<table>
<thead>
<tr>
<th>Instructions for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murine intestinal organoids resemble intestinal epithelium in their microRNA profiles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murine intestinal organoids resemble intestinal epithelium in their microRNA profiles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohsaka, Fumina; Sonoyama, Kei</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioscience biotechnology and biochemistry, 82(9), 1560-1567</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issue Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-05-08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doc URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://hdl.handle.net/2115/73876</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is an Accepted Manuscript of an article published by Taylor & Francis in Bioscience biotechnology and biochemistry on 08 May 2018, available online: http://www.tandfonline.com/10.1080/09168451.2018.1469397.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>article (author version)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohsaka2017BBB_R2 -fig.pdf</td>
</tr>
</tbody>
</table>

| Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP |
Murine intestinal organoids resemble intestinal epithelium in their microRNA profiles

Fumina Ohsaka a and Kei Sonoyama b, *

a Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
b Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan

Running head: MicroRNAs in intestinal epithelial cells and organoids

* Corresponding author: Kei Sonoyama

Laboratory of Food Biochemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University
Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
Tel & Fax: +81-11-706-2496; E-mail: ksnym@chem.agr.hokudai.ac.jp
Abstract

Intestinal organoids were established as an *ex vivo* model of the intestinal epithelium. We investigated whether organoids resemble the intestinal epithelium in their microRNA (miRNA) profiles. Total RNA samples were obtained from crypt and villus fractions in murine intestine and from cultured organoids. Microarray analysis showed that organoids largely resembled intestinal epithelial cells in their miRNA profiles. *In silico* prediction followed by qRT-PCR suggested that six genes are regulated by corresponding miRNAs along the crypt-villus axis, suggesting miRNA regulation of epithelial cell renewal in the intestine. However, such expression patterns of miRNAs and their target mRNAs were not reproduced during organoids maturation. This might be due to lack of luminal factors and endocrine, nervous, and immune systems in organoids and different cell populations between *in vivo* epithelium and organoids. Nevertheless, we propose that intestinal organoids provide a useful *in vitro* model to investigate miRNA expression in intestinal epithelial cells.

Keywords: microRNA; intestinal epithelium; intestinal organoid; microarray
The epithelium of the small intestine is a self-renewing system undergoing continuous replacement from stem cells throughout the lifespan of an animal [1]. Morphologically, the epithelium consists of a single-cell layer that is organized into tubular invaginations called crypts and finger-like protrusions known as villi. The entire sequence of cell renewal, i.e., cell proliferation, cell differentiation, and cell death, is coupled to cell migration along the crypt-villus axis. Although the intestinal epithelium has been difficult to model in culture, the establishment of a system for culturing primary stem cell-derived intestinal organoids has overcome this difficulty [2-4]. Small intestinal organoids consist of a polarized epithelium that is patterned into villus-like regions containing differentiated enterocytes, goblet cells, and enteroendocrine cells; and crypt-like proliferative zones containing stem cells, transit-amplifying cells, and Paneth cells [2]. Thus, intestinal organoids recapitulate critical in vivo characteristics, such as the cellular composition and self-renewal kinetics of the intestinal epithelium [2].

MicroRNAs (miRNAs), a class of small noncoding RNA species, regulate gene expression by binding to partially complementary target sites in the 3’untranslated regions of mRNAs and then trigger either mRNA degradation or translational repression [5, 6]. miRNAs are involved in numerous biological process including cell proliferation, cell differentiation, and cell death [7]. In the intestine, a complete compendium of miRNAs, obtained by ultra-high throughput sequencing, has been reported [8]. In addition, miRNA expression profiles reportedly become altered during cell differentiation in the enterocyte-like cell line Caco-2-BBE [9]. Also, miRNA expression profiles are different between crypt and villus epithelial cells in murine small intestines [10]. Thus, it is possible that miRNAs are involved in the cell renewal process along the crypt-villus axis in the intestine, and intestinal organoids may offer a promising model to investigate the role of miRNAs. However, it has yet to be determined whether intestinal organoids recapitulate miRNA expression profiles in intestinal epithelial cells in vivo. The present study aimed to compare the miRNA profiles between murine intestinal epithelial cells and organoids in terms of changes in the crypt-villus axis and maturation process of organoids.
Materials and methods

Animal care. Male C57BL/6J mice (age 5 weeks) were purchased from Japan SLC (Shizuoka, Japan) and housed in standard plastic cages in a temperature-controlled (23 ± 2°C) room under a 12-h light/12-h dark cycle and were allowed free access to tap water and standard laboratory rodent feed (Oriental Yeast, Tokyo, Japan). All study protocols were approved by the Animal Use Committee of Hokkaido University (approval no. 14-0028). Animals were maintained in accordance with the Hokkaido University guidelines for the care and use of laboratory animals.

Isolation of intestinal villi and crypts and culture of organoids. Mice were euthanized by cervical dislocation under sevoflurane anesthesia. A laparotomy was made, and the entire length of the small intestine was excised. The luminal contents were thoroughly washed out with ice-cold PBS, and the small intestine was opened longitudinally. The tissue was cut into approximately 5-mm pieces and further washed with ice-cold PBS. The tissue pieces were incubated in 2 mM EDTA/PBS for 60 min at 4°C followed by straining through gauze. The filtrates were centrifuged at 200 × g for 3 min, and the resultant precipitate was regarded as the villus fraction. The tissue pieces retained by the gauze were resuspended in 2 mM EDTA/PBS. After vigorous shaking and sedimentation, the supernatant was passed through a 70-µm cell strainer (BD Biosciences, San Jose, CA), followed by centrifugation at 200 × g for 3 min. The resultant precipitate was regarded as the crypt fraction. The villus and crypt fractions were viewed under a light microscope, snap-frozen in liquid nitrogen, and stored at −80°C for RNA isolation as described below. For intestinal organoids, the isolated crypts were cultured as previously described [11]. Organoids cultured for 1 day and 5 days were subjected to RNA isolation as described below.

Isolation of RNA and quantitative real-time PCR (qRT-PCR) analysis. Total RNA including small RNA was isolated from intestinal villus/crypt fractions and organoids using an miRNeasy Mini kit (Qiagen, Tokyo, Japan) according to the manufacturer’s instructions.
mRNA and miRNA analyses, first-strand cDNA was synthesized using ReverTra Ace qPCR RT Master Mix (Toyobo, Osaka, Japan) and miScript II RT kit (Qiagen, Tokyo, Japan), respectively, according to the manufacturers’ instructions. For miRNA, synthetic Caenorhabditis elegans miRNA (Syn-cel-miR-39-3p, 0.25 fmol, Qiagen, Tokyo, Japan) was spiked in. qRT-PCR was performed using a Thermal Cycler Dice Real-Time System (Takara, Shiga, Japan). For mRNA, the qRT-PCR reaction was performed in a 12.5-µL reaction solution containing 6.25 µL of GeneAce SYBR qPCR Mix α No ROX (Nippongene, Toyama, Japan), 0.5 µL of 5 µM gene-specific primers (Supplementary Table 1), and 1 µL of first-strand cDNA sample. For miRNA, the qRT-PCR reaction was performed in a 12.5-µL reaction solution containing 6.25 µL of miScript SYBR Green PCR Master Mix (Qiagen, Tokyo, Japan), 1.25 µL of 10× miScript universal primer (Qiagen, Tokyo, Japan), 1.25 µL of 5 µM gene-specific primer (Supplementary Table 1), and 1 µL of first-strand cDNA sample. The qRT-PCR conditions were as follows: 95°C for 10 min, followed by 45 cycles at 95°C for 30 s and 60°C for 60 s, with dissociation at 95°C for 15 s, 60°C for 30 s, 95°C 15 s. The fluorescent products were detected at the last step of each cycle. The relative expression levels of mRNA and miRNA were normalized to that of β-actin and cel-miR-39-3p, respectively.

miRNA microarray analysis. Pooled samples in each group, the villus fraction (n=6), crypt fraction (n=6), organoids on day 1 (n=4), and organoids on day 5 (n=4), were subjected to miRNA expression profiling. Microarray analysis including labeling, hybridization, scanning, and data processing was performed by Toray Industries, Inc. using 3D-Gene mouse miRNA oligo chips ver. 21 that contains 1,900 antisense probe spots (Toray Industries, Tokyo, Japan). Using the background-subtracted signal intensity of all miRNAs in each microarray, the expression level of each miRNA was globally normalized such that the median of all miRNAs for each sample was 25. Microarray data is deposited as a MIAME compliant study in NCBI’s Gene Expression Omnibus [12] and are accessible through GEO Series accession number GSE99237 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99237). The heatmap image for differentially expressed miRNAs was processed using the Cluster 3.0 software
In silico analyses. For the prediction of miRNA targets, four web-based tools, Miranda (http://www.microrna.org/), miRDB (http://mirdb.org/), PicTar (http://pictar.mdc-berlin.de), and TargetScan (http://www.targetscan.org/), were used. The predicted genes were further narrowed down by their gene ontology (GO) classifications by the Mouse Genome Informatics resource (http://www.informatics.jax.org/).

Statistical analyses. Group differences were assessed by the Mann-Whitney U test. Correlations between miRNA profiles in the villus/crypt fractions and organoids were evaluated using Pearson’s correlation coefficient (r). Data were analyzed using GraphPad Prism for Macintosh (version 6, GraphPad Software, San Diego, CA). P values <0.05 were considered to indicate statistical significance.

Results

Murine intestinal organoids resemble intestinal epithelium in their miRNA profiles.

Light microscopic observation of crypt and villus fractions prepared from murine small intestine showed a typical morphological appearance of intestinal crypt and villus, respectively (Supplementary Fig. 1A and 1B, respectively). We then examined the mRNA levels of *Fabp2* and *Lgr5*, markers of differentiated enterocytes located on the villus [13] and of stem cells located on the crypt base [2], respectively. qRT-PCR showed that the *Fabp2* mRNA levels were significantly higher in the villus than in the crypt fraction (Supplementary Fig. 1C), and that *Lgr5* mRNA levels were significantly higher in the crypt than in the villus fraction (Supplementary Fig. 1D). These data suggest that crypts and villi were enriched separately in each fraction. In addition, we successfully cultured murine intestinal organoids (Supplementary Fig. 1E and 1F). On day 5 of culture, we observed the typical structure of mature intestinal organoids, consisting of a central cyst structure and surrounding crypt-like budding structures.
qRT-PCR showed that the mRNA levels of Apoa1, Muc2, and Pyy, differentiated enterocyte, goblet cell, and enteroendocrine markers, respectively [14], were significantly or tended to be higher in the organoids on day 5 than in those on day 1 (Supplementary Fig. 1G-1I). However, the mRNA levels of a differentiated Paneth cell marker Lyz1 did not differ between the organoids on day 1 and day 5 (Supplementary Fig. 1J). These data suggest that intestinal organoids on day 5 are richer in differentiated enterocytes, goblet cells, and enteroendocrine cells, but not Paneth cells, than those on day 1. We analyzed miRNA expression profiles in the intestinal crypt/villus fractions and organoids by microarray and detected 1,214 miRNAs (Supplementary Table 2). Scatter plots comparing globally normalized signal intensities of miRNAs showed that the miRNA expression levels were moderately correlated between the crypt and villus fractions (r=0.64, Fig. 1A). The miRNA levels were highly correlated between the organoids on day 1 and day 5 (r=0.96, Fig. 1B). Between the crypt/villus fractions and organoids, the miRNA levels correlated highly, with Pearson’s coefficient above 0.70 in all cases (Fig. 1C-1F), indicating that organoids resemble intestinal epithelial cells in their miRNA profiles. In particular, the highest correlation was observed between the organoids on day 5 and the crypt fraction (r=0.91, Fig. 1D). However, it is noteworthy that there are some miRNAs, including mmu-miR-143-3p and -145a-5p, in which the levels were extremely high in the villus fraction but undetectable in the organoids on day 5 (Fig. 1F).

Expression of some miRNAs are differentially regulated along the crypt-villus axis of intestinal epithelium in mice.

Although the levels of most miRNAs were similar between the crypt and villus fractions, substantial numbers of miRNAs were expressed at different levels (Fig. 1A). Microarray analysis showed that the levels of 56 miRNAs were higher in the villus fraction than in the crypt fraction by more than four-fold (Fig. 2A). We performed qRT-PCR to compare 13 miRNAs in which the levels were higher in the villus fraction than in the crypt fraction by more than ten-fold. Seven miRNAs, mmu-miR-145a-5p, -143-3p, -199a-3p, -451a, 7027-5p, -125b-5p, and 199a-5p, were significantly or somewhat higher in the villus than in the crypt fraction (Fig.
2C), whereas the other six miRNAs were not significantly different (Supplementary Fig. 2).

Among the 12 miRNAs in which the levels were higher in the crypt than in the villus fraction by more than four-fold as shown by microarray (Fig. 2B), mmu-miR-3084-3p and -1839-39 were significantly or somewhat higher in the crypt than in the villus fraction (Fig. 2C). However, the other eight miRNAs were the same between the fractions (Supplementary Fig. 2).

Expression of some mRNAs may be regulated by miRNAs along the crypt-villus axis of intestinal epithelium in mice.

We predicted target genes of nine miRNAs in which the different expression levels between the crypt and villus fractions were validated by qRT-PCR. Among 103 genes that overlapped with the four prediction tools, we selected 15 manually according to GO biological process terms describing cell proliferation, cell differentiation, or cell death (Table 1).

qRT-PCR analysis showed that the mRNA levels of six predicted target genes, Cited2, Dach1, Pdcd4, Etv6, Lmo4, and Fzd6, were significantly lower in the villus than in the crypt fraction (Fig. 3). Thus, these genes were expressed inversely from their corresponding miRNAs, suggesting that they may be regulated by their corresponding miRNAs. The mRNA levels of the other six genes, Dusp6, Foxo1, Tbx1, Ywhaz, Sirt1, and Rnf144b, were the same between the fractions, and the levels of Rac1 were significantly higher in the villus than in the crypt fraction (Supplementary Fig. 3). The mRNA levels of Ambn and Foxc2 were undetectable.

Maturation process of murine intestinal organoids does not reflect the crypt-villus axis of intestinal epithelium in terms of miRNA profile.

To compare the maturation process of intestinal organoids and intestinal epithelium along the crypt-villus axis in terms of miRNA profiles, we constructed a heat map of miRNAs in the crypt/villus fractions and the organoids on day 1 and day 5 (Fig. 4A). Only 25 miRNAs with different expression levels between the crypt and villus fractions as shown in Fig. 2A and 2B are listed. The heat map showed no clear differences in the levels of these miRNAs between the organoids on day 1 and day 5. We further examined some miRNAs and their target mRNAs by
qRT-PCR. The levels of mmu-miR-145a-5p, -143-3p, and -125b-5p were significantly lower in the organoids on day 5 than in those on day 1, and the mmu-miR-3084-3p levels were the same between the organoids (Fig. 4B). In addition, the mRNA levels of Cited2, Dach1, and Pdcd4 were significantly higher in the organoids on day 5 than those on day 1 (Fig. 4C). Thus, maturation process of intestinal organoids does not reflect the crypt-villus axis of intestinal epithelium in terms of miRNA profile and their target genes.

Discussion

To our knowledge, the present study is the first to compare miRNA expression profiles between isolated intestinal epithelial cells and cultured intestinal organoids. The data demonstrated that murine intestinal organoids largely resemble intestinal epithelium in their miRNA profiles. In addition, in order to examine whether maturation process of intestinal organoids reproduces the crypt-villus axis of intestinal epithelial cells in their miRNA expression profiles, the present study compared the miRNA profiles in the crypt and villus fractions and intestinal organoids cultured on day 1 and day 5. We observed that the miRNA expression profiles were most highly correlated between organoids on day 5 and the crypt fraction. Organoids on day 5 showed the typical characteristics of mature organoids in their morphology and the expression of marker genes for differentiated enterocytes, goblet cells, and enteroendocrine cells, suggesting that organoids on day 5 include differentiated cells, in their villus-like regions. Nevertheless, crypt-like regions comprise of the major portion of mature organoids. Together, mature organoids may provide a useful *in vitro* model to investigate miRNA expression in intestinal crypt epithelial cells.

Clearly, substantial numbers of miRNAs were differentially expressed between the crypt/villus fractions and organoids. It is particularly notable that some miRNAs, including mmu-miR-143-3p and -145a-5p with extremely high levels in the villus fraction, were undetectable in the organoids on day 5 (Fig. 1F). In the organoids on day 1, however, these two miRNAs were detected, although the expression levels were quite different from the villus fraction (Fig. 1E). From these results, we speculate that different expression levels of some
miRNAs between the crypt/villus fractions and organoids might reflect contamination by non-epithelial cells in the crypt/villus fractions. Indeed, previous studies demonstrated that miR-143/145 are expressed in mesenchymal cells and not epithelial cells in the intestine [15, 16]. It is possible that mmu-miR-143-3p and -145a-5p in the organoids on day 1 are derived from surviving mesenchymal cell contamination.

Alternatively, the different expression levels of some miRNAs between the crypt/villus fractions and organoids might reflect the absence of luminal factors including dietary constituents and gut microbiota in the organoids. In addition, organoids also lack endocrine, nervous, and immune systems. Therefore, it is likely that the expression of some miRNAs may be regulated by such factors. In other words, organoids provide a useful in vitro model to test whether these factors influence miRNA expression in intestinal epithelial cells.

We observed that some miRNAs were differentially expressed between crypt and villus fractions, although the levels of most miRNAs were similar between them, being in line with previous studies [8, 10]. These findings suggest that most miRNAs are not regulated during the cell renewal process, i.e., cell proliferation, cell differentiation, and cell death, along the crypt-villus axis in the intestine. However, the present study was substantially different from those previous studies in the miRNA profiles. Although RNA samples in the present study were isolated from epithelial cells in the villus and crypt fractions, McKenna et al. [8] isolated the samples from intestinal mucosal scrapings. Therefore, miRNAs expressed in non-epithelial cells would have been included in the analysis. Indeed, the miRNA profiles in McKenna et al. [8] were different from those in Zhang et al. [10] in which the RNA samples were isolated from epithelial cells. In addition, Zhang et al. [10] employed a miRNA PCR panel in which 750 miRNAs were probed and then detected 239 miRNAs per sample, while the present study employed a miRNA microarray that contains 1,900 miRNA probes and then detected 1,214 miRNAs per sample. Thus, miRNA profile data would be profoundly influenced by sample preparation and analytical method.

The present study showed that the number of miRNAs expressed specifically in the villus fraction was much larger than the number of miRNAs expressed specifically in the crypt.
fraction. Given that the different types of terminally differentiated cells has different miRNA profiles, it seems likely that the villus fraction consisting of three types of terminally differentiated cells (enterocytes, goblet cells, and enteroendocrine cells) has more diverse profiles of miRNAs as compared to the crypt fraction that consists mainly of immature transit-amplifying cells.

The miRNAs differentially expressed in the crypt and villus fractions in the present study have been reported to be associated with the pathophysiology of intestinal disorders. Ng et al. [17] reported that hsa-miR-451a is highly expressed in the intestinal tissue of infants with necrotizing enterocolitis as compared with normal tissue and is inversely correlated with the expression of Toll-like receptor 4 (TLR4), suggesting that hsa-miR-451 is involved in the pathogenesis of enterocolitis through TLR4 signaling defects. Zhou et al. [18] showed that the expression of hsa-miR-199a/b is decreased in the large intestinal tissue of patients with diarrhea-predominant irritable bowel syndrome (IBS-D) and is correlated with increased visceral pain. Martínez et al. [19] reported that hsa-miR-125b is involved in epithelial barrier function dysregulation in the small intestines of patients with IBS-D. In the present study, the levels of mmu-miR-451a, -199a-5p, and -125b-5p were significantly higher in the villus fraction than in the crypt fraction, suggesting that the expression of these miRNAs is regulated during the cell renewal process along the crypt-villus axis. Elucidating this regulatory mechanism may lead to the establishment of treatment strategies for the intestinal diseases.

The present study predicted Cited2, Dach1, and Pdcd4 as target genes for mmu-miR-145a-5p. In addition, Lmo4 and Etv6 were predicted for mmu-miR-143-3p. The mRNA expressions of these genes were validated by qRT-PCR. De Gasperi et al. [20] demonstrated that Cited2 is a target of miR-145 in skeletal muscle. Cited2 is a transcriptional regulator that modulates signaling through NF-κB, Smad3, and other transcription factors. However, the authors showed unchanged protein levels of Cited2 in muscle with decreased miR-145. Sum et al. [21] showed by immunohistochemistry that Lmo4 protein is abundantly expressed in the epithelial cells of small intestinal crypts in mice. The authors mentioned that Lmo4 plays an important role in the regulation of epithelial cell proliferation and in cancer
pathogenesis. The present study showed that mmu-miR-143-3p was highly expressed in the villus fraction and that the mRNA levels of its predicted target Lmo4 were lower in the villus fraction. Considering that miR-143 is expressed in mesenchymal cells but not epithelial cells in the intestine [15, 16], it is likely that, around the intestinal villi, miR-143-3p expressed in mesenchymal cells suppresses the expression of Lmo4, which may contribute to the termination of epithelial cell proliferation. Further studies are needed to clarify such interactions between mesenchymal and epithelial cells through miRNA-mediated regulation in the intestine.

Additionally, the present study predicted Fzd6 as a target for mmu-miR-199a-5p. The results are in line with a previous study showing that FZD6 is highly expressed in the tumor tissues of patients with colorectal cancer and is negatively regulated by miR-199a-5p in colorectal cancer cells [22]. Fzd6 is a kind of Wnt receptor that regulates cell proliferation, cell differentiation, and cell death. Thus, highly expressed mmu-miR-199a-5p may be involved in the repression of cell proliferation and the promotion of cell differentiation via suppression of Fzd6 expression in villus epithelium. Together, the present findings suggest that some miRNAs, including mmu-miR-143-3p and -199a-5p, are involved in the regulation of epithelial cell renewal via control of target genes along the crypt-villus axis of the intestine.

Nevertheless, the differential expression of miRNAs and their target genes observed in the crypt and villus fractions were not reproduced during the maturation of intestinal organoids. This might be due to the lack of luminal factors and endocrine, nervous, and immune systems in the organoids as described above. In addition, different cell populations between in vivo samples and organoids might exist. Epithelial cells are much more abundant in villi as compared to crypts in vivo, whereas crypt regions are predominant in mature organoids.

In conclusion, the present study showed that murine intestinal organoids largely resemble intestinal epithelium in their miRNA profiles. However, the miRNA profile during the maturation process of organoids did not reflect the profile along the crypt-villus axis. Nevertheless, we propose that intestinal organoids provide a useful in vitro model to investigate miRNA expression in intestinal epithelial cells.
Author contributions
K. S. developed the concept and designed the research. F. O. performed the experiments and analyzed the data. K. S. and F. O. prepared the manuscript. All authors read and approved the final version of manuscript.

Funding
This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology Japan (MEXT) under the Grant-in-Aid for Scientific Research (no. 26292062); the MEXT under the Regional Innovation Strategy Support Program; and the MEXT and Japan Science and Technology Agency under the Center of Innovation Program.

Disclosure statement
All authors have no conflict of interest to declare.

References

Table 1. miRNAs differentially expressed between crypt and villus fractions isolated from murine small intestine and their predicted target genes

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Target gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-145a-5p</td>
<td>Cited2, Dach1, Dusp6, Foxo1, Pdcd4</td>
</tr>
<tr>
<td>mmu-miR-143-3p</td>
<td>Etv6, Lmo4</td>
</tr>
<tr>
<td>mmu-miR-199a-3p</td>
<td>-</td>
</tr>
<tr>
<td>mmu-miR-451a</td>
<td>Rac1, Tbx1, Ywhaz</td>
</tr>
<tr>
<td>mmu-miR-7027-5p</td>
<td>-</td>
</tr>
<tr>
<td>mmu-miR-125b-5p</td>
<td>-</td>
</tr>
<tr>
<td>mmu-miR-199a-5p</td>
<td>Fzd6, Sirt1</td>
</tr>
<tr>
<td>mmu-miR-3084-3p</td>
<td>Rnf144b</td>
</tr>
<tr>
<td>mmu-miR-1839-3p</td>
<td>Ambn, Foxc2</td>
</tr>
</tbody>
</table>

Only nine miRNAs validated by qRT-PCR as shown in Fig. 2C are listed.
Figure Caption

Figure 1 Scatter plots of intestinal miRNA expression detected using microarray analysis to compare between crypt and villus fractions (A), organoids on day 1 and day 5 (B), crypt fraction and organoids on day 1 (C), crypt fraction and organoids on day 5 (D), villus fraction and organoids on day 1 (E), and villus fraction and organoids on day 5 (F). The expression level of each miRNA was globally normalized such that the median of all miRNAs for each sample was 25. Dotted lines indicate the boundaries of miRNAs expressed at four-fold higher and lower levels. Pearson’s correlation coefficient (r) in each plot is shown. Plots depicted in red show miRNAs differentially expressed in crypt and villus fractions and validated by qRT-PCR as shown in Fig. 2C.

Figure 2 Relative expression levels of miRNAs in crypt and villus fractions isolated from murine small intestine. A, Ratio of villus to crypt fractions of miRNAs detected using microarray analysis. Fifty-six miRNAs in which the ratio was more than four-fold are plotted. Abbreviated names of each miRNA in which the ratio was more than ten-fold are shown. B, Ratio of crypt to villus fractions of miRNAs detected using microarray analysis. Twelve miRNAs in which the ratio was more than four-fold are plotted, and abbreviated names of each miRNA are shown. C, Comparison of miRNA expression levels between crypt and villus fractions isolated from murine small intestine. The miRNA levels in each sample (n=6 in each fraction) were estimated by qRT-PCR. In each graph, values with asterisks are significantly different vs. crypt fraction ($P<0.05$).

Figure 3 Relative mRNA levels of predicted target genes of miRNAs in crypt and villus fractions isolated from murine small intestine. The miRNA levels in each sample (n=6 in each fraction) were estimated by qRT-PCR. In each graph, values with asterisks are significantly different vs. crypt fraction ($P<0.05$).
Figure 4 A, Heat map of miRNA expression levels determined using microarray analysis to compare crypt and villus fractions isolated from murine small intestine and murine intestinal organoids on day 1 and day 5. Only 25 miRNAs with different expression levels between crypt and villus fractions as shown in Fig. 2A and 2B are listed. Red and green indicate higher and lower levels, respectively. B, Relative expression levels of miRNAs in murine intestinal organoids on day 1 and day 5. C, Relative mRNA levels of predicted target genes of miRNAs in organoids on day 1 and day 5. The miRNA and mRNA levels were estimated in each sample (n=3 on day 1 and day 5) by qRT-PCR. In charts B and C, values with asterisks are significantly different vs. organoids on day 1 (P<0.05).
Fig. 1 Ohsaka and Sonoyama
Different miRNAs with ratio > 4

Ratio of villi to crypts

miR-145a-5p
miR-143-3p
miR-6402
miR-145b
miR-199a-3p
miR-487b-3p
miR-126a-3p
miR-6999-5p
miR-7027-5p
miR-142a-3p
miR-199a-5p
miR-6877-5p

Ratio of crypts to villi

miR-6366
miR-375-5p
miR-3968
miR-1949
miR-1983
miR-3084-3p
miR-1927
miR-5100
miR-1839-3p
miR-3068-3p

Fig. 2 Ohsaka and Sonoyama
Fig. 3 Ohsaka and Sonoyama
mmu-miR-3968
mmu-miR-1983
mmu-miR-4876-3p
mmu-miR-1949
mmu-miR-6366
mmu-miR-375-5p
mmu-miR-6364
mmu-miR-1927
mmu-miR-3984-3p
mmu-miR-1839-3p
mmu-miR-3008-3p
mmu-miR-1433p
mmu-miR-145a-5p
mmu-miR-7077-5p
mmu-miR-6402
mmu-miR-125b-5p
mmu-miR-125b-3p
mmu-miR-6969-5p
mmu-miR-431a
mmu-miR-120a-3p
mmu-miR-190a-3p
mmu-miR-140a-3p
mmu-miR-190a-5p
mmu-miR-145b-5p
mmu-miR-6999-5p
mmu-miR-451a
mmu-miR-126a-3p
mmu-miR-199a-3p
mmu-miR-199a-5p
mmu-miR-7027-5p

Fig. 4 Ohsaka and Sonoyama
Supplementary Fig. 1 Charts A and B show light-microscopic visualizations of crypt and villus fractions, respectively, isolated from murine small intestine. Charts C and D show comparisons of mRNA levels of Fabp2 and Lgr5 between crypt and villus fractions. Charts E and F show light-microscopic visualizations of intestinal organoids on day 1 and day 5, respectively. Charts G-J show comparisons of mRNA levels of Apoa1, Muc2, Pyy, and Lyz1, differentiation markers of enterocytes, goblet cells, enteroendocrine cells, and Paneth cells, respectively, between organoids on day 1 and day 5. Scale bars indicate 100 µm in charts A and B and 200 µm in charts E and F. In charts C-D and G-J, mRNA levels were estimated in each sample (n=6 in crypt and villus fractions and n=3 in organoids on day 1 and day 5) by qRT-PCR, and values with asterisks are significantly different (P<0.05).
Supplementary Fig. 2 Comparison of miRNA expression levels between crypt and villus fractions isolated from murine small intestine. The miRNA levels in each sample (n=6 in each fraction) were estimated by qRT-PCR.
Supplementary Fig. 3 Comparison of mRNA expression levels between crypt and villus fractions isolated from murine small intestine. The mRNA levels in each sample (n=6 in each fraction) were estimated by qRT-PCR. In each graph, values with asterisks are significantly different vs. crypt fraction (P<0.05).