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ABSTRACT  

Quantitative phase-field models have been developed as feasible computational tools for solving the 

free-boundary problem in solidification processes. These models are constructed with some 

polynomials of the phase-field variable that describe variations of the physical quantities inside the 

diffuse interface. The accuracy of the simulation depends on the choice of the polynomials and such 

dependence is indispensable for high-performance computing and valuable for extending the range 

of applications of the model to several physical systems. However, little is known about the 

dependence of the accuracy on the choice of the polynomials. In this study, numerical testing is 

carried out for quantitative phase-field models with extensive sets of polynomials (24 different 

models) for isothermal solidification in binary alloys. It is demonstrated in two-dimensional 

simulations of dendritic growth that a specific set of polynomials must be employed to achieve high 

accuracy in the models with double-well and double-obstacle potentials. Both types of model with 

the best set of polynomials yield almost the same numerical accuracy.   
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1. Introduction  

Accurate control of the solidification microstructures in alloys is an issue of great 

importance in the field of metallurgy because microstructural features such as the size and 

morphology of the solidified grains and microsegregation directly determine the properties of the 

as-cast alloys. Several methods have been developed for simulation of solidification microstructures 

on the basis of the sharp-interface description [1-4] and also the diffuse-interface description. The 

phase-field model is a diffuse-interface model for describing microstructural processes in 

solidification [5-9]. It serves as a viable computational tool for solving the free-boundary problem 

(FBP) of solid-liquid interfaces. Although phase-field model generally has a high computational cost, 

recent advances in parallel computing techniques have enabled large-scale phase-field simulations of 

the competitive growth of a bunch of dendrites [9, 10]. Furthermore, progress has been made in 

evaluating the input parameters in the phase-field model on the basis of atomistic simulations 

[10-12]. Such progress has rapidly increased the effectiveness of phase-field simulations for 

analyzing and controlling solidification microstructures.  

In the phase-field model, the interface is not sharp but a diffuse entity having a thickness. 

Since state variables such as the order parameter called the phase-field variable and the 

concentration field(s) change continuously inside the interface, the computational cost increases with 

decreasing interface thickness. The interface thickness must be chosen to be much larger than the 

atomic distance but smaller than any length scale relevant to the microstructure (e.g., the tip radius 

of a dendrite). Therefore, the interface thickness in this model is a constant determined by the scale 

of microstructure and the computational cost. When a finite value is assigned to the thickness, 

however, it is difficult to use early models in a quantitative manner. The early models are called 

standard phase-field models in this paper. This problem arises because the standard models were 

constructed to reproduce the solution of the FBP in the limit of zero thickness (the sharp-interface 

limit). In an actual simulation with a finite thickness, they suffer from unphysical magnification of 

the interface effects, causing an undesired dependence of the simulation result on the thickness. This 

serious problem was resolved in so-called quantitative phase-field models [13-21]. These 

quantitative models were constructed on the basis of the thin-interface asymptotics, where the model 

is mapped onto the FBP in the limit of non-zero thickness. The first quantitative model was proposed 

for solidification in a pure substance with symmetric diffusion (i.e., equal thermal diffusivity in the 

liquid and solid phases) [13], and it was extended to deal with alloy solidification with one-sided 

diffusion [13-18] (negligible solute diffusivity in the solid) and also two-sided asymmetric diffusion 

(non-zero solute diffusivity in the solid) [19-21]. The essential ingredient in the quantitative 

phase-field models for alloy systems is the so-called anti-trapping current, a correction term for the 

diffusion flux inside the interface [14]. Although this correction term was introduced in a 

phenomenological manner in the early models, variational formulations of quantitative phase-field 
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models including the anti-trapping current have recently been demonstrated for a pure substance [22] 

and for a binary alloy system with two-sided asymmetric diffusion [23].  

Quantitative phase-field models were developed as an effective alternative to the FBP and 

have been increasingly utilized to simulate solidification microstructures [24-32]. It is important to 

point out that there are several possible forms of quantitative phase-field models and that not all the 

models yield accurate numerical solutions. In the phase-field models, continuous variations of the 

physical quantities inside the interface are described by polynomials of the phase-field variable, 

which are called interpolating functions in this paper. As demonstrated in an early study [13], 

different forms of the interpolating function related to the enthalpy result in different numerical 

accuracy for dendritic growth in a pure substance. In the case of isothermal solidification in a binary 

alloy, which is our main concern, four types of interpolating function must be introduced to represent 

the continuous variations of the barrier potential between the solid and liquid, the bulk’s free energy 

densities (driving force), the concentration field and the diffusivities. There are various possible 

forms for each interpolating function and a different set of functions should result in different 

numerical accuracy. However, little has been clarified regarding the accuracy of models with 

different sets of interpolating functions. For instance, either the double-well potential [13-29] or the 

double-obstacle potential [30-36] has been employed to represent the barrier potential in the standard 

and quantitative phase-field models. Each potential offers different advantages in terms of ease of 

implementation, applicability to multiphase systems and so forth. However, it is not clear which 

potential is superior in terms of numerical accuracy because a fair comparison between them has not 

been carried out in the framework of quantitative simulations. Note that only a few sets of 

interpolating functions have so far been employed in quantitative phase-field simulations [13-32]. 

Models with the other sets of functions have not yet been implemented and hence they have not been 

subjected to numerical testing. The dependence of the numerical accuracy on the choice of 

interpolating functions is important information in the development of quantitative phase-field 

models for a variety of physical systems. In addition, finding the best set of interpolating functions is 

an issue of great interest in the high-performance computing of solidification microstructures.  

The main purpose of this study is to elucidate the dependence of the numerical accuracy of 

quantitative phase-field models on the choice of the interpolating functions and also to find the best 

set of functions by performing detailed comparisons of the numerical accuracy between them. The 

numerical testing is carried out for 24 different quantitative models. It is found that models 

constructed with the double-well and double-obstacle potentials yield comparably good numerical 

accuracy as long as the best set of interpolating functions is employed. In the next section, we 

provide a brief explanation of the quantitative phase-field models and interpolating functions. 

Detailed comparisons of the accuracy between the models are demonstrated by performing 

one-dimensional simulations of a moving flat interface and two-dimensional simulations of dendritic 
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growth in Sec. 3. The conclusions are given in Sec. 4.   

 

2. Quantitative phase-field models and computational details  

2.1. Model for isothermal solidification in a dilute binary alloy   

In this study, we focus on isothermal solidification in a dilute binary alloy which is a 

simple case suitable for the present purpose. We consider a dilute alloy with a constant partition 

coefficient k, constant diffusivity in the liquid Dl and negligible solid diffusivity (i.e., one-sided 

diffusion). Then, the sharp-interface equations for the moving solid-liquid interface are given as 

lllt cDc 2∇=∂ ,  (1)  

( ) *
1 llnl cDVck η∂−=− ,  (2)  

( ) ( ) ne
l

l VkKdk
c
c

β−−−−= 111 0

*

,  (3) 

where cl is the concentration in the liquid phase, 
*

lcη∂  is the concentration gradient in the normal 

direction to the solid-liquid interface on the liquid side of the interface, cl
* is the liquid concentration 

at the interface, cl
e is the equilibrium concentration in the liquid at the holding temperature, d0 is the 

chemical capillary length, K is the mean curvature, β is the inverse of the linear kinetic coefficient 

and Vn is the normal velocity of the solid-liquid interface. In Eq. (3), anisotropic effects are omitted 

for simplicity.  

In the quantitative phase-field models, the microstructural evolution process is described 

by the spatial and temporal variations of the phase-field variable φ and concentration field c. φ takes 

values of +1 in the solid and −1 in the liquid and it continuously changes from +1 to −1 inside the 

solid-liquid interface. For expedience, we use the dimensionless concentration field u defined as u = 

(cl – cl
e)/[(1 − k) cl

e] instead of the concentration field c. The time evolution equations of φ and u in 

the two-dimensional system are written as [15, 19],  
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.  (9)  

Here t is the relaxation constant for φ, W is a measure of the interface thickness as explained later 

and n  is the unit vector normal to the interface. We included the crystalline anisotropy in Eq. (4), 

where ( )nas


 given by Eq. (8) is the function describing a fourfold crystalline anisotropy and ε4 

represents the strength of anisotropy of the interfacial energy. ATJ


 given by Eq. (9) is the 

anti-trapping current, which corrects the diffusion flux inside the interface, making the model 

consistent with the sharp-interface equations (1)-(3). aAT(φ) is given as [15]  

 ( ) ( )( ) ( )( )
ηφ

φφφ
′∂∂

−−
=

2
11 qhaAT ,  (10)  

where η’ = η /W and η is the spatial coordinate in the direction normal to the interface and  

 ( )φηφ f2−=′∂∂ .  (11)  

In Eqs. (4), (5), (10) and (11), there are four interpolating functions, f(φ), g(φ), h(φ) and q(φ). f(φ) 

represents the barrier potential between the solid and liquid phases, exhibiting the minima at φ  = ±1. 

g(φ) is an interpolating function between the bulk’s free energy densities of the solid and liquid and 

is usually a monotonically increasing function of φ. h(φ) and q(φ) are interpolating functions for the 

concentration and diffusivity, respectively, with h(±1)= ±1, q(+1) = 0 and q(−1) = 1. To achieve a 

correct mapping of the model onto the sharp-interface equations (1)-(3), these functions must satisfy 

the following constraints;  

 ( ) ( )( ) ( ) ( )( ) Hdhhdhh =
′∂∂

−−=
′∂∂

+− ∫∫
−+ 1

0

1

0
11

ηφ
φφ

ηφ
φφ , (12)  
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 ( ) ( )( ) ( ) ( )( ) Qdqqdqq =
′∂∂

−−=
′∂∂

+− ∫∫
−+ 1

0

1

0
11

ηφ
φφ

ηφ
φφ . (13) 

For simplicity, q(φ) is defined in this study as  

 ( ) ( )
2

1 φφ hq −
= .   (14) 

Then, the constraint of Eq. (13) becomes equivalent to Eq. (12). Equation (14) has been commonly 

employed in previous works [15,19]. Furthermore, the constants a1 and a2 in Eqs. (4) and (6) are 

given as  

 
J
Ia =1 ,  (15)  
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KJHa
22
+

= ,  (16) 
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 ( )∫
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2 φφ dfI ,  (17)  

 ( ) ( )11 −−+= ggJ ,  (18)  

 ( ) ( )( ) ( ) ( ) ( )( ) ( )∫∫
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1

0

1

0
11

ηφ
φφφ

ηφ
φφφ dhggdhggK . (19)  

Further detail on the quantitative phase-field models can be found in Refs. [15, 19].  

 Several forms for f(φ), g(φ) and h(φ) have been employed in the standard and quantitative 

phase-field models [13-35]. As mentioned in the introduction, the numerical accuracy of the 

quantitative phase-field model (and standard models) depends on the chosen forms of the 

interpolating functions. In this paper, we investigate the numerical accuracy of the models with 

different sets of interpolating functions.  

 

2.2. Interpolating functions  

The interpolating functions tested in this study are explained in this section. Hereafter, f(φ), 

g(φ) and h(φ) are respectively denoted as fp(φ), gq(φ) and hr(φ), where the subscripts p, q and r 

specify different forms of the functions.  

The interpolating function fp(φ) should be of primary importance in the model because it 

determines the steady-state profile of φ across the interface (traveling wave solution). Two types of 

function, specifically the double-well potential f1(φ) and double-obstacle potential f2(φ), have been 

employed in previous models [13-35]. These are given as  

( ) ( )22
1 1

4
1 φφ −=f ,  (20)  
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( ) ( )2
2 1

2
1 φφ −=f .  (21)  

In the latter case, the obstacle potentials are introduced at φ  = ±1, viz., f2(φ) = ∞ for | φ | ≥ 1. The 

first derivatives of these functions are listed in Table 1. From Eq. (4), in two-phase equilibrium (∂tφ 

= 0 and u = 0), the following spatial profile of φ across the interface is obtained for f1(φ);   









−=

DWW2
tanh ηφ ,   (22)  

where the boundary conditions φ → −1 for η→+∞ and φ → +1 for η→−∞ are considered and the 

anisotropy is neglected. WDW is identical to W in Eq. (4). Under the same boundary conditions, the 

spatial profile of φ for f2(φ) is given as  









−=

DOW
ηφ sin ,   (23)  

for –(π/2)WDO ≤ η ≤ (π/2)WDO, φ = −1 for η > (π/2)WDO and φ = +1 for η < −(π/2)WDO . Here, WDO 

corresponds to W in Eq. (4).   

The double-well potential has been employed in most quantitative phase-field simulations 

[13-29]. In this potential, df1/dφ = 0 is satisfied at φ = ±1 and no special care is required for the 

calculation of ∂tφ (Eq. (4)) near φ = ±1. In the case of the double-obstacle potential, however, df2/dφ 

≠ 0 at φ = ±1 and hence the range of |φ| > 1 should be manually prohibited in the numerical 

integration of Eq. (4). The double-obstacle potential has the advantage that the interfacial region is 

well defined as the region of |φ| < 1 with thickness πWDO. Moreover, this potential is beneficial for 

modeling multiphase systems [33-36]. Quantitative phase-field simulations with this potential were 

reported in Refs. [30, 32]. One of these functions has been adopted in many works in the light of 

ease of handling, appropriateness in the modeling and/or convenience of numerical implementation. 

A fair comparison between the quantitative models with these functions should be made to reveal 

which potential is superior in terms of the numerical performance. This point is addressed in this 

study.  

The interpolating function gq(φ) in Eq. (4) determines the contribution of the driving force 

to ∂tφ in the interface region. Four types of function listed in Table 1 have been employed in 

previous studies [13-35], and these are tested in this study. All these functions are monotonically 

increasing functions of φ in the range of −1 ≤ φ ≤ 1. g1(φ) has been employed in most quantitative 

phase-field simulations [13-30]. The usage of g3(φ) can be found in Ref. [30]. Here, care is necessary 

in the numerical simulation of the model with g4(φ) and f1(φ). When g1(φ), g2(φ) and g3(φ) are used, 

the contribution of the driving force to ∂tφ vanishes at φ = ±1 because dgq/dφ =0 at φ = ±1. In the 

case of g4(φ), however, the contribution of the driving force is finite even at φ = ±1 since dg4/dφ = 1. 
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This does not cause any problem in the model with the double-obstacle potential because the 

numerical integration of Eq. (4) is prohibited at φ = ±1, where f2(φ) = ∞. The finite contribution of 

the driving force at φ = ±1 causes a problem in the model with f1(φ). Specifically, it results in a large 

deviation of the φ profile from Eq. (22). In this case, hence, the contribution of the driving force 

should be removed near φ = ±1. In this study, a cutoff value of the phase-field variable, φc, is 

introduced and Eq. (4) is solved only for the region of |φ| < φc in the model with f1(φ) and g4(φ). 

Finally, the interpolating function hr(φ) describes the continuous variations of the concentration and 

diffusivity in the interface, and we employed the three types of functions shown in Table 1.  

In Eq. (10), aAT(φ) depends on both fp(φ) and hr(φ). The form of aAT(φ) for each set of fp(φ) 

and hr(φ) is shown in Table 2, where p and r indicate the types of functions fp(φ) and hr(φ), 

respectively. Furthermore, the solvability integrals I, J, H and K and the constants a1 and a2 for each 

set of functions are listed in Table 3. All these values were analytically obtained except for the case 

of p=1 and q=3, where the value of K was calculated by the numerical integration of Eq. (19). In this 

study, these models are denoted as models p-q-r as listed in the last column in Table 3. Model 1-1-1 

is the quantitative phase-field model employed in most of the previous works [13-29] and its 

numerical accuracy has been investigated in detail. The quantitative model 2-3-1 was employed in 

the simulation of directional solidification in Ref. [30] and its convergence behavior was 

demonstrated in Ref. [31]. In this study, the numerical accuracy of the 24 different models listed in 

Table 3 is investigated.  

 

2.3. Thickness measure  

The interface thickness is an important parameter affecting the accuracy of the phase-field 

models. If the interface is defined as the region of |φ| < 1, its thickness is clearly given as πWDO in 

the models with the double-obstacle potential f2(φ). On the other hand, the thickness cannot be well 

defined in the models with the double-well potential f1(φ), as can be understood from the hyperbolic 

tangent function, Eq. (22). In previous works on model 1-1-1 [13, 15, 19-21, 23], WDW was 

employed as a measure of the interface thickness in the numerical testing. In this study, we define 

the following quantity, Wc , as a measure of the thickness for the models with f1(φ) and f2(φ);  

2DODWc WWW == .   (24)  

When the same value is assigned to Wc in both models, the slopes of φ at φ = 0 are identical in both 

models. Figure 1(a) shows the steady-state profiles of φ calculated by Eqs. (22) and (23) for WC = 

1×10-6 m. Note that the actual interface thickness differs between the models, depending on the 

definition of the interface region. When the region of –φW ≤ φ ≤ φW is defined as the interface region, 

the actual interface thickness depends on φW. The ratio of the actual interface thickness in the model 

with f1(φ) to that with f2(φ) is plotted against φW in Fig. 1(b) where some values are indicated for 
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reference. At the same value of Wc, the actual thickness in the model with f1(φ) is always larger than 

that in the model with f2(φ). In this paper, Wc is called the thickness measure to distinguish it from 

the actual interface thickness, which is defined by φW and denoted by Wa.  

 

2.4. Computational detail   

We carried out one- and two-dimensional simulations of isothermal solidification in binary 

dilute alloys. Equations (4) and (5) were discretized on the basis of second-order finite difference 

formulas with a square grid spacing of ∆x. The time evolutions of the φ and u fields were solved 

using a simple first-order Euler scheme as in previous works [19-21]. All simulations were 

performed using a TESLA K40 graphics processing unit (GPU) [9, 27, 29].  

 

3. Results and Discussion  

3.1. One-dimensional analysis of moving flat interface  

We conducted a one-dimensional analysis of a steady-state flat interface moving in an 

undercooled melt during isothermal solidification. It is known that an analytical solution of the 

sharp-interface equations (1)-(3) can be obtained for this problem. When Eqs. (1)-(3) are rewritten in 

a frame moving with a constant interfacial velocity Vn along the coordinate η, the steady-state 

concentration profile is given as   

( )
0

0 exp1 c
D

V
k

kcc
l

n +







−

−
=

η
    (25)  

in the liquid (η ≥ 0) and c = c0 in the solid (η < 0), where c0 is the average concentration. The 

interfacial velocity Vn is given as 

k
Vn

1−Ω
=β ,   (26)  

where Ω is the initial undercooling defined as Ω = −(c0 – cl
e)/[(1− k)cl

e]. The results of the 

phase-field simulations are compared with the analytical solution.  

In the phase-field simulation, we focused on a model alloy system and employed the 

following parameters: partition coefficient k = 0.2, chemical capillary length d0 =2×10−8 m, liquid 

diffusivity Dl = 2×10−8 m2/s, linear kinetic coefficient β−1 = 5 m/s. The time step ∆t was set to ∆t = 

∆x2/(3Dl). The zero-flux boundary condition was applied to both edges of the system. A solid seed 

was initially placed at the left-hand edge and the solidification proceeded from left to right side. The 

moving frame was employed to track the position of the interface and the simulations were 

conducted until steady-state growth was realized.  

The spatial grid spacing ∆x was given by ∆x = Lsys/Np, where Lsys is the system size and Np 

is the total number of spatial grid points. The thickness measure Wc was set to Wc = nW∆x, where nW 
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is a constant associated with the number of spatial grid points inside the interface. We investigated 

the dependence of the accuracy on nW and ∆x for a fixed value of Wc. In this test, the accuracy is 

expected to increase with an increase in nW (thus a decrease in ∆x) because the number of spatial grid 

points inside the interface increases with nW and the variations of φ and u inside the interface can 

accordingly be described with high accuracy.  

The steady-state profiles of the concentration c near the interface calculated with models 

1-1-1 and 2-1-1 are shown in Figs. 2(a) and (b), respectively. In Fig. 2, the concentration c and 

distance η are normalized by cl
e and Wc, respectively. The initial undercooling Ω was set to Ω = 1.05 

and the system size Lsys was fixed at Lsys = 8×10−7 m. Np was varied from 512 to 2048 and then nW 

was varied from 1.0 to 4.0. The fixed thickness measure was Wc = 1.5625×10−9 m. In the phase-field 

models, the concentration c is given as c = cl
e(1+(1−k)u)(1+k−(1−k)h(φ))/2. η = 0 corresponds to the 

position of φ = 0 in each case. The solid curve indicates the exact solution of Eq. (25). The 

comparison should be made in the region outside the diffuse interface. The vertical dashed lines 

indicate the actual interface thickness Wa defined by φW = 0.95, which are shown for the convenience 

of discussion. When nW = 4.0, both models reproduce the exact solution with high accuracy. 

However, the concentration profile deviates from the exact solution when nW = 1.0 in both models. 

The deviation is significant in model 2-1-1. To evaluate the accuracy in a quantitative manner, the L2 

error norm EL2 was calculated by the following equation [37];   

( )
E

EN

pk
ex

pk
pfm
pk

L N

cc
E

2

1
2

∑ =
−

= ,   (27)  

where pfm
pkc  is the concentration at grid point kp calculated by the phase-field simulation, ex

pkc  is 

the exact solution of the concentration at point kp and NE is the number of grid points used in the 

evaluation of EL2. Figure 2(c) shows EL2 calculated in the regions of φ < −0.95 and φ > 0.95. We also 

calculated EL2 for φ < −0.99 and φ > 0.99, but the results were not essentially different from those 

shown in Fig. 2(c). The results for model p-q-1 with different sets of p and q are shown. The 

calculation with model 1-4-1 was performed with a cutoff value of φc = 0.01. Except for model 1-4-1, 

EL2 for all models monotonically decreases with increasing nW. In the case of model 1-4-1, the 

contribution of the driving force to ∂tφ does not vanish near φ = ±1 as described in Sec. 2.2. This 

contribution becomes large as nW increases (∆x decreases). Namely, model 1-4-1 is not appropriate 

in terms of accuracy. Although the results for model 1-4-1 are shown in Figs. 2(d), 3 and 4 for the 

sake of completeness, the accuracy of this model will not be considered in the following discussion. 

The important finding from Fig. 2(c) is that the numerical accuracy of the quantitative models is 

mainly determined by fp(φ) and that it does not strongly depend on the form of gq(φ) (except for 

model 1-4-1). The models with f1(φ) exhibit relatively high accuracy compared with models with 
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f2(φ). Figure 2(d) shows the dependence of the calculated velocity on nW. The calculated velocities of 

all models gradually converge to the exact solution βVn = 0.25 with increasing nW. The convergence 

of the models with f1(φ) is faster than that of the models with f2(φ).  

The same analysis was conducted for Ω = 1.1 and Lsys = 5×10−7 m. Np was varied from 

512 to 2048 and nW was accordingly varied from 1.0 to 4.0. The results are shown in Fig. 3. The 

same behavior as that in Fig. 2 was observed. More specifically, the accuracy depends on fp(φ), while 

it is almost independent of gq(φ) (except for model 1-4-1). The convergence of the models with f1(φ) 

is faster than that of the models with f2(φ).  

As shown in Figs. 2 and 3, the accuracy increases with nW. This is because the number of 

spatial grid points inside the interface increases with nW, and thereby the profiles of φ and u inside 

the interface can be accurately calculated by employing a large value of nW. As mentioned above, the 

convergence of model 1-q-1 is faster than that of model 2-q-1 in Figs. 2 and 3. In these tests, we 

assigned the same value to Wc in both models. As shown in Fig. 1(b), however, the actual interface 

thickness Wa in the models with f1(φ) is always larger than that in the models with f2(φ). Accordingly, 

the number of spatial grid points in Wa is larger in the models with f1(φ) than in the models with f2(φ) 

for the same value of nW (Wc). Therefore, a fair comparison should be made by considering the 

difference in Wa. From Figs. 2 and 3, it was found that the results for both models can be 

approximately merged onto single curves when Wa in the models with f1(φ) is assumed to be about 

twice as large as that in the models with f2(φ). This difference in Wa corresponds to φW ~ 0.995 (see 

Fig. 1(b)). To show this, the results of Figs. 2 and 3 are replotted by doubling the value of nW in the 

models with f1(φ) in Fig. 4. It can be seen that the results for the models with f1(φ) and f2(φ) are 

merged onto single curves for each value of Ω. The convergence rate of both models is almost 

identical in this rescaled plot. To confirm this finding, additional calculations were carried out by 

using model 2-1-1 for Np = 2048 and nW = 8, the results of which are indicated by the diamond 

symbols at nW = 8. These results are in good agreement with those calculated by using the models 

with f1(φ) for the rescaled nW = 8 (i.e., Np = 2048 and nW = 4). Therefore, it can be concluded that the 

quantitative phase-field models exhibit almost the same accuracy regardless of the choice of fp(φ) 

and gq(φ) in terms of the rescaled nW in the one-dimensional problem.  

Although not shown here, the accuracy is slightly dependent on the choice of hr(φ), 

particularly in the models with f1(φ). The accuracy slightly increases as the order of the polynomial 

decreases, namely, the accuracy is highest in the models with h1(φ) and lowest in the models with 

h3(φ). This should be because hr(φ) for the high-order polynomial causes rapid variations of the 

concentration and diffusivity near the center of the interface (i.e., φ ~ 0), and the description of such 

rapid variation requires a small spatial grid spacing. The fact that the accuracy is higher in the 

models with h1(φ) than in those with h3(φ) is consistent with the finding in a previous study on a pure 

substance with symmetric diffusion [13]. However, it is stressed that the difference in accuracy 
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between the models with different hr(φ) is not substantial.  

In these one-dimensional analyses, it was found that the convergence behavior is uniquely 

characterized using the rescaled nW, more precisely, the actual interface thickness Wa with φW ~ 

0.995 for models with f1(φ) and f2(φ). Moreover, the quantitative models (except for model 1-4-1) 

exhibit almost the same numerical efficiency regardless of the choice of fp(φ), gq(φ) and hr(φ). 

However, in contrast to these findings, the numerical accuracy strongly depends on the choice of 

fp(φ), gq(φ) and hr(φ) in two-dimensional simulations of dendritic growth as described in detail 

below.  

 

3.2. Two-dimensional analysis of isothermal dendritic growth  

In this section, we investigate the numerical accuracy of the quantitative models for 

isothermal dendritic growth in a two-dimensional system. The migration of a curved interface is 

involved in this process.  

We first carried out a comparison between the calculated shapes of a dendrite for the 

purpose of rough screening to identify accurate models, which are later subjected to more detailed 

numerical tests. We focused on a model alloy with k = 0.2, d0 =2×10−8 m, Dl = 2×10−8 m2/s and β = 

0. The simulations were carried out using a square two-dimensional system with a side length of Lsys. 

A solid seed with a radius of 1×10-6 m was initially placed at the origin (x = 0 and y = 0). The 

growth of a quarter of a single dendrite was simulated by applying the mirror boundary condition to 

the edges x = 0 and y = 0 and by applying the zero-flux boundary condition to the edges x = Lsys and 

y = Lsys. The time step ∆t was set to ∆t = ∆x2/(5Dl). As mentioned in Sec. 2, the numerical integration 

of Eq. (4) was carried out only for the region of |φ|<1 in the models with f2(φ) as required from the 

definition of f2(φ). On the other hand, no such care is necessary in the models with f1(φ) and the 

integration can be performed over the whole system. However, the integration over the whole system 

wastes the computational cost because ∂tφ = 0 at φ =±1 in the models with f1(φ) (except for models 

1-4-r). Hence, Eq. (4) was integrated over only the region of |φav | ≤ 0.999 in the models with f1(φ), 

where φav represents the average value of φ over the neighboring grid points. We confirmed that this 

cutoff does not essentially change the accuracy of the models with f1(φ) in preliminary simulations.   

The shapes of the dendrite calculated with the different models are shown in Fig. 5, where 

the lines in each figure represent the contour lines of φ = 0 at t = 0.114 s calculated for different 

values of Np. All the calculations were performed for Ω = 0.2 and Lsys = 1×10-4 m. nW was fixed at 

nW = 1.2, while ∆x (=Lsys/Np) and thus Wc (=nW∆x) were varied according to Np, which was varied 

from NP = 2562 to 15362. The accuracy is highest in each model when Np = 15362 in this test. A cross 

mark in the legend indicates that the calculation was not stable and the numerical solution was not 

obtained for the condition. Model p-q-1 with different sets of p and q are compared in this figure. 

When model 1-1-1 is considered, the result does not significantly depend on Np. Only the shape 
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calculated for Np = 2562 slightly deviates from those for the other values of Np. Therefore, the 

numerical performance of this model is reasonably high. Such high performance can be also 

observed in the results for models 2-1-1, 2-2-1 and 2-3-1. However, the simulations with models 

1-2-1, 1-3-1 and 2-4-1 are unstable for small values of Np as shown by the cross marks. Also, the 

result for model 1-4-1 strongly depends on Np. Hence, these models are not satisfactory in terms of 

numerical performance.  

The difference in the numerical accuracy between different gq(φ) becomes marked when 

the contribution of the driving force in Eq. (4) is large. A similar test to the above was carried out for 

Ω = 0.3, Lsys = 1.0×10-4 m and nW = 1.2 and the results are shown in Fig. 6 as the contour lines of φ 

= 0 at t = 0.0305 s. In this case, the numerical solutions for some values of Np were not obtained with 

models 1-2-1, 1-3-1, 1-4-1, 2-3-1 and 2-4-1. Moreover, the shape calculated for Np = 2562 markedly 

deviates from that for Np = 15362 in model 2-2-1. On the other hand, models 1-1-1 and 2-1-1 

reproduce accurate shapes even for small values of Np. Therefore, the present numerical test reveals 

that the function g1(φ) is the most appropriate choice for models with both f1(φ) and f2(φ). We 

accordingly focus on the models with g1(φ) in the following convergence tests.  

To investigate the accuracy of the different models in a more quantitative manner, we 

examined the convergence behavior in the steady-state growth of a dendrite with respect to the 

spatial grid spacing ∆x. In this convergence test, we employed a rectangular computational box with 

Lx = Lsys and Ly = Lsys/2, where Lx and Ly are the lengths in the x and y directions, respectively. In this 

test, we fixed Lsys and nW, while we varied Wc and ∆x by changing Np. The mirror boundary 

condition was applied to the edge y = 0 and the zero-flux boundary condition was applied to the 

other edges. We focused on the same model alloy as before, i.e., the alloy with k = 0.2, d0 =2×10−8 m, 

Dl = 2×10−8 m2/s and β = 0. The simulations started from a small solid quarter disk with an initial 

radius of 1×10-6 m at the origin. To simulate the steady-state growth within a reasonable 

computational time, a moving-frame calculation was conducted by moving the computational box 

with a certain velocity in the x direction. In this convergence test, the accuracy of models 1-1-r and 

2-1-r with r = 1, 2 and 3 is discussed.  

The dependence of the results on the spatial grid spacing ∆x is shown in Fig. 7, where ∆x 

is normalized by the capillary length d0. These results were calculated for Ω = 0.3, Lsys = 4×10-4 m 

and nW = 1.25. Since nW is fixed in this test, the thickness measure Wc (= nW∆x) changes with the 

value of ∆x. Figure 7 shows the steady-state values of the dendrite tip velocity Vn (Fig. 7(a)), the 

curvature radius of the tip ρ (Fig. 7(b)), the solid composition at y = 0 far behind the dendrite tip cs
* 

(Fig. 7(c)) and the error in the Gibbs−Thomson relation ∆EG (Fig. 7(d)). The curvature radius ρ was 

calculated by fitting the φ = 0 contour at the dendrite tip with a parabola. The error in the 

Gibbs−Thomson relation ∆EG was calculated by the following equation;  
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In this convergence test, the accuracy should be highest for the smallest value of ∆x, and the fast 

convergence of the results with decreasing ∆x indicates good performance. When Vn and ρ are  

considered, all the models predict the same values at the smallest value of ∆x. However, Vn and ρ 

rapidly and markedly deviate from the converged values with increasing ∆x in models p-1-2 and 

p-1-3. The plots of models p-1-2 and p-1-3 are missing for large values of ∆x because stable 

solutions were not obtained for these values of ∆x. On the other hand, solutions for all values of ∆x 

were obtained with models 1-1-1 and 2-1-1. Note that models 1-1-1 and 2-1-1 yield almost the same 

convergence behavior of Vn and ρ in Fig. 7. However, a difference in their accuracy appears in cs
* 

(Fig. 7(c)) and ∆EG (Fig. 7(d)). cs
* takes an almost constant value for ∆x/d0 < 20 in model 1-1-1, 

while it still varies in model 2-1-1. The absolute values of ∆EG for small values of ∆x are always 

smaller in model 1-1-1 than in model 2-1-1. Therefore, the convergence of model 1-1-1 is slightly 

faster than that of model 2-1-1. Similar results were found in the case of a large degree of 

undercooling. Figure 8 shows the results of the convergence test for Ω = 0.5. The convergence of 

models p-1-2 and p-1-3 is rather poor. Models 1-1-1 and 2-1-1 exhibit comparably good 

convergence behavior of Vn and ρ. However, the convergence is faster in model 1-1-1 than in model 

2-1-1 when cs
* and ∆EG are considered.   

The accuracy of the simulations of dendritic growth should be determined by two factors. 

The first one is the number of spatial grid points inside the interface. As the number of spatial grid 

points inside the interface increases (i.e., nW increases), the profiles of φ and u inside the interface 

can be calculated more accurately. Hence, the accuracy of results should be improved by increasing 

nW as discussed for the one-dimensional problem (Fig. 4). The second factor is the resolution 

capability of describing the shape of the dendrite. In the diffuse interface approach, the interface 

thickness determines the minimum radius of the dendrite tip that can be accurately described in the 

simulation. When the interface thickness is comparable to or larger than the tip radius, the interface 

regions overlap near the tip and hence the shape of the tip cannot be accurately described. Namely, 

the accurate description of a small curvature radius requires a small interface thickness (i.e., high 

resolution). To make this point clearer, simulations were carried out for different values of nW. The 

results for nW = 1.10, 1.25 and 1.50 are shown in Fig. 9, where only the best models 1-1-1 and 2-1-1 

are compared. The parameters used in the simulations were the same as those in Fig. 8 except for nW 

and thus Wc. Since Wa is larger in model 1-1-1 than in model 2-1-1 for the same value of nW, the 

simulation was carried out for nW = 2.0 with model 2-1-1. In both models, the convergence starts to 

break down for small values of ∆x when nW is large. This is because the interface thickness increases 

with nW at a given value of ∆x, which lowers the resolution capability.  
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It is convenient to examine the convergence with respect to ∆x as in Figs. 7-9 to 

understand the relationship between the accuracy and computational cost. On the other hand, the 

convergence behavior should be more effectively characterized in terms of Wc or Wa when the 

resolution capability is considered. In Fig. 10, all the data in Fig. 9 are replotted against the thickness 

measure Wc. All the data of Vn and ρ are merged onto single curves, which are independent of nW. 

This indicates that both models can predict Vn and ρ with the same accuracy as long as the same 

value is assigned to Wc. When cs
* and ∆EG are considered, the convergence of model 1-1-1 only 

slightly varies with nW, while the convergence strongly depend on nW in model 2-1-1. cs
* for model 

2-1-1 becomes close to cs
* for model 1-1-1 with increasing nW, and also ∆EG in model 2-1-1 

approaches zero for small values of Wc with increasing nW. Note that the increase in nW increases the 

computational cost for a fixed value of Wc because the small grid spacing ∆x = Wc/nW is required. 

Hence, model 1-1-1 is slightly superior to model 2-1-1 in terms of numerical efficiency. 

It is important to point out that the accuracy of models 1-1-1 and 2-1-1 shown in Figs. 7-9 

is significantly higher than that of the standard models. As demonstrated for model 1-1-1 in Refs. [19, 

21], cs
* for the standard models (the models without the anti-trapping current) is strongly dependent 

on Wc and the resulting ∆EG is more than one order of magnitude larger than the values shown in 

Figs. 7-10. Namely, the differences in cs
* and ∆EG between models 1-1-1 and 2-1-1 are small 

compared with the differences between the quantitative and standard models. Therefore, it is 

concluded that models 1-1-1 and 2-1-1 exhibit comparably good numerical performance.   

Although the results for only models 1-1-r and 2-1-r with r = 1, 2 and 3 were shown in 

Figs. 7 and 8, the convergence tests were carried out for all the models with different sets of fp(φ), 

gq(φ) and hr(φ) in this study. It was found that the accuracy of the model with hr(φ) ≠ h1(φ) is always 

much lower than that of the models with h1(φ) for any set of fp(φ) and gq(φ). Also, the calculations of 

the models with f1(φ) and gq(φ) ≠ g1(φ) were unstable under most of the computational conditions 

used in Figs. 7 and 8. Even if a solution was obtained, the accuracy was always much lower than that 

of model 1-1-1. Among the models with f2(φ) and gq(φ) ≠ g1(φ), models 2-2-1 and 2-3-1 yield 

reasonable accuracy as can be seen from Figs. 5 and 6. However, the accuracy of models 2-2-1 and 

2-3-1 is always lower than that of model 2-1-1 in the convergence tests on steady-state growth. 

Hence, it was confirmed that the set of g1(φ) and h1(φ) is the best choice for models with both f1(φ) 

and f2(φ). However, with the exception of models 1-1-1 and 2-1-1, the numerical accuracy of models 

2-2-1 and 2-3-1 is higher than that of the other models. It is expected that these models can exhibit 

reasonable numerical performance for some solidification conditions (e.g., a low degree of 

undercooling) as demonstrated for model 2-3-1 in Ref. [31]. In this regard, compared with f1(φ), the 

model with f2(φ) may offer more choices in constructing a quantitative phase-field model with 

reasonable numerical performance, which is beneficial for extending the range of applications of 

quantitative simulations.  
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Finally, let us discuss a unique aspect of the convergence behavior related to the resolution 

capability. By comparing Figs. 7-9, one notices that the critical value of ∆x (and thus the critical 

value of Wc) at which the convergence starts to break down is strongly dependent on the 

solidification condition Ω. In practice, therefore, the value of ∆x (Wc) necessary for accurate 

simulation must be found by carrying out burdensome convergence tests for each condition of 

interest. However, as discussed in Ref. [10], the convergence behavior of Vn and ρ in model 1-1-1 

can be uniquely characterized on normalized scales regardless of the solidification condition and 

alloy system. The convergence of model 2-1-1 can be uniquely characterized in the same way. In Fig. 

11, all the data of Vn and ρ in Figs. 7 and 9 are plotted on normalized scales, where Vn and ρ are 

normalized by Vc and ρc, respectively, and Wc is normalized by ρc. Here, Vc and ρc are the converged 

values of Vn and ρ, respectively, that correspond to those calculated for the smallest value of ∆x for 

each value of Ω. The results of Refs. [19, 21] are shown for reference. As Wc increases, Vn decreases 

and ρ increases in all the cases. Importantly, the results of the present simulations including those 

with model 2-1-1 exhibit unique convergence behavior regardless of Ω and they are almost 

coincident with the data in the previous studies. The convergence starts to break down for Wc / ρc ~ 

0.2 in all the cases. In model 1-1-1, this condition corresponds to the condition of Wa ~ ρc with Wa 

defined by φW = 0.95 [10]. In the case of model 2-1-1, Wa = πWDO = π(2)1/2Wc for φW = 1, and hence 

the condition Wc / ρc ~ 0.2 is approximately equivalent to the condition Wa ~ ρc. These facts indicate 

that the breakdown of the convergence of Vn and ρ stems from the limitation due to the resolution 

capability in both models. Hence, the unphysical magnification of interface effects, which is a 

critical problem of the standard models, is sufficiently suppressed in models 1-1-1 and 2-1-1. The 

result shown in Fig. 11 should be useful for reducing the effort required to find a suitable value of Wc 

for accurate simulations.   

 

4. Conclusions  

Quantitative phase-field models have been developed as effective tools for solving the 

free-boundary problem [13, 14]. The numerical efficiency of these quantitative models depends on 

the set of interpolating functions that represent the continuous variations of the physical quantities 

inside the interface. In this paper, the numerical accuracy of 24 different models was investigated in 

detail by carrying out one-dimensional simulations of a moving flat interface and two-dimensional 

simulations of the dendritic growth during isothermal solidification in dilute binary alloys. In the 

one-dimensional problem, the accuracy of the simulations is essentially independent of the choice of 

the interpolating functions (except for model 1-4-1). However, in the case of the two-dimensional 

problem, where the curved interface migrates, the set of interpolating functions should carefully be 

chosen to achieve high numerical accuracy. In both models with double-well and double-obstacle 

potentials, high numerical accuracy can be achieved by employing the fifth-order and first-order 
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polynomials, i.e., g1(φ) and h1(φ), as the interpolating functions of the driving force and 

concentration changes inside the interface, respectively. Quantitative phase-field models have so far 

been developed for only some specific physical systems [15-21, 30, 32], and further extension of the 

range of applications of the quantitative models is required to realize accurate control and analysis of 

a variety of solidification microstructures. We expect that the present findings should be useful for 

the development of highly accurate quantitative phase-field models with extended ranges of 

applications.  
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Table 1. Interpolating functions employed in this study (left-hand side) and their first derivatives 

(right-hand side).  
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Table 2. Coefficient of antitrapping current, aAT(φ).  
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Table 3. Values for the solvability integrals and constants for each quantitative phase-field 

model.  

p q r I J H K a1 a2 model 

1 

1 

1 

0.94281 

1.0667 

0.98026 0.13605 

0.88388 

0.62667 1-1-1 

2 0.62671 0.18992 0.45524 1-1-2 

3 0.49412 0.22359 0.39810 1-1-3 

2 

1 

1.3333 

0.98026 0.26434 

0.70711 

0.83333 1-2-1 

2 0.62671 0.35862 0.63333 1-2-2 

3 0.49412 0.41418 0.56905 1-2-3 

3 

1 

1.5708 

0.98026 0.42907* 

0.60021 

1.0441 1-3-1 

2 0.62671 0.56791* 0.82325 1-3-2 

3 0.49412 0.64600* 0.75422 1-3-3 

4 

1 

2.0000 

0.98026 0.86791 

0.47140 

1.5000 1-4-1 

2 0.62671 1.1036 1.2500 1-4-2 

3 0.49412 1.2274 1.1750 1-4-3 

2 

1 

1 

1.5708 

1.0667 

0.57080 0.08492 

1.47262 

0.22083 2-1-1 

2 0.40413 0.11953 0.17526 2-1-2 

3 0.32913 0.14154 0.15680 2-1-3 

2 

1 

1.3333 

0.57080 0.15524 

1.17810 

0.29167 2-2-1 

2 0.40413 0.21383 0.23958 2-2-2 

3 0.32913 0.24941 0.21908 2-2-3 

3 

1 

1.5708 

0.57080 0.23746 

1.00000 

0.36098 2-3-1 

2 0.40413 0.32149 0.30440 2-3-2 

3 0.32913 0.37072 0.28257 2-3-3 

4 

1 

2.0000 

0.57080 0.42920 

0.78540 

0.50000 2-4-1 

2 0.40413 0.56619 0.43750 2-4-2 

3 0.32913 0.64256 0.41406 2-4-3 

* These values were obtained by numerical integration.  
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Fig. 1. (a) Phase-field profiles calculated by Eqs. (22) and (23) for WC = 1×10-6 m. (b) Ratio of 

interface thickness of model 1-q-r to that of model 2-q-r plotted against the cutoff value of the 

phase-field variable, φW.  
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(a)  

 

(b)  

 
(c)  

 

(d)  

 

 
Fig. 2. Results of 1D simulations for Ω = 1.05. (a, b) Concentration profiles near the interface 

calculated by (a) model 1-1-1 and (b) model 2-1-1. The vertical dashed lines represent the edges of 

the interface region defined by φW = 0.95. (c) Dependence of L2 error norm on nW. (d) Dependence 

of interface velocity on nW. In (c) and (d), the plots for models 2-q-1 almost overlap with each other.  
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(a)  

 

(b)  

 

Fig. 3. Results of 1D simulations for Ω = 1.1. (a) Dependence of L2 error norm on nW. (b) 

Dependence of interface velocity on nW. In (a) and (b), the plots for model 2-q-1 almost overlap with 

each other. 
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(a)  
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Fig. 4. (a, b) Results for Ω = 1.05, indicating dependence of (a) EL2 and (b) βVn on rescaled nW. (c, d)  

Results for Ω = 1.1, indicating dependence of (c) EL2 and (d) βVn on rescaled nW. 
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Fig. 5. Shapes of a dendrite during isothermal solidification calculated for Ω = 0.2 using eight 

different models. The name of the model is indicated in each figure and each line represents the φ = 

0.0 contour line calculated using different values of Np as indicated in the legend. A cross mark in the 

legend indicates that the numerical simulation was unstable and the result was therefore not obtained 

for this value of Np.  
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Fig. 6. Shapes of a dendrite during isothermal solidification calculated for Ω = 0.3 using eight 

different models. The name of the model is indicated in each figure and each line represents the φ = 

0.0 contour lines calculated using different values of Np as indicated in the legend. A cross mark in 

the legend indicates that the numerical simulation was unstable and the result was therefore not 

obtained for this value of Np.  
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Fig. 7. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in 

Gibbs−Thomson relation on ∆x calculated for Ω = 0.3, Lsys = 4×10-4 m and nW = 1.25. In each figure, 

the different symbols represent the results for the different models as specified in the legend in (a).  
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Fig. 8. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in 

Gibbs−Thomson relation on ∆x calculated for Ω = 0.5, Lsys = 1×10-4 m and nW = 1.25. In each figure, 

the different symbols represent the results for the different models as specified in the legend in (a).  
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Fig. 9. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in 

Gibbs−Thomson relation on ∆x calculated for Ω = 0.5 and Lsys = 1×10-4 m. In each figure, the 

different symbols represent the results for the different models with different values of nW specified 

in the legend in (a).   
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Fig. 10. Dependence of (a) velocity, (b) curvature radius, (c) solid composition and (d) error in 

Gibbs−Thomson relation on thickness measure calculated for Ω = 0.5 and Lsys = 1×10-4 m. In each 

figure, the different symbols represent the results for the different models with different values of nW 

specified in the legend in (a).  
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Fig. 11. Convergence behavior of Vn (circles) and ρ (squares) calculated with models 1-1-1 and 

2-1-1 for Ω = 0.3 (Fig. 7) and Ω = 0.5 (Fig. 9). Data [a] and [b] are the results for isothermal 

solidification in binary alloys shown in Figs. 4 and 5 of Ref. [19], respectively. Data [c] and [d] are 

those for non-isothermal solidification shown in Figs. 2 and 3 of Ref. [21], respectively. Data [e] and 

[f] are the results for isothermal and non-isothermal solidification in a ternary alloy shown in Figs. 4 

and 5 of Ref. [21], respectively. 
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