Astaxanthin improves the developmental competence of in vitro-grown oocytes and modifies the steroidogenesis of granulosa cells derived from bovine early antral follicles.
Astaxanthin improves the developmental competence of in vitro grown oocytes and modifies the steroidogenesis of granulosa cells derived from bovine early antral follicles

A Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
B Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, 71515, Egypt
C Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
D Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan

♯ Equal contribution to the first author

*Correspondence: Masashi Nagano (e-mail: mnaga@vetmed.hokudai.ac.jp)

TEL.&FAX: +81-11-706-5232
Abstract

We investigated the influence of Astaxanthin (Ax), which exhibits strong antioxidant activity, during *in vitro* growth (IVG) on the developmental competence of oocytes and steroidogenesis of granulosa cells derived from early antral follicles. Bovine oocyte-cumulus-granulosa complexes collected from early antral follicles were cultured for 12 days in the presence (500 µM) or absence (control) of Ax. Viability of oocytes and antrum formation in granulosa cell layer during IVG culture were greater in the presence of Ax than in its absence (P<0.05). Regardless of Ax treatment, estradiol-17β production increased during IVG culture; however, progesterone production was significantly lower in the presence of Ax than in its absence (P<0.05). Reactive oxygen species levels were lower in Ax-treated oocytes than in controls after IVG (P<0.05). Although the nuclear maturation and cleavage rates did not differ regardless of Ax treatment, Ax treatment led to weaker cathepsin B activity in oocytes and better blastocyst rates than those in controls (P<0.05). Accordingly, Ax treatment during IVG increased total cell numbers in blastocysts (P<0.05). These results indicate that Ax supplementation to IVG medium improves the quality of bovine oocytes due to its antioxidative effects on growing oocytes and its suppression of the luteinization of granulosa cells.

Additional Keywords: astaxanthin, cathepsin B, early antral follicle, IVG, ROS generation
Introduction

Assisted reproductive technologies (ARTs) including in vitro maturation (IVM), the in vitro fertilization (IVF) of oocytes, and in vitro culture (IVC) for the production of transferable embryos are uniquely desirable for improving the breeding of animals and also for the perpetuation programs of wild and endangered species. Moreover, the isolation and IVC of ovarian follicles to obtain fertilizable oocytes and further embryo development have been regarded as a propitious strategy to strive against infertility issues (Hansen 2014; Szamatowicz 2016; Kushnir et al. 2017).

The follicle features a fitting microenvironment that is responsible for confirming the production of oocytes with high quality and integrity, allowing its final growth, capacitation, and the nuclear and cytoplasmic maturation needs of the female gamete until it is released for fertilization into the uterine tubes (Hennet and Combelles 2012). In growing follicles, the concentration of estradiol-17β (E₂) increases in conjunction with follicular development, while elevations in progesterone (P₄) concentrations are accompanied by follicular degeneration (Kruip and Dieleman 1985). However, oocyte-cumulus-granulosa complexes (OCGCs) have been shown to produce large amounts of P₄ during in vitro growth (IVG) cultures (Yang et al. 2016; Sakaguchi et al. 2017), similar to degenerating bovine follicles (Kruip and Dieleman 1985). Previous studies have documented and focused on the establishment of a suitable system for the IVG of bovine OCGCs obtained from early antral follicles or mimicking in vivo development of bovine follicles; however, success has been limited (Makita and Miyano...
2015; Huang et al. 2016; Makita et al. 2016; Sakaguchi et al. 2017). Therefore, further research is needed in order to improve IVG systems.

Astaxanthin (Ax) is a red-orange carotenoid pigment that is present in fishery products such as salmon, shrimp, and crab (Kuraji et al. 2016). Previous studies reported that Ax possesses a wide range of biological functions including the control of lipid peroxidation, anti-inflammatory and anti-tumor activities, the scavenging of reactive oxygen species (ROS), and as a hydroxyl radical antioxidant (Namekawa et al. 2010; Fassett and Coombes 2011; Kuraji et al. 2016). Moreover, Ax feeding was beneficial to improve chicken egg yolk color; egg quality during storage and it also improved the carcass traits and meat quality of pigs (Yang et al. 2006). Besides, there is an increase in the number of corpora lutea (CL), implantation sites and fetuses, and a decrease in the percentage of stillborn kits among minks fed Ax (Hansen et al. 2014). Furthermore, Ax exhibits more powerful antioxidant activity than vitamin C, vitamin E, and β-carotene; the antioxidant activity of Ax was shown to be 100- to 500-fold greater than that α-tocopherol and 15-fold greater than those of other carotenoids (Naguib 2000). The antioxidant effects of Ax on the developmental competence of in vitro-produced bovine embryos have been attributed to the induction of antioxidant genes and suppression of apoptotic genes (Jang et al. 2010). Additionally, it is soluble in lipids and, thus, is incorporated into cell membranes and reduces DNA damage (Kuraji et al. 2016). Ax added to the IVC medium of embryos improved bovine embryonic development impaired by heat stress (Namekawa et al. 2010), and its supplementation effectively promoted the maturation, fertilization, and development of oocytes exposed to heat stress during IVM in pigs (Do et al. 2015). Therefore, Ax is also assumed to be beneficial during
IVG; however, the effects of Ax on bovine OCGCs obtained from early antral follicles during IVG culture currently remain unknown. A previous study reported that oxidative stress induced apoptosis in mouse granulosa cells (Weng et al. 2016). Therefore, the antioxidative effects of Ax are expected to improve the steroid hormone environment for OCGCs.

Cathepsin B (CTSB) is a lysosomal cysteine protease found in many types of cells such as bovine oocytes (Balboula et al. 2010). A relationship has been reported between CTSB activity and apoptosis, in which CTSB was found to induce the apoptotic pathway by activating caspases, and the inhibition of CTSB during IVM significantly improved the developmental competence of bovine COCs as well as the quality of their embryos (Balboula et al. 2010). Moreover, the activity of CTSB inversely correlated with the developmental competence of bovine oocytes, and, thus, CTSB activity may be a useful marker for oocytes and embryos of inferior quality (Balboula et al. 2013). Although the role of CTSB activity has been elucidated in bovine oocytes, its activity in bovine oocytes derived from IVG and the effect of Ax on CTSB activity currently remains unclear.

In the present study, the effects of Ax supplementation during IVG on the growth parameters of OCGCs (survivability, antrum formation in the granulosa cell layer, and diameter of oocytes), the quality of oocytes after IVM (CTSB activity), maturation, the further embryonic development of bovine oocytes obtained from early antral follicles, and the production of steroid hormones from granulosa cells were investigated.

Materials and methods
Chemicals

All the chemicals used in the present study were purchased from Sigma-Aldrich (St. Louis, MO, USA), unless otherwise stated.

Collection of OCGCs from early antral follicles and IVG

Bovine ovaries (n=158) were obtained from a local abattoir. They were transported to the laboratory within 6 to 10 hours of collection in a plastic bag at 20°C. After three washes in physiological sterile saline, sliced ovarian cortex tissues (<1 mm thick) were prepared using a surgical blade (No. 11) and stored in TCM199 (Invitrogen; Grand Island, NY, USA) supplemented with 0.1% polyvinyl alcohol, 25 mM HEPES, 10 mM sodium bicarbonate, and 50 mg/mL gentamicin sulfate (isolation medium, pH 7.4, at 37°C), as described elsewhere (Huang et al. 2013; Huang 2014). Under a stereomicroscope, early antral follicles (0.5-1 mm in diameter) were dissected from the sliced ovarian tissues using a surgical blade (No. 20) (Fig. 1A). OCGCs were isolated from follicles using a pair of fine forceps and those with a normal appearance were individually cultured in 96-well culture plates (Falcon 353872, Becton Dickinson, Franklin Lakes, NJ, USA) with 200 µL of growth medium for 12 days at 39°C in humidified air with 5% CO₂. Growth medium consisted of HEPES-buffered TCM199 (Invitrogen) supplemented with 0.91 mM sodium pyruvate, 10 ng/mL androstenedione, 5% fetal calf serum (FCS; Invitrogen), 4 mM hypoxanthine, 4% polyvinylpyrrolidone (PVP; MW 360,000), and 50 mg/mL gentamicin sulfate. At the onset of the IVG culture, OCGCs were photographed under an inverted microscope (CK 40, Olympus, Tokyo, Japan) attached to a CCD camera (Moticam 2000, Shimadzu Rika
Corporation, Tokyo, Japan), and the diameters of oocytes (excluding the zona pellucida) were assessed using software (Motic Images Plus 2.2s, Shimadzu) (Fig. 1B). During the IVG culture, half (100 µL) of the growth medium was replaced by the same amount of fresh medium every 4 days. In the Ax-treated group, 500 µM of Ax was added to IVG medium. IVG medium without Ax was used as a control. The dose of Ax was selected according to a previous study, in which 500 µM Ax achieved the highest developmental competence in bovine IVF embryos (Jang et al. 2010).

Evaluation of OCGC growth

The viability of OCGCs, antrum formation in the granulosa cell layer, and diameter of oocytes were employed as OCGC growth parameters in the present study. OCGC growth parameters were measured before and after the IVG culture. The survivability of OCGCs was evaluated by their morphological appearance according to previously reported criteria (Huang et al. 2013). Oocytes were considered to be viable when completely enclosed by a healthy granulosa cell layer at the end of IVG, and isolated oocytes had a cytoplasm with a normal appearance and several layers of cumulus cells (Fig. 1C). OCGCs were considered to be abnormal and/or dead when oocytes were denuded by a scattering cumulus and granulosa cells and/or had an abnormal appearance (Fig. 1D).

IVM of in vivo-grown and IVG oocytes

In vivo-grown oocytes (approximately 120 µm in diameter) were collected from antral follicles (2–8 mm in diameter) as described previously (Huang et al., 2013; Huang 2014) and
submitted them to IVM. Briefly, cumulus-oocyte complexes (COCs) were incubated in 50-μL droplets of IVM medium (approximately 10 COCs per droplet) and were then covered with paraffin oil for 22 h at 39°C in a humidified atmosphere with 5% CO₂ (Takahashi and Kanagawa 1998a). COCs derived from OCGCs after IVG were cultured individually in microwell plates (Mini Trays 163118; NUNC, Roskilde, Denmark) filled with 6 mL of maturation medium (Nagano et al. 2013). Maturation medium consisted of HEPES-buffered TCM199 supplemented with 0.2 mM sodium pyruvate, 0.02 units/mL FSH (from the porcine pituitary), 1 mg/mL E₂, 10% FCS, and 50 mg/mL gentamicin sulfate at 39°C for 22 h under 5% CO₂ in air.

Evaluation of oocyte nuclear maturation

Following IVM, oocytes were denuded from cumulus cells by vortexing and were then stained with 1% aceto-orcein. In order to evaluate nuclear maturation, their nuclear status was classified as germinal vesicle (GV; Fig. 2A), germinal vesicle breakdown (GVBD), metaphase I (M I), and metaphase II (M II; Fig. 2B). based on observations under a phase-contrast microscope (Nagano et al. 2006). Before fixation after IVM, the diameter of each denuded oocyte was measured and regarded as the oocyte diameter after the IVG culture.

IVF and IVC

IVF using frozen semen was performed according to a previously described procedure (Takahashi and Kanagawa 1998a) with slight modifications. Briefly, motile sperm (5 × 10⁶ sperm/mL) separated by a Percoll gradient (45% and 90%) were incubated with COCs in a
100-µL droplet (approximately 10 COCs per droplet) of modified Brackett and Oliphant isotonic medium (Brackett and Oliphant 1975) containing 3 mg/mL fatty acid-free BSA and 2.5 mM theophylline (Takahashi and First 1992) at 39°C for 18 h in a humidified atmosphere of 5% CO₂, 5% O₂, and 90% N₂. IVC of inseminated oocytes (presumptive zygotes) was performed as previously described (Takahashi and Kanagawa 1998b). Briefly, after an incubation with sperm, presumptive zygotes were freed from cumulus cells by vortexing and washing three times in culture medium. Cumulus-free zygotes were cultured for 6 days in 30-µL droplets (approximately 20 zygotes per droplet) of culture medium at 39 °C under 5% CO₂, 5% O₂, and 90% N₂. Culture medium consisted of modified synthetic oviduct fluid containing 1 mM glutamine, 12 essential amino acids for basal medium Eagle, seven non-essential amino acids for minimum essential medium, 10 μg/mL insulin, and 5 mM glycine, 5 mM taurine, 1 mM glucose, and 3 mg/mL fatty acid-free BSA. Cleavage (Fig. 2C) and blastocyst (Fig. 2D) rates were assessed after 2 days (approximately 30 h) and 6 days (approximately 150 h) of IVC, respectively. The total cell numbers of blastocysts obtained after 6 days of IVC were counted using an air-drying method (Takahashi and First 1992).

Evaluation of ROS generation after IVG oocytes

After 12 days of the IVG culture, COCs derived from OCGCs were transferred and incubated in Petri dishes at 37 °C for 15 min in the dark in 500 μL Dulbecco’s phosphate-buffered saline (DPBS) supplemented with 10 μM 2’,7’-dichlorodihydrofluorescein diacetate (DCFHDA) and 10% FCS, as described previously (Huang et al. 2016). Hoechst 33342 was added at a concentration of 25 μg/ml to detect nuclei, and incubated under the same culture conditions.
conditions for a further 10 min. After washing three times in DPBS, stained oocytes were mounted on glass slides with coverslips and examined under a fluorescence microscope using an excitation filter of 495 nm to observe ROS generation (Fig. 3A) and an excitation filter of 365 nm to detect nuclei (DMi8, LEICA Co., Wetzlar, Germany). In order to compare the fluorescent intensity of the captured images of COCs (area of oocytes), the average of total fluorescence emissions (pixels) was examined by the image analyzing software ImageJ 1.38e (LISTSERV, NIH, MD, USA). All images were taken precisely at the same parameters for all groups.

Evaluation of CTSB activity after IVM oocytes

The detection of CTSB activity in COCs derived from OCGCs was performed using the Magic red CTSB detection kit (P 6133; Immunochemistry Technologies LLC, Bloomington, MN, USA) according to the manufacturer’s instructions and as previously described (Balboula et al. 2010). Briefly, COCs after IVM were incubated in 500 μL DPBS with 2 μL of the reaction mix in a 4-well dish (176740 Nunc, Thermo Fisher Scientific, Roskilde, Denmark) in a humidified atmosphere of 5% CO₂ at 38.5 °C for 20 min. Hoechst 33342 was added at a concentration of 25 μg/ml to detect nuclei, and incubated under the same culture conditions for a further 10 min. After rinsing in DPBS containing 3 mg/ml PVP, stained fresh COCs were mounted onto a glass slide with a coverslip, and examined under the fluorescence microscope (LEICA). An excitation filter of 365 nm was used to detect nuclei, while an excitation filter of 550 nm was applied to observe CTSB activity. CTSB activity images of
oocytes were captured and analyzed by ImageJ software (NIH) (Fig. 3A). All images were taken precisely at the same parameters for all groups.

Hormonal assay

The culture medium (100 µL) at 4, 8, and 12 days of the IVG culture was collected and frozen at −30 °C until the P₄ and E₂ assays using a competitive double antibody enzyme immunoassay, as previously described (Yanagawa *et al.* 2015). Briefly, samples (n=61 and 36 for the Ax and control groups, respectively) were subjected to 2- to 2000-fold serial dilutions with assay buffer (145 mM NaCl, 40 mM Na₂HPO₄, and 0.1% BSA (w/v), pH 7.2). Diluted samples (20 µL) were incubated with the primary antisera and HRP-labeled hormone (100 µL each) in the wells of a 96-well microplate (Costar 3590, Corning, NY, USA) coated with the secondary antiserum at 4 °C for 16-18 h. The primary antisera used for the E₂ and P₄ assays were anti-estradiol-17β-6-CMO-BSA (FKA 204, Cosmo Bio, Tokyo, Japan) and anti-progesterone 3-CMO-BSA (KZ-HS-P13, Cosmo Bio, Tokyo, Japan), respectively. Goat anti-rabbit serum (111-005-003, Jackson Immune Research, PA, USA) was used as secondary antiserum. After washing all wells four times with more than 300 µL of washing buffer (0.05% Tween 80), 150 µL of TMB solution (5 mM citric acid, 50 mM Na₂HPO₄, 500 mM UHP, 1 mM TMB, and 2% DMSO) was added to each well and incubated at 37 °C for 40 min. The absorbance of the solution in the wells was measured at 450 nm using a microplate reader (Model 550, Bio-Rad Laboratories, Tokyo, Japan) after stopping the chromogenic reaction with 50 µL of 4 N H₂SO₄. All samples were assayed in triplicate. Assay
sensitivities were 7.1 pg/well for E2 and 11.2 pg/well for P4. The inter- and intra-assay coefficients of variation were 5.1 and 4.0% for E2 and 10.1 and 3.9% for P4, respectively.

E2 and P4 production during each period (days 4-8 and days 8-12) was calculated using the following formula (Sakaguchi et al., 2017):

\[
\text{Steroid hormone production (ng) = 0.2 (mL) \times concentration at the end of the period (ng/mL) - 0.1 (mL) \times concentration at the start of the period (ng/mL).}
\]

Experimental design

Experiment 1

A total of 692 OCGCs (14 replicates) were used to evaluate the effects of the presence or absence of Ax on oocyte viability and antrum formation after 12 days of IVG. Oocyte diameters were measured before and after the IVG culture; measurements of cumulus-denuded oocytes (6-7 replicates, n = 110 for Ax and n = 76 for control) derived from 296 OCGCs (10 to 20 oocytes per replicate) after IVM were used as the diameters after IVG. In addition, a total of 51 oocyte derived from 89 OCGCs (6 replicates) were used to evaluate the effect of Ax addition to IVG medium on the nuclear status immediately after IVG.

Experiment 2

In order to evaluate the effects of Ax on ROS generation by IVG oocytes, 44 viable IVG oocytes derived from 65 OCGCs were used to examine ROS generation (3 replicates; 5-8 oocytes per replicate). In order to evaluate the quality of oocytes after IVM, CTSB activity
(3 replicates) was investigated using 49 IVG oocytes derived from 82 OCGCs (6 to 8 oocytes per replicate).

Experiment 3

In order to investigate oocyte developmental competence, IVF was performed using 154 IVG oocytes derived from 249 OCGCs (4 replicates; 20 oocytes per replicate).

Experiment 4

In order to investigate steroidogenesis in granulosa cells during the IVG culture, E2 and P4 production during each period (days 0-4, 4-8, and 8-12) was calculated in the Ax-treated and control groups.

Statistical analysis

All statistical analyses were performed using JMP software version 11.0.0 (SAS Institute, Cary, NC, USA). The effects of Ax on oocyte diameters, cleavage and blastocyst rates, and blastocyst cell numbers were analyzed using a one-way ANOVA followed by Turkey-Kramer’s HSD as a post hoc test. The effects of Ax on the viability and antrum formation of OCGCs, and the oocyte nuclear status were analyzed by the chi-squared test. E2 and P4 production in the Ax and control groups was compared by a one-way ANOVA followed by Turkey-Kramer’s HSD as a post hoc test. Differences of P < 0.05 were considered to be significant.
Results

Effects of the Ax treatment on OCGC growth parameters after IVG.

The results for the growth parameters of OCGCs before and after the IVG culture in the presence and absence of the Ax treatment are shown in Fig. 4. OCGC viability decreased in a day-dependent manner in both groups. However, OCGC viability during the IVG culture was significantly higher in the Ax-treated group than in the control (P < 0.05). The percentage of antrum-forming OCGCs increased in a day-dependent manner in both groups and was significantly higher in the Ax-treated group than in the control (P < 0.05). The diameters of oocytes were significantly larger (P < 0.05) than those before the IVG culture in both groups; however, no significant difference was observed in oocyte diameters between the Ax and control groups (P > 0.05).

Effects of the Ax treatment on ROS and CTSB activities

ROS and CTSB activities in IVG oocytes were greater in the control group than in the Ax-treated group (P < 0.01; Fig. 3B).

Effects of the Ax treatment before and after IVG on the nuclear maturation of IVG oocytes and their subsequent development

No significant differences were noted between meiotic stages before IVM (Table 1). Most of IVG oocytes (approximately 90%) were arrested at GV stage regardless of Ax addition. However, after IVM, the percentage of oocytes at the M II stage was slightly higher in the
Ax group than in the control group (P = 0.05) and the percentage of oocytes progressed beyond GVBD stage were higher in Ax-treated group than the control group (P < 0.05; Table 2). *In vivo*-grown oocytes showed higher maturation rate than both group of IVG oocytes (Table 2). No significant differences were noted in cleavage rates after IVF between the groups (P > 0.05; Table 3), but cleavages rate in both IVG groups were lower than that in *in vivo*-grown oocytes. The blastocyst rate based on inseminated oocytes was significantly higher in the Ax-treated group than in the control group (P < 0.05). The mean cell number in blastocysts was significantly larger in the Ax-treated group than in the control group (P < 0.05). However, these values were higher in *in vivo*-grown oocytes than in both IVG groups.

Hormone production

The results of steroidogenesis by OCGCs were shown in Fig. 5. Throughout the IVG culture period, the production of P₄ was greater in the control group than in the Ax-treated group (P < 0.05); however, the production of E₂ between days 0-4 was higher in the Ax-treated group than in the control group (P < 0.05). E₂ production was lower in the Ax-treated group than in the control group between days 4-8 (P < 0.05), but was similar between days 8-12.

Discussion

The supplementation of culture medium with antioxidants has been shown to protect oocytes and embryos from the detrimental effects of heat and oxidative stress (Jang *et al.* 2010). Oxidative stress is identified as an imbalance between the production and neutralization of
ROS that may occur because of excess ROS production and/or a deficiency in antioxidant mechanisms (Combelles et al. 2009). The generation of ROS in in vitro culture media has harmful effects on oocytes, embryo quality, the post-fertilization development of embryos, and assisted reproduction outcomes (Das et al. 2006). ROS are highly reactive with complex cellular molecules including lipids, proteins, and DNA, and produce significant malfunctions such as enzyme inactivation, the loss of membrane integrity, mitochondrial abnormalities, and DNA fragmentation (Agarwal A 2005). ROS also induce development blocks and the retardation of mammalian preimplantation embryos (Guérin et al. 2001). The present study showed that the Ax treatment during IVG significantly decreased ROS production by oocytes after 12 days of IVG to lower than that in IVG media without Ax. This result indicates that supplementation with Ax mitigates the deleterious effects of IVG long incubation-induced ROS on the growth parameters and subsequent development of bovine embryos.

Ax elicits strong antioxidant effects on cellular, lipid peroxidation, and embryonic development (Jang et al. 2010). Combelles et al. (2009) reported that in order for an embryo to acquire developmental competence, it is vitally important for antioxidants to be stored in oocytes (as mRNA transcripts or proteins) through their growth and maturation stages. Furthermore, Ax is soluble in lipids, so it is incorporated into the cell membrane and reduces DNA damage (Kuraji et al. 2016) as demonstrated by decreased ROS production after IVG and improved developmental competence of oocytes. Therefore, Ax-improving effects during IVG may be attributed to its antioxidant activity. Moreover, the supplementation of Ax to maturation medium improved oocyte maturation, fertilization, and developmental competence after fertilization under normal or heat stress conditions (Do et al. 2015).
Namekawa et al. (2010) reported that the improving effects of Ax appeared to be due to its ability to alter the expression of stress-related genes.

Our results showed that the number of oocytes at the M II stage was slightly higher in the IVG group treated with Ax than in the control group, and the blastocyst rate and cell numbers in blastocysts were significantly higher in the IVG group treated with Ax. These results suggest that Ax improved the quality of oocytes during IVG, as reflected by enhanced cytoplasmic maturation and developmental competence. The reduction observed in CTSB activity in the Ax-treated group in the present study indicated an improvement in cytoplasmic maturation. Successful IVM requires not only nuclear, but also cytoplasmic maturation (Combelles et al. 2009). Success has been achieved in terms of nuclear maturation in vitro; however, cytoplasmic maturation is delayed, reflecting asynchrony between nuclear and cytoplasmic maturation (Combelles et al. 2009). The accomplishment of nuclear changes to produce a M II oocyte is not recognized as developmental competence and does not reflect the molecular and structural maturity of an oocyte, which is sometimes termed cytoplasmic maturation (Trounson et al. 2001). CTSB is a lysosomal cysteine protease of the papain enzyme family that is involved in the induction of apoptosis, degradation of the extracellular matrix, and catabolism of intracellular proteins (Balboula et al. 2010). Previous studies indicated that an inverse relationship exists between CTSB activity and the quality of bovine oocytes and embryos (Balboula et al. 2010). The artificial inhibition of CTSB with the specific inhibitor E-64 improved the developmental competence of preimplantation embryos and increased the total number of good quality embryos by attenuating apoptosis (Balboula et al. 2013). The present study showed that CTSB activity was significantly weaker in MII
oocytes treated with Ax during IVG than in those in the control group, indicating that Ax supplementation has the ability to improve the quality of oocytes. This result suggests that the significant increases observed in the blastocyst rate and embryonic quality are due to the promotion of oocyte cytoplasmic maturation.

The results obtained between days 4 to 8 and days 8 to 12 showed that P₄ production was significantly lower when Ax was added, indicating that the production of P₄ by granulosa cells was inhibited by the supplementation of IVG media with Ax. Although E₂ production decreased between days 4 to 8 compared with days 0 to 4 regardless of Ax treatment, E₂ production in Ax-treated group significantly increased from days 8-12 as OCGCs grew during IVG similar to the in vivo development of dominant follicles (Kruip and Dieleman 1985). P₄ is generally regarded as a suppressor of follicle growth and inhibits mitosis in small granulosa cells as well as follicle development (Peluso and Pappalardo 1998), as observed by the positive correlation reported between circulating P₄ levels and delayed antral follicle development in rats (Buffler and Roser 1974) and monkeys (Ting et al. 2015). Additionally, in atretic follicles, granulosa cells luteinized and their P₄ production increased (Jolly et al. 1994). Moreover, OCGCs that produced mature oocytes secreted slightly larger amounts of E₂ and less P₄ than OCGCs that produced immature oocytes, and OCGCs with antrums produced more E₂ and less P₄ than those without antrums, similar to follicles that grew in vivo (Sakaguchi et al. 2017). Endo et al. (2013) suggested that E₂ secretion was closely related to OCGC developmental competence, that E₂ itself induced OCGCs to secrete E₂ and that OCGCs forming antrums exhibited similar levels of gene expression to healthy follicles that grew in vivo. Sakaguchi et al. (2017) reported that although antrum formation in the
granulosa cell layer was related to the steroidogenesis of OCGCs, a relationship did not exist between oocyte maturation and antrum formation in the granulosa cell layer. On the other hand, the synthesis of P₄ is a feature of the OCGC luteinization process (Murphy 2000). Based on these findings, Ax was shown to promote antrum formation and E₂ production with the suppression of P₄ production in the present study, suggesting its effects on antiluteinization and subsequent steroidogenesis, similar to healthily growing follicles in vivo. In our previous study (Sakaguchi et al., 2017), E₂ production decreased between days 8 and 12, but increased in the present study even though we used basically the same IVG medium. In the previous study, we used 50 μg/ml ascorbic acid 2-glucoside as an antioxidant instead of Ax. Since ascorbic acid 2-glucoside produces glucose during cultures, we speculate that the glucose produced may have exerted harmful effects on E₂ production by granulosa cells. Recently, Kamada et al. (2017) reported that low concentration (0.1 to 10 nM) of Ax increased the P₄ production of luteal cells, but high concentrations (1,000 nM) of Ax suppressed P₄ production of luteal cells. And they speculated that the effect of Ax on P₄ production was not caused by antioxidative function. We used high concentration (500 μM) of Ax for IVG and did not examine the function of Ax in the present study. In further study, we should examine the mechanism of enhanced E₂ production and suppressed P₄ production by Ax in detail.

In conclusion, the present results demonstrated that Ax supplementation improved the growth parameters and developmental competence of bovine oocytes derived from early antral follicles after IVG by suppressing ROS generation during IVG. Lower CTSB activity in IVG oocytes after IVM may indicate improvements in cytoplasmic maturation.
Furthermore, the inhibition of P₄ production without the suppression of E₂ production between days 8 to 12 of IVG culture suggests that the luteinization of granulosa cells during IVG cultures is inhibited by the antioxidative effects of Ax. Further investigation is needed to clarify the function of Ax on steroidogenesis during IVG.

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number JP16K08043 to M. Nagano.

References

response to follicle-stimulating hormone and luteinizing hormone, and follicular atresia. *Biol. Reprod.* **51**, 934-44.

apoptotic actions in rat granulosa cells through a progesterone-binding protein with gamma

Sakaguchi, K., Huang, W., Yang, Y., Yanagawa, Y., and Nagano, M. (2017). Relationship
between *in vitro* growth of bovine oocytes and steroidogenesis of granulosa cells cultured in
medium supplemented with bone morphogenetic protein-4 and follicle stimulating hormone.
Theriogenology **97**, 113-123.

Szamatowicz, M. (2016). Assisted reproductive technology in reproductive medicine -

Takahashi, Y., and First, N.L. (1992). *In vitro* development of bovine one-cell embryos:
Influence of glucose, lactate, pyruvate, amino acids and vitamins. *Theriogenology* **37**, 963-
978.

atmosphere during *in vitro* insemination of bovine oocytes on the subsequent embryonic

Figure Legends

Figure 1: Collected early antral follicle and in vitro culture of Oocyte-cumulus-granulosa complexes (OCGCs).

(A) Early antral follicle (white arrow) under 1 mm in diameter was collected under stereomicroscope. Follicular diameter was measured by grid line (1 mm) on the bottom of a petri dish; (B) viable OCGC enclosed by several layers of healthy granulosa cells. Oocyte diameter was calculated as the mean value of longest and shortest diameter using software (Motic Images Plus 2.2s, Shimadzu). The OCGC formed several antra after 4, 8 and 12 days of IVG (white arrowhead); (C) viable OCGC enclosed by several layers of healthy granulosa cells without antra after 12 days of IVG; (D) a degenerated oocyte and dispersed granulosa cells after 12 days of IVG. Scale bars indicate 1 mm (A) and 100 µm (B, C, D), respectively.

Figure 2. Oocyte nuclear status before and after IVM and embryo development after IVF.

(A) Immature oocyte having germinal vesicle (white arrow) before IVM; (B) mature oocyte having metaphase II plate (white arrow) and a polar body (arrowhead) after IVM; (C) cleaved embryos after 2 days of IVF; (D) blastocysts after 7 days of IVF.

Figure 3: Effects of the addition of astaxanthin (Ax) to IVG medium on reactive oxygen species (ROS) and cathepsin B (CTSB) activities before and after IVM in cumulus-oocyte complexes (COCs).
(A) Quantification of the relative fluorescence intensity of ROS and CTSB activity. (B) ROS and CTSB were detected as green and red fluorescence, respectively. The relative fluorescence intensities of ROS and CTSB were measured using 44 and 49 COCs (3 replicates each), respectively.

** Asterisk indicates a significant difference between the groups (P < 0.01).

Figure 4: Viabilities, antrum formation by oocyte-cumulus-granulosa complexes (OCGCs) during IVG cultures, and diameters of IVG oocytes obtained from early antral follicles in the presence or absence of astaxanthin (Ax).

Percentages of viability and antrum formation were calculated based on the pooled data of all replicates.

* Asterisk indicates a significant difference between experimental groups on the same days (P < 0.05).

a,b,c Different letters indicate a significant difference between the days of the IVG culture in the control group (P < 0.05).

x,y,z Different letters indicate a significant difference between the days of the IVG culture in the group treated with Ax (P < 0.05).

Figure 5: Production of progesterone (P₄) and estradiol-17β (E₂) from OCGCs in the presence or absence of astaxanthin (Ax) during the IVG culture.

* Asterisk indicates a significant difference between the experimental groups (P < 0.05).
Different letters indicate a significant difference between the days of the IVG culture in the control group (P < 0.05).

Different letters indicate a significant difference between the days of the IVG culture in the Ax-treated group (P < 0.05).
Table 1

Nuclear status of bovine in vitro-grown oocytes obtained from early antral follicles before maturation.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of oocytes (replicates)</th>
<th>% meiotic stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GV</td>
</tr>
<tr>
<td>Control</td>
<td>27 (3)</td>
<td>92.6</td>
</tr>
<tr>
<td>Ax</td>
<td>24 (3)</td>
<td>95.8</td>
</tr>
</tbody>
</table>

GV, germinal vesicle; GVBD, germinal vesicle breakdown; MI, metaphase I; MII, metaphase II, Deg, degeneration.

Table 2

Effects of astaxanthin (Ax) during IVG culture on meiotic resumption after IVG in oocytes obtained from early antral follicles.

<table>
<thead>
<tr>
<th>Oocyte</th>
<th>Ax</th>
<th>No. of oocytes (replicates)</th>
<th>% meiotic stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>GV</td>
</tr>
<tr>
<td>In vivo-grown</td>
<td>-</td>
<td>66 (3)</td>
<td>4.5</td>
</tr>
<tr>
<td>IVG</td>
<td>0 µM</td>
<td>76 (6)</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>500 µM</td>
<td>110 (7)</td>
<td>3.6</td>
</tr>
</tbody>
</table>

GV, germinal vesicle; GVBD, germinal vesicle breakdown; MI, metaphase I; M II, metaphase II, Deg; degeneration.

^a^ Different superscripts within a column indicate a significant difference between groups (P < 0.05).
Table 3
Effects of astaxanthin (Ax) during IVG culture on cleavage and blastocyst production rates and cell numbers in blastocysts derived from IVG oocytes.

<table>
<thead>
<tr>
<th>Oocyte</th>
<th>Ax</th>
<th>No. of oocytes (replicates)</th>
<th>% cleavage</th>
<th>% blastocyst</th>
<th>Cell numbers in blastocysts (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo-grown</td>
<td>-</td>
<td>87 (4)</td>
<td>80.8 ± 3.5a</td>
<td>42.9 ± 10.0a</td>
<td>154.8 ± 14.0a (37)</td>
</tr>
<tr>
<td>IVG</td>
<td>0 µM</td>
<td>73 (4)</td>
<td>58.9 ± 13.1b</td>
<td>16.4 ± 4.1c</td>
<td>107.4 ± 7.1c (12)</td>
</tr>
<tr>
<td></td>
<td>500 µM</td>
<td>81 (4)</td>
<td>65.9 ± 9.4b</td>
<td>23.6 ± 2 .2b</td>
<td>126.1 ± 11.1b (19)</td>
</tr>
</tbody>
</table>

Values are mean ± S.D.

Percentages of blastocysts are based on inseminated oocytes.

abc Different superscripts within a column indicate a significant difference between groups (P < 0.05).
Figure 1
Figure 3
Figure 4

OCGC viability (%)

IVG culture (days)

Antrum formation (%)

Oocyte diameter (µm)

Day 0 After IVM
Figure 5