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Chapter 1

Introduction

In this thesis, we clarify a new superconducting mechanism due to orbital nematic fluc-

tuations and its possible connection to iron-based superconductors (FeSCs). In this in-

troductory chapter, we briefly review the history of superconductivity in Section 1.1, and

highlight in Section 1.2 FeSCs, new high-temperature superconductors discovered recently.

After reviewing possible superconducting mechanisms of FeSCs, we state our motivation

of this thesis in Section 1.3.

1.1 History of superconductivity

In 1911, H. K. Onnes discovered that electric resistivity of mercury suddenly disappears

at 4.2K when decreasing temperature. This discovery was the dawn of the history of

superconductivity. Since then, superconductivity has been studied vigorously by many

researchers, but its origin remained mysterious for a long time. In 1957, J. Bardeen, L. N.

Cooper and J. R. Schrieffer[1] proposed the so-called BCS theory, which is now recognized

as the standard microscopic theory of superconductivity and successfully explains the

superconductivity in various metals. They clarified that the superconductivity is a new

thermodynamic state, in which two electrons form a pair, called as the Cooper pair,

by an effectively attractive interaction via electron-phonon coupling. This mechanism is

schematically explained in Fig.1. When an electron moves through the lattice formed by

positive ions, the electron and ions attract each other, which yields a distortion of the

lattice. Such a region is then positively charged. Since the ions move much more slowly

than the electrons, another electron is attracted to the positively charged area. In this

way, the two electrons effectively attract each other via electron-phonon coupling. This

is the conventional mechanism of superconductivity.

In 1986 J. G. Bednorz and K. A. Müller[2] discovered cuprate superconductors which

exhibit the transition temperature (Tc) as high as 135K at ordinary pressure[3]. Cuprate

superconductors are layered systems consisting of CuO2 layers and block layers[4]. Su-

perconductivity is believed to be driven by electrons in the CuO2 plane and its minimal

model is describied by a two-dimensional model with a single-band by introducing the
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Figure 1: Sketch of the conventional mechanism of superconductivity. When an electron

moves through a lattice, which is formed by ions with positive charge, the lattice slightly

deforms due to the attractive Coulomb interaction between the electron and the lattice.

Such deformation makes a local region positively charged, which then attracts another

electron. In this way, two electrons attract each other via electron-phonon coupling and

can form a Cooper pair.

concept of the Zhang-Rice singlet[5]. The parent compounds of cuprate superconductors

are Mott insulators and superconductivity occurs via carrier doping into the Mott insla-

tor. Therefore the importance of strong electron correlations between electrons is widely

recognized. However, in spite of tremendous efforts in the last thirty years, the mechanism

of the high-Tc superconductivity in cuprates is still unclear.

In 2006, Y. Kamihara et al. discovered other high-Tc superconducting materials,

namely FeSCs[6], which turn out to exhibit the Tc as high as 56K[7] and 65K[8]. LaOFeP

is a first FeSC and the superconductivity was found by substituting oxygens with flu-

orines. Its critical temperature Tc was just 5K. In 2008, however, Y. Kamihara et al.

measured a similar material LaOFeAs, and found the superconducting transition at 26K.

After this discovery, the iron pnictides attract tremendous attention as new high-Tc su-

perconductors. Moreover, in 2008 F.-C. Hsu et al. found that iron chalcogenides exhibit

superconductivity at 8K in FeSe[9]. It was found that Tc of FeSe rises to 65K[8]. Hence

the iron chalcogenides are also recognized as new high-Tc superconductors. These two ma-

terials, iron pnictides and chalcogenides, are referred frequently to as iron-based high-Tc

superconductors. Similar to cuprates, FeSCs have the two-dimensional superconducting

layers and the blocking layers. However, in contrast to cuprate superconductors, super-

conductivity occurs close to the spin-density-wave (SDW) phase, namely a metallic phase.

Furthermore, multi-orbital degrees of freedoms are believed to be indispensable to the un-

derstanding of superconductivity. Because of these differences, a possible connection to

cuprate superconductors is not straightforward. Nevertheless, FeSCs reveal that a high-

Tc mechanism is hidden in a multi-orbital system. In fact, the mechanism of the high-Tc

superconductivity in FeSCs is one of the hottest topics in condensed matter physics.
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Figure 2: Crystal structures of iron pnictides and chalcogenides[10]. The leftmost is FeSe

(iron chalcogenides) and the others are iron pnictides. Blue area is shared by all materials

and is believed to be responsible for superconductivity. The yellow balls are the iron sites

and the gray balls are the pnictides or chalcogenides sites.

1.2 Iron-based superconductors

Since we are insterested in a possible new mechanism of the superconductivity in FeSCs,

we focus on FeSCs. We review their crystal structure in Section 1.2.1, phase diagram

in Section 1.2.2, electronic structure in Section 1.2.3, and possible high-Tc mechanisms

proposed so far in Section 1.2.4.

1.2.1 Crystal structure

FeSCs commonly have the two-dimensional layer composed of irons (Fe) and pnictogens

(Pn) or chalcogens (Ch) as illustrated in Fig.2. The leftmost system is the typical struc-

ture of the iron chalcogenides (FeChs). The other five materials are the typical structures

of iron pnictides (FePns). Those FePns have many different blocking layers, but they

commonly have a two-dimensional layer composed of the Fe and Pn. Therefore supercon-

ducting instability is believed to be driven by electrons in the two-dimensional layer of the

FePn or FeCh. The two-dimensional layer is illustrated in Fig.3 (a), where Fe sites exist

on the same plane and the Pn or Ch sites exist above and below the Fe plane. Since there

are two non-equivalent Pn (Ch) sites, a unit cell is given by the blue diamond shown in

Fig.3 (a), which contains two Fe and two Pn (Ch) sites. For simplicity, however, a differ-

ent unit cell, containing one Fe and one Pn (Ch), sites is frequently taken by neglecting

non-equivalence of Pn (Ch) sites. This unit cell is shown in the green square in Fig.3 (a).

We also take this simpified unit cell in our theoretical study in this thesis.
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Figure 3: (a) FeAs layer. All Fe (red) sit on the same plane and half of As sites denoted

by As1 (As2) is located above (below) the plane of Fe[11]. The blue diamond is the unit

cell, containing two iron sites and two arsenic sites. The arsenic sites can be replaced

by other pnictides and chalcogenides. The green square would be a unit cell if As1 were

equivalent to As2. (b) Typical magnetic structure of iron-based superconductors[12].

The blue circles are the iron sites, and the dark (light) red circles are arsenic sites above

(below) the plane of Fe. The arrow represents the direction of the spin of electrons. The

spins align antiferromagnetically along the x-direction, and ferromagnetically along the

y-direction. This spin structure is often called the stripe-type SDW.

1.2.2 Phase diagram

Figure 4 (a) is a schematic phase diagram of FeSCs, where the horizontal axis is electron

(right) or hole (left) doping and the vertical axis is temperature. The red area is a SDW

phase, and the spins of itinerant electrons originating from Fe sites align antiferromag-

netically one direction, and ferromagnetically along the other direction as shown in Fig.3

(b). This spin structure is often called stripe-type SDW. Close to the SDW phase, an

additional phase is realized as shown by the blue area in Fig.4 (a), where the orientational

symmetry of the electronic system is broken, otherwise no additional symmetry is broken.

This phase has the same symmetry as nematic liquid crystals and is driven by electron

correlations. In this sense this phase is called as the electronic nematic phase, or more

simply as the nematic phase. In the yellow area a superconducting phase is realized. Be-

cause of the proximity of the superconducting phase to the SDW phase, many researchers

have considered that spin fluctuations are important to the high-Tc superconductivity in

FeSCs.

However a close look at the phase diagram reveals that the nematic phase is also close

to the superconducting phase, and is actually closer to the superconducting phase than

the SDW phase. The importance of the nematic phase to the superconductivity is, not

so highlighted compared with the SDW phase. While the nematic phase is realized in a

small region close to the SDW phase in Fig.4 (a), it extends largely in an isovalent doping

7
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(a) (b)

Figure 4: (a) Schematic phase diagram in the plane of carrier doping and temperature

T [13]; hole carrier is doped on the left side and electron carrier on the right side. The red

area is the SDW phase. In the blue area, the system breaks the orientational symmetry,

keeping other symmetries unbroken. This phase is often called as the electonic nematic

phase or simply as the nematic phase. The yellow regions are superconducting phases.

There can be coexistence of superconductivity and magnetism on the electron-doped

state. (b) Phase diagram of BaFe2 (As1−xPx)2[14]. The superconductivity occurs in the

red region, and the SDW phase is realized inside the blue region. The electronic nematic

phase is stabilized below T ∗ in a wider region (yellow) than Fig.4 (a). The inset is a

sketch of the nematic instability. C4v symmetry in the normal metallic phase (left) is

reduced to C2v symmetry inside the nematic phase (right) as symbolically shown by the

green region; The yellow (purple) circles are the Fe (As/P) sites, and the lattice is rotated

by 45◦ compared to Fig.3 (a).

system BaFe2 (As1−xPx) as shown in Fig.4 (b). The inset is a sketch of the electronic

nematic instability, which occurs at T ∗. Note that the lattice in the inset is rotated

by 45◦ compared to Fig.3 (a). While the electronic system is isotropic in T > T ∗, the

system breaks the fourfold symmetry spontaneously and exhibits an anisotropy without

magnetic order in T < T ∗. This nematic phase occupies a large part of the phase diagram

in some FeSCs. It seems reasonable to assume that in addition to spin fluctuations nematic

fluctuations can be equally important for the superconductivity in FeSCs.

1.2.3 Electronic structure

The typical band structure in FeSCs is illustrated in Fig.5 (a). The band indices α, β and

γ correspond to hole bands and η and δ electron bands. Those five bands originate mainly

from five d orbitals of irons, namely dxz, dyz, dxy, dx2−y2 , and d3z2−r2 orbitals and all five

bands cross the Fermi level (EF ). In this sense, the orbital degrees of freedom are likely
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Figure 5: (a) Typical band structure of FeSCs[10]; EF is the Fermi level. There are three

hole-like bands, α, β, and γ, and two electron-like bands, η and δ. (b) Typical Fermi

surfaces of FeSCs in the two-dimensional first Brillouin zone. The broken square is the

zone boundary for the unit cell containing only one iron site, while the dotted line is that

for the unit cell containing two iron sites [see also Fig.3 (a)]. There are three circular

hole-pockets around the zone center (black) and two elliptical electron-pockets around

(±π, 0) and (0,±π) (red).

important to the superconductivity[15]. The two-dimensional Fermi surfaces are shown

schematically in Fig.5 (b). The dotted square is the boundary of the first Brillouin zone

(−π ≤ kx, ky ≤ π) for a unit cell with one iron atom [see Fig.3 (a)]. We have hole Fermi-

pockets around the zone center and electron Fermi-pockets around momenta k = (±π, 0)

and (0,±π).

The presence of the five bands crossing the Fermi energy makes theoretical analysis

very complicated. Therefore various efforts have been made to simplify the electronic

band structure. One idea is to focus on the dxz, dyz and dxy orbitals because they are

the major components of the electronic bands close to the Fermi energy[10]. A more

simplified model is proposed in Ref.[16] and [17], where only dzx and dyz orbitals are

taken into account. We shall employ such a two-band model as a minimal model of FeSCs

in Section 2.

1.2.4 Possible mechanisms of iron-based superconductors

Lattice fluctuations

L. Boeri et al.[18] applied the conventional electron-phonon mechanism to understand the

superconductivity in FeSCs. They calculated the electron-phonon coupling for LaFeAsO

in the density functional theory and found that the obtained maximum Tc reaches 0.8K,

which is much smaller than experimental value Tc ≃ 20−30K. Hence it is unlikely that the

superconductivity in FeSCs is driven by lattice fluctuations, suggesting other mechanisms.
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(a) (b)

Figure 6: (a) Static spin susceptibility χs(k) in the momentum space 0 ≤ kx, ky ≤ π[15].

There are two peaks around (π, 0) and (0, π). Spin fluctuations associated with those

peaks drive s± superconductivity. (b) Sketch of the s±-wave the pairing gap[15]. The red

(blue) curve represents a hole (electron) pockets in the first Brillouin zone. The pairing

gap have the same sign on each Fermi-pocket, but its sign is different between hole- and

electron-pockets. In this sense, this gap is often called as s±-wave symmetry.

Spin fluctuations

As many theoretical studies showed[19], antiferromagnetic spin fluctuations can drive su-

perconductivity. Intuitively this may be apparent, because two electrons tend to have the

opposite spin direction in the presence of antiferromagnetic fluctuations, which then makes

a good chance to form a singlet pair unless magnetic instability occurs. As shown in Fig.4

(a) and (b), the superconducting phase is actually close to the SDW phase. Therefore it is

natural to explore the superconductivity mediated by antiferromagnetic spin fluctuations.

For the Fermi surfaces shown in Fig.5 (b), spin fluctuations with momentum around (π, 0)

and (0, π) develop due to strong scattering between the hole and electron pockets. This

is easily checked by computing the static spin susceptibility as shown in Fig.6 (a), where

the susceptibility has two peaks around (π, 0) and (0, π). While these spin correlations

can lead to the stripe-type SDW order with momentum q = (π, 0) observed in FeSCs [see

Fig.3 (b)] on one hand, spin fluctuations around q = (π, 0) and (0, π) can lead to s±-wave

superconductivity in FeSCs[20] on the other hand. Here s±-wave means that the pairing

gap is s-wave on each pocket but has the opposite sign between the hole and electron

pockets as schematicaly shown in Fig.6 (b).

Many researchers have explored a possibility that the high-Tc superconductivity in the

FeSCs is mediated by spin fluctuation. However, some of the FeSCs do not have the hole

pockets, such as LiFeAs and FeSe, which makes it difficult to develop spin fluctuations.

In fact, FeSe does not exhibit the SDW phase at ambient pressure. Resulting spin fluc-

tuations may be rather weak in such materials. Nevertheless, all these materials show

superconducting instability with Tc = 8.5 − 19K[21], suggesting that spin fluctuations

10



(b) Intra-orbital susceptibility(a)

Figure 7: (a) Sketch of Fermi surfaces in the first Brillouin zone of FeSCs[23]. FS1 and FS2

are hole pockets, and FS3 and FS4 are electron pockets. (b) Intra-orbital susceptibility

in momentum space 0 ≤ qx, qy ≤ π by five-orbital Hubbard-Holstein model[23].

alone may not provide a consistent understanding of the superconductivity in FeSCs.

Orbital fluctuations

Since the FeSCs are multiband systems, orbital fluctuations can be important for the

superconductivity. T. D. Stanescu, V. Galitski and S. D. Sarma first studied such a

possibility and found the superconductivity from orbital fluctuations with momentum

around (π, 0) and (0, π)[22]. These fluctuations originate from the nesting between the

hole- and electron-pockets [see Fig.7 (a)] and the corresponding intra-orbital susceptibility

actually shows a peak at q = (π, 0) as shown in Fig.7 (b). In contrast to the case of spin

fluctuations, the intra-orbital fluctuations drive s++-wave superconductivity, that is, the

sign of the pairing gap does not change among different pockets.

Orbital nematic fluctuations

As seen in Figs.4 (a) and (b), the electronic nematic phase is present close to the su-

perconducting phase. Hence it is reasonable to consider possible superconductivity from

electronic nematic fluctuations. As the origin of nematic order, two scenarios are pro-

posed: spin nematic[24, 25] and orbital nematic order[26, 27, 28]. Since Ref.[29] provides

a general argument that the spin nematic order may not easily reproduce the actual phase

diagram in FeSCs, we here focus on orbital nematic fluctuations.

Close to the orbital nematic phase, orbital nematic fluctuations develop. Y. Yanagi, Y.

Yamakawa and Y. Ono considered such fluctuations and showed that the orbital nematic

fluctuations drive s++-wave superconductivity by employing the two-dimensional 16-band

d − p model[30, 31], where not only five d-orbitals (dzx, dyz, dxy, d3z2−r2 , and dx2−y2) of

irons but also three p-orbitals (px, py and pz) of arsenics are taken into account. Figure 8

11



Nematic order

(a) (b)

ON+SC

Figure 8: (a) Phase diagram obtained by Yanagi et al.[31]. The horizontal axis is doping

x and the number of electrons per unit cell is given by n = 24 + 2x. The vertical axis is

temperature T in units of eV. The blue and green lines denote the transition temperature,

below which the s++-wave superconductivity and orbital nematic order develop, respec-

tively. (b) Phase diagram obtained by H. Yamase and R. Zeyher[32]. The horizontal axis

is the strength of the orbital nematic interaction g, and the vertical axis is temperature

T in units of their hopping integral t, which may be around 150 meV. There are four

phases: Normal metallic phase (N), orbital nematic phase (ON), superconducting phase

(SC) and coexistence of the orbital nematic and superconducting state (ON + SC). The

line with filled circles denotes the superconducting transition line. The solid line denotes

the orbital nematic transition line. In a region surrounded by the line with crosses and

the dotted line, the orbital nematic phase becomes nonuniform.
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(a) is their phase diagram, where the orbital nematic instability actually occurs in a wide

region and superconducting instability appears just above the onset temperature of the

orbital nematic order. This result clearly shows that orbital nematic fluctuations can

drive superconductivity. However, their obtained Tc is unrealistically high [the energy

units in Fig.8 (a) are eV] and moreover Tc is always higher than the nematic transition.

These results sharply contradict with the typical phase diagram in FeSCs [Fig.4 (a) and

(b)]: First, the observed Tc is not just above the nematic phase, and second, the supercon-

ductivity occurs not only outside the nematic phase, but also inside the nematic phase.

The reason of these discrepancies likely lie in their crude approximation[30, 31]. They

employed the Eliashberg theory[33], but completely neglected the self-energy effect of the

electrons.

In 2013, H. Yamase and R. Zeyher[32] studied Tc of the superconductivity from orbital

nematic fluctuations by employing the minimal two-band model. This model is much

simpler than that by Y. Yanagi et al.[30, 31], and allowed them to study the self-energy

effect and also to perform calculations down to very low temperature. Figure 8 (b) is

their phase diagram in the plane of the strength of the orbital nematic interaction g and

temperature T . They obtained Tc as high as that observed in experiments [the energy

units in Fig.8 (b) are about 150 meV]. Moreover, the superconducting transition can also

occur inside the nematic phase, similar to the typical phase diagram [Fig.4 (b)].

1.3 Motivation

In this thesis, we wish to explore further the superconducting mechanism due to orbital

nematic fluctuations. This is motivated by the following considerations. First, since

Ref.[32] implies that orbital nematic fluctuations can be a fully new mechanism of high-

Tc superconductivity, it is worthwhile from a purely theoretical point of view to establish

such a mechanism by clarifying the gap structure in the Eliashberg theory, which is the

standard theory of superconductivity due to fluctuations. Second, the electronic nematic

phase exists closer to the the superconducting phase than the SDW phase in FeSCs.

Therefore we expect that the nematic fluctuations play an important for the high-Tc su-

perconductivity. Third, a study in Ref.[32] assumed that the pairing gap is isotropic on

each Fermi pocket and thus the momentum dependence of the pairing gap remains to

be studied. In particular, the momentum depenence of the pairing gap can be observed

directly by angle-resolved photoemission spectroscopy (ARPES), and thus the structure

of the pairing gap is believed to be vital to identifying the superconducting mechanism.

If we clarify the momentum dependence of the pairing gap, we can discuss more deeply

possible superconductivity driven by the orbital nematic fluctuations in FeSCs through

making a comparison with experimental data. Fourth, since the superconducting phase

is realized close to both SDW and nematic phase, it is reasonable to assume that both

spin fluctuations and orbital nematic fluctuations play some role to the superconducting

13



mechanism in the FeSCs. Hence it is very important to clarify a role of spin fluctua-

tions in the same theoretical framework as the superconductivity from orbital nematic

fluctuations. Such a work has not been done. Finally, a natural question arise about

the interplay of orbital nematic fluctuations and spin fluctuations, for example, whether

they work cooperatively to realize the superconductivity or not. This is a very interesting

question and may shed an important light on the mechanism of high-Tc superconductivity

in the FeSCs. The present thesis is motivated by those five considerations and we aim to

provide theoretical insights into them.
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Chapter 2

Theory and method

In this chapter, we first introduce our effective Hamiltonian, which describes electrons

interacting with each other via orbital nematic interaction and spin interaction. We then

derive susceptibilities associated with orbital nematic and spin fluctuations in the random

phase approximation (RPA). To study whether those fluctuations can drive superconduc-

tivity, we employ the Eliashberg theory. We explain how to drive the linearized gap

equations by including self-energy corrections. The Eliashberg equations are, however,

too complicated to be solved numerically especially at low temperature. We then project

momenta onto the Fermi pockets and simplify the equations to achieve numerical calcu-

lations down to low temperature to find a possible onset temperature of superconducting

instability.

As explained in Section 1.2.1 the unit cell in FeSCs contains two irons. However, to

simplify the calculations, we employ a unit cell containing only one iron. As a result, our

model is defined on a square lattice where an iron sits on each site.

2.1 Hamiltonian

2.1.1 Kinetic term

Ab initio calculations showed that bands originating from all five d-orbitals of irons lie

around the Fermi energy[34]. In particular, the bands from dxz- and dyz-orbitals play the

major role in the orbital nematic physics. Hence we focus on dxz- and dyz-orbitals in the

present thesis. Such a two-band model may be a minimal model especially for studying

the orbital nematic physics in FeSCs. The kinetic term of the two-band model[16, 17] is

given by

H0 =
∑

k,σ,α,β

ξαβk d†k,σ,αdk,σ,β , (1)

where d†k,σ,α is a creation operator of an electron with momentum k, spin σ, and orbital

α. The orbital index α = 1, 2 refers to the dxz- and dyz-orbitals, respectively. ξαβk is a

15



Figure 9: Hopping parameters in our two-band model[16]. The red circles are iron sites

and the green (white) ellipses are the projections of the dxz- (dyz-) orbital onto the xy

plane. t1 and t2 are the nearest-neighbor hoppings between the same orbital with σ bond

and with π bond, respectively; t3 and t4 are the next-nearest-neighbor hoppings between

the same and different orbitals, respectively.

tight binding dispersion of electrons and is given by

ξ11k = −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky − µ, (2)

ξ22k = −2t2 cos kx − 2t1 cos ky − 4t3 cos kx cos ky − µ, (3)

ξ12k = ξ21k = −4t4 sin kx sin ky . (4)

Here t1, t2, t3 and t4 are hopping integrals between irons as illustrated in Fig.9 and µ is

the chemical potential. We choose the following parameters in this thesis,

µ = 0.6t, t1 = −t, t2 = −1.5t, t3 = 1.2t, t4 = −0.95t, (5)

which reproduce typical Fermi surfaces observed in FeSCs (Fig.10). In the following, all

quantities with the dimension of energy are measured in units of t. The absolute value of

t may be around t = 150 meV[15].

To find the Fermi surface, the Hamiltonian [Eq.(1)] should be written in the band

representation, not in the orbital representation. We first write the Hamiltonian [Eq.(1)]

in a matrix form

H0 =
∑

k,σ

(d†k,σ,1, d
†
k,σ,2)

(
ξ11k ξ12k
ξ12k ξ22k

)(
dk,σ,1
dk,σ,2

)
. (6)

The eigenvalues of the matrix correspond to the energy bands

λk,1 = ξ+k +
√

(ξ−k )
2 + (ξ12k )2, (7)

λk,2 = ξ+k −
√
(ξ−k )

2 + (ξ12k )2, (8)

where

ξ±k =
1

2

(
ξ11k ± ξ22k

)
. (9)

16



0

0

0

0

k y

kx

(a) (b)

k y

kx

1 1
2 2
3 3

44

Figure 10: Typical Fermi surfaces in the minimal two-band model (a) in the normal

metallic phase and (b) in the orbital nematic phase; we take g/t = −1.8, n− = 0.2271

to describe the nematic phase. The dxz- (dyz-) orbital is dominant along the red (blue)

curves and the line width depicts schematically the weight of each orbital. In the present

thesis, we call each Fermi pocket as FS1, FS2, FS3, and FS4, respectively, as assigned by

the number.
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in the inset. (b) Band structure inside the nematic phase (g/t = −1.8, n− = 0.2271). Note

that the nematic order breaks the fourfold symmetry and thus the band dispersion along

the (0, 0)− (π, 0)− (π, π) direction becomes different from that along the (π, π)− (0, π)−
(0, 0) direction. In addition, the nematic order lifts the degeneracy of λk,1 and λk,2 at

k = (0, 0) and (π, π). The dotted line denotes the Fermi energy.
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The bands λk,1 and λk,2 are shown in Fig.11 (a). The band λk,1 forms two electron pockets

around k = (π, 0) and (0, π), corresponding to Fermi surfaces 3 and 4 (FS3 and FS4),

respectively, in Fig.10 (a), whereas the band λk,2 forms two hole pockets around k = (0, 0)

and (π, π) as shown in Fermi pockets 1 and 2 (FS1 and FS2) in Fig.10 (a). A unitary

matrix Û(k), which diagonalizes H0, is easily calculated as

Û(k) =

(
U11(k) U12(k)

U21(k) U22(k)

)
,

=
1√

det Û(k)

⎛

⎝ξ−k +
√

(ξ−k )
2
+ (ξ12k )2 ξ12k

−ξ12k ξ−k +
√

(ξ−k )
2
+ (ξ12k )2

⎞

⎠ , (10)

where det Û(k) is given by

det Û(k) = 2
√

(ξ−k )
2
+ (ξ12k )2

(
ξ−k +

√
(ξ−k )

2
+ (ξ12k )2

)
. (11)

It is easy to check that the kinetic term is actually written as

H0 =
∑

k,σ

(c†k,σ,1, c
†
k,σ,2)

(
λk,1 0

0 λk,2

)(
ck,σ,1
ck,σ,2

)
, (12)

where c†k,σ,a is a creation operator of an electron with the energy band λk,1 and λk,2 for

a = 1 and 2, respectively. The new operator ck,σ,a is connected with the original operator

dk,σ,α by

(
dk,σ,1
dk,σ,2

)
= Û(k)

(
ck,σ,1
ck,σ,2

)
,

=

(
U11(k)ck,σ,1 + U12(k)ck,σ,2
U21(k)ck,σ,1 + U22(k)ck,σ,2

)
. (13)

It is insightful to point out that the weight of each orbital component on the Fermi

surfaces is described by the element of the unitary matrix Û(k). We define a state |n1, n2⟩,
where there are n1 electrons with the band energy λk,1 and n2 electrons with λk,2. Then

the electron number of the dxz-orbital in the band λk,1 is computed to be

⟨1, 0| d†k,σ,1dk,σ,1 |1, 0⟩ = U2
11(k). (14)

Similarly the electron number of the dyz orbital in the band λk,1 and that of the dxz and

dyz orbital in the band λk,2 are obtained, respectively,

⟨1, 0| d†k,σ,2dk,σ,2 |1, 0⟩ = U2
21(k), (15)

⟨0, 1| d†k,σ,1dk,σ,1 |0, 1⟩ = U2
12(k), (16)

⟨0, 1| d†k,σ,2dk,σ,2 |0, 1⟩ = U2
22(k). (17)
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The following relations

U2
11(k) + U2

21(k) = U2
12(k) + U2

22(k) = 1, (18)

imply that U2
11(k) and U2

21(k) [U
2
12(k) and U2

22(k)] describe the ratio of the dxz-orbital and

dyz-orbital in the band λk,1 (λk,2), respectively. Orbital components on each Fermi pocket

is shown in Fig.10, where the dxz (dyz) orbital is dominant on the red (blue) curves and

the thickness of the curves describes the weight of the corresponding orbital component

schematically.

2.1.2 Orbital nematic interaction

While we shall consider both the orbital nematic interaction and the spin exchange in-

teraction in this thesis, we first focus on the orbital nematic interaction. Its effective

interaction H1 was proposed by H. Yamase and R. Zeyher[32].

H1 =
g

2

∑

i

ni−ni−, (19)

where g is the strength of the orbital nematic interaction and

ni− = ni,1 − ni,2. (20)

Here ni,1 (ni,2) is an operator of the electron number in the dxz (dyz) orbital, namely

ni,α =
∑

σ

d†i,σ,αdi,σ,α. (21)

If the expectation value of ni− does not depend on i and becomes non-zero, we obtain

⟨ni,1⟩ − ⟨ni,2⟩ ̸= 0, indicating that the occupation number in the dxz-orbital becomes

different from that in the dyz-orbital. This implies that the system breaks the fourfold

symmetry, but keeps the other symmetries unbroken. In this way, the electronic system

acquires xy-anisotropy spontaneously due to the orbital order. We call such a state as the

orbital nematic state, referring to the nematic liquid state, where only the orientational

symmetry is broken. This state was originally proposed for Sr3Ru2O7[35, 36] and was

applied to FeSCs[26, 27, 28, 32], respectively.

Since the kinetic term is written in momentum space, we transform the interaction

Eq.(19) in momentum space:

di,σ,α =
1√
N

∑

k

dk,σ,αe
ik·ri , (22)

where N is the total number of lattice sites and ri is the position of the i site. The

resulting orbital nematic interaction is

H1 =
g

2N

∑

q

n−(q)n−(−q), (23)
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where

n−(q) =
∑

i

ni−e
−iq·ri ,

=
∑

k,σ

(d†k,σ,1dk+q,σ,1 − d†k,σ,2dk+q,σ,2). (24)

It is convenient to rewrite Eq.(23) in the band representation by using the unitary matrix

Eq.(10). As a result, n−(q) is written as

n−(q) =
∑

k,σ

∑

a,b

Va,b(k,k+ q)c†k,σ,ack+q,σ,b, (25)

where

Va,b(k,k
′) =

∑

αβ

U †
a,α(k)(τ3)αβUβ,b(k

′), (26)

τ̂3 =

(
1 0

0 −1

)
. (27)

This Va,b(k,k′) has the following relationships:

Va,b(k,k
′) = Vb,a(k

′,k), (28)

Va,b(k,k
′) = Va,b(k,−k′), (29)

= Va,b(−k,k′), (30)

= Va,b(−k,−k′).. (31)

The interaction part H1 [Eq.(19)] becomes

H1 =
g

2N

∑

a,b,c,d

∑

k,k′,q

∑

σ,σ′

Va,b(k,k+ q)Vc,d(k
′ + q,k′)c†k,σ,ack+q,σ,bc

†
k′+q,σ′,cck′,σ′,d. (32)

2.1.3 Spin interaction

Next, we consider a spin interaction term, which should capture the typical magnetic

property in FeSCs. As discussed in Section.1.2.2, FeSCs are metallic even in the magnetic

phase. Hence we may consider the spin exchange interaction in momentum space:

H2 =
1

2N

∑

q

J(q)S(q) · S(−q), (33)

where S(q) is an operator of total spin of the electronic system and is defined as

S(q) =
1

2

∑

k,σ,σ′

∑

α

d†k,σ,ασσσ′dk+q,σ′,α, (34)

where σ = (σx, σy, σz) are Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (35)
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Note that the summation with respect to the orbital index α is taken in Eq.(34).

We need to specify a functional form of J(q). Its minimal requirement may be that

J(q) shows a peak at q = (±π, 0) and (0,±π) and that its sign becomes negative there, so

that our model captures the actual magnetic structure in FeSCs, namely the stripe-type

antiferromagnetic order as shown in Fig.3 (b). We consider two different forms of J(q),

Lorentz-type JΓ(q) and J1−J2-type J12(q), both of which fulfill our minimal requirement.

i) Lorentz-type JΓ(q)

The Lorentz-type JΓ(q) is defined as

JΓ(q) = −2J

[
Γ

(qx − π)2 + q2y + Γ2
+

Γ

(qx + π)2 + q2y + Γ2
+

Γ

(qy − π)2 + q2x + Γ2
+

Γ

(qy + π)2 + q2x + Γ2

]
. (36)

It is clear that JΓ(q) has a peak at q = (±π, 0) and (0,±π) and its peak width is

determined by Γ; the magnitude of JΓ(q) is scaled by the prefactor J . In the present

thesis, we fix Γ = 1. We consider the Lorentz-type JΓ(q) as an appropriate form in the

itinerant limit or the weak-coupling limit in the sense that the functional form of JΓ(q)

is defined in momentum space. In other words, JΓ(q) leads to an exponential-like decay

of spin exchange interaction in real space.

ii) J1 − J2 -type J12(q)

As the opposite limit to the case of JΓ(q), we may also consider a spin exchange interaction

from a real space point of view:

H2 =
1

2

∑

⟨i,j⟩

J1Si · Sj +
1

2

∑

⟨⟨i,j⟩⟩

J2Si · Sj, (37)

where ⟨i, j⟩ denotes the nearest-neighbor pairs of iron sites, ⟨⟨i, j⟩⟩ the next-nearest-

neighbor pairs, and

Si =
1

2

∑

α

∑

σ,σ′

d†i,σ,ασσ,σ′di,σ′,α =
1

N

∑

q

S(q)eiq·ri . (38)

The spin interaction [Eq.(37)] then becomes

H2 =
1

2N

∑

q

J12(q)S(q) · S(−q), (39)

where

J12(q) = 2[J1(cos qx + cos qy) + 2J2 cos qx cos qy]. (40)

This J1 − J2-type interaction is frequently studied in the frustrated system[37]. In the

present thesis we fix J1/t = 1 and vary J2 to control the strength of spin interaction. In
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this case J12(q) has a peak at q = (±π, 0) and (0,±π) in J2/t ≥ 0.5, although the peak

shifts to q = (±π,±π) for small J2/t (≤ 0.5). Since we are mainly interested in a region

near SDW phase, where J2/t is larger than 0.5, our J12(q) may be regarded as the spin

interaction in the localized limit, the opposite limit to the case of JΓ(q) [Eq.(36)].

For latter convenience, we write the spin interaction H2 [Eq.(33)] in the band repre-

sentation by using the unitary matrix Û(k) [Eq.(10)]. The Hamiltonian H2 consists of

the longitudinal spin interaction (Hzz
2 ) and the transverse spin interaction (H±

2 )

H2 = Hzz
2 +H±

2 , (41)

Hzz
2 =

1

2N

∑

q

J(q)Sz(q)Sz(−q), (42)

H±
2 =

1

4N

∑

q

J(q)[S+(q)S−(−q) + S−(q)S+(−q)], (43)

where S±(q) = Sx(q)± iSy(q). Using Eq.(13), the spin operators are written as

Sz(q) =
∑

k

∑

σ

∑

a,b

Wa,b(k,k+ q)
σ

2
c†k,σ,ack+q,σ,b, (44)

S+(q) =
∑

k

∑

a,b

Wa,b(k,k+ q)c†k,↑,ack+q,↓,b, (45)

S−(q) =
∑

k

∑

a,b

Wa,b(k,k+ q)c†k,↓,ack+q,↑,b, (46)

Wa,b(k,k
′) =

∑

α,β

U †
a,α(k)(τ0)αβUβ,b(k

′). (47)

The form factor Wa,b(k,k′) includes τ0 =

(
1 0

0 1

)
, which is different from the case of the

orbital nematic interaction [see Eq.(26)]. The resulting Hzz
2 and H±

2 become

Hzz
2 =

1

2N

∑

q,k,k′

∑

σ,σ′

∑

a,b,c,d

J(q)
σ

2
Wa,b(k,k+ q)

σ′

2
Wc,d(k

′ + q,k′)c†k,σ,ack+q,σ,bc
†
k′+q,σ′,cck′,σ′,d,

(48)

H±
2 =

1

2N

∑

q,k,k′

∑

a,b,c,d

J(q)Wa,b(k,k+ q)Wc,d(k
′ + q,k′)c†k,a,↑ck+q,b,↓c

†
k′+q,c,↓ck′,d,↑. (49)

Note that the vertex Eq.(47) has the following properties:

Wa,b(k,k
′) = Wb,a(k

′,k), (50)

Wa,b(k,k
′) = Wa,b(−k,k′), (51)

= Wa,b(k,−k′), (52)

= Wa,b(−k,−k′), , (53)

which are the same properties as Eqs.(28)-(31).
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2.2 Mean-field approximation

Our total Hamiltonian consists of three terms

H = H0 +H1 +H2, (54)

where H0, H1, and H2 are defined in Eqs.(6), (19), and (33) in the orbital representation,

respectively, and in Eqs.(12), (32), and (48)-(49) in the band representation, respectively.

This Hamiltonian can yield not only superconducting instability but also orbital nematic

and SDW instabilities. Before analyzing superconductivity, we first study orbital nematic

and SDW instabilities in mean-field theory and determine the phase diagram.

We first focus on the orbital nematic instability. The Hamiltonian reads

HON =
∑

k,σ,α,β

ξαβk d†k,σ,αdk,σ,β +
g

2

∑

i

ni−ni−, (55)

in the orbital representation. We decouple the interaction term by introducing the mean

field ⟨ni−⟩,

g

2

∑

i

ni−ni− ≃ g
∑

i

[
⟨ni−⟩ni− − g

2
⟨ni−⟩2

]
(56)

= gn−
∑

k,σ

(d†k,σ,1dk,σ,1 − d†k,σ,2dk,σ,2)−
g

2
N(n−)

2. (57)

In the second line we assume that the mean field is uniform, namely ⟨ni−⟩ = n−. This

assumption is actually good as we discuss in Fig.29 in Section.3. The resulting mean-field

Hamiltonian is

HON
MF =

∑

k,σ

(d†k,σ,1, d
†
k,σ,2)

(
ξk,1 ξ12k
ξ12k ξk,2

)(
dk,σ,1
dk,σ,2

)
− g

2
N(n−)

2, (58)

where

ξk,1 = ξ11k + gn−, ξk,2 = ξ22k − gn−. (59)

Formally this expression is the same as the kinetic term Eq.(6). The only differences are

ξ11k and ξ22k acquire the contribution of the orbital nematic order with the opposite sign.

Writing the inverse of temperature as β = T−1, we can easily calculate the grand

canonical potential Ω for the mean-field Hamiltonian [Eq.(58)]

e−βΩ = Tre−βHON
MF

=
∏

k,σ

(1 + e−βλk,1)(1 + e−βλk,2)e
βgN(n−)2

2 , (60)

that is,

Ω = − 2

β

∑

k

[log(1 + e−βλk,1) + log(1 + e−βλk,2)]− g

2
N(n−)

2. (61)
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Figure 12: Temperature dependence of order parameter of the orbital nematic state (g/t =

−1.8).

The self-consistency equation is determined by the condition

∂Ω

∂n−
= 0. (62)

which yields

n− =
2

N

∑

k

ξ−k√
(ξ−k )

2 + (ξ12k )2
[f(λk,1)− f(λk,2)]. (63)

Here f(x) is the Fermi distribution function,

f(x) =
1

eβx + 1
. (64)

Solving Eq.(63), we determine a value of the mean-field. We find that n− can become

finite for g/t ≤ −1.76, where the orbital nematic phase is stabilized (see details Fig.29

in Section 3). Figure 12 is the temperature dependence of n− for g/t = −1.8. Using

the value of n− at each temperature, we can easily obtain the band dispersion [Fig.11

(b)] and Fermi surfaces as well as the weight of the orbital components there [Eqs.(28)-

(31)] [Fig.10 (b)]. In the nematic phase (n− > 0), the dxz-orbital is occupied more than

the dyz-orbital. As a result, FS3 in Fig.10 (b) substantially shrinks and can disappear

for a larger n−, whereas FS1 and FS4 expand along the ky direction; FS2, on the other

hand, slightly expands along the kx direction for the parameter in Fig.10 (b). The band

dispersion necessarily becomes anisotropic between the (0, 0) − (π, 0) − (π, π) direction

and the (0, 0)− (0, π)− (π, π) direction as shown in Fig.11 (b). In addition, the nematic

order lifts the band degeneracy at k = (0, 0) and (π, π).

For the SDW order we may employ the following Hamiltonian

HSDW =
∑

k,σ

∑

α,β

εαβk d†k,σ,αdk,σ,β +
1

2N

∑

q

J(q)S(q) · S(−q). (65)

When we introduce a mean-field order such as

⟨Sz(Q)⟩ = meiQ·r (66)
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for Q = (±π, 0), (0,±π) and decouple the interaction term, we would then obtain the

mean-field Hamiltonian. However, it turns out that the assumption of Q = (±π, 0) and

(0,±π) is not valid in a low temperature region that we are interested in. In such a

region, the SDW order tends to become incommensurate, that is, its modulation vector

slightly shifts from (±π, 0) and (0,±π) in a whole parameter region where we study

superconducting instability in the present thesis. In addition, we do not consider a possible

superconducting instability inside the SDW phase in the present thesis. Therefore instead

of determing the SDW order parameter, we determine the SDW phase boundary by

computing the static spin susceptibility in the RPA as we shall show in Section 3.2,

2.3 Susceptibilities in RPA

We derive the orbital nematic susceptibility and the spin susceptibility in the Matsubara

formalism in the RPA. These susceptibilities play a role of glues of Cooper pairing in the

Eliashberg theory as we shall explain in Section 2.4. Moreover the static limit of those

susceptibilities determines the phase boundary of the orbital nematic order, SDW order,

and their possible incommensurate orders.

2.3.1 Orbital nematic susceptibility

The orbital nematic susceptibility is defined as

χON(q, iqm) =
1

N

∫ β

0

dτeiqmτ ⟨Tτn−(q, τ)n−(−q, 0)⟩, (67)

where Tτ is the time-order operator, and qm = 2mπT is bosonic Matsubara frequency

with m being an integer. The τ dependence of operators A(q, τ) = eτH0A(q)e−τH0 and

the expectation value are defined, respectively, as

⟨A⟩ = TrAe−βHON

Tre−βHON . (68)

We calculate the susceptibility using a diagramatic method in the RPA. The orbital

nematic interaction Eq.(23) is described in Fig.13 diagrammatically. The wavy line is

the bare interaction g, the open circles are the vertex Va,b(k,k + q) [see Eq.(26)], and

the lines with an arrow are the bare Green’s functions. Note that we here use the band

representation and thus the kinetic term is already diagonalized [Eq.(12)]. Therefore the

bare Green’s function is also diagonalized to be

Ĝ(0)(k, ikn) =

(
G(0)
11 (k, ikn) G(0)

12 (k, ikn)

G(0)
21 (k, ikn) G(0)

22 (k, ikn)

)
,

=

⎛

⎜⎝

1

ikn − λk,1
0

0
1

ikn − λk,2

⎞

⎟⎠ , (69)
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Vc,d(k'+q, k)Va,b(k, k+q)
g

k, ikn, a, k'+q, ik'n+iqm, c, '

k', ik'n, d, 'k+q, ikn+iqm, b, 

Figure 13: Diagramatic representation of the orbital nematic interaction [see Eq.(23)].

The line with an arrow is the bare Green’s function and the wavy line is the orbital

nematic interaction. The white circle denotes the vertex Va,b(k,k′).

where kn is fermionic Matsubara frequency kn = (2n− 1)πT and n is an integer.

In the RPA, χON is computed as a series of bubble diagrams as shown in Fig.14.

Writing the single bubble as −χON
0 (q, iqm), we obtain the RPA susceptibility:

− χON(q, iqm) = −χON
0 (q, iqm) + [−χON

0 (q, iqm)gχ
ON
0 (q, iqm)]+

[−χON
0 (q, iqm)gχ

ON
0 (q, iqm)gχ

ON
0 (q, iqm)] + · · · (70)

= −χON
0 (q, iqm)

{
1 + [−gχON

0 (q, iqm)] + [−gχON
0 (q, iqm)]

2 + · · ·
}

(71)

= − χON
0 (q, iqm)

1 + gχON
0 (q, iqm)

. (72)

If we put g = 0, we would obtain χON(q, iqm) = χON
0 (q, iqm). Hence χON

0 (q, iqm) is often

called as the bare susceptibility. Since χON
0 (q, iqm) corresponds to the single bubble, its

explicit form is easily computed by using the bare Green’s function because Eq.(69) is

already diagonalized. That is,

χON
0 (q, iqm)

=
1

N

∫ β

0

dτeiqmτ ⟨Tτn−(q, τ)n−(−q, 0)⟩0 (73)

= − 1

βN

∑

k,n,σ

∑

a,b,c,d

G(0)
c,a (k, ikn)Va,b(k,k+ q)G(0)

b,d (k+ q, ikn + iqm)Vd,c(k+ q,k), (74)

= − 2

N

∑

k

{
C+

k,k+q

[
f(λk+q,1)− f(λk,1)

λk+q,1 − λk,1 − iqm
+

f(λk+q,2)− f(λk,2)

λk+q,2 − λk,2 − iqm

]
+

C−
k,k+q

[
f(λk+q,1)− f(λk,2)

λk+q,1 − λk,2 − iqm
+

f(λk+q,1)− f(λk,2)

λk+q,1 − λk,2 + iqm

]}
, (75)

where

C±
k,k+q =

1

2

⎛

⎜⎝1±
ξ−k ξ

−
k+q − ξ12k ξ12k+q√

(ξ−k )
2
+ (ξ12k )2

√
(ξ−k+q)

2
+ (ξ12k+q)

2

⎞

⎟⎠ . (76)
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=

Va,b(k, k+q)

k+q, ikn+iqm

+

k, ikn

b

a

d

c

g

Vd,c(k+q , k)=

- ON (q ,iqm)

Figure 14: The orbital nematic susceptibility in the RPA. The line with an arrow is the

bare Green’s function of electrons, and the white circle is the vertex Eq.(26). The wavy

line is the bare orbital nematic interaction.

After the analytical continuation, iqm → ω + iη with η = +0, we obtain the dynamical

susceptibility. In particular, in the static limit, χON(q, 0) corresponds to the static orbital

nematic susceptibility.

2.3.2 Spin susceptibility

There are two spin susceptibilities: longitudinal and transverse ones. We first consider

the longitudinal spin susceptibility

χzz(q, iqm) =

∫ β

0

dτeiqmτ ⟨TτS
z(q, τ)Sz(−q, 0)⟩. (77)

In the band representation, the longitudinal spin interaction is given in Eq.(48), which

can be written diagrammatically in Fig.15. The black circles denote vertexes Eq.(44) and

the spring is the bare spin interaction J(q).

Similar to the case of the orbital nematic susceptibility, the longitudinal spin suscep-

tibility in the RPA is described by a series of the simple bubble connected by the spin

interaction as shown in Fig.16. Writing the single bubble as −χzz
0 (q, iqm), we obtain

−χzz(q, iqm) = −χzz
0 (q, iqm)

{
1 + [−J(q)χzz

0 (q, iqm)] + [−J(q)χzz
0 (q, iqm)]

2 + · · ·
}

(78)

= − χzz
0 (q, iqm)

1 + J(q)χzz
0 (q, iqm)

. (79)
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σ'Wc,d(k'+q, k)/2σWa,b(k, k+q)/2

k, ikn, a, σ k'+q, ik'n+iqm, c, σ'

k', ik'n, d, σ'k+q, ikn+iqm, b, σ

J(q)

Figure 15: Diagrammatic representation of the longitudinal component of the spin inter-

action [see Eq.(48)]. The line with an arrow are the bare Green’s function of electrons,

the black circle the vertex σ
2Wa,b(k,k′), and the spring the bare spin interaction J(q).

=

σWa,b(k, k+q)/2

k+q, ikn+iqm

k, ikn

b

a

d

c
σWd,c(k+q, k)/2

- zz(q, iqm)

+
J(q)

=

Figure 16: Diagrammatic representation of the longitudinal spin susceptibility in the RPA.

The line with an arrow is the bare Green’s funtion of electrons, the black filled circle the

vertex Eq.(47), and the spring the bare spin interaction.
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The bare spin susceptibility χzz
0 (q, iqm) is easily computed from Eqs.(47) and (69):

χzz
0 (q, iqm) =

∫ β

0

dτeiqmτ ⟨TτS
z(q, τ)Sz(−q, 0)⟩0 (80)

= − 1

βN

∑

k,n,σ

∑

a,b,c,d

G(0)
c,a (k, ikn)

σ

2
Wa,b(k,k+ q)G(0)

b,d (k+ q, ikn + iqm)
σ

2
Wd,c(k+ q,k)

(81)

= − 2

N

∑

k

{
D+

k,k+q

[
f(λk+q,1)− f(λk,1)

λk+q,1 − λk,1 − iqm
+

f(λk+q,2)− f(λk,2)

λk+q,2 − λk,2 − iqm

]
+

D−
k,k+q

[
f(λk+q,1)− f(λk,2)

λk+q,1 − λk,2 − iqm
+

f(λk+q,1)− f(λk,2)

λk+q,1 − λk,2 + iqm

]}
, (82)

where the form factor D±
k,k+q are given by

D±
k,k+q =

1

2

⎛

⎝1±
ξ−k ξ

−
k+q + ξ12k ξ12k+q

√
(ξ−k )

2 + (ξ12k )2
√
(ξ−k+q)

2 + (ξ12k+q)
2

⎞

⎠ . (83)

Note that the functional form of Eq.(82) is the same as the orbital nematic case [Eq.(75)],

but the sign in front of ξ12k ξ12k+q in Eq.(83) is different from that in Eq.(76). The dynamical

longitudinal spin susceptibility is obtained by the analytical continuation iqm → ω + i0.

In the static limit, χzz(q, 0) is reduced to the static longitudinal spin susceptibility, which

we shall use when determing the phase boundary of the SDW phase in Figs.44 and 50.

The transverse spin susceptibility is defined as

χ±(q, iqm) =

∫ β

0

dτeiqmτ ⟨TτS
+(q, τ)S−(−q, 0)⟩. (84)

In the disordered phase where SU(2) symmetry is preserved, the transverse spin suscep-

tibility is the same as the longitudinal one except for a factor of 2:

χ±(q, iqm) = 2χzz(q, iqm). (85)

2.4 Eliashberg theory

To explore a possible superconducting instability from orbital nematic and spin fluctu-

ations, we employ the Eliashberg theory, which is the standard theory of the supercon-

ductivity driven by fluctuations. First, we construct the pairing interaction, namely the

effective interaction between electrons in the Cooper channel in Section 2.4.1. Next, we

consider the self-energy contribution by evaluating the Fock diagram in Section 2.4.2.

While the self-energy effect is frequently neglected in the study of superconductivity in

FeSCs, it is crucially important to discussing the onset temperature of superconductivity.

Finally we obtain the linearized Eliashberg equations, which are the central expressions
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of the present thesis. The Eliashberg equations are, however, not easy to solve because

of the limitation of computer resources such as memory capacity. Hence recalling that

superconductivity is driven mainly by electrons near the Fermi energy, we simplify the

Eliashberg equations by focusing on such electrons. This simplification[32, 38] allows us

to solve the Eliashberg equations even at low temperature [Section 2.4.4].

2.4.1 Pairing interaction

We consider pairing interactions mediated by orbital nematic and spin fluctuations. In

the present two-band model, the Cooper pairing can form, in principle, between different

bands. However, we do not consider such a possibility in the present thesis because such

a pairing would likely have a finite momentum of the center of mass. Instead we consider

possible pairing between electrons in the same band with the opposite direction of spin.

Note that this does not necessarily exclude a possible triplet pairing. Although we shall

confirm by explicit calculations that a triplet state is not stabilized in our model, we find

a triplet pairing as the fourth leading instability in the orbital nematic phase [see Fig.69

(c)].

Our total pairing interaction Γ↑↓,ab(k, ikn;k′, ikn′) is given by

Γ↑↓,ab(k, ikn;k
′, ikn′) = ΓON

↑↓,ab(k, ikn;k
′, ikn′)+Γzz

↑↓,ab(k, ikn;k
′, ikn′)+Γ±

↑↓,ab(k, ikn;k
′, ikn′),

(86)

where ΓON
↑↓,ab(k, ikn;k

′, ikn′) comes from orbital nematic fluctuations, and Γzz
↑↓,ab(k, ikn;k

′, ikn′)

and Γ±
↑↓,ab(k, ikn;k

′, ikn′) are due to longitudinal and transverse spin fluctuations, respec-

tively. We derive those pairing interactions one by one.

Orbital nematic interaction

First we consider the pairing interaction from orbital nematic fluctuations ΓON
↑↓ (k, ikn;k′, ikn′),

which is described in Fig.17 diagrammaticaly. This figure contains the double wavy line,

which is the propagator of orbital nematic fluctuations, g̃(k− k′, ikn − ikn′). In the RPA

it is given by a series of simple bubbles as shown in Fig.18. Hence its calculation is very

similar to the calculation of the orbital nematic susceptibility [see Section 2.3.1].

g̃(k− k′, ikn − ikn′) = g + g[−χON
0 (k− k′, ikn − ikn′)]g+

g[−χON
0 (k− k′, ikn − ikn′)]g[−χON

0 (k− k′, ikn − ikn′)]g + · · · , (87)

= g{1 + [−gχON
0 (k− k′, ikn − ikn′)] + [−gχON

0 (k− k′, ikn − ikn′)]2 + · · · }, (88)

=
g

1 + gχON
0 (k− k′, ikn − ikn′)

, (89)

= g − g2χON
0 (k− k′, ikn − ikn′)

1 + gχON
0 (k− k′, ikn − ikn′)

, (90)

= g̃Ins + g̃Ret(k− k′, ikn − ikn′). (91)
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k', ikn', a, -k', -ikn', a,

-k, -ikn, b,k, ikn, b,

Va,b(k', k) Va,b(-k', -k)
g(k - k', ikn-ikn')
~

Figure 17: Diagrammatic representation of the pairing interaction from orbital nematic

fluctuations. The line with an arrow is the bare Green’s function of electrons, and the

open circle denotes the vertex Eq.(26), and the double wavy line is the propagator of

orbital nematic fluctuations g̃(k− k′, ikn − ikn′).

=

+

k', ikn', 

k, ikn, 

g

g

Va,b(k, k') Vd,c(k', k)

g(k - k', ikn-ikn')

a

b d

c

~

Figure 18: Diagrammatic representation of the pairing interaction due to the orbital

nematic interaction in the RPA. The single wavy line is the bare orbital nematic interac-

tion, the line with an arrow is the bare Green’s function, and the open circle is the vertex

Eq.(26).
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Note that we split g̃ into two parts in Eq.(90). One is

g̃Ret(q, iqm) =
−g2χON

0 (q, iqm)

1 + gχON
0 (q, iqm)

, (92)

which accounts for the retardation effect. The other part is g̃Ins = g, which is the instanta-

neous term and does not account for fluctuations. While superconducting instability can

occur also from the term g̃Ins, we assume that such an instantaneous effect is cancelled by

the Coulomb repulsion that we neglected in our model. For example, we would include

an interaction

H+
1 =

g+

2

∑

i

ni+ni+, (93)

where ni+ = ni,1 + ni,2. Recalling the orbital nematic interaction is given by its odd part

[see Eq.(19)], it is natural to assume the presence of its even part of interactions. The

sign of g+ would be positive due to the Coulomb repulsion, which cancel the effect of the

superconducting instability due to g̃Ins. Needless to say, the interaction term H+
1 yields

additional fluctuations, which, however, may not be enhanced near the orbital nematic

phase nor near the SDW phase. Therefore we do not consider fluctuation effects due to

Eq.(93). Instead we focus on the effect of g̃Ret on the superconducting instability and put

hereafter

g̃Ins = 0, (94)

and thus

g̃ = g̃Ret. (95)

Going back to Fig.17, we then obtain the pairing interaction from orbital nematic fluctu-

ations as

ΓON
↑↓,ab(k, ikn;k

′, ikn′) = V 2
a,b(k,k

′)g̃Ret(k− k′; ikn − ikn′). (96)

Longitudinal spin interaction

Similarly the pairing interaction from the longitudinal spin fluctuations is given by Fig.19.

The double spring J̃z(k− k′, ikn − ikn′) is the propagator of the longitudinal spin fluctu-

ations, which we calculate in the RPA as shown in Fig.20:

J̃z(k− k′, ikn − ikn′) = J(k− k′) + J(k− k′)[−χzz
0 (k− k′, ikn − ikn′)]J(k− k′)

+ J(k− k′)[−χzz
0 (k− k′, ikn − ikn′)]J(k− k′)[−χzz

0 (k− k′, ikn − ikn′)]J(k− k′) + · · · ,
(97)

= J(k−k′){1+[−J(k−k′)χzz
0 (k−k′, ikn−ik′

n)]+[−J(k−k′)χzz
0 (k−k′, ikn−ik′

n)]
2+· · · },

(98)

=
J(k− k′)

1 + J(k− k′)χzz
0 (k− k′, ikn − ikn′)

. (99)
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-k', -ikn', a,k', ikn', a,

-k, -ikn, b,k, ikn, b,

Jz(k - k', ikn-ikn')
~

-Wa,b(-k', -k)/2Wa,b(k', k)/2

Figure 19: Pairing interaction from the longitudinal spin fluctuations. The line with an

arrow is the bare Green’s function, and the black filled circle is the vertex Eq.(47), and the

double spring is the propagator of the longitudinal spin fluctuations J̃z(k−k′, ikn− ikn′).

This propagator consists of the retarded J̃z
Ret(k − k′, ikn − ikn′) and the instantaneous

term J̃z
Ins(k− k′):

J̃z(k− k, ikn − ikn′) = J̃z
Ins(k− k′) + J̃z

Ret(k− k′, ikn − ikn′) (100)

where

J̃z
Ins(k− k′) = J(k− k′), (101)

J̃z
Ret(k− k′, ikn − ikn′) = − J2(k− k′)χzz

0 (k− k′, ikn − ikn′)

1 + J(k− k′)χzz
0 (k− k′, ikn − ikn′)

. (102)

In contrast to the case of the pairing interaction due to the orbital nematic interaction,

the instantaneous part J̃z
Ins can be relevant to superconducting instability and thus we

keep it in the present theory. It is insightful to distinguish the effect of the instantaneous

interaction from the retardation effect and to clarify each effect on superconductivity.

Therefore, we write our pairing interaction due to longitudinal spin interactions as follows:

Γzz
↑↓,ab(k, ikn;k

′, ikn′) = −1

4
W 2

a,b(k,k
′)[J̃z

Ins(k− k′) + J̃z
Ret(k− k′, ikn − ikn′)]. (103)

Spin transverse interactions

The spin interaction also contain the transverse component. In the RPA, the pairing

interaction from the transverse spin fluctuations is described by as a series of ladder

diagrams, which is shown up to the third order in Fig.21. The dotted lines in Fig.21

is bare transverse interaction shown in Fig.22, where we include the vertex Wa,b(k,k′)

[Eq.(47)] in the bare transverse interaction. Moreover, a single ladder diagram is twice as

large as a single bubble in the normal phase, where spin rotational symmetry is preserved.

Hence we can write the pairing interaction from transverse spin fluctuations by using χzz
0 .

As we show in Eqs.(50)-(53), we have Wa,b(k,−k′)Wa,b(−k,k′) = [Wa,b(k,k′)]2. Hence

the first term in Fig.21 is given by

−1

2
J(k+ k′)[Wa,b(k,k

′)]2. (104)
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Jz(k - k', ikn-ikn')
~ J(k - k')

=

+ k, ikn, 

k', ikn', 

Wa,b(k, k')/2 Wd,c(k', k)/2
a

b d

c

Figure 20: Diagrammatic representation of longitudinal spin fluctuations (double wavy

line) in the RPA. The line with an arrow is the bare Green’s function, and the black filled

circle is the vertex Eq.(47) multiplied by spin σ, and the single spring is the bare spin

interaction J(q).

The second term then becomes

∑

k1,n1,a1,b1

[
−1

2
J(−k′ − k)

]2
[Wa,b(k,k

′)]2

×
{
[Wa1,b1(k1,−k′ + k1 − k)]2

[
− 1

βN
G(0)
a1 (k1, ikn1)G

(0)
b1

(−k′ + k1 − k,−ikn′ + ikn1 − ikn)

]}
.

(105)

Recalling Eq.(81), we see that the second term [Eq.(105)] is written by using χzz
0 :

[
1

2
J(k+ k′)

]2
[Wa,b(k,k

′)]2 · 2χzz
0 (k+ k′, ikn + ikn′). (106)

Similarly, the third term is

[
−1

2
J(k+ k′)

]3

×
{(

− 1

βN

) ∑

a1,b1,k1,n1

[Wb1,a1(k1 − k′ − k,k1)]
2 G(0)

a1 (k1, ikn1)G
(0)
b1

(k1 − k′ − k, ikn1 − ikn′ − ikn)

×
(
− 1

βN

) ∑

a2,b2,k2,n2

[Wb2,a2(k2 − k′ − k,k2)]
2 G(0)

a2 (k2, ikn2)G
(0)
b2

(k2 − k′ − k, ikn2 − ikn′ − ikn)

}
,

(107)

=

[
−1

2
J(k+ k′)

]3
[2χzz

0 (k+ k′, ikn + ikn′)]2 . (108)

Hence taking the sum of the ladder diagrams (Fig.21), we obtain the pairing interaction

34



-J(-k-k')Wa,b(k,-k')Wa,b(-k,k')/2

k,ikn,a,

k',ikn' ,b,

-k,-ikn,a,

-k',-ikn' ,b,

k,ikn,a,

k',ikn' ,b,

-k,-ikn,a,

-k',-ikn' ,b,

k1,ikn1,a1, -k'+k1-k,-ikn'+ikn1-ikn,b1,

-J(-k-k')Wa,b(k,-k')Wb1,a1(-k'+k1-k,k1)/2

-J(-k-k')Wa1,b1(k1,-k'+k1-k)Wa,b(-k,k')/2

k,ikn,a,

k',ikn' ,b,

-k,-ikn,a,

-k',-ikn' ,b,

k1,ikn1,a1, -k'+k1-k,-ikn'+ikn1-ikn,b1,

-k'+k2-k,-ikn'+ikn2-ikn,b2,

-J(-k-k')Wa,b(k,-k')Wb2,a2(-k'+k2-k,k2)/2

-J(-k-k')Wa2,b2(k2,-k'+k2-k)Wb1,a1(-k'+k1-k,k1)/2

-J(-k-k')Wa1,b1(k1,-k'+k1-k)Wa,b(-k,k')/2

k2,ikn2,a2,

+

+

+........

Figure 21: Diagrammatic representatiton of the pairing interaction from transverse spin

fluctuations up to the third order. The line with an arrow is the bare Green’s function,

and the dotted line bare transverse spin interaction −J(q)Wa,b(k,k+q)Wc,d(k
′+q,k′)/2
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k, ikn, a,

k'+q, ikn'+iqm, c,k+q ikn+iqm, b,

k', ikn', d,

-J(q)Wa,b(k, k+q)Wc,d(k'+q, k')/2

Figure 22: Diagram of the transverse component of the spin interaction (dotted line).

The line with an arrow is the bare Green’s function of electrons.

from the transverse spin interaction as follows:

Γ±
↑↓,ab(k, ikn;k

′, ikn′) = −1

2
J(k+ k′)[Wa,b(k,k

′)]2

×
{
1 +

[
−1

2
J(k+ k′)2χzz

0 (k+ k′, ikn + ikn′)

]
+

[
−1

2
J(k+ k′)2χzz

0 (k+ k′, ikn + ikn′)

]2
+ · · ·

}
, (109)

= −1

2
J(k+ k′)[Wa,b(k,k

′)]2
{
1 + [−J(k+ k′)χzz

0 (k+ k′, ikn + ikn′)]

+[−J(k+ k′)χzz
0 (k+ k′, ikn + ikn′)]2 + · · ·

}
, (110)

= −1

2
J(k+ k′)[Wa,b(k,k

′)]2
1

1 + J(k+ k′)χzz
0 (k+ k′, ikn + ikn′)

, (111)

= −1

2
[Wa,b(k,k

′)]2J̃z(k+ k′, ikn + ikn′). (112)

Note that the arguments of J̃z in Eq.(112) are k+ k′, ikn + ikn′ whereas they are k− k′

and ikn − ikn′ in the longitudinal spin interaction [Eq.(103)].

2.4.2 Self-energy

The self-energy effect in the Eliashberg theory is frequently neglected and is not much

discussed in the context of FeSCs. However, we shall show in Section 3 that the self-energy

effect is crucially important to the onset temperature of superconducting instability. In

the Eliashberg theory, the self-energy effect is considered in the Fock diagram. There are

three contributions:

Σa,b(k, ikn) = ΣON
a,b (k, ikn) + Σzz

a,b(k, ikn) + Σ±
a,b(k, ikn), (113)

where ΣON
a,b (k, ikn) is from the orbital nematic interaction [Eq.(32)], whereas Σzz

a,b(k, ikn)

and Σ±
a,b(k, ikn) are due to the longitudinal [Eq.(48)] and transverse [Eq.(49)] spin inter-

action, respectively.
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Vb1,b(k', k)Va,a1(k, k')

k,ikn,a, k,ikn,b,
k',ikn'

b1a1

g(k-k',ikn-ikn')
~

Figure 23: Self-energy diagram from the orbital nematic fluctuations (the double wavy

line). The double line with an arrow is the full Green’s function, whereas the open circles

are the vertex Eq.(26).

σWb1,b(k', k)/2σWa,a1(k, k')/2

k,ikn,a,σ k,ikn,b,σ
k',ikn'

b1a1

Jz(k-k',ikn-ikn')
~

Figure 24: Fock diagram due to the longitudinal spin interaction (double spring line). The

open circles are the vertex Eq.(47) and the double line with an arrow is the full Green’s

function of electrons.

We first evaluate ΣON
a,b (k, ikn), which is given by the diagram shown in Fig.23. Note

that the Green’s function of electrons is described in Fig.23 by a double line, namely a

renormalized Green’s function so that the self-energy effect is considered self-consistently.

In this diagram, the double wavy line and the two open circles are the same as those of

the pairing interaction in Fig.17 , but the arguments and band indices of V are different.

The Fock diagram is written as

ΣON
a,b (k, ikn) = − 1

βN

∑

a1,b1

∑

k′,n′

g̃(k− k′, ikn − ikn′)

× Va,a1(k,k
′)Ga1,b1(k

′, ikn′)Vb1,b(k
′,k), (114)

where Ga1,b1(k
′, ikn′) is the full Green’s function of electrons.

Figure 24 is the self-energy due to the longitudinal spin interaction Σzz
a,b(k, ikn), which

is a diagram similar to Fig.23. The vertex σ
2Wa,b(k,k′) comes from Eq.(48) [see also

Fig.15] and the longitudinal spin interaction J̃z is already computed in Eq.(99). Hence

the Fock diagram Fig.24 is evaluated as

Σzz
a,b(k) = − 1

βN

∑

a1,b1

∑

k′,n′

1

4
J̃z(k− k′, ikn − ikn′)Wa,a1(k,k

′)Ga1,b1(k
′, ikn′)Wb1,b(k

′,k).

(115)
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Note again that the full Green’s function Ga1,b1(k
′, ikn′) enters Eq.(115).

We next consider the self-energy due to the transverse spin interaction [Eq.(49)]. While

symbolically it is described as the same diagram as Figs.23 and 24, we present more details

in Fig.25. The first term in Fig.25 is calculated as below:

1

βN

∑

k′,n′

∑

a1,b1

[
−1

2
J(k− k′)

]2
Wb1,b(k

′,k)Wa,a1(k,k
′)

×
(
− 1

βN

)∑

c1,c

∑

k1,n1

[Wc,c1(k1,k1 − k+ k′)]2

× G(0)
c (k1, ikn1)G(0)

c1 (k1 − k+ k′, ikn1 − ikn + ikn′)Ga1,b1(k
′, ikn′), (116)

=
1

βN

∑

k′,n′,a1,b1

[
−1

2
J(k− k′)

]2
Wa,a1(k,k

′)Ga1,b1(k
′, ikn′)Wb1,b(k

′,k)[2χzz
0 (k−k′, ikn−ikn′)].

(117)

Similarly the second term is calculated as

1

βN

∑

a1,b1,k′,n′

[
−1

2
J(k− k′)

]3

×
(
− 1

βN

) ∑

c1,d1,k1,n1

[Wc1,d1(k1+k′−k,k1)]
2G(0)

c1 (k1+k′−k, ikn1 + ikn′ − ikn)G(0)
d1

(k1, ikn1)

×
(
− 1

βN

) ∑

c2,d2,k2,n2

[Wc2,d2(k2+k′−k,k2)]
2G(0)

c2 (k2+k′−k, ikn2 + ikn′ − ikn)G(0)
d2

(k2, ikn2)

×Wb1,b(k
′,k)Wa,a1(k,k

′)Ga1,b1(k
′, ikn′), (118)

=
1

βN

∑

a1,b1,k′,n′

[
−1

2
J(k− k′)

]3
Wa,a1(k,k

′)Wb1,b(k
′,k)Ga1,b1(k

′, ikn′)[2χzz
0 (k−k′, ikn−ikn′)]2.

(119)

The third term becomes

− 1

βN

∑

a1,b1,k′,n′

[
−1

2
J(k− k′)

]4

×
(
− 1

βN

) ∑

c1,d1,k1,n1

[Wc1,d1(k1+k′−k,k1)]
2G(0)

c1 (k1+k′−k, ikn1 + ikn′ − ikn)G(0)
d1

(k1, ikn1)

×
(
− 1

βN

) ∑

c2,d2,k2,n2

[Wc2,d2(k2+k′−k,k2)]
2G(0)

c2 (k2+k′−k, ikn2 + ikn′ − ikn)G(0)
d2

(k2, ikn2)

×
(
− 1

βN

) ∑

c3,d3,k3,n3

[Wc3,d3(k3+k′−k,k3)]
2G(0)

c3 (k3+k′−k, ikn3 + ikn′ − ikn)G(0)
d3

(k3, ikn3)

×Wb1,b(k
′,k)Wa,a1(k,k

′)Ga1,b1(k
′, ikn′), (120)

=
1

βN

[
−1

2
J(k− k′)

]4
Wa,a1(k,k

′)Wb1,b(k
′,k)Ga1,b1(k

′, ikn′)[2χzz
0 (k− k′, ikn − ikn′)]3.

(121)

38



k1, ikn1, c, 

k', ikn', k, ikn, a, 

 k1-k+k',
ikn1-ikn+ikn', c1, 

k, ikn, b, k, ikn, a, 

k, ikn, b, a1 b1

 k2-k+k',
ikn2-ikn+ikn'

 k1-k+k',
ikn1-ikn+ikn'

c2,  c1,  

k1, ikn1, d1, k2, ikn2, d2, 

k', ikn', a1 b1

k1, ikn1, d1, 

k2, ikn2, d2, 

k3, ikn3, d3, 

k, ikn, b, k, ikn, a, 

c1,  
k', ikn', a1 b1

c2,  

c3,  
 k1-k+k',
ikn1-ikn+ikn'

 k2-k+k',
ikn2-ikn+ikn'

 k3-k+k',
ikn3-ikn+ikn'

+

+
+ ......

-J(k-k')Wb1,b(k',k)Wc,c1(k1,k1-k+k')/2-J(k-k')Wa,a1(k,k')Wc1,c(k1-k+k',k1)/2

-J(k-k')Wb1,b(k',k)Wd2,c2(k2,k2-k'+k)/2-J(k-k')Wa,a1(k,k')Wc1,d1(k1-k'+k,k1)/2

-J(k-k')Wc2,d2(k2+k'-k,k2)Wd1,c1(k1,k1-k+k')/2

-J(k-k')Wc3,d3(k3-k+k',k3)Wd2,c2(k2,k2-k+k')/2

-J(k-k')Wb1,b(k',k)Wd3,c3(k3,k3-k+k')/2-J(k-k')Wa,a1(k',k)Wc1,d1(k1-k+k',k1)/2

-J(k-k')Wc2,d2(k2+k'-k,k2)Wd1,c1(k1,k1-k+k')/2

Figure 25: Self-energy due to the transverse spin interaction. The curves with an arrow are

the bare Green’s functions, and the dotted lines are the bare transverse spin interactions

(see Fig.22). The double lines with an arrow are the full Green’s functions of electrons.
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Summing all the terms, we obtain

Σ±
a,b(k, ikn) =

1

βN

∑

a1,b1,k′,n′

Wa,a1(k,k
′)Ga1,b1(k

′, ikn′)Wb1,b(k
′,k)

[
−1

2
J(k− k′)

]

× {−J(k− k′)χzz
0 (k− k′, ikn − ikn′) + [−J(k− k′)χzz

0 (k− k′, ikn − ikn′)]2 + · · · },
(122)

= − 1

2βN

∑

a1,b1,k′,n′

Wa,a1(k,k
′)Ga1,b1(k

′, ikn′)Wb1,b(k
′,k)

× J2(k− k′)χzz
0 (k− k′, ikn − ikn′)

1 + J(k− k′)χzz
0 (k− k′, ikn − ikn′)

, (123)

=
1

2βN

∑

a1,b1,k′,n′

Wa,a1(k,k
′)Ga1,b1(k

′, ikn′)Wb1,b(k
′,k)J̃z

Ret(k− k′, ikn − ikn′). (124)

In contrast to the case of the pairing interaction from the transverse spin fluctuations

[Eq.(112)], the momentum and energy transfer of J̃z is given by k − k′ and ikn − ikn′ ,

similar to ΣON
a,b (k, ikn) [Eq.(114)] and Σzz

a,b(k, ikn) [Eq.(115)].

The total self-energy may be written in a compact form

Σa,b(k, ikn) = ΣON
a,b (k, ikn) + Σzz

a,b(k, ikn) + Σ±
a,b(k, ikn) (125)

= − 1

βN

∑

k′,n′,a1,b1

Xa1,b1
a,b (k, ikn;k

′, ikn′)Ga1,b1(k
′, ikn′), (126)

where

Xa1,b1
a,b (k, ikn;k

′, ikn′) =

{
g̃(k− k′, ikn − ikn′)Va,a1(k,k

′)Vb1,b(k
′,k) +

1

4
[3J̃z

Ret(k− k′, ikn − ikn′) + J̃z
Ins(k− k′)]Wa,a1(k,k

′)Wb1,b(k
′,k)

}
. (127)

Although Σ±
a,b consists of the retarded term from the spin fluctuations [Eq.(124)], Σzz

a,b con-

tains from both the retarded and instantaneous term from the spin fluctuations [Eq.(115)].

This is the reason why the prefactors of J̃z
Ins and J̃z

Ret in Eq.(127) are different.

On the other hand, the self-energy is determined by the Dyson equation

Ga,b
−1(k, ikn) = G(0)

a,b

−1
(k, ikn)− Σa,b(k, ikn). (128)

Since the full Green’s function Ga,b(k, ikn) is included also in Σa,b(k, ikn), Eq.(128) is

the self-consistency equation for the self-energy Σa,b(k, ikn). In the Eliashberg theory,

we consider the effect of renormalization of quasi-particle weight as a major self-energy

effect. In addition, we assume that the major contribution to Σa,b(k, ikn) comes from the

intraband component and neglect the interband contribution. Therefore our self-energy

is appoximated as

Σa,b(k, ikn) ≃ [1− Za(k, ikn)]iknδa,b (129)
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=

φa(k,ikn)

φb(k',ikn')

,ab(k,ikn; k',ikn')

k, ikn, a,↑ -k, -ikn, a,↓

k, ikn, a,↑ -k, -ikn, a,↓

k', ikn', b,↑ -k', -ikn', b,↓

Figure 26: Diagrammatic representation of the linearized gap equation. The circle is the

pairing gap function and the box is the pairing interaction; the arrowed double line is the

full Green’s function.

in the Eliashberg theory. The Dyson’s equation [Eq.(128)] and the bare Green’s function

[Eq.(69)] imply that the full Green’s function becomes

Ga,b(k, ikn) =

⎛

⎜⎝

1

iknZ1(k, ikn)− λk,1
0

0
1

iknZ2(k, ikn)− λk,2

⎞

⎟⎠

a,b

. (130)

Therefore the self-energy Eq.(126) becomes

Σa,b(k, ikn) ≃
1

βN

∑

k′,n′,c

Xc,c
a,b(k, ikn;k

′, ikn′)
ikn′Zc(k′, ikn′) + λk′,c

[kn′Zc(k′, ikn′)]2 + (λk′,c)
2 (131)

Comparing Eq.(131) with Eq.(129), we obtain the self-consistency equation of Za(k, ikn)

[1− Za(k, ikn)]ikn =
1

βN

∑

k′,ikn′ ,c

Xc,c
a,a(k, ikn;k

′, ikn′)
iknZc(k′, ikn′)

[kn′Zc(k′, ikn′)]2 + (λk′,c)2
. (132)

This equation is the self-energy part of the Eliashberg theory. In addition, it follows that

Za(k, ikn) = Za(−k, ikn), (133)

because

Xcc
a,b(k, ikn;k

′, ikn′) = Xcc
a,b(−k, ikn;−k′, ikn′). (134)

2.4.3 Linearized Eliashberg equation

Since we are interested in the onset temperature of superconducting instability as well as

the momentum dependence of the pairing gap, we study the linearized gap equation. The
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0

0

π

π

i

j

Figure 27: Fermi surfaces in the first quadrant of the first Brillouin zone. Each Fermi

pocket is divided into small segments to include the momentum dependence of ∆a(k, ikn)

and Za(k, ikn).

gap equation is described in Fig.26 graphically, which implies

φa(k, ikn) = − 1

βN

∑

b,k′,n′

Γ↑↓,ab(k, ikn;k
′, ikn′)Gb(k

′, ikn′)Gb(−k′,−ikn′)φb(k
′, ikn′). (135)

Here we give a single a or b as an index of G because it is diagonal [see Eq.(130)]. The

gap φa(k, ikn) in Eq.(135) is connected with the physical gap function ∆a(k, ikn) via the

renormalization function Za(k, ikn)

φa(k, ikn) = Za(k, ikn)∆a(k, ikn). (136)

Using Eq.(130), we obtain the linearized gap equation

∆a(k, ikn) = − 1

βNZa(k, ikn)

∑

b,k′,n′

Γ↑↓,ab(k, ikn;k, ik′
n)

[kn′Zb(k′, ikn′)]2 + (λk′,b)
2Zb(k

′, ikn′)∆b(k
′, ikn′).

(137)

2.4.4 Simplification of Eliashberg equations

Equations (132) and (137) are called as the coupled Eliashberg equations. Solving these

equations is, however, very demanding in general. In particular, we aim to determine

not only the momentum dependence of the pairing gap but also the onset temperature

of superconductivity, which is expected to occur at temperature much lower than t. To

achieve our aim, we make the following simplifications of the Eliashberg equations.

Since superconductivity is a phenomenon near the Fermi surface, we project the pair-

ing interaction Γ and the renormalization function Z on each Fermi pocket. This idea

itself was employed already in Ref.[32]. We extend such a formalism by including the

momentum dependence of both pairing gap and renormalization function. That is, we

divide each Fermi pocket to small segments as illustrated in Fig.27. Although we show the
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Fermi surface in the first quadrand of the first Brillouin zone (0 ≤ kx, ky ≤ π) in Fig.27,

our calculations are done in the whole of the first Brillouin zone (−π ≤ kx, ky ≤ π).

We denote each Fermi-surface segment in terms of i, which carries information of the

momentum k and the band index a, namely,

Za(k, ikn) → Zi(ikn) (138)

∆a(k, ikn) → ∆i(ikn). (139)

The pairing interactions occurs between electrons on the Fermi-surface segments i and j.

Hence we averaged out the pairing interaction Eqs.(96), (103), (112), respectively,

ΓON
i,j (ikn, ikn′) = ⟨ΓON

↑↓,ab(k, ikn;k
′, ikn′)⟩ (140)

=
1
N

∑
k∈FSi

1
N

∑
k′∈FSj [Vi,j(k,k′)]2g̃(k− k′, ikn − ikn′)
1
N

∑
k∈FSi

1
N

∑
k′∈FSj

, (141)

Γzz
i,j(ikn, ikn′) = ⟨Γzz

↑↓,ab(k, ikn;k
′, ikn′)⟩ (142)

= −1

4

1
N

∑
k∈FSi

1
N

∑
k′∈FSj [Wi,j(k,k′]2J̃z(k− k′, ikn − ikn′)

1
N

∑
k∈FSi

1
N

∑
k′∈FSj

, (143)

Γ±
i,j(ikn, ikn′) = ⟨Γ±

↑↓,ab(k, ikn;k
′, ikn′)⟩ (144)

= −1

2

1
N

∑
k∈FSi

1
N

∑
k′∈FSj [Wi,j(k,k′)]2[J̃z(k+ k′, ikn + ikn′)]

1
N

∑
k∈FSi

1
N

∑
k′∈FSj

. (145)

(146)

Here
∑

k∈FSi
is a summation with respect to k on each Fermi-surface segment i. Note that

the vertices Va,b(k,k′) and Wa,b(k,k′) are written in the above expressions as Vi,j(k,k′)

and Wi,j(k,k′), respectively. Similarly

Xi,j(ikn, ikn′) = ⟨Xb,b
a,a(k, ikn;k

′, ikn′)⟩

=
1

1
N

∑
k∈FSi

1
N

∑
k′∈FSj

1

N

∑

k∈FSi

1

N

∑

k′∈FSj

{
g̃(k− k′, ikn − ikn′)[Vi,j(k,k

′)]2

+
1

4
[3J̃z

Ret(k− k′, ikn − ikn′) + J̃z
Ins(k− k′)][Wi,j(k,k

′)]2
}
. (147)

The momentum dependence perpendicular the Fermi surface in the band λk,a is con-

sidered by replacing it with the density of state:

1

N

∑

k∈FSi

1

A2 + (λk,i)2
=

∫ Λ

−Λ

dε
1

N

∑

k∈FSi

δ(ε− λk,i)
1

A2 + ε2
(148)

=

∫ Λ

−Λ

dεNi(ε)
1

A2 + ε2
. (149)

Here Λ is a cutoff and Ni(ε) is the density of states on the Fermi-surface segment i.

Assuming that the density of states is approximated by its value as at the Fermi energy
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Ni(0), we can evaluate Eq.(149):

1

N

∑

k∈FSi

1

A2 + (λk,i)2
≃ Ni(0)

∫ Λ

−Λ

dε
1

A2 + ε2
≃ Ni(0)

∫ ∞

−∞
dε

1

A2 + ε2
(150)

=
πNi(0)

|A| . (151)

The resulting Eliashberg equations Eqs.(132) and (137) become

(1− Zi(ikn))ikn =
π

β

∑

j,n′

Nj(0)
ikn′Xi,j(ikn, ikn′)Zj(ikn′)

|kn′Zj(ikn′)| , (152)

∆i(ikn) = − π

βZi(ikn)

∑

j,n′

Nj(0)
Γi,j(ikn, ikn′)

|kn′ |
Zj(ikn′)

|Zj(ikn′)|∆j(ikn′), (153)

where

Γi,j(ikn, ikn′) = ΓON
i,j (ikn, ikn′) + Γzz

i,j(ikn, ikn′) + Γ±
i,j(ikn, ikn′). (154)

It may be reasonable to assume that electrons can be treated as a Fermi liquid, which

allows us to invoke Zi(ikn) ≥ 1. Equations (152) and (153) are then reduced to

Zi(ikn) = 1− π

β

∑

j,n′

Nj(0)
kn′Xi,j(ikn, ikn′)

kn|kn′ | (155)

∆i(ikn) = − π

βZi(ikn)

∑

j,n′

Nj(0)
Γi,j(ikn, ikn′)

|kn′ | ∆j(ikn′). (156)

Note that the Z dependence on the right band side on Eq.(152) is cancelled out in

Eq.(155). Hence we need to solve Eq.(156), which can be regarded as an eigenvalue

equation, that is,

λ∆i(ikn) =
∑

j,n′

Mi,n;j,n′∆j(ikn′), (157)

where the matrix Mi,n:j,n′ is given by

Mi,n;j,n′ = −πNj(0)

β

Γi,j(ikn, ikn′)

Zi(ikn)|kn′ | . (158)

Hence the solution of the Eliashberg equation is obtained when λ reaches unity and the

superconducting state is realized in λ ≥ 1. We compute the eigenvalues λ of Eq.(157)

with decreasing temperature and find the temperature at which λ = 1 is obtained. The

corresponding eigenvector ∆i(ikn) describes the momentum dependence of the pairing

gap. While the pairing gap ∆i(ikn) and the renormalization function Zi(ikn) depend on

Matsubara frequency, we show their momentum dependences at the lowest Matsubara

frequency, namely at k0 = πT , in Section 3, as usually done in studies of superconductiv-

ity.
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Chapter 3

Results

Previous studies[23, 30, 31, 32] found that orbital nematic fluctuations can be a high-Tc

mechanism of the superconductivity in FeSCs. However, the structure of the pairing gap

has not been clarified in the presence of the self-energy effect, although it is observed di-

rectly by angle-resolved photoemission spectroscopy (ARPES) and can play a crucial role

to identify the mechanism of the superconductivity. Therefore we solve the Eliashberg

equations [Eqs.(155) and (156)] numerically by including the self-energy effect [Eq.(155)]

and determine the structure of the pairing gap as well as Tc from orbital nematic fluctu-

ations in Section 3.1. In FeSCs, spin fluctuations are also expected to be present. Hence

employing the same theoretical framework as orbital nematic fluctuations, we study the

superconductivity from spin fluctuations alone in Section 3.2 and from both the orbital

nematic and spin fluctuations in Section 3.3. Since spin fluctuations alone turn out to be

difficult to realize superconductivity, we also study possible superconductivity from the

instantaneous spin interaction in Section 3.4.

3.1 Superconductivity from orbital nematic fluctua-

tions

First we study the superconductivity from the orbital nematic fluctuations [Eq.(92)]

by solving Eliashberg equations [Eqs.(155) and (156)] numerically; the spin interactions

[Eqs.(101) and (102)] is fully discarded in the present subsection. After clarifying the pa-

rameter region, where the orbital nematic phase is stabilized in Section 3.1.1, we consider

superconducting instability in the tetragonal phase in Section 3.1.2 and in the nematic

phase in Section 3.1.3. Obtained results are summerized in Section 3.1.4.

3.1.1 Static orbital nematic susceptibility

Before studying superconducting instability from orbital nematic fluctuations, we first

study the static orbital nematic susceptibility [Eq.(72)]. Figure 28 (a) shows the mo-
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Figure 28: Static orbital nematic susceptibility χON(q, 0) for several choices of tempera-

ture (a) in the tetragonal phase (g/t = −1.7) and (b) in the nematic phase (g/t = −1.8).

mentum dependence of the static susceptibility for several choices of temperature. The

static suseptibility is enhanced around q = (0, 0). For g/t = −1.7, the susceptibility has

a peak away from q = (0, 0) and the peak develops with decreasing temperature [Fig.28

(a)]. The susceptibility, however, does not diverge at any q down to zero temperature.

With increasing the interaction strength g, the peak height increases and the peak posi-

tion shifts closer to q = (0, 0). The susceptibility finally diverges at a momentum slightly

away from q = (0, 0) at g/t = −1.76 near zero temperature, signalling the orbital nematic

phase characterized by the momentum slightly away from q = (0, 0). This finite q-region

is, however, very limited and the susceptibility has a peak at q = (0, 0) for g/t = −1.8

[Fig.28 (b)] and diverges at T/t ≃ 0.10. Below this temperature, the orbital nematic

order develops. The susceptibility is then suppressed due to the nematic order, but still

has a peak at q = (0, 0) at T/t = 0.03 as shown in Fig.28 (b).

The divergence of the static susceptibility [Eq.(74)] determines the phase boundary of

the orbital nematic phase. Hence we solve the equation

1 + gχON
0 (q, 0) = 0 (159)

in the plane of the strength of the orbital nematic interaction g and temperature T . The

obtained phase boundary is shown in Fig.29. While there is a small region surrounded by

dotted line and the solid line where the orbital nematic order is characterized by a mo-

mentum slightly shifted from q = (0, 0), most of the orbital nematic phase is characterized

by the momentum q = (0, 0).

3.1.2 Superconductivity in the tetragonal phase

We take g = −1.7t where the tetragonal state is stable down to zero temperature as shown

in Fig.29. We calculate orbital nematic fluctuations g̃Ret(q, iqm) [Eq.(92)] and obtain

the superconducting pairing potential ΓON
i,j [Eq.(141)] and the renormalization function
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Figure 30: Temperature dependence of the five largest eigenvalues of the Eliashberg equa-

tions in the tetragonal phase (g/t = −1.7). At T = 0.034t, the largest eigenvalue exceeds

unity, where the superconducting instability occurs.

Zi(ikn) [Eq.(155)]. We then diagonalize the matrix Eq.(158) numerically and calculate

its eigenvalues and eigenvectors at various temperatures. The temperature at which the

largest eigenvalue exceeds unity is the onset temperature of superconductivity and the

corresponding eigenvector describes the momentum dependence of the superconducting

gap.

We show five largest eigenvalues as a function of temperature in Fig.30. With decreas-

ing temperature, all those eigenvalues are enhanced and the largest eigenvalue exceeds

unity at Tc/t = 0.034, where the superconducting instability occurs. Because we have

allowed the momentum dependence of the pairing gap, there is a possiblity that Tc could

be increased compared with Tc obtained in Ref.[32] where the pairing gap on each Fermi

pocket is assumed to be constant. However, obtained Tc turns out to be almost the same

as that in Ref.[32].

We show the gap function corresponding to the largest eigenvalue at Tc along each

Fermi pocket in Fig.31. The pairing gap has the same sign on all FSs. In this sense,

the pairing gap is characterized by s++-wave symmetry. The modulation of the gap

is at most 4% on FS2 and thus the pairing gap is considered to be almost isotropic.

The weak modulation on the hole pockets can be understood in terms of the orbital

components on each Fermi pocket (see Fig.10), that is, the gap is slightly suppressed

around a region where the two orbitals have the same weight on the hole pockets around

θ = π/4, 3π/4, 5π/4, and 7π/4. On the other hand, the very small modulation on the
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Figure 31: (a) Momentum dependence of the leading pairing gap in the tetragonal phase

at T = Tc. The horizontal axis θ is an angle measured from the kx axis on each Fermi

pocket shown in (b). (b) Sketch of the pairing gap, where the size of the gap is expressed

with the thickness of each Fermi pocket.

electron pockets comes from the shape of the Fermi surfaces. The gap becomes larger

on a region where the curvature of the electron pockets is smaller. We defer the pairing

gap corresponding to subleading instabilities to the Appendix (Section 5.1). Here we just

mention that the second largest eigenvalue corresponds to dx2−y2-wave superconductivity

and is nearly degenerate with the leading one, similar to the previous study [32].

Figure 32 shows the momentum dependence of the renormalization function [Eq.(155)].

On the electron pockets a value of Z is around 1.6 and is nearly isotropic on the hole

pockets. Z might seem to have a large anisotropy, but the anisotropy is at most 6%. A

value of Z becomes as large as around 3.6 on the electron pockets, which indicates that

orbital nematic fluctuations lead to strong-coupling superconductivity, not weak-coupling

BCS superconductivity.

To clarify the major scattering processes to drive the superconductivity, we com-

pute the eigenvalues of the Eliashberg equations for three different scattering processes,

namely within the the same Fermi pockets (“Intra”-scattering processes), between the

hole and electron pockets (“(π, 0)”-scattering processes), and between the different hole

(electron) pockets (“(π, π)”-scattering processes) [see Fig.33 (b)]. The eigenvalue of the

Eliashberg equation, denoted by “All” in Fig.33 (a), is computed by considering all three

scattering processes and is almost reproduced only by the intra-Fermi-pocket scattering

processes. This means that the superconductivity from orbital nematic fluctuations is

driven essentially by the scattering processes with a small momentum transfer. This re-

sult is reasonable because orbital nematic fluctuations occur around momentum transfer

q = (0, 0).
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Figure 33: (a) The temperature depenence of the largest eigenvalues in the tetragonal

phase for specific scattering processes. “All” denotes that all scattering processes are

considered and is the same as the largest eigenvalue in Fig.30. “Intra” considers scatter-

ing processes only within the same Fermi pocket, “(π, 0)” only between hole and electron

pockets, and “(π, π)” only between the hole (electron) pockets, as shown in (b). (b) Sketch

of scattering processes. There are three different scattering processes: intra Fermi-pocket

scattering processes (green), (π, 0)-scattering processes (blue), and (π, π)-scattering pro-

cesses (orange).
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Figure 34: Temperature dependence of the eigenvalues of the Eliashberg equations for

g/t = −1.8. The eigenvalues are plotted from the first to the fifth largest ones.

Orbital nematic fluctuations, also contain fluctuations with large momentum transfer,

although they are weak. It is rather surprising that those weak fluctuations especially

“(π, 0)” processes in Fig.33 (a) can lead to the eigenvalue as large as λ ≃ 0.6 at low

temperature. In Fig.33 (a), the eigenvalue of “All” processes becomes slightly larger than

that of “Intra” processes. This indicates that all scattering processes contained in orbital

nematic fluctuations work cooperatively to drive the superconductivity.

3.1.3 Superconductivity inside the nematic phase

Next we choose g = −1.8t in Fig.29, where orbital nematic instability occurs at TON ≃
0.10t. Below TON, the orbital nematic order n− becomes finite. A value of n− is determined

by solving the self-consistent equation [Eq.(63)] and its temperature dependence is already

shown in Fig.12. This nematic order leads to breaking of fourfold symmetry; FS1 and FS4

(FS2) are elongated along the ky (kx) direction whereas FS3 becomes small to shrink as

shown in Fig.10. The effect of the nematic order enter Eq.(59) and nematic fluctuations

inside the nematic phase are computed by using the dispersion Eq.(59). As expected, the

orbital nematic susceptibility is strongly suppressed with increasing the nematic order

parameter as shown in Fig.28 (b). A natural question is whether superconductivity occurs

even in such a situation.

We solve the Eliashberg equations [Eqs.(155) and (156)] for g = −1.8t and its eigen-

value is plotted as a function of temperature in Fig.34. With decreasing temperature,

not only the largest eigenvalue but also the second, third, fourth and fifth largest one in-

crease and approach unity at T/t ≃ 0.10. This temperature corresponds to TON, namely

the onset temperature of the orbital nematic phase. All the eigenvalues, however, do
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Figure 35: Momentum dependence of the leading pairing gap along each Fermi pocket in

the nematic phase (g/t = −1.8). See the caption in Fig.31 for details.

not exceed unity and instead are suppressed below TON, leaving a cusp structure there.

This seemingly odd result is easily understood in terms of the self-energy effect. Around

TON, the orbital nematic fluctuations become very strong, which tends to drive the super-

conductivity. On the other hand, the renormalization function Zi(ikn) [Eq.(155)] is also

enhanced around TON, which tends to suppress the superconducting instability. These

two opposite effects make a cusp around TON in Fig.34 and the resulting superconduct-

ing instability does not occur. When the system enters the nematic phase below TON,

orbital nematic fluctuations are suppressed due to the development of the nematic order

[see Figs.28 (b) and 12]. All eigenvalues in Fig.34, therefore, are suppressed below TON.

However, the largest eigenvalue starts to increase below T ≃ 0.07t and finally exceeds

unity at Tc/t = 0.034 where the superconducting instability occurs.

The corresponding pairing gap in the leading instability is shown in Fig.35. The

symmetry of the pairing gap remains s++-wave even in the nematic order. The pairing

gap stays nearly isotropic on the electron pockets, but it acquires a large anisotropy on

the hole pockets. The modulation becomes as large as 40% with a large gap at θ = 0, π

(π/2, 3π/2) on the FS1 (FS2). This modulation can be understood in terms of the

orbital components on each Fermi pocket (see Fig.10). In the nematic phase, the dxz-

orbital is occupied more than the dyz-orbital. The pairing gap then becomes large (small)

on the region where dxz (dyz)-orbital is dominant, leading to a large modulation of the

pairing gap. For the pairing gap corresponding to other eigenvalues, see the Appendix

(Section 5.1).

While values of Z (Fig.36) on FS1 and FS2 do not change much compared with

the corresponding results in the tetragonal phase (Fig.32), the nematic order strongly

suppresses Z to be ≃ 2.5 and ≃ 1.8 on FS3 and FS4, respectively. This is because
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the nematic phase (g/t = −1.8).
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Figure 37: Temperature dependence of the largest eigenvalues of the Eliashberg equations

for various scattering processes, “All”, “Intra”, “(π, 0)”, and “(π, π)”; see the caption in

Fig.33.

nematic fluctuations are suppressed inside the nematic phase, although they are still

strong enough to drive superconductivity (Fig.34).

To clarify the major scattering processes driving the superconductivity inside the

nematic phase, we compute the eigenvalue of the Eliashberg equations by classifying scat-

tering processes into three: within the same Fermi pocket, between the hole and electron

pockets, and between the different hole (electron) pockets; See Fig.33 (b). Obtained

eigenvalues are plotted as a function of temperature in Fig.37. Intra-pocket scattering

processes are the major contributions to the superconductivity inside the nematic phase.

However, scattering processes of “(π, 0)” and “(π, π)” yield sizable eigenvalues, which

reash as large as 0.6 and 0.4, respectively, at lowest temperature. The three different

scattering processes work cooperatively in the sense that the eigenvalue of “All” becomes

larger than that of “Intra”.

53



0

0.05

0.1

0.15

0.2

-1.9 -1.8 -1.7 -1.6 -1.5

T/
t

g/t

SC

NON

ON+SC

Figure 38: Phase diagram when considering only the orbital nematic fluctuations in the

plane of the interaction strength g/t and the temperature T/t. The purple line shows

the boundary of orbital nematic phase (ON) and the green line the boundary of the

superconducting phase (SC). “N” is the normal metallic phase, namely the tetragonal

phase.
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3.1.4 Summary of superconductivity from orbital nematic fluc-

tuations

We perform similar calculations in both tetragonal and nematic phases by choosing dif-

ferent values of g and summarize obtained Tc in Fig.38. Tc tends to be enhanced upon

approaching the orbital nematic phase. The superconducting instability occurs also inside

the nematic phase, which may lead to the coexistence of the superconductivity and the

orbital nematic order at lower temperature. Our Tc is enhanced upon deeply entering the

nematic phase. This may be due to the subtle balance among three factors: i) a value of

g becomes larger, which induces stronger fluctuations, ii) nematic fluctuations are sup-

pressed inside the nematic phase, which is not favorable to superconducting instability

from a view of the pairing potential, and iii) on the other hand, the suppression of the

nematic fluctuations inside the nematic phase is favorable to the superconductivity from

a view of the self-energy effect. For g/t = −1.9, FS3 disappears due to a large nematic

order. However, a high Tc is still obtained and the gap structure is qualitatively the same

as that for g/t = −1.8 (Fig.35); See the Appendix (Section 5.1) for details. In our phase

diagram (Fig.38), Tc varies from 0.01t to 0.05t. Since a comparison with first-principle

calculations[15] suggests that the value of t is about 150 meV, orbital nematic fluctu-

ations can drive Tc with 15K − 75K, which is comparable to Tc in FeSCs. Therefore

we confirm that orbital nematic fluctuations indeed provide a new high-Tc mechanism

after our achieving more complete calculations including the momentum dependence of

the pairing gap, which was neglected in the previous study [32]. While the pairing gap

is almost isotropic s++-wave in the tetragonal phase, it acquires a large anisotropy on

the hole pockets in the nematic phase, although the gap on the electron pockets remains

almost isotropic.

3.2 Superconductivity from spin fluctuations

In FeSCs, spin fluctuations are also expected to be present. Given that there are much

less studies about the self-energy effect and the actual value of Tc of superconductivity

in the spin fluctuation mechanism, it is worthwhile studying possible superconductivity

due to spin fluctuations in the same theoretical scheme as the orbital nematic case. As a

pairing interaction [Eqs.(143) and (145)], we consider only spin fluctuations and discard

orbital nematic fluctuations in this section. To study the effect of the nematic order,

we shall introduce a finite strength of the orbital nematic interaction g (= −1.8t), but

even in such a case, associated nematic fluctuations are still discarded in this section. As

mentioned in Section 2 we consider two types of spin interactions, namely the Lorentz

type [Eq.(36)] and the J1 − J2 type [Eq.(40)]. We first study the superconductivity from

the Lorentz-type spin fluctuations in Section 3.2.1, and the J1− J2-type spin fluctuations

in Section 3.2.2. Obtained results are summarized in Section 3.2.3.
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Figure 39: Magnetic phase diagram due to the Lorentz-type spin fluctuations (a) in the

absence of the nematic order (g/t = 0) and (b) in the presence of the nematic order at low

temperature (g/t = −1.8). “N” stands for the normal metallic (tetragonal) phase and the

SDW phase can be characterized by the momentum slightly away from q = (π, 0) below

the temperature marked by cross. The solid line in (b) denotes the onset temperature of

the orbital nematic order.

3.2.1 Lorentz-type spin interaction

We study the superconductivity from the Lorentz-type spin fluctuations [Eq.(36)], which

may correspond to the itinerant limit of the spin interaction (see discussions in Sec-

tion 2.1.3). We first consider the case in the absence of the nematic order and determine

a magnetic phase diagram [Fig.39 (a)] in the plane of the spin interaction strength J [see

Eq.(36)] and temperature T by the solving the equation

1 + J(q)χzz(q, 0) = 0, (160)

where the static spin susceptibility diverges [see Eq.(82)]. The parameter Γ in Eq.(36)

is fixed Γ = 1.0 in this thesis. We find that the transition line starts to bend inward

below T ≃ 0.3t and bend back outward below T ≃ 0.05t. To understand this peculiar

dependence, we show the q-dependence of the static susceptibility [Eq.(82)] in Fig.40 (a)

in the tetragonal phase at T/t = 0.10 and 0.01 for J/t = 3.20. Since these susceptibility

is calculated in the tetragonal phase, the peaks at q = (π, 0) and (0, π) are equivalent.

We find that the bending in 0.3t ≥ T ≥ 0.05t comes from the fact that the Fermi surface

nesting does not occur perfectly at q = (π, 0) and (0, π) (see Fig.10), and thus the resulting

susceptibility is suppressed at q = (π, 0) and (0, π) at lower T . The peak position then

shifts slightly away from q = (π, 0) and (0, π) as shown in the results at T = 0.01t in

Fig.40 (a). With further decreasing temperature, the susceptibility diverges at q ̸= (π, 0),
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Figure 40: Static spin susceptibility χzz(q, 0) for the Lorentz-type spin interaction for

several choices of temperature (a) in the absence of the nematic order (g/t = −1.7) and

(b) in the presence of the nematic order at lower temperature (g/t = −1.8) along the line

illustrated in the inset.

leading to SDW phase characterized by the momentum slightly far away from q = (π, 0).

As a result, the transition line has a tale below T/t = 0.05t in Fig.39 (a).

To explore possible superconductivity near the SDW phase we solve the Eliashberg

equations [Eqs.(155) and (156)] by considering spin fluctuations alone [Eqs.(143) and (145)];

not only orbital nematic fluctuations [Eq.(141)] but also the instantaneous spin interac-

tion [Eq.(101)] is discarded. The eigenvalue of the Eliashberg equations is plotted in

Fig.41 (a) as a function of temperature, where we also plot the eigenvalue for three differ-

ent scattering processes: “Intra”, “(π, 0)”, and “(π, π)” scattering processes in the same

way as Fig.33. The eigenvalue from the (π, 0) scattering procceses (blue) is the largest,

indicating that the spin fluctuations with momentum transfer around q = (π, 0) tend

to drive superconductivity. However, the largest eigenvalue does not reach unity even

in the vicinity of the SDW transitions [see Fig.39 (a) for J/t = 3.2 at T/t ≃ 0.01].

On the other hand, the eigenvalues from the intra-pocket scattering processes (green)

and the (π, π) scattering processes (orange) are quite small. In particular, the former is

almost zero. Hence one would safely neglect the intra-pocket scattering processes. How-

ever, the intra-pocket scattering processes play an important role. In fact, the eigenvalue

from all scattering processes (gray line) is almost reproduced by considering (π, 0)- and

intra-pocket-scattering processes (yellow line). This means that the weak intra-pocket

scattering processes suppress the eigenvalues coming from the (π, 0) scattering processes

about 7%. The intra-pocket scattering processes occur for a small q, typically around

q = (0, 0). Given that the static susceptibility becomes very weak around q = (0, 0)

[Fig.40 (a)], spin fluctuations associated with a small q are also very small. It is sur-

prising that such weak fluctuations are responsible for the suppression of the eigenvalue.

We call this suppression as a self-restraint effect of superconductivity due to spin fluctua-

tions in the sense that dominant spin fluctuations around momentum transfer q = (π, 0)

necessarily have some tail far away q = (π, 0), yielding very weak intra-pocket scattering
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Figure 41: Temperature dependence of eigenvalues for the Lorentz-type spin fluctuations

(a) in the tetragonal phase (J/t = 3.2, g/t = 0) and (b) in the nematic phase (J/t =

2.8, g/t = −1.8). See the caption in Fig.33 for the legend.
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Figure 42: Momentum dependence of the pairing gap due to the Lorentz-type spin fluc-

tuations at the lowest temperature (a) in the tetragonal phase (g/t = 0) and (b) in the

nematic phase (g/t = −1.8). The angle θ is measured from the kx axis; see Fig.31.

processes, which in turn suppress the tendency of the superconducitng instability. As a

result, the eigenvalue corresponding to “All” tends to be suppressed and spin fluctuations

cannot drive superconductivity even close to the SDW phase. Note that if the self-energy

effect is neglected, we would obtain λ = 1 as we shall discuss in Section 5.2.2.

Although the eigenvalues do not reach unity, we show the momentum dependence of

the pairing gap at the lowest temperature (T/t = 0.01) in Fig.42 (a). On the hole pockets

(FS1 and FS2) the pairing gap is almost isotropic, while the gap becomes anisotropic on

the electron pockets (FS3 and FS4) with its modulation about 20%. The pairing gap has

the opposite sign between the gap on the hole and electron pockets, indicating s±-wave

symmetry. Our obtained gap structure is consistent with typical results for the possible

superconductivity driven by spin fluctuations in FeSCs[15].

The momentum dependence of the corresponding renormalization function is shown

58



Z(
, i

T)

(a) J/t=3.2, T/t=0.01,g=0 (b) J/t=2.8, T/t=0.04, g=-1.8t

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3

0 /2 3 /2 2

FS1
FS2
FS3
FS4

1

1.1

1.2

1.3

1.4

1.5

1.6

0 /2 3 /2 2

FS1
FS2
FS3
FS4

Figure 43: Momentum dependence of the renormalization function due to the Lorentz-

type spin interaction (a) in the tetragonal phase and (b) in the nematic phase (g/t =

−1.8).

in Fig.43 (a). The modulation is very weak at most 6% and can be regarded to be almost

isotropic. A value of Z becomes the highest on the hole pocket around q = (0, 0) (FS1)

and is about 2.2, whereas it is about 1.3 on the other pockets. These values of Z are

smaller than the corresponding results for the orbital nematic fluctuations (see Fig.32).

In this sense, the self-energy effect is weaker for spin fluctuations.

Although we cannot obtain the superconductivity from spin fluctuations, we make a

phase diagram by drawing contour lines of the eigenvalues of the Eliashberg equations in

Fig.44 (a). The eigenvalues become larger near the SDW phase and at lower temperature,

but the superconductivity does not occur even very close to the SDW phase, because of the

self-energy effect and the self-restraint effect of superconductivity from spin fluctuations.

Impact of the orbital nematic order

We next study possible superconductivity in the orbital nematic phase, where the sys-

tem breaks fourfold symmetry and becomes anisotropic. We take g/t = −1.8 to realize

the nematic phase below TON ≃ 0.10t (Fig.29), but note that we discard orbital nematic

fluctuations and consider exclusively spin fluctuations [Eqs.(143) and (145)]; the instan-

taneous spin interaction [Eq.(101)] is also neglected. Our calculations are essentially the

same as those in the tetragonal phase. The differences lie in the following two: i) the ne-

matic order parameter n− is determined for g/t = −1.8 and the band dispersion Eq.(59)

is employed, instead of Eqs.(2) and (3), and ii) we take J/t = 2.8 to consider the super-

conductivity, instead of J/t = 3.2 because the nematic order changes the magnetic phase

boundary. To highlight the effect of the nematic order, we present the corresponding

results on the right hand in Figs.39-44.

Figure 39 (b) is the magnetic phase diagram constructed by solving Eq.(160). The

phase diagram is essentially the same as Fig.39 (a): bending of the phase boundary and

a magnetic phase characterized by the momentum slightly away from q = (π, 0) at low

temperature. A crucial difference between Figs.39 (a) and (b) is a scale of the horizontal
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J and temperature T . Because the superconducting instability does not occur, the contour
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orbital nematic (ON) phase and the SDW phase: The nematic phase in (b) changes to

the tetragonal phase above TON ≃ 0.10t for g = −1.8t.

axis. To see this reason, we plot the static spin susceptibility χzz(q, 0) in Fig.40 (b).

The susceptibility shows two peaks at (π, 0) and (0, π) for J = 3.2t at T = 0.15t. With

decreasing temperature, the orbital nematic order n− develops below TON ≃ 0.10t (see

Fig.12) and each Fermi pocket starts to deform as shown in Fig.10 (b). In particular, the

electron pocket around k = (π, 0) (FS3) starts to shrink. As a result, the nesting between

hole and electron pocket with momentum q = (π, 0) becomes much worse than that with

q = (0, π). Hence the susceptibility exhibits a big anisotropy between q = (π, 0) and

(0, π) at low temperature and the peak around q = (0, π) is enhanced in the nematic

phase as shown in Fig.40 (b). This is the reason why a smaller value of J can drive the

SDW instability inside the nematic phase. The shift of the peak from q = (0, π) does

not come from the nematic order, but from the fact that the Fermi-surface nesting is not

perfectly for q = (0, π) as discussed in the case of the Lorentz-type spin interaction.

A comparison between the left and the right panel in Fig.41 shows that the eigenvalues

tend to be suppressed by the nematic order, but the results are qualitatively the same. In

particular, the eigenvalue obtained for “(π, 0)”-scattering processes is suppressed mainly

by the intra-pocket scattering processes, although almost zero eigenvalue is obtained for

intra-pocket scattering processes alone.

The pairing gap [Fig.42 (b)] is still characterized by s±-wave symmetry in the nematic

phase. The gap on FS1 and FS4 acquires a large modulation and has a nodelike structure

around θ = π/2 and 3π/2. A large modulation also yields a nodelike structure on FS2

around θ = 0 and π. The pairing gap becomes large (small) on a Fermi surface segment

where the dxz (dyz)-component is dominant in the nematic phase, although the large
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modulation of the gap on FS4 cannot be understood in terms of the orbital components

(see also Fig.10). The pairing gap on FS3 is nearly zero because FS3 substantially shrinks

to be very small by the nematic order.

The renormalization function also acquires a large momentum dependence especially

on FS1 as shown in Fig.43 (b). and it drops around θ = π/2 and 3π/2 where the minor

orbital dyz-orbital is dominant. The momentum dependence of Z on FS2 and FS4 is

qualitatively the same as that in the tetragonal phase [Fig.43 (a)]. The value of Z on FS3

is nearly isotropic and close to 1, where dyz-orbital is dominant and the self-energy effect

is very small.

Contour lines of the eigenvalue are drawn in the phase diagram in Fig.44 (b). The

eigenvalues become smaller than those in the tetragonal phase even very close to the SDW

phase. Therefore the superconducting instability is more difficult in the nematic phase

than the tetragonal phase, although the instability itself does not occur in both cases.

3.2.2 J1 − J2-type spin interaction

We next consider the J1−J2-type spin fluctuations [Eq.(40)], which may mimic a situation

where spins are characterized by localized spins (see Section 2.1.3). We fix J1/t = 1.0 in

Eq.(40) in this thesis. All calculations are fully parallel to those in Section 3.2.1 except

for the choice of J(q). Obtained results for the J1 − J2-type spin interaction turn out

to be qualitatively the same as those for the Lorentz-type spin interaction. However, it

may be worthwhile presenting briefly quantitative differences between the Lorentz- and

J1 − J2-type spin interaction because some FeSCs may be characterized by the limit of

localized spins better than the limit of itinerant spins.

A magnetic phase diagram is shown in Fig.45 (a). Similar to the case of the Lorentz-

type spin interaction [Eq.(36)], the magnetic phase boundary first bends inward and bends

back outward at lower temperature. This peculiar feature is understood by studying

the temperature dependence of the static spin susceptibility. Figure 46 (a) shows the

susceptibility χzz(q, 0) [Eq.(82)] as a function of q. χzz(q, 0) exhibits a peak at q =

(π, 0) and (0, π) at high temperature. With decreasing temperature, the susceptibility is

suppressed and a peak position slightly shifts away from q = (π, 0) and (0, π). This peak

originates from the Fermi-surface nesting between the hole and electron pockets and the

nesting vector is deviated slightly from q = (π, 0) and (0, π). With further decreasing

temperature, the peak develops strongly and eventually diverges at low temperature,

signalling the SDW instability.

Figure 47 (a) shows the temperature dependence of the eigenvalues of the Eliashberg

equation. The full eigenvalue (“All”) is reproduced by considering the intra-pocket and

“(π, 0)”-scattering processes. Given that the eigenvalue for the “(π, 0)”-scattering pro-

cesses is larger by a factor 1.5 than the full eigenvalue (“All”), the suppression due to the

intra-pocket scattering processes is substantial although spin fluctuations contributing to

the intra-pocket scattering processes have small momentum transfer around q = (0, 0)
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Figure 45: Magnetic phase diagram due to the J1 − J2-type spin fluctuations (a) in the

absence of the nematic order (g/t = 0) and (b) in the presence of the nematic order at

low temperature (g/t = −1.8). “N” stands for the normal metallic (tetragonal) phase and

the SDW phase can be characterized by the momentum slightly far away from q = (π, 0)

below the temperature marked by cross. Black solid line denotes the orbital nematic

transition at TON ≃ 0.10t.

and thus are very weak. In fact, the spin susceptibility is strongly suppressed around

q = (0, 0) in Fig.46 (b). Therefore the self-restraint effect of superconductivity is much

more pronounced than the Lorentz-type spin fluctuations (Fig.41). In contrast to the case

for the Lorentz-type interaction (Fig.41), the intra-pocket scattering processes alone can

yield a visible eigenvalue, although it is still less than 0.1.

While the superconductivity does not occur, we show the momentum dependence

of the pairing gap in Fig.48 (a). Compared with the results for the Lorentz-type spin

fluctuations [Fig.42 (a)], the pairing gap acquires a slightly larger anisotropy, although

the symmetry is still s±-wave: the gap modulation is as large as 10% on FS1 and 40% on

the electron pockets (FS3 and FS4), while the gap is almost isotropic on FS2.

The momentum dependence of the renormalization function is shown in Fig.49 (a)

and it is almost the same as that due to the Lorentz-type spin fluctuations [see Fig.43

(a)] except that the amplitude of the modulation is slightly enhanced.

Figure 50 (a) is a phase diagram for the J1 − J2-type spin fluctuations, where contour

lines of the eigenvalues are drawn and superconduting instability does not occur even close

to the SDW phase by the J1 − J2-type spin fluctuations. Compared with the phase dia-

gram for the Lorentz-type spin fluctuations [Fig.44 (a)], the eigenvalues become smaller.

This mainly comes from the stronger effect of the self-restraint of the superconducting

instability due to intra-pocket scattering processes [Fig.47 (a)].
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Figure 46: The static spin susceptibility χzz(q, 0) as a function of q for the J1 − J2-type

spin interaction for several choices of temperature (a) in the absence of the nematic order

(g/t = 0) and (b) in the presence of the nematic order at low temperature (g/t = −1.8)

along the line illustrated in the inset.

Impact of the orbital nematic order

To study the effect of the orbital nematic order, we introduce the orbital nematic in-

teraction and take g/t = −1.8 [Eq.(19)]: orbital nematic fluctuations, however, are still

switched off and only spin fluctuations are considered. For g/t = −1.8, orbital nematic

order is stabilized below TON = 0.10t and the nematic order parameter n− is computed

self-consistently [see Fig.12]. Results obtained in the nematic phase is presented in the

right panel in Figs.45-50.

The magnetic phase diagram in the plane of the strength of the spin interaction J2/t

and temperature T is shown in Fig.45 (b). The shape of the phase boundary is similar

to the result in the tetragonal phase [Fig.45 (a)]. The scale of J2/t, however, becomes

smaller. These features are also recognized for the Lorentz-type spin interaction [Fig.39

(b)]. Figure 46 (b) is the momentum dependence of the static magnetic susceptibility

χzz(q, 0). A peak near q = (π, 0) and (0, π) at T = 0.30t becomes asymmetric below

TON ≃ 0.10t because of the development of the nematic order n−. The resulting χzz(q, 0)

shows a higher peak at q ≃ (0, π) as shown in Fig.46 (b). These features as well as the

line shape of χzz(q, 0) in the nematic phase are very similar to those for the Lorentz-type

spin interaction [Fig.40 (b)].

The temperature dependence of the eigenvalues of the Eliashberg equations is shown in

Fig.47 (b). The results are essentially the same as those in the tetragonal phase [Fig.47 (a)]

and there occurs the substantial self-restraint effect of the superconducting instability due

to intra-pocket scattering processes. That is, the superconducting instability is difficult

also in the nematic phase by J1 − J2-type spin fluctuations.

While the superconducting instability does not occur, we plot the momentum depen-

dence of the pairing gap at T/t = 0.03 in Fig.48 (b). The pairing gap acquires a large

anisotropy especially on FS1 and FS4 whereas the gap becomes very small on FS3. These
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Figure 48: Momentum dependence of the pairing gap for the J1−J2-type spin fluctuations

at the low temperature (a) in the tetragonal phase (J2/t = 1.7, g/t = 0) and (b) in the

nematic phase (J2/t = 1.45, g/t = −1.8).

results are very similar to those for the Lorentz-type spin fluctuations [Fig.42 (b)]. The

momentum dependence of the renormalization function [Fig.49 (b)] is also very similar to

the results due to the Lorentz-type spin fluctuations except for the absolute value of Z

[Fig.43 (b)].

We summarize the eigenvalues of the Eliashberg equations for the J1 − J2-type spin

fluctuations inside the nematic phase in Fig.50 (b). While the eigenvalues tend to be

enhanced rapidly in the vicinity of the SDW phase, the eigenvalue is well below unity and

the superconducting instability does not occur by the J1 − J2-type spin fluctuations.
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Figure 49: Momentum dependence of the renormalization function at the low temperature

(a) in the tetragonal phase (g/t = 0, J2/t = 1.7) and (b) in the nematic phase (g/t =

−1.8, J2/t = 1.45).

3.2.3 Summary of superconductivity from spin fluctuations

As is well known, spin fluctuations around q = (π, 0) develop due to the Fermi-surface

nesting between the hole and electron pockets and tends to drive s±-superconductivity.

However, the superconducting instability does not occur because of the self-energy effect

of superconductivity and also of the self-restraint effect due to apprarently weak intra-

pocket scattering of spin fluctuations.

In spite of the absence of superconductivity, we can study the momentum dependence

of possible pairing gap. In the tetragonal phase, the pairing gap is almost isotropic on

the hole pockets (FS1 and FS2) and moderately anisotropic on the electron pockets (FS3

and FS4) [Figs.42 (a) and 48 (a)]. The anisotropy on the electron pockets is enhanced

for the J1 − J2-type spin fluctuations more than the Lorentz-type spin fluctuations. In

the nematic phase, the pairing gap acquires a large anisotropy on FS1 and FS4 and a

moderate anisotropy on FS2; the gap on FS3 becomes very small in the nematic phase.

The obtained modulation on FS1 and FS2 can be understood in terms of the orbital

component. In the nematic phase, the energy of the dxz-orbital becomes lower than that

of the dyz-orbital. As a result, the pairing gap is enhanced (suppressed) around regions

on the FS where the dxz (dyz)-orbital is dominant. This mechanism is the same as the

large modulation of the pairing gap due to orbital nematic fluctuations inside the nematic

phase (see Fig.35). Given that FS3 consists mainly of the dyz-orbital and FS3 almost

vanishes, the small gap on FS3 may be reasonable. The reason why the pairing gap on

FS4 acquires the large anisotropy is not understood straightforwardly in terms of the

orbital components.
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(b) in the nematic phase (g/t = −1.8). Since superconductivity does not occur, contour

lines of the maximum eigenvalues of the Eliashberg equations are drawn.

3.3 Superconductivity from both orbital nematic and

spin fluctuations

We have shown the superconductivity driven by orbital nematic fluctuations alone and

spin fluctuations alone in Section 3.1 and Section 3.2, respectively. In this section, we

study the superconductivity in the presence of both orbital nematic and spin fluctuations.

Since spin fluctuations are modeled for the Lorentz-type [Eq.(36)] and the J1 − J2-type

[Eq.(40)] interaction, we present our results seperately for each case.

3.3.1 Orbital nematic and Lorentz-type spin fluctuations

We solve the Eliashberg equations [Eqs.(155) and (156)] by including both orbital nematic

fluctutations [Eq.(141)] and Lorentz-type spin fluctuations [Eqs.(36), (143) and (145)].

Figure 51 (a) is the temperature dependence of the eigenvalues of the Eliashberg equations

in the tetragonal phase. A comparison with the purely orbital nematic case (Fig.33)

shows that the temperature dependence of the eigenvalues does not change essentially by

including spin fluctuations in the sense that the superconductivity is driven mainly by the

intra-pocket scattering processes due to orbital nematic fluctuations. The effect of spin

fluctuations is twofold. First, the eigenvalue “All” is slightly lower than the eigenvalue

“Intra”, which is the opposite to the case of the purely orbital nematic fluctuations. That

is, spin fluctuations suppress the tendency of superconducting instability. Second, the

eigenvalue “All” crosses unity at Tc/t = 0.021 where superconducting instability occurs.

While we take the same strength of orbital nematic fluctuations (g/t = −1.7) as Fig.33,

Tc is substantially suppressed by spin fluctuations.
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Figure 51: Temperature dependence of the eigenvalues of the Eliashberg equations due

to both orbital nematic and Lorentz-type spin fluctuations (a) in the tetragonal phase

(J/t = 2.5, g/t = −1.7) and (b) in the nematic phase (J/t = 2.0, g/t = −1.8). The

eigenvalues are also computed by selecting specific scattering processes, “Intra”, “(π, 0)”

and “(π, π)”; see Fig.33.

(a), J/t=2.5, T/t=0.02, g/t=-1.7, with ON Fluc. (b) J/t=2.0, T/t=0.02, g/t=-1.8, with ON Fluc.
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Figure 52: Momentum dependence of the pairing gap at T = Tc in the presence of both

orbital nematic and Lorentz-type spin fluctuations (a) in the tetragonal phase (J/t =

2.5, g/t = −1.7) and (b) in the nematic phase (J/t = 2.0, g/t = −1.8).
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Figure 53: Momentum dependence of the renormalization function at T = Tc in the

presence of both orbital nematic and Lorentz-type spin fluctuations (a) in the tetragonal

phase (J/t = 2.5, g/t = −1.7) and (b) in the nematic phase (J/t = 2.0, g/t = −1.8).

The momentum dependence of the pairing gap at Tc is shown in Fig.52 (a). The pairing

gap is almost isotropic with s++-wave symmetry and shares similar features as the purely

orbital nematic fluctuations [Fig.31 (a)]. Figure 53 (a) shows the momentum dependence

of the renormalization function, which is also similar to that due to orbital nematic fluc-

tuations alone (see Fig.32), although values of Z become slightly larger. Hence obtained

results [Figs.52 (a) and 53 (a)] implies that the effect of orbital nematic fluctuations is

dominant over spin fluctuations, although the strength of the spin interaction is sizable

(J/t = 2.5).

We summarize obtained Tc in Fig.54 (a) as a function of J . At J/t = 0, no spin

fluctuations are present and Tc there is obtained from purely orbital nematic fluctuations.

With increasing J , spin fluctuations develop and start to suppress the superconductivity.

The gap symmetry is s++-wave [Fig.52 (a)] at least up to J/t = 2.5. Very close to the

SDW phase (3.0 ≤ J/t ≤ 3.2), the gap structure changes to s±-wave symmetry and its

momentum dependence is shown in Fig.55. Except for the sign of the gap on the electron

pockets (FS3 and FS4), the gap structure on the electron pockets is similar to Fig.52

(a). For the hole pockets, the gap on FS1 becomes larger than that on FS2 in Fig.55.

This is a typical feature of the gap from spin fluctuations [see Fig.42 (a)]. Figure 54 (a)

clearly shows that spin fluctuations suppress the superconductivity from orbital nematic

fluctuations and no enhancement of Tc is obtained even in the vicinity of the SDW phase.

Impact of the orbital nematic order

To study the impact of the nematic order on Figs.51 (a) - 54 (a), we next take g/t = −1.8

and present corresponding results in the right panel in Figs.51-54. For g/t = −1.8, the

nematic order develops below TON ≃ 0.10t, as seen in a cusp structure of the tempera-

68



0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5

T/
t

J/t

(a) Phase diagram, g/t=-1.7, with ON Fluc.

SDW

SC
0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5
J/t

(b) Phase diagram, g/t=-1.8, with ON Fluc.

ON+SDWON+SC

s++ s±

N ON

s++

Figure 54: Phase diagram in the presence of both orbital nematic and Lorentz-type spin

fluctuations. The strength of orbital nematic fluctuations is controlled by a value of g and

the system is in the tetragonal phase for g/t = −1.7 (a) and in the nematic phase below

TON ≃ 0.10t for g/t = −1.8 (b). On the other hand, the strength of spin fluctuations

is controlled by the horizontal axis J/t and the SDW pahse is realized for a larger J .

Possible Tc at J/t = 2.2 in (b) is less than T = 0.01 as denoted by a bar.

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 /2 3 /2 2

k F
(

,i
T c

)

J/t=3.2, T/t=0.02, g=-1.7t, with ON Fluc.

FS1
FS2
FS3
FS4

Figure 55: Momentum dependence of the pairing gap at T = Tc in the presence of

both orbital nematic and Lorentz-type spin fluctuations in the tetragonal phase (J/t =

3.2, g/t = −1.7).

69



ture dependence of the eigenvalues at T/t ≃ 0.10 in Fig.51 (b). This feature is already

explained in the context of Fig.34. In contrast to the case in the tetragonal phase [Fig.51

(a)], the eigenvalue “All” is slightly larger than that of “Intra”. This feature is typical to

the superconductivity from purely orbital nematic phase (Fig.37). The eigenvalue “All”

crosses unity at T/t = 0.017, where superconductivity occurs. Compared with Fig.34,

the value of Tc is suppressed nearly by half due to spin fluctuations. The momentum de-

pendences of the pairing gap [Fig.52 (b)] and of the renormalization function [Fig.53 (b)]

are very similar to those for purely orbital nematic fluctuations (Figs.35 and 36). They

are well characterized by the effect of orbital nematic fluctuations: the gap has a large

(small) anisotropy on the hole (electron) pockets whereas the renormalization function

does not acquire a large anisotropy on all Fermi pockets and its value is suppressed espe-

cially on the electron pockets (FS3 and FS4) compared with the tetragonal case [Fig.53

(a)]. Obtained Tc is summarized in Fig.54 (b). Spin fluctuations inside the nematic phase

suppress the superconductivity more strongly than the tetragonal case [Fig.54 (a)] and

Tc becomes less than T = 0.01t in the vicinity of the SDW phase. The pairing gap is

characterized by s++-wave symmetry in Fig.52 (b).

3.3.2 Orbital nematic and J1 − J2-type spin fluctuations

We now summarize corresponding results for J1−J2-type spin fluctuations [Eqs.(141), (143),

and (145)]. Figures 56 (a) and (b) show the temperature dependence of the eigenvalue of

the Eliashberg equations and should be compared with Figs.51 (a) and (b), respectively.

Essentially the same results are obtained for both Lorentz- and J1− J2-type spin fluctua-

tions. The momentum dependence of the pairing gap is presented in Figs.56 (c) and (d),

which are essentially the same as Figs.52 (a) and (b), respectively. In Fig.56 (d), data

on FS3 are not shown, because Tc (= 0.013t) becomes lower than the case of Fig.52 (b)

and the resulting nematic order becomes larger, which eliminates FS3. The momentum

dependence of the renormalization function are shown in Figs.56 (e) and (f). While the

modulation of Z on FS1 and FS2 in the nematic phase [Fig.56 (f)] is enhanced more than

the Lorentz-type spin fluctuations [Fig.53 (b)], we obtain no qualitative differences be-

tween the J1−J2-type and Lorentz-type spin fluctuations in both tetragonal and nematic

phase.

Obtained Tc is summarized as a function of the strength of the J1 − J2-type spin fluc-

tuations in Figs.57 (a) and (b) in the tetragonal and the nematic phase, respectively. A

comparison with Figs.54 (a) and (b) reveals the opposite curvature of the Tc line, indi-

cating that the J1−J2-type spin fluctuations suppress the superconductivity from orbital

nematic fluctuations more strongly than the Lorentz-type spin fluctuations. Moreover,

in the tetragonal phase very close to the SDW phase, the symmetry of the pairing gap

changes to “hole-s±-wave”, where the pairing gap on the hole pockets (FS1 and FS2) has

the opposite sign as shown in Fig.58. This solution may be interpreted as an intermediate

state between s++-wave and s±-wave superconductivity.
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Figure 56: (a) Temperature dependence of the eigenvalues of the Eliashberg equations

in the presence of both orbital nematic (g/t = −1.7) and J1 − J2-type spin fluctuations

(J2/t = 1.25). (c) and (e) The momentum dependence of the pairing gap and the renor-

malization function at T = Tc, respectively. The right-hand panels [(b), (d), and (f)]

are the corresponding results for g/t = −1.8 and J2/t = 1.0 where the nematic phase is

stabilized below TON ≃ 0.10t.
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Figure 57: Phase diagram in the presence of both the orbital nematic and J1 − J2-

type spin fluctuations (a) in the tetragonal phase (g/t = −1.7) and (b) in the nematic

phase (g/t = −1.8). The orbital nematic fluctuations are controlled by the value of

g/t and the nematic phase is stabilized below TON ≃ 0.1t for g/t = −1.8 whereas the

tetragonal phase is stable down to T = 0 for g/t = −1.7. The spin fluctuations become

stronger with increasing the value of J2/t and the SDW phase is stabilized for a larger

J2. Although the bare spin interaction J12(q) does not have a peak around q = (π, 0) for

J2/t ≤ 0.5, the peak position shifts to q = (π, 0) for J2/t ≥ 0.5. The onset temperature

of superconductivity is less than T/t = 0.01 at J2/t = 1.25 in (b) as denoted by a bar.

3.4 Superconductivity from instantaneous spin inter-

action

We have found that orbital nematic fluctuations are indispensable to the superconduc-

tivity through the analyses in Section 3.1, 3.2, and Section 3.3. Is there no chance that

spin fluctuations drive the superconductivity? One option would be to discard the self-

energy effect, which can actually lead to the superconductivity as shown in Appendix

(Section 5.2.2). However, given that the self-energy effect turns out important in the

sense that it can fully suppress the superconductivity from spin fluctuations, it is not rea-

sonable to discard the self-energy. A more reasonable idea is to invoke the instantaneous

spin interaction J̃Ins(q) [Eq.(101)]. Note that the instantaneous interaction is not spin

fluctuations. In this section, we clarify a role of the instantaneous spin interaction J̃Ins(q)

for both Lorentz-type [Eq.(36)] and J1 − J2-type [Eq.(40)] spin interaction.

We first focus on the tetragonal phase (i.e. g/t = 0) and compare results for the

Lorentz-type and J1 − J2-type spin interaction. Figure 59 (a) is the eigenvalue of the

Eliashberg equations as a function of T for the Lorentz-type spin interaction in three

different pairing interactions: Only retardation term [Eq.(102)], only instantaneous term

[Eq.(101)], and both terms (“Full”). The eigenvalue for the instantaneous term is much
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Figure 58: Momentum dependence of the pairing gap at T = Tc in the presence of

both orbital nematic and J1 − J2-type spin fluctuations in the tetragonal phase (J2/t =

1.5, g/t = −1.7). The hole pockets (FS1 and FS2) have the opposite sign. In this sense,

the gap symmetry may be referred to as “hole-s±-wave”.
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Figure 59: Temperature dependence of the eigenvalues of the Eliashberg equations for (a)

the Lorentz-type and (b) the J1 − J2 type spin interaction in the tetragonal phase.

smaller than that for the retardation term, and “Full” eigenvalue is enhanced, indicating

that both instantaneous and retarded term work cooperatively for superconductivity.

However, the eigenvalue does not exceed unity and thus superconducting instability does

not occur even if the instantaneous term is included. Corresponding results for the J1−J2-

type spin interaction are shown in Fig.59 (b). The eigenvalue of the instantaneous term

already exceeds unity and can easily drive superconductivity. In contrast to the Lorentz-

type spin interaction, the retardation term competes with the instantaneous part and

the eigenvalue and the eigenvalue “Full” becomes smaller than the eigenvalue obtained

for purely the instantaneous interaction. A comparison between Figs.59 (a) and (b)

implies that the functional form of the instantaneous term is crucially important to the

superconductivity.

To get more insight into the superconducting mechanism due to the instantaneous
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Figure 60: Temperature dependence of the eigenvalues for the instantaneous spin interac-

tion. The eigenvalues are computed by choosing specific scattering processes for (a) the

Lorentz-type and (b) the J1 − J2-type spin instantaneous term in the tetragonal phase.

[see also Fig.33 (b)]
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Figure 61: Momentum dependence of instantaneous spin interaction J(q) of the Lorentz

type (a) and the J1 − J2 type (b) in the tetragonal phase.

spin interaction, we focus on the instantaneous term and compute the eigenvalue as a

function of T in Fig.60 by choosing specific scattering processes as we have performed in

Figs.33, 37, 41, 47, 51, and 56 (a). For the Lorentz-type spin interaction [Fig.60 (a)], the

eigenvalue for “(π, 0)”-scattering processes is sizable, but is strongly suppressed by the

other scattering processes, especially by intra-pocket scattering processes. This strong

suppression is due to the self-restraint effect discussed in Section 3.2. The corresponding

results for the J1−J2-type spin interaction are shown in Fig.60 (b), which is very different

from Fig.60 (a). All scattering processes work cooperatively and the major scattering is

the intra-pocket scattering, qualitatively very similar results to the case of orbital nematic

fluctuations (Fig.33), although the spin interaction is considered here. The reason why

the intra-pocket scattering processes are dominant for the J1 − J2-type spin interaction

becomes clear by considering the functional form of J(q). The q dependence of J(q) is

plotted in Fig.61. While J(q) is negative definite for the Lorentz-type spin interaction

[Fig.61 (a)], J(q) in the J1 − J2-type spin interaction [Fig.61 (b)] changes its sign around
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Figure 62: Momentum dependence of the pairing gap due to the instantaneous spin

interaction of (a) the Lorentz type and (b) the J1 − J2 type in the tetragonal phase.

q = (3π/5, 0), (π, 3π/5), (3π/5, π), (0, 3π/5), (2π/5, 2π/5), and (3π/5, 3π/5). The most

important sign change is around q = (0, 0). J(q) is now positive there and becomes very

large. Given that a small momentum transfer q is responsible for intra-pocket scatter-

ing processes, the positive J(q) there plays essentially the same role as orbital nematic

fluctuations, leading to the isotropic gap on each Fermi surface as actually computed in

Fig.62 (b). The relative phase between the electron and hole pockets is π, because J(q) is

negative around q = (π, 0) [Fig.61 (b)], leading to s±-wave symmetry. Although the func-

tional form of J(q) is different between Figs.61 (a) and (b), the pairing gap in both cases

[Figs.62 (a) and (b)] is characterized nearly isotropic s±-wave symmetry, which shares the

same feature as the case of spin fluctuations [Figs.42 (a) and 48 (a)].

The corresponding results in the nematic phase are summarized in Fig.63 by taking

g/t = −1.8 where the nematic phase is stabilized below TON ≃ 0.10t; note that associ-

ated orbital nematic fluctuations are switched off. Roles of the instantaneous term are

qualitatively the same as the case in the tetragonal phase, which is clear by comparing

between Figs.63 (a), (b) and Figs.59 (a), (b), Figs.63 (c), (d) and Figs.60 (a), (b), and

Figs.63 (e), (f) and Figs.62 (a), (b).

Finally we provide remarks on the superconductivity driven by the instantaneous spin

interaction, especially for the J1−J2-type spin interaction [Fig.59 (b)] where the eigenvalue

exceeds largely unity already at T = 0.2t. The absolute value of the eigenvalue for the

instantaneous interaction, however, should not be taken literarly. The instantaneous term

does not depend on Matsubara frequency by nature. Therefore, the sum of Matsubara

frequency in the right-hand side in Eq.(156) does not converge. The resulting eigenvalue

depends on the cutoff of the Matsubara sum. In Figs.59 (a) and (b), we have chosen the

band width as a cutoff. Moreover, in our formalism the self-energy effect vanishes for the

instantaneous term, leading to ZIns = 1 [Eq.(155)]. Because of these two drawbacks in

our formalism, we do not claim that the J1−J2-type instantaneous spin interaction drives

the superconductivity. Instead, we suggest that the instantaneous spin interaction can

work positively to drive the superconductivity and the interplay with the retarded spin
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interaction, namely spin fluctuations, depends on details of the functional form of J(q).
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Figure 63: Temperature dependence of the eigenvalues of the Eliashberg equations in the

nematic phase for (a) Lorentz-type and (b) J1 − J2-type spin interaction. Temperature

dependence of the eigenvalues for the instantaneous spin interaction of (c) Lorentz-type

and (d) the J1 − J2-type; the eigenvalues are computed by choosing specific scattering

processes. Momentum dependence of the pairing gap for (e) Lorentz-type and (f) J1−J2-

type instantaneous spin interaction.
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Chapter 4

Conclusions and Discussions

4.1 Conclusions

Previous studies showed that the orbital nematic fluctuations can drive s++-wave[23, 30,

31, 32] superconductivity with transition temperature[32] comparable to experimental

values in FeSCs. In this thesis, motivated by those studies we employ the Eliashberg

theory and aim to establish the theory of the superconductivity driven by orbital nematic

fluctuations by considering the following three, which are not handled on an equal footing

in the literature: i) the momentum dependence of the pairing gap, ii) the self-energy effect

of electrons, and iii) evaluation of the onset temperature of superconductivity. Refs. [23,

30, 31] respect only i) whereas Ref. [32] considers ii) and iii).

We have found that the onset temperature Tc is almost the same as that obtained in

Ref.[32] [see Figs.8 (b) and 38], even though we allow the momentum dependence of the

pairing gap. The absolute value of Tc can reproduce a realistic Tc observed in FeSCs if

we assume our energy units t ≃ 150 meV. This implies that orbital nematic fluctuations

are indeed a new high-Tc mechanism. Because the orbital nematic fluctuations yield an

attractive interaction of pairing, the gap symmetry is always s++-wave in the sense that

the pairing gaps have the same sign on all Fermi pockets. When the instability occurs in

the tetragonal phase, the gap exhibits a momentum dependence with fourfold symmetry,

and is almost isotropic on each Fermi pocket (Fig.31), essentially the same results as

Ref. [32]. Furthermore, the second leading instability has dx2−y2-wave symmetry [Fig.66

(a)] and is nearly degenerate to the first one in the tetragonal phase (Fig.30). It is

interesting to point out that a similar degeneracy is also obtained in a different mechanism

such as spin fluctuations[11]. On the other hand, when the instability occurs inside the

nematic phase, the gap remains isotropic on the electron pockets, but acquires large

anisotropy with twofold symmetry on the hole pockets (Fig.35). The quasi-degeneracy

between the leading and the second leading instability is largely lifted in the nematic

phase (Fig.34). We have also confirmed that superconductivity from orbital nematic

fluctuations belongs to a strong-coupling regeme[32] in the sense that the renormalization

function Z [Eq.(155)] becomes as large as ≃ 3.8 in the tetragonal phase (Fig.32) and
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≃ 2.5 (Fig.36) in the nematic phase. That is, the self-energy effect is crucially important

to the superconductivity from orbital nematic fluctuations.

It is natural to assume that spin fluctuations are also present in FeSCs. Therefore

we have studied the superconductivity from spin fluctuations in the same theoretical

scheme as the superconductivity from orbital nematic fluctuations. We have considered

two types of spin interactions, the Lorentz type [Eq.(36)] and the J1 − J2 type [Eq.(40)].

The former may correspond to the limit of an itinerant magnetic system in the sense

that the strength of spin interaction decays exponentially in real space. The J1 − J2-type

interaction is motivated by a localized spin system with superexchange interactions J1
and J2. Hence the J1 − J2-type spin interaction may correspond to the system where

spins have a localized character.

For the Lorentz-type interaction, spin fluctuations with momentum q = (π, 0) develop

by Fermi-surface nesting between the hole and electron Fermi pockets and drive s±-wave

superconductivity similar to other theoretical studies[15]. While spin fluctuations are

enhanced around q = (π, 0), weak spin fluctuations remain for a small q region, which

then allow intra-pocket scattering processes. Apparently such processes seem negligible

and less important. However, we have found that they suppress substantially the onset

of the superconductivity driven by the major spin fluctuations around q = (π, 0). That

is, the spin-fluctuation mechanism contains this self-restraint effect and tend to prevent

superconducting instability. The self-energy effect also suppresses superconducting insta-

bility. These two negative feedbacks do not allow superconducting instability from spin

fluctuations in our theory. Although superconductivity does not occur, we have computed

a possible structure of pairing gap from spin fluctuations. The gap is characterized by

s±-wave symmetry and almost isotropic on the hole pockets in the sense that a maximal

modulation of the gap is about ≃ 12%. On electron pockets, the gap modulation reaches

about ≃ 21%. In the nematic state, the pairing gap acquires a large anisotropy although

the tendency of superconducting instability is largely suppressed compared with the case

in the tetragonal phase [Figs.42 (b) and 48 (b)]. We have also checked that the structure

of the pairing gap is essentially the same even if the self-energy effect is neglected (Fig.74).

In the J1−J2-type spin interaction, results are essentially the same as the Lorentz-type in-

teraction except that the gap modulation in the tetragonal phase is enhanced and reaches

≃ 41% on the electron pockets.

Supposing a realistic situation in FeSCs, we have considered the superconductivity

driven by both orbital nematic and spin fluctuations. We have found that the orbital

nematic and the spin fluctuations compete with each other (Figs.54 and 57), and the onset

temperature Tc is suppressed monotonically by increasing the strength of spin fluctuations.

The pairing gap is characterized by almost isotropic s++-wave symmetry [Figs.52 (a)

and 56 (c)] in a wide region of the phase space. In the vicinity of the SDW phase, however,

the gap symmetry chan change to s±-wave symmetry [Fig.55]. When superconducting

instability occurs in the nematic phase, on the other hand, the symmetry of the pairing
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gap remains s++-wave even near the SDW phase [Fig.52 (b)]. However the pairing gap

acquires large anisotropy on the hole Fermi pockets, whereas it remains almost isotropic

on the electron Fermi pockets [Figs.52 (b) and 56 (d)], showing that the superconductivity

is well characterized by that purely from orbital nematic fluctuations (Fig.35) even in the

presence of both orbital nematic and spin fluctuations.

Finally we have also explored possible routes to obtain superconductivity from spin

interactions, because spin fluctuations alone cannot drive superconductivity. One route

would be to neglect the self-energy effect. In this case, we actually obtain supercon-

ducting instability as shown in Fig.75 and the gap structure itself is not affected much

by the self-energy. However, given that superconducting instability does not occur in

the presence of the self-energy, it is not reasonable to discuss superconductivity by dis-

carding the self-energy effect. Another route is to invoke significant contributions from

the instantaneous spin interaction (not spin fluctuations). Although in our theoretical

scheme the instantaneous interaction cannot be treated in a reliable way because the

self-energy effect vanishes and results depend on a choice of the cut-off energy, we have

found that the instantaneous interaction can drive superconductivity [Figs.59 (b) and 62

(a)]. Hence the presence of the instantaneous spin interaction contributes positively to

the superconducting instability.

4.2 Connection to iron-based superconductors

We now discuss a possible connection to the superconductivity in FeSCs. Because both

orbital nematic and spin fluctuations are expected in FeSCs, we mainly consider results

obtained in Section 3.3. We, however, note that the gap structure is very similar to that

obtained from purely orbital nematic fluctuations except for the vicinity of the SDW

phase where the sign of the gap can change, with keeping the momentum dependence of

the gap almost unchanged.

In the tetragonal phase, we have obtained the nearly isotropic pairing gap, which is

actually observed in many FeSCs by ARPES measurements. Typical results are obtained

in Ba0.6K0.4Fe2As2[39, 40, 41] on all Fermi pockets as shown in Fig.64. A nearly isotropic

gap is also observed in other FeSCs: on all Fermi pockets in Ba (Fe0.75Ru0.25)2As2[42], on

all hole Fermi pockets in BaFe2 (As0.7P0.3)2[43] and BaFe2 (As0.65P0.35)2[39, 44], on a hole

fermi pocket in NdFeAsO0.9F0.1[45], on both hole and electron pocket in CaKFe4As4[46],

on an electron pocket in Cs0.8Fe2Se2[47] and a single-layer FeSe[48], and a potassium-

coated triple-layer FeSe film[49], and in various FeSe systems such as K0.68Fe1.79Se2[50],

(Tl0.45K0.34)Fe1.84Se2[50], FeTe0.55Se0.45[51], K0.8Fe2Se2[47],

When superconductivity occurs inside the nematic state, we have found that the pair-

ing gap acquires a large anisotropy on the hole Fermi pockets, while it remains nearly

isotropic on the electron Fermi-pockets [Figs.52 (b) and 56 (b)]. For FeSe0.93S0.07 in the

nematic phase an anisotropic pairing gap was revealed on the hole Fermi pockets by

80



Figure 64: (a) Sketch of four Fermi pockets in the first quadrant of the Brillouin zone in

Ba0.6K0.4Fe2As2[41]. (b) Polar plots of the pairing gap observed on the hole Fermi pockets

α and β; the angle θ is measured from the kx axis as illustrated in (a). (c) Polar plots of

the pairing gap observed on the electron Fermi pockets γ and δ.

ARPES measurements as shown in Fig.65[52], which is well captured in the present work.

On the other hand the pairing gap on the electron pockets in the nematic phase has not

yet been detected by ARPES.

The structure of the pairing gap is considered important for identifying the mecha-

nism of superconductivity. We have found that the gap structure due to orbital nematic

fluctuations is rather similar to that due to spin fluctuations and a nearly isotropic gap is

obtained on the hole pockets in the tetragonal phase. On the other hand, the pairing gap

in the spin-fluctuations mechanism tends to be more anisotropic than the orbital nematic

mechanism on the electron pockets. While the anisotropy can be about 40%, we need a

careful treatment about this anisotropy, because we employ a unit cell containing only

one iron. The unit cell in real FeSCs contains two irons. Hence our Brillouin zone are

holded and two electron pockets exist around k = (±π, 0) and (0,±π), respectively, in

FeSCs [see Fig.5 (b)]. These two pockets hybridize and become inner (green) and outer

(blue) electron pockets, respectively, around k = (π, 0) and (0, π) as shown in Fig.64

(a). As a result, the gap modulation on each inner and outer electron-pocket may be

reduced approximately by half, namely about 20%. Inside the nematic phase, on the

other hand, we have found that the pairing gap due to only spin fluctuations acquires a

large anisotropy on not only the hole Fermi pockets but also the electron Fermi pocket

whereas orbital nematic fluctuations lead to the anisotropic gap only on the hole pockets.

Therefore the anisotropy of the pairing gap on the electron pockets is different from or-

bital nematic mechanism. However, it is too early to state that this difference is crucial to

distinguish the orbital nematic mechanism from the spin-fluctuation mechanism. Given

that the gap structure inside the nematic phase is controlled by the occupation of dxz-

and dyz-orbitals on the Fermi pockets, and the electron Fermi pockets in FeSCs contain
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Figure 65: Pairing gap observed on a hole pocket in FeSe0.93S0.07[52] (Red filled circles).

The horizontal axis θ is an angle measured by kx axis. The blue curve is fitted line of the

gap.

also a component of the dxy-orbital, which is ignored in our theory. A possible anisotropy

on the electron pockets is worth exploring in the future by including the dxy orbital. In

the tetragonal phase, the nodal gap is observed in KFe2As2[53, 54]. This data cannot

be captured in our theory even through both orbital nematic and spin fluctuations are

taken into account. This obviously suggests that our minimal two-band model should be

developed, for example, by including other orbitals.

Concerning the onset temperature of superconductivity Tc, we have found that orbital

nematic fluctuations can drive the superconductivity with Tc as high as Tc observed in

FeSCs if we assume t ≃ 150meV (Fig.38), whereas it is difficult to achieve high-Tc super-

conductivity from spin fluctuations (Figs.44 and 50). In this sense, we consider that the

orbital nematic fluctuations are more important than spin fluctuations as the mechanism

of the superconductivity in FeSCs.
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Chapter 5

Appendix

5.1 Supplementary results of superconductivity from

orbital nematic fluctutations

5.1.1 Subleading superconducting instability in the tetragonal

phase

In Figs.30 and 34 we have plotted the eigenvalue λ down to the fifth leading instability.

Since we have discussed the pairing gap associated with the leading instability alone in

Section 3.1, we here present the gap structure of the subleading instabilities. Figure 66

shows the pairing gap corresponding to the (a) second, (b) third, (c) fourth, and (d)

fifth largest eigenvalues for g = −1.7t, where superconducting instability occurs in the

tetragonal phase. The gap corresponding to the second largest eigenvalue is characterized

by dx2−y2-wave symmetry. While the gap has nodes at θ = π/4, 3π/4, 5π/4, 7π/4 on the

hole pockets (FS1 and FS2), there is no gap node on the electron pockets (FS3 and FS4),

and the sign of the gap is positive (negative) on FS3 (FS4). This d-wave gap is also

obtained for the superconductivity from spin fluctuations in some cases [15, 55]. The

third largest eigenvalue [Fig.66 (b)] yields the gap with s±-wave symmetry, which is very

similar to the pairing gap frequency obtained from spin fluctuations (see Section 3.2). The

fourth largest eigenvalue [Fig.66 (c)] corresponds to the gap of dx2−y2-wave symmetry. A

crucial difference between Figs.66 (a) and (c) lies in the sign of the gap on FS3 and FS4.

The gap corresponding to the fifth largest eigenvalue is shown in Fig.66 (d). The gap

symmetry is s++-wave, the same symmetry as the leading instability (Fig.31). A major

difference is that the gap becomes quite small on the electron pockets in Fig.66 (d).

5.1.2 Subleading superconducting instability in the nematic phase

Figure 67 is similar to Fig.66, but we take g = −1.8t, where superconductivity occurs

in the nematic phase. The gap corresponding to the second largest eigenvalue [Fig.67

(a)] seems similar to Fig.66 (a), but dx2−y2-symmetry cannot be defined in the nematic
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Figure 66: Momentum dependence of the pairing gap corresponding to the (a) second,

(b) third, (c) fourth, and (d) fifth leading instability from orbital nematic fluctuations in

the tetragonal phase (g/t = −1.7). The right figure in each panel is a sketch of pairing

gap on each Fermi pocket where the gap magnitude is represented by the thickness of the

Fermi pocket.
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phase. The gap symmetry in Fig.67 (a) is characterized by nodal s-wave. Figure 67 (b)

shows the gap corresponding to the third largest eigenvalue. This results shares the same

s±-wave symmetry with Fig.66 (b), although the gap modulation on the hole pockets is

much larger and the gap becomes nearly zero at θ = 0, π on FS1 and at θ = π/2, 3π/2

on FS2. The same s±-wave symmetry is also realized in the fourth leading instability

[Fig.67(c)], although the gap becomes nearly zero on the FS3. Figure 67 (d) shows the

gap corresponding to the fifth largest eigenvalue. The gap structure is similar to Fig.66

(a), but the symmetry is nodal s-wave here and the gap on FS3 becomes nearly zero.

5.1.3 Superconducting instability deeply inside the nematic phase

We have shown superconducting instability in the orbital nematic phase by taking g/t =

−1.8, where FS3 barely remains. For a larger magnitude of g, the orbital nematic order

develops more and FS3 disappears. It is interesting to study superconducting instability in

the absence of FS3. Here we summarize results in such a situation by taking g/t = −1.9 in

Fig.68. The nematic order parameter n− is computed self-consistently by solving Eq.(63).

Its temperature dependence is shown in Fig.68 (a). As expected, FS3 disappears in T ≤
0.13t because of a large nematic parameter [see the right panel in Fig.68 (c)]. Figure 68 (b)

shows the temperature dependence of the eigenvalues of the Eliashberg equations down

to the fifth leading instability. As we have already seen in Fig.34, all of the eigenvalues

becomes nearly unity at the onset temperature of the nematic transition TON ≃ 0.20t

and makes a cusp there, yielding no superconducting instability. The eigenvalues are

suppressed below TON because orbital nematic fluctuations are suppressed by the nematic

order. FS3 vanishes below T = 0.13t and the eivenvalues exhibit a discontinuous change

there. While the eigenvalues of the subleading instabilities remain suppressed at low

temperatures, the largest eigenvalue starts to be enhanced below T = 0.13t and finally

crosses the unity at T = 0.052t where the superconducting instability occurs. Figure 68

(c) shows the momentum dependence of the pairing gap. In spite of the absence of the

FS3 the result is similar to the case of g/t = −1.8 (Fig.35), but the gap modulation on

the hole pockets reaches as large as 60%, which is larger than the case of g/t = −1.8.

Figure 68 (d) shows the renormalization function, which features a similar momentum

dependence to that of the pairing gap [Fig.68 (b)]. Figure 68 (e) shows the eigenvalue of

the Eliashberg equations for specific scattering processes and is very similar to the case of

g/t = −1.8 (Fig.37). That is, the intra-pocket scattering processes are the major driving

force of the superconducting instability even in the absence of FS3.

The momentum dependence of the pairing gap corresponding to the second, third,

fourth and fifth largest eigenvalues is summarized in Figs.69 (a)-(d), respectively. The

pairing gap for the second largest eigenvalues [Fig.69 (a)] has a momentum dependence

similar to Fig.67 (a) except for the absence of FS3. While the gap almost vanishes at

θ = 0, π on FS1 and θ = π/2, 3π/2 on FS2, the pairing gap may be characterized by

s±-symmetry. The pairing gap for the third largest eivenvalues [Fig.69 (b)] has s++-wave
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Figure 67: Momentum dependence of the pairing gap in the (a) second, (b) third, (c)

fourth, and (d) fifth leading instability from orbital nematic fluctuations inside the nematic

phase (g/t = −1.8). The right figure in each panel is a sketch of pairing gap on each Fermi

pocket where the gap magnitude is represented by the thickness of the Fermi pocket.
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Figure 69: Momentum dependence of the pairing gap from the second to the fifth leading

instability from orbital nematic fluctuations deeply inside the nematic phase (g/t = −1.9).

The right figure in each panel is a sketch of pairing gap on each Fermi pocket where the

gap magnitude is represented by the thickness of the Fermi pocket.
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Figure 70: Onset temperature of superconductivity (orange solid line with open squares)

without the self-energy effect in the plane of the strength of the orbital nematic interaction

g and temperature T . The purple solid line and the purple dotted line are the same as

those in Fig.38 and correspond to the phase boundary of the orbital nematic (ON) phase.

For comparison, the result of Tc with the self-energy (dotted line with crosses), which is

the same as Tc in Fig.38, is also plotted.

symmetry, similar to Fig.68 (b), but the position of the maximum gap shifts by π/2.

Figure 69 (c) shows the pairing gap for the fourth largest eigenvalues. This gap has p-

wave symmetry. It is interesting to know that in principle the orbital nematic fluctuations

can drive p-wave superconductivity. In Fig. 69 (d) we show the pairing gap for the fifth

largest eigenvalues. The symmetry of the gap is nodal s-wave, and the nodes appear on

FS2. In addition, the gap almost vanishes at θ = 0, π on FS1.

5.1.4 Superconductivity from orbital nematic fluctuations with-

out the self-energy effect

To demonstrate the importance of the self-energy effect, we study the superconductivity

from orbital nematic fluctuations without the self-energy effect. Figure 70 is the phase

diagram in the plane of the interaction strength g and temperature, where the phase

boundary of the orbital nematic phase (ON) is the same as Fig.38 and we also add

the onset temperature of superconductivity with the self-energy, namely obtained Tc in

Fig.38 for comparison. The solid line is the corresponding Tc without the self-energy
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without the self-energy effect (g/t = −1.7).

effect. Clearly Fig.70 shows that the self-energy effect is very important to not only the

absolute value of Tc, but also the geometry of a Tc-curve near the ON phase. The pairing

gap at the onset temperature of the superconductivity is shown in Fig.71. The symmetry

of the pairing gap is s++-wave and is almost isotropic, very similar to the results in Fig.31.

Therefore the self-energy effect does not affect the structure of the pairing gap.

5.2 Supplementary results for superconductivity from

spin fluctuations

5.2.1 Superconducting instability from spin fluctuations deeply

inside the nematic phase

We present results of the superconductivity from spin fluctuations deeply inside the ne-

matic phase (g/t = −1.9), where FS3 disappears at T/t ≃ 0.13 by the nematic order.

Results turn out almost the same as those for g/t = −1.8 (Section 3.2), where FS3 still re-

mains in the nematic phase. Nevertheless, results in the absence of FS3 may be interesting

and thus we briefly present them below.

Lorentz-type spin fluctuations

Figure 72 shows (a) temperature dependence of the eigenvalues of the Eliashberg equation

from the Lorentz-type spin fluctuations, (b) momentum dependence of the pairing gap,

and (c) that of the renormalization function. A comparison with the case of g/t = −1.8,

namely Figs.41 (b), 42 (b), and 43 (b) shows very similar results, implying that the effect

of a change of the nematic order is minor. Differences are recognized in the following:

The eigenvalues are suppressed more by the nematic order, and the absolute value of Z
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Figure 72: Possible superconductivity from spin fluctuations deeply inside the nematic

phase (g/t = −1.9) for the Lorentz-type [(a)-(d)] and the J1 − J2-type [(e)-(h)] spin

fluctuations. (a) and (e) Temperature dependence of the largest eigenvalues. (b) and

(f) Momentum dependence of pairing gap. (c) and (g) Momentum dependence of the
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of the spin interaction and temperature; the eigenvalues of the Eliashberg equations are
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is also suppressed more. Figure 72 (d) is a phase diagram as a function of the strength of

the spin interaction J . This is also very similar to that in the case of g/t = −1.8 [Fig.44

(b)], except that the eigenvalues are suppressed more.

J1 − J2 -type spin fluctuations

Corresponding results for the J1 − J2-type spin fluctuations are summarized in the right

panels in Fig.72, which shows very similar results to the Lorentz-type spin fluctuations.

Minor differences are i) the eigenvalue from intra-pocket scattering processes is larger

than that from “(π, 0)”-scattering processes [Fig.72 (e)] and ii) the eigenvalue tends to be

suppressed more [Fig.72 (h)].

5.2.2 Superconductivity from spin fluctuations without the self-

energy effect

To clarify a role of the self-energy effect on the superconductivity from spin fluctuations,

we perform the same calculations as Section 3.2 except that we here neglect the self-energy

effect ant assume Z = 1. Figure 73 (a) is the temperature dependence of the eigenval-

ues of the Eliashberg equations for the Lorentz-type spin fluctuations in the tetragonal

phase. This result is qualitatively the same as Fig.41 (a), where the self-energy effect is

considered. Quantitatively, the eigenvalues are substantially increased by neglecting the

self-energy effect. Since the resulting eigenvalue exceeds unity and we obtain supercon-

ductivity from spin fluctuations alone. The momentum dependence of the pairing gap is

shown in Fig.74 (a), which is very similar to Fig.42 (a), implying that the self-energy effect

does not change the gap structure. Resulting superconducting phase diagram is presented

in Fig.75 (a), showing that Lorentz-type spin fluctuations can drive the superconductivity

very close to the SDW phase at low temperature.

Corresponding results in the nematic phase are given in Figs.73 (b), 74 (b), and 75 (b).

As we have discussed in Section 3.2 in the presence of the self-energy, the nematic order

has similar effects even in the absence of the self-energy: The eigenvalues of the Eliashberg

equations tend to be suppressed [Figs.73 (b) and 75 (b)] and the pairing gap acquires a

large momentum dependence [Fig.74 (b)]. In contrast to the case in the tetragonal phase,

it is difficult that spin fluctuations drive superconductivity in the nematic phase even if

the self-energy effect is discarded.

We also perform the same calculations for J1 − J2-type spin fluctuations without the

self-energy effect. Figure 73 (c) is the temperature dependence of the eigenvalues of the

Eliashberg equations. While “(π, 0)”-scattering processes yield the eigenvalue exceed-

ing unity [Fig.73 (c)], it is substantially suppressed by intra-pocket scattering processes.

Because of this self-restraint effect of the superconductivity, J1 − J2-type spin fluctua-

tions are difficult to drive the superconductivity even if the self-energy effect is discarded.

Compared to the case of Lorentz-type spin fluctuations [Fig.75 (a)], the region where the
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Figure 73: Temperature dependence of the eigenvalues of the Eliashberg equations without

the self-energy effect for the Lorentz-type spin fluctuations (a) in the tetragonal phase

and (b) in the nematic phase. (c) and (d) corresponding results for the J1 − J2-type spin

fluctuations.

superconducting instability occurs is very limited in the vicinity of the SDW phase as

shown in Fig.75 (c). The momentum dependence of the pairing gap is shown in Fig.74

(c), which shares the same feature as that with the self-energy effect [Fig.48 (a)] except

that the modulation of the pairing gap on FS1, FS3, and FS4 is enhanced.

Corresponding results in the nematic phase are shown in Figs.73 (d), 74 (d), and 75

(d). As in the case of Lorentz-type spin fluctuations, the tendency of the superconducting

instability is suppressed by the nematic order [Figs.73 (d) and 75 (d)] and the modulation

of the pairing gap is enhanced although the gap on FS3 almost vanishes.

All results presented in this section imply that the self-energy effect does not pro-

vide qualitative changes, but quantitative ones. In particular, the absolute value of the

eigenvalue of the Eliashberg equations is heavily suppressed by the self-energy effect. In

this sense, the self-energy effect is very important when discussing whether spin fluctu-

ations can actually drive the superconductivity with Tc comparable to the experimental

observation.
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Figure 74: Momentum dependence of the pairing gap without the self-energy effect for the

Lorentz-type spin fluctuations (a) in the tetragonal phase and (b) in the nematic phase.

(c) and (d) corresponding results for the J1 − J2-type spin fluctuations.

5.3 Superconducting instability from both orbital ne-

matic and spin fluctuations deeply inside the ne-

matic phase

Orbital nematic and spin fluctuations

The electron pocket FS3 (Fig.10) disappears deeply inside the nematic phase, although it

turns out that essentially new insight is not obtained for the superconducting mechanism.

For completeness, however, we present results of superconducting instability from both

orbital nematic and spin fluctuations in such a case.

The left column in Fig.76 is for the Lorentz-type spin fluctuations and the right col-

umn for the J1 − J2-type spin fluctuations. First of all, no qualitative differences are

seen between results in the left and right column. Quantitatively, the J1 − J2-type spin

fluctuations suppress the superconductivity from orbital nematic fluctuations more than

the Lorentz-type spin fluctuations [Figs.76 (d) and (h)]. All results in Figs.76 (a) - (d)

[Figs.76 (e) - (h)] can be compared with Figs.51 (b), 52 (b), 53 (b), and 54 (b) [Figs.56

(b), (d), and (f)] where FS3 substantially shrinks but remains (see Fig.10). Such a com-
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Phase diagram from spin fluctuations without the self-energy effect

Figure 75: Phase diagram in the plane of the strength of the spin interaction and temper-

ature in the absence of the self-energy effect for the Lorentz-type spin fluctuations (a) in

the tetragonal phase and (b) in the nematic phase. Contour lines of the largest eigenvalue

of the Eliashberg equations are plotted near the SDW phase. (c) and (d) corresponding

results for the J1 − J2-type spin fluctuations.

parison shows that the major effect of a larger orbital nematic order is to enhance the

momentum dependence of the pairing gap [Figs.76 (b) and (f)] and the renormalization

function [Figs.76 (c) and (g)]. Although we have found that the pairing symmetry changes

from s++-wave to s±-wave close to the SDW phase in the tetragonal phase in Figs.54 (a)

and 57 (a), the pairing gap retains s++-wave symmetry even in the vicinity of the SDW

phase in the nemati phase; see Figs.76 (d) and (h), Fig.54 (b), and Fig.57 (b).
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Figure 76: Superconductivity from both orbital nematic and spin fluctuations deeply

inside the nematic phase (g/t = −1.9) [(a)-(d)] for the Lorentz-type spin fluctuations

(J/t = 2.2) and [(e)-(h)] for the J1 − J2-type spin fluctuations (J2/t = 1.25). (a) and (e)

Temperature dependence of the eigenvalues. (b) and (f) Momentum dependence of the

pairing gap. (c) and (g) Momentum dependence of the renormalization function. (d) and

(h) Phase diagram in the plane of the strength of the spin interaction and temperature;

note that the system has purely orbital nematic fluctuations at J/t = 0 and J2/t = 0.
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