Abstract

For echidna and canine milk lysozymes, which were presumed to be the calcium-binding lysozymes by their amino acid sequences, we have quantitated their calcium-binding strength and examined their guanidine unfolding profiles.

The calcium-binding constants of echidna and canine lysozymes were determined to be 8.6×10^6 M$^{-1}$ and 8.9×10^6 M$^{-1}$ in 0.1 M KCl at pH 7.1 and 20°C, respectively. The unfolding of decalcified canine lysozyme proceeds in the same manner as that of α-lactalbumin, through a stable molten globule intermediate. However, neither calcium-bound nor decalcified echidna lysozyme shows a stable molten globule intermediate. This unfolding profile of echidna lysozyme is identical to that of conventional lysozymes and pigeon egg-white lysozyme, avian calcium-binding lysozyme. This result supports the suggestion of Prager and Jolles (Prager EM, Jolles P. 1996. Animallysozymes c and g: An overview. In: Jolles P, ed. LysolJlmes: Model enzymes in biochemistry and biology. Basel-Boston-Berlin: Birkhauzer Verlag. pp 9-31) that the lineage of avian and echidna calcium-binding lysozymes and that of eutherian calcium-binding lysozymes diverged separately from that of conventional lysozymes.

Keywords: calcium-binding; canine; equine; lysozyme; molecular evolution; molten globule

Chicken-type (c-type) lysozymes and α-lactalbumins are believed to have evolved from a common ancestral protein because of the similarity of their amino acid sequences (Brew et al., 1970), conformation (Stuart et al., 1986; Acharya et al., 1989; Pike et al., 1996), and intron-exon constitution of their genes (Qasba & Safaya, 1984). However, the biological functions of these proteins are quite different. Lysozyme is a lytic enzyme, which catalyzes the hydrolysis of the $\beta(1-4)$ glycosidic linkage between N-acetyl-muramic acid and N-acetylglucosamine in the main polysaccharide constituent of Gram-positive bacterial cell walls. In contrast, α-lactalbumins regulate lactose biosynthesis by modulating the specificity of β-galactosyltransferase. Another property that distinguishes these two proteins qualitatively is their calcium-binding ability: c-type lysozyme does not specifically bind calcium ions, while α-lactalbumin binds it tightly (Hirasoka et al., 1980). The three-dimensional structure of α-lactalbumin was determined by X-ray crystallographic study (Stuart et al., 1986; Acharya et al., 1989; Pike et al., 1996). These results revealed that the calcium-binding site is composed of three carboxylate groups of aspartyl residues (82, 87, and 88 in α-lactalbumin), carbonyl oxygen atoms from residues 79, 84, and two water molecules. Comparative amino acid sequence analysis of lysozymes and α-lactalbumins has revealed that the corresponding aspartyl residues 82, 87, and 88 are conserved in equine milk and pigeon egg white lysozymes (Table 1). Consequently, it was suggested that these lysozymes might bind a calcium ion (Stuart et al., 1986), which was confirmed by Nitta et al. (1987, 1988).

Besides the difference as described above, another notable difference between c-type non-calcium-binding (conventional) lysozymes and α-lactalbumins is in their unfolding profiles. A stable equilibrium intermediate, molten globule state is observed during the unfolding of α-lactalbumin by guanidine hydrochloride (GdnHCl) (Kuwajima et al., 1976), but conventional lysozymes generally unfold according to a cooperative two-state model and only an unstable intermediate is transiently observable by kinetic methods (Kuwajima et al., 1985). The unfolding profiles of calcium-binding lysozymes, equine milk, and pigeon egg-white lysozymes have been investigated recently, and only the mammalian, equine milk lysozyme unfolds through a stable molten globule intermediate (Nitta et al., 1993; Van Dael et al., 1993).

It is also suggested that there are other mammalian calcium-binding lysozymes, e.g., from echidna and canine milk (Teahan et al., 1991; Grobler et al., 1994). Echidna is a member of monotreme, egg-laying mammals. The relationships between monotreme proteins and those of other mammals are attractive for the study of molecular evolution (Teahan et al., 1991).

The aim of this investigation is to quantitate the calcium-binding strength and to examine the unfolding profiles of these lysozymes.
Adjacent studies of the calcium-binding of these proteins with site-directed mutagenesis have recently been published (Haezebrouck et al., 1993; Anderson et al., 1997), studies of naturally occurring proteins are also important to understand the significance and function of such properties.

Table 1. Amino acid sequences of the calcium-binding sites

<table>
<thead>
<tr>
<th></th>
<th>81</th>
<th>85</th>
<th>90</th>
<th>91</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echidna lysozyme</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>Canine lysozyme</td>
<td>Ser</td>
<td>Lys</td>
<td>Phe</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>Equine lysozyme</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>Pigeon lysozyme</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Arg</td>
<td>Asp</td>
</tr>
<tr>
<td>Bovine α-lactalbumin</td>
<td>Asp</td>
<td>Lys</td>
<td>Phe</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>Human α-lactalbumin</td>
<td>Asp</td>
<td>Lys</td>
<td>Phe</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>Chicken lysozyme</td>
<td>Ser</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Ser</td>
</tr>
<tr>
<td>Human lysozyme</td>
<td>Ser</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Gin</td>
</tr>
</tbody>
</table>

*The residue numbering is based on that for echidna and canine milk lysozymes.
*aThe calcium ligands are Asp carboxylate groups.
*bThe calcium ligands are main-chain carbonyl groups.

Calcium-binding property

The binding of calcium ions to EML and CML was examined by competition titrations with the calcium-binding dye, Quin-2 in 0.01 M HEPES, 0.1 M KCl at pH 7.1 and 20 °C (Nitta et al., 1988). The number of the binding sites n and binding constant of calcium ions to lysozymes K_{Ca} were determined by the following equation obtained previously (Nitta et al., 1988):

$$[\text{Ca}^2+] = \frac{(1 - F)/(FK_{Ca}) + (1 - F)[\text{Quin2}]}{[\text{Ca}^2+]/(FK_{Ca} + (1 - F)K_{Ca})}$$

where F is the free fraction of Quin-2, which can be calculated from the change of the absorbance at 354 nm, [Ca], [Quin2], and [L], are total concentrations of calcium ions, Quin-2, and lysozyme, respectively. The results are shown in Figure 1. Solid lines represent the best-fitted curves calculated by a trial-and-error method. The calculated n and K_{Ca} values are given in Table 2. For the purpose of comparison, the n and K_{Ca} values of equine lysozyme, pigeon lysozyme, and bovine α-lactalbumin, which were determined previously in the same manner as shown above, are also included in Table 2.

Circular dichroism

Figures 2 and 3 show the far (210–250 nm) and near (270–320 nm) UV circular dichroism (CD) spectra of EML and CML about apo-form and holo-form in native conditions (0.1 M TES buffer, pH 7.2, 25 °C), respectively. Solid lines represent the spectra of apolyszymes with 1 mM EDTA. Dashed lines are the spectra of hololyszymes with 1 mM EDTA and 2 mM CaCl$_2$. The solutions of hololyszyme were prepared by adding concentrated solution of CaCl$_2$ to the solution of apolyszyme with EDTA. For both lysosomes, essentially the same spectra as that of native hololyszyme was obtained in the absence of calcium ion.

GdnHCl induced unfolding

The unfolding of these lyszymes was monitored by recording the CD ellipticity at 222 and 294 nm. These spectral parameters are commonly used as a measure of the extent of secondary and tertiary structures, respectively.

The apparent fractional extent of unfolding f_{app} was calculated from the ellipticity values using the equation: $f_{app} = ([\theta]_{N} - [\theta]) / ([\theta]_{N} - [\theta]_{U})$, where $[\theta]$ represents the observed ellipticity under given conditions, and $[\theta]_{N}$ and $[\theta]_{U}$ are ellipticity values in the native and the unfolded states, respectively.

Figure 4 shows the normalized transition curves of the unfolding of the echidna apo-(A) and hololyszyme (B), which are expressed...
in terms of f_{app} vs. GdnHCl concentration. The unfolding profile of EML showing coincident transition curves derived from the ellipticity changes at 222 and 294 nm is well represented as a two-state process in which tertiary and secondary structure are lost simultaneously and cooperatively. Values of f_{app} both at 294 and 222 nm change at about 1.2 M GdnHCl in apo-form and at about 2.2 M GdnHCl in holo-form.

On the other hand, the transition curves of GdnHCl induced unfolding of CML are different from those of the conventional lysozymes and EML (Fig. 5). In the case of apo CML (Fig. 5), the unfolding proceeds by a two-step process. The values of f_{app} at 294 nm (open circles in Fig. 5) change around 2 M of GdnHCl but that at 222 nm (filled circles in Fig. 5) remain constant. Latter values change around 5 M of GdnHCl. This result suggests that native structure of decalcified CML changes to molten globule state around 2 M GdnHCl and at 5 M GdnHCl the molten globule structure changes to fully unfolded structure. The GdnHCl induced unfolding profiles of holo CML (pH 7.2, 25°C, 1 mM excess CaCl$_2$) are shown in Figure 5. In this case, the stable molten globule state is not observed and unfolding proceeds by a one-step process. Both tertiary and secondary structure change at about 5 M of GdnHCl.

Free energy changes of unfolding, ΔG_u, of canine apolysozymes were estimated from Figure 5, and plotted against the concentra-

Table 2. Binding constants of a calcium ion to lysozymes and α-lactalbumin

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>K_C/M^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine lysozyme</td>
<td>1.16</td>
<td>8.9×10^6</td>
</tr>
<tr>
<td>Echidna lysozyme</td>
<td>1.02</td>
<td>8.6×10^6</td>
</tr>
<tr>
<td>Equine lysozyme*</td>
<td>1.00</td>
<td>2.0×10^6</td>
</tr>
<tr>
<td>Pigeon lysozyme*</td>
<td>0.79</td>
<td>1.6×10^7</td>
</tr>
<tr>
<td>Bovine α-lactalbumin*</td>
<td>0.83</td>
<td>4.0×10^7</td>
</tr>
</tbody>
</table>

*Data from Nitta et al. (1988).

![Fig. 2. Circular dichroism spectra of echidna milk lysozyme. Solid line: apolysozyme in 0.1 M TES (pH 7.2), 0.1 M KCl, 1 mM EDTA. Dashed line: hololysozyme in 0.1 M TES (pH 7.2), 0.1 M KCl, 1 mM EDTA, 2 mM CaCl$_2$.](image)

![Fig. 3. Circular dichroism spectra of canine milk lysozyme. Solid line: apolysozyme in 0.1 M TES (pH 7.2), 0.1 M KCl, 1 mM EDTA. Dashed line: hololysozyme in 0.1 M TES (pH 7.2), 0.1 M KCl, 1 mM EDTA, 2 mM CaCl$_2$.](image)

![Fig. 4. GdnCl induced transition curves of echidna milk lysozyme in 0.1 M TES buffer (pH 7.2, 25°C). Triangles: apolysozyme with 1 mM EDTA. Circles: hololysozyme with 1 mM EDTA and 2 mM CaCl$_2$. Open and filled symbols illustrate the values of f_{app} calculated from the ellipticity at 294 and 222 nm, respectively. Lines were calculated with the parameters obtained with Equation 2.](image)

\[
\Delta G_u = \Delta G_u^0 - mC,
\]

where ΔG_u^0 is the extrapolated free energy change to 0 M GdnCl, m the cooperativity parameter of the unfolding, and C the concentration of GdnCl. The obtained parameters are listed in Table 3 with those of the other calcium-binding lysozymes and α-lactalbumins. In the case of canine lysozyme, native to molten globule transition (open triangles in Fig. 5) and molten globule to unfolded state transition (filled triangles and circles in Fig. 5) were so separated, apparent degree of unfolding f_{app} was used as degree of
unfolding \(f \) from native to molten globule, and from molten globule to fully unfolded state, respectively. Because of the shortening of the sample, echidna lysozyme could not be analyzed in that way.

Discussion

Because the amino acid residues that constitute the calcium-binding site of \(\alpha \)-lactalbumins and calcium-binding lysozymes are conserved in EML and CML (Table 1), it is suggested that these lysozymes have a similar calcium-binding site as \(\alpha \)-lactalbumin and bind a calcium ion. In fact, the structure of calcium-binding site of EML were confirmed by X-ray crystallographic study (Guss et al., 1997). In this study, it is confirmed that EML and CML bind one calcium ion with high affinity at neutral pH as various \(\alpha \)-lactalbumins and other calcium-binding lysozymes (Table 2).

Equine milk and pigeon egg-white lysozymes were the widely studied calcium-binding lysozymes (Nitta et al., 1987, 1988, 1993; Desmet et al., 1989). Circular dichroic spectra of these lysozymes were almost the same for the holo and apo state at neutral pH (Desmet et al., 1989; Nitta et al., 1993). In contrast, for \(\alpha \)-lactalbumin, the drastic structural change was brought by removal of the bound \(\text{Ca}^{2+} \) at neutral pH and low salt concentration (Hiraoka & Sugai, 1985). Circular dichroic spectra of EML and CML (Figs. 2, 3) scarcely changed upon decalcification, as well as equine and pigeon lysozymes. It is revealed that native conformation of these lysozymes does not unfold when a bound calcium ion is removed. However, the NMR study of equine lysozyme indicated that a global conformational change arose from the removal of the calcium ion, although the conformational change was not the complete unfolding (Tsuge et al., 1991). In the cases of EML and CML, the same conformational change between the holo-form and apo-form might occur.

In the recent investigation (Nitta et al., 1993), equine lysozyme exhibits a stable molten globule state during unfolding by GdnHCl. This property of the structural transition is the same as that of \(\alpha \)-lactalbumin, although there are some differences between the molten globule state of equine lysozyme and that of \(\alpha \)-lactalbumin. On the other hand, pigeon lysozyme, calcium-binding avian lysozyme, unfolds by a cooperative two-state mechanism, as conventional lysozyme. Consequently, it is suggested that the avian and mammalian calcium-binding lysozymes can be classified separately by the stability of the folding intermediate. In spite of the absence or presence of \(\text{Ca}^{2+} \), EML unfolds by a cooperative two-state process (Fig. 4). The GdnHCl concentration of the transition midpoint increases with an increase of the concentration of cal-

Table 3. Unfolding parameters of calcium-binding lysozymes and \(\alpha \)-lactalbumins

<table>
<thead>
<tr>
<th>Type of transition</th>
<th>(\Delta G_0) (kJ/mol)</th>
<th>(m) (kJ/mol/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine lysozyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>apo in 1 mM EDTA</td>
<td>N-A</td>
<td>7.1 (0.5)b</td>
</tr>
<tr>
<td></td>
<td>A-U</td>
<td>28 (4)</td>
</tr>
<tr>
<td>Pigeon lysozyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>apo in 1 mM EDTA</td>
<td>N-U</td>
<td>12.08 (0.06)</td>
</tr>
<tr>
<td>holo in 0.18 mM CaCl(_2)</td>
<td>N-U</td>
<td>30.9 (0.7)</td>
</tr>
<tr>
<td>holo in 10 mM CaCl(_2)</td>
<td>N-U</td>
<td>36.2 (0.5)</td>
</tr>
<tr>
<td>Equine lysozyme(^d)</td>
<td>A-U</td>
<td>14.7 (0.3)</td>
</tr>
<tr>
<td>Bovine (\alpha)-lactalbumin(^e)</td>
<td>N-A</td>
<td>14.1-15.1</td>
</tr>
<tr>
<td></td>
<td>A-U</td>
<td>8.6</td>
</tr>
<tr>
<td>Human (\alpha)-lactalbumin(^f)</td>
<td>N-A</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>A-U</td>
<td>13.1</td>
</tr>
</tbody>
</table>

\(a, b \) Numbers in parentheses are standard deviations.
\(b \) Estimated from Figure 8 of Nitta et al. (1993).
\(c \) Estimated from Figure 1b of Nitta et al. (1993).
\(d \) Estimated for Kita et al. (1976) and Kuwajima et al. (1976).
\(f \) Estimated from Table 1 of Nozaka et al. (1978).

![Fig. 6. GdnCl concentration dependence of the free energy changes of the unfolding of canine apolysozyme. Symbols are the same as in Figure 5.](image-url)
It suggests that the calcium binding results in the increase of the structural stability and the calcium-binding site is destroyed by the unfolding. These properties of the unfolding process coincide with that of pigeon lysozyme. In the case of CML, a stable molten globule intermediate is observed during GdnHCl induced unfolding for apolysysozyme (Fig. 5). The first process for the unfolding of CML, the transconformation from native to molten globule state, is dependent on the concentration of calcium. At 1 mM CaCl₂, the transition concentration increases to about 5 M GdnHCl, as shown in Figure 5. On the other hand, the second process, from molten globule to unfolded structure, is not dependent on the concentration of calcium. It means that the binding site of a calcium ion is destroyed in the process from native to molten globule state. These phenomena totally coincide with those of equine lysozyme (Nitta et al., 1993).

Although echidna is classified as a mammal, the unfolding profile is similar to that of avian calcium-binding lysozyme rather than that of other mammalian lysozymes. These relations are interesting because of the problem how α-lactalbumin evolved from lysozyme (Nitta & Sugai, 1989). Grobler et al. (1994) and Prager and Jolles (1996) suggested the echidna and placental calcium-binding lysozymes represent distinct lineages and the lineage of echidna and avian calcium-binding lysozymes have separated before the separation of the lineages of birds and mammals. The present result that echidna lysozyme does not show stable molten globule intermediate, like pigeon lysozyme, supports their suggestion.

The stability of the molten globule is undoubtedly determined with its amino acid sequence as that of native conformation. The authors have compared helix propensities and hydrophobicities of conventional lysozymes, calcium-binding lysozymes, and α-lactalbumins that have known amino acid sequences. However, they could not find any differences between them at the present time. We need extensive efforts to collect the experimental helix propensities of the peptide fragments of these proteins.

Equine lysozyme, another eutherian calcium-binding lysozyme, is so unique that some tertiary structure is observed in molten globule state (Nitta et al., 1993; Van Dael et al., 1993; Morozova-Roche et al., 1997). The molten globule state (A-state) is so stable that the midpoint of guanidine unfolding is around 4 M, in which values of bovine and human α-lactalbumins are about 2.5 and 3 M, respectively. In the case of canine lysozyme, the thermodynamic parameters listed in Table 3 indicate that it is also the case for canine lysozyme. The cooperativity parameter m of N-A transition is smaller than that of A-U transition, inverse for the case of bovine and human α-lactalbumins, although the sum of m's for two transitions roughly coincide with that of N-U transition of pigeon lysozyme. This means that the intermediate, molten globule state of canine lysozyme is more ordered and the hydrophobic side chains are more buried than that of bovine or human α-lactalbumin. The midpoint of A-U transition is as high as 5 M in guanidine unfolding, as shown in Figure 5. It is probably a common characteristic of the echidna calcium-binding lysozyme that the molten globule state is more stable and more ordered than that of α-lactalbumin.

Materials and methods

There are two variants of echidna milk lysozyme (EML), designated lysozyme I and II, which is isolated from mature milk of the subspecies Tachyglossus aculeatus multiaculeatus and Tachyglossus aculeatus aculeatus, respectively (Teahan et al., 1991). EML I and II differ by three amino acid residues at positions 13, 37, and 41. In this paper, we report the calcium-binding property and unfolding profile of EML I.

The echidna milk lysozyme was a kind gift from Michael Messer of The University of Sydney, Sydney, Australia. The canine milk lysozyme (CML) was purified by the method described by Pervaiz and Brew (1986) from the milk of the Pomeranian dog. Guanidinium chloride and Good buffers were of specially prepared reagent grade from biochemical studies and purchased from Nacalai Tesque Inc. (Kyoto, Japan). Quin-2 and other chemicals were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Apoproteins of EML and CML were prepared by Bio-Gel P-4 column chromatography as described in a previous work (Nitta et al., 1988). The concentrations of EML and CML were determined by absorbances at 280 nm using the absorption coefficients: 20.7 and 23.2 for EML and CML, respectively, which were estimated from amino acid compositions according to the literature (Wedaufer, 1962). The concentration of calcium ions was determined with an atomic absorption spectrophotometer (Hitachi 170-10). The change in absorbance of Quin-2 was measured with a Hitachi U2000 spectrophotometer. Circular dichroism spectra of the lysoyzymes were measured using a Jasco J-500 spectropolarimeter equipped with a Neslab RTE-9 circulating bath to control the sample temperature to 25°C. A cell with an optical pathlength of 1 cm was used for measurements at 250–330 nm, and one of 0.1 cm was used for the far UV spectra (200–250 nm).

Acknowledgments

The authors thank Prof. Michael Messer of The University of Sydney and Mr. Taro Tatsuki of Montana Milk Industry Co., Ltd. for supplying echidna lysozyme and canine milk, respectively.

References

Calcium-binding of echidna and canine lysozymes

Pervaiz S, Brew K. 1986. Purification and characterization of the major whey proteins from the milks of the bottle nose dolphin (Tursiops truncatus), the Florida manatee (Trichechus manatus latirostris), and the beagle (Canis familiaris). Arch Biochem Biophys 246:864-854.

Pike ACW, Brew K, Acharya KR. 1996. Crystal structures of guinea pig, goat and bovine \(\alpha \)-lactalbumins highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase. Structure 4:691-703.

