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The Cauer-equivalent circuit of electric apparatus is synthesized by applying the model order reduction (MOR) to the finite element 

equations. In this method, the admittance function of a given electric apparatus is expressed by a rational polynomial, from which the 

Cauer-equivalent circuit is directly synthesized. Magnetic saturation in the magnetic core is considered by introducing nonlinearity in 

the primal inductance of the circuit. The synthesized circuit is shown to express the input-output properties of inductors and induction 

heating devices in good accuracy. 

 
Index Terms— Cauer circuit, model order reduction, Padé via Lanczos, finite element method.  

 

I. INTRODUCTION 

LECTIRC APPARATUS such as inductor, transformers and 

motors are often expressed by means of equivalent circuits 

in the design of driving and control circuits. The conventional 

equivalent circuit modeling, however, have difficulties in 

treatment of magnetic nonlinearity, computation of eddy 

current and hysteresis losses, and expression of characteristics 

over a wide frequency range.  

The Cauer-equivalent circuit of a steel sheet has been derived 

from the analytical solution to the quasi-static Maxwell 

equations [1]-[3]. The synthesized Cauer circuit does not only 

express the frequency property of the steel plate over wide 

frequency range in good accuracy, but also can treat saturated 

cores. The winding coils have also been modeled by the Cauer 

circuit on the basis of analytical approach [4] (see also 

references in [4]). These methods can be, however, applied only 

to electric apparatus with simple geometry which can be 

analyzed with analytical methods.  

The authors have proposed the synthesis of the Foster-

equivalent circuit from the finite element (FE) equation of a 

given electric apparatus based on the model order reduction 

(MOR) [5]-[8]. This method can synthesize the equivalent 

circuits of electric apparatuses with arbitrary geometry and also 

accurately express wide-range frequency characteristic 

provided that there is no magnetic nonlinearity. 

In this study, we extend the above MOR-based method to 

consider magnetic saturation in the magnetic cores. The 

proposed method synthesizes the Cauer circuit from the rational 

polynomials derived from the quasi-static Maxwell equations 

using Padé approximation via the Lanczos processes (PVL) 

based-MOR [9]. We apply this method to synthesize the Cauer-

equivalent circuit of an inductor used in a DC-DC converter as 

well as an induction heating device to evaluate the validity and 

performance of the proposed method.  

II. FINITE ELEMENT METHOD 

Let us consider the Maxwell equations represented in the 

Laplace domain for quasi-static electromagnetic fields 
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where A, , , i, and j0k are magnetic vector and scalar 

potentials, magnetic reluctivity, conductivity, current and unit 

current density, respectively. Applying the weighted residual 

method in conjunction with Gelerkin method to (1), we obtain 
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where Ni and Nj are the vector and the scalar interpolation 

functions, respectively. To determine the current i, we couple 

(2) with the circuit equation given by 
 

 

c

j

j

c

j

jin Rivv  (3) 

 
where vin, vj, and Rj are the input voltage, voltage drop along 

the j-th coil and its resistance, respectively. Note that vi is a 

function of A and . By solving (2) and (3), we obtain the 

admittance of the equivalent circuit at any frequency. This 

computation can be effectively performed using MOR 

technique which will be described below. 
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III. SYNTHESIS OF CAUER-EQUIVALENT CIRCUIT 

In the present method, we use PVL-based MOR [9] to 

compute the admittance function of a given apparatus, which is 

expressed by a rational polynomial function of frequency. 

A. PVL-based MOR 

To formulate PVL-based MOR, we express (2) and (3) in the 

state equation as follows: 
 

vs bxx  NK  (5a) 
 
where K, NRnn, x, b, lRn, n is the degree of freedoms (DoFs) 

in (2) and (3). The output equation is 
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The transfer function for the system described by (5), which 

corresponds to the admittance function, is given by 
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where A=(K+s0N)-1N, r=(K+s0N)-1b, and s0 is an expansion 

point. The eigenvalue decomposition of A results in 
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where S,  are the matrix composed of the eigenvectors and 

diagonal matrix composed of the eigenvalues and f=Stl, g=S-1r. 

The eigenvalue decomposition of A needs, however, long 

computational time. For this reason, we apply the Lanczos 

method to (6) to obtain 
 

  1
1

01 T)(I)( erel


 q
tt sssY   (8) 

 
where e1=[1,0,0,…,0]tRq, TqRqq is a tridiagonal matrix and 

q is the number of iteration in the Lanczos process. When q is 

be set much smaller than n, we can easily perform the 

eigenvalue decomposition of Tq to obtain 
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where Sq, q are the matrices including the eigenvectors and 

eigenvalues of Tq and =Sq
te1 and =Sq

-1e1. The admittance is 

now represented as a rational polynomial of s in (9). 

B. Synthesis of Cauer-Equivalent Circuit 

The authors have proposed the synthesis method of the 

Foster-equivalent circuit shown in Fig. 1 via PVL-based MOR 

[5]. In this method, we can directly and uniquely synthesize the 

Foster circuit from (9). However, it would be difficult to 

consider the magnetic saturation in magnetic cores using the 

Foster circuit. For the Cauer circuit shown in Fig. 2, which is 

also called continued-fraction Cauer circuit [4], physical 

interpretation to the each section could be given; R1 and L1 

correspond to the DC resistance of winding coils and the 

inductance at low frequencies, while Rj and Lj, j=2,3,... 

correspond to AC resistance  and inductance relevant to the flux 

generated by the eddy  currents. Because the flux 1 would be 

dominant, the magnetic saturation could be well described by 

introducing nonlinearity in L1 [1]. For this reason, we synthesize 

the Cauer-equivalent circuit from (9). To do so, we express (9) 

in the form 
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in which the coefficients can be easily computed by, e.g., 

Mathematica®. The Euclidian algorithm is applied to (10) to 

obtain the continued fraction 
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where Ri and Li are the resistance and inductance in the 

continued fraction Cauer circuit shown in Fig. 2. Note here that 

so-called physical Cauer circuit (see [4] for its definition) can 

also be synthesized from (10). 

C. Consideration of Nonlinearity in Magnetic Core 

As described above, we introduce the magnetic nonlinearity 

in magnetic cores only for L1 [1]. When the eddy currents are 

dominant as in the case discussed in [10], we would have to 

introduce nonlinearity also in Li, i=2, 3,..., as discussed in [3]. 

The circuit equation for the nonlinear Cauer is given by 
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Fig. 1 Foster circuit. 

 
Fig. 2 Cauer circuit. The current I0 denotes the external current while 

Ik(k=1,2,…) denote the eddy currents. The flux 1, generated by I1I2, is 

dominant at low frequencies. 
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where ij is the loop current in the j-th stage of the Cauer circuit. 

Instead of L1i, we use (i) to represent the nonlinearity of the 

magnetic core. Because (i) is generated by the external coil 

current, (i) can be determined by magneto- static field 

analysis. We compute the magnetic flux (i) for different coil 

currents in the preprocessing.  

The synthesis algorithm is summarized as follows: 

1. The tri-diagonal matrix Tq is generated by the Lanczos 

process. In this process, the eddy current equation (5a) is 

repeatedly solved. 

2.  The rational polynomial (10) is obtained by performing the 

eigenvalue decomposition of Tq, and the circuit parameters in 

the Cauer circuit are obtained by the continued fraction (11). 

3. Magnetostatic field is analyzed with FEM to obtain (i). 

IV. NUMERICAL RESULTS 

A. Inductor Model in DC-DC Converter 

We synthesize the Cauer-equivalent circuit of the inductor 

used in the DC-DC converter shown in Fig. 3. The conductivity 

of the coil is set to 5.76107S/m. The magnetic core is assumed 

to be 50A400. The inductor model is discretized into tetrahedral 

elements to whose edges 117,548 unknowns are assigned. In 

PVL-based MOR, we set the number of iteration q to 5 which 

corresponds to the number of the stages in the Cauer circuit. 

We summarize Rj, Lj obtained by the present method 

assuming the linear magnetic property in Table I. The computed 

values of R1 and L1 correspond to the DC resistance and 

inductance at low frequency, respectively. The input impedance 

of the inductor is plotted against frequency in Fig. 4. We can 

see that the impedance computed from the Cauer circuit is in 

good agreement with that obtained by FEM. 

Next, we analyze the DC-DC converter in which the inductor 

is modeled by the Cauer circuit. In this converter, R0, switching 

frequency and the duty factor are set to 0.05MHz and 0.9, 

respectively. The nonlinear -i characteristic of the core 

material, which is computed from the BH curve of 50A400, 

shown in Fig. 5 is introduced to L1. We analyze the time-

response using conventional FEM, present method and linear 

Foster-equivalent circuit which is synthesized using the 

permeability distribution at the driving current [2]. When 

E=5.0V, C0=1F and E=1.2V, C0=100F, the time response of 

the current through R0 is shown in Fig. 6. It is shown in Fig. 6 

that the time responses obtained by FEM and the present 

method agree well. On the other hand, there are differences 

between those and the results computed from the Foster circuit. 

In particular, the differences are rather large in the transients.  

B. Induction Heating Model 

We consider the induction heating model shown in Fig. 7. 

The conductivity of the conducting plate to be heated is set to 

1.25106S/m. The magnetic core is again assumed to be 

composed of 50A400. The induction heating model is 

discretized into tetrahedral elements which have 692,797 

unknowns at the edges. In PVL-based MOR, q is set to 5.  

In Table II, the values of Rj and Lj resulted from the present 

method assuming the linear magnetic property are summarized. 

The computed values of R1 and L1 are found to coincide with 

the DC resistance and inductance computed by static analysis, 

respectively. In the Cauer circuit of the induction heating model, 

the higher element Rj and Lj , j=2,3,... correspond to the 

resistance and the inductance relevant to the eddy currents in 

the metallic plate. Figure 8 shows the frequency dependence of 

the input impedance of the coil obtained by FEM and the Cauer 

circuit. They are in good agreement. 

 
Fig. 3 Inductor in DC-DC converter. 

 
Fig. 4 Frequency response of impedance of the inductor 
  

 TABLE I ELEMENT VALUES OF INDUCTOR IN CAUER CIRCUIT. 

R1[] R2[] R3[] R4[] R5[] 

3.30e-1 59.2 968 2176 6328 

L1[H] L2[H] L3[H] L4[H] L5[H] 

3.67e-7 8.40e-6 3.94e-5 1.14e-4 1.10e-4 
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Fig. 5 Magnetic flux-current characteristic for inductor. 

 
(a) E=5.0V, C0=1F 

 
(b) E=1.2V, C0=100F 

Fig. 6 Time response of current which flows through R0. 
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We analyze the induction heating model in time-domain 

considering the magnetic nonlinearity in the magnetic core. By 

performing the magneto-static field analysis, we compute -i 

characteristic of the core, which is plotted in Fig. 9. We 

introduce the nonlinear characteristic to L1 in the Cauer circuit. 

In Fig. 10, we plot the time variation of the current to the coil 

winding. The solutions in the both transient and steady states 

obtained by FEM agree well with those by the nonlinear Cauer 

circuit even when the voltage E changes, although the linear 

circuit has errors in the transients. 

The Joule losses in the steady state evaluated by FEM and 

the Cauer circuit are shown in Fig. 11. From the Cauer circuit, 

we compute the Joule loss as follows: 
 






q

j

rjje iRW

2

2  (13) 

 
where irj is the current to Rj. As can be seen in Fig. 11, the Joule 

loss obtained by the Cauer circuit is in good agreement with that 

obtained by FEM. 

V. CONCLUSION 

We have proposed a novel method to synthesize the Cauer 

circuit from the FEM model of electric apparatus using PVL-

based MOR. The synthesized Cauer circuit can express the 

nonlinear magnetic property of magnetic cores. It is shown that 

the Cauer circuit provides accurate results in both frequency 

and time domains. We plan to study the property of the physical 

Cauer circuit which is synthesized from (10). 
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Fig. 7 Induction heating model (blue : magnetic core, yellow : coil, gray : 

conducting plate) 

 
Fig. 8 Frequency response of impedance of the induction heating  
 TABLE II Element values of Induction Heating in Cauer circuit. 

R1[] R2[] R3[] R4[] R5[] 

3.28e-4 3.69e-1 10.1 71.8 54.0 

L1[H] L2[H] L3[H] L4[H] L5[H] 

9.60e-6 3.32e-5 2.21e-4 9.36e-4 1.19e-3 
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Fig. 9 Magnetic flux-current characteristic for induction heating. 

     
(a) Transient state when E=1.0V         (b)  Steady state when E=1.0V 

 
(c) Transient state when E=2.0V         (d)  Steady state when E=2.0V 

Fig. 10 Time response of current which flows through R0. 

  
(a) E=1.0V           (b) E=2.0V 

Fig. 11 Time response of Joule loss in the magnetic steel. 
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