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Quasisteady streaming with rarefaction effect induced by asymmetric sawtooth-like plane waves 
Takeru Yano and Yoshinori Inoue 
Department of Engineering Science, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan 
(Received 29 January 1996; accepted 29 May 1996) 

The nonlinear plane acoustic wave emitted from a harmonically oscillating plate into an ideal gas of semi-infinite extent develops into a sawtooth-like wave, as long as the energy dissipation is negligibly small everywhere except for discontinuous shock fronts. The present authors have recently studied the strongly nonlinear propagation process and, in particular, numerically shown that, contrary to the result of the conventional weakly nonlinear theory, streaming (mean mass flow) due to shocks occurs in the direction of wave propagation, and thereby the gas near the plate is rarefied as time proceeds [J. Acoust. Soc. Am. 94, 1632 (1993)]. In this paper, the analysis of strongly nonlinear problem is advanced by extending the numerical computation up to about 190 periods of oscillation of plate, which is about three times longer than the previous one. It is demonstrated that, in the course of time, a quasisteady state is established, where a low-density and high-entropy region formed near the plate continues to grow at almost constant rate and the quasisteady streaming endures outside the region. Furthermore, the weakly nonlinear problem is analytically examined by a perturbation method up to O(M3
) [M( <if 1) is the acoustic Mach number]' The result shows that a sawtooth-like profile loses its symmetry in the second-order, and this causes weak streaming of O(M2

). The decrease in density of the gas can be related to the accumulation of the third-order effects of production of entropy and generation of reflected wave at each shock front. © 1996 American Institute of Physics. [S1070-6631(96)02309-4] 

I. INTRODUCTION 

The nonlinear plane acoustic wave emitted from a har­
monically oscillating plate into an ideal gas of semi-infinite 
extent propagates with its profile being distorted by the non­
linear effect (see Fig. 1). The nonlinear distortion leads to the 
formation of shock, and thereafter the wave profile progres­
sively approaches a sawtooth-like one (see Fig. 2), as long as 
the energy dissipation due to viscosity and thermal conduc­
tivity is sufficiently small everywhere except for discontinu­
ous shock fronts. According to the conventional first-order 
weakly nonlinear theory, the wave develops into the saw­
tooth wave of symmetric profile with no streaming (mean 
mass flow) [Fig. 2(a)], while a recent workl for the strongly 
nonlinear case has shown that streaming is induced by an 
asymmetrical sawtooth-like wave [Fig. 2(b)] and streaming 
rarefies the gas near the oscillating plate. We shall investi­
gate the streaming motion and the rarefaction phenomenon 
in the nonlinear propagation process of plane waves. 

In a previous paper,l the authors have studied a strongly 
nonlinear problem, which is characterized by the conditions 

and 

Uo aw 
M=-=-=O(I) 

Co Co 

(y+ l)couo 
Re=----­ow (1) 

where M is the acoustic Mach number and Re is the acoustic 
Reynolds number (co is the speed of sound in an initial 
undisturbed gas, a and w are an amplitude and angular fre­
quency of harmonic oscillation of the plate, uo=aw is the 
maximum speed of the oscillation, y is the ratio of specific 

heats for the ideal gas, and 0 is the diffusivity of sound).2 
The former condition, M = 0 (1 ), means that the wave is a 
strongly ,nonlinear one, i.e., its profile is rapidly distorted and 
this leads to the shock formation near the plate. The latter, 
Re p 1, means that we can regard the shock as a discontinu­
ity, and may ignore the dissipation effect everywhere except 
for the discontinuity? In Ref. 1, by using analytical and nu­
merical methods,4,5 several strongly nonlinear phenomena 
have been found-the confluence of shocks, the generation 
of streaming, etc. They present striking contrasts to the es­
tablished results of conventional weakly nonlinear theory 
based on the first-order solution in the case of 

M <if 1 and Rep 1. (2) 

Among the strongly nonlinear phenomena, the generation of 
streaming and resulting rarefaction of the gas near the plate 
may be deserving special attention, because whether the 
wave motion can reach a steady state or not may strongly be 
affected by them. In this paper, focusing on streaming with 
rarefaction effect, we shall advance the analysis of the 
strongly nonlinear problem of M = 0 ( 1) and Rep 1 and in­
vestigate the higher-order weakly nonlinear problem of 
M <if 1 and Rep 1. 

The first-order problem in the weakly nonlinear case6
,7 

has been thoroughly examined for its fundamental impor­
tance, and the result is a matter of common know ledge in 
nonlinear acoustics now.8,9 The wave profile is hardly dis­
torted in the near field (i.e., in the region whose distances 
from the plate are comparable with a wavelength 
2 7TCo / w), and the nonlinear effect manifests itself mainly in 
the far field (i.e., in the propagation process over large ranges 
compared with the wavelength) . The wave profile at large 
distances approaches the so-called sawtooth wave, which has 
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oscillating plate 

---­kx*=MX(wt*) 

direction of wave propagation 

FIG. 1. Schematic of the model: generation of nonlinear plane acoustic 
wave by an oscillating infinite plate. 

a symmetry between the compressive and rarefactive phases 
[Fig. 2(a)]. The phenomenon is in a steady state, i .e., it is 
periodically repeated with the period 2 'TTi w . No streaming 
motion arises and a time average of density never changes. 
In the strongly nonlinear case, l however, we have numeri­
cally shown that the wave of an asymmetrical sawtooth-like 
profile propagates with entraining the gas [Fig. 2(b)], i.e., 
streaming motion is excited, and that streaming rarefies the 
gas near the plate at least up to t* = 1207T/ w, i.e., 60 periods 
of oscillation of plate (t* is the time from the beginning of 
wave motion) . Moreover, the entropy produced at shock 
fronts accumulates in the near field more and more as time 
goes by. Consequently, we have reached the conclusion that 
the phenomenon may not have the periodicity in the limit as 
t*---+oo, but may approach a quasisteady state. The similar 
streaming motions have been found in a spherical-wave 
problemlo and in a piston problemY The conventional 
weakly nonlinear theory and the results in Ref. 1 are briefly 
reviewed' in Sec. III. 

However, since the previous numerical study was not 
carried far enough in time, there still remains a possibility 
that the drastic changes of density and entropy fields bring 
on some qualitative change of streaming motion. We there-

direction of wave propagation 

compressive phase 

-L----~--~~--+---~L---_r--~--kx* 

(a) 
expansion wave 

direction of wave propagation 

compressive phas~ 

------~~----~+-~T-----_r~~~kx* 

(b) 
expansion wave 

FIG. 2. Asymptotic profiles of the nonlinear waves radiated by a harmonic 
oscillation of plate. (a) The sawtooth wave (conventional first-order weakly 
nonlinear theory). (b) A sawtooth-like wave of asymmetric profile (strongly 
nonlinear case or higher-order weakly nonlinear theory). 
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fore extend the numerical computation up to about 190 peri­
ods, and examine the long time evolution of wave field, us­
ing the same numerical method as in Ref. 1 (a high­
resolution upwind scheme4 with a flux-difference splitting5) . 

Although the possibility is not completely removed even in 
the present study, the results reinforcing the conclusion in 
Ref. 1 can be obtained (see Sec. IV): a low-density and high­
entropy region formed near the plate continues to grow at 
almost constant rate, and outside the region streaming mo­
tion retains its quasisteadiness. Such a wave phenomenon 
may be regarded as being in a quasisteady state. 

In order to deepen the understanding of the wave phe­
nomenon involving streaming and rarefaction, some analyti­
cal study may also be required. An analytical treatment is 
possible if we restrict ourselves to the weakly nonlinear case 
of M ~ 1 and Re:P 1. In Secs. V and VI, we investigate the 
higher-order weakly nonlinear problem by a perturbation 
method in M (i) to verify that streaming with rarefaction 
effect exists even in the case that the nonlinearity is weak, 
and (ii) to clarify the process of rarefaction and the relation 
between the decreasing density and the increasing entropy. 

As shown by the second-order analysis in Sec. V, a 
sawtooth-like profile loses its symmetry in the second-order 
approximation, and this causes weak streaming of O(M2) in 
the far field beyond the shock formation distance (see Sec. 
V B). The streaming carries the mass of the gas by an 
amount of O(M2) per unit time and per unit area, and thus 
the density decreases in a region where the streaming does 
not fully develop. Since the linear dimension of the region is 
of 0 ( 11M), the decrease in density per unit time is of 
O(M3

), and hence the determination of density distribution 
requires at least the third-order analysis. 

The third-order analysis is carried out in Sec. VI, where 
we shall take into account the third-order effects of produc­
tion of entropy and generation of reflected wave at each 
shock front by making use of the Rankine-Hugoniot rela­
ti~ns . Lighthill12 has applied a similar technique for the in­
vestigation of the relation between the total energy behind a 
shock generated by a piston and the total entropy gain. The 
work of Lighthill has been extended to the two-dimensional 
steady supersonic flow past a thin symmetrical body by 
Phythian. 13 In Sec. VI A, we shall derive a formula which 
determines the amplitude of reflected wave generated at any 
unsteady weak shock front. Our method of derivation is con­
siderably simple compared with Lighthill's one. An equiva­
lent formula has also been obtained by Morfey and 
Sparrowl4 in a problem where a compression wave connect­
ing two different uniform states forms a shock and a reflected 
wave. The reflected wave and entropy production result in 
the negative density perturbation for 1 < -y< 5/3 [we are con­
cerned with air (-y= 104)]. It is shown that the decrease in 
density is related to the reflected waves and the accumulation 
of entropy produced at a number of shock fronts (see Sec. 
VI B). The contribution of entropy is about eight times as 
large as that of reflected wave for -y= 104. The analytical 
results agree with those obtained by the same numerical 
method as in Ref. 1 and Sec. IV for sufficiently small M . 
Comments on the validity of the analysis are given, in addi­
tion to the conclusions, in Sec. VII. 
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II. FORMULATION OF THE PROBLEM 

In order to formulate the problem, we shall introduce the 
nondimensional variables, 

x * w u* 
t=wt* x=-- u=-

, co' co' 

.p* p * 
p=- P=--2' 

Po' Poco 
(3) 

where x * is the distance from an initial position of the plate, 
u* is the x * component of the fluid velocity, P* is the den­
sity of the gas, and p * is the pressure (Po is an initial undis­
turbed density) . 

The condition Re~ 1 allows neglecting the energy dissi­
pation effect due to viscosity and thermal conductivity of the 
gas until a shock wave emerges in the wave field. Hence, at 
least until the time of shock formation, we can use the sys­
tem of Euler equations for one-dimensional flow 

ap a(pu) 
-+--=0 
at ax ' 

a(pu) a(p + pu2) 
--+ =0 

at ax ' 

aEt a[(Et+p)u] 
-+ =0 
at ax ' 

(4) 

(5) 

(6) 

where E t= pu 2/2+ pl( y-l) is the normalized total energy 
of the ideal gas per unit volume. Once a shock is formed, the 
energy dissipation can no longer be ignored, which must in 
reality be produced at least at the shock front. As is generally 
known, however, a shock solution can be represented as a 
discontinuityl5 in the system of equations (4)-(6), owing to 
the condition Re~ 1. We can thus employ this system even 
after the shock formation time. We shall obtain such a dis­
continuous solution under the initial and boundary conditions 
described below. 

The gas is supposed to be uniform and at rest for t~ O . 

The initial conditions at t= 0 are therefore 

1 
u=O, p= 1, p= - (x ~O) . 

y 

. The boundary condition on the plate is given by 

u=MX'(t) at x=MX(t), 

(7) 

(8) 

where the prime denotes the· differentiation with respect to 
the argument and MX(t) is the instantaneous location of the 
plate (see Fig. 1); the function X(t) is assumed to be 

{

COS t-l (t > O), 
X (t)- 0 (t~ O). (9) 

Up to the shock formation time, the wave is the simple 
wave,16 and the exact solution of system (4)-(6) satisfying 
the initial conditions (7) and the boundary condition (8) can 
be obtained by the method of characteristics l,17,18 

(10) 

where 

y=t-x, (11) 

Phys. Fluids, Vol. 8, No. 9, September 1996 

is the phase and 

y+l 
f3= -2- ' (12) 

is termed the parameter of nonlinearity in nonlinear acous­
tics . For a fixed f-t, the second of Eq. (10) represents a char­
acteristic curve in the (y, t) plane and then f-t indicates the 
time when the characteristic is issued from the plate. The 
characteristic is a straight line along which the fluid velocity 
u = M X' (f-t) is constant and the slope dy I dt of each charac­
teristic is proportional to u. The undisturbed constant state 
corresponds to the region y<O, i.e., f-t < 0 . Once the function 
u(y,t) has been found from Eq. (10) , we can readily have 
other quantities as functions of y and t: 

1 ( y-l )2Y/(Y - I) (y- 1 )21(-),-1 ) 
P = - l+ - -u p= l+ - -u 

y 2 ' 2 
(13) 

Here, the first of Eq. (13) represents the isentropic relation 
for the ideal gas and the second is derived from the fact that 
a Riemann invariant 

2c 
S=u---, 

y-l 
(14) 

is equal to - 2/( y- 1) everywhere (c = .J ypl P is the nondi­
mensionallocal speed of sound) . 

The velocity profile described by Eq. (10) is distorted as 
the wave propagates, and this waveform distortion eventu­
ally leads to the formation of shock at the smallest time t s 

satisfying aul ay = 00. The time t s and distance x s of shock 
formation have been analyzed in Ref. 1, by using Eq. (10). 
. The assumption of a simple wave is invalid beyond the 
shock formation time t s , because once a shock is formed the 
flow is no longer isentropic and the Riemann invariant S is 
not constant across the shock. In the case of M ~ 1 and 
Re~ 1, the production of entropy and jump of the Riemann 
invariant are of the third order of shock strength, i.e., they 
are of O(M3

). Therefore, if we restrict ourselves to the 
second-order approximation of weakly nonlinear problem, 
we can neglect these third-order effects (Sec. V) . In order to 
take into account these effects, we shall utilize the Rankine­
Hugoniot relations (Sec. VI). For the strongly nonlinear 
problem of M = 0 ( 1) and Re~ 1, we shall employ a reliable 
numerical approach, a high-resolution upwind finite differ­
ence scheme4 (Sec. IV) . 

III. SUMMARY OF PREVIOUS ANALYSES 

In this section, we shall shortly summarize the results 
from the conventional weakly nonlinear theory, and then re­
view some of the results in Ref. 1 with focusing attention on 
streaming and closely related strongly nonlinear phenomena. 

A. Conventional weakly nonlinear theory 
(M~ 1,Re~ 1 ) 

According to the conventional weakly nonlinear theory, 
the wave propagation is, up to the shock formation distance, 
described by the first-order solution,6,7 
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U=X'(~), y=~-(JX'(~) (u= ;, O'=,BMX) , 

(15) 

where u is a normalized fluid velocity, (J is the distance from 
the plate normalized by the shock formation distance. For a 
fixed ~, the second of Eq. (15) is the first-order approxima­
tion of characteristic curve, along which u is constant (see 
Fig. 3). 

At the nearest location where au I ay = 00, a shock is 
formed, so that solution (15) becomes invalid beyond there 
(the wave profile becomes triple valued). The shock forma­
tion distance Xs and shock formation time ts are given by6,7 

xs= I/,BM, i.e., (J= 1 and ts= 'TT+ lI,BM, (16) 

for the case of X(t) = cos t-l [cf. Eq. (9)]. We shall em­
phasize that the shock is formed in the far field. 

After the shock formation, Eq. (15) can survive with the 
aid of equal-areas rule: 19 The shock is located in the phase so 
as to cut off equal areas of the multivalued wave on either 
side of the shock, and except for the shock, the evolution of 
smooth portions of the profile can still be governed by Eq. 
(15). The result shows that each shock grows [Figs. 3(d) and 
3(e)] and in the region (J~3 the entire wave profile can be 
well described by a formula2o 

V~{ 
Y 

(O~y<'TT), ---
1+ (J 

y-2'TT 
(17) 

- --- ( 'TT<y~ 2'TT), 
1 + (J 

(a) <7=0 y 

FIG. 3. Propagation process according to the conventional weakly nonlinear 
theory. The profiles of u, [p-(lly)]IM, and (p-l)IM are all the same. 
The thin solid straight lines are the characteristics. (a) The wave radiated by 
a harmonically oscillating plate has the sinusoidal profile at u=O, and (b) 
the waveform is gradually distorted as the wave propagates. (c) At u= 1, the 
shock wave is formed. A small black circle denotes the shock formation 
point in the profile. (d)-(g) The shock discontinuity is inserted into the triple 
valued waveform by the equal-areas rule. The profile evolves into the saw­
tooth wave described by Eq. (17). 
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1 
M = 0.4, I = 1.4 

u 

M 

-1 

o 107l" 207l" 

x 

FIG. 4. Entire waveform of velocity at the time t= 207T. The head of the 
wave is located at X=207T. The leading (first) shock wave swallows the 
negative phase (expansion wave) ahead of it. 

which is periodically continued in y [Figs. 3(f) and 3(g)]. 
The entire wave train is referred to as the sawtooth wave. 
The wave vanishes in the limit as (J-+OO. 

As shown in Fig. 3, the shock speed Vs in the (y,(J) 
plane is zero [i.e., it is Co in the original (x* ,t*) plane], and 
the waveform retains a symmetry between the rarefactive 
phase (u < 0) and the compressive phase (u > 0) in each 
wave cycle through the whole process of wave propagation. 
A time-averaged mass flux density is therefore zero, namely, 
streaming motion is not excited. Clearly, the wave phenom­
enon at a point x is exactly repeated with period 2'TT for 
t> x, i.e., the phenomenon is in a steady state. 

B. Strongly nonlinear wave [M= O( 1), Re~ 1] (Ref. 1) 

Owing to the rapid waveform distortion due to the strong 
nonlinearity, shock waves appear in the near field. Then the 
wave train is immediately transformed into an asymmetrical 
sawtooth-like wave (see Fig. 4), which transports the gas in 
the direction of wave propagation, namely, streaming is in­
duced. The existence of quasisteady streaming is signified by 
the fact that the time-averaged mass flux density 

- 1 fl 
pu(x,t)= -2 p(x,r)u(x,r) dr, 

'TT 1-2-rr 
(18) 

is not zero and it weakly depends on t (see Fig. 5). Note that 
pu = 0 up to the time of shock formation.l It has numerically 
been confirmed that streaming is, up to the time t= 120'TT, 
spatially almost uniform and temporally almost constant ex­
cept for the top of the wave and the neighborhood of the 
plate. l Such a quasisteady streaming inevitably leads to the 
decrease in density near the plate. In fact, the time-averaged 
density 

- 1 fl 
p(x,t)= -2 p(x,r) dr, 

'TT 1-2-rr 
(19) 

decreases in the near field with incre,ase in time (see Fig. 6) . 
On the other hand, it has been shown that the time-averaged 
pressure 
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x 

FIG. 5. The time-averaged mass flux density at t = 1201T. 

- 1 II p(x,t)= -2 p(X,7) d7, 
7T 1- 27T 

(20) 

is hardly affected by the density reduction, 1 because the en­
tropy produced at shock fronts, which accumulates in the 
near field more and more as time goes by, compensates for 
the density reduction. Therefore, in Ref. 1, we have reached 
the conclusion that the phenomenon may not have the peri­
odicity in the limit as t-+oo. 

Furthermore, the wave behavior in a distant region from 
the source has analytically been examined in Ref. 1, and 
thereby a simple relation between the shock speed and 
streaming velocity has been obtained. The result can be ar­
ranged as follows: At large distances, 0"=0"0( ;0:> 1), the am­
plitude of the wave sufficiently decreases owing to the en­
ergy dissipation at shock fronts. The asymmetric sawtooth­
like profile realized there can therefore be regarded as that 
composed of just the two weakly nonlinear triangular waves 
with compressive and rarefactive phases (see Fig. 7). The 
wave profile is approximately expressed by a formula 

M = 0.4, 'Y = 1.4 

t=207r 
t=407r 
t=607r 
t=807r 
t= 1007r 
t = 1207r 

x 

FIG. 6. The time-averaged density. 
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a,.. 
- Vs+ 1 +E t----- --,... 

-Vs 

__ ~o+_--_-~~~~----~---~ y ,.. 

FIG. 7. Asymptotic profile of the sawtooth-like wave. 

aY 
- 1+:Z -Vs (O~Y< 7T), 

a(Y-27T) 
- 1+:Z - Vs (7T< Y~27T). 

(21) 

Here, - a is the slope of the triangular wave at 0"= 0"0, and 
:Z, V s, and Y are defined by 

:Z=a(O"-O"o), Vs=-a(7T-Yso), 

Y= y - VsO"+ 7T- (Yso- VsO"o), 
(22) 

where Yso « 7T) is the location of the shock in the phase at 
0"= 0"0, :z denotes the normalized distance from 0"0, 

Vs( < 0) is the shock speed in the (y,O") plane, and Y is the 
phase moving with the shock speed Vs. We have shown 1 

that the shock speed Vs and a phase shift 7T - (Yso- VsO"o) 
are constant independent of 0"0, as long as 0"0 ;0:> 1 (but they 
depend on M) . Formula (21) states that at large distances the 
profile approaches the superposition of the symmetric saw­
tooth wave with no streaming [cf. Eq. (17)J and a uniform 
flow - Vs. By using formula (21), we readily have 

pu=-MVs , 

in the leading order of approximation.21 

IV. LONG TIME BEHAVIOR OF STRONGLY 
NONLINEAR WAVES: NUMERICAL RESULTS 

(23) 

Now we shall present the new numerical result. The cal­
culation is extended up to the time t= 3827T, which is about 
three times longer than the previous calculation. I The same 
numerical method as in Ref. 1 is adopted, which is based on 
the high-resolution upwind finite difference scheme4 with 
Osher's flux-difference splitting.5 The scheme has been uti­
lized by the present authors in some problems of strongly 
nonlinear waves, 10, 11,22 where the numerical method has 
been validated in various ways. We need not give the algo­
rithm . to construct the scheme in this paper, because it is 
formulated in Ref. 4 at some length (see also Ref. 5). The 
discretization of governing equations and numerical treat­
ment at the oscillating boundary are explained in Refs. 1 and 
10. The mesh resolutions used here were comparable to 
those in Ref. 1, typically, ~x= 27T/600 and M= 27T/6000. 

T. Yano and Y. Inoue 2541 



IP-1 

1M 

2 

1 

0 

-1 

0 2011" 4011" 
x X 

(b) 

2 

1 

0 

x x 

FIG. 8. The long time evolution of the wave profiles in the strongly nonlinear case of M = 0.5 and y= 1.4. (a) Density. (b) Entropy. (c) Pressure. (d) Velocity. 

The ratio of specific heats was fixed at y= 1.4. The compu­
tations were performed on the supercomputer HITAC S-820 
at Hokkaido University. 

A. Long time evolution of the wave field 

The long time evolution of the wave field for the case of 
M=O.5 and y= 1.4 is shown in Fig. 8, where the wave pro­
files in a region near the plate (O~X~401T) are plotted from 
t= 0 to 3801T in steps of 101T (five periods). In Fig. 8(a) we 
demonstrate that the density decreases in the near field and 
that the linear dimension of a low-density region gradually 
grows as time proceeds. Clearly, the continual density reduc­
tion is caused by the quasisteady streaming. Figure 8(b) 
shows the distribution of entropy generated at shock fronts, 
where the entropy increment s from the initial isentropic 
state is given by 

s = In( yp / p Y) . (24) 

An appreciable entropy production occurs ":it shock fronts of 
moderate strength in the near field and a small amount of it 
only is carried away along the particle path by the streaming 
motion. Consequently, the entropy accumulates in the near 
field more and more as time passes. The high-entropy region 
nearly coincides with the low-density region. The evolution 
of pressure field is shown in Fig. 8(c). In contrast to the 
drastic change of density profile, the pressure profile at large 
t is not considerably altered from drat at small t, since the 
increase in entropy cancels the decrease in density in the near 
field [cf. Eq. (24)]. We exhibit the velocity field in Fig. 8(d). 

As can be seen in Fig. 8, the wavelength (interval of 
adjacent shocks) increases in the low-density and high­
entropy region. Roughly speaking, by the definition of local 
sound speed c * = ~ yp * / p *, c * becomes very large in the 
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region where the density is very low and the pressure is 
almost constant, and the time scale which characterizes the 
phenomenon is the period of oscillation of plate, 21T/ w. 
Hence, the wavelength 21TC * / w increases there. The asym­
metric sawtooth-like profile outside the low-density and 
high-entropy region is well approximated by formula (21). 

B. Long time behavior of streaming, time-averaged 
density, and pressure 

The long time evolution of streaming is shown in Fig. 9. 
Even at t=3821T, pu remains almost constant except for the 
neighborhood of the plate where pu nearly equals to zero. 
The region where pu = O almost coincides with the region of 
low density and high entropy. The plateau-like portion of 
streaming curve in Fig. 9 shifts rightward with increase in 
the size of the low-density and high-entropy region. In Figs. 

0.1,--------------.------------, 

M = 0.5, I = 1.4 

/ 
t=2401l" 

/ 
t = 38211" 

/ 
t=1201l" 

0.01 LL!.J.. ____________ -'--____________ ,.-l 

o 20011" 38011" 

x 

FIG. 9. The long time evolution of streaming in the case of M=0.5 and 
y= 1.4. 
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t=3827r 

x 

x 

(b) 

FIG. 10. The long time evolution of the time-averaged density and pressure 
in the case of M = 0.5 and y= 1.4. (a) The time-averaged density. Curves are 
plotted from t= 381T to 3801T in steps of 381T. (b) The time-averaged pres­
sure at t= 3821T. 

lO(a) and lO(b), we depict the long time behavior of p and 

ji, respectively. The distribution of p is not very altered [cf. 
Fig. 8(c)], as compared with that of p. Figure 11 shows pu at 
t= 1207T and x= lOO7T for various values of M. For 
M::'SO.4, pu is approximately proportional to M2. 

We summarize the feature of long time evolution of 
wave field as follows : The nonlinear wave is emitted from 
the oscillating plate into a nortuniform gas, which has low 
density and high entropy near the plate. After the wave goes 
out of the region, the profile evolves into an asymmetric 
sawtooth-like one, which is well approximated by formula 

0.1 E-

pu 

0.01 

0.001 [ 

• 
• 

0.0001 
0.01 

• 
• 
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• • 
••• • 

1 

FIG. 11. Streaming for various values of Mat t= l201T and x= 1001T. The 
time-averaged mass flux density pu approximately v;uies as 0.2M2 for 
M::SO.4. 
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(21). The low-density and high-entropy region continues to 
grow at almost constant rate. In spite of the drastic change of 
the field, streaming retains its quasisteadiness outside the 
low-density and high-entropy region, because the profile re­
alized there can be described by formula (21), which is the 
superposition of the symmetric sawtooth wave and a uniform 
flow. Such a phenomenon may be regarded as being in a 
quasisteady state (see Appendix A). 

V. SECOND-ORDER ANALYSIS FOR WEAKLY 
NONLINEAR WAVE 

In this and the next sections, we shall verify that stream­
ing with rarefaction effect exists even in the weakly nonlin­
ear case and clarify the process of rarefaction and the relation 
between the decreasing density and the increasing entropy. 
To this end, we shall solve the higher-order weakly nonlinear 
problem oiM ~ 1 and Rep 1. Note that the results in Secs. V 
and VI are applicable to any function X(t), as long as it is 
sufficiently smooth and periodic with period 27T, and 
X(O)=X'(O)=O [cf. Eq. (9)]. 

A. Second-order solution including weak shocks 

Formula (15) of the conventional weakly nonlinear 
theory is the first-order solution. The second-order solution 
for the fluid velocity can be obtained as 

u =X' (g) + MX(g)X"(g), , (25) 

g= y + aX' (g) + M oX( g)X"( g) - 13M (T[X' (g)]2 

(see Appendix B for the derivation and the relation of the 
second-order solution to the exact solution of simple wave). 
When the parameter g is fixed, the second of Eq. (25) is the 
second-order version of the characteristic, along which the 
fluid velocity is constant. Substituting Eq. (25) into the con­
dition au I ay = 00 immediately gives the distance and time of 
shock formation with second-order correction as 
x s=lI(3M-[(y-2)2/(y+1)]M and t s=7T+xs+2M. Be­
yond the shock formation distance Xs> the profile described 
by Eq. (25) becomes triple valued. As in the first-order 
theory reviewed in Sec. ill A, since the entropy production 
and jump of the Riemann invariant S at shock fronts can be 
ignored in the second-order approximation, we can use Eq. 
(25) to describe the continuous parts of profile after we insert 
a shock discontinuity into the triple valued profile and cut off 
the two areas in front of and behind the discontinuity. Ac­
cordingly, what we should do here is to locate the shock 
discontinuity to the accuracy of O(M2

) . 

In the first-order theory, the equal-areas rule facilitates 
the determination of shock location. In the approximation of 
O(M2), we use a formula for the shock speed US ,23 

dxs Ul+U2 2 2(UI-U2)2 
Us=Tt=1+(3M-

2
-+(3 M 8 

(26) 

where Xs is the location of shock at the time t and the sub­
scripts 1 and 2 signify the values of immediately in front of 
and behind the discontinuous shock front [the equal-areas 
rule can be derived by using the first-order version of Eq. 
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r 
(26) and the first-order solution (15); see, e.g., Ref. 9]. We 
can transform Eq. (26) to give the relation connecting the 
shock speed on the (y, O') plane, V s, to v I and v 2, 

2 6 2 dys vI +V2 VI + VIV2+ V2 2 
Vs= dO' = - -2-+ 13M 8 + OeM ), 

(27) 

where y s = Y s( O') = t s( O') - O'/f3M is the phase of shock at a 
distance O'= f3Mx and ts( O') is the time when the shock 
concerned reaches the point O'. Since the smooth portions of 
profile evolve in accordance with Eq. (25), we have 

and 

(28) 

and gl and g2 are connected to Ys via 

gl = Ys+ O'X' (gl) + M O'X( gl)X"( gl) - 13M U[X' (gl)]2, 
(29) 

g2 = Ys+ O'X' (g2) + M O'X( g2)X"( g2) - 13M O'[X' (g2) ]2. 
(30) 

1 ,-
/ 

M=0.2 I 
f 

v 0' = 0.993 f 
I 
I 
I 

o~----------~l~----------~ 
I 
I 
I 
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f 
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-1 
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o~----------~~~--------~ 
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y 

FIG. 12. The velocity profiles of the weakly nonlinear wave in the case of 
M = 0.2 and ')1= 1.4. The bold solid line denotes the second-order solution, 
the dashed line the first-order solution, and the thin solid line the exact 
solution of simple wave, Eq. (10). (a) The profiles at the shock formation 
distance, 0'= 0.993. The black spot signifies the point of shock formation. 
(b) The profiles at 0'= 3. The numerical solution obtained by the high­
resolution upwind scheme completely coincides with the second-order solu­
tion. 
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The implicit function theorem asserts that we can find 
gl=gl(Ys,O') and g2=g2(YS'0') as the solutions of Eqs. 
(29) and (30), provided that O'> 13M Xs' Thus, Eqs. (27)-(30) 
can be regarded as an ordinary differential equation for the 
shock path y = y s( O'). Once y s( O') is obtained, gland g2 are 
determined as the functions of O'. 

In the case of XU) = cos t-I, the velocity profiles are 
. shown in Fig. 12 for M = 0.2. The difference between the 
second-order solution and the exact solution of simple wave 
is very small at the shock formation distance for such a mod­
erately large M [see Fig. I2(a)]. In Fig. I2(b), the shock 
discontinuity is inserted by solving Eqs. (27) and (28) with 
the Runge-Kutta method after inverting Eqs. (29) and (30) 
to yield gl(Ys,O') and g2(YS,0') with the Newton procedure. 
The result for M = 0.2 shows good agreement with the nu­
merical solution obtained by the same high-resolution up­
wind scheme as used in Sec. IV. 

B. Weak streaming motion 

In the second-order approximation, the mass flux density 
pu is 

pu=[ I+u+ 3~Y U2+O(M3)]U 

=Mv+M2v 2+O(M3), (31) 

where the second of Eq. (13) has been used. This remains 
valid beyond the shock formation distance, because the en­
tropy production and the jump of the Riemann invariant S at 
the shock front are of O(M3

). In this subsection, we shall 
assume that we have obtained Ys(O'), gl=gl(O')' and 
g2 = g2( O') from Eqs. (27)-(30). For simplicity, we only dis­
cuss the case that just one shock is formed in each wave 
cycle, i.e., the number of minimum of X"(t) is one in the 
period 27T,24 as in the case of X(t) defined by Eq. (9). 

Substituting Eq. (31) into the definition of pu, Eq. (I8), 
yields 

- 1 ( gl at 1 f21T 
pu= 27T Jo (Mv+ M

2
v

2
) ag dg+ 27T g2 (Mv 

at 
+ M 2v 2) ag dg+ OeM3), (32) 

where at! ag= ay/ ag can be evaluated from the second of 
Eq. (25). In Eq. (32), we have shifted the range of integration 
to [0,27T] by using the periodicity of Eq. (25) for a fixed x. 
Substituting Eq. (25) into Eq. (32) and executing integration, 
we have 
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- 1 { cr 
pu=- 2rrM X(g2)-X(gj)- 2"([X'(g2)f 

- [X' (gj)]2) } - 2
I
rr M2{ X( g2)X' (g2) 

-X(gj)X'(gj)+ ~cr ([X'(g2)]3_[X'(gj)]3) 

- cr[X( g2)X' (g2)X"Cg2) - X( gj)X' (gj)X"( gj)]} 

+ O(M3), (33) 

where we have used the periodicity of XU). If a shock passes 
a point cr during a period 2 rr from t - 2 rr to t, then gj and 
g2 calculated from Eqs. (27)-(30) should be substituted into 
Eq. (33), and this yields nonzero pu; otherwise one can let 
gj = g2 in Eq. (33) and hence pu=O . In other words, stream­
ing is excited in the far field beyond the shock formation 
distance. For M = 0.05, Fig. 13 shows good agreement of 

pu given by Eq. (33) with the numerical results obtained in 
the same manner as in Sec. IV. 

At sufficiently large distances, in the case of 
X(t) = cos t-I, both X' (gj) and X' (g2) approach zero [cf. 
Eq. (25)]. This implies that gj--+O and g2--+2rr and hence 
X(gj)--+O and X(g2)--+0. In the leading order of approxima­
tion, we have, from Eqs. (29) and (30), cr[X' (g2) 
-X'(gj)]=g2-gj=2rr, and from Eqs. (27) and (28), 
Vs= -[X'(g2)+X'(gj)]I2, and consequently Eq. (33) re­
duces to Eq. (23). 

0.02 r-....,--,-,--....,----,.------;,---.---.----;,-------, 

M=0.2 
0.01 

M=O.l 

0.001 
M = 0 .05 

20 

FIG. 13. Distribution of weak streaming. The bold solid lines are pu calcu­
lated by using Eq. (33) and the thin solid lines are the numerical solutions at 
t = 150.8 obtained by the high-resolution upwind scheme. 

Beyond the shock formation distance, streaming carries 
the gas by an amount of O(M2) per unit time and per unit 
area (see Fig. 13), thereby decreasing the density of the gas 
in a region where the streaming does not fully develop 
( 1 < cr:5 5). Since the linear dimension of the region is of 
O(lIM), the density reduction per unit time is of O(M3), 
and hence the determination of density distribution is not 
included in the present second-order analysis. 

Substituting the relation p= 1 +Mv +[(3 - 1')/4] 
M2v 2+O(M3) into Eq. (19) and using Eq. (25), we obtain 
the second-order version of pas 

p= 1- 2IrrM{ X(g2)-X(gj)- ~([X,(g2)]2_[X,(gj)]2)} - 2IrrM2{ X(g2)X'(g2)-X(gj)X'(gj) 

(5y+I)cr 
+ 12 ([X' (g2) ]3_ [X' (gd ]3) - cr[X(g2)X' (g2)X"( g2) - X( gj)X' (gj)X"( gj)] 

+ 1':1 (J
o
Sl[X'(g)]2 dg+ Js:7T[X'(g)]2 dg )}+O(M3

). (34) 

In the region up to the shock formation distance, one can 
.let gj = g2 in Eq. (34) and hence we readily 
have p= I-({314)M2+O(M3

) for XU)= cos t-I; this 
agrees with a known result.25 Beyond the shock formation 
distance, however, Eq. (34) cannot account for the rarefac­
tion effect, because the right-hand side is constant at a loca­
tion cr (see Sec. VI B). 

It may here be noted that, owing to the periodicity of Eq. 
(25) in t, pu calculated from Eq. (33) is independent of t at 
a fixed x; however, the mass conservation law requires such 
a unidirectional mean mas~Jlow to be, at least, quasisteady. 
Since the t dependence of pu may sufficiently be weak in the 
weakly nonlinear case, we may not need to pursue the for­
mula for dependence of pu on t (this will be a cumbersome 
task). 
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VI. THIRD-ORDER ANALYSIS FOR WEAKLY 
NONLINEAR WAVE: RAREFACTION PHENOMENON 

In this section, we shall take account of the third-order 
effects of production of entropy and generation of reflected 
wave at each shock front. It will be shown that the decrease 
in. density of the gas can be evaluated by the careful exami­
nation of these third-order effects. 

A. Third-order effects at shock front 

We shall assume that (p,p,u) satisfy Euler equations 
(4)-(6) everywhere except for the shock path denoted by 
t=ts(x), (t>tpx>xs)' across which (p,p,u) are supposed 
to have a jump discontinuity satisfying the Rankine­
Hugoniot relations. Then, the entropy production at a shock 
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front, 6.S==S2-SI> and the jump of the Riemann invariant 
S across the shock path, 6. S == S 2 - S I> are represented in the 
forms23 

_ y( y2-1) 3 4 
6.s- 12 (U2- Ul) +O(M ), 

_ (y+ 1)2 3 4 
6.S- 32 (U2- Ul) +O(M ). 

(35) 

At the shock formation time ts, (p,p,u) should match with 
the simple-wave solution described by Eqs. (10) and (13). 

For t>ts, let (ji,ji,u) be piecewise continuous sing-1e­
valued "solutions" obtained by cutting off the triple-valued 
portions of the profiles described by Eqs. (10) and (13) at 
shock fronts. The continuous parts of (ji,ji,u) satisfy Euler 
equations (4)-(6), but the Rankine-Hugoniot relations are 
not satisfied at discontinuities. Since 6.s and 6.S are of 
0(M3), the deviation of (p,p,u) from (ji,ji,u) may be re­
garded as being of 0(M3

); we shall express the deviation as 
(p,p,u) . Thus, we decompose (p,p,u) into (ji,ji,u) and the 
correction terms (p,p,u) as follows: 

p=ji+p, p=ji+p, u=u+u, (36) 

where ji-1=0(M), ji-lIy=O(M), u=O(M), and 
(p,p,u) are of 0(M3 ). Making use of the jump conditions 
(35) and Eq. (36), we shall derive the formula which deter­
mines the amplitude of a reflected wave at shock fronts, and 
then we shall seek the correction terms explicitly up to 
0(M3 ). 

Substituting Eq. (36) into Eq. (35) gives 

Y2-1 
~ ~ ~ ~ _ (- - )3 4) ' P2-P2-Pl+Pl----u u2- u l +O(M , 

A ~ A A 

YP2-P2 ~ YPI-Pl ~ 

1 
-U2- 1 +ul y - y-

(y+ 1)2 
( - - )3 (4) -3-2- U2- Ul +0 M , 

(37) 

where we have used the fact that s=ln(-yjJ7jJY)=O and 

S=u-[2/(y-1)]~yp7ji=-2/(y-1) everywhere. On the 
other hand, substituting Eq. (36) into El,ller equations (4)-(6) 
and neglecting terms of 0(M4) yields the governing equa­
tions for (p,p,u) 

Here, we have used the fact that (ji,ji,u) satisfies Euler 
equations everywhere except for the discontinuities, i.e., the 
shock paths. The linear system (38) is also valid everywhere 
except for shock paths, across which (p,p,u) are discontinu­
ous. 

The general solution to the system (38) can readily be 
obtained as 

(~) ~ ( =1: )/('+X)+ ( :) g('- x)+ ( -~1 ) h(x), 

(39) 
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where J, g, and h are arbitrary functions, the functional form 
of which are determined by imposing the boundary condi­
tions, i.e., the jump conditions across the shock, Eq. (37), or 
the boundary condition on the plate. In a region where 
(p,p,u) are continuous, JCt+ x) is a left-running component 
constant along the linear leftward characteristic 
t+x=const. and gCt-x) a right-running component con­
stant along the linear rightward characteristic t - x = const. 
Entropy has a nonuniform stationary distribution 
S = yep - p) = yh(x) within the approximation concerned. 
The jump conditions (37) can now be rewritten into 

where 

(5 - 3y)(y+1) y2-1 
A= 192 ' B=---u . (41) 

The first of Eq. (40) gives the amplitude of the reflected 
wave generated at a shock front and the second is the well­
known formula for the production of entropy23 [the latter is 
essentially equivalent to the first of Eq. (35)]. From Eq. (41), 
we have A = 0.01 and B = 0.08 for y= 1.4. That is, for air, 
the amount of entropy produced at a shock front is eight 
times as large as the amplitude of the reflected wave. 

Formula for the amplitude of a reflected wave has been 
obtained by Lighthill12 and by Morfey and Sparrow14 (see 
also Ref. 26). The first of Eq. (40) is equivalent to the results 
in Refs. 12 and 14 and the derivation demonstrated above is 
considerably simple compared with the methods employed in 
the earlier works. 

We shall remark that the jump conditions do not restrict 
the functional form of the right-running component 
g (t - x) . The function g will be determined by using the 
boundary condition on the plate (see below). 

B. Accumulation of entropy and propagation of 
reflected wave 

By t~n)(x) (n is a positive integer), we signify the time 
when the nth shock (enumerated from the top of the wave) 
reaches a point x (>x s)' The curve t=t~n) (x) denotes the 
path of the nth shock in the (x,t) plane. In Fig. 14, we 
schematically illustrate the shock paths in the case of XCt) 
defined by Eq. (9) together with the linear leftward and right­
ward characteristics. 

The region between the paths of nth shock and 
(n+ l)th shock in the (x,t) plane can be expressed as 

CCn)={(x,t) It~n)(x)<t< t~n+ l)(x), xs<x} 

(n= 1,2, ... ) (42) 

(see Fig. 14). We here note that the shock formation distance 
Xs is constant for a given M irrespective of n in the approxi­
mation considered here. The correction terms (p,p,u) are 
continuous in the region c(n), but discontinuous across the 
shock paths. Applying the jump conditions (40) on the path 
of nth shock gives 

T. Yano and Y. Inoue 

--



uniform and at rest 

. t. 

FIG. 14. Schematic of the paths of shocks in the (x,t) plane. The bold solid 
lines are the shock paths, the dash-dotted lines are the linear leftward and 
rightward characteristics. A leftward characteristic t + x = t~m)( w(m)) + w(m) 

intersects the t axis at t=tc=t~m)(w(m))+w(m) . 

and 

h(n)- h(n)+ B[u(n)- u(n)]3 
2 - 1 2 l' (43) 

where the superscript (n) represents the value on the path of 
nth shock. We shall remark that fi 1)=hil)=0 because the 
region ahead of the first shock is the simple-wave region. 
From the second of Eq. (43) and the fact that hii + 1)(x) 

=h~i\x) (i= 1,2, ... ,n-l), we can immediately obtain 

n 

(44) 

in the region c(n) . For x<xs , clearly, h-==O. 
Suppose that a linear leftward characteristic, 

t+x=const. passes a given point (x,t) in the region c(n). 
Then, the intersection point of the characteristic and the path 
of kth shock, (Z(k),t~k)(Z(k))), can be given by solving 

t+x=t~k)(Z(k))+Z(k) (k= 1,2, ... ,n), (45) 

where Z(k) is the x coordinate of the intersection point of the 
path of kth shock and the characteristic (see Fig. 14). Along 
the characteristic, a relation 

f1i + 1) (t~i+ 1 )(z(i + 1)) + z(i + 1)) = f~i) (t~i) (zU)) + z(i)) 

(i = 1,2, .. . ,n-I), 
(46) 

holds. Accordingly, at a point (x,t) in the region c(n), the 
left-running component f is given by 
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/ 

n 

(47) 

andf(t+ x) is continuously extended to a region x<xs along 
the characteristic (45). 

The functional form of the right-running component 
g(t- x) can be determined as follows: Suppose that a re­
flected wave f( t + x) propagates along the leftward charac­
teristic t+x=tc-==t~m\w(m))+w(m) and it reaches x =O at 
the time t,= t c' where m is the number of shock paths inter­
sected by the characteristic, and w(m) is the x coordinate of 
the intersection point of path of mth shock and the charac­
teristic (see Fig. 14). Since the boundary condition (8) has 
already been satisfied by (p,p,u), i.e., the simple-wave so­
lution (10) and (13), the boundary condition for u on the 
plate is reduced to 

u=O, i.e., g(t)= - f(t) atx=O, (48) 

within the approximation concerned. The reflected wave is 
reflected at x = 0, and thereafter propagates as a right­
running wave g(t- x), which is constant along the charac­
teristic 

(49) 

(see Fig. 14). By using Eq. (49) and the boundary condition 
(48), we can determine the functional form of g as 

g(t- x) = -f~m)(t~m)(w(m)) + w(m)) 

m 

= -A2: [u~)(w(i),t~)(w(i))) 
i=1 

- u 1i)( wei) ,t~)( w(i)))]3 . (50) 

Consequently, we have 

n 

m 

n 

(51) 

n 

m 

(52) 
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FIG. 15. (a) Distribution of entropy produced at shock fronts. The bold solid 
lines are s/M3= y(jJ- p), and the thin solid lines denote numerical results. 
(b) u for M=0.05 at t = 150.8. (c) jJ for M=0.05 at t= 150.8. 

n 

u(x,t) = A 2: [u ~i)(z(i) ,t~i\Z(i))) 
i= 1 

m 

-A2: [ U~i)(w(i),t~i)(w(i))) 
i=l 

(53) 

where z(i) and w(i) are determined by Eqs. (45) and (49), 
respectively, and n and m are the numbers of shock paths 
which are intersected by the leftward characteristics. We 
shall remark that p and p are negative for 1 < y< 5/3 be­
cause A and B are positive and U2 > ul . 

In order to calculate the correction terms (p,p,u), it is 
necessary to give the shock path t = t~n) and the velocities on 
it, i.e., U ~n) and U In). Since we are concerned with the 
third-order corrections, without loss of accuracy, we can uti­
lize the first-order solution for them in the following way: 
Applying the equal-areas rule to Eq. (15) in the case of 
X(t) = cos t-l, we have, for nth shock (n= 1,2, .. . ), 

y~n)(x)=t~n)(x) - x=(2n - 1)7T, 

i.e., t~n\x)=(2n - l)7T+x (54) 
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FIG. 16. Distribution of the time-averaged density. The bold solid lines are 
the results with the third-order corrections and the thin solid lines are nu­
merical ones. The result up to the second order, Eq. (34) , is shown by the 
dash-dotted line and the averaged density before the shock formation time, 
p = 1-[( y+ 1 )/8]M2, is denoted by the broken line. 

(see Fig. 3), and from the second of Eq. (15), 

arcsin vln)+ f3Mxvln)=y~n)(x) 

= arcsin v~n)+ f3Mxv~n) 

(vln)<O<v~n)), (55) 

for f3Mx> 1 [ef. Eq. (16)]. We can solve Eq. (55) numeri­
cally to yield vln)=vln)(x) and v~n)=v~n)(x), and thus we 
can determine U In) and U ~n) as 

uln)=Mvln) and u~n)=Mv~n). (56) 

Substituting Eqs. (54) and (56) into Eqs. (51)-(53), we can 
evaluate the correction terms in the approximation of 
O(M3

). 

Figure 15(a) shows the distribution of entropy 
s=y(p-p) for M = O.05 and y=1.4 in the case of 
X ( t) = cos t- 1. The results agree with numerical ones by 
the high-resolution upwind scheme. We also show u and p in 
Figs. 15(b) and 15(c), which are not affected by the entropy 
production [see Eqs. (52) and (53)], and hence they are not 
so large as compared with the entropy plotted in Fig. 15(a). 

In Fig. 16, we present the distribution of time-averaged 
density. In the weakly nonlinear case, the velocity jump 
U2 - Ul at the shock fronts varies slowly as the shock propa­

gates, and therefore p hardly changes during a period 27T 
from t - 27T to t at a point x . The time-averaged density can 
therefore be given as the sum of p and the time average of 

P- without loss of accuracy. However, it is difficult to calcu-
, - 3 

late the time average of p to the accuracy of OeM ), be-
cause, to do so, we should determine the shock path in the 
same accuracy. In Fig. 16, we plot the sum of p and Eq. (34), 
i.e., the second-order version of p. This procedure involves 
the error of O(M3

), and hence, strictly speaking, the result is 
invalid. Nevertheless, the result shows good agreement with 
the numerical one, as shown in Fig. 16. This is the reflection 
of the fact that the rarefaction effect is connected to the ac­
cumulative property of p, while the error introduced by re-
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placing the time average of ji with Eq. (34) remains small. 
Since B is eight times larger than A when y= 1.4, the main 
contribution to the accumulative p is the production of en­
tropy at shock fronts. 

VII. CONCLUSIONS AND COMMENTS 

We have carried out the large-scale computations for the 
strongly nonlinear problem, thereby demonstrating that the 
quasisteady state is established after a substantial amount of 
time has lapsed, where the low-density and high-entropy re­
gion formed near the plate continues to grow at almost con­
stant rate and outside the region the quasisteady streaming 
endures. 

The higher-order weakly nonlinear analysis presented in 
Secs. V and VI has given not only qualitatively but also 
quantitatively accurate results, as compared with the exact 
solution of simple wave and the numerical results by the 
high-resolution upwind finite difference scheme [see Figs. 
12, 15(a) and 16]. As demonstrated in Figs. 15(a) and 16, the 
entropy accumulates as time goes by, and this is directly 
related to the gradual decrease in density of the gas. 

In the course of time, the entropy and p increase and, 
ultimately, may become of O(M2

), and at that time the 
present analysis ceases to be valid. However, as confirmed 
by the numerical analysis in Sec. IV, even af~er the density 
and entropy fields are changed drastically, the quasisteadi­
ness of the phenomenon is not altered. Accordingly, the 
mechanism of rarefaction clarified in Sec. VI may, at least 
qualitatively, be correct even after the present analysis ceases 
to be valid. 

Finally, we shall remark that we have confirmed that the 
mass conservation law 

(57) 

is satisfied within an allowable error, when 
Mv+[(3-y) /4]M2v 2+p is substituted into p-l in Eq. 
(57), where v is evaluated with using Eqs. (25) and (27)­
(30). 

APPENDIX A: TIME-AVERAGED ENERGY AND 
MOMENTUM FLUXES 

In the following, we shall demonstrate that both the 
mean energy flow and mean momentum flow are quasi­
steady, as well as the mean mass flow pu. 

The time-averaged energy flux f5' and time-averaged mo­
mentum flux ~ are defined as 

1 It f5'(x,t) = -2 (E(+ p)u dt, 
'TT t-27T 

(AI) 

and 

~(X't)=-21 I t (pu2+p_~) dt, 
'TT t-27T Y 

(A2) 

which, respectively, signify the time average of the total en­
ergy and momentum transported through the point x by the 
wave motion. The distribution of f5' is plotted in Fig. 17 and 
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e 

0.1 

M = 0.5, 'Y = 1.4, t = 38211" 

:r: 

FIG. 17. Distribution of the time-averaged energy flux. 

that of ~ in Fig. 18, which are computed by using the 
high-resolution upwind scheme. Both f5' and ~ are almost 
'uniform everywhere. 

Before the shock formation time t s ' the exact solution of 
the simple wave is precisely periodical with period 2'TT at a 
fixed point x. By making use of the simple-wave solution, 
we can analytically calculate f5' and ~ for t < t s (Ref. 22) 

and 

f5'= 21'TT f027T p(MX(t),t)u(MX(t),t) dt 

1 ( - 1 - ( y+ 1) (y_1)2 ) 
=2M2F y-l' 2(y-l)' 2; 4 M2 = f5'0 , 

~= 21'TT f027T[p(MX(t),t)-~] dt 

_ ~ ( - y - (y+ 1) . (y_I)2 2) _ ~ 
- yF y-l' 2(y-I) , 1, 4 M y 

(A3) 

(A4) 

where MX(t) is the instantaneous location of oscillating 
plate [see Eqs. (8) and (9)] and F(a,b,c;z) is the hypergeo­
metric function. Clearly, f5'0 and ~o are independent of not 
only t but also x for t < ts and x<t-2'TT. In the case of 
y= 1.4, f5'0 and ~o are reduced to polynornials,22 

M 
,Il. 

~ 
0.05 

M = 0 .5, 'Y = 1.4, t = 38211" 

:r: 

FIG. 18. Distribution of the time-averaged momentum flux. 
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(AS) 

and 

3 2 3 4 1 6 
~O= 10 M + 200 M + 10000M . (A6) 

From Eqs. (AS) and (A6), we have 8"0=0.13 and 
~0=0.076 for M=O.S. Strictly speaking, Eqs. (A3) and 
(A4), and hence (AS) and (A6), are limited to the case with a 
moderately small M, where t s> 27T (M <0.249).22 However, 
since the influence of the shock is negligible at x = 0 for 
0<t<2 7T when M=O.S, we may use 8"0 and ~o as the 
values of 8" and ~ at x= 0 and t= 27T. As shown in Figs. 17 
and 18, the change of the distribution of the energy flux and 
that of momentum flux are not so large; 8" at t=3827T is 
about IS% larger than 0.13 and ~ at t=3827T is about 20% 
smaller than 0.076. 

APPENDIX B: DERIVATION OF THE SECOND-ORDER 
SOLUTION 

As is well known, the determination of an asymptotic 
solution of weakly nonlinear acoustic wave is a singular per­
turbation problem, where a regular perturbation expansion 
yields a secular term, and accordingly, the expansion breaks 
down in the far field. The first-order solution (1S) has been 
derived by using several singular perturbation methods27 -
the method of renormalization, the method of multiple 
scales, the analytical method of characteristics, etc. The 
second-order solution (2S) can be obtained by extending any 
of the above three to the second order; the extension is 
straightforward. In this appendix, however, we shall present 
the derivation of Eq. (2S) from the exact solution of simple 
wave, Eq. (10), to clarify the relation between them. 

To begin with, we shall introduce the parameter g de­
·fined as 

(Bl) 

where /.L is the parameter which appears in Eq. (10) and 
signifies the time when the characteristic /.L = constant is is­
sued from the oscillating plate. If M is sufficiently small, 
/.L is a singlevalued function of g, and hence g= constant 
means the characteristic /.L = constant. Then, g denotes the 
value of the phase variable y = t - x at the intersection point 
of the characteristic and locus of the plate in the (y, t) plane. 

Substit~ting Eq. (Bl) into the first of Eq. (10) and ex­
panding it in M yields 

u=MX' (g) + M2X(g)X"(g) + O(M3). (B2) 

By using Eq. (B 1), we can rewrite the second of Eq. (10) as 

g= y + [3M(t- iL)X' (/.L). (B3) 

Since y = t- x, the second of Eq. (10) is also transformed 
into 

[3Mx- [3M2X(/.L) 
[3M(t-/.L)= 1 + [3MX'(/.L) (B4) 

Substituting Eq. (B4) into Eq. (B3) and expanding the result­
ant equation in M with the help of Eq. (Bl) gives 
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g=y:- [3MxX' (g) + M2[3xX(g)X"(g) 

_ M2[32x[X' (g) ]2+ O(M2 ,M 3x ). (BS) 

We thus obtain the approximate expressions for u and for 
g, Eqs. (B2) and (BS). Clearly, the linear solution is given by 
u = M X' (g) and g = y. Neglecting the terms multiplied by 
M2 in Eqs. (B2) and (BS) leads to the first-order solution 
(1S). The second-order solution (2S) is composed of Eq. (B2) 
and (BS). 
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