HOKKAIDO UNIVERSITY

Title	Hyperscaling for Oriented Percolation in 1+1 Space-Time Dimensions
Author(s)	Sakai, A kira
Citation	Journal of Statistical Physics, 171(3), 462-469 https:/doi.org/10.1007/s10955-018-2020-2
Issue Date	2018-05
Dottp://hdl.handle.net/2115/73799 URL	
Rights	The final publication is available at Springer via http:/dx.doi.org/10.1007/s10955-018-2020-2
Type	article (author version)
File Information	
JTAT PHY S171-3_462-469.pdf	

Instructions for use

Hyperscaling for oriented percolation in $1+1$ space-time dimensions

Akira Sakai*
Department of Mathematics, Hokkaido University

February 27, 2018

Abstract

Consider nearest-neighbor oriented percolation in $d+1$ space-time dimensions. Let ρ, η, ν be the critical exponents for the survival probability up to time t, the expected number of vertices at time t connected from the space-time origin, and the gyration radius of those vertices, respectively. We prove that the hyperscaling inequality $d \nu \geq \eta+2 \rho$, which holds for all $d \geq 1$ and is a strict inequality above the upper-critical dimension 4 , becomes an equality for $d=1$, i.e., $\nu=\eta+2 \rho$, provided existence of at least two among ρ, η, ν. The key to the proof is the recent result on the critical box-crossing property by Duminil-Copin, Tassion and Teixeira [6].

1 Introduction and the main results

Oriented percolation is a time-oriented model of percolation. It is also considered as a discrete-time model for the spread of an infectious disease, known as the contact process or the SIS model. Since it became known to exhibit a phase transition and critical behavior, there have been intensive researches in both theory and applications in various fields. Recently, a possible association to the laminar-turbulent flow transition was reported in [20].

Consider the following nearest-neighbor bond oriented percolation on the space-time lattice $\mathbb{L}^{d} \equiv\left\{(x, t) \in \mathbb{Z}^{d} \times \mathbb{Z}_{+}:\|x\|_{1}+t\right.$ is even $\}$. A pair of vertices $[(x, s),(y, t)\rangle$ is called a bond if $\|x-y\|_{1}=1$ and $t=s+1$. Each bond $[(x, t),(y, t+1)\rangle$ is either occupied with probability $p \in[0,1]$ or vacant with probability $1-p$, independently of the other bonds. Let \mathbb{P}_{p} be the associated probability measure. We say that $(x, s) \in \mathbb{L}^{d}$ is connected to $(y, t) \in \mathbb{L}^{d}$, denoted by $(x, s) \longrightarrow(y, t)$, if either $(x, s)=(y, t)$ or there is a sequence of occupied bonds $\left\{\left[\left(v_{j}, j\right),\left(v_{j+1}, j+1\right)\right\rangle\right\}_{j=s}^{t-1}$ from $v_{s}=x$ to $v_{t}=y$. We

[^0]simply write $(x, s) \longrightarrow t$ for the event $\bigcup_{y}\{(x, s) \longrightarrow(y, t)\}$, and $s \longrightarrow(y, t)$ for the event $\bigcup_{x}\{(x, s) \longrightarrow(y, t)\}$.

The major quantities we are interested in are the following. The first quantity is the survival probability up to time t, defined as

$$
\begin{equation*}
\theta_{t}=\mathbb{P}_{p}((o, 0) \longrightarrow t) \tag{1.1}
\end{equation*}
$$

where, and in the rest of the paper, the p-dependence is suppressed for lighter notation. Since $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$ is a decreasing sequence of increasing and continuous functions in p, the limit $\theta_{\infty} \equiv \lim _{t \uparrow \infty} \theta_{t}$ is nondecreasing and right-continuous in p. Let

$$
\begin{equation*}
p_{\mathrm{c}}=\inf \left\{p \in[0,1]: \theta_{\infty}>0\right\} \tag{1.2}
\end{equation*}
$$

It is proven in [8] that θ_{∞} is also left-continuous in p. In particular, $\theta_{\infty}=0$ at $p=p_{c}$, which has not been proven yet for unoriented percolation in full generality.

The second and third quantities are the expected number of vertices at time t connected from the origin $(o, 0)$ and the gyration radius of those vertices, defined as

$$
\begin{equation*}
\chi_{t}=\sum_{x} \tau(x, t), \quad \xi_{t}=\left(\frac{1}{\chi_{t}} \sum_{x}|x|^{2} \tau(x, t)\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

where $\tau(x, t)$ is the two-point function:

$$
\begin{equation*}
\tau(x, t)=\mathbb{P}_{p}((o, 0) \longrightarrow(x, t)) \tag{1.4}
\end{equation*}
$$

It is first proven in [1, 12], and recently reproved in a much simpler way in [5], that the critical point is unique in the sense that

$$
\begin{equation*}
p_{\mathrm{c}}=\sup \left\{p \in[0,1]: \sum_{t=0}^{\infty} \chi_{t}<\infty\right\} . \tag{1.5}
\end{equation*}
$$

The sum $\sum_{t} \chi_{t}$ is often called the susceptibility.
Now we briefly summarize the basic properties of those quantities readily obtained from the definition. First we note that, by the Markov property and translation invariance,

$$
\begin{equation*}
\theta_{s+t} \geq \theta_{s} \theta_{t}, \quad \chi_{s+t} \leq \chi_{s} \chi_{t} \tag{1.6}
\end{equation*}
$$

With the help of the trivial inequality $\theta_{t} \leq \chi_{t} \leq(2 t+1)^{d} \theta_{t}$, we can conclude that there is a common relaxation time $\zeta \in[0, \infty]$ such that

$$
\begin{equation*}
\zeta=\lim _{t \uparrow \infty} \frac{-t}{\log \theta_{t}}=\sup _{t \in \mathbb{N}} \frac{-t}{\log \theta_{t}}=\lim _{t \uparrow \infty} \frac{-t}{\log \chi_{t}}=\inf _{t \in \mathbb{N}} \frac{-t}{\log \chi_{t}} . \tag{1.7}
\end{equation*}
$$

Using the second and forth equalities, we can say that ζ is bounded away from zero and infinity when $p<p_{\mathrm{c}}$, implying exponential decay of θ_{t} and χ_{t} in t in the subcritical regime. This is not the case at the critical point. Moreover, χ_{t} is nondecreasing in t at $p=p_{\mathrm{c}}$, because, otherwise, there must be a $t_{0} \in \mathbb{N}$ such that $\chi_{t_{0}}<1$, which together with
submultiplicativity implies exponential decay of χ_{t} and convergence of the susceptibility $\sum_{t} \chi_{t}$ at $p=p_{\mathrm{c}}$, such as

$$
\begin{equation*}
\sum_{t=0}^{\infty} \chi_{t}=\sum_{n=0}^{\infty} \sum_{k=0}^{t_{0}-1} \chi_{n t_{0}+k} \leq \sum_{n=0}^{\infty} \chi_{t_{0}}^{n} \sum_{k=0}^{t_{0}-1} \chi_{k}<\infty \tag{1.8}
\end{equation*}
$$

which is a contradiction to the result in [2]: $\sum_{t} \chi_{t}=\infty$ at $p=p_{\mathrm{c}}$.
Let ρ, η, ν be the critical exponents for the above quantities at $p=p_{\mathrm{c}}$: as $t \uparrow \infty$,

$$
\begin{equation*}
\theta_{t} \approx t^{-\rho}, \quad \chi_{t} \approx t^{\eta}, \quad \xi_{t} \approx t^{\nu} \tag{1.9}
\end{equation*}
$$

where $f \approx g$ means that $(\log f) / \log g$ goes to 1 in the prescribed limit, allowing corrections of slowly varying functions. In higher dimensions $d \gg 4(d>4$ is enough for sufficiently spread-out models), the lace expansion converges and the above critical exponents take on their mean-field values $\rho=1, \eta=0$ and $\nu=1 / 2$: the values for branching random walk $[3,4,9,10,13,14,18]$. In lower dimensions, on the other hand, only numerical values and predictions due to non-rigorous renormalization-group methods are available (see Table 1).

In this paper, we prove the following theorem.
Theorem 1.1. (i) For any $d \geq 1, p \in[0,1]$ and $t \in \mathbb{N}$, we have

$$
\begin{equation*}
\chi_{t} \leq \frac{4}{3}\left(4 \xi_{t}+1\right)^{d} \theta_{t / 2}^{2} \tag{1.10}
\end{equation*}
$$

which implies the hyperscaling inequality (assuming existence of ρ, η, ν)

$$
\begin{equation*}
d \nu \geq \eta+2 \rho \tag{1.11}
\end{equation*}
$$

(ii) Let $d=1$ and $p=p_{\mathrm{c}}$. Then, there is a $K>0$ such that, for any $t \in \mathbb{N}$,

$$
\begin{equation*}
\chi_{t} \geq K \xi_{t} \theta_{t}^{2} \tag{1.12}
\end{equation*}
$$

which implies the hyperscaling equality (assuming existence of at least two among $\rho, \eta, \nu)$

$$
\begin{equation*}
\nu=\eta+2 \rho \tag{1.13}
\end{equation*}
$$

Table 1: Predicted values of the critical exponents in various dimensions (e.g., [15]).

	$d=1$	$d=2$	$d=3$	$d=4-\varepsilon$	$d \geq 4$
ρ	0.159464	0.451	0.73	$1-\frac{1}{4} \varepsilon-0.01283 \varepsilon^{2}$	1
η	0.313686	0.230	0.12	$\frac{1}{12} \varepsilon+0.03751 \varepsilon^{2}$	0
ν	0.632613	0.568	0.526	$\frac{1}{2}+\frac{1}{48} \varepsilon+0.008171 \varepsilon^{2}$	$\frac{1}{2}$
γ	2.277730	1.60	1.25	$1+\frac{1}{6} \varepsilon+0.06683 \varepsilon^{2}$	1
μ	1.733847	1.295	1.105	$1+\frac{1}{12} \varepsilon+0.02238 \varepsilon^{2}$	1

Remarks:

1. The inequality (1.10) was first derived in [19]. Since its proof is easy and short, we will show it again for convenience. It was used in [19] to prove two other hyperscaling inequalities that also involve critical exponents defined in the off-critical regime. For example, if the susceptibility $\sum_{t} \chi_{t}$ and the relaxation time ζ diverge as $p \uparrow p_{c}$ as $\left(p_{\mathrm{c}}-p\right)^{-\gamma}$ and $\left(p_{\mathrm{c}}-p\right)^{-\mu}$ respectively, then, for any $d \geq 1$, we have

$$
\begin{equation*}
(d \nu-2 \rho+1) \mu \geq \gamma \tag{1.14}
\end{equation*}
$$

If we replace those critical exponents in (1.11) and (1.14) by their mean-field values, then we obtain $d \geq 4$, which is a complement to the aforementioned lace-expansion results. Therefore, the upper-critical dimension d_{c} for oriented percolation is 4 .
2. In general, hyperscaling inequalities are believed to be equalities below and at the model-dependent upper-critical dimension. The values in Table 1 seem to support this belief. The identity (1.13) proves that it is indeed the case for at least $d=1$. For unoriented percolation, for which $d_{\mathrm{c}}=6$, similar results are proven in 2 dimensions by Kesten [11] using the Russo-Seymour-Welsh theorem on the critical box-crossing property [16, 17, 21]. Since the known critical exponents for 2-dimensional unoriented percolation are rational numbers (e.g., $\beta=5 / 36$ and $\gamma=43 / 18$), it is natural to believe that there must be some balance (i.e., hyperscaling equalities) among those critical exponents. On the other hand, since the values in Table 1 do not seem to be rational numbers, the hyperscaling equality (1.13) is even more surprising.
3. The main reason why the right-hand side of (1.10) is bigger than its left-hand side is due to the inequality

$$
\begin{align*}
\tau(x, t) & =\mathbb{P}_{p}((o, 0) \longrightarrow(x, t)) \\
& \leq \mathbb{P}_{p}((o, 0) \longrightarrow t / 2, t / 2 \longrightarrow(x, t))=\theta_{t / 2}^{2} \tag{1.15}
\end{align*}
$$

where, and in the rest of the paper, we do not care much about possibilities of, e.g., $t / 2$ not being an integer, since it is easy (but cumbersome) to make the argument rigorous if we introduce floor functions, etc. The last equality in (1.15) is due to reversibility: if we change the direction of each bond and redefine the connectivity in the time-decreasing direction, then we have the identity $\mathbb{P}_{p}(t / 2 \longrightarrow(x, t))=\theta_{t / 2}$.
4. The following theorem on the critical box-crossing property is the key to show the opposite inequality to (1.15):

Theorem 1.2 (Theorem 1.3 in [6]). Let

$$
\begin{align*}
V_{p}(w, t) & =\mathbb{P}_{p}([0, w] \times[0, t] \text { is crossed vertically }) \tag{1.16}\\
H_{p}(w, t) & =\mathbb{P}_{p}([0, w] \times[0, t] \text { is crossed from left to right }) \tag{1.17}
\end{align*}
$$

There exist a constant $\varepsilon \in(0,1)$ and an increasing sequence of integers $\left\{w_{t}\right\}_{t \in \mathbb{N}}$ such that, for all $t \in \mathbb{N}$,

$$
\begin{align*}
& \varepsilon \leq V_{p_{\mathrm{c}}}\left(w_{t}, 3 t\right) \leq V_{p_{\mathrm{c}}}\left(3 w_{t}, t\right) \leq 1-\varepsilon \tag{1.18}\\
& \varepsilon \leq H_{p_{\mathrm{c}}}\left(3 w_{t}, t\right) \leq H_{p_{\mathrm{c}}}\left(w_{t}, 3 t\right) \leq 1-\varepsilon \tag{1.19}
\end{align*}
$$

We will also use (1.18)-(1.19) to control an upper bound on $\tau(x, t)$ for $x>j w_{t}$ that decays exponentially in $j \in \mathbb{N}$ (see Lemma 2.1 below). This is a key element to show that w_{t} is bounded below by an ε-dependent positive multiple of ξ_{t}.
5. Applying (1.10) and (1.12) to [19, (5.1)] and its reverse, respectively, we can readily show that the hyperscaling inequality (1.14) also becomes an equality for $d=1$, i.e.,

$$
\begin{equation*}
(\nu-2 \rho+1) \mu=\gamma \tag{1.20}
\end{equation*}
$$

6. It is easy to show that the hyperscaling inequality (1.11) holds for other finite-range models of oriented percolation and the contact process. It should not be so difficult to prove Theorem 1.2 for the nearest-neighbor models of oriented site percolation and the contact process, hence the hyperscaling equality (1.13) for $d=1$. However, it is not so obvious to prove a similar statement to Theorem 1.2 for longer-range models. This may be worth further investigation.

2 Proof of Theorem 1.1

Proof of Theorem 1.1(i). It suffices to prove the inequality (1.10), as the hyperscaling inequality (1.11) immediately follows by using (1.10) at $p=p_{\mathrm{c}}$ (and assuming existence of the three critical exponents). First we note that

$$
\begin{equation*}
\chi_{t}=\frac{1}{\xi_{t}^{2}} \sum_{x}|x|^{2} \tau(x, t) \geq 4 \sum_{x:|x| \geq 2 \xi_{t}} \tau(x, t) \tag{2.1}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{3}{4} \chi_{t} \leq \sum_{x:|x| \leq 2 \xi_{t}} \tau(x, t) \tag{2.2}
\end{equation*}
$$

By (1.15), the right-hand side is further bounded by $\left(4 \xi_{t}+1\right)^{d} \theta_{t / 2}^{2}$. This completes the proof of (1.10).

To prove Theorem 1.1(ii), we first assume the following key lemma:
Lemma 2.1. Let $d=1$ and $p=p_{c}$. Let $\varepsilon \in(0,1)$ and w_{t} be the same as in Theorem 1.2.
(i) For any $t \in \mathbb{N}$ and any $x \in\left[-\frac{1}{2} w_{t}, \frac{1}{2} w_{t}\right]$,

$$
\begin{equation*}
\tau(x, t) \geq \varepsilon^{6} \theta_{t}^{2} \tag{2.3}
\end{equation*}
$$

(ii) For any $j, t, x \in \mathbb{N}$ with $j \geq 2$ and $j w_{t}<x \leq(j+1) w_{t}$,

$$
\begin{equation*}
\tau(x, t) \leq \varepsilon^{-4} \theta_{t}^{2}(1-\varepsilon)^{j-2} \tag{2.4}
\end{equation*}
$$

Proof of Theorem 1.1(ii) assuming Lemma 2.1. Again, it suffices to prove the inequality (1.12), as the equality (1.13) is a result of the hyperscaling inequality (1.11) for $d=1$ and the opposite inequality $\nu \leq \eta+2 \rho$ that immediately follows from (1.12).

To prove (1.12), we first note that, by (2.3),

$$
\begin{equation*}
\chi_{t} \geq 2 \sum_{x=1}^{\frac{1}{2} w_{t}} \tau(x, t) \geq \varepsilon^{6} w_{t} \theta_{t}^{2} \tag{2.5}
\end{equation*}
$$

To complete the proof, it suffices to show that w_{t} is bounded below by a positive multiple of ξ_{t}. However, by definition,

$$
\begin{align*}
\xi_{t}^{2}=2 \sum_{x=1}^{\infty} x^{2} \frac{\tau(x, t)}{\chi_{t}} & =2\left(\sum_{x=1}^{2 w_{t}} x^{2} \frac{\tau(x, t)}{\chi_{t}}+\sum_{j=2}^{\infty} \sum_{x=j w_{t}+1}^{(j+1) w_{t}} x^{2} \frac{\tau(x, t)}{\chi_{t}}\right) \\
& \leq 2 w_{t}^{2}\left(4+\sum_{j=2}^{\infty}(j+1)^{2} \sum_{x=j w_{t}+1}^{(j+1) w_{t}} \frac{\tau(x, t)}{\chi_{t}}\right) . \tag{2.6}
\end{align*}
$$

Then, by using (2.4)-(2.5), we obtain

$$
\begin{align*}
& \xi_{t}^{2} \stackrel{(2.5)}{\leq} 2 w_{t}^{2}\left(4+\frac{1}{\varepsilon^{6} \theta_{t}^{2}} \sum_{j=2}^{\infty}(j+1)^{2} \max _{j w_{t}<x \leq(j+1) w_{t}} \tau(x, t)\right) \\
& \quad \stackrel{(2.4)}{\leq} 2 w_{t}^{2}\left(4+\varepsilon^{-10} \sum_{j=2}^{\infty}(j+1)^{2}(1-\varepsilon)^{j-2}\right) \tag{2.7}
\end{align*}
$$

As a result,

$$
\begin{equation*}
\chi_{t} \geq \underbrace{\frac{\varepsilon^{6}}{\sqrt{2}}\left(4+\varepsilon^{-10} \sum_{j=2}^{\infty}(j+1)^{2}(1-\varepsilon)^{j-2}\right)^{-1 / 2}}_{=K} \xi_{t} \theta_{t}^{2} \tag{2.8}
\end{equation*}
$$

This completes the proof of (1.12).
The rest of the paper is devoted to showing Lemma 2.1.
Proof of Lemma 2.1(i). First we note that, for $1 \leq x \leq \frac{1}{2} w_{t}$, the event $(o, 0) \longrightarrow(x, t)$ occurs if the following four increasing events occur:

- $(o, 0) \longrightarrow t$ in $\left[-w_{t}, w_{t}\right] \times[0, t]$,
- $0 \longrightarrow(x, t)$ in $\left[x-w_{t}, x+w_{t}\right] \times[0, t]$,
- $\left[-\frac{3}{2} w_{t}, \frac{3}{2} w_{t}\right] \times[0, t]$ is crossed from left to right,
- $\left[-\frac{3}{2} w_{t}, \frac{3}{2} w_{t}\right] \times[0, t]$ is crossed from right to left.

The last two events take care of the possibility that the forward cluster from the origin $(o, 0)$ and the backward cluster from (x, t) do not collide. Using the FKG inequality (see, e.g., [7]), translation invariance and the reversibility explained below (1.15), we obtain

$$
\begin{equation*}
\tau(x, t) \geq \mathbb{P}_{p}\left((o, 0) \longrightarrow t \text { in }\left[-w_{t}, w_{t}\right] \times[0, t]\right)^{2} H_{p}\left(3 w_{t}, t\right)^{2} . \tag{2.9}
\end{equation*}
$$

We further note that the event $(o, 0) \longrightarrow t$ in $\left[-w_{t}, w_{t}\right] \times[0, t]$ occurs if the following three increasing events occur:

- $(o, 0) \longrightarrow t$,
- $\left[0, w_{t}\right] \times[0, t]$ is crossed vertically,
- $\left[-w_{t}, 0\right] \times[0, t]$ is crossed vertically.

Again, by the FKG inequality, translation invariance and the monotonicity $V_{p}\left(w_{t}, t\right) \geq$ $V_{p}\left(w_{t}, 3 t\right)$, we obtain

$$
\begin{equation*}
\mathbb{P}_{p}\left((o, 0) \longrightarrow t \text { in }\left[-w_{t}, w_{t}\right] \times[0, t]\right) \geq \theta_{t} V_{p}\left(w_{t}, 3 t\right)^{2}, \tag{2.10}
\end{equation*}
$$

hence

$$
\begin{equation*}
\tau(x, t) \geq \theta_{t}^{2} V_{p}\left(w_{t}, 3 t\right)^{4} H_{p}\left(3 w_{t}, t\right)^{2} . \tag{2.11}
\end{equation*}
$$

The inequality (2.3) follows from the above inequality at $p=p_{\mathrm{c}}$ and (1.18)-(1.19).

Proof of Lemma 2.1(ii). Recall that $j \geq 2$ and $j w_{t}<x \leq(j+1) w_{t}$. If $(o, 0) \longrightarrow(x, t)$, then the following three independent events occur:

- $(o, 0)$ is connected to the boundary ∂B_{o} of the box $B_{o} \equiv\left[-w_{t}, w_{t}\right] \times[0, t]$,
- $\left[w_{t},(j-1) w_{t}\right] \times[0, t]$ is crossed from left to right,
- (x, t) is connected from the boundary ∂B_{x} of the box $B_{x}=\left[(j-1) w_{t},(j+2) w_{t}\right] \times[0, t]$. By this observation and using $H_{p}\left((j-2) w_{t}, t\right) \leq H_{p}\left(w_{t}, t\right)^{j-2} \leq H_{p}\left(w_{t}, 3 t\right)^{j-2}$, we obtain

$$
\begin{equation*}
\tau(x, t) \leq \mathbb{P}_{p}\left((o, 0) \longrightarrow \partial B_{o}\right) H_{p}\left(w_{t}, 3 t\right)^{j-2} \mathbb{P}_{p}\left(\partial B_{x} \longrightarrow(x, t)\right) \tag{2.12}
\end{equation*}
$$

However, by reversibility and monotonicity, we have

$$
\begin{equation*}
\mathbb{P}_{p}\left(\partial B_{x} \longrightarrow(x, t)\right) \leq \mathbb{P}_{p}\left((o, 0) \longrightarrow \partial B_{o}\right) . \tag{2.13}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\tau(x, t) \leq \mathbb{P}_{p}\left((o, 0) \longrightarrow \partial B_{o}\right)^{2} H_{p}\left(w_{t}, t\right)^{j-2} . \tag{2.14}
\end{equation*}
$$

To bound the probability on the right-hand side by θ_{t}, we borrow the idea in the proof of $[6,(4.7)]$. First, we note that $(o, 0) \longrightarrow t$ if the following three increasing events occur:

- $(o, 0) \longrightarrow \partial B_{o}$,
- $\left[0, w_{t}\right] \times[0, t]$ is crossed vertically,
- $\left[-w_{t}, 0\right] \times[0, t]$ is crossed vertically.

By the FKG inequality, translation invariance and the monotonicity $V_{p}\left(w_{t}, t\right) \geq V_{p}\left(w_{t}, 3 t\right)$, we obtain

$$
\begin{equation*}
\theta_{t} \geq \mathbb{P}_{p}\left((o, 0) \longrightarrow \partial B_{o}\right) V_{p}\left(w_{t}, 3 t\right)^{2} \tag{2.15}
\end{equation*}
$$

To summarize the above computations at $p=p_{\mathrm{c}}$, we arrived at

$$
\begin{equation*}
\tau(x, t) \leq\left(\frac{\theta_{t}}{V_{p_{\mathrm{c}}}\left(w_{t}, 3 t\right)^{2}}\right)^{2} H_{p_{\mathrm{c}}}\left(w_{t}, 3 t\right)^{j-2} \leq \varepsilon^{-4} \theta_{t}^{2}(1-\varepsilon)^{j-2} \tag{2.16}
\end{equation*}
$$

as required.

Acknowledgements

This work was initiated when I started preparation for the Summer School in Mathematical Physics, held at the University of Tokyo from August 25 through 27, 2017. I am grateful to the organizers, Yasuyuki Kawahigashi and Yoshiko Ogata, for the opportunity to speak at the summer school and meet with many researchers in the laminar-turbulent flow transition. Finally, I would like to thank Alessandro Giuliani for his support during the refereeing process and anonymous referees for valuable comments to the earlier versions of this paper.

References

[1] M. Aizenman and D.J. Barsky. Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108 (1987): 489-526.
[2] M. Aizenman and C.M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36 (1984): 107-143.
[3] L.-C. Chen and A. Sakai. Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Related Fields 142 (2008): 151-188.
[4] L.-C. Chen and A. Sakai. Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation. Ann. Prob. 39 (2011): 507548.
[5] H. Duminil-Copin and V. Tassion. A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343 (2016): 725-745.
[6] H. Duminil-Copin, V. Tassion and A. Teixeira. The box-crossing property for critical two-dimensional oriented percolation. To appear in Probab. Theory Related Fields. arXiv:1610.10018.
[7] G. Grimmett. Percolation (2nd ed., Springer, 1999).
[8] G. Grimmett and P. Hiemer. Directed percolation and random walk. In and Out of Equilibrium (V. Sidoravicius ed., Birkhäuser, 2002): 273-297.
[9] R. van der Hofstad and M. Holmes. The survival probability and r-point functions in high dimensions. Ann. Math. 178 (2013): 665-685.
[10] R. van der Hofstad and G. Slade. A generalised inductive approach to the lace expansion. Probab. Theory Related Fields 122 (2002): 389-430.
[11] H. Kesten. Scaling relations for 2D-percolation. Commun. Math. Phys. 109 (1987): 109-156.
[12] M.V. Menshikov. Coincidence of critical points in percolation problems. Soviet Math. Doklady 33 (1986): 856-859.
[13] B.G. Nguyen and W.-S. Yang. Triangle condition for oriented percolation in high dimensions. Ann. Prob. 21 (1993): 1809-1844.
[14] B.G. Nguyen and W.-S. Yang. Gaussian limit for critical oriented percolation in high dimensions. J. Stat. Phys. 78 (1995): 841-876.
[15] G. Ódor. Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76 (2004): 663-724.
[16] L. Russo A note on percolation. Z. Wahrscheinlichkeitstheor. verw. Geb. 43 (1978): 39-48.
[17] L. Russo. On the critical percolation probabilities. Z. Wahrscheinlichkeitstheor. verw. Geb. 56 (1981): 229-237.
[18] A. Sakai. Mean-field critical behavior for the contact process. J. Stat. Phys. 104 (2001): 111-143.
[19] A. Sakai. Hyperscaling inequalities for the contact process and oriented percolation. J. Stat. Phys. 106 (2002): 201-211.
[20] M. Sano and K. Tamai. A universal transition to turbulence in channel flow. Nature Phys. 12 (2016): 249-253.
[21] P.D. Seymour and D.J.A. Welsh. Percolation probabilities on the square lattice. Ann. Discrete Math. 3 (1978): 227-245.

[^0]: *http://www.math.sci.hokudai.ac.jp/~sakai/

