Tick-borne haemoparasites and Anaplasmataceae in domestic dogs in Zambia

Yongjin Qiu¹, Chiho Kaneko²,³, Masahiro Kajihara⁴, Saasa Ngonda⁵, Edgar Simulundu⁵, Walter Muleya⁶, May June Thu², Mudenda Bernard Hang’ombe⁷, Ken Katakura⁸, Ayato Takada⁴,⁹, Hirofumi Sawa⁹,¹⁰, Martin Simuunza⁵, Ryo Nakao⁸,*

1. Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia

2. Unit of Risk Analysis and Management, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan

3. Project for Zoonoses Education and Research, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.

4. Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan

5. Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
6. Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia

7. Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia

8. Laboratory of Veterinary Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan

9. Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan

10. Division of Molecular Pathology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan

Email addresses:

YQ: yongjin_qiu@czc.hokudai.ac.jp
CK: ckaneko@cc.miyazaki-u.ac.jp
MK: kajihara@czc.hokudai.ac.jp
Keywords

Anaplasmataceae; Babesia; dog; Hepatozoon; Multiple PCR; Zambia
Abstract

Tick-borne diseases (TBDs), including emerging and re-emerging infectious diseases, are important threats to human and animal health worldwide. Indeed, the number of reported human and animal infectious cases of novel TBD agents has increased in recent decades. However, TBDs tend to be neglected, especially in resource-limited countries that often have limited diagnostic capacity. The aim of this molecular survey was to detect and characterise tick-borne pathogens (*Babesia*, *Theileria*, and *Hepatozoon* parasites and Anaplasmataceae bacteria) in domestic dogs in Zambia. In total, 247 canine peripheral blood samples were collected in Shangombo, Mazabuka, Lusaka, and Monze. Conventional PCR to detect the selected pathogens was performed using DNA extracted from canine blood. One hundred eleven samples were positive for protozoa and 5 were positive for Anaplasmataceae. Sequencing of thirty-five randomly selected protozoan-positive samples revealed the presence of *Babesia rossi*, *Babesia vogeli*, and *Hepatozoon canis* 18S rDNA. Based on these sequences, a multiplex PCR system was developed to yield PCR products with different amplicons, the size of which depended on the parasite species; thus, each species could be identified without the need for sequence analysis. Approximately 40% of dogs were positive for *H. canis*. In particular, the positive rate (75.2%) of *H. canis* infection was significantly higher in Shangombo than in other sampling sites. Multiplex PCR assay detected *B. rossi* and *B. vogeli* infections in five and seven dogs, respectively,
indicating that this approach is useful for detecting parasites with low prevalence. Sequencing analysis of \textit{gltA} and \textit{groEL} genes revealed that two and one dogs in Lusaka were infected with \textit{A. platys} and \textit{E. canis}, respectively. The data indicated that Zambian dogs were infected with multiple tick-borne pathogens such as \textit{H. canis}, \textit{B. rossi}, \textit{B. vogeli}, \textit{A. platys}, \textit{E. canis} and uncharacterized \textit{Ehrlichia} sp. Since some of these parasites are zoonotic, concerted efforts are needed to raise awareness of, and control, these tick-borne pathogens.

\textbf{Introduction}

Ticks are the second most common blood sucking arthropods next to mosquitoes. They not only cause anaemia in their animal hosts, but also carry and transmit a wide variety of viruses, bacteria, and protozoa, some of which cause tick-borne diseases (TBDs) (de la Fuente et al., 2008; Otranto et al., 2014). These TBDs not only include multiple existing infectious diseases, but also comprise emerging and re-emerging infectious diseases. An example of one such emerging TBD is severe fever with thrombocytopenia syndrome, which was reported to be endemic to China in 2011 and which poses serious threats to human and animal health (Parola et al., 2005; Yu et al., 2011). Moreover, in the past two decades, the number of reported cases of infection with novel TBDs in humans and animals has increased (Kernif et al., 2016).
Given that some TBDs in humans are zoonoses, it is important to identify the tick-borne pathogens in pets, livestock, and wild animals and elucidate the factors that determine their prevalence. The most common tick-borne protozoan pathogens of dogs are *Babesia* and *Hepatozoon* (Homer et al., 2000; Baneth et al., 2003). These haemoparasites live in mammalian blood cells and cause severe diseases and sometimes death in infected animals (Schnittger et al., 2012). Specifically, *Babesia gibsoni, Babesia canis, Babesia rossi,* and *Babesia vogeli* are causative agents of canine babesiosis (biliary fever). *B. gibsoni* is distributed in Asia, North America, Europe, and northern and eastern Africa (Farwell et al., 1982; Jefferies et al., 2003; Lobetti, 1998). *B. canis* is transmitted by *Dermacentor reticulatus,* which is prevalent in Europe (Solano-Gallego and Baneth, 2011). The other two species, *B. rossi* and *B. vogeli,* are mainly transmitted by *Haemaphysalis leachi* and *Rhipicephalus sanguineus* sensu lato (s.l.), respectively (Apanaskevich et al., 2007; Criado-Fornelio et al., 2003). The distribution of *B. rossi* is restricted to sub-Saharan Africa, while that of *B. vogeli* is worldwide (Europe, Africa, Asia, South and North America) (Oyamada et al., 2005; Matjila et al., 2008). *Hepatozoon canis* and *Hepatozoon americanum* are the agents of canine hepatozoonoses that range from being asymptomatic with low levels of parasitaemia to a severe life-threatening illness characterised by high levels of parasitaemia, fever, anaemia, and lethargy (Baneth et al., 2000; Baneth et al., 2003). These two *Hepatozoon* species are genetically and geographically distinct (Baneth et al., 2000). *H. canis* is
distributed in Africa, southern Europe, the Middle East, and Asia (Baneth, 2006) and is mainly transmitted by *R. sanguineus* s.l. and *Haemaphysalis longicornis* (Dantas-Torres et al., 2012; Murata et al., 1995). *H. americanum* is found in the Americas and is transmitted by *Amblyomma maculatum* (Mathew et al., 1998). Recently, new *Hepatozoon* spp. were reported in dogs and wildlife in Turkey and Brazil (Aydin et al., 2015; Soares et al., 2017).

Anaplasma and *Ehrlichia* species are obligate intracellular bacteria that belong to the family of Anaplasmataceae. These tick-borne pathogens infect humans and animals all over the world. *Anaplasma platys* is primarily found in dogs with cyclic thrombocytopenia (Harvey et al., 1978). In addition, new *Anaplasma* species that are closely related to *A. phagocytophilum*, which causes human granulocytic anaplasmosis, have been detected in canine blood (Inokuma et al., 2005). *Ehrlichia canis* is the causative agent of canine ehrlichiosis, which is transmitted by *R. sanguineus* s.l. (Groves et al., 1975; Aguiar et al., 2007). While *E. canis* was initially thought to be pathogenic in canines only, it was eventually also detected in human patients with the typical clinical findings of ehrlichiosis (Perez et al., 2006).

Only a few studies have examined haemoparasites and Anaplasmataceae in domestic and wild dogs in Zambia. Baba et al. (2012) described the case of a dog that was exported from Zambia to Japan and was infected with *E. canis*, while Nalubamba et al. (2011) showed that of
1,196 samples from domestic dogs in Lusaka, only 2.4% were positive for *Babesia* parasites.

This is supported by Williams et al. (2014), whose molecular survey on 11 wild and eight domestic dogs in the Eastern and Western Provinces of Zambia showed that all were negative for *Babesia* infection. However, they did find that 65% of wild dogs and 13% of domestic dogs were infected with *Hepatozoon*. Recently, Vlahakis et al. (2017) described the first molecular evidence of *A. platys* in domestic dogs in Lusaka.

To better understand the infection status and distribution of tick-borne pathogens in Zambian domestic dogs, we subjected blood samples from 247 domestic dogs living in four districts of Zambia to our newly developed multiplex PCR assay, which differentiates between the main tick-borne canine haemoparasites. This molecular survey showed that some Zambian dogs are infected with *Anaplasma, Ehrlichia, Babesia*, and especially *Hepatozoon*.

Materials and methods

Ethics
All procedures were performed in accordance with the guidelines established by the Animal Experiment Committee of the Graduate School of Veterinary Medicine, Hokkaido University (Sapporo, Japan).

Dogs

From January to May 2016, 247 peripheral blood samples were collected from privately owned dogs (149 male and 98 female) in four different locations in Zambia (Figure 1): Lusaka (15.23°S, 28.19°E) (n = 50), Mazabuka (15.51°S, 27.44°E) (n = 50), Monze (16.16°S, 27.28°E) (n = 50), and Shangombo (16.19°S, 22.06°E) (n = 97). Lusaka, Mazabuka and Monza are relatively urbanized cities/towns, while Shangombo is located in a rural area close to the border with Angola. The sampling was conducted on the randomly selected dogs, which participated in the rabies vaccination campaign. The age of the dogs ranged from three months to fifteen years with averages of thirty-nine, thirty-nine, thirty, and twenty-seven months in Lusaka, Mazabuka, Monze, and Shangombo, respectively. DNA was extracted from 200 µl of EDTA-anticoagulated whole blood using DNAzol BD Reagent (Invitrogen, Massachusetts, USA) or a QIAamp DNA Blood Mini kit (Qiagen, Tokyo, Japan) and stored at −20°C until used.

PCR
PCRs were performed by using the primers listed in Table 1. *Babesia, Theileria,* and/or *Hepatozoon* parasites were detected by nested PCR that amplifies a 1.4–1.6 kb fragment of the parasite’s 18S rDNA: BTH 18S 1st F and BTH 18S 1st R were used for primary amplification while BTH 18S 2nd F and BTH 18S 2nd R were used for secondary amplification, as described previously (Masatani et al., 2017). Members of the Anaplasmataceae family were firstly detected using EHR16SD and EHR16SR, which amplify a 345-bp fragment of 16S ribosomal DNA (rDNA) from these bacteria (Parola et al., 2000). The positive samples were further characterized by additional PCRs targeting citrate synthase (*gltA*) and heat-shock protein (*groEL*) genes of Anaplasmataceae. All PCR reactions were conducted in a 25 µl-reaction mixture containing 12.5 µl of 2 × Gflex PCR Buffer (Mg$^{2+}$, dNTP plus) (TaKaRa Bio Inc., Shiga, Japan), 0.5 µl of Tks Gflex DNA Polymerase (1.25 units/µl) (TaKaRa Bio Inc.), 200 nM of each primer, and 1.0 µl of template DNA or 5-fold diluted first PCR product. The reaction conditions were 95°C for 3 min and 40 cycles of 95°C for 30 s, annealing temperature for 30 s (Table 1), and 68°C for 30 s (PCRs for Anaplasmataceae) or 90 s (PCR for *Babesia, Theileria,* and/or *Hepatozoon*), followed by a final extension at 68°C for 5 min. The PCR products were subjected to electrophoresis in a 1.2% agarose gel stained with Gel-Red™ (Biotium, Hayward, CA).

Multiplex PCR
The conventional nested PCR yielded many positive samples. To reduce the need for cost- and time-intensive sequencing, we first sequenced 35 randomly selected nested PCR-positive blood samples. Since we detected *B. rossi*, *B. vogeli*, and *H. canis*, a multiplex PCR that differentiated between these species was developed. Thus, the 18S rDNA sequences of the 35 samples were aligned and three forward primers that were specific for each parasite (*Br*_18S_F, *Bv*_18S_F, and *Hc*_18S_F) and a reverse primer that recognized the same sequence in all three parasites (*BTH_multi_R*) were designed (Table 1). The amplified products for *B. rossi*, *B. vogeli*, and *H. canis* comprise 522 bp, 1024 bp, and 360 bp, respectively. The multiplex PCR was conducted by using the Multiplex PCR Assay Kit (TaKaRa Bio Inc.). A 25 µl-reaction mixture that consisted of 12.5 µl of Multiplex PCR Mix 2, 0.125 µl of Multiplex PCR Mix 1, 200 nM of the four primers (*Br*_18S_F, *Bv*_18S_F, *Hc*_18S_F, and *BTH_multi_R*), and 1.0 µl of 5-fold diluted product of the PCR using the BTH 18S 1st F and BTH 18S 1st R primers was generated. The reaction conditions were 94°C for 1 min and 40 cycles of 94°C for 30 s, 57°C for 30 s, and 72°C for 60 s, followed by a final extension at 72°C for 10 min. The parasite species were identified according to the size of the PCR amplicon in an agarose gel electrophoresis gel.

Cloning
To analyse parasite sequences present in samples infected with multiple parasites, parasite 18S rDNA was amplified using a high-fidelity PCR enzyme, KOD-Plus-Ver.-2 DNA polymerase (Toyobo, Osaka, Japan), in 25 μl of reaction mixture containing 2.5 μl of 10× Buffer for KOD-Plus-Neo, 300 nM of each primer, 200 μM dNTPs, 1 mM MgSO₄, 0.5 unit of KOD-Plus-Neo DNA polymerase, and 1.0 μl of template DNA or diluted (5×) first-round PCR product. The reaction conditions were 94°C for 2 min, followed by 40 cycles of 98°C for 10 s, 55°C for 30 s, and 68°C for 30 s, followed by a final extension at 68°C for 2 min. The second-round PCR product was A-tailed using 10× A-attachment Mix (Toyobo) and then cloned into a T-vector pMD20 (TaKaRa Bio Inc.).

Sequencing

The PCR products were purified by using a NucleoSpin Gel and PCR Clean Up Kit (Takara Bio Inc.) and sequenced using the BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) utilising an ABI Prism 3130x genetic analyser according to the manufacturers' instructions. Only the sequences that were recovered from more than three clones were considered to be genuine. The sequences that were obtained were submitted to the DNA Data Bank of Japan (http://www.ddbj.nig.ac.jp) under accession numbers LC331056–LC331057 (18S rDNA of *B. rossi*), LC331058 (18S rDNA of *B. vogeli*), LC331059–
LC331061 (18S rDNA of *H. canis*), LC331059–LC331061 (16S rDNA of Anaplasmataceae), LC373037 and LC373038 (*gltA* of Anaplasmataceae), and LC373039-LC373041 (*groEL* of Anaplasmataceae).

Sequence data analysis

The sequences were analysed by using GENETYX version 9.1 (GENETYX Corporation, Tokyo, Japan) and were trimmed on both the 5’ and 3’ ends. The obtained sequences were compared with those available in public databases using nucleotide BLASTn at the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Phylogenetic analysis was conducted by using MEGA version 6.05 (Tamura et al., 2013). ClustalW was used to align the sequences to closely related organism sequences that were deposited in the database. A neighbour-joining method was used to perform the phylogenetic analysis. Bootstrap values were obtained with 1,000 replicates.

Statistical analysis

Dogs from different regions were compared in terms of frequency of infection with specific parasites by using Fisher’s exact test. For this, the Fmsb package in R 3.4.0 (R Core Team 2017) was employed. *P* values of <0.05 were considered to indicate statistical significance.
Results

Detection of protozoan parasites

Nested PCR targeting *Babesia*, *Theileria*, and *Hepatozoon* parasites was positive in 111 dogs: fourteen (28.0%) in Lusaka, eight (16.0%) in Mazurka, sixteen (32.0%) in Monze, and seventy-three (75.2%) in Shangombo (Table 2). Initially, thirty-five samples were randomly selected and the second-round PCR products from these samples were subjected to sequence analysis. The resulting data indicated the presence of *B. rossi*, *B. vogeli*, and *H. canis*. To distinguish between these three parasites, we developed a multiplex PCR assay based on species-specific primers (Table 1). Since the PCR band of each parasite differs in size, the species can be identified without having to perform sequence analysis. A representative electrophoresis of the multiplex PCR products is shown in Figure 2.

Multiplex PCR assay of all 111 BTH-PCR-positive samples showed that five dogs were infected with *B. rossi*. Four dogs were from Mazabuka and one from Shangombo. None of the samples from Lusaka and Monze was positive for *B. rossi*. Thus, the *B. rossi* infection rates in Lusaka, Mazabuka, Monze, and Shangombo were 0%, 8.0%, 0%, and 1.0%, respectively.
The multiplex PCR also showed that seven samples were positive for \textit{B. vogeli}. One, four, and two \textit{B. vogeli} infections were found in dogs from Lusaka, Mazabuka, and Monze, respectively. None of the samples from Shangombo were positive for \textit{B. vogeli}. Thus, the \textit{B. vogeli} infection rates in Lusaka, Mazabuka, Monze, and Shangombo were 2.0\%, 8.0\%, 4.0\%, and 0\%, respectively.

The multiplex PCR also showed that 100 dogs were infected with \textit{H. canis} (Table 2). None of the samples from Mazabuka were positive for \textit{H. canis}. The positive rate of \textit{H. canis} in Shangombo (75.2\%) was significantly higher than that in Lusaka (26.0\%) or Monze (28.0\%) (both $p<0.05$). One dog from Shangombo was infected with both \textit{H. canis} and \textit{B. rossi}. The presence of the two parasites was confirmed by cloning and sequencing of the 18S rDNA PCR products (data not shown).

Sequencing analysis of the 18S rDNA PCR products of the five \textit{B. rossi} infections yielded two sequence types. One (BR1) showed 99.9\% (1,428/1,430 bp) nucleotide identity with \textit{B. rossi} detected in black-backed jackals (\textit{Canis mesomelas}) in South Africa (GenBank accession no.: KY463434). The other (BR2) showed 100\% (1430/1430 bp) nucleotide identity with \textit{B. rossi} from domestic dogs in Nigeria (GenBank accession no.: AB935165).
Sequencing analysis of the 18S rDNA PCR products of the seven *B. vogeli* infections yielded a single sequence type (BV1) that bore 100% (1429/1429 bp) nucleotide identity with *B. vogeli* detected in China, Japan, and Brazil (GenBank accession nos.: HM590440, AY077719, and AY371196, respectively).

Sequence analysis of the 18S rDNA PCR products from *H. canis* infections revealed four different sequence types. The most common type (HC1, 77.3% of all sequenced *H. canis*-positive samples) harboured two base pair mismatches (1,528/1,530 bp identity) with respect to *H. canis* sequences reported in dogs in Sudan (GenBank accession no.: DQ111754). Two other sequences (HC2 and HC3) exhibited 99.7% (1,526/1,530 bp) and 99.9% (1,529/1,530 bp) nucleotide identity with *H. canis* from a golden jackal (*Canis aureus*) in Eurasia (GenBank accession no.: KX712126 and KX712127).

The sequence types detected in this study are summarized in Table 3. Phylogenetic analysis showed that sequence types HC1–HC4 were located in the same cluster with *H. canis*, that sequence types BR1 and BR2 clustered together with *B. rossi*, and that the BV1 sequence type was located in a cluster of *B. vogeli* (Figure 3).

Detection of Anaplasmataceae
Of the 247 dogs, five (three from Lusaka and two from Shangombo) tested positive for Anaplasmataceae by 16S rDNA PCR (Table 2). Sequencing analysis of the amplified products from these five dogs identified three different sequences (EHR1-3). EHR1 was detected in a dog from Lusaka (LuF11) and exhibited 98.4% (300/305 bp) nucleotide identity with *E. canis* and several uncharacterized *Ehrlichia* spp. EHR2 was detected in the two infected dogs from Shangombo (ZD#55 and ZD#56) and showed 99.7% (304/305 bp) nucleotide identity with several uncharacterized *Ehrlichia* spp. EHR3 was detected in two dogs from Lusaka (LuF9 and LuF24) and showed 100% (305/305 bp) nucleotide identity with the *A. platys* sequence found in *R. sanguineus* s.l. ticks that had been collected from dogs in the Democratic Republic of the Congo (DRC) (GenBank accession no.: AF478131).

In order to further characterize Anaplasmataceae, PCRs amplifying *gltA* and *groEL* were carried out using several primer sets shown in Table 1. Three samples (LuF9, LuF24, and LuF11) were successfully amplified, while two samples (ZD#55 and ZD#56) having identical 16S rDNA sequence were not amplified.

Sequencing analysis of the amplified products identified two and three different sequences of *gltA* and *groEL*, respectively. One *gltA* sequence (GLTA1) detected from LuF11 showed 100% (1,033/1,033 bp) identity with *E. canis* strain YZ-1 reported from Yangzhou,
China (GenBank accession no.: CP025749). The other gltA sequence (GLTA2) detected from LuF9 and LuF24 showed 99.7% (1,048/1,051 bp) identity with A. platys found in R. sanguineus s.l. collected from a dog in the DRC (GenBank accession no.: AF478130). Out of three groEL sequences (GROEL1-3), GROEL1 detected from LuF11 showed 100% (1,060/1,060 bp) identity with E. canis strain YZ-1. GROEL2 detected from LuF9 and GROEL3 detected from LuF24 showed 99.7% (1,072/1,075 bp) and 99.8% (1,073/1,075 bp) identities with A. platys found in R. sanguineus s.l. ticks collected from a dog in the DRC (GenBank accession no.: AF478129), respectively.

Phylogenetic trees based on gltA and groEL genes are shown in Figures 4A and 4B, respectively. The sequences obtained from LuF11 were clustered with E. canis in both trees. The sequences obtained from LuF9 and LuF24 were located in the same cluster with A. platys in both trees.

Discussion

The aim of this study was to detect and characterise haemoparasites and Anaplasmataceae in domestic dogs in Zambia, where TBDs tend to be overlooked due to limited diagnostic capacity. Here, we provide molecular evidence showing that Zambian domestic dogs
are infected with multiple tick-borne pathogens, namely, *H. canis*, *B. rossi*, and *B. vogeli*, *A. platys*, *E. canis* and uncharacterized *Ehrlichia* sp.

We detected *H. canis* infections in three of the four sampled locations (Mazabuka was the exception) (Table 2). The dogs from Monze and Lusaka have similar frequencies of *H. canis* infection (28.0% and 26.0%, respectively). By contrast, three-quarters of the dogs from Shangombo were infected with *H. canis*. This is remarkable given that other studies of dogs in Zambia, Angola, and Sudan showed 12.6%, 17.5% and 42.3% *H. canis*-positivity rates, respectively (Williams et al., 2014; Cardoso et al., 2016; Oyamada et al., 2005). It may be that there are more opportunities for dogs to be exposed to ticks in Shangombo for example due to the differences in dog management styles between urban and rural areas in Zambia. Alternatively, or in addition, the ticks in Shangombo may be more susceptible to infection with *H. canis* than the ticks in other districts. It should be mentioned that there was no significant difference in age between *H. canis*-infected and non-infected dogs in Shangombo (the average age were 26.7 and 29.5 months, respectively) (Mann-Whitney U test, P = 0.77). Future analyses of the involved tick vectors in Shangombo will help to understand the high endemicity of *H. canis* in this area.

Given that we found a large number of canine blood samples were positive for the nested PCR that detects *Babesia*, *Theileria*, and/or *Hepatozoon*, and sequencing of thirty-five
randomly selected positive samples indicated the presence of *B. vogeli*, *B. rossi*, and *H. canis*, we developed a multiplex PCR assay that easily distinguishes these three species from each other on the basis of their PCR band sizes. This approach is useful when there are so many nested PCR-positive samples that it becomes impractical in terms of cost and time to sequence them all. This is particularly true when the positive samples are dominated by a single parasite, such as *H. canis* in the present case. If we had followed the usual approach of sequencing a handful of randomly selected nested PCR samples, we may have missed the *Babesia* infections, which were only present in 10% of the nested PCR-positive samples. Indeed, despite the high frequency of *H. canis*, our multiplex PCR assay detected five *B. rossi*-infected and seven *B. vogeli*-infected samples. It is not clear why the dogs had a low rate of *Babesia* infections and a high rate of *H. canis* infections. This is primarily because very little is known about the life cycles, transmission routes, and pathogenic potential of these different parasites.

One dog in Shangombo was co-infected with *H. canis* and *B. rossi*. Several other studies report co-infection of *H. canis* and *Babesia* spp. in dogs (Cardoso et al., 2010; Rojas et al., 2014). Such co-infections are partly responsible for the variable pathogenicity of these parasites in dogs (Munson et al., 2008; Sasanelli et al., 2009). Veterinarians should be aware of the possibility of such parasite co-infections when a dog presents with a parasite-related illness that is unusually severe or is accompanied by uncharacteristic symptoms.
The present study detected *A. platys* infections in two female dogs in Lusaka. The presence of *A. platys* in dogs has been reported elsewhere, including in Africa (Carvalho et al., 2017; Inokuma et al., 2002; Beugnet and Marié, 2009; Oyamada et al., 2005). *A. platys* infects the platelets of dogs and causes infectious canine cyclic thrombocytopenia. It is usually a mild or asymptomatic disease. In general, *A. platys* is transmitted by the *R. sanguineus* s.l. tick. A recent study suggested that *A. platys* can also be transmitted vertically from infected bitches to their puppies, either transplacentally or during the perinatal period (Matei et al., 2017). Human cases of *A. platys* have been reported: two women in Venezuela (Arraga-Alvarado et al., 2014) and one veterinary professional in South Africa (Maggi et al., 2013) were found to be infected with *A. platys*. Thus, dog owners and veterinarians in these regions should be aware of the risk of *A. platys* infection in humans.

Ehrlichia infections were suspected in three dogs by sequencing analysis of Anaplasmataceae-specific 16S rDNA PCR. Additional PCRs targeting *gltA* and *groEL* of Anaplasmataceae were only successful in one dog from Lusaka, which was shown to be infected with *E. canis*. However, the PCR assays did not yield any amplicons from two *Ehrlichia*-positive dogs in Shangombo. Although several other sets of primers were employed to amplify these genes in the two dogs, none of the PCRs were successful (data not shown). These results may indicate that the dogs in Shangombo were infected with uncharacterized *Ehrlichia* sp. which are
genetically distinct form those previously reported. To better understand the genetic diversity of
Ehrlichia sp., further studies on the Ehrlichia spp. in Zambian dogs are warranted.

5. Conclusions

This study shows that Zambian dogs are infected with several pathogens, namely, H. canis, B. rossi, B. vogeli, A. platys, E. canis and uncharacterized Ehrlichia sp. Our species-discriminating multiplex PCR is useful for screening for canine haemoparasites, even when one parasite is vastly predominant.

Competing interests

The authors declare no competing interests.

Contributions

R.N. and Y.Q. conceived and designed the experiments; Y.Q., C.K., R.N., M.K., S, E.S., W.M., M.B.H., and M.S. collected samples; Y.Q., M.J.T., and R.N. performed the experiments; Y.Q., C.K., and R.N. analysed the data; Y.Q. and R.N. wrote the paper; K.K., A.T., H.S., and R.N. edited and approved the manuscript.
Acknowledgement

This work was financially supported by the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID), the Japan Agency for Medical Research and Development, AMED, JSPS, a Grant-in-Aid for Young Scientists (B) (16K19112) and (A) (15H05633) for Scientific Research on Innovative Areas (16H06429, 16K21723, and 16H06431), and the Japan International Cooperation Agency within the framework of the Science and Technology Research Partnership for Sustainable Development (SATREPS). We thank all veterinarians and technicians in the region for their assistance with sample collection.

References

Apanaskevich, D. A., Horak, I. G., Camicas, J. L., 2007. Redescription of Haemaphysalis (Rhipistoma) elliptica (Koch, 1844), an old taxon of the Haemaphysalis (Rhipistoma) leachi

Otranto, D., Dantas-Torres, F., Giannelli, A., Latrofa, M. S., Cascio, A., Cazzin, S., Ravagnan, S.,
Montarsi, F., Zanzani, S. A., Manfredi, M. T., Capelli, G., 2014. Ticks infesting humans in
Italy and associated pathogens. Parasit Vectors. 7, 328.

Oyamada, M., Davoust, B., Boni, M., Dereure, J., Bucheton, B., Hammad, A., Itamoto, K.,
Okuda, M., Inokuma, H., 2005. Detection of Babesia canis rossi, B. canis vogeli, and
Hepatozoon canis in dogs in a village of eastern Sudan by using a screening PCR and

Vet Res. 36, 469-492.

ehrlichiae in African ticks by polymerase chain reaction. Trans R Soc Trop Med Hyg. 94,
707-708.

Perez, M., Bodor, M., Zhang, C., Xiong, Q., Rikihisa, Y., 2006. Human infection with Ehrlichia

Figure 1. Dog sample collection sites in Zambia.

Figure 2. A representative electrophoresis gel of the multiplex PCR products. M: marker; HC: *Hepatozoon canis*; BR: *Babesia rossi*; BV: *Babesia vogeli*; NC: negative control.

Figure 3. Phylogenetic analysis of the *Babesia* spp. and *Hepatozoon* spp. detected in canine blood. The analysis based on the almost full-length sequences of 18S rDNA was conducted by using a Neighbour joining method. The tree is rooted with *Plasmodium falciparum*. All bootstrap values from 1,000 replications are shown on the interior branch nodes. The sequences obtained in this study are indicated in red.

Figure 4. Phylogenetic analyses of the Anaplasmataceae detected in canine blood. The analyses based on partial sequences of (A) *gltA* and (B) *groEL* were conducted by using a Neighbour-joining method. The trees are rooted with *Rickettsia rickettsii*. All bootstrap
values from 1,000 replications are shown on the interior branch nodes. The sequences obtained in this study are indicated in red.
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5’ to 3’)</th>
<th>Target (PCR type)</th>
<th>Annealing temperature (°C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHR16SD</td>
<td>GGTACCYACAGAAGAAGTCC</td>
<td>16S rDNA of Anaplasmataceae (single PCR)</td>
<td>55</td>
<td>Parola et al., 2000</td>
</tr>
<tr>
<td>EHR16SR</td>
<td>TAGCACTCATCGTTTACACG</td>
<td></td>
<td>55</td>
<td>Ybañez et al., 2012</td>
</tr>
<tr>
<td>CS7F2</td>
<td>ATGRTAGAAAWGCTGTGTTT</td>
<td>gltA of A. platys (single PCR)</td>
<td>55</td>
<td>Loftis et al., 2015</td>
</tr>
<tr>
<td>CS103R</td>
<td>GCAAAGAATGCGRGTAKACAT</td>
<td></td>
<td>55</td>
<td>Loftis et al., 2015</td>
</tr>
<tr>
<td>EHRCS-131F</td>
<td>CAGGATTATTAGCTACTGCTGCTTG</td>
<td>gltA of Anaplasmataceae (1st PCR)</td>
<td>50</td>
<td>Sumner et al., 1997</td>
</tr>
<tr>
<td>EHRCS-1226R</td>
<td>CCAGTATATAAYTGACGWGGACG</td>
<td></td>
<td>50</td>
<td>Liz et al., 2000</td>
</tr>
<tr>
<td>EHRCS-879R</td>
<td>ATGCTGATCATGARCAAATG</td>
<td>gltA of Anaplasmataceae (2nd PCR)</td>
<td>50</td>
<td>Loftis et al., 2015</td>
</tr>
<tr>
<td>HS1-F</td>
<td>CGYCAGTGGGCTGTATAATGAA</td>
<td>groEL of Anaplasmataceae (1st PCR)</td>
<td>54</td>
<td>Sumner et al., 1997</td>
</tr>
<tr>
<td>HS6-R</td>
<td>CCWCCWGGTACWCACCTTC</td>
<td></td>
<td>50</td>
<td>Liz et al., 2000</td>
</tr>
<tr>
<td>HS3-F</td>
<td>ATAGTYATGAGAAGGAGTGTAT</td>
<td>groEL of Anaplasmataceae (2nd PCR)</td>
<td>50</td>
<td>Loftis et al., 2015</td>
</tr>
<tr>
<td>HSV-R</td>
<td>TCAACACAGCTCTAGTWG</td>
<td></td>
<td>50</td>
<td>Loftis et al., 2015</td>
</tr>
<tr>
<td>groEL-fwd3</td>
<td>TGGCAAAATGTAGTGTAACAGG</td>
<td>groEL of Ehrlichia (2nd PCR)</td>
<td>50</td>
<td>Gofion et al., 2016</td>
</tr>
<tr>
<td>groEL-rev2</td>
<td>GCCGACTTTTAGTACAGC</td>
<td></td>
<td>50</td>
<td>Loftis et al., 2015</td>
</tr>
<tr>
<td>BTH 18S 1st F</td>
<td>GTGAAACTGCAATGGGCTTACATTAC</td>
<td>18S rDNA of Babesia, Theileria and Hepatozoon parasites (1st PCR)</td>
<td>55</td>
<td>Masatani et al., 2017</td>
</tr>
<tr>
<td>BTH 18S 1st R</td>
<td>AAGTGATAAGGTCAACAATAACTCCC</td>
<td></td>
<td>55</td>
<td>Masatani et al., 2017</td>
</tr>
<tr>
<td>BTH 18S 2nd F</td>
<td>GGCTTACTCAAACATGTTATATTGTATTTG</td>
<td>18S rDNA of Babesia, Theileria and Hepatozoon parasites (2nd PCR)</td>
<td>55</td>
<td>Masatani et al., 2017</td>
</tr>
<tr>
<td>BTH 18S 2nd R</td>
<td>CGGTCCGAAATAATTCACCGGAT</td>
<td></td>
<td>55</td>
<td>Masatani et al., 2017</td>
</tr>
<tr>
<td>Br_18S_F</td>
<td>GTATTTTGCTTGGCCTTTT</td>
<td>18S rDNA of B. rossi (Multiplex PCR)</td>
<td>55</td>
<td>This study</td>
</tr>
<tr>
<td>Bv_18S_F</td>
<td>TAATTTGGAAACCGCCTTG</td>
<td>18S rDNA of B. vogeli (Multiplex PCR)</td>
<td>55</td>
<td>This study</td>
</tr>
<tr>
<td>Hc_18S_F</td>
<td>TAAGACCTAATTATGATGGATGAGG</td>
<td>18S rDNA of H. canis (Multiplex PCR)</td>
<td>55</td>
<td>This study</td>
</tr>
<tr>
<td>BTH_multi_R</td>
<td>CCCGTTTGAAGTCAAATTAAGC</td>
<td>18S rDNA of B. vogeli, B. vogeli, and H. canis (Multiplex PCR)</td>
<td>55</td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 2. Detection of Anaplasmataceae, *Babesia rossi*, *Babesia vogeli*, and *Hepatozoon canis* by PCR and species-discriminating multiplex PCR.

<table>
<thead>
<tr>
<th>Location</th>
<th>Sex</th>
<th>Total no.</th>
<th>Anaplasmataceae PCR positive</th>
<th>BTH PCR positive</th>
<th>Identified speciesa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Babesia rossi</td>
</tr>
<tr>
<td>Lusaka</td>
<td>Male</td>
<td>25</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>25</td>
<td>3</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Mazabuka</td>
<td>Male</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>1 (1)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>25</td>
<td>0</td>
<td>7</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Monze</td>
<td>Male</td>
<td>25</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>25</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Shangombo</td>
<td>Male</td>
<td>74</td>
<td>2</td>
<td>56</td>
<td>1b</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>23</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

aNumber in brackets indicates the number of samples confirmed by sequencing analysis of BTH PCR products.

bOne dog was positive for both *Babesia rossi* and *Hepatozoon canis*.
Table 3. Summary of sequence types detected for *Babesia rossi*, *Babesia vogeli*, and *Hepatozoon canis* from each sampling site.

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Sequence type</th>
<th>Location</th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lusaka</td>
<td>Mazabuka</td>
<td>Monze</td>
<td>Shangombo</td>
<td></td>
</tr>
<tr>
<td>Babesia rossi</td>
<td>BR1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>BR2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Babesia vogeli</td>
<td>BV1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Hepatozoon canis</td>
<td>HC1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>HC2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HC3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>HC4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 3

```
Babesia vogeli HM590440
  BV1 LC331058
  Babesia vogeli AY371197
  Babesia canis AY072926
  Babesia canis HQ662634
  BR2 LC331057
  Babesia rossi KY463434
  Babesia rossi DQ111760
  BR1 LC331056
  Babesia bigemina X59607
  Babesia odocoilei AY2962206
  Babesia gibsoni AF175300
  Babesia gibsoni AF175301
  Babesia felis AY452706
  Babesia lengau CQ411417
  Babesia conradae AF158702
  Babesia duncani HQ285838
  Hepatozoon catesbianae AF176837
  Hepatozoon sp. from dog FJ719813
  Hepatozoon americanum AF176836
  Hepatozoon felis KX017290
  HC3 LC331054
  HC2 LC331053
  Hepatozoon canis AF176835
  Hepatozoon canis KU893127
  HC4 LC331055
  HC1 LC331052
  Hepatozoon canis DQ111754
  Plusmodium falciparum M19172
```