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Hyperscaling for oriented percolation in 1 + 1
space-time dimensions

Akira Sakai∗

Department of Mathematics, Hokkaido University

February 27, 2018

Abstract

Consider nearest-neighbor oriented percolation in d + 1 space-time dimensions.
Let ρ, η, ν be the critical exponents for the survival probability up to time t, the
expected number of vertices at time t connected from the space-time origin, and
the gyration radius of those vertices, respectively. We prove that the hyperscaling
inequality dν ≥ η+2ρ, which holds for all d ≥ 1 and is a strict inequality above the
upper-critical dimension 4, becomes an equality for d = 1, i.e., ν = η+2ρ, provided
existence of at least two among ρ, η, ν. The key to the proof is the recent result on
the critical box-crossing property by Duminil-Copin, Tassion and Teixeira [6].

1 Introduction and the main results

Oriented percolation is a time-oriented model of percolation. It is also considered as a
discrete-time model for the spread of an infectious disease, known as the contact process or
the SIS model. Since it became known to exhibit a phase transition and critical behavior,
there have been intensive researches in both theory and applications in various fields.
Recently, a possible association to the laminar-turbulent flow transition was reported in
[20].

Consider the following nearest-neighbor bond oriented percolation on the space-time
lattice Ld ≡ {(x, t) ∈ Zd × Z+ : ∥x∥1 + t is even}. A pair of vertices [(x, s), (y, t)⟩ is
called a bond if ∥x − y∥1 = 1 and t = s + 1. Each bond [(x, t), (y, t + 1)⟩ is either
occupied with probability p ∈ [0, 1] or vacant with probability 1 − p, independently of
the other bonds. Let Pp be the associated probability measure. We say that (x, s) ∈ Ld

is connected to (y, t) ∈ Ld, denoted by (x, s) −→ (y, t), if either (x, s) = (y, t) or there
is a sequence of occupied bonds {[(vj, j), (vj+1, j + 1)⟩}t−1

j=s from vs = x to vt = y. We
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simply write (x, s) −→ t for the event
∪

y{(x, s) −→ (y, t)}, and s −→ (y, t) for the event∪
x{(x, s) −→ (y, t)}.
The major quantities we are interested in are the following. The first quantity is the

survival probability up to time t, defined as

θt = Pp

(
(o, 0) −→ t

)
, (1.1)

where, and in the rest of the paper, the p-dependence is suppressed for lighter notation.
Since {θt}t∈N is a decreasing sequence of increasing and continuous functions in p, the
limit θ∞ ≡ limt↑∞ θt is nondecreasing and right-continuous in p. Let

pc = inf{p ∈ [0, 1] : θ∞ > 0}. (1.2)

It is proven in [8] that θ∞ is also left-continuous in p. In particular, θ∞ = 0 at p = pc,
which has not been proven yet for unoriented percolation in full generality.

The second and third quantities are the expected number of vertices at time t con-
nected from the origin (o, 0) and the gyration radius of those vertices, defined as

χt =
∑
x

τ(x, t), ξt =

(
1

χt

∑
x

|x|2τ(x, t)
)1/2

, (1.3)

where τ(x, t) is the two-point function:

τ(x, t) = Pp

(
(o, 0) −→ (x, t)

)
. (1.4)

It is first proven in [1, 12], and recently reproved in a much simpler way in [5], that the
critical point is unique in the sense that

pc = sup

{
p ∈ [0, 1] :

∞∑
t=0

χt < ∞
}
. (1.5)

The sum
∑

t χt is often called the susceptibility.
Now we briefly summarize the basic properties of those quantities readily obtained

from the definition. First we note that, by the Markov property and translation invariance,

θs+t ≥ θsθt, χs+t ≤ χsχt. (1.6)

With the help of the trivial inequality θt ≤ χt ≤ (2t + 1)dθt, we can conclude that there
is a common relaxation time ζ ∈ [0,∞] such that

ζ = lim
t↑∞

−t

log θt
= sup

t∈N

−t

log θt
= lim

t↑∞

−t

logχt

= inf
t∈N

−t

logχt

. (1.7)

Using the second and forth equalities, we can say that ζ is bounded away from zero and
infinity when p < pc, implying exponential decay of θt and χt in t in the subcritical
regime. This is not the case at the critical point. Moreover, χt is nondecreasing in t at
p = pc, because, otherwise, there must be a t0 ∈ N such that χt0 < 1, which together with
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submultiplicativity implies exponential decay of χt and convergence of the susceptibility∑
t χt at p = pc, such as

∞∑
t=0

χt =
∞∑
n=0

t0−1∑
k=0

χnt0+k ≤
∞∑
n=0

χn
t0

t0−1∑
k=0

χk < ∞, (1.8)

which is a contradiction to the result in [2]:
∑

t χt = ∞ at p = pc.
Let ρ, η, ν be the critical exponents for the above quantities at p = pc: as t ↑ ∞,

θt ≈ t−ρ, χt ≈ tη, ξt ≈ tν , (1.9)

where f ≈ g means that (log f)/ log g goes to 1 in the prescribed limit, allowing corrections
of slowly varying functions. In higher dimensions d ≫ 4 (d > 4 is enough for sufficiently
spread-out models), the lace expansion converges and the above critical exponents take
on their mean-field values ρ = 1, η = 0 and ν = 1/2: the values for branching random
walk [3, 4, 9, 10, 13, 14, 18]. In lower dimensions, on the other hand, only numerical
values and predictions due to non-rigorous renormalization-group methods are available
(see Table 1).

In this paper, we prove the following theorem.

Theorem 1.1. (i) For any d ≥ 1, p ∈ [0, 1] and t ∈ N, we have

χt ≤
4

3
(4ξt + 1)d θ2t/2, (1.10)

which implies the hyperscaling inequality (assuming existence of ρ, η, ν)

dν ≥ η + 2ρ. (1.11)

(ii) Let d = 1 and p = pc. Then, there is a K > 0 such that, for any t ∈ N,

χt ≥ Kξtθ
2
t , (1.12)

which implies the hyperscaling equality (assuming existence of at least two among
ρ, η, ν)

ν = η + 2ρ. (1.13)

Table 1: Predicted values of the critical exponents in various dimensions (e.g., [15]).

d = 1 d = 2 d = 3 d = 4− ε d ≥ 4

ρ 0.159464 0.451 0.73 1− 1
4
ε− 0.01283ε2 1

η 0.313686 0.230 0.12 1
12
ε+ 0.03751ε2 0

ν 0.632613 0.568 0.526 1
2
+ 1

48
ε+ 0.008171ε2 1

2

γ 2.277730 1.60 1.25 1 + 1
6
ε+ 0.06683ε2 1

µ 1.733847 1.295 1.105 1 + 1
12
ε+ 0.02238ε2 1
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Remarks:

1. The inequality (1.10) was first derived in [19]. Since its proof is easy and short, we
will show it again for convenience. It was used in [19] to prove two other hyperscaling
inequalities that also involve critical exponents defined in the off-critical regime. For
example, if the susceptibility

∑
t χt and the relaxation time ζ diverge as p ↑ pc as

(pc − p)−γ and (pc − p)−µ respectively, then, for any d ≥ 1, we have

(dν − 2ρ+ 1)µ ≥ γ. (1.14)

If we replace those critical exponents in (1.11) and (1.14) by their mean-field values,
then we obtain d ≥ 4, which is a complement to the aforementioned lace-expansion
results. Therefore, the upper-critical dimension dc for oriented percolation is 4.

2. In general, hyperscaling inequalities are believed to be equalities below and at the
model-dependent upper-critical dimension. The values in Table 1 seem to support
this belief. The identity (1.13) proves that it is indeed the case for at least d = 1. For
unoriented percolation, for which dc = 6, similar results are proven in 2 dimensions
by Kesten [11] using the Russo-Seymour-Welsh theorem on the critical box-crossing
property [16, 17, 21]. Since the known critical exponents for 2-dimensional unori-
ented percolation are rational numbers (e.g., β = 5/36 and γ = 43/18), it is natural
to believe that there must be some balance (i.e., hyperscaling equalities) among
those critical exponents. On the other hand, since the values in Table 1 do not seem
to be rational numbers, the hyperscaling equality (1.13) is even more surprising.

3. The main reason why the right-hand side of (1.10) is bigger than its left-hand side
is due to the inequality

τ(x, t) = Pp

(
(o, 0) −→ (x, t)

)
≤ Pp

(
(o, 0) −→ t/2, t/2 −→ (x, t)

)
= θ2t/2, (1.15)

where, and in the rest of the paper, we do not care much about possibilities of, e.g.,
t/2 not being an integer, since it is easy (but cumbersome) to make the argument
rigorous if we introduce floor functions, etc. The last equality in (1.15) is due to
reversibility: if we change the direction of each bond and redefine the connectivity
in the time-decreasing direction, then we have the identity Pp(t/2 −→ (x, t)) = θt/2.

4. The following theorem on the critical box-crossing property is the key to show the
opposite inequality to (1.15):

Theorem 1.2 (Theorem 1.3 in [6]). Let

Vp(w, t) = Pp

(
[0, w]× [0, t] is crossed vertically

)
, (1.16)

Hp(w, t) = Pp

(
[0, w]× [0, t] is crossed from left to right

)
. (1.17)
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There exist a constant ε ∈ (0, 1) and an increasing sequence of integers {wt}t∈N such
that, for all t ∈ N,

ε ≤ Vpc(wt, 3t) ≤ Vpc(3wt, t) ≤ 1− ε, (1.18)

ε ≤ Hpc(3wt, t) ≤ Hpc(wt, 3t) ≤ 1− ε. (1.19)

We will also use (1.18)–(1.19) to control an upper bound on τ(x, t) for x > jwt that
decays exponentially in j ∈ N (see Lemma 2.1 below). This is a key element to
show that wt is bounded below by an ε-dependent positive multiple of ξt.

5. Applying (1.10) and (1.12) to [19, (5.1)] and its reverse, respectively, we can readily
show that the hyperscaling inequality (1.14) also becomes an equality for d = 1, i.e.,

(ν − 2ρ+ 1)µ = γ. (1.20)

6. It is easy to show that the hyperscaling inequality (1.11) holds for other finite-range
models of oriented percolation and the contact process. It should not be so difficult
to prove Theorem 1.2 for the nearest-neighbor models of oriented site percolation
and the contact process, hence the hyperscaling equality (1.13) for d = 1. However,
it is not so obvious to prove a similar statement to Theorem 1.2 for longer-range
models. This may be worth further investigation.

2 Proof of Theorem 1.1

Proof of Theorem 1.1(i). It suffices to prove the inequality (1.10), as the hyperscaling
inequality (1.11) immediately follows by using (1.10) at p = pc (and assuming existence
of the three critical exponents). First we note that

χt =
1

ξ2t

∑
x

|x|2τ(x, t) ≥ 4
∑

x:|x|≥2ξt

τ(x, t), (2.1)

hence
3

4
χt ≤

∑
x:|x|≤2ξt

τ(x, t). (2.2)

By (1.15), the right-hand side is further bounded by (4ξt + 1)dθ2t/2. This completes the

proof of (1.10).

To prove Theorem 1.1(ii), we first assume the following key lemma:

Lemma 2.1. Let d = 1 and p = pc. Let ε ∈ (0, 1) and wt be the same as in Theorem 1.2.

(i) For any t ∈ N and any x ∈ [−1
2
wt,

1
2
wt],

τ(x, t) ≥ ε6θ2t . (2.3)

(ii) For any j, t, x ∈ N with j ≥ 2 and jwt < x ≤ (j + 1)wt,

τ(x, t) ≤ ε−4θ2t (1− ε)j−2. (2.4)
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Proof of Theorem 1.1(ii) assuming Lemma 2.1. Again, it suffices to prove the inequality
(1.12), as the equality (1.13) is a result of the hyperscaling inequality (1.11) for d = 1 and
the opposite inequality ν ≤ η + 2ρ that immediately follows from (1.12).

To prove (1.12), we first note that, by (2.3),

χt ≥ 2

1
2
wt∑

x=1

τ(x, t) ≥ ε6wtθ
2
t . (2.5)

To complete the proof, it suffices to show that wt is bounded below by a positive multiple
of ξt. However, by definition,

ξ2t = 2
∞∑
x=1

x2 τ(x, t)

χt

= 2

( 2wt∑
x=1

x2 τ(x, t)

χt

+
∞∑
j=2

(j+1)wt∑
x=jwt+1

x2 τ(x, t)

χt

)

≤ 2w2
t

(
4 +

∞∑
j=2

(j + 1)2
(j+1)wt∑
x=jwt+1

τ(x, t)

χt

)
. (2.6)

Then, by using (2.4)–(2.5), we obtain

ξ2t
(2.5)

≤ 2w2
t

(
4 +

1

ε6θ2t

∞∑
j=2

(j + 1)2 max
jwt<x≤(j+1)wt

τ(x, t)

)
(2.4)

≤ 2w2
t

(
4 + ε−10

∞∑
j=2

(j + 1)2(1− ε)j−2

)
. (2.7)

As a result,

χt ≥
ε6√
2

(
4 + ε−10

∞∑
j=2

(j + 1)2(1− ε)j−2

)−1/2

︸ ︷︷ ︸
=K

ξtθ
2
t . (2.8)

This completes the proof of (1.12).

The rest of the paper is devoted to showing Lemma 2.1.

Proof of Lemma 2.1(i). First we note that, for 1 ≤ x ≤ 1
2
wt, the event (o, 0) −→ (x, t)

occurs if the following four increasing events occur:

• (o, 0) −→ t in [−wt, wt]× [0, t],

• 0 −→ (x, t) in [x− wt, x+ wt]× [0, t],

• [−3
2
wt,

3
2
wt]× [0, t] is crossed from left to right,

• [−3
2
wt,

3
2
wt]× [0, t] is crossed from right to left.
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The last two events take care of the possibility that the forward cluster from the origin
(o, 0) and the backward cluster from (x, t) do not collide. Using the FKG inequality (see,
e.g., [7]), translation invariance and the reversibility explained below (1.15), we obtain

τ(x, t) ≥ Pp

(
(o, 0) −→ t in [−wt, wt]× [0, t]

)2

Hp(3wt, t)
2. (2.9)

We further note that the event (o, 0) −→ t in [−wt, wt]× [0, t] occurs if the following three
increasing events occur:

• (o, 0) −→ t,

• [0, wt]× [0, t] is crossed vertically,

• [−wt, 0]× [0, t] is crossed vertically.

Again, by the FKG inequality, translation invariance and the monotonicity Vp(wt, t) ≥
Vp(wt, 3t), we obtain

Pp

(
(o, 0) −→ t in [−wt, wt]× [0, t]

)
≥ θtVp(wt, 3t)

2, (2.10)

hence

τ(x, t) ≥ θ2tVp(wt, 3t)
4Hp(3wt, t)

2. (2.11)

The inequality (2.3) follows from the above inequality at p = pc and (1.18)–(1.19).

Proof of Lemma 2.1(ii). Recall that j ≥ 2 and jwt < x ≤ (j + 1)wt. If (o, 0) −→ (x, t),
then the following three independent events occur:

• (o, 0) is connected to the boundary ∂Bo of the box Bo ≡ [−wt, wt]× [0, t],

• [wt, (j − 1)wt]× [0, t] is crossed from left to right,

• (x, t) is connected from the boundary ∂Bx of the boxBx = [(j−1)wt, (j+2)wt]×[0, t].

By this observation and using Hp((j − 2)wt, t) ≤ Hp(wt, t)
j−2 ≤ Hp(wt, 3t)

j−2, we obtain

τ(x, t) ≤ Pp

(
(o, 0) −→ ∂Bo

)
Hp(wt, 3t)

j−2Pp

(
∂Bx −→ (x, t)

)
. (2.12)

However, by reversibility and monotonicity, we have

Pp

(
∂Bx −→ (x, t)

)
≤ Pp

(
(o, 0) −→ ∂Bo

)
. (2.13)

Therefore,

τ(x, t) ≤ Pp

(
(o, 0) −→ ∂Bo

)2

Hp(wt, t)
j−2. (2.14)

To bound the probability on the right-hand side by θt, we borrow the idea in the proof
of [6, (4.7)]. First, we note that (o, 0) −→ t if the following three increasing events occur:
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• (o, 0) −→ ∂Bo,

• [0, wt]× [0, t] is crossed vertically,

• [−wt, 0]× [0, t] is crossed vertically.

By the FKG inequality, translation invariance and the monotonicity Vp(wt, t) ≥ Vp(wt, 3t),
we obtain

θt ≥ Pp

(
(o, 0) −→ ∂Bo

)
Vp(wt, 3t)

2. (2.15)

To summarize the above computations at p = pc, we arrived at

τ(x, t) ≤
(

θt
Vpc(wt, 3t)2

)2

Hpc(wt, 3t)
j−2 ≤ ε−4θ2t (1− ε)j−2, (2.16)

as required.
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