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The origin of the characteristic bias observed in a logarithmic plot of the

calculated and measured intensities of diffraction peaks for quasicrystals has not

yet been established. Structure refinement requires the inclusion of weak

reflections; however, no structural model can properly describe their intensities.

For this reason, detailed information about the atomic structure is not available.

In this article, a possible cause for the characteristic bias, namely the lattice

phason flip, is investigated. The derivation of the structure factor for a tiling with

inherent phason flips is given and is tested for the AlCuRh decagonal

quasicrystal. Although an improvement of the model is reported, the bias

remains. A simple correction term involving a redistribution of the intensities of

the peaks was tested, and successfully removed the bias from the diffraction

data. This new correction is purely empirical and only mimics the effect of

multiple scattering. A comprehensive study of multiple scattering requires

detailed knowledge of the diffraction experiment geometry.

1. Introduction

Quasicrystals have been known for more than 30 years

(Shechtman et al., 1984) and still fascinate researchers with

their complex structures and unusual geometries. Many

questions remain unanswered, even for a standard problem

such as structure determination. Although the methods of

structure refinement employed in crystallography have

become mature and almost fully automated throughout

decades of studies (see e.g. Panjikar et al., 2009; Cascarano et

al., 1991; Skubák & Pannu, 2013), this is not the case for the

structure refinement of quasicrystals. The process of deter-

mining a structure model is non-trivial and requires the

researcher’s attention at every step of the structure solution,

especially in the initial stages (see e.g. Takakura et al., 2007;

Ors et al., 2014). Although around 50 stable quasicrystalline

systems are known, only a few structures have been solved

quantitatively (Steurer, 2018). Much has been done for

decagonal quasicrystals, which are majorly represented among

the structures with a ‘forbidden’ symmetry (Steurer &

Deloudi, 2009). In earlier work, a structure model based on

Penrose tiling used as a quasilattice and providing long-range

order enabled us to achieve an agreement within six orders of

magnitude in the intensities of the calculated/measured

diffraction data (Kuczera et al., 2012, 2014). However, for

small peaks, the deviation from the measured intensities is still

much larger than the error of measurement. This signifies that

there is a structural effect or defect not included in the

refinement procedure. The broadening observed at the level of

intensities below 10�4 relative to the strongest reflection in the
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correlation plot of experimentally observed structure factors

suggests that current models must be revised to include more

sophisticated types of disorder. Also in this range, a char-

acteristic bias of the structure factor arises, becoming more

prominent for weaker diffraction reflections. In previous

articles, we suggested that a possible reason for such a

deviation might be the general Debye–Waller factor in the

standard, exponential form (Lubensky et al., 1986; Bancel,

1989) used to correct the model for the effect of phason

fluctuations (Buganski et al., 2015). The general Debye–Waller

factor is theoretically justified only for the random-tiling types

of structures (Henley et al., 2000; Buganski et al., 2017).

Despite this, it is broadly applied to the structure refinement

of all kinds of quasicrystals and is essential for a successful

convergence of the calculation. Another potential reason for

the characteristic bias observed in the correlation plot might

be multiple scattering, which increases the intensities of

weaker reflections (Takakura & Mizuno, 2015; Fan et al.,

2011). Multiple scattering is particularly difficult to handle as

the eventual correction is supposed to be applied at the data-

acquisition stage. In this article, we propose an improvement

of the model for the AlCuRh decagonal quasicrystal that

allows for the integration of lattice phason flips during the

calculation of the structure factor. The new correction for

phasons is shown to work as necessary alongside the general

Debye–Waller factor. Additionally, empirical corrections will

be used to remove the effect of the intensity bias (caused by

multiple scattering) by redistributing the intensities of the

peaks.

2. The Penrose tiling

The Penrose tiling was invented by Roger Penrose in 1974 as

an answer to the problem of the aperiodic coverage of a 2D

plane (Penrose, 1974). The problem was phrased: does there

exist a finite set of tiles that can cover a 2D plane without gaps

or overlaps and which does not form a periodic pattern? It was

shown that the problem can be solved by the use of two

rhombuses. Penrose tiling appeared to be indispensable for

the investigation of quasicrystalline structures, as it provides

an example of long-range order without translational

symmetry. The point symmetry of the Penrose tiling diffrac-

tion pattern has the classically forbidden tenfold rotational

symmetry, also observable in quasicrystals. The atomic struc-

ture built upon the tiling fits the experimental X-ray diffrac-

tion data and electron microscope images perfectly. This was

partly a proof of the existence of the quasiperiodic atomic

systems in nature (e.g. Abe & Tsai, 2001; Taniguchi & Abe,

2008).

The mathematical construction of the Penrose tiling can be

achieved by three methods: using the de Bruijn construction

(de Bruijn, 1981), applying inflation rules (Henley, 1986) and

by a projection from a higher-dimensional space, which can be

used to obtain a generalized class of tilings (Pavlovitch &

Kleman, 1987). The last is of great importance, as the preva-

lent method of the structure description of quasicrystals

involves exploiting a higher-dimensional space and provides

an analytical method of calculating the structure factor of the

decagonal quasicrystal modelled with the Penrose tiling as a

quasilattice. The higher-dimensional model of the Penrose

tiling can be obtained using the 4D and 5D embedding

(Steurer & Deloudi, 2009). We chose the 5D embedding for a

clear distinction between the distribution of the rhombuses

expressed by the z? coordinate in the perpendicular space. We

discuss this subject more extensively later in this article. A 5D

space is spanned by di vectors, i ¼ 1; 2; . . . ; 5f g:

di ¼ a

�
cos

2�

5
ði� 1Þ

� �
sin

2�

5
ði� 1Þ

� �
cos

4�

5
ði� 1Þ

� �

sin
4�

5ði� 1Þ
� �

1

21=2

�
; ð1Þ

forming a 5D cube. The parameter a is the edge length of the

rhombus in a 2D plane. The first two coordinates define the

parallel space and the last three define the perpendicular

space. The spaces are mutually orthogonal. The real-space

positions of the Penrose tiling are obtained by projecting all

points of a 5D space, generated by integer addition of the di
vectors, onto the parallel space. Only points that fit the

projection window (also called the atomic surface or the

occupation domain) are taken. The projection window is an

object in the perpendicular space encompassing one unit cell

of 5D space [for details of the mathematics of the projection

method, see e.g. Duneau & Katz (1985)]. In the case of the

Penrose tiling in the 5D embedding, the projection window

has the shape of four regular pentagons lying one over another

along the z? direction a distance of a/21/2 apart. All the nodes

of the Penrose tiling (vertices of rhombuses) lie inside the

projection window. The advantage of such an approach is that

an infinite and discrete set of points in real space is repre-

sented in the perpendicular space by compact objects that are

easy to integrate at the structure-factor calculation stage. The

Penrose tiling in real space can be represented by two

rhombuses: ‘thick’, labelled L, and ‘thin’, labelled S. We

introduce a special labelling of rhombuses with a different

orientation. Since each rhombus is spanned by two of the five

vectors di (Fig. 1) radiating from one vertex (a reference

vertex), e.g. vectors d3 and d4, we can use the subscript ‘34’ for

the specific thick rhombus L34. The thin rhombus spanned by

vectors d2 and d5 will be called S25. We do not distinguish an

interchange in the subscript ordering (e.g. S25 and S52 denote

the same object).
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Figure 1
Definition and labelling of the rhombuses in the Penrose tiling by 5D
basis vectors.
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All rhombuses may occur in five different orientations, but

in the perpendicular space an additional distinction can be

achieved. The reference vertices of all rhombuses in a given

orientation have a perpendicular-space representation that

forms two triangular distributions lying on the first and second

pentagon of the atomic surface (Fig. 2). Because the distri-

bution in perpendicular space is formed by two non-

overlapping triangles, two classes of rhombuses can be

distinguished depending on in which distribution the reference

vertex has its representation. This distinction is crucial to

properly calculate the structure factor. If distributions of the

reference vertices are found for each type of rhombus, the

structure factor F kð Þ can be calculated as follows (Kozakowski

& Wolny, 2010):

F kð Þ ¼ Dphas kperp

� �
�P

c

P
t

P5

o¼1

Fo;c
t kð ÞPNt;c

j¼1

pt;cj f t;cj Dt;c
j kð Þ exp ikrt;c;oj

� �" #
; ð2Þ

where k is the parallel component of the scattering vector,

Fo;c
t kð Þ is the Fourier transform of the triangular subregion

corresponding to the rhomb (t = thick, thin) in the given

orientation o and class c (the first or second pentagon), rt;c;oj is

the position of the atom j in the rhomb t for the orientation o

and class c, pt;cj is the fraction of the atom j inside the rhomb t,

Nt;c is the number of atoms decorating the rhomb t of class c

and f t;cj is the atomic form factor. Two corrections are made for

the atomic disorder. Dt;c
j kð Þ corrects for atomic anisotropic

displacement parameters (ADPs) and a phononic Gaussian

Debye–Waller formula is used as the correction term. The

second factor is defined by the general Debye–Waller factor

Dphas kperp

� �
calculated for the whole structure and is respon-

sible for the correction for the phasons. Equation (2) is

currently widely used for the refinement of decagonal quasi-

crystals modelled with the Penrose tiling as a quasilattice. For

the purposes of our study, we must modify the lattice

component Fo;c
t kð Þ in equation (2), which is affected by the

phason flips. Apart from the use of non-overlapping Penrose

rhombuses, it is also possible to cover a 2D

space with clusters of a specific shape (Duda

et al., 2007), resulting in the same point

symmetry. The derivation of the structure

factor and a subdivision of the statistical

domain in the average unit cell (AUC) (Wolny,

1998; Wolny et al., 2017) for a cluster-based

decagonal structure has been carried out by

Dąbrowska et al. (2005).

The periodicity of the quasicrystal can be

restored by the higher-dimensional approach,

as discussed above for the Penrose tiling, or by

the use of the AUC approach. In the latter

approach, the real-space coordinates of atoms

or quasilattice nodes are projected onto a

periodic reference lattice, giving a distribution

of atomic (node) positions. It can be shown

that the coordinates in the statistical approach

are related by strict rules to the perpendicular-

space coordinates, providing a clear interpretation of the

atomic surface (Wolny et al., 2002). This is true as long as

the phonons are not part of the model and are excluded from

the distribution (Wolny et al., 2016). In this article, we limit the

discussion to phason effects, therefore the notion of the

distribution in the AUC is fully equivalent to the notion of

the atomic surface in the higher-dimensional approach. Note

that the atomic distribution was previously used to explain the

compactness of the regions of reference vertices within the

atomic surface, although the notion of the atomic distribution

is not a part of the higher-dimensional nomenclature explicitly.

The two notions of the AUC and the atomic surface are,

however, equivalent in our case. The representation of the

atomic surface is more common in the literature, and for this

reason we selected it to explain the atomic-surface subdivision

mechanism. The second reason is that the coordinates in the

AUC can be calculated directly from the coordinates in the

perpendicular space for any chosen reference lattice, which

helps to avoid confusion.

3. Phason flip

The phason flip is an intrinsic part of the quasiperiodic

structure, restricted by the geometry of a quasicrystal to the

specific rearrangement of atoms or structural units (Janssen &

Radulescu, 2003; Kiselev et al., 2012). Note that a few different

defects are called phasons in the literature. We limit our use of

the term to the case of the phason flips only. The phason flip

interchanges the positions of building blocks of the quasi-

lattice in a specific manner characteristic for the individual

type of quasicrystal. The rule is that the outer boundaries of

the flippable pattern must be preserved (Figs. 3 and 4). The

simplest flippable pattern in the Penrose tiling is a combina-

tion of two thick rhombuses and one thin rhombus, or two thin

rhombuses and one thick rhombus. When the flip is intro-

duced, the resulting pattern is the inversion of the initial one

with respect to the centre of the parallelogram constructed

from the outer sides of the rhombuses (which is a hexagon in

354 Ireneusz Buganski et al. � Phason-flips refinement of the d-AlCuRh quasicrystal Acta Cryst. (2019). A75, 352–361
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Figure 2
The distribution of the reference vertex of (a) the thick rhombus and (b) the thin rhombus
formed on the first pentagon of the atomic surface. An analogous distribution is formed on
the second pentagon. The coordinates x?; y? and z? are associated with the third, fourth
and fifth coordinates of the vectors d, respectively.
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this case). The flip is graphically explained in Figs. 3 and 4. The

shift of the node O to position O0 is the simplest imple-

mentation of the phason flip. As a result, the configuration of

rhombuses inside the hexagon is changed to form an inverted

pattern. The flip does not cause any overlap between neigh-

bouring tiles or voids. The shape and the orientation of the

parallelogram are preserved, only the internal pattern is

altered. However, the phason flip introduces a change in the

AUC distribution, depending on the type of flip. Part of the

distribution is relocated to a new position by the flip vector,

which is defined as the translation vector of the inner node in

the flippable pattern (the vector from the point O to the point

O0). The part of the distribution that is related to the inner

node position is shifted. The height of the cut in the distri-

bution is proportional to the flip probability. For the non-

decorated Penrose tiling, in which point-scattering sources

with a uniform, k-vector-independent scattering power are

located at the vertices of the Penrose tiling, there are two

types of relocation and, as a consequence, two basic kinds of

change in the AUC distribution can be considered. The cut

appears in the distribution belonging to the first or second

pentagon, depending on the type of flip. In Fig. 3, we visualize

the phason flip in the pack of two fat rhombuses and one thin

rhombus (fft – fat, fat, thin) and its impact on the AUC

distributions. The red prism represents the region corre-

sponding to the distribution of the reference vertex O. The

height of the prism is proportional to the flip probability

(Wolny et al., 2016). Since the flip makes the O positions

unoccupied and the node of the Penrose tiling is shifted to the

O0 positions, which previously were empty, part of the distri-

bution in the AUC is cut out from the region of the O position

and is shifted to the region corresponding to the O0 node. The

distribution is non-zero in a new region of the O0 positions.

The same reasoning can be applied to the other flip scenario: a

pack of two thin rhombuses and one fat (ftt – fat, thin, thin), as

presented in Fig. 4. In this case, a different part of the AUC

distribution is changed. The representation of the tiling with

phason flips in the form of the distribution is much more

complex in the case of an arbitrary decoration. It is then

necessary to separate the distributions of the thick and thin

rhombuses. The distribution of the reference vertex of the

rhombus is a triangle in the distribution space (AUC or

perpendicular space). Any deviation from the perfect Penrose

tiling ordering will affect the shape of the triangle.

In the following, we provide a derivation of the analytical

shape of the reference vertex distribution of the rhombus

depending on which phason flip it is subjected to. The sub-

division must be finer than for the Penrose tiling without flips.

This time, the rhombus can appear locally in three different

flippable patches. An explanation will be provided for the

thick rhombus L23, and is analogous for other types and

orientations of rhombuses. A construction of the AUC

subdivision is shown in Fig. 5 for L23 and in Fig. 6 for S24 (red

indicates the fft flip scenario and green is the ftt flip scenario).

The first flippable pattern corresponds to the pack of rhom-

buses L23, L12 and S13. It is labelled 12 + 23 in Fig. 5. The

reference vertex in this case is the initial point of vectors d1, d2,

d3, spanning all rhombuses of the pack. The second flippable

pattern is observed for L23, L34 and S24 (the triangular region

labelled 23 + 34 in Fig. 5). The last pack of flippable rhombuses

is L23, S25 and S35. In this case, the label 23 is sufficient to

determine the flippable pack and the orientation of the L

rhombus. In all cases, the reference vertex of the distribution is

the reference vertex of the thick rhomb L23. After the flip, part

of the distribution from a region corresponding to a specific

flip is shifted to the determined region of the other pentagon.

The volume of the distribution which is shifted is proportional

to the flip probability. This means that if the flips L ftt 23 with

probability � = 0.2 are considered, 20% of the height from the

corresponding region is cut out uniformly and shifted to the

second pentagon, to the region of the distribution L ftt 23 on

the second pentagon. The same can be derived for the thick

rhombus L23 from the second pentagon. This time, part of the

distribution is shifted to the first pentagon after the flip. The

same is applicable for the thin rhombus. All possibilities for

one selected orientation of each rhombus (L23 and S24) are

presented in Figs. 5 and 6. It is important that the structure of

the Penrose tiling with phason flips can have a distribution

outside the pentagonal border of the atomic surface (or

equally the AUC). This was true in the case of a non-

decorated tiling (region O0 in Figs. 3 and 4), but it is also the

case for the distributions of individual rhombuses.

The statistical description of the structural disorder (the

phasons) in the quasilattice is only an approximation. In this

research papers
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Figure 3
The redistribution of the AUC caused by the phason flip in one
orientation of the patch fft. The original configuration (with the inner
node O) is flipped by shifting the node O to the position O0. This results in
a shift of the region in the AUC representing points O (forming a prism)
to a new, previously unoccupied region O0. The height of the prism is
proportional to the flip probability, which is equal to 0.2 in this figure. A
scheme of the redistribution is shown in three steps: (a) the AUC for the
Penrose tiling without phason flips; (b) part of the distribution
representing points O participating in the flip is cut and shifted (marked
with red) if the flip occurs; (c) the AUC after the phason flip.

Figure 4
The same scheme as in Fig. 3 presented for the patch fft with the green
prism being shifted to the new position after the phason flip.
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picture, the location of the flip in a real structure has no effect

on the diffraction pattern. Only a parameter that can be

associated with the phason-flip probability is important. This

seems farfetched, but it is easy to understand when we take a

closer look at the distribution of the nodes of the Penrose

tiling. The distribution has the same shape with no relation to

the place where the flip is introduced as long as the structure is

infinite and the flip is really random; that is, we do not assume

any local environment that the flip is capable of happening in.

For the finite structure, a difference in the diffraction intensity

will be observed that depends on the place of the flip, resulting

in broadening of the correlation plot (Wolny et al. 2016).

Another comment we must make is that we consider flips that

can occur in the ordered Penrose tiling. If the site is already

flipped, rearranged tiles do not participate in further flips. This

is a kind of hidden correlation violating the rule of pure

randomness; however, the derived approximation seems to be

satisfied as the probability that there could be a consecutive

flip from an already flipped patch is of the order of �2. For

small structural disorder, the effect of this hidden correlation

is negligible. Our final comment on the model is that it

describes a static structural disorder, rather than a dynamical

effect of phason jumps. We consider that the Penrose tiling as

a quasilattice can be modified by local mismatches from the

perfect order; therefore, we add the effect coherently to the

structure factor, and such an average structure is the subject of

the refinement.

4. The structure of the AlCuRh decagonal quasicrystal

A decagonal quasicrystal in the AlCuRh system was first

investigated by Kuczera et al. (2012). The initial decoration of

the Penrose tiling was found by phasing the diffraction pattern

using the charge-flipping algorithm (Oszlányi & Süto��, 2008)

provided by SUPERFLIP (Palatinus, 2004; Palatinus &

Chapuis, 2007). The symmetry of the crystal was determined to

be P105/mmc, with a screw axis along the periodic direction of

the crystal. The crystal is a periodic stacking of a pair of

aperiodic planes (a double-period structure). The lattice

constant in the periodic direction is 4.278 Å. A screw axis is

realized by assigning two different decorations to each

rhombus depending on its z? coordinate [corresponding to the

position of the respective pentagonal distribution in the AUC

(the atomic surface)] and whether it is a first or a second plane

in the periodic direction. The decoration of the type-I

rhombus [having the distribution of the reference vertex on

the first pentagon of the AUC (the atomic surface)] in the

second plane must be used to decorate the type-II rhombus

(from the second pentagon) in the first plane with the

decoration being inverted. The inversion of the decoration is

particularly important in the case of the application of the

phasonic correction. The decoration of the rhombus subjected

to the flip must be inverted after each flip.

Kuczera et al. (2012) reported a refinement agreement

factor of R = 7.87% for peaks larger than 1� (the structure-
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Figure 5
The subdivision of the AUC into regions representing local configura-
tions of the L23 rhombus in the Penrose tiling depending on the local
environment. The regions of the fft (ftt) patch are shown in red (green).
The distributions before and after the flip are shown in the top and
bottom parts of the image, respectively. The left (right) panel shows the
flip of the rhombus from the first (second) pentagon of the atomic surface.
A new region in the distribution can appear outside the pentagon.

Figure 6
The subdivision of the AUC into regions representing local configura-
tions of the L23 rhombuses in the Penrose tiling depending on their local
environment. The regions of the fft (ftt) patch are shown in red (green).
Brown regions belong to both fft and ftt patches. In this case, the label ‘24
+ 14’ denotes the ftt patch, whereas ‘24’ denotes the fft patch. The
distributions before and after the flip are shown in the top and bottom
parts of the image, respectively. The left (right) panel shows the flip of the
rhombus from the first (second) pentagon of the atomic surface. Again, a
new region in the distribution can appear outside the pentagon.
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factor value is larger than its standard deviation). We

performed a new refinement using equation (2) and all free

parameters, including our new phasonic correction. The R

factor improved to R = 6.77% (Fig. 7) and the flip probability

achieves 1.6% with a phasonic ADP, denoted as bph, of

1.27 Å2. The conclusion is that 1.6% of all flippable config-

urations are changed in the refined structure according to the

phason-flip rules. The probability of a secondary flip (rear-

rangement of atoms previously affected by the phason flip)

was estimated at a negligible level of 0.026%. The overall

result confirms that our approach (of uncorrelated single

phason flips) is correct. The effect of lattice structural

disorder, however small, must be understood as an inherent

feature of the structure, contributing to a change in the

intensities of the diffraction peaks. Nevertheless, the smearing

of the atomic surface is dominant. We calculated the standard

deviation of the atomic displacement uph in the phason space

as (with bph being the phasonic ADP)

huphi ¼ bph=8�2
� �1=2

: ð3Þ

The value of uph can be compared with the diameter of the

atomic surface (�1.5). The difference is significant – the

phason space displacement is ten times smaller than the size of

the atomic surface. To give a better perspective on the

meaningfulness of the lattice phason with respect to the

Gaussian smearing of the atomic surface associated with the

phasonic Debye–Waller factor, we have plotted a convolution

of the atomic surface with a Gaussian distribution. The plot

presented in Fig. 8 was created for the atomic surface of the

Fibonacci chain, which is simpler to represent. Even though

the shape of the atomic surface for the decagonal quasicrystal

is different, the simplistic example of the Fibonacci chain

explains the relation between the lattice phason and the

phasonic ADP well. The lattice phason flip ratio and the

phasonic standard deviation were taken from the result of

the AlCuRh refinement. The green dashed line shows the

convolution of the Gaussian distribution with the atomic

surface without the lattice phasons. The continuous line

represents the same convolution but with 1.6% of the phason

flips introduced to the atomic surface. We can see that

although the difference in the smearing effect of the Gaussian

with or without phasons is very small, it is noticeable. We

reported previously that even a very small phason-flip prob-

ability could lead to a characteristic bias in the logarithmic

plot of calculated versus measured intensities (Buganski et al.,

2015). Even though the effect is significantly diminished by

Gaussian smearing, a small difference still exists which can

potentially affect the weak reflections. All the refined para-

meters can be accessed in the supporting information.

The correction for phasons was, in general, used together

with the phasonic Debye–Waller factor. After the final

refinement, we performed a test to check whether not
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Figure 7
The Fcalc versus Fobs plot for 2092 peaks with a lattice correction for
phasons included solely (a) and together with the standard phasonic
Debye–Waller factor (b). The agreement factors are R = 13.4% (a) and R
= 6.77% (b). If the phasonic Debye–Waller factor is not included in the
refinement, the flip probability grows to an unphysical value of � = 160%.
The Gaussian smearing of the atomic surface appears to be necessary.

Figure 8
The smearing of the atomic surface in the Fibonacci chain. The
distribution for the Fibonacci chain with 1.6% phason flips (black) is
compared with the convolution with a Gaussian function (� = 10%, red)
and the convolution of the same Gaussian function for the structure
without flips (green dashed line). A small difference is seen, showing that
within a given phasonic Gaussian function the effects of the phason lattice
flips can be seen.
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including the phasonic Debye–Waller factor is possible in our

approach. When the value of the phasonic ADP bph was set to

0, an unphysical value of the flip probability of 160% was

obtained together with a significantly worse R factor of 13.4%.

This might be an indication that the inclusion of the lattice

part of the phason disorder solely in the refinement is insuf-

ficient in a discussion of the phason phenomena in quasi-

crystals. Random phason flips of individual

atoms, possibly corrected by the Gaussian

term, must be also included in the refinement.

The resulting correlation plot is given in Fig.

7(a). A strong agreement is observed up to a

range of 10�2 on a relative scale of diffraction

amplitudes. This proves once again that small

peaks are essential for a proper description of

the quasicrystalline structure. A deeper

meaning of the general Debye–Waller factor

and justification of its applicability in the

structure determination of quasicrystals await

further studies.

In the next part, we discuss a problem of the

matching rules for tiling under the phasonic

disorder. The question is whether the matching

rules are violated after the phason flips or not.

If the matching rules are violated, each phason

flip would lead to infinite energy cost, and the

refined structure would be clearly unphysical.

Fig. 9 shows the tiles assembled to a flippable

patch. The condition of the preservation of the

matching rules is to have the same decoration

of outer edges of the flippable patch before

and after the flip. If we take a look at the left-

hand part of Fig. 9, we can see two fft and ftt

patches assembled from decorated rhombuses.

In this image, atoms from the second and first

plane are projected together. It is easy to see

that the decoration of edges is invariant under

the inversion, and since the flipped pattern is

an inversion of the original this means the

matching rules are not violated. Let us inspect

the flippable pattern at each of the atomic

planes (Fig. 9, right). One can find an apparent

contradiction in the decoration of the edges

before and after a flip. The decoration of the

edges does indeed change after inversion in an

individual plane, but finds its equivalence in

another plane. The decoration of the edges in a

flipped version on the first plane is the same as

the decoration formed on the second plane.

The interchange of atoms must happen not

only in plane but also in between planes.

Keeping that in mind, it must be emphasized

that our approach to phasons should not be

understood as a modelling of dynamical

effects. We interpret this phason-flip model as

the realization of static disorder occurring in

the structure, where the ordering of the

Penrose tiling is not strictly kept, but occasionally (in 1.6% of

all cases) the tiles are flipped.

It must be emphasized that all the parameters, including

ADPs and atomic positions, were released during the refine-

ment. This resulted in a statistically significant improvement

of the model compared with that previously reported by

Kuczera et al. The atomic composition was refined to be
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Figure 9
The atomic decoration of flippable patches in the d-AlCuRh quasicrystal. Red: Rh, green:
Cu, blue: Al. The two-layer projection (left) and decoration of each of the two planes (right)
are shown. The length of the tile edge is 17.19 Å.
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Al61.1Cu17.6Rh21.3, with slightly higher Rh and smaller Cu

content with respect to the experimental data (Kuczera et al.,

2012). We assumed the same value of the phason-flip prob-

ability for all possible flips (flip fft and ftt) in all orientations to

avoid an increase in the number of parameters to be refined in

the phason model. In general, different probabilities could be

assigned to the different flip scenarios, even assuming orien-

tational anisotropy. The refined atomic positions, ADPs and

phasonic coefficients were responsible for most of the

improvement. Nevertheless, the bias in the calculated peak

intensities still prevails; we discuss this problem in the next

section.

5. Refinement with intensity redistribution

The existence of the bias in the calculated intensities is most

likely the effect of multiple scattering, which is dominant for

the weak reflections. This hypothesis, which exists in the

community, is the only alternative to the phasons hypothesis

so far (Fan et al., 2011; Takakura & Mizuno, 2015). The

mechanism of multiple scattering can be described in the

following way. An incident X-ray beam is diffracted in two or

more directions which are not parallel to each other. As a

consequence, the intensity of the diffracted beam is divided

into primary and secondary beams. This leads to a weakening

in the intensity of a (primary) beam detected for a reflection

observed at a given diffraction geometry. The primary

reflected beam acts as an incident beam for the secondary

reflection. This happens only if all reciprocal-lattice points for

which the scattering occurs lie on the Ewald sphere (Ross-

manith, 2004). Since the reciprocal space of quasicrystals is

dense, multiple scattering is very strong for these materials.

The loss of the incident intensity results in the weakening of

the primary peak and the enhancement of secondary peaks. In

order to properly calculate the magnitude of the multiple-

scattering effect, the geometry of the experiment must be

known and all reciprocal-space points that lie on the Ewald

sphere during a measurement must be identified. A proper

correction for multiple scattering in the case of periodic

crystals was implemented by Rossmanith (1999) within the

UMWEG99 software based on Renninger’s result (Renninger,

1937). The data we have were collected in 2012 and we cannot

repeat Rosmanith’s procedure. Instead of using the kinema-

tical approach, we decided to treat the problem phenomen-

ologically, taking into account that the effect of multiple

scattering changes the ratio of intensities between peaks. We

assumed that during the experiment there exists a geometry

that makes all the collected peaks interact with each other. We

do not assume that all peaks always lie on the Ewald sphere;

rather we claim that during the scanning of the reciprocal

space any peak from the data finds itself on the Ewald sphere

with every other peak at some point during the experiment.

Furthermore, we assume that a certain fraction of the intensity

is being transferred with a constant probability � for all peaks.

The formula for the diffraction intensity influenced by

multiple scattering is

dII
calc k

0ð Þ ¼ �
XN

k2data 6¼k0
Icalc kð Þ;

dIII
calc k

0ð Þ ¼ �� N � 1ð ÞIcalc k
0ð Þ;

I k0ð Þmult
calc ¼ Icalc k

0ð Þ þ dII
calc k

0ð Þ þ dIII
calc k

0ð Þ; ð4Þ

where N is the number of peaks, dII
calc k

0ð Þ is an increase in the

intensity of the peak for the wavevector k0 caused by multiple

scattering, dIII
calc k

0ð Þ is a depletion of the intensity and I k0ð Þmult
calc

is the value of the calculated intensity for the peak associated

with the scattering vector k0. Equation (4) must be used for

every peak in the diffraction diagram. According to equation

(4), part of the intensity belonging to each peak is redis-

tributed to different peaks, keeping in mind that the total

energy is preserved. This means that the same amount of

intensity transferred to other peaks is also subtracted from the

original peak. We limit the redistribution to the asymmetric

part of the reciprocal space, as the multiplicity factor would

only affect the � value.

Equation (4) is an empirical formula introduced as a simple

tool for dealing with the intensity redistribution. The full

analysis of the multiple scattering would require an integra-

tion of the peak intensity for every  and ! measurement

angle (Rossmanith, 2006). Additionally, the interference

between the primary and secondary beam would need to be

included [Klein & Furtak (1988), which is a translation of

Klein & Furtak (1986)]. Since we do not know the geometry of

the experiment, the angle between the primary and secondary

beam is unknown, and the full analysis cannot be performed in

our case.

The refinement procedure including multiple scattering was

as follows: first we fitted the parameter � from equation (4),

keeping other parameters the same except for the phason-flip

probability and the phasonic Debye–Waller factor. The

agreement factor was R = 6.10% and the bias in the calculated

peaks disappeared. It is interesting that we can observe a

substantial increase of the phasonic correction in the general

Debye–Waller factor (the phasonic ADP increases from 1.265

to 1.350 Å2) and a decrease of the phason-flip probability

(from 1.6% to 1.34%). This might be an effect of the

approximation used for multiple scattering. At the end, we

attempted to refine all parameters together, but the

improvement of the R factor was rather low (by around 0.1%

to R = 6.00%). The refinement result is shown in Fig. 10.

Although the characteristic bias is no longer present in the

plot, the refinement result is not much better, except for the

significant change in the disorder parameters. Because the

final structural model has not changed, the improvement of

the refinement result due to the correction for multiple scat-

tering itself could appear to be artificial. However, we should

keep in mind that according to Fig. 7, up to a certain level,

even a strong change in the shape of the occupation domain

leads to the correct refinement result. Only weak peaks give a

clear distinction between a less or more probable structural

model. Our corrective term allows us to get rid of the bias and

does not affect the correctness of the result, and at the same
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time supports the idea that such an empirical correction could

also be successfully applied in other cases.

6. Summary

We have investigated the effect of phason flips, as discussed

for the atomic structure of a decagonal quasicrystal built upon

the Penrose tiling. We also introduced a peak-intensity

redistribution correction that solves the problem of multiple

scattering in the structure refinement. The structure factor

with phason flips was derived assuming a random phason flip

in a quasilattice of the Penrose tiling. Only phason flips of the

first order were considered because of the assumption of a

weakly disordered structure. The regions of the distribution of

rhombuses in the perpendicular (or the AUC) space were

found and analytically defined, which allowed calculation of

the structure factor for an arbitrary tile decoration. The new

corrective term was tested against the real structure of the

decagonal AlCuRh quasicrystal, for which the best quality

data were accessible. The correction is used, together with the

generalized Debye–Waller factor, to include a random rear-

rangement of atoms. We managed to significantly improve the

final result of the refinement and achieved a satisfactory

agreement with the experimental data with an R factor of

6.77%. The new parameter providing information about the

phason-flip probability was refined to be 1.6%. At this stage,

we can positively conclude that the bias is not caused solely by

the phason disorder. To test the alternative hypothesis on

possible reasons for the characteristic bias in the refinement

results of quasicrystals, namely multiple scattering, we intro-

duced another corrective term. It was a sample- and experi-

ment-geometry-independent correction which assumed a

redistribution of peak intensities with a constant probability

coefficient. The application of the correction for multiple

scattering to the AlCuRh system resulted in a significant

improvement of the agreement factor. Also, the characteristic

bias in the logarithmic plot of the calculated and the measured

intensities was explained. The final refinement, with all the

parameters being released, resulted in a minor change in the

values of the parameters except for the value of the phasonic

ADP and the phason-flip probability. The data quality is

apparently strongly correlated with the phason disorder. A

fully qualitative analysis of the phason disorder is beyond our

capabilities because of the insufficient quality of the data and

unknown geometry of the diffraction experiment. However,

we demonstrated that significant improvement can be

achieved by applying the empirical correction formula for

multiple scattering and the new approach to phason flips.
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Dąbrowska, A., Kozakowski, B. & Wolny, J. (2005). Acta Cryst. A61,
350–357.

Duda, M., Kozakowski, B. & Wolny, J. (2007). J. Non-Cryst. Solids,
353, 2500–2505.

Duneau, M. & Katz, A. (1985). Phys. Rev. Lett. 54, 2688–2691.
Fan, C. Z., Weber, T., Deloudi, S. & Steurer, W. (2011). Philos. Mag.
91, 2528–2535.

Henley, C. L. (1986). Phys. Rev. B, 34, 797–816.
Henley, C. L., Elser, V. & Mihalkovic, M. (2000). Z. Kristallogr. 215,

553–568.
Janssen, T. & Radulescu, O. (2003). Ferroelectrics, 395, 179–184.
Kiselev, A., Engel, M. & Trebin, H.-R. (2012). Phys. Rev. Lett. 109,

225502.
Klein, M. V. & Furtak, Th. E. (1986). Optics. New York: John Wiley.
Klein, M. V. & Furtak, Th. E. (1988). Optik. Berlin, Heidelberg:

Springer.
Kozakowski, B. & Wolny, J. (2010). Acta Cryst. A66, 489–498.
Kuczera, P., Wolny, J. & Steurer, W. (2012). Acta Cryst. B68, 578–589.
Kuczera, P., Wolny, J. & Steurer, W. (2014). Acta Cryst. B70, 306–314.
Lubensky, T. C., Socolar, E. S., Steinhardt, P. J., Bancel, P. A. &

Heiney, P. A. (1986). Phys. Rev. Lett. 57, 1440–1443.
Ors, T., Takakura, H., Abe, E. & Steurer, W. (2014). Acta Cryst. B70,

315–330.
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correction. All parameters were released during the refinement. The
agreement factor was R = 6.00%.

electronic reprint



Penrose, R. (1974). Bull. Inst. Math. Appl. 10, 266–271.
Renninger, M. (1937). Z. Phys. 106, 141–176.
Rossmanith, E. (1999). J. Appl. Cryst. 32, 355–361.
Rossmanith, E. (2004). J. Appl. Cryst. 37, 493–497.
Rossmanith, E. (2006). Acta Cryst. A62, 174–177.
Shechtman, D. S., Blech, I., Gratias, D. & Cahn, J. W. (1984). Phys.
Rev. Lett. 53, 1951–1953.

Skubák, P. & Pannu, N. S. (2013). Nat. Commun. 4, 2777.
Steurer, W. (2018). Acta Cryst. A74, 1–11.
Steurer, W. & Deloudi, S. (2009). Crystallography of Quasicrystals.
Concepts, Methods and Structures. Berlin: Springer.
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