = 0 (2.10) 

Thus, 

[2] =
𝑘1→2[1]+𝑘3→2[3]

𝑘2→1+𝑘2→3
 (2.11) 

By substituting the above equation into the rate equation for EQ 3, 

𝑑[3]

𝑑𝑡
= −

𝑘3→2𝑘2→1

𝑘2→1+𝑘2→3
[3] +

𝑘1→2𝑘2→3

𝑘2→1+𝑘2→3
[1] = −𝑘3→1

𝑄𝑆𝑆𝐴[3] + 𝑘1→3
𝑄𝑆𝑆𝐴[1] (2.12) 

Here,  
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𝑘1→3
𝑄𝑆𝑆𝐴 =

𝑘1→2𝑘2→3

𝑘2→1+𝑘2→3
 (2.13) 

𝑘3→1
𝑄𝑆𝑆𝐴 is calculated in the same way. Therefore, the reaction in Fig. 1 is replaced by the 

below reaction: 

EQ 1 → EQ 3 (2.14) 

where 𝑘1→3
𝑄𝑆𝑆𝐴

 can be regarded as the overall rate constant of this reaction.  

The QSSA has been used to reduce the stiffness of rate equations, and is also 

written in physical chemistry textbook[14]. However, the error induced by the QSSA 

should be noted. Many researches on the error induced by the QSSA have been 

conducted[15,16]. It should also be noted that the overall rate constant obtained by the 

QSSA does not include the entropic effect of EQ 2.  

 

2.6 Generalized Pre-Equilibrium Approximation 

The generalized pre-equilibrium approximation assumes that the reactant region is 

equilibrated[17,18]. In this approximation, the Boltzmann distribution of the EQs that 

are the initial state of rate determining elementary steps is calculated. Next, by 

multiplying it by the rate constant of the rate determining elementary step, one can obtain 

the overall rate constant from the reactant region I to the product region J. This rate 

constant is represented by the following equation: 

𝑘𝐼→𝐽
𝐺𝑃𝐸𝐴 =

𝑒𝑥𝑝(−
∆𝐺𝑖
𝑅𝑇

)

∑ 𝑒𝑥𝑝(−
∆𝐺𝑝

𝑅𝑇
)𝑝∈𝐼

𝛤
𝑘B𝑇

ℎ
exp (−

∆𝐺𝑇𝑆𝑖−𝑗
−∆𝐺𝑖

𝑅𝑇
) (2.15) 

where the initial state of the rate determining elementary step in reactant region I is 

denoted by EQ i, and the sum of denominator of the Boltzmann distribution is taken for 

the set I composed of all EQs in reactant region.  

 In the case of Fig. 2.1, Boltzmann distributions of EQ 1 and 2 are first calculated. 
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Next, one can obtain the overall rate constant by multiplying the obtained Boltzmann 

distribution of EQ 2 by the rate constant from EQ 2 to EQ 3. That is, the overall rate 

constant is represented as below.  

𝑘reactant→product
𝐺𝑃𝐸𝐴 =

exp(−
∆𝐺2
𝑅𝑇

)

∑ exp(−
∆𝐺𝑝

𝑅𝑇
)𝑝∈reactant

𝛤
𝑘B𝑇

ℎ
exp (−

∆𝐺𝑇𝑆2−3−∆𝐺2

𝑅𝑇
) (2.16) 

 

 Based on the GPEA, it is possible to estimate the overall rate constant taking the 

entropic effects of all EQs in reactant region into account, and the rate constant is more 

accurate than the model introduced in Section 2.3-2.5. Here, it should be noted that GPEA 

is effective only when it is possible to assume thermal equilibrium in reactant region. For 

this reason, more general models are required.  

 

2.7 Transition State Sampling 

Improving selectivity is an important issue in designing chemical reactions. Selectivity 

can be obtained by comparing the rate constants from the reactant to each product which 

are estimated by the methods introduced in Section 2.3-2.6. On the other hand, it is also 

possible to evaluate quantitative selectivity more conveniently. At first, it is necessary to 

explore all TSs leading to each product. Any method may be used for TS sampling. For 

example, anharmonic downward distortion following (ADDF) and artificial force 

induced reaction (AFIR) are effective[19]. Then, selectivity can be estimated by 

calculating the Boltzmann distribution for all of the obtained TSs and taking the sum of 

the corresponding products. Although this approach seems simple, this gives the same 

accuracy as comparison of the rate constants based on GPEA by assuming no back 

reaction from product regions. The reason is as follows.  

First, using eq. (2.15), the overall rate constant from a reactant region I to a 
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product region Jn is given by the following equation: 

𝑘𝐼→𝐽𝑛

𝐺𝑃𝐸𝐴 = ∑ ∑ [
exp(−

∆𝐺𝑖
𝑅𝑇

)

∑ exp(−
∆𝐺𝑝

𝑅𝑇
)𝑝∈𝐼

𝛤
𝑘B𝑇

ℎ
exp (−

∆𝐺𝑇𝑆𝑖−𝑗
−∆𝐺𝑖

𝑅𝑇
)]𝑗∈𝐽𝑛𝑖∈𝐼  (2.17) 

where ∆𝐺𝑇𝑆𝑖−𝑗
= ∞ for EQ pairs not directly connected by a TS. Assuming that there is 

no return from the product Jn, the population of the product at time t is:  

[𝐽𝑛](𝑡) = 𝑘𝐼→𝐽𝑛

𝐺𝑃𝐸𝐴 ∫ [𝐼](𝑡)
∞

0
𝑑𝑡  (2.18) 

Then, the ratio of [𝐽𝑛](𝑡)  to the population of all products is given by the following 

equation.  

[𝐽𝑛]

∑ [𝐽𝑥]𝑥
=

𝑘𝐼→𝐽𝑛
𝐺𝑃𝐸𝐴

∑ 𝑘𝐼→𝐽𝑥
𝐺𝑃𝐸𝐴

𝑥
=

∑ ∑ exp (−∆𝐺𝑇𝑆𝑖−𝑗
𝑅𝑇⁄ )𝑗∈𝐽𝑛𝑖∈𝐼

∑ ∑ ∑ exp (−∆𝐺𝑇𝑆𝑖−𝑗
𝑅𝑇⁄ )𝑗∈𝐽𝑥𝑖∈𝐼𝑥

  (2.19) 

The above equation is the Boltzmann distribution of all of the TSs at the boundary 

between I and Jn. That is, assuming no reverse reaction from product regions and GPEA, 

the selectivity of the reaction can be conveniently estimated by the Boltzmann distribution 

of TSs.  

 With this method, quantitative selectivity was reported for the stereoselectivity 

of water-based Mukaiyama aldol reactions[20]. In this example, 165 TSs with different 

conformation were obtained for the C-C bond formation step, and the branching ratio of 

the syn product and the anti product was estimated by the Boltzmann distribution of these 

TSs. As a result, the obtained diastereomeric ratio (syn/anti) was 75:25, where the 

experimental ratio is 73:27[21]. This result indicates that TS sampling is effective for 

estimating quantitative selectivity. However, it should be noted that this approach 

assumes thermal equilibrium in reactant region. In addition, it is also assumed that there 

is no back reaction from products.  
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2.8 Conclusion 

In this chapter, the author introduced the basic formula used in the modern chemical 

kinetics. In recent years, development of algorithms and computers has allowed to 

construct reaction path networks based on potential energy surface/landscape. These 

networks involve elementary steps that proceed over a wide range of different timescales. 

In Section 2.3-2.6, the approaches for kinetic analysis dealing with such complicated 

reaction networks were introduced. In Section 2.7, the author introduced TS sampling 

which allows to estimate selectivity. The above approaches assume various 

approximations. We therefore should be careful about its scope. More general approaches 

for kinetic analysis are also required. 
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Chapter 3 New method for kinetic analysis: Rate Constant 

Matrix Contraction 

3.1 Introduction 

In recent years, theoretical studies on the mechanism of organic reactions have been 

conducted extensively[1-3]. Many of these previous studies have discussed reactivity and 

selectivity in terms of the energy barriers of important reaction steps, i.e., rate- and 

selectively-determining elementary steps. Furthermore, the rate constants for these 

important steps have generally been calculated based on the transition state theory 

(TST)[4,5]. However, this approach is sometimes considered to be simplistic, since 

reactivity and selectivity can be affected by the whole reaction profile. Therefore, 

quantitative discussion would require overall rate constants that take into account the 

entire reaction network. 

In principle, an overall rate constant can be evaluated by calculating rate 

constants for all elementary steps and solving the resulting rate equations in a numerical 

manner for all local states. However, it can be difficult to achieve a time evolution 

covering all of the timescales buried in an entire reaction network when the elementary 

steps have a wide range of different rate constants. This situation occurs in the reaction 

network of most organic reactions. For example, the rate constants of local bond rotations 

are around 1012 s−1, whereas those of bond reorganization steps are around 10−4 s−1. Hence, 

approaches that simplify the rate equations by adopting the quasi-steady state 

approximation (QSSA) and/or the partial equilibrium assumption, have been employed 

in recent studies on the kinetics of organic reactions[6,7]. 

Similar problems to this have also been studied in other fields, including 
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combustion chemistry, where the lumping approach[8,9] and its extensions[10-12] have 

been used to solve these problems. The lumping approach is capable of the reduction of 

a complicated reaction network by eliminating unimportant reaction channels and states 

that rapidly decay to give more stable states. Approaches involving the clustering of 

rapidly interconverting states have also been developed and used to evaluate global 

conformational rearrangements in peptides, as well as phase transition processes in 

clusters[13,14]. The overall rate constants between the resulting superbasins can then be 

estimated using other methods such as the generalized pre-equilibrium approximation 

(GPEA)[15,16]. The kinetic Monte Carlo simulation is another powerful approach that 

provides efficient access to the overall rate constant of a chemical reaction[17,18]. This 

approach effectively samples states that would otherwise require a long time simulation 

to be reached by a Monte Carlo approach. 

In this study, the author has proposed a recursive method for calculating the 

overall rate constants. This method is called “Rate Constant Matrix Contraction 

(RCMC)”[34]. The aim of this study is to develop a simple and robust numerical 

algorithm, and investigate its application to the reaction networks of organic reactions. 

The new method, RCMC, only requires a reaction network and a single parameter, namely 

kMAX, which represents the upper limit of rate constants in the resulting rate equations. A 

reaction network should be prepared prior to the analysis, while the kMAX value can be 

determined easily by adjusting the value based on results of the recursive contraction, as 

demonstrated below. In this study, reaction networks were obtained by the single-

component artificial force induced reaction (SC-AFIR) method[19]. Approaches to 

construct reaction networks are not the main focus in this chapter and the such reviews 

are provided in Chapter 5. 
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3.2 Algorithm of Rate Constant Matrix Contraction in Canonical Ensemble 

In the following, the set of all states obtained at the n-th loop is denoted by  nN , states 

i, j, k, l, and m are by the components of  nN  (  nNmlkji ,,,, ), the rate constant for 

the elementary step from the state i to the state j is by  n

jik 
, and the population of the 

state i at t = ∞, that is, the Boltzmann distribution of the state i, is denoted by  n

iP . It 

follows that  0N  ,  , and   correspond to the original set of all states, rate 

constants, and populations at t = ∞, respectively. 

The algorithm of RCMC consists of the following twelve steps. 

1. Input a reaction profile and the parameter kMAX, and initialize n (n = 0). 

2. Compute 
 0

jik   for all elementary steps on the reaction profile by eq. (2.2), and obtain 

the rate equations. When there are two or more elementary steps that connect states i 

and j directly, 
 0

jik   is the sum of rate constants for these elementary steps. When 

there is no elementary step that connects states i and j directly,  is zero. The rate 

constant between the identical states,  0

iik 
, is also zero. 

3. Compute population at t = ∞,  0

iP , for all states based on the Boltzmann distribution. 

4. Identify a pair of states i and j which has the maximum rate constant 
 n

jik  . 

5. If 
 

MAXkk n

ji  , then exit from the recursive contraction loop. 

6. Apply the QSSA to the state i. In this step, all rate constants 
 n

lkk   are updated to 

 1


 n

lkk  by the following equations (3.1) and (3.2).  

        )(1 n

i

n

li

n

ik

n

lk

n

lk kkkk 



       (3.1) 

 
   


nNm

n

mi

n

i
k

1)(      (3.2) 

7. Rate constants that involve the state i are updated to zero (
    011  







n

im

n

mi kk ). 

8. Set the population at t = ∞ of state i to zero,   01 n

iP ; in the step 7, the reaction flux 

entering the state i was set to zero, and  1n

iP  should thus be zero. 

9. Update  1n

kP . The  n

iP , which was updated to zero in the step 8, is distributed to 

 0

jik 

 0

iP

 0

jik 
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the neighboring states. In contrast, states were simply grouped or deleted in the 

previous approaches[12-14]. Instead, in this algorithm, by referring the reaction flux 

per unit time from the state i to the state k at t = ∞, i.e.,    n

i

n

ki Pk 
, a part of  n

iP  

defined by the reaction flux per unit time multiplied by the normalization constant 

)(n

i  is added to  n

kP . Thus,  1n

kP  is obtained by the following equation: 

       n

i

n

i

n

ki

n

k

n

k PkPP )(1 

       (3.3) 

10. In general, the solution of the rate equations using 
 1


 n

lkk  at t = ∞ does not reproduce 

 1n

kP . Thus, 
 1


 n

lkk  is further updated to 
 1



n

lkk  by the following eq. (3.4). Derivation 

of eq. (3.4) is shown in Section 3.4. The solution of the rate equations at t = ∞ using 

 1



n

lkk  reproduces  1n

kP [34]. 

 
 

 1

)(

1

1

1 











 n

lkn

ik

n

i

n

lk k
k

k


     (3.4) 

11. Define  1nN  as the set of all states except for the contracted state i. 

12. Increase n by 1 (n → n + 1), and return to the step 4. 

 

 

Fig. 3.1 (a) A model reaction profile. (b) The reaction path network. (c) The contracted 

reaction path network. 

 

Here, the above procedure is illustrated with a model reaction profile shown in 

Fig. 3.1(a). The model reaction profile is represented as the reaction path network in Fig. 

3.1(b). In Fig. 3.1, the elementary step from B to C has the maximum rate constant. 

Therefore, in the step 6, the QSSA is applied to the state B. For example,  0

CAk , which is 

zero, is updated to  1

CA
k , by the following equations. 
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         0

B

0

CB

0

BA

0

CA

1

CA   kkkk      (3.5) 

 
     0

DB

0

CB

0

AB

0

B

1

 


kkk
      (3.6) 

Similarly, all the rate constants concerning states that are directly connected to the state 

B,  1

CA
k ,  1

AC
k ,  1

DA
k ,  1

AD
k ,  1

DC
k  and  1

CD
k , are updated. The other rate constants 

are just copied, because the second term in eq. (3.1) is zero. In the step 7, the rate constants 

related to the state B,  1

BA
k ,  1

AB
k ,  1

CB
k ,  1

BC
k ,  1

DB
k  and  1

BD
k , are set to zero. In 

the step 8, 
 1

BP  is also set to zero. Then, 
 0

BP  is distributed to the neighboring states A, 

C, and D. For example, 
 1

AP  is obtained as follows: 

         0

B

0

B

0

AB

0

A

1

A PkPP       (3.7) 

This equation indicates that a part of 
 0

BP  is added to 
 0

AP  with the weight of the rate 

constant  0

ABk  multiplied by the normalization constant 
 0

B . Similarly,  1

CP  and 
 1

DP  

are updated. Populations at t = ∞ of the states E, F, and G do not change because the 

second term of eq. (3.3) is zero. In the step 10, rate constants are further updated so that 

the solution of the rate equations at t = ∞ reproduces the populations at t = ∞ obtained in 

the step 9. For example,  1

EAk  is obtained by the following equation. 

 
   

 1

EA0

BA

0

B

1

EA
1

1








 k

k
k


     (3.8) 

Here, let us explain this correction briefly. In the step 9, the population at t = ∞ 

(Boltzmann distribution) of the state A increases. This indicates that the relative free 

energy of the state A decreases. As a result, the free energy difference between the state 

A and the TS increases and the corresponding rate constant decreases. In eq. (3.8), the 

factor multiplied to  1

EA
k  represents the decrease of the rate constant. In the step 10, the 

other rate constants,  1

CAk  ,  1

DAk  ,  1

ACk  ,  1

DCk  ,  1

FCk  ,  1

ADk  ,  1

CDk  , and  1

GDk  , are 

also updated. Finally, a new state set 
 1N  is obtained by removing the contracted state 

B. 

 

3.3 Application1: Claisen rearrangement of CH2-CHO-CH2-CH-CH2 

The Claisen rearrangement of allyl vinyl ether CH2-CHO-CH2-CH-CH2 is one of the 
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simplest of all of the known organic rearrangement reactions, and the mechanism of this 

reaction has been fully elucidated[24]. Based on theoretical calculations, it has been 

shown that the C-C bond formation and C-O bond cleavage steps in this rearrangement 

occur in a concerted manner with a single TS[25]. The results of a gas-phase kinetic study 

showed that the rate constant of the Claisen rearrangement of allyl vinyl ether follows the 

Arrhenius equation[26]. In this study, the author used a reaction network consisting of 10 

and 13 conformers for the reactant region and the product region, respectively. The 

reaction network is shown in Fig. 3.2. Here, the terms “reactant” and “product” shall be 

used to mean sets of 10 and 13 conformers in the corresponding regions, respectively. 

 

Fig. 3.2 The reaction path network of Claisen rearrangement of allyl vinyl ether. Circle 

(node) and line (edge) correspond to equilibrium structure (EQ) and reaction pathway via 

transition state (TS). Left side and right side are the reactant and the product conformers, 

respectively. 
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The reaction path network was obtained using density functional theory at the 

B3LYP/6-31G level. All of the local minima (EQs) and transition states (TSs) were 

subsequently reoptimized at the M062X/6-311+G(2d,p) level[27]. Finally, I obtained 23 

EQs and 66 TSs at the M062X level. The IRC paths were computed at the M062X level 

starting from all 66 of the different TSs. Among the 66 IRC paths generated in this way, 

two corresponded to pathways directly connecting the reactant and the product. These 

two IRC paths also corresponded to pathways that proceed through chair- and boat-type 

TSs[25]. The other 64 IRC paths corresponded to pathways associated with local 

conformational changes. To achieve high levels of chemical accuracy, single point 

CCSD(T)-F12a/jul-cc-pVTZ calculations[28,29] were performed for all of the EQs and 

TSs obtained in the current study. Finally, the Gibbs free energies were estimated at the 

experimental temperature (469.1 K) using the electronic energy values at the CCSD(T) 

level, a rigid rotor approximation based on structures at the M062X level, harmonic 

vibrational frequencies at the M062X level and the ideal gas approximation. The rate 

constants for all elementary steps were estimated using eq. (2.2).  
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Fig. 3.3 Elementary steps via the chair-type TS (a) and the boat-type TS (b), and the six 

most stable conformers in the reactant region (c) for the Claisen rearrangement of allyl 

vinyl ether. The relative Gibbs free energy values at 469.1 K are shown in parentheses in 

kJ mol−1. 

 

The two elementary steps that directly connects one conformer of the reactant 

with one conformer of the product are shown in Fig. 3.3 (a) and (b). The six most stable 

conformers in the reactant region are also shown in Fig. 3.3 (c). The relative Gibbs free 

energy values of the different conformers at 469.1 K are shown in parentheses in kJ mol−1. 

The rate constants for the two elementary steps in Fig. 3.3 (a) and (b) were determined to 

be 1.454×10−2 and 3.209×10−4 s−1, respectively. When these two direct paths were the 

only pathways considered for the Claisen rearrangement, the total rate constant was 

estimated as the sum of the rate constants of these two steps. In this study, the author has 

referred to this approach as the rate-determining elementary step (RDES) model (see 
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Section 2.2), because this model only takes the rate-determining elementary steps into 

consideration. The rate constant of the RDES model was determined to be 1.486×10−2 s−1, 

which was very different from that of the experimental value, 2.875×10−3 s−1[26]. It was 

envisaged that the rate constant could be improved by considering the most stable 

conformer in the reactant region. With this in mind, the author considered the use of the 

lowest conformer to transition state (LCTS) model (same as lowest reactant to transition 

state model in Section 2.3). For the LCTS model, the most stable conformer in the reactant 

region shown in Fig. 3.3 (c) was the initial state of the two elementary steps in Fig. 3.3 

(a) and (b). In other words, the rate constant was calculated using eq. (2.2) based on the 

Gibbs free energy gaps between the TSs in Fig. 3.3 (a) and (b) and the lowest energy 

conformer in Fig. 3.3 (c). This model is typically used for the analysis of organic reactions 

when the most stable (or likely most stable) conformer in the reactant region is available. 

The rate constant determined using the LCTS model, which is the sum of the two LCTS 

rate constants for the two elementary steps in Fig. 3.3 (a) and (b), was 8.881×10−3 s−1. 

The value obtained by the LCTS model was therefore closer to the experimental value 

than that of the RDES model. 
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Table 3.1 Rate constants k and the corresponding activation free energies ΔG‡. 

 k / s−1 ΔG‡ / kJ mol−1 

RDES model a 1.486×10−2 133.1 (133.5) c 

LCTS model b 8.881×10−3 135.1 (135.5) c 

RCMC (this work) 1.794×10−3 141.3 (141.8) c 

Experiment 2.875×10−3 139.5 

a The rate-determining elementary step model (see text). 

b The lowest conformer to transition state model (see text). 

c Values in parentheses are obtained by eq. (2.2) with Γ = 1. 

 

A detailed discussion of the rate constant obtained by the RCMC is provided 

below. This rate constant accounts for all of the conformational rearrangement pathways 

in the reactant region. The rate constant obtained using the RCMC was 1.794×10−3 s−1. 

Notably, this value was in very good agreement with the experimental value. In this study, 

the kMAX value was set as 6.931×10−1 s−1; in an irreversible reaction with a k value of 

6.931×10−1 s−1, the population of the reactant would decrease to 50% of its original value 

in one sec with the total number of states being two. This kMAX value was reasonable 

because only two superstates remained after the recursive contraction and these two 

corresponded to those for the reactant and product. It is noteworthy that the overall rate 

constant of the current method did not change when the kMAX value was varied from 

1.794×10−3 to 6.061×1010 s−1. The consistency of the rate constant was attributed to the 

fact that the number of final superstates did not change for any of these variations in the 

kMAX value for this reaction network. This result therefore indicated that the reaction 

network was not sensitive to the kMAX value. The kMAX value can therefore be decided 
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easily based on the final superstates obtained with a few different kMAX value. 

The rate constants k obtained by the different models are shown in Table 1, 

together with the corresponding activation free energies ΔG‡, which were estimated using 

eq. (3.9). 











TΓk

hk
RTG‡

B

ln      (3.9) 

The activation free energies based on the rate constants obtained using eq. (2.2) with an 

Γ value of eq. (2.3), and those calculated with an Γ value of 1, were very close to each 

other. This result indicated that the one-dimensional tunneling correction in eq. (2.3) was 

having very little impact on the rate constant. The rate constants were systematically 

improved by considering the most stable conformer (LCTS model vs. RDES model), as 

well as all of the conformational rearrangement paths (i.e., the results of the RCMC vs. 

those of the LCTS model). In terms of the activation free energy, the RCMC reproduced 

the experimental value with an error of only 1.8 kJ mol−1. The difference between the 

activation free energies of the RCMC and the RDES model was 8.2 kJ mol−1, which was 

attributed to the conformational entropy in the reactant region. 

 

3.4 Application2: Claisen rearrangement of Ph-CH-CHO-CH2-CH-CH-Me 

I subsequently applied the RCMC to the Claisen rearrangement of the substituted allyl 

vinyl ether Ph-CH-CHO-CH2-CH-CH-Me, where a terminal H atom on the allyl and vinyl 

groups was substituted with Ph and Me, respectively. The reaction network for this 

rearrangement was calculated at the M062X/6-311+G(2d,p) level[27]. I did not perform 

CCSD(T) single point calculations in this case because an experimental rate constant was 

not available. Furthermore, the purpose of this part of the study was to demonstrate the 
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applicability of the RCMC to a reaction network that also results in the formation of a 

byproduct. This reaction gives two stereoisomers, including the syn- and anti-products. 

Using the SC-AFIR, I obtained 17, 35 and 32 conformers for the reactant, syn-product 

and anti-product, respectively, as well as 278 TSs. Among the 278 TSs, two corresponded 

to the Claisen rearrangement, whilst the remaining 276 corresponded to conformational 

rearrangements. This result was confirmed by computing all of the IRC paths starting 

from the 278 different TSs. Fig. 3.4 (a) and (b) shows the two elementary steps 

responsible for the formation of the syn- and anti-products via the chair- and boat-type 

TSs, respectively. The six most stable conformers in the reactant region are also shown 

in Fig. 3.4 (c). The relative free energy values at 469.1 K are shown in kJ mol−1 in 

parentheses in Fig. 3.4. These results indicated that the preferred path to the syn-product 

proceeded via a chair-type TS, and were therefore in agreement with general 

understanding of the Claisen rearrangement. 
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Fig. 3.4 Elementary steps via the chair-type TS (a) and the boat-type TS (b), and the six 

most stable conformers in the well of the reactant (c) for the Claisen rearrangement of a 

substituted allyl vinyl ether. The relative Gibbs free energy values at 469.1 K are shown 

in parentheses in kJ mol−1 

 

Table 3.2 Rate constants k and the corresponding activation free energies ΔG‡. 

Method k c / s−1 ΔG‡ c / kJ mol−1 k d / s−1 ΔG‡ d / kJ mol−1 

RDES model a 2.231×10−2 131.5 (131.9) e 4.848×10−4 146.4 (146.8) e 

LCTS model b 8.327×10−3 135.3 (135.8) e 1.526×10−4 150.9 (151.4) e 

RCMC (his work) 1.434×10−3 142.2 (142.6) e 2.601×10−5 157.8 (158.2) e 

a The rate-determining elementary step model (see text). 

b The lowest conformer to transition state model (see text). 

c Values for the syn-product. 

d Values for the anti-product. 

e Values in parentheses are obtained by eq. (2.3) with Γ = 1. 

 

The rate constants from the reactant region to the two products were estimated 

by the three different models described above, and the resulting values are shown in Table 

2 for comparison. The corresponding activation free energies were estimated using eq. 

(3.9), and the resulting values are also shown in Table 3.2. The kMAX parameter for these 

calculations was once again set to 6.931×10−1 s−1. This kMAX value was reasonable also 

in this system because three superstates remained and these three corresponded to those 

for the reactant, product (syn-product) and byproduct (anti-product). The general trends 
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observed in Table 3.2 were similar to those observed in Table 3.1. The rate constants 

obtained by the RDES model were the largest, followed by those of the LCTS model and 

the present method, which were the smallest. The results with Γ = 1 indicated that the 

one-dimensional tunneling correction was making a negligible contribution to the 

calculations. It is noteworthy, that the activation free energy determined using the RDES 

model was significantly lower than the value obtained by the RCMC, with a difference 

of 10.7 kJ mol−1. This difference in the two values was attributed to differences in the 

conformational entropy in the reactant region. The impact of this difference on the overall 

rate constant was accounted for in the current method by considering all of the conformers 

in the reactant region, as well as their interconversion pathways. The importance of 

sampling the different molecular conformations of the molecules involved in organic 

reactions has recently been highlighted in the literature[5,30]. The importance of different 

molecular conformation has also been recognized in enzymatic reactions[31,32]. The 

results demonstrated that conformational effects can also have a significant impact on the 

activation free energy of simple organic molecules.  

To let the discussion be more accurate, the author estimated the ΔG‡ values after 

the CCSD(T)-F12a single-point calculations by applying a very simple correction to the 

profile obtained by the M062X calculations. For this purpose, the relative energy of the 

two key TSs shown in Fig. 3.4 (a) and (b) were corrected by the difference between the 

relative energy obtained for the analogous TSs shown in Fig. 3.3 (a) and (b) with the 

M062X and CCSD(T)-F12a levels. This treatment relies on an assumption that level 

dependences of computational errors in these bond reorganization TSs are similar 

between the two different systems. The ΔG‡ values were then estimated by the RCMC or 

the RDES model using the reaction network of the M062X calculations with this 



38 

 

correction. The correction reduced the ΔG‡ values for reactions giving the syn- and anti-

product by 6.3 and 8.9 kJ mol−1, respectively, regardless of models (the RCMC or the 

RDES model), and the best estimates of the ΔG‡ values for these two channels were 

therefore 135.9 and 148.9 kJ mol−1, respectively. 

The RCMC therefore reproduced the thermodynamic equilibrium despite the 

fact that the QSSA is used. The correction in eq. (3.4), which was introduced to impose 

this condition, reduced the errors caused by the QSSA. A numerical illustration of this 

improvement is provided in Section 3.5 for a simple profile. Further investigation towards 

developing a deeper understanding of the importance of this correction is currently 

underway. 

The accuracy of any method of quantum chemical calculation should be 

considered as an important performance parameter because poor accuracy can lead to 

significant errors in the calculations. The approximations used in the Gibbs free energy 

evaluations, including the harmonic, rigid rotor and ideal gas approximations, can also be 

significant error sources. In this study, the author assumed that the IRC was the reaction 

path and that the two endpoints of the IRC were the initial and final states of each 

elementary step. An assumption of this type can lead to large errors in molecular systems 

that strongly deviate from the IRC in terms of their dynamics or systems with dynamic 

bifurcation pathways[22]. The use of eqs. (2.2) and (2.3) to determine the rate constant of 

a specific transformation, the Born-Oppenheimer approximation, as well as the 

assumption that the system follows the Markov property, can also result in errors. Whilst 

I appreciate that there are many different potential sources of error in these calculation, 

the author feels that a detailed study of these different error sources and their impact on 

the calculations conducted in this study is beyond the scope of this study. 
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The RCMC gave a few superstates that were connected by a slow process. This 

result is similar to those of several previous methods where the original states are grouped 

together to give only a few superstates[13,14]. The results of the current study were also 

similar in some ways to those of the reduction methods, where the rapidly converting 

channels and states are eliminated[10-12]. The RCMC can therefore be considered as an 

extension of these methods. However, the definition of a superstate used in the RCMC 

differed from the definitions used in previous methods, in that the superstates were 

expressed as the weighted sums of the original states (EQs). In other words, all original 

states in the current study made non-zero contributions to all the superstates. This 

representation of the superstate would therefore provide a reasonable chemical picture for 

intermediate states that provide an equal contributing to two superstates. 

One advantage of the RCMC is that the overall rate constants can be obtained by 

simple inputs, i.e., a rough reaction timescale (e.g., 1/kMAX) and a reaction profile. As 

shown in this example, the RCMC allowed for several superstates to remain and provided 

a platform for discussing the selectivity. The use of a timescale based on 1/kMAX scans 

therefore allows for the hierarchical organization of the different states with respect to 

time. The hierarchical organization of the individual steps buried within these reaction 

networks with respect to time is shown elsewhere in a separate paper together with new 

definitions for the TSs throughout the reaction profiles/networks[33]. 

The computational cost of the present algorithm was found to be proportional to 

<s3, where s is the number of original states (EQs). During the first contraction loop, the 

s2 elements in the rate constant matrix were updated. The contraction loop was 

subsequently repeated no more than s – 2 times. Given that the rate constant matrix is 

sparse and the size of the matrix reduces in size with each contraction loop, it was 
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envisaged that the total cost would scale as <s3. This cost would be acceptable for the 

networks of organic reactions with less than one thousand states. In fact, the calculations 

conducted in the current study for profiles containing 23 and 84 states rapidly reached 

completion. Furthermore, it is apparent from eqs. (3.1)–(3.4) that it would not be possible 

for the magnitude of the denominator to become much smaller than that of numerator in 

these equations, and that the present algorithm is therefore numerically stable. Whilst it 

is envisaged that the method disclosed in the current study could be applied to a variety 

of different reactions, the author considers the key focus of this work to be its application 

to organic reactions. In this study, the author has only applied this new method to first-

order reactions and its extension to second- or higher-order reactions will form the basis 

of a future publication. 

 

3.4 Derivation of eq. (3.4) 

In the (n + 1)-th loop, a part of population at t = ∞ of the state i which is contracted in this 

loop is added to the state m by eq. (3.3). In this study, this correction of population at t = 

∞ is reflected to the rate constant by the following procedure. In the following, this 

procedure is explained using four quantities: population at t = ∞ of state  n

mP  , rate 

constant  n

mlk 
 , relative free energy of state )(n

mG  , and relative free energy of TS 

 n

ml
G


 TS . I further introduce the following three assumptions. 

I.  n

mP  follows the Boltzmann distribution in any n. 

II. )(n

mG  changes only when  n

mP  changes. 

III.  n

ml
G


 TS  changes only when the QSSA is applied to the state i (l ≠ i, m ≠ i). 

Below, using eq. (3.3) and these three assumptions, eq. (3.4) is derived. From the 

assumption I,  n

mP  is expressed by eq. (3.10). 
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Let us consider a state l which is not adjacent to the state i. For such a state l,  n

lP  does 

not change in the (n + 1)-th loop (    n

l

n

l PP 1 ), because   0

n

lik  and the second term 

of the right-hand side of eq. (3.3) is zero. Following the assumption II, )(n

lG  remains 

unchanged as well ( )()1( n

l

n

l GG    ). These two conditions, that is,    n

l

n

l PP 1   and 

)()1( n

l

n

l GG   , are satisfied simultaneously only if the following relation is satisfied. 

   















)()1(

1

n

n
j

n

n
j

Nj

RTG

Nj

RTG
ee      (3.11) 

When the assumptions I and II are adopted, eq. (3.11) holds in any n. In other words, the 

denominator of the right-hand side of eq. (3.10) does not change depending on n. Thus, I 

replace the denominator by a constant W, and rewrite eq. (3.10) as follows. 
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Based on eq. (3.12), the relative free energy of the state k, )1(  n

kG  , is given by the 

following equation. 
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Herein, using eq. (2.2),  1



n

lkk  is expressed by the following equation. 
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On the other hand, the rate constant obtained by the QSSA,  1


 n

lkk , is expressed by the 

following equation. 
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Note in eq. (3.15) that
)1(  n

kG  in eq. (3.14) is replaced by 
)(n

kG . This is because 
 n

kP  

has not yet been updated when the QSSA is applied in the (n + 1)-th loop; following the 
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assumption II, neither )(n

kG  nor  n

kP  has yet been updated. In contrast, following the 

assumption III, 
 1

TS




 n

lk
G  is used in both eq. (3.14) and eq. (3.15), because both  1



n

lkk  

and  1


 n

lkk  are quantities that have been obtained after application of the QSSA to the 

state i in the (n + 1)-th loop. 

Let us consider the following apparent relation. 
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Then, by substituting eq. (3.3) into eq. (3.16), the following equation is obtained. 
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At thermal equilibrium, the following relation concerning the detailed balance is satisfied. 
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By comparing eqs. (3.14) and (3.15), the following relation is obtained. 
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Finally, eq. (3.4) can be obtained by substituting eqs. (3.18) and (3.19) into eq. (3.17). 

 

3.5 Impact of Rate Constant Matrix Contraction 

Using a simple network containing three states (similar to Fig. 2.1), impact of the 

correction of eq. (3.4) is examined. Here, consider a profile containing states A, B, and 

C. The states A and B are connected by TSAB, and B and C by TSBC. Relative free energy 

values of A, B, C, TSAB, and TSBC are set to 0.0, 10.0, −∞, 50.0, and 75.0 kJ/mol, 

respectively. For simplicity, the reaction flux from C to B was set to zero by setting the 

relative free energy of state C to −∞. 
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Time evolution of population of state C was simulated starting from the initial 

condition in which state A is populated 100%, by the fourth-order Runge-Kutta method 

with the time step of 1.150×10−6 s. The simulation was applied to three profiles: the 

original three state network, a two state network simplified by the QSSA, and a two state 

network simplified by the QSSA with the correction of eq. (3.4). Fig. 3.5 shows time 

evolutions of population of state C obtained by the simulations on the three different 

profiles. In Fig. 3.5, the green solid curve, the blue solid curve, and the red dotted curve, 

respectively, correspond to the time evolution of state C on the original three state 

network (labeled as “reference”), on the network simplified by the QSSA (labeled as 

“QSSA”), and on the network simplified by the QSSA with the correction of eq. (3.4) 

(labeled as “this work”). Curves of both “QSSA” and “this work” reproduced the 

reference curve well; the three curves nearly overlap in Figure 3.5. The curve of “this 

work” still overlap with the reference curve even in the enlarged figure shown in inset. 

This demonstrates that the correction of eq. (3.4) reduces the error of the QSSA. 
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Fig. 3.5 The time dependency of population of state C. The curve obtained by solving 

the rate equations for the original three state network numerically is shown with the 

green solid curve and is denoted “reference”. The curve for the network simplified by 

the QSSA is shown with the blue solid curve and denoted “QSSA”, and the curve for 

the network simplified by the QSSA with the correction of eq. (3.4) is shown with the 

red dotted curve and denoted “this work”. An enlarged figure is shown in inset to 

emphasize the impact of the correction of eq. (3.4). 
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3.6 Conclusion 

In this work, the author proposed a new approach for estimating the overall rate constant 

of a given reaction profile “Rate Constant Matrix Contraction (RCMC)”. A new algorithm 

was developed and applied to the Claisen rearrangement reactions of allyl vinyl ether and 

a substituted allyl vinyl ether. The overall rate constant obtained for the Claisen 

rearrangement of allyl vinyl ether was compared with the experimental rate constant in 

the gas-phase. The results revealed that the computed rate constant reproduced the 

experimental value very closely. It was also found that the conformational entropy in the 

reactant region made a substantial contribution to the overall rate constant even in the 

Claisen rearrangement of small chain molecules. It is therefore envisaged that the current 

method could be used as a powerful tool for estimating the overall rate constants of 

different organic reactions. 
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Chapter 4 Rate Constant Matrix Contraction in 

Microcanonical Ensemble and Full Rate Constant Matrix 

Contraction for Obtaining Branching Ratio of Unimolecular 

Decomposition 

4.1 Introduction 

Unimolecular decomposition of small molecules is one of important processes in various 

reactions such as combustion reaction, atmospheric reaction, and interstellar reaction [1-

6]. Hence, there have been a number of experimental and theoretical studies. In such 

studies, theoretical calculation has been employed as a powerful tool. 

There are two main approaches to theoretically obtain the branching ratio. One 

of them is the ab initio molecular dynamical (AIMD) simulation [7-14]. The branching 

ratio can be computed by running a huge number of trajectories and taking their statistics. 

This approach does not use any assumption except for that the nuclei move on the 

adiabatic potential energy surface (PES) following classical mechanics, and therefore can 

be quite accurate when it is combined with a reliable quantum chemical calculation 

method. However, in general it is computationally demanding to calculate pathways that 

occur in timescales longer than 1 nanosecond by AIMD simulations. 

The other is the kinetic simulation based on the transition state theory (TST) [15-

20], and it allows for seeing events that occur in timescales of nanosecond or longer. This 

approach requires a reaction path network including all relevant transition state (TS) 

structures and equilibrium (EQ) structures. Although obtaining all TSs and EQs has been 

a hard task, recent advances in algorithms of automated reaction path search have reduced 

the difficulty considerably[21]. However, there remains another difficulty. It can be 
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difficult to achieve a time evolution covering all of the time scales buried in an entire 

reaction network when the elementary steps have a wide range of different rate constants 

due to the numerical stability and the computational cost[22]. This problem has been 

called as stiff problem in numerical analysis of differential equations. This makes it 

difficult to obtain fully converged populations of dissociated products even in small 

systems. On the other hand, the first-order rate equations are linear differential equations, 

for which a general solution is available[23]. The general solution requires eigenvalues 

of the rate constant matrix. The stiffness in the rate equations again causes a serious 

problem. Numerical diagonalization of asymmetric matrices that include elements with a 

wide range of different values gives severe numerical errors[24]. This again prevents one 

from obtaining branching ratios using this approach. 

In this chapter the author proposes an alternative approach based on the rate 

constant matrix contraction (RCMC) method [25] introduced in Chapter 3. This method 

also requires the rate equations but does neither kinetic simulation nor AIMD simulation. 

The RCMC has originally been developed to reduce the size of the rate equations and to 

accelerate the kinetic simulation. In this chapter, the author introduces an additional 

procedure to redistribute initial populations. Furthermore, the contraction is applied to all 

EQs, where it is applied only to kinetically unstable EQs in the original RCMC scheme. 

Such a full contraction (f-RCMC) gives the branching ratio for all the dissociated products 

without solving the rate equations. 

This f-RCMC method assumes that molecules once dissociated do not return. 

Therefore, the f-RCMC would be suitable to analysis of unimolecular decomposition in 

gas-phase. In this chapter, formulas of RCMC that had been originally derived for the 

canonical ensemble was reformulated for the micro-canonical ensemble. Fortunately, 
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identical formulas were obtained for both canonical and micro-canonical ensembles. It 

follows that the f-RCMC procedure can be applied to both canonical and micro-canonical 

ensembles without any change. 

The f-RCMC method was applied to gas-phase unimolecular decomposition of 

C3H5 and C4H5. For these radical species, reaction path networks including 30 and 234 

elementary steps, respectively, were obtained by the single-component artificial force 

induced reaction (SC-AFIR) [26]. With the resulting rate constant matrices, dissociation 

branching ratios were computed by two different approaches, i.e., the present f-RCMC 

method and the conventional kinetic simulation. Values obtained by these two approaches 

agreed rigorously up to eight decimal places. This demonstrated that concerning accuracy 

the f-RCMC could be a perfect alternative to the conventional kinetic simulation approach. 

Furthermore, for C4H5, the conventional kinetic simulation needed time evolution until 

2.10×10−7 sec. to give converged branching ratios, and this simulation took about 95 

hours. In contrast, the f-RCMC gave the values quickly in less than 1 second. The f-

RCMC method would thus be a highly efficient alternative of the conventional kinetic 

simulation and be promising in evaluating unimolecular decomposition branching ratios 

in large systems. 

 

4.2 Algorithm of Rate Constant Matrix Contraction in Microcanonical Ensemble 

In this chapter, the RCMC is described again before introducing the present f-RCMC 

approach. The RCMC reduces the size of rate constant matrix from N×N to 

(N−M)×(N−M) through M time contractions. This provides N−M superstates that are 

given as a linear combination of the N original states, where an original state corresponds 

to EQ. The superstate could be compared to the superbasin [29]; the superstate is 
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represented as a weighted sum of all original states in contrast to the superbasin that is a 

group of original states. Moreover, off-diagonal elements of the resulting (N−M)×(N−M) 

rate constant matrix directly correspond to overall rate constants between superstates. 

To determine coefficients of the linear combination of original states, the author 

introduced a procedure, i.e., redistribution of Boltzmann distribution Pi of each original 

state i to the resulting superstates [25]. This procedure guaranteed that a simulation with 

the contracted rate constant matrix converges to the one with the original rate constant 

matrix at a sufficiently long timescale. As the author had done in my previous study, Pi 

was redistributed in systems described by the canonical ensemble. In contrast, the density 

of states Ni rather than Pi is redistributed in systems described by the microcanonical 

ensemble. As shown in section 4.6, redistribution of Ni gave identical formula that was 

obtained previously for redistribution of Pi. The following procedure as well as formulas 

can thus be applicable to both canonical and microcanonical ensembles. 

A procedure to contract a (N−n)×(N−n) rate constant matrix into a 

(N−n−1)×(N−n−1) one is below. In the following algorithm, the set of states (either 

original states at n = 0 or superstates at n ≥ 1) obtained at the nth contraction is denoted 

by 
)(nS ; states i, j, k, l, and m correspond to the components of 

)(nS  (
 

, , , ,
n

i j k l m S ); 

the rate constant for the elementary step from state i to state j is denoted by  n

i jk  ; and the 

density of states for state i is denoted by 
( )n

iN . It follows that 
(0)S ,  0

i jk  , and 
(0)

iN  

correspond to the set of original state (EQ), the original rate constant, and the original 

density of states, respectively. 

The contraction is made with the following seven steps. 

1. Identify the state pair i and j with the maximum rate constant 
 n

jik  . 
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2. Apply the quasi-steady state approximation to the state i and update 
 n

jik   to  1


 n

lkk  

using eqs. (4.1) and (4.2). 

        )(1 n

i

n

li

n

ik

n

lk

n

lk kkkk 



       (4.1) 

 
   


nSm

n

mi

n

i
k

1)(      (4.2) 

3. Update all rate constants related to the state i to zero (     011  







n

im

n

mi kk ). 

4. Update density of states  1n

iN  using eq. (4.3). 

       n

i

n

i

n

ki

n

k

n

k NkNN )(1 

       (4.3) 

In this step, redistribution of  n

iN  to the neighboring states is made. By referring 

the ratio of rate constants   )(n

i

n

kik   from the state i to the other states, a part of  n

iN , 

i.e.,    n

i

n

i

n

ki Nk )( , is added to  n

kN . 

5. Update  1n

iN  to zero. 

6. Update  1


 n

lkk  to  1



n

lkk  using eq. (4.4). 
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     (4.5) 

At t = ∞, a kinetic simulation with rate constants in this form reproduces the ratio of 

densities of states of the original states, i.e., the correct distribution at t = ∞ [30, 31]. 

Note that eq. (4.5) is identical to the one derived for the canonical ensemble shown 

in Section 3.2 [25]. 

7. Define 
 1n

S


 as the set of all superstates except the contracted state i.  

The contraction is repeated recursively until the maximum rate constant in the 
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contracted rate constant matrix becomes smaller than a certain threshold. This threshold 

is denoted by kMAX and given by users. The value of kMAX has been estimated using a 

timescale τ of target reaction as kMAX = τ−1. After the contraction, a few superstates that 

are connected by slow steps with small rate constants k < kMAX are obtained. This enables 

a sufficiently long time-evolution in the kinetic simulation. It is noted that Ni is used in 

this study for the microcanonical ensemble, and Ni seen in the above contraction steps is 

just replaced by Pi when the canonical ensemble is considered [25] (Section 3.2). 

Although previous studies have discussed the error of quasi steady state approximation 

[32, 33], redistribution of density of states (or Boltzmann distribution) in step 4 of the 

present algorithm provides a reasonable correction, as shown in Chapter 3. 

 

4.3 Full Rate Constant Matrix Contraction 

Some IRC paths correspond to dissociation channels (DCs). In this work, the DC which 

in general consists of two or more species is considered as one state. For example, a 

reaction H2C=C-CH3 → H2C=C + CH3 is regarded as a transition from state i (H2C=C-

CH3) to state j (H2C=C + CH3). Furthermore, the rate constant for the elementary step 

from a state of DC to a state of EQ is set to zero. This treatment assumes that the secondary 

reaction between dissociated products does not occur and thus is applicable only to 

unimolecular decomposition in the gas-phase. 

In the f-RCMC algorithm, the RCMC introduced in the last section is applied to 

the rate constant matrix including DCs as original states. Its application is repeated until 

all rate constants become zero, and therefore this procedure is termed f-RCMC. If DC is 

not included, the f-RCMC gives only one superstate. When there are x DCs, the f-RCMC 

gives x superstates, where each superstate is expressed by a weighted sum of all EQs and 
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one DC. In other words, the f-RCMC distributes all EQs to each DC with appropriate 

weights. These superstates thus are called dissociative superstate (DSS). 

In the RCMC procedure, redistribution of either Ni or Pi is made. In the f-RCMC, 

redistribution of the initial population Qi is additionally introduced. To be precise, in the 

step 4 of the RCMC algorithm,  1n

kQ  is updated by the following equation. 

     n

i

n

i

n

ki

n

k

n

k QkQQ )()(1 

       (4.6) 

The original (initial) population  0

kQ   is defined by users considering experimental 

conditions. For example, among isomers (EQs) of a system, the state k (kth EQ) has 

population 1.0 (
 0

1.0kQ  ) and all other states have population 0.0 (
 0

0.0l kQ   ) when the 

kth EQ is the reactant. By the full contraction,  0

kQ  is distributed to DSSs through M 

time contractions. Then,  M

iQ  for the ith DSS directly gives the branching ratio of the 

corresponding DC. Note that the initial population can be given in any ways as shown in 

the results section. Furthermore, I demonstrated numerically that the present f-RCMC 

method rigidly reproduce the converged branching ratios obtained by solving the original 

rate equations. 

Reliability of the f-RCMC method as well as the ordinary kinetic simulation 

depends on the accuracy of the rate constant matrix. The standard TST which is adopted 

in this study assumes ideal gas, rigid rotor, and harmonic oscillator approximations, and 

its reliability varies depending on several factors. However, further discussion on the 

accuracy of the rate constant matrix is beyond the scope of this study. The present f-

RCMC can be applied to any rate constant matrices no matter how it is obtained. On the 

other hand, the f-RCMC is not applicable to cases where elements of the rate constant 
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matrix vary depending on time. Second- or higher-order reactions are also cases to which 

the f-RCMC is not applicable. 

 

4.4 Application1: Decomposition of C3H5 

Hydrocarbon radicals play important roles in combustion chemistry. Their unimolecular 

decomposition has been widely studied [34-44]. In this study, I at first applied the present 

f-RCMC method to C3H5. The reaction network was obtained using SC-AFIR method, 

where the model collision energy parameter γ in the AFIR was set to 1000 kJ/mol [26]. 

The initial search was performed at the B3LYP/6-31G level, and all of the obtained EQs 

and TSs were subsequently reoptimized at the B3LYP/def2-SV(P) level. Then, single 

point UCCSD(T)/def2-TZVP calculations were done for all EQs and TSs obtained at the 

B3LYP/def2-SV(P) level. The zero point energy (ZPE), the sum of states, and the density 

of states were evaluated using harmonic frequencies obtained at the B3LYP/def2-SV(P) 

level. The computational level adopted in this study is UCCSD(T)/def2-

TZVP//B3LYP/def2-SV(P). All these calculations were done using a developmental 

version of the GRRM program [45] combined with the Gaussian 09 electronic structure 

calculation program [46]. 

The author obtained nine EQs by the search. Among them, the five most stable 

EQs, denoted by EQa1-5, are shown in Fig. 4.1, where their relative energies (including 

ZPE correction) are shown in kJ/mol below each structure. The search also found seven 

DCs (DC1-7) as listed in Table 4.1. Dissociated fragments (DFn) and their structures are 

presented in Figure 1. Weak complexes between two DFs were regarded to be dissociated. 

The rate constants for all obtained elementary steps were estimated using eq (2.4). 
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Fig. 4.1 List of equilibrium structures (EQs) and dissociated fragments (DFs) at 

B3LYP/def2-SV(P) level for C3H5 and C4H5 systems. EQa1-5 correspond to the five most 

stable structures for C3H5, and EQb1-10 are the ten most stable structures for C4H5. 

Relative electronic energy values including zero-point energy corrections are shown in 

kJ/mol. DF1-34 are dissociated fragments that are produced by unimolecular 
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decomposition of C3H5 and/or C4H5. 

 

Table 4.1 A list of dissociation channels; DC1-7 for C3H5 and DC8-34 for C4H5.
a 

DC Combination of DF DC Combination of DF 

1 DF1 + H 18 DF18 + H2 

2 DF3 + DF2 19 DF19 + DF7 

3 DF4 + H 20 DF20 + H 

4 DF5 + DF2 21 DF21 + H 

5 DF6 + H 22 DF22 + DF2 

6 DF7 + H2 23 DF23 + H 

7 DF8 + H2 24 DF24 + H2 

8 DF9 + H 25 DF25 + H2 

9 DF10 + H 26 DF26 + H 

10 DF11 + DF5 27 DF27 + H2 

11 DF11 + DF3 28 DF28 + H2 

12 DF12 + H 29 DF29 + H2 

13 DF13 + H 30 DF30 + H 

14 DF14 + H2 31 DF31 + H2 

15 DF15 + DF5 32 DF32 + H 

16 DF16 + DF2 33 DF33 + H 

17 DF17 + DF2 34 DF34 + H2 

a See Fig. 4.1 for structures of DFn. 

 

Let us consider the case where the total energy was set to 500 kJ/mol relative to 

EQa1 and the initial population 1.0 was given to EQa1. After the f-RCMC, the initial 

population was redistributed to each DSS. The branching ratio obtained as the ratio of 

 M

iQ   of DSSs is listed in the second column of Table 4.2. Tthe author separately 

performed a kinetic simulation using the original rate constant matrix for comparison, 

where the differential equations were solved by the 4th-order Runge-Kutta (RK4) method 

with the implementation described in ref. [47]. The RK4 step size was set to 0.1/klargest s 
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considering the largest rate constant klargest in the original rate constant matrix, and the 

time evolution was made until the sum of populations of all EQs become less than 10−20. 

The branching ratios obtained by the two different approaches agreed rigorously up to 

thirteen decimal places. Because of the nearly perfect agreement in the branching ratios 

obtained by the two different approaches, only a single value is shown in each entry of 

Table 2. The tiny difference would be due to numerical errors arisen from the RK4 method 

with the finite-sized time step. 

 

Table 4.2 The branching ratios of DC1-7 in unimolecular decomposition of C3H5 with the 

total energy 500.0 kJ/mol relative to EQa1.a 

DCs EQa1b EQa2b EQa3b EQa4b EQa5b 

(DC1) DF1 + H 8.89×10−1 5.75×10−2 3.03×10−3 1.74×10−3 8.37×10−1 

(DC2) DF2 + DF3 5.50×10−2 6.92×10−1 3.34×10−3 1.93×10−3 5.23×10−2 

(DC3) DF4 + H 2.30×10−2 2.50×10−1 1.47×10−1 8.48×10−2 2.20×10−2 

(DC4) DF2 + DF5 1.86×10−2 9.17×10−4 8.47×10−1 9.11×10−1 1.83×10−2 

(DC5) DF6 + H 1.46×10−2 3.74×10−5 5.37×10−5 3.11×10−5 7.02×10−2 

(DC6) DF7 + H2 1.64×10−4 4.15×10−7 5.10×10−7 2.94×10−7 1.54×10−4 

(DC7) DF8 + H2 1.22×10−9 5.98×10−11 5.52×10−8 3.19×10−8 1.19×10−9 

a The total energy was set to 500.0 kJ/mol relative to EQa1. 

b Initial population 1.0 was given to the corresponding EQ. 

 

To further compare the results obtained by the two different approaches, the four 

additional cases where the initial population 1.0 was given to EQa2, EQa3, EQa4, or EQa5 

were considered. The setup of the RK4 method was identical to that adopted in the last 

case where the RK4 time step was set to 0.1/klargest s and the time evolution was performed 

until the sum of populations of all EQs becomes less than 10−20. The obtained branching 

ratios are listed in Table 4.2. Values obtained by the two different approaches again agreed 
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rigorously up to thirteen decimal places, and these results further supported reliability of 

the f-RCMC method. 

The author further considered the approach that uses the general solution of 

linear differential equations. The procedure is based on matrix algebra[23]. The first-order 

rate equation is represented as eq. (4.7). This equation can be rewritten as, 

KA
A


dt

d
     (4.7) 

where A is the population vector, and K is the rate constant matrix. When A contains n 

elements, K is an n×n matrix. In many cases, K is the asymmetric matrix. If K is 

diagonalizable and there are n eigenvectors, the solution of eq. (4.7) can be expressed as 

eq. (4.8) with eigenvalue λn and eigenvector-matrix P. 

      0exp 1

1 APP
 ndiagttA        (4.8) 

Thus, the branching ratio of unimolecular decomposition, in principle, can be 

obtained by taking the limit of t to infinity. However, the rate constant matrix of C3H5 has 

elements with a wide range of different values (107−1013 s−1). Moreover, in many 

chemical reactions, the range becomes even larger [25]. The eigenvalues of an 

asymmetric matrix are very sensitive to the difference in matrix elements and suffers 

seriously from the rounding error [24]. Thus, it is not easy to obtain eigenvalues of K 

accurately with a finite-precision arithmetic algorithm. In fact, the author applied the 

subroutine “DGEEV” in LAPACK, a standard open-source library, to the rate constant 

matrix of C3H5. However, the solution of eq. (4.8) converged to zero as t went to infinity. 

This was because there was no zero-eigenvalue, where one zero-eigenvalue should appear 

when the rate constant matrix is diagonalized. 

As seen in Table 2, the branching ratios varied depending on the initial condition. 
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When the initial population was given to EQa1, DC1 which gave H + H2C=C=CH2 was 

the major channel. The major channel changed to DC2 (H2CC + CH3) when the initial 

population was given to EQa2. This was because the direct dissociation rather than 

isomerization to EQa1 was preferred from EQa2. Similarly, the direct dissociation DC4 

was the major channel when the population was given to EQa3 or EQa4. In the case where 

the population was given to EQa5, DC1 was the major channel. This was because DC1 

from EQa5 also corresponded to a direct dissociation in which dissociation of the H atom 

and the ring-opening occurred through a single IRC path. 

The author subsequently applied the current method to the same reaction at a 

different total energy. The total energy was set to 293.4 kJ/mol, where this value is 100 

kJ/mol higher than the total energy of DF2 and DF5. The branching ratios were calculated 

for the above five cases where initial population was given to one of the five EQs. The 

setup of the RK4 method was determined in the same way adopted in the above examples. 

The obtained branching ratios are shown in Table 3, where the results obtained by the f-

RCMC reproduced those by the kinetic simulations precisely up to eight decimal places. 

When the total energy was set to the small value, the branching ratios of DC2, 5, 6, and 

7 were zero. This was because TSs leading to these DCs were higher than the total energy 

and were not accessible. These results confirmed that the f-RCMC was highly accurate at 

this total energy. 
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Table 4.3 The branching ratios of DC1-7 in unimolecular decomposition of C3H5 with the 

total energy 293.4 kJ/mol relative to EQa1.a 

DCs EQa1b EQa2b EQa3b EQa4b EQa5b 

(DC1) DF1 + H 9.68×10−1 1.61×10−1 2.26×10−4 2.25×10−4 9.68×10−1 

(DC2) DF2 + DF3 0.0 0.0 0.0 0.0 0.0 

(DC3) DF4 + H 2.42×10−2 8.39×10−1 4.75×10−2 4.73×10−2 2.42×10−2 

(DC4) DF2 + DF5 8.02×10−3 1.41×10−5 9.52×10−1 9.52×10−1 8.02×10−3 

(DC5) DF6 + H 0.0 0.0 0.0 0.0 0.0 

(DC6) DF7 + H2 0.0 0.0 0.0 0.0 0.0 

(DC7) DF8 + H2 0.0 0.0 0.0 0.0 0.0 

a The total energy was set to 293.4 kJ/mol relative to EQa1. 

b Initial population 1.0 was given to the corresponding EQ. 

 

4.5 Application2: Decomposition of C4H5 

The author further applied the f-RCMC method to unimolecular decomposition of C4H5. 

The reaction profile at the UCCSD(T)/def2-TZVP//B3LYP/def2-SV(P) level was 

obtained using the same way adopted in the C3H5 case. The search found 69 EQs, and the 

10 most stable EQs (EQb1-10) are listed in Fig. 4.1. The relative energies including ZPE 

corrections (in kJ/mol) are also shown in Figure 1. In addition, 27 DCs (DC8-34) as listed 

in Table 1 were obtained. DFs for these DCs are found in Fig. 4.1. The rate constants for 

all obtained elementary steps were estimated using eq. (2.4). 

Table 4.4 shows the unimolecular decomposition branching ratios for cases 

where the total energy was set to 500 kJ/mol relative to EQb1 and the initial population 

1.0 was given to one of the ten most stable EQs. The branching ratios of top four DCs are 

listed in Table 4.4. The branching ratios obtained by the f-RCMC method agreed precisely 

up to nine decimal places with those obtained by the ordinary kinetic simulation, where 

the setup of the RK4 simulation was identical to that adopted in the application to C3H5. 

Table 4.4 shows that DC8 and DC10 giving CH2CHCCH + H or CH2CH + HCCH, 
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respectively, are preferred, and their preference changes depending on the initial 

population. Note that the kinetic simulation in which the initial population was given to 

EQb1 took 95 hours. In contrast, the f-RCMC gave the branching ratios in less than 1 

second. On the other hand, the approach that uses the general solution of linear differential 

equations again did not give reasonable results. 

 

Table 4.4 The branching ratios of top four DCs in unimolecular decomposition of C4H5 

with the total energy 500.0 kJ/mol relative to EQb1.a 

EQb1b EQb2b EQb3b EQb4b EQb5b 

(DC8) 9.15×10−1 (DC8) 9.16×10−1 (DC8) 9.89×10−1 (DC10) 8.16×10−1 (DC10) 8.23×10−1 

(DC9) 6.28×10−2 (DC9) 6.30×10−2 (DC10) 9.79×10−3 (DC8) 1.81×10−1 (DC8) 1.77×10−1 

(DC10) 1.40×10−2 (DC10) 1.36×10−2 (DC16) 1.29×10−3 (DC21) 1.97×10−3 (DC9) 6.54×10−4 

(DC11) 6.47×10−3 (DC11) 6.49×10−3 (DC17) 8.89×10−5 (DC9) 8.17×10−4 (DC11) 6.92×10−5 

EQb6b EQb7b EQb8b EQb9b EQb10b 

(DC10) 8.78×10−1 (DC8) 6.37×10−1 (DC10) 8.04×10−1 (DC8) 6.26×10−1 (DC10) 8.63×10−1 

(DC8) 1.22×10−1 (DC10) 3.61×10−1 (DC8) 1.95×10−1 (DC10) 3.72×10−1 (DC8) 1.36×10−1 

(DC9) 5.39×10−4 (DC19) 1.13×10−3 (DC9) 7.95×10−4 (DC19) 1.11×10−3 (DC9) 8.16×10−4 

(DC11) 5.67×10−5 (DC9) 3.61×10−4 (DC11) 1.72×10−5 (DC9) 3.63×10−4 (DC11) 8.51×10−5 

a The total energy was set to 500.0 kJ/mol relative to EQb1. 

b Initial population 1.0 was given to the corresponding EQ. 

 

The author further presents a case with a small total energy, where the value was 

set to the sum of energies of DF5 and DF11 plus 100 kJ/mol (309.1 kJ/mol). The 

branching ratios obtained for this condition are shown in Table 4.5. In this case, 

unfortunately, I was not able to conduct the ordinary kinetic simulation with the criteria 

adopted in the above cases. A time evolution until 4.86×10−7 s by the RK4 method with 

the step size 1/klargest (4.86×10−15 s in this case) took ~4 days in the case where the initial 

population 1.0 was given to EQb1, and the population of EQb1 did not become less than 
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0.2 even after such a long simulation. the author therefore abandoned to obtain converged 

branching ratios with the kinetic simulation. In contrast, the f-RCMC gave the branching 

ratios in less than 1 second. This clearly shows the advantage of the f-RCMC method over 

the ordinary kinetic simulation approach. 

 

Table 4.5. The branching ratios of top four DCs in unimolecular decomposition of C4H5 

with the total energy 309.1 kJ/mol relative to EQb1.a 

EQb1b EQb2b EQb3b EQb4b EQb5b 

(DC8) 9.96×10−1 (DC8) 9.96×10−1 (DC8) 1.00×100 (DC10) 7.31×10−1 (DC10) 7.31×10−1 

(DC9) 2.52×10−3 (DC9) 2.52×10−3 (DC10) 3.31×10−7 (DC8) 2.69×10−1 (DC8) 2.69×10−1 

(DC10) 1.26×10−3 (DC10) 1.26×10−3 (DC9) 2.55×10−7 (DC9) 1.39×10−5 (DC9) 1.39×10−5 

(DC12) 1.68×10−7 (DC12) 1.68×10−7 (DC12) 1.70×10−11 (DC12) 9.26×10−10 (DC12) 9.25×10−10 

EQb6b EQb7b EQb8b EQb9b EQb10b 

(DC10) 7.31×10−1 (DC8) 1.00×100 (DC10) 7.31×10−1 (DC8) 1.00×100 (DC10) 7.31×10−1 

(DC8) 2.69×10−1 (DC9) 1.31×10−5 (DC8) 2.69×10−1 (DC9) 1.31×10−5 (DC8) 2.69×10−1 

(DC9) 1.39×10−5 (DC10) 1.18×10−5 (DC9) 1.39×10−5 (DC10) 1.18×10−5 (DC9) 1.39×10−5 

(DC12) 9.25×10−10 (DC12) 8.71×10−10 (DC12) 9.26×10−10 (DC12) 8.71×10−10 (DC12) 9.26×10−10 

a The total energy was set to 309.1 kJ/mol relative to EQb1. 

b Initial population 1.0 was given to the corresponding EQ. 

 

4.6 Derivation of eq. (4.5) 

To derive eq. (4.5), the author further introduces the following two assumptions. 

A. )(n

mlG   changes only when the QSSA is applied to EQ i (l ≠ i, m ≠ i) in the step 2, where 

)(n

mlG   is the sum of states at the TS between state l and state m. 

B.  n

mN  changes only when redistribution of 
 n

iN  is made in the step 4. 

With the assumptions A and B, 
 1n

k lk



 　 of eq. (4.1) can be expressed as follows. 
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After application of the procedure in the step 2, G has already been changed by the QSSA, 

but redistribution of N has not yet been made. On the other hand, 
 1n

k lk


  of eq. (4.5) can 

be given as, 

 
 

 1

1
1




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 
n

k

n

lkn

lk
hN

G
k      (4.10). 

After application of the procedure in the step 6, both G and N have already been changed 

in the step 2 and in the step 4, respectively. 

Then, by substituting eq. (2.4) into eq. (4.1), the following relation is obtained. 

       

 
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k l k l k i i l i k l k i i l in

k

k k k k G G k
hN

 


      
          (4.11) 

By comparing eqs. (4.9) and (4.11), the following relation is obtained. 
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The following equation is obtained by substituting eq. (4.12) into eq. (4.10).  
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By substituting eq. (4.3) into the first term in the right-hand side of eq. (4.13), the 

following relation is obtained. 
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By replacing 
 n

i kk   in eq. (4.14) by the expression of eq. (2.4), eq. (4.15) is obtained. 
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Further rearrangements of eq. (4.15) gives, 
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By replacing G and N in the right-hand side of eq. (4.16) with the expression of rate 

constant in eq. (2.4), the following relation is obtained. 
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eq. (4.17) is further rearranged to, 
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By substituting eq. (4.3) into the second term in the right-hand side of eq. (4.13), 

the following relation is obtained. 
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By replacing 
 n

i kk   in eq. (4.19) by the expression of eq. (2.4), eq. (4.20) is obtained. 
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By replacing G and N in the right-hand side of eq. (4.20) with the expression of rate 

constant in eq. (2.4), the following relation is obtained. 
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By substituting eqs. (4.18) and (4.21) into eq. (4.13), the following equation is obtained. 
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This eq. (4.22) is identical to eq. (4.5). 
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4.7 Conclusion 

In Chapter 4, the author introduced the f-RCMC method as an extension of the RCMC 

method. This method allows for obtaining the branching ratio of unimolecular 

decomposition without performing the kinetic simulation. This method assumes that the 

dissociated fragments do not undergo secondary reactions, and is thus effective only for 

unimolecular decomposition in the gas-phase. The method was numerically tested with 

unimolecular decomposition of C3H5 and C4H5, where their reaction profiles were 

generated at UCCSD(T)/def2-TZVP//B3LYP/def2-SV(P) level using the SC-AFIR 

method. The branching ratios obtained by the f-RCMC method agreed precisely up to 

eight decimal places with those obtained by the conventional kinetic simulation. The f-

RCMC method requires only the rate constant matrix as input and gives the branching 

ratios immediately without solving the rate equations. It is therefore expected that the f-

RCMC method will be a highly efficient alternative to the ordinary kinetic simulation in 

predicting the branching ratios of unimolecular decomposition. 
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Chapter 5 Background of Automated Reaction Path Search 

5.1 Introduction 

Programs such as density functional theory have been developed and quantum chemical 

calculation is becoming a powerful tool in chemical research. To predict chemical 

reaction mechanisms, systematical search for equilibrium structure (EQs) and transition 

states (TSs) on potential energy surface (PES) is required. Searching on PES is not easy 

since PES is a multidimensional space. Thus, the search area must be limited to the 

periphery of the reaction paths in order to reduce computational time. 

 Searching for single EQ can always be done by geometry optimization starting 

from any initial structure. However, all EQs cannot be obtained by repeating this method. 

The same EQ is often obtained even if starting from different initial structures. This 

calculation spends a lot of computational time for nothing.  

 In the case of TS search, finding even only single one is not easy. Although there 

are several methods for searching TS near initial structures[1,2], the convergence radius 

is generally not large. TS cannot be obtained from an arbitrary point. When a reactant and 

a product are known, methods for finding TS by searching in the direction in which the 

energy of the highest point of the path connecting them is lowered have also been 

developed[3-5]. However, it is difficult to search a reaction path connected with unknown 

EQs by such methods.  

In order to overcome these problems, new methods have been developed based 

on the characteristics of reaction pathway connecting EQ and TS. In addition to 

mathematical features such as minimum point and saddle point, EQ and TS are connected 

by a reaction pathway. If one can trace reaction pathways, reaction path networks can be 

obtained efficiently without unnecessary calculation. The history of the development of 
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systematic search method for reaction pathways is the history of exploring the 

characteristics of reaction pathways, and many methods based on various features were 

developed (Section 5.2). These are introduced in the next section. Specifically, the author 

briefly introduces eigenvector following (EF) method[6], sphere optimization (SO) 

method[7], gradient extremal following (GEF) method[6], reduced gradient following 

(RGF) method[8], and finally summarize anharmonic downward distortion following 

(ADDF)[9-11] and artificial force induced reaction (AFIR)[12-15].  

 

5.2 History of Automated Reaction Path Search 

In this section, the author introduces various methods for reaction path search using the 

features of reaction path. As mathematical properties, there are important differences 

between EQ and TS. All the eigenvalues of Hessian in EQ are positive whereas only one 

eigenvalue of Hessian in TS is negative and the others are positive. The eigenvector of 

negative eigenvalue in TS represents the direction of reaction path, along which the IRC 

path grows. 

 Eigenvector following (EF) method and sphere optimization (SO) technique use 

these features. The EF method searches a stationary point by tracing toward eigenvector 

direction of normal mode analyses[6]. The SO technique involves a sequence of 

constrained optimizations on hypersurfaces with increasingly larger radii[7]. Although 

these methods worked well and sometimes found TS starting from an EQ, they often 

searched for pathways far apart from the actual reaction pathways. 

Next, gradient extremal following (GEF) method was proposed. The GEF 

method tracing the gradient extremal point on the constant energy constraint from an EQ 

is another surface-walking method[6]. The GEF has been applied to the ab initio PES of 
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formaldehyde (HCHO) at the HF/STO-3G level and the first systematic global analysis 

of ab initio PES has been made for a system of more than three atoms in 1996[16]. In the 

search, adjacent EQ and TS however may not be connected directly, sometimes passing 

TS or EQ different from the actual reaction paths. Since the GEF method also searches 

high order stationary points in addition to EQ and TS, unnecessary search is performed. 

For these reasons, there is no application to global search of a system with five atoms or 

more. In 1998, a reduced gradient following (RGF) technique was applied to HCHO at 

the level of HF/STO-3G[8]. However, since the RGF technique also searches unnecessary 

paths as in the GEF method, global search of a system with five atoms or more was not 

reported. 

The features used in the above methods are gradient and Hessian, which are first 

derivative and second derivative on PES, respectively. It is difficult to apply gradient to 

search because gradient is all zero in every direction at EQ. Hessian also represents the 

restoring force to bring back to the stationary point, while low vibration modes hardly 

show the directions of reaction pathways. Therefore, in order to search reaction paths 

using mathematical features around EQs, the anharmonicity of PES involving third or 

higher terms should be noted[9-11]. 

In such a situation, anharmonic downward distortion following (ADDF) method 

was developed[9-11]. The ADDF utilizes the fact that real potential is distorted below 

harmonic potentials. The ADDF was developed based on the hypothesis that there are 

reaction paths in the direction of large anharmonic downward distortion (ADD). This 

hypothesis captures the characteristics of chemical reactions well, and isomerization 

reaction paths (A → X type) and dissociation reaction paths (A → X + Y type) could be 

obtained systematically from any initial structure. In 2006, the global reaction network of 
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HCOOH, which is a reaction system with five atoms, was reported using the ADDF[11]. 

In subsequent applications, the reaction networks of various systems has been 

obtained[14,17].  

 In further development, artificial force induced reaction (AFIR) method was 

reported in 2011. While the types of reaction pathways obtained by the ADDF is the 

isomerization (A → X type) and the dissociation (A → X + Y type), the AFIR can also 

obtain convergent synthetic reaction pathways (A + B → X type) and recombination 

pathways (A + B → X + Y type). The AFIR has been applied most extensively to organic 

reaction and organometallic catalysis, in combination with quantum chemical 

calculation[18-27]. The other applications are: gas phase reactions[28], enzymatic 

catalysis[29]; domino reactions[30]; and metal cluster catalysis[31,32]. In Chapter 3, 4, 

6, 7, and 8, the AFIR is used as an automated reaction path search method. The details of 

the AFIR are introduced in the next section.  

 

5.3 Artificial Force Induced Reaction Method 

The AFIR method induces structural deformations in a molecule by applying artificial 

force between fragments and finds the pathway for the corresponding reaction. The idea 

of AFIR is simple; just push fragments A and B together or pull them apart. This procedure 

corresponds to minimize the following AFIR function[33]: 

𝐹(Q) = 𝐸(Q) + 𝜌𝛼
∑ ∑ 𝜔𝑖𝑗𝑟𝑖𝑗𝑗𝜖𝐵𝑖𝜖𝐴

∑ ∑ 𝜔𝑖𝑗𝑗𝜖𝐵𝑖𝜖𝐴
  (5.1) 

This function consists of two terms, i.e., the Born-Oppenheimer potential energy surface 

E(Q) of geometrical parameters Q and the artificial force term. The parameter in the 

artificial term 𝛼 determines the strength of the force. The coefficient 𝜌 is either 1 to 
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push together, or -1 to pull them apart. The force term is given as a weighted sum of the 

distance 𝑟𝑖𝑗 between atom i in the fragment A and atom j in the fragment B, and the 

weight function 𝜔𝑖𝑗 is: 

𝜔𝑖𝑗 = (
(𝑅𝑖+𝑅𝑗)

𝑟𝑖𝑗
)

𝑝

  (5.2) 

This weight function assigns a stronger force to the closer atom pairs and a weaker force 

to the more distant pairs. In eq. (5.2), the inverse distance 1/rij is scaled by 𝑅𝑖 + 𝑅𝑗 , the 

sum of covalent radii of atom i and j, to treat all elements equivalently. It was confirmed 

that results did not strongly depend on the choice of p, and p is usually set to 6.0. 

For convenience, the parameter α is determined by the following equation: 

𝛼 =
𝛾

(2−1 6⁄ −(1+√1+
𝛾

𝜀⁄ )

−1 6⁄

)𝑅0

 (5.3) 

This 𝛼 corresponds to the mean force that acts on two atoms in their direct collision on 

the Lennard-Jones (LJ) potential with collision energy 𝛾, in the area from the minimum 

to the turning point. The standard Ar-Ar parameters of the LJ potential, i.e., 𝑅0 = 3.8164 

Å and ɛ = 1.0061 kJ/mol, were employed. The model collision energy parameter 𝛾 

defines an approximate upper limit of the barrier height that can be eliminated by the 

force term. The 𝛾 parameter can be chosen by users, depending approximately on the 

highest TS energies searched. By applying the AFIR to obtained EQs one after another, a 

reaction path network can be obtained. 

In AFIR, there are two kinds of algorithms. The first is a multicomponent 

algorithm that defines two or more reactants as fragments and reacts them from various 

directions. When third reactant C exists, two additional terms between A and C and 

between B and C are added to eq. 5.1. The same is true in the case of four or more. The 

second is single-component (SC) algorithm that defines various fragments systematically 
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in a single molecule and applies AFIR to all combinations of them. The SC-AFIR is 

applicable to reactions involving multiple reactants by treating the reactant complex as a 

single element.  

The artificial force term in eq. 5.1 is designed not to change the reactivity of PES. 

This term adds an isotropic artificial force to each atom. Fig. 5.1 (a) shows the interaction 

potential contour map between H atom and CO2 molecule at the B3LYP/cc-pVTZ level, 

where the positions of the C and O atoms in CO2 were fixed at those of optimized CO2[13]. 

In Fig. 5.1 (a), all directions are almost completely repulsive. However, the dents in the 

directions indicated by arrow are seen. In these directions, H atom can approach closer to 

CO2 molecule.  

 

Fig. 5.1 (a) the interaction potential contour map between H atom and CO2 molecule. (b)  

the interactions between 1s orbital of the H atom and LUMOs of CO2; 1s orbital of the H 

atom and HOMOs of CO2. (c) these reactions taking place when the H atom collides 

toward the dents of (a). (d) A Contour plot of the AFIR function with γ = 200 kJ/mol. 
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The perpendicular direction should be one reactive site, where 1s orbital of the 

H atom and the lowest unoccupied molecular orbitals (LUMOs) of CO2 in Fig. 5.1(b) 

interacts. The diagonal direction should be another reactive site because of interaction 

between 1s orbital of the H atom and the highest occupied molecular orbitals (HOMOs) 

of CO2 in Fig. 5.1(b). The reaction has been found to take place in Fig. 5.1(c) when the 

H atom collides toward either of these dents. If these directions can be detected, one can 

obtain reaction paths. The reactive directions can be found easily on the AFIR function 

(eq. 5.1). That is, if the AFIR function is minimized from any points, two dents are 

obtained. This is because the second term of eq. 5.1 highlights sighs of reactivity 

appearing in PES, that is, dents of contour. The AFIR function has a landscape shown in 

Fig. 5.1(d), which is a contour plot of the AFIR function with γ = 200kJ/mol (the second 

term of eq. 5.1 is added to the plot of Fig. 5.1(a)). This allows to obtain paths leading to 

products without deviating considerably from the reaction paths despite performing a 

rough manipulation that adds artificial force. 

 Fig. 5.1(c) compares approximate AFIR structures with true TSs and true 

products, where AFIR structures obtained by γ = 200kJ/mol are shown in black behind 

the true stationary structures. The AFIR structures, especially the approximate TS 

structures, are quite similar to the true ones. 

 The development of the reaction path search algorithm enables us to obtain 

complicated reaction networks. However, computational complexity for searching all 

reaction paths increases sharply as the number of atoms in the system increases. In the 

next section, it is explained how reaction network increases. 
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5.4 Explosion of the Size of Reaction Path Network 

Although recent advances in reaction path search algorithms have made it possible to 

obtain various reaction path networks, the computational complexity of the networks 

increases sharply as the number of atoms in the system increases. For example, molecules 

in which N different atoms are arranged in a chain have N!/2 EQs. When the target 

molecule contains same atoms with n, m, and k pairs, the number of chain structures 

becomes N!/(n!m!k!)[34]. Then, although the number is considerably less than the 

original number, the number of EQs becomes very large if N increases. The number of 

TSs is even larger than EQs.  

Wales et al. also reported that the number of EQ and TS increases exponentially 

according to the increase of N[35]. In the paper by Wales et al., the number of EQ and TS 

were estimated using Lennard-Jones (LJ) cluster (Table 5.1). In ordinary chemical 

reactions, the number of EQ and TS for each N would be larger than the values in Table 

5.1. Thus, obtaining all structures is not easy and it is necessary to reduce the 

computational cost for quantum chemical calculation. 

 

Table 5.1 The number of EQ and TS in LJN clusters[35]. 

 N 
 

4 5 6 7 8 9 10 11 12 13 

EQ 1 1 2 4 8 21 64 170 513 1505 

TS 1 2 3 12 42 165 635 2423 7868 25653 

 

In addition, the following feature can be utilized: Paths of reaction bottlenecks 

have a great influence on the kinetics, while other paths have a small influence. For 
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example, the computational cost can be greatly reduced if the accurate optimization 

calculation is applied to the TSs and paths of reaction bottlenecks and other paths are 

supplemented by a fast method. Moreover, limiting the search area according to required 

information would also be effective. Some EQs and TSs obtained by global search has 

extremely high energy. Such structures are not important under normal experimental 

conditions. In Chapter 6 and 7, such approaches are introduced, respectively.  
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5.5 Conclusion 

In this chapter, the author introduced the difficulty for searching EQ and TS on PES. 

Reaction path search methods have been developed using the characteristics of reaction 

pathways. In Section 5.2, the history of the development of reaction path search methods 

was explained with some examples. The development of automated reaction path search 

method had made significant progress in 2006, and the global reaction route map of 

HCOOH using ADDF was reported. After that, AFIR had been developed and applied to 

more complex and diverse chemical reactions. In Section 5.3, the nature of AFIR was 

explained with the PES of H atom and CO2 molecule. In Section 5.4, the author 

introduced the problem that reaction path networks become very large as the number of 

atoms in the system increases. The efficiency of reaction path search can be improved by 

using fast quantum calculation method or by parallel calculation. To calculate bottlenecks 

of reaction with high accuracy is also effective. To search only important parts under 

experimental conditions by limiting the search area is also effective. 
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Chapter 6 For Improving the Efficiency of Reaction Network 

Generation: A Case Study for H2O on Cu(111) Surface 

6.1 Introduction 

Finding reaction paths is one of the most important task in the theoretical study on the 

chemical reaction mechanisms. Reaction paths thus have been calculated in many 

theoretical studies[1-5]. In many studies, equilibrium structure (EQ) and transition state 

(TS) structure have been calculated by geometry optimization. 

However, there is a problem in geometry optimization. Namely, it requires a 

good guess or previous knowledge of the reaction mechanism. It is thus not easy to 

calculate unknown reaction mechanisms. Moreover, in complex reactions, the reaction 

paths become highly complicated multistep and form network structure. Calculating and 

constructing such complex reaction path networks is a hard task. 

For example, surface reaction is severe complicated. In surface reactions, various 

elementary processes, such as adsorption / desorption of molecules, migration of surface 

adsorbed species, bond formation / breaking in them, etc., are involved. For construction 

of such entire reaction networks, automated reaction path search would be promising. 

Methods for automated reaction path search in molecular systems have been 

developed[6-29]. On the other hand, applications of automated reaction path search to 

surface reactions have been limited[30-32]. Moreover, there have been no concrete 

examples in which the entire reaction network including paths of migration processes as 

well as those in high energy regions was constructed with slab model.  

For highly complicated reaction systems, reaction path networks may contain 

hundreds or more EQs and thousands or more TSs. To construct such reaction path 
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networks, a large computational cost is required. It is therefore necessary to develop a 

method for reducing the computational cost. 

In this chapter, the author tackles these subject using the artificial force induced 

reaction (AFIR) method[16]. In addition, the author proposes a way to construct a reaction 

path network efficiently applying kinetic analysis. As an illustrative example, the author 

calculates the reaction of H2O absorbed on Cu(111) surface. 

 

6.2 Computational details 

In this study, SIESTA 3.2 program was used to compute energy and gradient at each 

structure[33,34]. The pseudopotentials were prepared with the parameters in the GGA 

pseudopotential database[35]. The PBE functional and the DZP basis set were used. The 

electronic temperature was set to 10000.0 K, where the occupation function proposed by 

Methfessel and Paxton was applied[36]. The Monkhorst-Pack grid for the k-point 

sampling was changed depending on the search stages as described below. The Cu(111) 

surface was prepared starting from the structure of Cu crystal. At first, the lattice constant 

was optimized; the optimized value 3.708 Å is slightly larger than the experimental value 

3.615 Å. A slab model composed of two layers containing 16 Cu atoms in each layer was 

adopted. In this study, all atoms in the Cu(111) surface were fixed at the initial positions 

throughout. 

For systematical reaction path search, the AFIR method was used. The search 

was initiated from a single H2O adsorbed structure shown in Fig. 6.1. To avoid large 

separation of the surface adsorbed species from the center of the surface during the 

automated search, a weak force was applied between the central Cu dimer and each atom 

in H2O using the AFIR function with the collision energy parameter γ = 25 kJ/mol, where 
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this weak bias was finally eliminated from the results as explained below. The central Cu 

dimer and atoms in H2O were considered as “target atoms” in the automated fragment 

generation procedure of the SC-AFIR algorithm; it was thus assumed that chemical bond 

rearrangements occur among these five atoms. The γ value adopted in the SC-AFIR was 

500 kJ/mol. The artificial force was applied not only to atoms in adsorbed species but 

also to surface atoms that were kept fixed at the initial positions. AFIR path for all 

fragment pairs defined at each local minimum were calculated strting from all of the 

obtained EQs, where this criteria to generate fragment pairs at each EQ are described in 

detail in reference[37]. The search therefore is not stochastic path sampling but a 

completely deterministic path search.  

In the initial search, the Monkhorst-Pack grid and the mesh cutoff value were set 

to 1×1×1 and 150.0 Ry, respectively. 

 

6.3 Idea and Strategy for Improving the Efficiency of Reaction Network Generation 

During the search by the AFIR method, AFIR paths obtained by minimization of the AFIR 

function were reoptimized by the locally updated plane (LUP) method[38,39], and a 

network composed of LUP paths were obtained. The LUP method optimizes discrete path 

points toward the direction perpendicular to path tangent and gives a LUP path which can 

be a good approximation of the corresponding intrinsic reaction coordinate (IRC) 

path[40,41]. 

The LUP path network is usually enough to discuss qualitative overviews of the 

reaction mechanisms. To further discuss quantitative reaction kinetics, actual TSs for 

paths that behaved as the reaction bottlenecks were optimized. To automatically extract 

such paths, the rate constant matrix contraction (RCMC) method was utilized[42,43]. 
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RCMC recursively contracts an original p×p rate constant matrix for the path network 

including p local equilibrium structures (EQs), giving a q×q rate constant matrix 

describing transitions between q superstates (p > q), where each superstates are expressed 

as a weighted sum of all the original states, i.e., EQs on the path network. In other words, 

by using the RCMC, EQs that convert to another EQ within a certain timescale t are 

regarded to belong to the same superstate, and a few superstates that interconvert to each 

other in a longer timescale than t is obtained. Users can input t. In this study, t = 10−3 

second was adopted.  

When EQs are contracted to superstates, the grade of membership is calculated 

for all EQs. The grade of membership ωAx represents the degree to which EQ x is 

attributed to superstate A. In the context of fuzzy clustering, A superstate corresponds to 

a fuzzy set, and a grade of membership is the value of membership function. 

Paths connecting two EQs that belong to two different superstates behave 

bottlenecks of interconversion between the two superstates and are extracted as follows. 

At first, the membership grade ωAi is considered, where state i and j are in the set of 

original state, S(0), superstate A and B are in the set of superstate in the n-th loop, S(n). The 

sum of ωAi over all superstates is unity. 

∑ 𝜔𝐴𝑖 = 1𝐴∈𝑆(𝑛)   (7.1) 

Paths connecting different original states i and j and satisfying the following three 

conditions simultaneously are regarded to be bottlenecks between different superstates A 

and B.  

A. ωAi ωBj > 0.25  (7.2) 

B. ωAi ωBj > ωAi ωAj (7.3) 

C. ωAi ωBj > ωBi ωBj (7.4) 
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6.4 Reaction Network of H2O on Cu(111) Surface 

The initial search found 42 local minima and 266 LUP paths automatically. Since the 

LUP path network still includes the weak bias applied to prevent the adsorbed species 

going away from the surface center, all the LUP paths were further optimized by the LUP 

method on the PES without the bias. In this calculation, the Monkhorst-Pack grid was set 

to 2×2×2. Through this calculation, a LUP path network which does not include the bias 

and consists of 26 local minima and 291 LUP paths were obtained. During this calculation, 

normal mode analysis was done at all local minima and the highest energy points along 

the LUP paths, in order to analyze the obtained network based on kinetics. 

In kinetic analysis based on the RCMC, t = 10−3 second was adopted. RCMC 

was done with three different temperatures T = 300, 500, and 1000 K, and the highest 

point along paths selected as a bottleneck at one of the three temperatures were further 

optimized to an actual TS. In total, 13 actual TSs were obtained starting from the highest 

energy points along the selected LUP paths. IRC paths were then calculated starting from 

these 13 TSs. 

Finally, a path network consisting of 291 LUP paths and 13 IRC paths was 

obtained. In total, 97829 gradient calculations were required in the above three 

calculations, i.e., initial search, LUP path optimizations without the bias, and the final TS 

optimization and IRC calculation. This number includes gradient calculations in normal 

mode analysis. The final network was obtained automatically just by running these three 

calculations sequentially. Although IRC paths for short timescale events are 

approximated by LUP paths, influence of errors in their barrier heights on the kinetics in 

longer timescale than 1 second should be negligible, as discussed in Section 6.6.  
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The obtained path network is depicted in Fig. 6.1, where IRC and LUP path 

connections are indicated by thick and thin lines, respectively. In the network, there exist 

four adsorption states, i.e., H2O, H + OH, H + H + O, and H2 + O. The path network is 

much more complicated than expected for a triatomic system, because of surface 

migration paths. 

 

 

Fig. 6.1 The reaction path network of H2O on Cu(111) surface. 

 

6.5 Kinetics of H2O on Cu(111) Surface 

Fig. 6.2 shows the most stable structures of each adsorption state, i.e., H2O, H + OH, H + 

H + O, and H2 + O. RCMC with t = 10−3 second and T = 300 K gave three superstates, 

i.e., SS0, SS1, and SS2 in Fig. 6.2. SS0 contains nearly the most stable local minimum 

MIN0 (H2O). SS1 mainly includes H + OH (MIN1-8) and H2 + O (MIN18, 20-26). This 
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indicates that H2 + O is not kinetically stable and interconverts to H + OH within 10−3 

second. The remaining SS2 corresponds to H + H + O (MIN9-17, 19). Activation free 

energy values for transitions among these three superstates are also shown in Fig. 6.2, 

where these values were obtained by taking logarithm of the overall rate constants 

obtained as off-diagonal elements of the final 3×3 rate constant matrix obtained by the 

RCMC. 

RCMC with t = 1 second and T = 300 K gave two superstates, where SS2 

obtained by RCMC with t = 10−3 second was contracted to SS1 because the activation 

free energy for the transition from SS2 to SS1 was small enough with t = 1 second. Finally, 

RCMC with t = 103 second and T = 300 K gave only one superstate which includes all 

the original states. RCMC with different t revealed a timescale hierarchy of the present 

reaction path network[44]. 

The present procedure gave TSs for transitions among the three superstates 

automatically. All surface migration processes occur in shorter timescales than 10−3 

second, and only bond reorganization paths behave as bottlenecks in this system. The 

situation may change in systems in which adsorption energy is much larger than the 

present system, and in such a case RCMC will automatically identify migration processes 

as bottlenecks. The present procedure based on RCMC does not involve any heuristic 

path selection such as a selection based on bond connectivity pattern and thus is fully 

systematic; only criterion to choose important paths is kinetics. 
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Fig. 6.2 Time hierarchy of the reaction of H2O on Cu(111) and the contracted network 

obtained by the RCMC with different timescale. SS is superstate. The values near the 

arrows are activation free energies in kJ/mol. The blue, green, and red line corresponds 

to the region of superstate obtained by the RCMC with t = 10−3, 1 and 10−3, respectively. 

 

6.6 Influence of Errors in Barrier Height 

Influence of errors in barrier heights in paths of short timescale events on the longer 

timescale kinetics is examined here. Let us consider a model network consisting of ten 

local minima (EQ1-10) shown in Fig. 6.3. Among these ten, nine (EQ1-9) have the same 

energy and are separated by barriers of 56.3 kJ/mol, where its rate constant is 1.00×103 

s−1 at T = 300 K. The remaining one (EQ 10) is connected to only one of the other nine 

(EQ 9) through a path with barrier from EQ 9 to EQ 10 of 73.5 kJ/mol and from EQ 10 

to EQ 9 of 226.5 kJ/mol. The rate constants at T = 300 K for the forward (EQ 9 to EQ 10) 

and backward (EQ 10 to EQ 9) reactions are 1.00 and 2.29×10−27 s−1, respectively. 

RCMC with t = 1.00×10−3 second and T = 300.0 K gave two superstates: one 

mainly including EQ1-9 and the other dominated by EQ10. The rate constant from the 
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former superstate to the latter was 1.111×10−1 s−1, where the small decrease of the rate 

constant from 1.0 is due to conformational entropy in the superstate including the nine 

local minima[42,43]. To see the influence of the barrier heights in the superstate of EQ1-

9, the author assumes an error ±10 kJ/mol in the barrier between these EQs. When the 

barrier is increased from 56.3 kJ/mol to 66.3 kJ/mol, the rate constant from the superstate 

of EQ1-9 to the other superstate was 1.111×10−1 s−1. On the other hand, when the barrier 

is decreased from 56.3 kJ/mol to 46.3 kJ/mol, the rate constant from the superstate of 

EQ1-9 to the other superstate was 1.111×10−1 s−1. These numerical data showed that 

influence of errors in the barrier height in the superstate of EQ1-9 was negligible in the 

overall kinetics of this system. This result justifies the reaction path network consisting 

of LUP paths and IRC paths as adopted in the present procedure. 

 

Fig. 6.3 Model reaction network. Node and edge correspond to EQ and reaction 

pathway. The free energies of EQ 1 to 9 are 0.0 kJ/mol, and the one of EQ 10 is −226.5 

kJ/mol. 
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6.7 Conclusion 

In this chapter, the author proposed a cost-effective way to construct reaction path 

networks based on SC-AFIR and RCMC. The initial search is done by SC-AFIR to obtain 

approximate paths of the LUP path optimization method. Then, paths behaving as reaction 

bottlenecks are extracted by RCMC, and TS optimization and IRC calculation are applied 

to these paths. The resulting path network consists of IRC paths representing its 

bottlenecks (chemical bond rearrangements in the present system) and LUP paths for fast 

processes (surface migrations in the present system). Such a hybrid network is enough to 

discuss kinetics of long timescales. The search does not rely on any heuristic path 

selection and thus is full systematic. Its performance was examined for the reaction of 

H2O on Cu(111) surface. The present scheme would be promising for unbiased 

construction of many kinds of reaction path networks such as surface reactions and 

organic reactions.  
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Chapter 7 New Algorithm for Automated Reaction Path 

Search: Application of Kinetic Analysis 

7.1 Introduction 

Theoretical studies have elucidated various organic reaction mechanisms[1-3]. Density 

functional theory has been used in many studies. In such studies, equilibrium structure 

(EQ) and transition state (TS) structure have been calculated by geometry optimization. 

Each EQ is connected by intrinsic reaction coordinate (IRC) paths via TS[4]. 

Recently, automated reaction path search methods have been developed[5-21] 

and have allowed to construct reaction path networks of various reactions such as organic 

reactions. In reaction path network, EQ and TS correspond to node and edge. A network 

includes various elementary steps such as bond-rearrangement, conformational 

rearrangement, and formation of complex. As the number of atoms in a reaction system 

increases, the total number of node and edge increases exponentially[22]. Thus, obtaining 

all EQs and TSs is difficult. 

 Chemical reactions under normal experimental conditions proceed using thermal 

energy. In most cases, reaction pathways with extremely high activation energy are 

unimportant[23]. Using this character, the author proposed an efficient algorithm to 

explore reaction paths on PES. This algorithm uses two methods, namely the AFIR and 

the rate constant matric contraction (RCMC)[24,25]. 

This algorithm was applied to an organic multicomponent reaction. Reactions of 

more than two reactant molecules are generally referred to as multicomponent 

reactions[26]. Organic multicomponent reactions provide a powerful tool towards the 

one-pot synthesis of complex compounds. In the reactions, many elementary steps 
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compete and the reaction mechanism becomes complex. In this study, the author applied 

the present algorithm to Passerini reaction which is one of the multicomponent reactions, 

and obtained the reaction network with a reasonable computational cost. 

 

7.2 New Algorithm of Automated Reaction Path Search Based on Kinetic Analysis 

The present algorithm consists of automated path search (search program) and kinetic 

analysis (navigation system). In this work, the GRRM/artificial force induced reaction 

(AFIR)[27] was adopted as a search program. Kinetic analysis was used as a navigation 

system. The search program and the navigation system run in parallel. The search 

program selectively follows kinetically preferable reaction pathways from a given 

structure under input temperature and timescale. 

In the present algorithm, kinetic analysis is applied when the search program 

finds a new TS. The RCMC is used in kinetic analysis. RCMC recursively contracts an 

original N×N rate constant matrix for the path network including N local EQs, giving a 

(N−M)×(N−M) rate constant matrix describing transitions between N−M superstates (N 

> M), where each superstates are expressed as a weighted sum of all the original states, 

i.e., EQs on the reaction path network. Traffic volumes of all EQs are computed by the 

RCMC. Traffic volume represents accessibility of population. EQs with non-zero traffic 

volume are recorded in search list. The search program reads the search list,and select an 

EQ to which the subsequent path search is applied. The list is updated when the RCMC 

is applied. When the search is applied to all EQs in the search list, path search is 

terminated. The procedure of this algorithm is as follows. 

 

Step1 Input an initial structure for search, temperature T, and timescale τ. When the input 
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is completed, the structure is recorded in the search list and the search program is executed.  

Step2 When the search program finds a new TS, the rate constant matrix is computed 

from the obtained network and the RCMC is applied. Then, the traffic volume for the EQs 

is calculated.  

Step3 EQs with non-zero traffic volume are written in the search list. The search program 

reads the updated list.  

Step4 The search program determines an EQ to which the subsequent path search is 

applied from the search list. Then, return to Step 2. When the search program is applied 

to all EQs in the search list, search is terminated. An initial EQ for the subsequent search 

is selected in the order of R defined by the following equation. 

𝑅 =
𝜉1

1+{−𝜃(𝜉2)log10(𝛬)}
 (7.1) 

Here, 𝜉1, 𝜉2 are a random number from 0 to 1, and 𝜃(𝜉2) is the Heaviside function 

defined by the following equation: 

𝜃(𝜉2) = {
0 (0 ≤ 𝜉2 < 0.5)
1 (0.5 ≤ 𝜉2 ≤ 1)

 (7.2) 

The traffic volume Λ is defined to be a value from 0 to 1. According to the above equation, 

EQ with high log-scaled traffic volume is easy to select. In addition, EQ in the search list 

is select randomly with 50% probability because of 𝜉1 and 𝜃(𝜉2).  

The above algorithm allows to omit search from EQs that cannot be kinetically 

reached and to enlarge the reaction path network in the direction in which the reaction 

proceeds. The calculation of traffic volume in Step 2 is introduced in the next section.  

 

7.3 Calculation of Traffic Volume by Rate Constant Matrix Contraction 

In this section, the procedure for calculation of traffic volume using RCMC is explained. 
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In the conventional RCMC, contraction was applied to an initial state with maximum rate 

constant, whereas in this paper contraction is applied to an initial state having maximum 

reaction rate and the initial population is redistributed to adjacent states. The 

redistribution of initial population is performed according to eq. (4.6) introduced in 

Chapter 4. Here, the initial population does not is redistributed to the state where it is 

connected by process with a rate constant smaller than the inverse of the input timescale 

τ.  

In calculation for traffic volume 𝛬𝑗  , the membership grade of EQ j for 

superstate I (𝜔𝐼𝑗
(𝑛)

); the original Boltzmann distribution of EQ j (𝑃𝑗
(0)

); the population of 

superstate I (𝑄𝐼
(𝑛)

); the ratio of the Boltzmann distribution of EQ j in superstate I to all 

Boltzmann distribution in superstate I (𝑃𝐼𝑗
(𝑛)

) ; population of EQ j that is assigned by 

returning initial population of all superstates to original EQs (𝑇𝑗
(𝑛)

)  are used, where 

𝜔𝑗𝑗
(0)

= 1.0. In addition, the set of states (either original states at n = 0 or superstates at n 

≥ 1) obtained at the nth contraction is denoted by 
 nS ; superstates I, J, K, L, and M 

correspond to the components of 𝑆(𝑛) ( 𝐼, 𝐽, 𝐾, 𝐿, 𝑀 ∈ 𝑆(𝑛) ); the rate constant from 

superstate I to superstate J is denoted by 𝑘𝐼→𝐽
(𝑛)

 ; and the Boltzmann distribution for 

superstate I is denoted by 𝑃𝐼
(𝑛)

. It follows that 𝑆(0), 𝑘𝑥→𝑦
(0)

, and 𝑃𝑥
(0)

 correspond to the 

set of original state (EQ), the original rate constant of the elementary step from EQ x to 

EQ y, and the original Boltzmann distribution of EQ x, respectively. Here, EQ x and y are 

the components of 𝑆(0)(x, y ∈ 𝑆(0)).  

Let us explain how to calculate traffic volume through a procedure to contract a 

(N−n)×(N−n) rate constant matrix into a (N−n−1)×(N−n−1) one.  
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Step1 Identify the superstate I with the maximum of outflow reaction rate 𝑉𝐼→∙
(𝑛)

. 𝑉𝐼→∙
(𝑛)

 is 

calculated by the following equation.  

𝑉𝐼→∙
(𝑛)

= ∑ 𝑘𝐼→𝐽
(𝑛)

𝑄𝐼
(𝑛)

𝐽∈𝑆(𝑛)  (7.3) 

If 𝑉𝐼→∙
(𝑛)

<  1 τ⁄ , then Step 10. Otherwise, the operations from Step 2 are sequentially 

performed.  

Step2 Apply the quasi-steady state approximation to the superstate I and update 𝑘𝐾→𝐿
(𝑛)

 to 

𝑘𝐾→𝐿
′(𝑛+1)

 using eqs. (7.4) and (7.5).  

𝑘𝐾→𝐿
′(𝑛+1)

= 𝑘𝐾→𝐿
(𝑛)

+ 𝑘𝐾→𝐼
(𝑛)

𝑘𝐼→𝐿
(𝑛)

𝜎𝐼
(𝑛)

 (7.4) 

𝜎𝐼
(𝑛)

=
1

∑ 𝑘𝐼→𝑀
(𝑛)

𝑀∈𝑆(𝑛)

 (7.5) 

Step3 Update all rate constants involving the superstate I to zero (𝑘𝐼→𝑀
′(𝑛+1)

= 𝑘𝑀→𝐼
′(𝑛+1)

= 0). 

Step4 Update Boltzmann distribution and initial population using eqs. (7.6) and (7.7). Eq. 

(7.7) is the same as eq. (4.6) proposed in Chapter 4. The original initial population 𝑄𝑘
(0)

 

may be set by users in consideration of experimental condition. 

𝑃𝐾
(𝑛+1)

= 𝑃𝐾
(𝑛)

+ 𝑘𝐼→𝐾
(𝑛)

𝜎𝐼
(𝑛)

𝑃𝐼
(𝑛)

 (7.6) 

𝑄𝐾
(𝑛+1)

= 𝑄𝐾
(𝑛)

+ 𝑘𝐼→𝐾
(𝑛)

𝜎𝐼
(𝑛)

𝑄𝐼
(𝑛)

 (7.7) 

Step5 Update 𝜔𝐾𝑗
(𝑛+1)

 using following equation: 

𝜔𝐾𝑗
(𝑛+1)

= 𝜔𝐾𝑗
(𝑛)

+ 𝑘𝐼→𝐾
(𝑛)

𝜎𝐼
(𝑛)

𝜔𝐼𝑗
(𝑛)

 (7.8) 

where, the degree to which EQ j belongs to superstate I is distributed to the adjacent 

superstates. That is, by referring the ratio of rate constants 𝑘𝐼→𝐾
(𝑛)

𝜎𝐼
(𝑛)

 from the superstate 

I to the other states, a part of membership grade of EQ j for superstate I (𝑘𝐼→𝐾
(𝑛)

𝜎𝐼
(𝑛)

𝜔𝐼𝑗
(𝑛)

) 

is added to 𝜔𝐾𝑗
(𝑛)

.  



102 

 

Step6 Compute 𝑃𝑀𝑗
(𝑛)

, 𝑇𝑗
(𝑛)

, 𝑃𝑀𝑗
(𝑛+1)

, 𝑇𝑗
(𝑛+1)

 using the following equations. 

𝑃𝑀𝑗
(𝑛)

= ∑
𝑃𝑗

(0)
𝜔𝑀𝑗

(𝑛)

∑ 𝑃
𝑗
(0)

𝜔
𝑀𝑗
(𝑛)

𝑗∈𝑆(0)
𝑀∈𝑆(𝑛)  (7.9) 

𝑇𝑗
(𝑛)

= ∑ 𝑄𝑀
(𝑛)

𝑀∈𝑆(𝑛) 𝑃𝑀𝑗
(𝑛)

 (7.10) 

Step7 Update 𝑃𝑖
(𝑛+1)

 to zero（𝑃𝑖
(𝑛+1)

= 0）. 

Step8 Update 𝑘𝑘→𝑙
′(𝑛+1)

 to 𝑘𝑘→𝑙
(𝑛+1)

 using eq. (7.11).  

𝑘𝑘→𝑙
(𝑛+1)

=
1

1+𝜎
𝑖
(𝑛)

𝑘
𝑘→𝑖
(𝑛) 𝑘𝑘→𝑙

′(𝑛+1)
 (7.11) 

Step9 Define 𝑆(𝑛+1) as the set of all superstates except the contracted superstate I and 

return to Step 1. 

Step10 Compute traffic volume 𝛬𝑗  using the following equation. 

𝛬𝑗 = ∑ |𝑇𝑗
(𝑛)

− 𝑇𝑗
(𝑛−1)

|𝑙𝑜𝑜𝑝
𝑛=1  (7.12) 

If 𝛬𝑗 > 1.0, then 𝛬𝑗 = 1.0.  

 

7.4 Application to Passerini Reaction: Reaction Path Network 

Passerini reaction is known as a ternary reaction to produce a-acyloxycarboxamide from 

carboxylic acids, aldehydes (or ketones) and isocyanides[26]. Recent theoretical study on 

the Passerini reaction showed that this reaction is a four-component reaction in which a 

second acid (carboxylic acid) acts as an organic catalyst[28]. In the previous study, the 

reaction between a formaldehyde, a complex of dimer of formic acid, and a methyl 

isocyanide was calculated using GRRM/AFIR. Then, the option “NoBondRearrange” 

was used to terminate search when chemical bond rearranges[27].  

In this work, the present algorithm does not rely on any heuristic path selection 

such as bond connectivity and is applied to the same Passerini reaction. The present 
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algorithm allows to search kinetically preferable reaction pathways. At first, 44 structures 

in random arrangement between formaldehyde, dimer of formic acid, and methyl 

isocyanide were optimized as initial structures.  

Electronic structure calculations were done by the B3LYP-D3/D95V method. At 

all obtained EQs and TSs, normal mode analysis was made. Rate constant of the 

elementary steps was estimated by eqs. (2.2) and (2.3). By the present algorithm, 704 EQs 

and 5787 TSs were obtained (Fig. 7.1). These structures were reoptimized at B3LYP-

D3/D95V(d) level. This reaction path network contains multiple side reaction paths, 

intermediates, and resting states. Here, note that there were more than 100 000 EQs of the 

LJ20 cluster[22], where this Passerini reaction contains 20 atoms. Since the number of 

EQs obtained by the present algorithm is 704, the search efficiency was improved at least 

about 200 times.  
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Fig. 7.1 The reaction path network of the Passerini reaction obtained by the present 

algorithm. Reaction path search was executed at B3LYP-D3/D95V, and reoptimization 

was executed at B3LYP-D3/D95V(d). Node and edge correspond to equilibrium structure 

and reaction pathway via TS. 

 

7.5 Application to Passerini Reaction: Kinetics 

The time hierarchical structure of this reaction was obtained by applying the RCMC 

again to the rate constant matrix of the obtained reaction path network in Fig. 7.1. With 

timescale in the range from 1.5×10−6 to 3.0 second, a reaction mechanism consisting of 

the following four superstates was obtained (Fig. 7.2). 

 



105 

 

 

Fig. 7.2 Reaction mechanism of the Passerini reaction catalyzed by formic acid molecule. 

Each structure is the most stable structure in terms of energy among the EQs in the 

superstates.  

 

In the above reaction mechanism, the activation energy of the reaction pathway 

via intermediates 1 and 2 is low. There are also reaction pathways not passing through 

intermediates 1 and 2. By applying the RCMC with less than 1.5×10−6 second, changes 

between conformers can also be extracted. In addition, by applying the RCMC with 

timescale set within the range of 1.5×10−6 to 3s, two superstates are formed, which 

correspond to reactant and product, respectively. The structures 1 and 2 are attributed to 

the superstate corresponding to reactant; the structures 3 and 4 are to the one 

corresponding to product. The rate constant between these superstates corresponds to the 

overall rate constant of this Passerini reaction, was 0.38 s−1. The overall rate constant 

includes the effects of resting state[29] and conformational entropy[24,25,30,31]. If these 

effects are neglected, the rate constant becomes 1.32 s−1. This difference can also be 
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understood as a multi-structural effect which importance is pointed out in the calculation 

of the rate constant in recent years[32]. 

There are 8 side reactions from the reactant 0, and 7 side reactions from the 

intermediate 1. An important reaction pathway in these side reactions is a path leading to 

the structure 8. Since there is no pathway from the intermediate 8 to another structure and 

it is stable in terms of energy, the intermediate 8 is a resting state which reduces reaction 

rate. The intermediate 8 is formed as a formic acid passes hydrogen to nitrogen and the 

remaining part of the formic acid is bonded to carbon. The overall rate constant changed 

from 1.32 to 0.38 due to these resting states and the effect of the conformer of the 

intermediate 1.  

Moreover, when the RCMC is applied with setting timescale to 3 seconds or 

longer, the reactant 0, the intermediate 1 and 2 are contracted to the product 24. This 

indicates that 3 seconds corresponds to the timescale for the product in this Passerini 

reaction to be sufficiently obtained. 

  The above results indicate that the present algorithm is effective for generation 

of reaction networks and kinetic analysis. 
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7.6 Conclusion 

The author proposed an algorithm for construction of reaction path networks, based on 

SC-AFIR and RCMC. In this algorithm, SC-AFIR and RCMC act as search program and 

navigation system and run in parallel. The present algorithm can search only kinetically 

accessible area under the input initial structure, temperature, and reaction time. When 

search program finds a new TS, navigation system applies kinetic analysis based on 

RCMC to the obtained reaction path network, and creates search list. In the search list, 

candidates of accessible EQs are written and the search program reads this list. The search 

dose not rely on any heuristic path selection such as bond connectivity pattern and thus is 

fully systematic: only criterion to choose EQs is kinetics. Its performance was examined 

for Passerini reaction, which is one of multicomponent reactions. The present algorithm 

would be promising for unbiased construction of reaction path networks. 
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Chapter 8 General Conclusion 

In the present thesis, The author developed a new method for kinetic analysis, rate 

constant matrix contraction (RCMC), for analysis of complex networks composed of 

elementary steps based on quantum chemical calculation in Chapter 2 to 4. From Chapter 

5, changing viewpoint to reaction path search, The author developed algorithms for 

reducing computational cost of reaction path search with the RCMC.  

In Chapter 2, The author summarized the background of kinetic analysis and 

introduced the methods.  

In Chapter 3, The author proposed the method for calculating overall rate 

constant from a given reaction path network, RCMC. The RCMC is applied to Claisen 

rearrangement and it reproduced the experimental rate constant. The result indicates that 

conformational entropy in reactant region plays important role in reactivity even in the 

Claisen rearrangement of small chain molecules. It is therefore envisaged that the present 

method could be used as a powerful tool for estimating the overall rate constants of 

different organic reactions.  

In Chapter 4, The author introduced the f-RCMC as an extension of the RCMC. 

This method allows for obtaining the branching ratio of unimolecular decomposition 

without performing the kinetic simulation. This method assumes that the dissociated 

fragments do not undergo secondary reactions, and is thus effective only for unimolecular 

decomposition in the gas-phase. The method was numerically tested with unimolecular 

decomposition of C3H5 and C4H5, where their reaction profiles were constructed using 

the SC-AFIR method. The branching ratios obtained by the f-RCMC method agreed 

precisely up to eight decimal places with those obtained by the conventional kinetic 

simulation. The f-RCMC method requires only the rate constant matrix as input and gives 
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the branching ratios immediately without solving the rate equations. It is therefore 

expected that the f-RCMC method will be a highly efficient alternative to the ordinary 

kinetic simulation in predicting the branching ratios of unimolecular decomposition. 

In Chapter 5, the author introduced methods and history of automated reaction 

path search. Next, the author introduced that the number of EQ and TS increases 

exponentially according to the increase of the number of atoms in the system.  

In Chapter 6, based on Chapter 5, the author proposed a way to reduce 

computational cost for construction of reaction path networks. This way is based on 

kinetic analysis with RCMC and automated reaction path search with GRRM/AFIR. In 

this scheme, (1) initial search is done by SC-AFIR to obtain approximate paths of LUP 

path optimization, and (2) paths that behave as reaction bottlenecks are extracted by the 

RCMC, and TS optimization and IRC calculation are applied to these paths. This allows 

to reduce the computational cost for TS optimization and IRC calculation. The obtained 

hybrid network composed of LUP paths and IRC paths is enough to discuss kinetics of 

long timescales. This scheme was applied to the reaction of H2O on Cu(111) surface. The 

present scheme would be promising for unbiased construction of reaction path networks.  

In Chapter 7, based on Chapter 5, the author proposed an algorithm reducing 

computational cost for construction of reaction path networks. This algorithm is also 

based on kinetic analysis with RCMC and automated reaction path search with 

GRRM/AFIR. The present algorithm can search only kinetically accessible area under 

the input initial structure, temperature, and reaction time. The author applied this 

algorithm to Passerini reaction, and the reaction path network including multistep paths 

from reactant to product and intermediates and byproducts that can be produced was 

obtained. The present scheme would also be promising for unbiased construction of 
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reaction path networks. 

In the present thesis, the author presented the method for kinetic analysis of 

complex network composed of chemical reaction elementary steps, RCMC. The present 

method allows to estimate the reaction overall rate constant from a given network and 

reduce the stiffness of the rate equations. In addition, it was found that conformational 

entropy can make a substantial contribution to overall rate constant, namely reactivity. 

On the other hand, in the case of complex reaction systems, reaction path networks 

become more complicated, and obtaining the network becomes difficult even if 

automated reaction path search is used. The author thus proposed two ways to improving 

the efficiency of automated reaction path search using the RCMC in order to deal with 

the problem.  

The author hopes that the results in this thesis contribute to elucidation of 

reaction path network and mechanism in complex systems, and to gain theoretical insight 

of various reactions. 
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