HOKKAIDO UNIVERSITY

Title	Coefficient stripping in the matricial Nehari problem
Author(s)	Kasahara, Y ukio; Bingham, Nicholas H.
Citation	Journal of approximation theory, 220, 1-11 https:/doi.org/10.1016/.jat.2017.04.002
Issue Date	2017-08
Doc URL	http://hdl. handle.net/2115/73899
Rights	©2017 This manuscript version is made avai lable under the CC-BY-NC-ND 4.0 license http://reativecommons.org/icenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/icenses/by-nc-nd/4.0/
Type	article (author version)
File Information	kasahara.pdf

Instructions for use

Coefficient stripping in the matricial Nehari problem

Yukio Kasahara ${ }^{\mathrm{a}, \text {, }}$, Nicholas H. Bingham ${ }^{\mathrm{b}}$
${ }^{a}$ Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
${ }^{b}$ Department of Mathematics, Imperial College London, SW7 2AZ, United Kingdom

Abstract

This note deals with a matricial Schur function arising from a completely indeterminate Nehari problem. The Schur algorithm is characterized by a unilateral shift for a Nehari sequence.

Keywords: Schur algorithm, Szegő recurrence, Nehari problems, Rigid functions 2000 MSC: 42C05, 42A56, 42A70

1. Introduction

In [12], the authors focused on a class of probability measures on the unit circle relevant to the indeterminate Nehari problems, and established fundamental results on the correspondence between the Nehari sequences and the Verblunsky coefficients, which are also known as the Schur parameters. The aim of this note is to present some matricial extensions of their results, answering an open question posed by the second author [7]. In particular, it will be shown that the Schur algorithm is induced by "coefficient stripping" for a Nehari sequence; the term, quoted from Simon [18], means a unilateral shift defined by dropping the first entry of a sequence.

Let \mathscr{V} be a complex Euclidean space and \mathscr{M} the space of square matrices of corresponding order. Denote by $\mathbf{0}$ the zero matrix and by $\mathbf{1}$ the unit matrix in \mathscr{M}. As usual, a^{*} stands for the Hermitian conjugate of a, and the symbols $a>\mathbf{0}$ and $a \geq \mathbf{0}$ mean that a is Hermitian, positive definite and positive semi-definite, respectively. For $1 \leq p \leq \infty$, let L^{p} be the standard Lebesgue space on the unit circle \mathbb{T}, and H^{p} the associated Hardy space, which is a closed subspace of L^{p} composed of functions having natural analytic extensions into the open unit disc \mathbb{D}. Also, write $L_{\mathscr{M}}^{p}$ and $H_{\mathscr{M}}^{p}$ for the spaces of \mathscr{M}-valued functions with entries in L^{p} and H^{p}, respectively. See Rosenblum-Rovnyak [17] for the theory of matrix/operator-valued Hardy functions.

A function f in $H_{\mathscr{M}}^{\infty}$ is called a Schur function if $f(z)^{*} f(z) \leq \mathbf{1}$ (a.e.). In the non-trivial case, it yields a sequence of Schur functions $f_{1}, f_{2}, \ldots\left(f_{1}=f\right)$ via the Schur recurrence formula

$$
\begin{equation*}
f_{n+1}=z^{-1}\left(\rho_{n}^{R}\right)^{-1}\left(f_{n}-\alpha_{n}\right)\left(\mathbf{1}-\alpha_{n}^{*} f_{n}\right)^{-1}\left(\rho_{n}^{L}\right)^{*} \tag{1.1}
\end{equation*}
$$

with the Schur parameters $\alpha_{n}=f_{n}(0)$ and subordinate matrices $\rho_{n}^{L}, \rho_{n}^{R}$ obeying

$$
\left(\rho_{n}^{L}\right)^{*} \rho_{n}^{L}=\mathbf{1}-\alpha_{n}^{*} \alpha_{n}, \quad \rho_{n}^{R}\left(\rho_{n}^{R}\right)^{*}=\mathbf{1}-\alpha_{n} \alpha_{n}^{*} .
$$

[^0]Here, $\rho_{n}^{L}, \rho_{n}^{R}$ are unique up to constant unitary factors, and usually chosen so that $\rho_{n}^{L}>\mathbf{0}, \rho_{n}^{R}>\mathbf{0}$. On the other hand, a Schur function f is associated with a measure μ, defined on \mathbb{T} and taking values in the positive semi-definite matrices in \mathscr{M}, via the Herglotz formula

$$
(\mathbf{1}+z f(z))(\mathbf{1}-z f(z))^{-1}=\int_{\mathbb{T}} \frac{e^{i \theta}+z}{e^{i \theta}-z} d \mu \quad(z \in \mathbb{D})
$$

and this association $f \leftrightarrow \mu$ is a one-to-one correspondence between the set of Schur functions and the set of measures on \mathbb{T} normalized so $\mu(\mathbb{T})=\mathbf{1}$. For such a measure μ, one may define the \mathscr{M}-valued orthogonal polynomials with respect to the \mathscr{M}-valued "inner products"

$$
\langle\langle\varphi, \psi\rangle\rangle_{L}=\int_{\mathbb{T}} \varphi d \mu \psi^{*}, \quad\langle\langle\varphi, \psi\rangle\rangle_{R}=\int_{\mathbb{T}} \varphi^{*} d \mu \psi
$$

The Geronimus theorem states that, in the non-trivial case, the orthonormal polynomials

$$
\begin{array}{lll}
\varphi_{n}^{L}=\kappa_{n}^{L} z^{n}+\text { lower order, }, & \left\langle\left\langle\varphi_{m}^{L}, \varphi_{n}^{L}\right\rangle\right\rangle_{L}=\delta_{m n} \mathbf{1}, & \kappa_{n}^{L}=\left\{\left(\rho_{n}^{L} \cdots \rho_{2}^{L} \rho_{1}^{L}\right)^{*}\right\}^{-1}, \\
\varphi_{n}^{R}=\kappa_{n}^{R} z^{n}+\text { lower order, } & \left\langle\left\langle\varphi_{m}^{R}, \varphi_{n}^{R}\right\rangle\right\rangle_{R}=\delta_{m n} \mathbf{1}, & \kappa_{n}^{R}=\left\{\left(\rho_{1}^{R} \rho_{2}^{R} \cdots \rho_{n}^{R}\right)^{*}\right\}^{-1},
\end{array}
$$

obey the Szegö recurrence formula

$$
z \varphi_{n}^{L}=\left(\rho_{n+1}^{L}\right)^{*} \varphi_{n+1}^{L}+\alpha_{n+1}^{*}\left(\varphi_{n}^{R}\right)^{\dagger}, \quad z \varphi_{n}^{R}=\varphi_{n+1}^{R}\left(\rho_{n+1}^{R}\right)^{*}+\left(\varphi_{n}^{L}\right)^{\dagger} \alpha_{n+1}^{*}
$$

where φ^{\dagger} is the reversed polynomial of φ, defined by $\varphi^{\dagger}(z)=z^{n} \varphi(1 / \bar{z})^{*}$ if $\operatorname{deg}(\varphi)=n$. In this case, $\rho_{n}^{L}, \rho_{n}^{R}$ are sometimes chosen so that $\kappa_{n}^{L}>\mathbf{0}, \kappa_{n}^{R}>\mathbf{0}$. See Damanik-Pushnitski-Simon [8] for details and background, and also Simon [18,19] for further information.

Let g be a function in $H_{\mathscr{M}}^{1}$ having invertible values (a.e.). It admits the polar decompositions $g=u\left(g^{*} g\right)^{1 / 2}=\left(g g^{*}\right)^{1 / 2} u$, where u is the unitary factor, and the allied factorization $g=g_{L} g_{R}$ with a pair of functions g_{L}, g_{R} in $H_{\mathscr{M}}^{2}$ satisfying $g_{L}^{*} g_{L}=g_{R} g_{R}^{*}$. Then g is called rigid if the functions in $H_{\mathscr{M}}^{1}$ sharing with it the same unitary factor u are of the form $g_{L} k g_{R}$ for a constant matrix $k>\mathbf{0}$. Let m be the normalized Lebesgue measure on \mathbb{T}, and write $d \mu=w d m+d \mu_{s}$, where μ_{s} is the singular part. If the Szegó condition $\log \operatorname{det}(w) \in L^{1}$ is fulfilled, there is a unique pair of outer functions h_{L}, h_{R} in $H_{\mathscr{M}}^{2}$, called Szegö functions, such that

$$
w=h_{L}^{*} h_{L}=h_{R} h_{R}^{*}, \quad h_{L}(0)>\mathbf{0}, \quad h_{R}(0)>\mathbf{0}
$$

This note is mainly concerned with a measure μ such that

$$
\begin{equation*}
\mu_{s}=0, \quad \log \operatorname{det}(w) \in L^{1}, \quad h_{L} h_{R} \text { is rigid, } \tag{1.2}
\end{equation*}
$$

which goes back to Levinson-McKean [15]. See Kasahara-Inoue-Pourahmadi [14] for a general concept of \mathscr{M}-valued rigid functions and its application to \mathscr{V}-valued stationary processes.

Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ be a sequence of matrices in \mathscr{M}. The problem of finding the functions in the unit ball of $L_{\mathscr{M}}^{\infty}$ with γ as negatively-indexed Fourier coefficients is called the Nehari problem after Nehari [16]; the Nehari theorem states that a solution exists if and only if an infinite block Hankel matrix $\left(\gamma_{i+j-1}\right)_{i, j=1}^{\infty}$ acts as a contraction on the ℓ^{2}-space of \mathscr{V}-valued sequences. In the so-called completely indeterminate case (see Section 3 below), the problem was fully solved by Adamjan [1], extending the work of Adamjan-Arov-Krein [2], as follows: There is a
unique Schur function f which corresponds to a measure μ obeying (1.2), and the solutions ϕ are parametrized by Schur functions ξ in such a way that

$$
\phi=\left(h_{L}^{*}\right)^{-1} h_{R}+h_{L}(\mathbf{1}-z f)\left\{\xi(\mathbf{1}-z f \xi)^{-1}-(\mathbf{1}-z f)^{-1}\right\}(\mathbf{1}-z f) h_{R} .
$$

See also Arov [3], Arov-Fritzsche-Kirstein [6] and Arov-Dym [4] for relevant results, and Arov-Dym [5] for a textbook account on the Nehari problem.

A sequence γ will be called a Nehari sequence if it gives rise to a completely indeterminate Nehari problem. Adamjan's result defines a one-to-one correspondence $\gamma \leftrightarrow f$ between the set of Nehari sequences and the set of Schur functions restricted by the condition (1.2) for its μ. As will be shown later, if $\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ is a Nehari sequence, $\left(\gamma_{2}, \gamma_{3}, \ldots\right)$ is also a Nehari sequence. Hence, a sequence of Schur functions f_{1}, f_{2}, \ldots can be derived from γ by coefficient stripping, namely, via $\left(\gamma_{n}, \gamma_{n+1}, \ldots\right) \leftrightarrow f_{n}$. They enter the Schur algorithm in the following way.
Theorem 1.1. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ be a Nehari sequence, with associated Szegö functions h_{L}, h_{R}. Then the Schur functions f_{1}, f_{2}, \ldots obtained by coefficient stripping satisfy the Schur recurrence formula (1.1), where $\rho_{n}^{L}, \rho_{n}^{R}$ are determined by the condition

$$
\begin{equation*}
\kappa_{n}^{L} h_{L}(0)>\mathbf{0}, \quad h_{R}(0) \kappa_{n}^{R}>\mathbf{0} . \tag{1.3}
\end{equation*}
$$

From the viewpoint of coefficient stripping for the Schur parameters, the above relation may be regarded as a correspondence $\left(\gamma_{n}, \gamma_{n+1}, \ldots\right) \leftrightarrow\left(\alpha_{n}, \alpha_{n+1}, \ldots\right)$. The condition (1.3) should be compared with the standard choices

$$
\rho_{n}^{L}>\mathbf{0}, \quad \rho_{n}^{R}>\mathbf{0} ; \quad \quad \kappa_{n}^{L}>\mathbf{0}, \quad \kappa_{n}^{R}>\mathbf{0} .
$$

Notice that (1.3) is not a choice but an outcome from coefficient stripping for a Nehari sequence; however, the correspondence $\gamma \leftrightarrow f$ depends on a choice $h_{L}(0)>\mathbf{0}, h_{R}(0)>\mathbf{0}$. In the language of orthogonal polynomials, (1.3) means that

$$
\left\langle\left\langle\left(\varphi_{n}^{L}\right)^{\dagger}, h_{L}^{-1}\right\rangle\right\rangle_{R}>\mathbf{0}, \quad\left\langle\left\langle h_{R}^{-1},\left(\varphi_{n}^{R}\right)^{\dagger}\right\rangle\right\rangle_{L}>\mathbf{0},
$$

which might be viewed as a natural choice; h_{L}^{-1}, h_{R}^{-1} are the "limits" of $\left(\varphi_{n}^{L}\right)^{\dagger},\left(\varphi_{n}^{R}\right)^{\dagger}$ as $n \rightarrow \infty$.
The following is a fundamental result on the inheritance of property (1.2) under coefficient stripping for the Schur parameters $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$. Note that $\rho_{n}^{L}, \rho_{n}^{R}$ can be freely chosen here.
Theorem 1.2. Let f_{1}, f_{2}, \ldots be Schur functions obeying the Schur recurrence formula (1.1). Then either all of them correspond to measures satisfying (1.2), or none of them do.

After some preparation in Section 2, the above theorems will be established in Section 3. In Appendix, a few simple examples will be given in order to illustrate the correspondence

$$
\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right) \quad \leftrightarrow \quad \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)
$$

The latter is interpreted as the partial autocorrelation function in the finite prediction problem for a \mathscr{V}-valued stationary process, and a Nehari sequence plays a crucial role there if the spectral measure satisfies (1.2). In particular, α_{n} can be expressed in terms of ($\gamma_{n}, \gamma_{n+1}, \ldots$) and also $h_{L}(\mathbf{0}), h_{R}(\mathbf{0})$, subject to $\kappa_{n}^{L}>\mathbf{0}, \kappa_{n}^{R}>\mathbf{0}$, see Inoue-Kasahara-Pourahmadi [11]. Recently, the authors [13] proved Baxter's theorem which asserts that γ is summable if and only if so is α. These results mostly answer an open question posed by the second author [7], while an important problem remains open: Strong Szegő theorem with a Nehari sequence.

2. γ-generating matrices

In this section, we prepare some basic matters on the γ-generating matrices, which are useful for studying completely indeterminate Nehari problems. Details and proofs omitted here can be found in Arov-Dym [5] and Dubovoj-Fritzsche-Kirstein [9].

Let \mathscr{V} be a complex Euclidean space and \mathscr{M} the space of square matrices of corresponding order, in which a matrix a is assigned the Euclidean norm $\|a\|_{\mathscr{M}}$ as a bounded linear operator $x \mapsto a x$ on \mathscr{V}. The following three conditions are equivalent:

$$
\|a\|_{\mathscr{M}} \leq 1 ; \quad a^{*} a \leq \mathbf{1} ; \quad a a^{*} \leq \mathbf{1} .
$$

For $1 \leq p \leq \infty$, let L^{p} be the standard Lebesgue space on the unit circle \mathbb{T}, and H^{p} the associated Hardy space, which is a closed subspace of L^{p} composed of functions having analytic extensions into the open unit disc \mathbb{D}. Also, let N^{+}be the Smirnov class, which is an algebra of all quotients ξ / η with functions ξ, η in H^{∞}, where η is outer. These three kinds of spaces meet in

$$
H^{p}=L^{p} \cap N^{+}
$$

Let $L_{\mathscr{M}}^{p}, H_{\mathscr{M}}^{p}$ and $N_{\mathscr{M}}^{+}$denote the spaces of \mathscr{M}-valued functions with entries in L^{p}, H^{p} and N^{+}, respectively. By introducing an appropriate norm, $L_{\mathscr{M}}^{p}$ becomes a Banach space with $H_{\mathscr{M}}^{p}$ a closed subspace. As for $L_{\mathscr{M}}^{\infty}$, set

$$
\|f\|_{L_{\mathscr{M}}^{\infty}}=\operatorname{ess} \sup \left\{\|f(z)\|_{\mathscr{M}} \mid z \in \mathbb{T}\right\} .
$$

Let $S_{\mathscr{M}}$ be the set of Schur functions, in other words, the unit ball of $H_{\mathscr{M}}^{\infty}$. For a function f in $S_{\mathscr{M}}$, the following three conditions are equivalent:

$$
\log \left(1-\|f\|_{\mathscr{M}}\right) \in L^{1} ; \quad \log \operatorname{det}\left(\mathbf{1}-f^{*} f\right) \in L^{1} ; \quad \log \operatorname{det}\left(\mathbf{1}-f f^{*}\right) \in L^{1}
$$

Recall that the Herglotz formula defines a one-to-one correspondence $f \leftrightarrow \mu$ between $S_{\mathscr{M}}$ and the set of measures on \mathbb{T} with $\mu(\mathbb{T})=\mathbf{1}$. With $d \mu=w d m+d \mu_{s}$ as before, the Szegő condition $\log \operatorname{det}(w) \in L^{1}$ is equivalent to one (hence, all) of the three conditions just mentioned. For this reason, $\log \left(1-\|f\|_{\mathscr{M}}\right) \in L^{1}$ will also be called the Szegő condition.

A 2×2 block matrix A with entries in \mathscr{M} is called J-unitary if $A^{*} J A=J$, where

$$
J=\left(\begin{array}{rr}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right) .
$$

It brings the fractional linear transformation T_{A} defined by

$$
T_{A}(x)=(a x+b)(c x+d)^{-1} \quad \text { with } \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

which acts as a bijection from the unit ball of \mathscr{M} to itself; $c x+d$ is invertible if x lies in the ball. If A and B are J-unitary, $A B$ is also J-unitary, and $T_{A B}=T_{A} T_{B}$. Notice that A is J-unitary if and only if A^{*} is so. These basic matters can be found in [5, Sections 2.2 and 2.3].

According to Arov [3], a γ-generating matrix \mathfrak{A} is a matrix-valued function on \mathbb{T} of the form

$$
\mathfrak{A}=\left(\begin{array}{ll}
a_{L}^{*} & b_{L}^{*} \\
b_{R} & a_{R}
\end{array}\right),
$$

where $a_{L}, a_{R}, b_{L}, b_{R}$ are functions in $N_{\mathscr{M}}^{+}, a_{L}, a_{R}$ are outer, and \mathfrak{A} has J-unitary values (a.e), so

$$
a_{L}^{*} a_{L}-b_{L}^{*} b_{L}=\mathbf{1}, \quad a_{R} a_{R}^{*}-b_{R} b_{R}^{*}=\mathbf{1}, \quad b_{L} a_{L}^{-1}=a_{R}^{-1} b_{R}
$$

Put $\chi=-b_{L} a_{L}^{-1}=-a_{R}^{-1} b_{R}$. Then the functions a_{L}^{-1}, a_{R}^{-1} and χ lie in $S_{\mathscr{M}}$, in view of

$$
\mathbf{1}-\chi^{*} \chi=\left(a_{L}^{-1}\right)^{*}\left(a_{L}^{-1}\right), \quad \mathbf{1}-\chi \chi^{*}=\left(a_{R}^{-1}\right)\left(a_{R}^{-1}\right)^{*} .
$$

Also, since a_{L} and a_{R} are outer, χ satisfies $\log \left(1-\|\chi\|_{\mathscr{M}}\right) \in L^{1}$. Such a function χ can be traced back to a γ-generating matrix \mathfrak{A}, which is unique up to a constant unitary block-diagonal left factor depending on the choice of a_{L} and a_{R}. A γ-generating matrix \mathfrak{A} is called normalized if $a_{L}(0)>\mathbf{0}, a_{R}(0)>\mathbf{0}, b_{L}(0)=\mathbf{0}$ and $b_{R}(0)=\mathbf{0}$. Every γ-generating matrix can be normalized by multiplying by an appropriate constant J-unitary matrix on the right. The important point here is that all the functions in $T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$ have common negatively-indexed Fourier coefficients. Indeed, the difference of two functions in $T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$ is analytic: For any Schur functions ξ, η,

$$
T_{\mathfrak{A}}(\xi)-T_{\mathfrak{A}}(\eta)=a_{L}^{-1}\left\{\xi(\mathbf{1}-\chi \xi)^{-1}-\eta(\mathbf{1}-\chi \eta)^{-1}\right\} a_{R}^{-1} .
$$

A γ-generating matrix \mathfrak{A} is called regular if $T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)=T_{\mathfrak{B}}\left(S_{\mathscr{M}}\right)$ whenever $T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right) \subset T_{\mathfrak{B}}\left(S_{\mathscr{M}}\right)$ holds for a γ-generating matrix \mathfrak{B} (cf. [3, Theorem 3]). As one might expect, the solution set of the Nehari problem in question can be expressed as $T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$ for some regular γ-generating matrix \mathfrak{A}. Moreover, \mathfrak{A} can be normalized without changing its range since $T_{\mathfrak{A} C}\left(S_{\mathscr{M}}\right)=T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$ holds for every constant J-unitary matrix \mathfrak{C}. See [5, Section 7.2] for more information.

It is convenient to parametrize normalized γ-generating matrices as follows.
Lemma 2.1. Between the normalized γ-generating matrices \mathfrak{A} and the Schur functions f obeying the Szegö condition $\log \left(1-\|f\|_{\mathscr{M}}\right) \in L^{1}$, there is a one-to-one correspondence

$$
\mathfrak{A}=\left(\begin{array}{rr}
s_{L}^{*} & -\bar{z} t_{L}^{*} \\
-z t_{R} & s_{R}
\end{array}\right) \quad \leftrightarrow \quad f=t_{L} s_{L}^{-1}=s_{R}^{-1} t_{R},
$$

via functions $s_{L}, s_{R}, t_{L}, t_{R}$ in $N_{\mathscr{M}}^{+}$such that s_{L}, s_{R} are outer, $s_{R}(0)>\mathbf{0}, s_{L}(0)>\mathbf{0}$, and

$$
s_{L}^{*} s_{L}-t_{L}^{*} t_{L}=\mathbf{1}, \quad s_{R} s_{R}^{*}-t_{R} t_{R}^{*}=\mathbf{1}, \quad t_{L} s_{L}^{-1}=s_{R}^{-1} t_{R}
$$

In this case, Szegö functions h_{L}, h_{R} of μ corresponding to f can be expressed as

$$
\begin{equation*}
h_{L}=\left(s_{L}-z t_{L}\right)^{-1}, \quad h_{R}=\left(s_{R}-z t_{R}\right)^{-1} . \tag{2.1}
\end{equation*}
$$

Proof. The correspondence $\mathfrak{A} \leftrightarrow f$ is plain except for the following point: If f obeys the Szegó condition, there are unique outer functions $s_{L}, s_{R} \in N_{\mathscr{M}}^{+}$with $s_{L}(0)>\mathbf{0}, s_{R}(0)>\mathbf{0}$ such that

$$
s_{L} s_{L}^{*}=\left(\mathbf{1}-f^{*} f\right)^{-1}, \quad s_{R}^{*} s_{R}=\left(\mathbf{1}-f f^{*}\right)^{-1}
$$

(cf. [5, Section 3.16]). As for Szegő functions, notice that both $s_{L}-z t_{L}$ and $s_{R}-z t_{R}$ are outer because $1-z f$ is so. Since $w=h_{L}^{*} h_{L}=h_{R} h_{R}^{*}$ imply

$$
\begin{aligned}
& h_{L}^{*} h_{L}=\left(\mathbf{1}-\bar{z} f^{*}\right)^{-1}\left(\mathbf{1}-f^{*} f\right)(\mathbf{1}-z f)^{-1}=\left(s_{L}^{*}-\bar{z} t_{L}^{*}\right)^{-1}\left(s_{L}-z t_{L}\right)^{-1}, \\
& h_{R} h_{R}^{*}=(\mathbf{1}-z f)^{-1}\left(\mathbf{1}-f f^{*}\right)\left(\mathbf{1}-\bar{z} f^{*}\right)^{-1}=\left(s_{R}-z t_{R}\right)^{-1}\left(s_{R}^{*}-\bar{z} t_{R}^{*}\right)^{-1},
\end{aligned}
$$

the last statement follows from the uniqueness of outer functions.

Accordingly, a normalized γ-generating matrix \mathfrak{A} and a measure μ with the Szegő condition $\log (w) \in L^{1}$ are associated with each other, via a Schur function f obeying $\log \left(1-\|f\|_{\mathscr{M}}\right) \in L^{1}$. Recall $d \mu=w d m+d \mu_{s}$, where μ_{s} is the singular part. Since $w=h_{L}^{*} h_{L}=h_{R} h_{R}^{*}$, the product $h_{L} h_{R}$ admits the polar decompositions $h_{L} h_{R}=u\left(h_{R}^{*} h_{R}\right)=\left(h_{L} h_{L}^{*}\right) u$ with the unitary factor

$$
u=h_{L}\left(h_{R}^{*}\right)^{-1}=\left(h_{L}^{*}\right)^{-1} h_{R} .
$$

Arov-Dym [4, Theorem 5.5] showed that \mathfrak{A} is regular if and only if $\mu_{s}=0$ and index $\{u\}=0$, which means the following property: If two functions g_{L}, g_{R} in $H_{\mathscr{M}}^{2}$ have invertible values (a.e.) and satisfy $u=\left(g_{L}^{*}\right)^{-1} g_{R}$, they are expressed as $g_{L}=h_{L} c^{*}, g_{R}=c h_{R}$ with an invertible matrix c.

The regularity can also be characterized by rigidity of the product of Szegő functions.
Lemma 2.2. A normalized γ-generating matrix \mathfrak{A} is regular if and only if μ satisfies (1.2).
Proof. It is to be shown that index $\{u\}=0$ if and only if $h_{L} h_{R}$ is rigid. Let g be a function in $H_{\mathscr{M}}^{1}$ having invertible values (a.e.). It can be expressed as $g=g_{L} g_{R}$, where g_{L}, g_{R} lie in $H_{\mathscr{M}}^{2}$ and obey $g_{L}^{*} g_{L}=g_{R} g_{R}^{*}$ (cf. Helson-Lowdenslager [10, Theorem 10]). Then $\left(g_{L}^{*}\right)^{-1} g_{R}$ is its unitary factor. Thus, if index $\{u\}=0$ holds, $u=\left(g_{L}^{*}\right)^{-1} g_{R}$ makes $g=h_{L}\left(c^{*} c\right) h_{R}$ with c invertible, so $h_{L} h_{R}$ is rigid. For the converse half, let $u=\left(g_{L}^{*}\right)^{-1} g_{R}$. If $h_{L} h_{R}$ is rigid, $g_{L} g_{R}=h_{L} k h_{R}$ for some $k>\mathbf{0}$, whence

$$
g_{L} g_{L}^{*}=h_{L} k h_{L}^{*}, \quad g_{R}^{*} g_{R}=h_{R}^{*} k h_{R}
$$

Further, $g_{L} g_{R}$ is also rigid, and g_{L}, g_{R} are outer (cf. Kasahara-Inoue-Pourahmadi [14, p. 294]). Hence, $g_{L}=h_{L} c_{L}^{*}$ and $g_{R}=c_{R} h_{R}$ hold for constants c_{L}, c_{R} with $k=c_{L}^{*} c_{L}=c_{R}^{*} c_{R}$, but these lead to $c_{L}^{-1} c_{R}=h_{L}^{*} u h_{R}^{-1}=1$, so $c_{L}=c_{R}$, concluding that index $\{u\}=0$.

3. Nehari problem

In this section, we discuss coefficient stripping in a completely indeterminate Nehari problem, and prove Theorems 1.1 and 1.2. See Arov-Dym [5] for a textbook account of the problem.

Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ be a sequence of matrices in \mathscr{M}. The Nehari problem is formulated as the problem of finding the functions in the unit ball of $L_{\mathscr{M}}^{\infty}$ having γ as negatively-indexed Fourier coefficients, that is, describing the solution set

$$
\mathcal{N}(\gamma)=\left\{\phi \in L_{\mathscr{M}}^{\infty} \mid\|\phi\|_{L_{\mathscr{M}}^{\infty}} \leq 1 \text { and } \gamma_{k}=\int_{\mathbb{T}} z^{k} \phi d m \text { for } k=1,2, \ldots\right\} .
$$

In the solvable case, the mean values of the solutions form a matrix ball, namely,

$$
\left\{\int_{\mathbb{T}} \phi d m \mid \phi \in \mathcal{N}(\gamma)\right\}=\left\{c+r_{L} x r_{R} \mid x \in \mathscr{M},\|x\|_{\mathscr{M}} \leq 1\right\}
$$

for some matrices c, r_{L}, r_{R} in \mathscr{M} with $r_{L} \geq \mathbf{0}, r_{R} \geq \mathbf{0}$. The problem is called determinate if it has a unique solution, so indeterminate otherwise, and completely indeterminate if $r_{L}>\mathbf{0}, r_{R}>\mathbf{0}$. Let us call γ a Nehari sequence if it provides a completely indeterminate Nehari problem. As the name indicates, a γ-generating matrix \mathfrak{A} actually generates a Nehari sequence γ such that $T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right) \subset \mathcal{N}(\gamma)$, that is,

$$
\gamma_{k}=\int_{\mathbb{T}} z^{k} T_{\mathfrak{A}}(\xi) d m \quad k=1,2, \ldots
$$

where ξ is a Schur function, and γ does not depend on the choice of ξ (cf. [5, Theorem 7.22]).
A fractional linear parametrization of the solution set of a completely indeterminate Nehari problem was obtained by Adamjan-Arov-Krein [2] in the scalar case, and by Adamjan [1] in the matrix/operator case. To spell it out, for a Nehari sequence γ, there is a unique normalized regular γ-generating matrix \mathfrak{A} such that

$$
\mathcal{N}(\gamma)=T_{\mathfrak{A}}\left(S_{\mathscr{K}}\right)
$$

Notice that, by Lemmas 2.1 and $2.2, \gamma$ is associated with a Schur function f, and its measure μ satisfies (1.2). In fact, the fractional linear transformation $T_{\mathfrak{A}}$ was originally derived from

$$
\begin{equation*}
T_{\mathfrak{A}}(\xi)=\left(h_{L}^{*}\right)^{-1} h_{R}+h_{L}(\mathbf{1}-z f)\left\{\xi(\mathbf{1}-z f \xi)^{-1}-(\mathbf{1}-z f)^{-1}\right\}(\mathbf{1}-z f) h_{R}, \tag{3.1}
\end{equation*}
$$

where h_{L}, h_{R} are Szegő functions of μ. A solution $T_{\mathfrak{A}}(\xi)$ becomes a unitary factor of some rigid function in $H_{\mathscr{M}}^{1}$ (in other words, index $\left\{T_{\mathfrak{A}}(\xi)\right\}=0$) if and only if ξ is a constant unitary matrix. As for the matrix ball stated above,

$$
c=\int_{\mathbb{T}}\left(h_{L}^{*}\right)^{-1} h_{R} d m-\left(h_{L} h_{R}\right)(0), \quad r_{L}=h_{L}(0), \quad r_{R}=h_{R}(0)
$$

To parametrize the interior of the matrix ball, write

$$
\mathbb{D}_{\mathscr{M}}=\left\{\zeta \in \mathscr{M} \mid\|\zeta\|_{\mathscr{M}}<1\right\} .
$$

A Nehari sequence has the following one-step extension.
Proposition 3.1. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ be a Nehari sequence, f its Schur function, and h_{L}, h_{R} the associated Szegö functions. Also, let $\zeta \in \mathbb{D}_{\mathscr{M}}$ and define

$$
\omega_{\zeta}=\int_{\mathbb{T}}\left(h_{L}^{*}\right)^{-1} h_{R} d m-h_{L}(0)(\mathbf{1}-\zeta) h_{R}(0)
$$

Then $\hat{\gamma}=\left(\omega_{\zeta}, \gamma_{1}, \gamma_{2}, \ldots\right)$ is a Nehari sequence, and its Schur function \hat{f} is expressed as

$$
\hat{f}=\left(\rho_{R}^{*}\right)^{-1}\left(z f-\zeta^{*}\right)(\mathbf{1}-\zeta z f)^{-1} \rho_{L}
$$

where ρ_{L}, ρ_{R} are determined by the condition

$$
\rho_{L} \rho_{L}^{*}=\mathbf{1}-\zeta \zeta^{*}, \quad h_{L}(0) \rho_{L}>\mathbf{0}, \quad \rho_{R}^{*} \rho_{R}=\mathbf{1}-\zeta^{*} \zeta, \quad \rho_{R} h_{R}(0)>\mathbf{0}
$$

Proof. Let \mathfrak{A} be a normalized regular γ-generating matrix for γ, so $\mathcal{N}(\gamma)=T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$, and write

$$
\mathfrak{A}=\left(\begin{array}{rr}
s_{L}^{*} & -\bar{z} t_{L}^{*} \\
-z t_{R} & s_{R}
\end{array}\right), \quad \mathfrak{C}=\left(\begin{array}{rr}
\left(\rho_{L}^{*}\right)^{-1} & \zeta \rho_{R}^{-1} \\
\zeta^{*}\left(\rho_{L}^{*}\right)^{-1} & \rho_{R}^{-1}
\end{array}\right) .
$$

It follows from (2.1) that

$$
\rho_{L}^{-1} s_{L}(0)>\mathbf{0}, \quad s_{R}(0) \rho_{R}^{-1}>\mathbf{0} .
$$

Using the product $\mathfrak{A C}$, define a normalized γ-generating matrix $\hat{\mathfrak{A}}$ by

$$
\mathfrak{A C C}=\left(\begin{array}{rr}
\hat{s}_{L}^{*} & -\hat{t}_{L}^{*} \\
-\hat{t}_{R} & \hat{s}_{R}
\end{array}\right), \quad \begin{aligned}
& \\
&
\end{aligned} \quad \hat{\mathfrak{A}}=\left(\begin{array}{rr}
\hat{s}_{L}^{*} & -\bar{z} \hat{t}_{L}^{*} \\
-z \hat{t}_{R} & \hat{s}_{R}
\end{array}\right),
$$

in which

$$
\left\{\begin{array} { l }
{ \hat { s } _ { L } = \rho _ { L } ^ { - 1 } (s _ { L } - \zeta z t _ { L }) } \tag{3.2}\\
{ \hat { t } _ { L } = (\rho _ { R } ^ { * }) ^ { - 1 } (z t _ { L } - \zeta ^ { * } s _ { L }) , }
\end{array} \quad \left\{\begin{array}{l}
\hat{s}_{R}=\left(s_{R}-z t_{R} \zeta\right) \rho_{R}^{-1} \\
\hat{t}_{R}=\left(z t_{R}-s_{R} \zeta^{*}\right)\left(\rho_{L}^{*}\right)^{-1}
\end{array}\right.\right.
$$

Then $z T_{\hat{\mathfrak{A}}}(\mathbf{1})=T_{\mathfrak{A} \mathfrak{C}}(z \mathbf{1})$. Also, $\xi=T_{\mathfrak{C}}(z \mathbf{1})$ lies in $S_{\mathscr{M}}$ and satisfies $\xi(0)=\zeta$. Hence, by (3.1),

$$
\int_{\mathbb{T}} z T_{\hat{\mathfrak{A}}}(\mathbf{1}) d m=\int_{\mathbb{T}} T_{\mathfrak{A}}(\xi) d m=\int_{\mathbb{T}}\left(h_{L}^{*}\right)^{-1} h_{R} d m-h_{L}(0)(\mathbf{1}-\xi(0)) h_{R}(0)=\omega_{\zeta},
$$

and $\mathcal{N}(\gamma)=T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$ implies that, for $k=1,2, \ldots$,

$$
\int_{\mathbb{T}} z^{k+1} T_{\hat{\mathfrak{A}}}(\mathbf{1}) d \mu=\int_{\mathbb{T}} z^{k} T_{\mathfrak{A}}(\xi) d \mu=\gamma_{k}
$$

Thus, $T_{\hat{\mathfrak{A}}}\left(S_{\mathscr{M}}\right) \subset \mathcal{N}(\hat{\gamma})$, and $\hat{\gamma}$ is a Nehari sequence (cf. [5, Theorem 7.22]). To prove the opposite inclusion, take a solution ϕ from $\mathcal{N}(\hat{\gamma})$. Since $z \phi$ lies in $\mathcal{N}(\gamma)$, there is a function η in $S_{\mathscr{M}}$ such that $z \phi=T_{\mathfrak{A}}(\eta)$, and the value $\eta(0)=\zeta$ is evaluated from

$$
\omega_{\zeta}=\int_{\mathbb{T}} z \phi d m=\int_{\mathbb{T}} T_{\mathfrak{A}}(\eta) d m=\int_{\mathbb{T}}\left(h_{L}^{*}\right)^{-1} h_{R} d m-h_{L}(0)(\mathbf{1}-\eta(0)) h_{R}(0),
$$

so that $\check{\eta}=\bar{z} T_{\mathfrak{C}^{-1}}(\eta)$ is a Schur function:

$$
\check{\eta}=\bar{z} T_{\mathfrak{C}^{-1}}(\eta)=z^{-1} \rho_{L}^{-1}(\eta-\zeta)\left(\mathbf{1}-\zeta^{*} \eta\right)^{-1} \rho_{R}^{*} .
$$

Then $T_{\mathfrak{A}}(\eta)=T_{\mathfrak{A} \mathfrak{C}}(z \check{\eta})=z T_{\hat{\mathfrak{A}}}(\check{\eta})$, and $\phi=T_{\hat{\mathfrak{A}}}(\check{\eta})$ shows that $\mathcal{N}(\hat{\gamma}) \subset T_{\hat{\mathfrak{A}}}\left(S_{\mathscr{M}}\right)$. Consequently, $\mathcal{N}(\hat{\gamma})=T_{\hat{\mathfrak{A}}}\left(S_{\mathscr{M}}\right)$, and $\hat{\mathfrak{A}}$ is a normalized regular γ-generating matrix for $\hat{\gamma}$. To complete the proof, use Lemma 2.1 to write down $\hat{f}=\hat{t}_{L} \hat{s}_{L}^{-1}$ in terms of $f=t_{L} s_{L}^{-1}$.

Theorem 1.1 will be proved using the following basic facts. Recall ω_{ζ} from Proposition 3.1.
Lemma 3.2. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ be a Nehari sequence. Then the following hold:
(i) $\check{\gamma}=\left(\gamma_{2}, \gamma_{3}, \ldots\right)$ is a Nehari sequence.
(ii) $\hat{\gamma}=\left(\omega, \gamma_{1}, \gamma_{2}, \ldots\right)$ is a Nehari sequence if and only if ω lies in $\left\{\omega_{\zeta} \mid \zeta \in \mathbb{D}_{\mathscr{M}}\right\}$.

Proof. Let \mathfrak{A} be a normalized regular γ-generating matrix for γ, so $\mathcal{N}(\gamma)=T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$.
(i) $\check{\gamma}$ is generated by a γ-generating matrix \mathfrak{B} such that $z T_{\mathfrak{A}}(\mathbf{1})=T_{\mathfrak{B}}(z \mathbf{1})$; it is obtained by

$$
\mathfrak{A}=\left(\begin{array}{rr}
s_{L}^{*} & -\bar{z} t_{L}^{*} \\
-z t_{R} & s_{R}
\end{array}\right), \quad \mathfrak{B}=\left(\begin{array}{rr}
s_{L}^{*} & -t_{L}^{*} \\
-t_{R} & s_{R}
\end{array}\right) .
$$

(ii) If $\hat{\gamma}$ is a Nehari sequence, it is associated with a normalized regular γ-generating matrix $\hat{\mathfrak{A}}$. Since $z T_{\hat{\mathfrak{l}}}(\mathbf{1})$ lies in $\mathcal{N}(\gamma)$, there is a function ξ in $S_{\mathscr{M}}$ such that $z T_{\hat{\mathfrak{A}}}(\mathbf{1})=T_{\mathfrak{A}}(\xi)$. By (3.1),

$$
\omega=\int_{\mathbb{T}} z T_{\hat{\mathfrak{A}}}(\mathbf{1}) d m=\int_{\mathbb{T}} T_{\mathfrak{A}}(\xi) d m=\int_{\mathbb{T}}\left(h_{L}^{*}\right)^{-1} h_{R} d m-h_{L}(0)(\mathbf{1}-\xi(0)) h_{R}(0) .
$$

Here, ξ is not a constant unitary matrix since $T_{\hat{\mathfrak{A}}}(\mathbf{1})=\left(\hat{h}_{L}^{*}\right)^{-1} \hat{h}_{R}$ shows that $z T_{\hat{\mathfrak{A}}}(\mathbf{1})$ is the unitary factor of a non-rigid function $z \hat{h}_{L} \hat{h}_{R}$, where \hat{h}_{L}, \hat{h}_{R} are Szegő functions associated with $\hat{\gamma}$. Hence, ω lies in $\left\{\omega_{\zeta} \mid \zeta \in \mathbb{D}_{\mathcal{M}}\right\}$. The other half has been established in the previous assertion.

Proof of Theorem 1.1. Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ be a Nehari sequence, and h_{L}, h_{R} the associated Szegő functions. By Lemma 3.2 (i), ($\gamma_{n}, \gamma_{n+1}, \ldots$) remains a Nehari sequence for every $n=1,2, \ldots$. Therefore, each of them has a Schur function f_{n} and the associated Szegő functions h_{n}^{L}, h_{n}^{R}. Since $\left(\gamma_{n}, \gamma_{n+1}, \ldots\right)$ is a one-step extension of $\left(\gamma_{n+1}, \gamma_{n+2}, \ldots\right)$, by Lemma 3.2 (ii),

$$
\gamma_{n}=\int_{\mathbb{T}}\left\{\left(h_{n+1}^{L}\right)^{*}\right\}^{-1} h_{n+1}^{R} d m-h_{n+1}^{L}(0)(\mathbf{1}-\zeta) h_{n+1}^{R}(0)
$$

for some matrix ζ in $\mathbb{D}_{\mathscr{M}}$. Then, by Proposition 3.1,

$$
f_{n}=\left\{\left(\rho_{n}^{R}\right)^{*}\right\}^{-1}\left(z f_{n+1}-\zeta^{*}\right)\left(\mathbf{1}-\zeta z f_{n+1}\right)^{-1} \rho_{n}^{L},
$$

where $\rho_{n}^{L}, \rho_{n}^{R}$ are determined by the condition

$$
\rho_{n}^{L}\left(\rho_{n}^{L}\right)^{*}=\mathbf{1}-\zeta \zeta^{*}, \quad h_{n+1}^{L}(0) \rho_{n}^{L}>\mathbf{0}, \quad\left(\rho_{n}^{R}\right)^{*} \rho_{n}^{R}=\mathbf{1}-\zeta^{*} \zeta, \quad \rho_{n}^{R} h_{n+1}^{R}(0)>\mathbf{0},
$$

and the parameter $\alpha_{n}=f_{n}(0)$ satisfies $\alpha_{n}=-\left\{\left(\rho_{n}^{R}\right)^{*}\right\}^{-1} \zeta^{*} \rho_{n}^{L}=-\rho_{n}^{R} \zeta^{*}\left\{\left(\rho_{n}^{L}\right)^{*}\right\}^{-1}$, whence

$$
\left(\rho_{n}^{L}\right)^{*} \rho_{n}^{L}=\mathbf{1}-\alpha_{n}^{*} \alpha_{n}, \quad \rho_{n}^{R}\left(\rho_{n}^{R}\right)^{*}=\mathbf{1}-\alpha_{n} \alpha_{n}^{*}
$$

The above formula is inverted as the Schur recursion (1.1). Also, by (2.1) and (3.2),

$$
h_{n}^{L}(0)=h_{n+1}^{L}(0) \rho_{n}^{L}, \quad h_{n}^{R}(0)=\rho_{n}^{R} h_{n+1}^{R}(0)
$$

Thus, by induction, (1.3) holds.
Theorem 1.2 will be proved using the following basic fact.
Lemma 3.3. Let γ be a Nehari sequence, f its Schur function, and h_{L}, h_{R} the associated Szegő functions. Also, let $u_{L}, u_{R}, v_{L}, v_{R}$ be constant unitary matrices such that

$$
u_{L} h_{L}(0) v_{R}>\mathbf{0}, \quad v_{L} h_{R}(0) u_{R}>\mathbf{0} .
$$

Then $\tilde{\gamma}=u_{L} \gamma u_{R}$ is a Nehari sequence, and it corresponds to a Schur function $\tilde{f}=v_{L} f v_{R}$.
Proof. Let \mathfrak{A} be a normalized regular γ-generating matrix for γ, so $\mathcal{N}(\gamma)=T_{\mathfrak{A}}\left(S_{\mathscr{M}}\right)$. Write

$$
\mathfrak{U}=\left(\begin{array}{ll}
u_{L} & \mathbf{0} \\
\mathbf{0} & u_{R}^{*}
\end{array}\right), \quad \mathfrak{A}=\left(\begin{array}{rr}
s_{L}^{*} & -\bar{z} t_{L}^{*} \\
-z t_{R} & s_{R}
\end{array}\right), \quad \mathfrak{V}=\left(\begin{array}{ll}
v_{R} & \mathbf{0} \\
\mathbf{0} & v_{L}^{*}
\end{array}\right),
$$

and set $\tilde{\mathfrak{A}}=\mathfrak{U} \mathfrak{A} \mathfrak{V}$. Then $T_{\tilde{\mathfrak{A}}}\left(S_{\mathscr{M}}\right)=T_{\mathfrak{U}} \mathcal{N}(\gamma)=\mathcal{N}(\tilde{\gamma})$, and (2.1) shows that

$$
v_{R}^{*} s_{L}(0) u_{L}^{*}>\mathbf{0}, \quad u_{R}^{*} s_{R}(0) v_{L}^{*}>\mathbf{0} .
$$

So, $\tilde{\gamma}$ is a Nehari sequence (cf. [5, Theorem 7.22]), and $\tilde{\mathfrak{A}}$ is its normalized regular γ-generating matrix. By Lemma 2.1, $\tilde{\gamma}$ corresponds to $\tilde{f}=v_{L} f v_{R}$.

Proof of Theorem 1.2. Let f be a Schur function with $\alpha=f(0)$ lying in $\mathbb{D}_{\mathscr{M}}$. Set

$$
\check{f}=z^{-1} \rho_{R}^{-1}(f-\alpha)\left(\mathbf{1}-\alpha^{*} f\right)^{-1} \rho_{L}^{*}
$$

after taking some matrices ρ_{L}, ρ_{R} such that $\rho_{L}^{*} \rho_{L}=\mathbf{1}-\alpha^{*} \alpha$ and $\rho_{R} \rho_{R}^{*}=\mathbf{1}-\alpha \alpha^{*}$. It is enough to consider these two Schur functions. Write $\mu, \check{\mu}$ for the corresponding measures. First, assume that μ satisfies (1.2). Pick ϱ_{L}, ϱ_{R} so that

$$
\varrho_{L}^{*} \varrho_{L}=\mathbf{1}-\alpha^{*} \alpha, \quad h_{L}(0) \varrho_{L}^{-1}>\mathbf{0}, \quad \varrho_{R} \varrho_{R}^{*}=\mathbf{1}-\alpha_{n} \alpha_{n}^{*}, \quad \varrho_{R}^{-1} h_{R}(0)>\mathbf{0},
$$

where h_{L}, h_{R} are Szegő functions of μ. Then there are constant unitary matrices v_{L}, v_{R} such that

$$
\check{f}=v_{L}\left\{z^{-1} \varrho_{R}^{-1}(f-\alpha)\left(\mathbf{1}-\alpha^{*} f\right)^{-1} \varrho_{L}^{*}\right\} v_{R} .
$$

So, by Theorem 1.1 and Lemmas 2.1, 2.2 and 3.3, $\check{\mu}$ satisfies (1.2). Let us reuse $\varrho_{L}, \varrho_{R}, v_{L}, v_{R}$ for other constants. Assume that $\check{\mu}$ satisfies (1.2). Also, let $\breve{h}_{L}, \breve{h}_{R}$ be its Szegő functions, and put

$$
\zeta=-\rho_{L} \alpha^{*}\left(\rho_{R}^{*}\right)^{-1}=-\left(\rho_{L}^{*}\right)^{-1} \alpha^{*} \rho_{R}
$$

which lies in $\mathbb{D}_{\mathscr{M}}$ and obeys $\rho_{L} \rho_{L}^{*}=\mathbf{1}-\zeta \zeta^{*}$ and $\rho_{R}^{*} \rho_{R}=\mathbf{1}-\zeta^{*} \zeta$. Pick ϱ_{L}, ϱ_{R} so that

$$
\varrho_{L} \varrho_{L}^{*}=\mathbf{1}-\zeta \zeta^{*}, \quad \check{h}_{L}(0) \varrho_{L}>\mathbf{0}, \quad \varrho_{R}^{*} \varrho_{R}=\mathbf{1}-\zeta^{*} \zeta, \quad \varrho_{R} \check{h}_{R}(0)>\mathbf{0}
$$

Then, for some constant unitary matrices v_{L}, v_{R},

$$
f=v_{L}\left\{\left(\varrho_{R}^{*}\right)^{-1}\left(z \check{f}-\zeta^{*}\right)(\mathbf{1}-\zeta z \check{f})^{-1} \varrho_{L}\right\} v_{R}
$$

Hence, by Proposition 3.1 and Lemmas 2.1, 2.2 and 3.3, μ satisfies (1.2).

Appendix. Examples

Let us write $a_{n}=-\alpha_{n}^{*}$, the Verblunsky coefficients in the Szegő recurrence formulas

$$
\varphi_{n+1}^{L}=\left\{\left(\rho_{n+1}^{L}\right)^{*}\right\}^{-1}\left\{z \varphi_{n}^{L}+a_{n+1}\left(\varphi_{n}^{R}\right)^{\dagger}\right\}, \quad \varphi_{n+1}^{R}=\left\{z \varphi_{n}^{R}+\left(\varphi_{n}^{L}\right)^{\dagger} a_{n+1}\right\}\left\{\left(\rho_{n+1}^{R}\right)^{*}\right\}^{-1},
$$

where φ^{\dagger} stands for the reversed polynomials of φ, as before. By repeated use of Proposition 3.1 with a fixed parameter ζ in $\mathbb{D}_{\mathscr{M}}$, from the free case 0), one can construct the following BernsteinSzegő models 1), 2), 3) of degree 1, 2, 3, respectively, illustrating the correspondence between $a=\left(a_{1}, a_{2}, \ldots\right)$ and $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$ under the condition (1.3).
0) $f(z)=\mathbf{0}$

$$
a=(\mathbf{0}, \mathbf{0}, \ldots) \quad \leftrightarrow \quad \gamma=(\mathbf{0}, \mathbf{0}, \ldots)
$$

1) $f(z)=-\zeta^{*}$

$$
a=(\zeta, \mathbf{0}, \mathbf{0}, \ldots) \quad \leftrightarrow \quad \gamma=(\zeta, \mathbf{0}, \mathbf{0}, \ldots)
$$

2) $f(z)=-\zeta^{*}(\mathbf{1}+z \mathbf{1})\left(\mathbf{1}+z \zeta \zeta^{*}\right)^{-1}$

$$
a=(\zeta, \zeta, \mathbf{0}, \mathbf{0}, \ldots) \quad \leftrightarrow \quad \gamma=\left(\zeta-\zeta \zeta^{*} \zeta, \zeta, \mathbf{0}, \mathbf{0}, \ldots\right)
$$

3) $f(z)=-\zeta^{*}\left\{\mathbf{1}+z\left(\mathbf{1}+\zeta \zeta^{*}\right)+z^{2} \mathbf{1}\right\}\left(\mathbf{1}+2 z \zeta \zeta^{*}+z^{2} \zeta \zeta^{*}\right)^{-1}$

$$
a=(\zeta, \zeta, \zeta, \mathbf{0}, \mathbf{0}, \ldots) \quad \leftrightarrow \quad \gamma=\left(\zeta-3 \zeta \zeta^{*} \zeta+2 \zeta \zeta^{*} \zeta \zeta^{*} \zeta, \zeta-\zeta \zeta^{*} \zeta, \zeta, \mathbf{0}, \mathbf{0}, \ldots\right)
$$

References

[1] V.M. Adamjan, Nondegenerate unitary couplings of semiunitary operators (Russian), Funkcional. Anal. i Prilozen. 7 (1973) 1-16; translation in Functional Anal. Appl. 7 (1973) 255-267.
[2] V.M. Adamjan, D.Z. Arov, M.G. Krein, Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems. (Russian) Funkcional. Anal. i Prilozen. 2 (1968) 1-17; translation in Functional Anal. Appl. 2 (1968) 269-281.
[3] D.Z. Arov, γ-generating matrices, j-inner matrix functions and related extrapolation problems (Russian), Teor. Funktsii Funktsional. Anal. i Prilozhen, I. 51 (1989) 61-67; II. 52 (1989) 103-109; III. 53 (1990) 57-65; translation in J. Soviet Math., I. 52 (1990) 3487-3491; II. 52 (1990) 3421-3425; III. 58 (1992) 532-537.
[4] D.Z. Arov, H. Dym, Matricial Nehari problems, J-inner matrix functions and the Muckenhoupt condition, J. Funct. Anal. 181 (2001) 227-299.
[5] D.Z. Arov, H. Dym, J-contractive matrix valued functions and related topics, Cambridge University Press, Cambridge, 2008.
[6] D.Z. Arov, B. Fritzsche, B. Kirstein, A function-theoretic approach to a parametrization of the set of solutions of a completely indeterminate matricial Nehari problem. Integr. Equ. Oper. Theory 30 (1998) 1-66.
[7] N.H. Bingham, Multivariate prediction and matrix Szegő theory, Probab. Surv. 9 (2012) 325-339.
[8] D. Damanik, A. Pushnitski, B. Simon, The analytic theory of matrix orthogonal polynomials, Surv. Approx. Theory 4 (2008) 1-85.
[9] V.K. Dubovoj, B. Fritzsche, B. Kirstein, Matricial version of the classical Schur problem, Teubner Verlag, Stuttgart, 1992.
[10] H. Helson, D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958) 165202.
[11] A. Inoue, Y. Kasahara, M. Pourahmadi, Baxter's inequality for finite predictor coefficients of multivariate longmemory stationary processes, Bernoulli, to appear.
[12] Y. Kasahara, N.H. Bingham, Verblunsky coefficients and Nehari sequences, Trans. Amer. Math. Soc. 366 (2014) 1363-1378.
[13] Y. Kasahara, N.H. Bingham, Matricial Baxter's theorem with a Nehari sequence, to be submitted.
[14] Y. Kasahara, A. Inoue, M. Pourahmadi, Rigidity for matrix-valued Hardy functions, Integr. Equ. Oper. Theory 84 (2016) 289-300.
[15] N. Levinson, H.P. McKean, Weighted trigonometrical approximation on R^{1} with application to the germ field of a stationary Gaussian noise, Acta Math. 112 (1964) 99-143.
[16] Z. Nehari, On bounded bilinear forms, Ann. of Math. 65 (1957) 153-162.
[17] M. Rosenblum, J. Rovnyak, Hardy classes and operator theory, Oxford University Press, New York, 1985.
[18] B. Simon, Orthogonal polynomials on the unit circle, Part 1: Classical theory; Part 2: Spectral theory, American Mathematical Society, Providence, RI, 2005.
[19] B. Simon, Szegő's theorem and its descendants: Spectral theory for L^{2} perturbations of orthogonal polynomials, Princeton University Press, Princeton, NJ, 2011.

[^0]: *Corresponding author
 Email addresses: y-kasa@math.sci.hokudai.ac.jp (Yukio Kasahara), n.bingham@ic.ac.uk (Nicholas H. Bingham)

