<table>
<thead>
<tr>
<th>Title</th>
<th>Incidence of anterior disc displacement without reduction of the temporomandibular joint in patients with dentofacial deformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation</td>
<td>International journal of oral and maxillofacial surgery, 47(4), 505-510</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2018-04</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/73362</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International</td>
</tr>
<tr>
<td>Rights(URL)</td>
<td>http://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
</tbody>
</table>

File Information

10.2 ADDwoR manuscript OoiK.pdf
Incidence of anterior disc displacement without reduction of the temporomandibular joint in patients with dentofacial deformity

Kazuhiro Ooi¹, ⁴, Nobuo Inoue², Kazuhiro Matsushita¹, Hiro-o Yamaguchi¹, Tadashi Mikoya¹, Kazuyuki Minowa³, Shuichi Kawashiri⁴, Satoshi Nishikata⁵, Kanchu Tei¹

¹ Oral and Maxillofacial Surgery, Department of Oral Patho-biological Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 kita-ku, Sapporo, Hokkaido 060-8586, Japan
² Gerodontology, Department of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 kita-ku, Sapporo, Hokkaido 060-8586, Japan
³ Dental Radiology, Department of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 kita-ku, Sapporo, Hokkaido 060-8586, Japan
⁴ Department of Oral and Maxillofacial Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
⁵ Oral and Maxillofacial Surgery, Sapporo Higashi Tokushukai Hospital, 3-1 Kita 33 Higashi 14 higashi-ku, Sapporo, Hokkaido 060-0033, Japan

Correspondence:
Kazuhiro Ooi: Oral and Maxillofacial Surgery, Department of Oral Patho-biological Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 kita-ku, Sapporo 060-8586, Japan.
Tel: +81-11-706 4283; FAX: +81-11-706 4283
E-mail: ooi@den.hokudai.ac.jp

Funding: Not to declare

Key words: anterior disc displacement without reduction; dentofacial deformity; magnetic resonance imaging; anterior open bite; mandibular asymmetry
Short title: ADDwoR of TMJ in dentofacial deformity
Abstract

This study aimed to investigate the incidence of anterior disc displacement without reduction (ADDwoR) of the temporomandibular joint (TMJ) in patients with dentofacial deformity. Eighty-eight female patients (176 joints) with Skeletal Class III and 33 female patients (66 joints) with Skeletal Class II malocclusion with or without anterior open bite and asymmetry were evaluated. Magnetic resonance imaging (MRI) of the TMJ was used for diagnosis of ADDwoR. Statistical analysis was performed to examine the relationship between ADDwoR and skeletal structure. ADDwoR was present in 37 (56.1%) of the 66 joints in class II compared to 34 (19.3%) of the 176 joints in class III (p <0.05). In class III, ADDwoR was significantly more common in joints with mandibular asymmetry (24 (32.4%) of 74) than in joints with open bite (9 (14.5%) of 62) and joints with open bite and without mandibular asymmetry (1 (2.6%) of 38). In class II, ADDwoR was significantly less common in joints with mandibular asymmetry and without open bite (1 (12.5%) of 8). ADDwoR was only observed on the deviated side in
both class III and class II with mandibular asymmetry. The prevalence of ADDwoR was quite different according to dentofacial morphology.
INTRODUCTION

Dentofacial morphology and symptoms of temporomandibular disorder are thought to be related. Recent reports have shown that symptoms of temporomandibular disorder are highly associated with mandibular asymmetry\(^1\), open bite\(^2\), and Skeletal Class II malocclusion\(^3\), and less common with Skeletal Class III malocclusion\(^2\). However, these reports are only based on the relationship between subjective symptoms of temporomandibular disorder and dentofacial morphology. Few objective studies using MR imaging have been done.

Recently, we reported that anterior disc displacement without reduction (ADDwoR) and bone changes of the mandibular condylar head were significantly more common in patients with skeletal open bite than in volunteers without dentofacial deformity\(^4\). This shows that skeletal open bite is one of the factors associated with the incidence of ADDwoR and bone changes of the mandibular condylar head. However, bone changes of the mandibular condylar head are thought to generally occur secondary to ADDwoR\(^5\), but they can occur without ADDwoR. In the former, mandibular condylar resorption occurs following ramus height decreases; if this change is unilateral, it can cause facial
asymmetry, and if it is bilateral, it can cause open bite. In the latter, bone changes occur
at a stage of development of the mandibular condylar head, and disc displacement is
thought to occur after mandibular condylar resorption, but the details are unknown.

In this way, ADDwoR with dentofacial deformity is a very important factor to
understand the development and function of the mandible. However, the incidence of
ADDwoR in dentofacial deformity has not been sufficiently investigated. Therefore, an
objective imaging study was performed to determine the relationship between the
incidence of ADDwoR and dentofacial structure with dentofacial deformity.

MATERIALS AND METHODS

The subjects in this study were 121 women with dentofacial deformity, including 88
with Skeletal class III malocclusion (176 joints) and 33 with Skeletal class II
malocclusion (66 joints) with or without mandibular asymmetry and open bite, who
underwent orthognathic surgery at Hokkaido University Hospital, Sapporo, Japan. The
median age at the time of surgery was 25 years (range, 14-48 years). None of the
patients had previously been diagnosed with juvenile rheumatoid arthritis. Patients with
sagittal skeletal deformities were included in this study. Mandibular asymmetry was defined as >2 mm deviation between the menton and facial midline, and open bite was defined as <0 mm overbite. No men were included in this study to avoid skewing the cephalometric measurements by sex-related differences. The subjects included some women with clinically detectable TMJ signs and symptoms (capsular pain, joint sounds, masticatory muscle tenderness) and some without symptoms. The TMJs of patients with dentofacial deformity were examined using MR imaging to assess the position of the disc before the start of orthodontic treatment. Tesla 3.0 MRI machine was used. The position of the disc was examined using sagittal and coronal slices and T1-weighted or proton-density MR imaging with the mouth closed and open. The slice thickness was 3 mm, and the slice gap was 0.5 mm on all MR images. The bilateral surface coil for TMJ was used. On PDWI, TR (repetition time) was 1300 msec, and TE (echo time) was 30 msec. On T1WI, TR (repetition time) was 700 msec, and TE (echo time) was 15 msec. Pixel size on both PDWI and T1WI was 512×192. Software processing of the MR images was not performed after the MRI had been completed. Results of MRI were classified as with or without ADDwoR by Radiologist who trained as an MRI specialist. Subjects were divided into the Skeletal class III group with mandibular asymmetry or
open bite and the Skeletal class II group with mandibular asymmetry or open bite.

ADDwoR was considered present if the disk was displaced anteriorly relative to the posterior slope of the articular eminence and the head of the condyle, but without reduction of the disk on mouth opening (Fig.1). The prevalence of ADDwoR was examined in each group, and statistical analysis was performed using the Chi-squared test. P values of less than 0.05 were considered significant.

This study comply with the principles stated in the Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects, adopted by the 18th World Medical Assembly, Helsinki, Finland, June 1964, and as amended most recently by the 64th World Medical Assembly, Fontaleza, Brazil, October 2013. The work has been approved by Hokkaido University Research Ethical Committee (Ref. No. 010-0285).

RESULTS

Prevalence of ADDwoR in patients with Skeletal Class III and Class II

ADDwoR was observed in 34 (19.3%) of 176 joints in Skeletal Class III and in 37
of 66 joints in Skeletal Class II.; the difference was significant (Fig 2).

Prevalence of ADDwoR in patients with Skeletal class III malocclusion and Skeletal class II malocclusion according to with or without open bite and facial asymmetry

ADDwoR was significantly more common in Skeletal Class III with mandibular asymmetry (24 (32.4%) of 74 joints) than in Skeletal Class III with open bite (9 (14.5%) of 62 joints). ADDwoR was observed in 14 (50.0%) of 28 joints in Skeletal Class II with mandibular asymmetry and in 25 (59.5%) of 42 joints in Skeletal Class II with open bite; the difference was not significant (Table 1).

Prevalence of ADDwoR in patients with Skeletal class III malocclusion according to with or without open bite and mandibular asymmetry

ADDwoR was observed in 9 (14.1%) of 64 joints without open bite and asymmetry, 1 (2.6%) of 38 joints with open bite and without mandibular asymmetry, 16 (32.0%) of 50 joints with mandibular asymmetry and without open bite, and 8 (33.0%) of 24 joints with open bite and mandibular asymmetry. ADDwoR was observed only on the deviated
Prevalence of ADDwoR in patients with Skeletal class II malocclusion according to with or without open bite and mandibular asymmetry

ADDwoR was observed in 11 (68.7%) of 16 joints both without open bite and mandibular asymmetry, 12 (54.5%) of 22 joints with open bite and mandibular asymmetry, 1 (12.5%) of 8 joints with mandibular asymmetry and without open bite, and 13 (65.0%) of 20 joints both with open bite and mandibular asymmetry. ADDwoR was only observed on the deviated side in mandibular asymmetry (Table 3).

DISCUSSION

It has been reported that symptoms of temporomandibular disorders are more frequent in patients with open bite and mandibular asymmetry, however these symptoms are less in patients with mandibular protrusion than in persons with normal occlusion. Temporomandibular disorder has been found to be more common with open bite, mandibular asymmetry, and mandibular retrusion than with other dentofacial
deformities⁷. On the other hand, it has also been reported that there is no significant relationship between dentofacial deformity and temporomandibular disorder, though 62.8% of patients with dentofacial deformities had symptoms of temporomandibular disorder before orthognathic surgery⁸. One study found no relationship between cephalometric analysis and temporomandibular disorder⁹. Further, in patients with dentofacial deformities who underwent temporomandibular joint arthrography, 57% of patients had anterior disc displacement and 53% had temporomandibular joint pain, but there were no relationships among anterior disc displacement, clinical symptoms, and dentofacial morphology¹⁰. In contrast, anterior disc displacement was reported to be more common on the deviated side of temporomandibular joints with mandibular asymmetry on MR imaging¹¹. A decreased posterior facial height and backward position and rotation of the mandible are principal characteristics associated with TMJ disk displacement¹²,¹³. Thus, opinions about the association between temporomandibular disorder and dentofacial deformity are divided.

Recently, we reported that anterior disc displacement was more common with open bite than in volunteers without dentofacial deformity, and bony changes were more common than with closed lock in patients with temporomandibular joint disorder⁴. We
want to verify prevalence of ADDwoR between Class III and Class II, because this previous study was predominantly Class II. Since the incidence of temporomandibular disorder is low in patients with mandibular protrusion and high in patients with mandibular retrusion, ADDwoR was 3 times more common in patients with mandibular retrusion than in patients with mandibular protrusion in this study. In the present study, Skeletal Class III and II groups were divided into those with or without open bite or mandibular asymmetry, because it is thought that the rate of temporomandibular disorder is generally high with open bite and mandibular asymmetry. The prevalence of ADDwoR was almost 2 times higher with mandibular asymmetry than with open bite in Skeletal Class III, but there was no significant difference in Skeletal Class II. This result indicates that the association of ADDWoR with mandibular asymmetry is stronger in Skeletal Class III than in Skeletal Class II. In the Class III patient, the open bite and the development of asymmetry is related to the excessive growth pattern of the condyles and the facial morphology. Open bites in Class III patients are more commonly associated with accelerated condylar and mandibular growth and high occlusal plane angle facial mophologies. Class III patients with low occlusal plane angle facial morphologies do not commonly demonstrate an
open bite. Mandibular asymmetry in Class III patients is almost always related to
excessive or accelerated growth of the condyle and mandible on the non-deviated side,
that over-loads the contralateral (deviated) side that can cause the anterior disc
dislocation15. Thus, Class III's with open bites and asymmetries are commonly
associated with accelerated growth of the condyles. In the Class II patients, open bites
and asymmetries are commonly related to TMJ pathologies that are causing condylar
resorption (the opposite of what causes the open bites and asymmetries in the Class III
patients). The most common causes of condylar resorption in the Class II patient are:
1. Adolescent internal condylar resorption (AICR) where articular discs are anteriorly
displaced (and commonly non-reducing) by the nature of the TMJ pathology. 2.
Reactive arthritis with or without anteriorly disc dislocation. 3. Connective tissue
autoimmune diseases14,15. Thus, the development of the open bite and asymmetry in
Class III patients has a totally different TMJ etiology as compared to the Class II
patients.

Furthermore, Skeletal Class III and Skeletal Class II were classified into 4 groups to
determine the incidence of ADDwoR in this study. With mandibular asymmetry, the
prevalence of ADDwoR was only observed at deviated side. The prevalence of
ADDwoR in Skeletal Class III with open bite alone was only 2.6%, and half that rate was seen without both open bite and mandibular asymmetry. This incidence is extremely low because the incidence of ADDwoR in volunteers without dentofacial deformity was reported to be 7%. This suggests that the prevalence of ADDwoR in Skeletal Class III associated only with open bite is extremely small. Given this, it is desirable to investigate the details of the temporomandibular joint in dentofacial morphology to determine the etiology of overgrowth of the mandible. It would be expected that skeletal Class III patients with or without ADDwoR associated only with anterior open bite is extremely small. Symmetric prognathic cases rarely have anteriorly displaced discs; however, in the Class III asymmetry case, where the condyle on the non-deviated side overgrows creating the asymmetry, increases the loading on the opposite joint that contributes to the anteriorly displacement of the disc on the contralateral side. However, in the Class II patient with asymmetry, the ADDwoR is involved with the condyle on the deviated side that may be undergoing unilateral condylar resorption causing a shift of the mandible in the Class II patient, frequently related to AICR versus reactive arthritis versus connective tissue autoimmune disease.

In Skeletal Class II, the prevalence of ADDwoR with mandibular asymmetry alone
was 12.5%, with no bilateral cases. However, it was observed in 54.5% to 68.7% of the
other 3 groups, with bilateral cases found in Skeletal Class III. These results indicate
that the process of ADDwoR expression differs between Skeletal Class III and Skeletal
Class II. An investigation of more detailed temporomandibular joints in Skeletal Class
II associated only with mandibular asymmetry would be useful in the future. Skeletal
Class III and Skeletal Class II had ADDwoR only on the deviated side with mandibular
asymmetry. These results suggest that unilateral over-development of the
condyle/mandible in Class III patients and unilateral condylar resorption in Class II
patients is strongly associated with ADDwoR.

It is known that condylar cartilage is important as the starting point of mandibular
bone development, and endochondral ossification, which was observed mainly on the
mandibular condyle, is important for the development of mandibular bone. Whether
mandibular bone formation on the displacement side decreases because a disorder
occurs in the cartilage of the condyle due to anterior disc displacement or mandibular
asymmetry occurs first is unknown, but these results mean that it is important to
elucidate these clinical conditions, whether they occur at the same time because anterior
disc displacement occurs continuously after the abnormality has occurred or in the
formation of the condyle. It would be desirable to follow-up the temporomandibular
joints of young patients with mandibular asymmetry and anterior disc displacement in
the future.

The degenerative change of the mandibular condyle is thought to have a close
relationship to ADDwoR17, but ADDwoR without degenerative change of the
mandibular condyle has also been reported3. Katzberg et al18 and Kurt et al19 reported
vertical shortening of ramus height by regressive change, and that growth suppression
of the mandibular condyle with progression of the temporomandibular disorder may
cause open bite. Chen et al3 reported that condylar degenerative changes may lead to
deformities of the jaw, in turn resulting in decreased vertical dimensions of the proximal
mandibular segments and open bite. We assume that probably most of these patients are
Class II's with either AICR, reactive arthritis, or CT/AI. We reported that bone changes
occurred in 79\% of temporomandibular joints with ADDwoR and open bite, ADDwoR
appeared and increased the mandibular plane angle, bone changes developed and
increased the ramus plane angle, and some patients with skeletal open bite showed worn
facets and no protuberances on the incisal edges20. These results suggest that clockwise
rotation occurred, resulting in mandibular condylar resorption for various reasons in
ADDwoR in patients who had dental articulation contact of the incisal edges in both the maxilla and mandible. Vertical malocclusion develops as a result of the interaction of many different etiologic factors, including thumb and finger sucking, lip and tongue habits, airway obstruction, and true skeletal growth abnormalities. However, this is not clear, since mandibular condylar resorption with progression of temporomandibular disorder is one of the causes of open bite when looking at the present and previous results. We need to investigate more to pediatric patients because the onset of "vertical malocclusion" in teenage and adult patients, is more likely associated in Class II patients with condylar resorption. In a study using a three-dimensional finite element model of mandibular bone including the temporomandibular joint, compression stress in the posterior region and tensile stress in the frontal region at the temporomandibular joint increased according to the mandibular plane angle or the gonial angle. These reports suggest that it can become one of the factors in which some dentofacial morphologies cause temporomandibular disorders. It seems reasonable to suggest that skeletal Class II profiles and hyperdivergent growth patterns are likely associated with an increased frequency of TMJ disc displacement and degenerative disorders. In the present study, it was found that the expression of ADDwoR was very different with
differences in dentofacial morphology. These results show that dentofacial morphology
is closely associated with anterior disc displacement, and that the state of the
temporomandibular joint is extremely important in the development of dentofacial
structure. In the future, it is particularly necessary to investigate the kind of change that
occurs over the long term in dentofacial morphology by observing the
temporomandibular joints of patients with open bite and mandibular asymmetry and
temporomandibular disorders to better determine the relationships with
temporomandibular disorder or the development of dentofacial structure.
Conflict of interest

We declare that we have no conflicts of interest.

Role of the funding source

There was no source of funding for this research.

Ethical approval

Approval was given by Hokkaido University Hospital Ethics Committee (Ref. No 010-0285)

Patient consent

Not required.
References

Fig 1. MR images of Anteriorly Displaced Discs without Reduction (ADDwoR). (A: mouth closed, B: mouth open)
ADDwoR was considered present if the disk was displaced anteriorly relative to the posterior slope of the articular eminence and the head of the condyle, but without reduction of the disk on mouth opening.
Fig. 2. Prevalence of TMJs with ADDwoR in patients with Skeletal class III and II

ADDwoR: Anteriorly Displaced Discs without Reduction
ADDwR: Anteriorly Displaced Discs with Reduction
NDD: Non-Displaced Discs

* P< 0.05 chi-square test
Data are number of TMJ
Table 1. Prevalence of joints with ADDwoR in patients with Skeletal class III and II according to with or without open bite and mandibular asymmetry.

<table>
<thead>
<tr>
<th></th>
<th>Class III</th>
<th></th>
<th>Class II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OB (n=62)</td>
<td>MA (n=74)</td>
<td>P value</td>
<td>OB (n=42)</td>
</tr>
<tr>
<td>ADDwoR</td>
<td>9 (14.5)</td>
<td>24 (32.4)</td>
<td>0.0152*</td>
<td>25 (59.5)</td>
</tr>
<tr>
<td>ADDwR</td>
<td>41 (66.1)</td>
<td>42 (56.8)</td>
<td>0.2643</td>
<td>12 (28.6)</td>
</tr>
<tr>
<td>NDD</td>
<td>12 (19.4)</td>
<td>8 (10.8)</td>
<td>0.1612</td>
<td>5 (11.9)</td>
</tr>
</tbody>
</table>

ADDwoR: Anteriorly Displaced Discs without Reduction
ADDwR: Anteriorly Displaced Discs with Reduction
NDD: Non-Displaced Discs
OB: open bite
MA: mandibular asymmetry

* P< 0.05 chi-square test
Data are number of TMJ (%).
Table 2. Prevalence of TMJs with ADDwoR in patients with Skeletal class III according to with or without open bite and mandibular asymmetry.

<table>
<thead>
<tr>
<th>OB/MA (n=TMJ)</th>
<th>ADDwoR (n=TMJ)</th>
<th>ADDwoR</th>
<th>ADDwR</th>
<th>NDD</th>
<th>ADDwoR/ADDwR</th>
<th>ADDwoR/NDD</th>
<th>ADDwR/NDD</th>
<th>ADDwoR/ADDwR</th>
<th>ADDwoR/NDD</th>
<th>ADDwR/NDD</th>
<th>Data are number of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB/MA(−/−) (n=32)</td>
<td>9 / 64 (14.1)</td>
<td>3</td>
<td>18</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB/MA(+/−) (n=19)</td>
<td>1 / 38 (2.6)*</td>
<td>0</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB/MA(−/+)(n=25)</td>
<td>16 / 50 (32.0)</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>OB/MA(+/+) (n=12)</td>
<td>8 / 24 (33.0)</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

ADDwoR: Anteriorly Displaced Discs without Reduction
ADDwR: Anteriorly Displaced Discs with Reduction
NDD: Non-Displaced Discs
OB: open bite MA: mandibular asymmetry
DS: deviated side NDS: non-deviated side
(+): with (−): without

* P< 0.05
<table>
<thead>
<tr>
<th>OB/MA(−/−)</th>
<th>ADDwoR (n=8)</th>
<th>ADDwoR</th>
<th>ADDwR</th>
<th>NDD</th>
<th>ADDwoR/ ADDwR</th>
<th>ADDwR/ NDD</th>
<th>ADDwR/ NDD</th>
<th>ADDwoR/ NDD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11/ 16 (68.7)</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OB/MA(+/−)</td>
<td>ADDwoR (n=11)</td>
<td>12/ 22 (54.5)</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OB/MA(−/+)(n=4)</td>
<td>ADDwoR (n=4)</td>
<td>1/ 8 (12.5)*</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OB/MA(+/+)</td>
<td>ADDwoR (n=10)</td>
<td>13/ 20 (65.0)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

ADDwoR: Anteriorly Displaced Discs without Reduction
ADDwR: Anteriorly Displaced Discs with Reduction
NDD: Non-Displaced Discs
OB: open bite MA: mandibular asymmetry
DS: deviated side NDS: non-deviated side
(+): with (−): without

* P< 0.05

Data are number of patients (%).