Title
A glycomics approach to discover novel renal biomarkers in birds by administration of cisplatin and diclofenac to chickens

Author(s)

Citation
Poultry Science, 97(5), 1722-1729
https://doi.org/10.3382/ps/pey016

Issue Date
2018-05

Doc URL
http://hdl.handle.net/2115/73965

Type
article (author version)

File Information
Poultry Science97(5)1722-1729.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
DISCOVERY OF RENAL BIOMARKERS IN CHICKEN

A glycomics approach to discover novel renal biomarkers in birds by administration of cisplatin and diclofenac to chickens

Chihiro Ishii,* Yoshinori Ikenaka,* † Osamu Ichii,‡ Shouta M.M. Nakayama,* Shin-Ichiro Nishimura,§ Tetsu Ohashi,# Masakazu Tanaka,# Hazuki Mizukawa,|| and Mayumi Ishizuka*1

* Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita18, Nishi9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
† Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
‡ Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
§ Faculty of Advanced Life Science, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
Medicinal Chemistry Pharmaceuticals, Co., Ltd., Corabo-Hokkaido, Kita21 Nishi12, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.

1 Corresponding author

Mayumi ISHIZUKA

E-mail: ishizum@vetmed.hokudai.ac.jp

Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan Tel: +81-11-706-6949; Fax: +81-11-706-5105

Issue Section: Health and Disease
Avian species have a unique renal structure and abundant blood flow into the kidneys. Although many birds die due to nephrotoxicity caused by chemicals, there are no early biomarkers for renal lesions. Uric acid level in blood, which is generally used as a renal biomarker, is altered when the kidney function is damaged by over 70%. Therefore, early biomarkers for kidney injury in birds are needed. In humans, glycomics has been at the forefront of biological and medical sciences, and glycans are used as biomarkers of diseases, such as carcinoma. In this study, a glycomics approach was used to screen for renal biomarkers in chicken. First, a chicken model of kidney damage was generated by injection of diclofenac or cisplatin, which cause acute interstitial nephritis (AIN) and acute tubular necrosis (ATN), respectively. The nephrotoxicity levels were determined by blood chemical test and histopathological analysis. The plasma N-glycans were then analyzed to discover renal biomarkers in birds. Levels of 14 glycans increased between pre- and post-administration in kidney-damaged chickens in the diclofenac group, and some of these glycans had the same presumptive composition as those in human renal carcinoma patients. Glycan levels did not change remarkably in the cisplatin group. It is possible that there are changes in glycan expression due to AIN but they do not reflect ATN. Although further research is needed in other species of birds, glycans are potentially useful biomarkers for AIN in avian species.
Key words: acute interstitial nephritis (AIN), acute tubular necrosis (ATN), bird, glycan, renal biomarker
Avian species have a unique kidney structure with abundant blood flow into the kidneys (Harr, 2002) because of the renal portal veins. This system does not exist in mammals (Lierz, 2003), and the avian kidney is vulnerable to various chemicals from the blood.

Indeed, many birds die due to nephrotoxicity caused by chemicals. In the Indian subcontinent, over 90% of three vulture species were killed by the non-steroidal anti-inflammatory drug (NSAID), diclofenac (Green et al., 2004; Swan et al., 2006). Diclofenac was used for the medical treatment of cattle, and the drug was accidentally ingested by vultures when they consumed cattle carcasses (Oaks et al., 2004). It has been reported that primary cultures of avian kidney cells were much more susceptible to diclofenac than mammalian cell cultures (Naidoo and Swan, 2009). In addition, other NSAIDs, such as ketoprofen, cause renal lesions in birds as a side effect (Mohan et al., 2012). Furthermore, lead (Pb), mercury (Hg), and other therapeutic agents, such as anticancer drugs and antifungal agents, cause renal toxicity in birds (Johnson, 1998; Wolfe et al., 1998; Joseph, 2000; Filippich et al., 2001). In the case of humans, drug-induced kidney injury is a serious problem in clinical practice and account for 19% – 26% of cases of acute kidney injury (AKI) among hospitalized patients (Hosohata, 2016). In avian species, there have been many reports of renal damage in both wild birds and companion birds.

The diagnosis of kidney disease in birds is challenging. Generally, uric acid (UA) level in blood is used as a renal biomarker in birds. However, UA is not an early
biomarker because its levels can be altered when the kidney function is damaged by > 70% (Lierz, 2003). The end product of protein metabolism in birds is UA, and because most of the UA in the urine is in an insoluble form, it does not have an osmotic effect (Styles and Phalen, 1998). Furthermore, as most UA is secreted from the proximal tubules and not filtered, blood UA levels will not be affected by moderate changes in the glomerular filtration rate (GFR) (Styles and Phalen, 1998). Even in the event of extensive tubular disease, polyuria and resultant polydipsia and the resulting increase in glomerular filtration can maintain UA levels within the normal range. Therefore, UA concentrations may not reflect glomerular disease and widespread tubular disease may also be present long before UA levels rise above normal. Diagnosis of kidney disease is further complicated in that it is difficult to obtain urine samples from birds because the ureter opens into the cloaca, and the urine is stored in the cloaca or intestine until defecation of a semisolid mixture of urine and feces (Skadhauge, 1968). The level of phosphorus is not changed commonly in all species of birds although the concentration increases due to renal lesions in some avian species (Tully et al., 2009). Therefore, discovery and identification of novel biomarkers for kidney injury in birds are required.

Genomics and proteomics approaches are generally used for the discovery of biomarkers. Glycomics is also a useful tool to identify biomarkers (Adamczyk et al., 2012). Glycosylation is a frequent co-/posttranslational modification of proteins, which modulates a variety of biological functions (Dall’Olio et al., 2013). Glycan structures on newly synthesized glycoproteins are crucial for protein secretion (Moremen et al., 2012). Over 50% of proteins are glycosylated in humans, and the effects of disease states on
glycan biosynthesis can be more evident than those on proteins (Adamczyk et al., 2012). It has been reported that glycans in humans may potentially be used as biomarkers of renal carcinoma (Hatakeyama et al., 2014). Therefore, it is possible that glycans would be useful as biomarkers in birds.

The present study was performed to identify novel renal biomarkers in avian species for the conservation and to develop cures for wild birds as well as companion birds. First, a model of kidney damage was generated in chickens by injection of diclofenac or cisplatin, and renal biomarkers were examined. Acute kidney injury includes acute interstitial nephritis (AIN) and acute tubular necrosis (ATN) (Hosohata, 2016); diclofenac causes AIN, whereas cisplatin causes ATN. Diclofenac caused severe nephrotoxicity in birds as mentioned above, and the anticancer drug, cisplatin, induces renal lesions as a side effect and is used to make models of kidney injury in rats (Pinches et al., 2012). The kidney shows greater accumulation of cisplatin than other organs, and the kidney is the major route for its excretion (Yao, X., Panichpisal, K., Kurtzman, 2007). To our knowledge, this is the first study to use glycomics to discover biomarkers in birds. Plasma N-glycans in chicken were analyzed by glycoblotting, which can be used for high-throughput analysis of biological samples (Hirose et al., 2011), along with matrix-assisted laser desorption ionization, time-of-flight mass spectrometry (MALDI-TOF MS), and they were profiled to discover novel biomarkers for kidney injury in avian species.
MATERIALS AND METHODS

Animal Experiments

All experimental protocols were approved by the Laboratory Animal Care and Use Committee of Graduate School of Veterinary Medicine, Hokkaido University, Japan. The animal experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals, which conforms to the Association for the Assessment and Accreditation of Laboratory Animal Care International (AAALAC) (approval number: 14-0119). The endpoints were weight loss > 20% compared to pre-injection, or severe clinical symptoms. Euthanasia was carried out by carbon dioxide inhalation under anesthesia by an overdose of isoflurane (Abbott Laboratories, Chicago, IL) after fasting for over 12 hours. The animals were monitored twice per day during the administration period to check their health. Their body weight was measured from pre-administration to the final day of the experiment. A 27 G needle was used for injection to reduce pain and stress.

Experimental Design

Male white leghorn chickens (Gallus gallus domesticus) (n = 15, 10 weeks old, body weight: 1.2 – 1.4 kg) were purchased from Hokudo Co., Ltd. (Tokyo, Japan) and were housed under conditions of constant temperature (20°C ± 2°C) and humidity (40% ± 10%), with a 12:12 hour light:dark cycle and given food and water ad libitum. They were allowed to acclimatize to the environment for 1 week before commencement of the experiment. Animals were divided into the following four groups: (1) control group
(injection of 20% DMSO, \(n = 3 \): Cont. -1, -2, -3); (2) diclofenac sodium group A (1.5 mg/kg body weight, \(n = 4 \): A-1, -2, -3, -4); (3) diclofenac sodium group B (2.0 mg/kg body weight, \(n = 4 \): B-1, -2, -3, -4); and (4) cisplatin group (3.5 mg/kg body weight, \(n = 4 \): C-1, -2, -3, -4). Injection doses were considered according to reference papers of diclofenac treatments (Naidoo et al., 2007; Jain et al., 2009; Mohan et al., 2012) or cisplatin administrations (Cacini and Fink, 1995; Filippich et al., 2001).

Pre-administration plasma was collected 1 week after arrival. Administration was started after a further 1 week. The control group received injection of 20% dimethyl sulfoxide (DMSO) (Nacalai Tesque, Kyoto, Japan) diluted in saline once daily in the morning for four consecutive days. The treatment groups received administration of diclofenac sodium diluted in 20% DMSO into the pectoral muscle once daily in the morning for four consecutive days, or a single dose of cisplatin (Wako Pure Chemical Industries, Osaka, Japan) diluted in saline into the basilic vein. Control and diclofenac groups were euthanized on day 5 after the first administration, whereas the cisplatin group was euthanized on day 3 because of the endpoint of clinical signs.

Blood Collection

Blood collection (6 mL) from the basilic vein was carried out pre- and post-injection in the morning (from 9:00 a.m.) using a 23 G or 24 G needle and heparin-containing syringe. Regarding the post-injection, administration was started just after the blood collection. Whole blood was stored on ice after collection and plasma was prepared by centrifugation within 2 hours after collection. Centrifugation was
performed at 1630 × g for 20 minutes at 4°C. Plasma specimens were immediately frozen in liquid nitrogen and stored at –80°C.

Tissue Sample Collection

Chickens were euthanized with an overdose of isoflurane (Abbott Laboratories) and carbon dioxide. After euthanasia, the kidneys, liver, lungs, and heart were collected. The weights of the whole body, liver, and kidney were measured. The excised tissues were cut into small pieces and stored in 10% neutral buffered formalin for histopathological analysis.

Blood Tests

Aspartate aminotransferase (AST), total plasma protein (TPP), lactate dehydrogenase (LDH), creatine phosphokinase (CK), inorganic phosphate (P), and calcium (Ca) levels were determined using Cobas Ready® (Roche Diagnostics K.K., Basel, Switzerland). The upper detection limit of UA by COBAS is 20 mg/dL, and UA in birds with high degrees of kidney damage exceeds this level. Therefore, UA level was analyzed by high-performance liquid chromatography separation and ultraviolet detection (HPLC-UV, 20A series; Shimadzu, Kyoto, Japan). The significance of each test is shown in the Supporting Information (Text S1 in Supporting Information).

For measurement of hematocrit (Ht), 200 μL of whole blood was collected from the basilic vein before dissection using a 24 G needle without heparin and immediately moved into tubes containing ethylenediaminetetraacetic acid (EDTA).
Ht level was measured using a microhematocrit centrifuge (Kubota 3220; Kubota Corporation, Tokyo, Japan) at 15000 × g for 5 minutes.

Uric Acid Analysis by HPLC

Analyses were performed by HPLC-UV (20A series; Shimadzu) and the improved HPLC method of the Japan Society of Clinical Chemistry (JSCC) was used for measurement of UA. Briefly, 25-μL aliquots of plasma specimens or standard solution were mixed with 225 μL of 0.3 mol/L perchloric acid and cooled on ice for 30 minutes. The samples were mixed again by vortexing and centrifuged at 750 × g for 10 minutes at 4°C. Aliquots of 150 μL of the supernatants were collected and centrifuged again at 750 × g for 10 minutes at 4°C. Then, 50-μL aliquots of the supernatants were collected and moved to HPLC vials, followed by addition of 50 μL of 10 mM ammonium acetate. For HPLC calibration, 100.3 mg of uric acid (Wako Pure Chemical Industries) was dissolved in 0.01 mol/L lithium carbonate and made up to 100 mL (1 g/L). Standard solutions (1.25, 2.5, 5, 10, 25 and 50 mg/L) were diluted with deionized distilled water. A UV detector set at 284 nm was used to monitor the effluent. Mobile phase A consisted of 10 mM ammonium acetate (pH 4.8) and phase B consisted of 100% methanol. An Inertsil ODS-3 column (2.1 mm × 150 mm: GL Sciences, Inc., Tokyo, Japan) was used for separation at a flow rate of 0.2 mL/min and the injection volume was 5 μL. The R² value of the linear regression line was 0.998.

Histopathological Analysis
Paraffin-embedded kidney sections were stained with periodic acid-Schiff, and liver, heart, and lung sections were stained with hematoxylin and eosin.

Glycoblotting-based Plasma Glycomics

Analyses of N-glycans were performed according to the methods of Kamiyama et al. (Kamiyama et al., 2013). Plasma specimens were pretreated for release of N-glycans and subjected to glycoblotting for enrichment and quantification of N-glycans prior to MALDI-TOF/MS. Briefly, pretreatment of plasma glycoproteins was performed to release whole N-glycans using PNGase F. Glycans were selectively captured by glycoblotting using BlotGlyco® beads. Methyl esterification of sialic acid residues and transiminization reaction to tag N-glycans with benzylammonium (BOA) were carried out on the beads. BOA-tagged N-glycans were subjected to MALDI-TOF/MS analysis. More details regarding pretreatment, glycoblotting, mass spectrometry, and data analysis are presented in S2 Text. Expression levels of each glycan were expressed by the ratio with the plasma mixture of healthy chickens.

Statistical Analysis

To compare the results of biochemical analyses between pre- and post-administration, the weight of the body and tissues between controls and treatment groups were analyzed by Steel’s test. For comparison of renal damage scores and glycan levels among chickens, data were analyzed using Spearman’s rank correlation.
Statistical analyses were performed using JMP Pro 13 (SAS Institute, Cary, NC). In all analyses, $P < 0.05$ was taken to indicate statistical significance.

RESULTS

Clinical Signs

In the diclofenac-treated group, chicken B-1 showed depressed activity and polyuria from the 2nd day of administration, and was dead on the 3rd day. Therefore, regarding chicken B-1, blood samples were collected until the 3rd day. Chicken A-1 also showed weakness from the 4th day. All four cisplatin-treated chickens had polyuria and depressed activity from the 2nd day. The other chickens generally appeared normal. The control group did not show any symptoms.

Biochemical Analysis

The plasma concentrations of UA, P, Ca, AST, LDH, CK, and TPP as indicators of various tissues are shown in Table 1. The normal UA concentration in chickens ranges from 2.5 to 8.1 mg/dL (Miller and Fowler, 2014). Although there were no significant differences between pre- and post-administration in any of the groups, several chickens in the treatment groups showed high levels of UA. In the diclofenac group, chicken A-1 exceeded the normal UA level 72 hours after injection. Chickens B-1 and B-2 showed high levels of UA after 24 hours, and the level in chicken B-4 increased after 72 hours. However, the UA level in chickens B-2 and B-4 recovered
after 96 hours. In the cisplatin group, UA level was high in all chickens 48 hours after
the injection, and markedly exceeded the reference level. As other indicators of renal
lesions, P concentration was also elevated in some of these chickens; the reference level
in chicken is 6.2 – 7.9 mg/dL (Miller and Fowler, 2014). Although AST level of
chickens in the treatment group increased, the levels were within the normal range for
turkeys of 255 – 499 IU/L, and the LDH level exceeded the reference level for turkeys
of 420 – 1338 IU/L (Miller and Fowler, 2014).

Gross Pathology

All cisplatin-treated chickens, and chickens A-1, B-1, and B-2 in the diclofenac
group showed pale kidneys compared with the controls (Fig. 1). Kidneys in these
chickens were enlarged although there were no significant differences in kidney weight
between controls and each exposure group (Table S1). The control group and the other
chickens in the treatment groups did not show any gross pathological changes. The liver
specimens in all chickens had no lesions and there were no significant differences in
tissue weight (Table S1).

Histopathological Analysis

All cisplatin-treated chickens and four diclofenac-treated chickens showed
renal damage (Fig. 2). Although they commonly showed degenerative and necrotic
lesions in the proximal and distal tubules, and sometimes glomeruli, and the shape of
nuclei in the proximal tubules became unclear, the histology was different between
diclofenac- and cisplatin group. Diclofenac-treated chickens showed the infiltration of leukocytes such as heterophils in interstitium. In the cisplatin group, necrosis of tubules was shown and many proteinaceous casts in the tubular lumen were also found. In addition, tubular epithelial cells were detached from the basement membrane of some tubules in chickens A-1 and B-1 in the diclofenac group and all cisplatin-treated chickens. Chickens B-2 and B-4 in the diclofenac group showed mild degenerative lesions, such as slight dilation of proximal and distal tubular lumens. Chickens A-2, A-3, A-4, and B-3 appeared normal.

According to the histopathological changes, renal lesions were given scores from K0 (no lesions) to K5 (most severe). For scoring, the ratio of outer/lumen area at cross section of tubules was measured using Axiovision Rel 4.8 software (Zeiss, Germany). In addition, three stages of histopathological alterations of kidney (Salamat et al., 2014) were used as a reference. Damage scores are as follows: K0, no lesions (the median of outer/lumen area was > 10); K1, mild damage, such as infiltration of heterophils and cells in the proximal tubular lumens in a very limited area (the median of outer/lumen area was 8-9); K2, moderate damage, such as infiltration of heterophils and cells in proximal tubular lumens, and dilation of distal tubular lumens in a large area (the median of outer/lumen area was 5-7); K3, severe damage, such as infiltration of heterophils and cells in the proximal tubular lumens, dilation of tubular lumens, and proteinaceous casts (the median of outer/lumen area was approximately 4); K4, severe damage with unclear structure of renal tubules and glomeruli, and several proteinaceous casts (the median of outer/lumen area was approximately 3); or K5, severe damage with
many necrotic cells, and proteinaceous casts (the median of outer/lumen area was 1-2 and most of tubules were disintegrated). The damage levels of each chicken were as follows: K0 (control); K1 (B-4); K2 (B-2); K3 (C-2); K4 (A-1, C-4); K5 (B-1, C-1, C-3). In the exposure group, chickens A-2, A-3, A-4, and B-3 did not show histopathological changes, and they were ranked K0. The livers in chicken B-1 and all cisplatin-treated chickens showed mild hyperemia (Fig. S1). There were no lesions in the heart or lung in any of the chickens, and the control group did not show histopathological changes in any tissues.

Glycomics Analysis

For glycomics analysis, 10 chickens (Cont.-1, -2, A-1, B-1, B-2, B-4, C-1, -2, -3, and -4) were selected according to the results of histopathological analysis and biochemical analysis, and plasma N-glycans were measured. A total of 40 plasma N-glycans were detected, and the levels of each glycan are shown by the ratio with glycan expression of plasma mix from the controls and pre-injection chickens (Table S2). The control group did not show any significant differences due to injection. Fourteen glycans were increased in the diclofenac-treated kidney damaged chickens (Fig. 3, Table S3).

In the cisplatin group, glycan levels did not change significantly according to kidney injury, although the renal lesions were severe and UA concentrations were high.
DISCUSSION

In the present study, we succeeded to cause various stages of nephrotoxicity in chickens after cisplatin (3.5 mg/kg) or two doses of diclofenac (1.5 – 2.0 mg/kg) treatments. The results of biochemical analyses indicated that UA, P, and LDH levels exceeded the respective normal ranges in several chickens. Both UA and P indicate severe renal lesions in chickens, but UA level was altered earlier than P level. According to the UA level, kidney function in the cisplatin group (C-1, -2, -3, and -4) would be markedly damaged 48 hours after injection. In the diclofenac group, chicken A-1 had severe renal injury from 72 hours after injection. The kidneys of chickens B-1 and B-2 were impaired with heavy renal failure after 24 hours, and chicken B-1 died due to nephrotoxicity. Although LDH level increased in the treatment groups, it was difficult to identify the cause, because elevation of LDH is nonspecific, and is found in skeletal and cardiac muscle, liver, kidney, bone, and erythrocytes (Tully et al., 2009).

Histopathological analysis of the kidney, liver, heart, and lung showed that chickens A-1, B-1, B-2, and B-4 and all cisplatin-treated chickens had damage almost specific to the kidney. Furthermore, the histology of kidney might indicate that diclofenac caused AIN and cisplatin induced ATN in chicken, although the infiltration of leukocytes in interstitial in diclofenac-treated chickens was not so severe compared to AIN in human. In the case of diclofenac exposure, renal damage levels were completely different depending on the individual, and this tendency was also described in the reports mentioned above. There may be large differences in sensitivity even within a
species. Therefore, the renal damage was shown by scores for comparison with other analyses.

Glycomics analysis showed that a high degree of kidney damage was associated with increased levels of both sialylated and non-fucosylated glycans in diclofenac-treated chickens. Although not applicable to six glycans (No. 9, 22, 24, 26, 34, and 37), this tendency was seen for the remaining 34 glycans. The synthesis pathway of N-linked glycans starts from the cytosolic surface of the endoplasmic reticulum membrane by addition of sugars, and in the early secretory pathway, the glycans have important roles in protein folding, oligomerization, quality control, sorting, and transport (Helenius and Aebi, 2001). The glycans acquire more complex structures and new functions in the Golgi complex (Helenius and Aebi, 2001). The trans compartment elaborates additional branching and capping reactions on complex N-glycans, and capping reactions are continued in the trans-Golgi network (Moremen et al., 2012). Therefore, the final synthesis pathway, where sialic acids are attached, could be disturbed, or glycoproteins that have these glycans may be susceptible to the effects of kidney injury.

In cisplatin-treated chickens, there is no relation between glycan expression and kidney damage. Therefore, the glycans that increased in the diclofenac group may indicate the effects of diclofenac injection, rather than kidney injury itself. Another possibility is that glycans may have reflected parts of kidney injury, and not all types of renal damage.
With regard to AIN and ATN, although the mechanism underlying AIN is underestimated even in human, it is generally accepted that the pathogenesis is based on an immunologic reaction against endogenous nephritogenic antigens or exogenous antigens processed by tubular cells, with cell-mediated immunity having a major pathogenic role (Praga and González, 2010). In avian species, there is less information. However, it is reported that diclofenac causes nephrotoxicity due to reduction of UA transport by interfering with p-aminohippuric acid (PAH) channels in the chicken (Naidoo and Swan, 2009). The mechanism of diclofenac-induced renal failure in oriental white backed vultures has been proposed to be through inhibition of the modulating effect of prostaglandin on angiotensin II-mediated adrenergic stimulation (Jain et al., 2009). Cisplatin induces DNA damage, either necrotic or apoptotic cell death, formation of reactive oxygen species, mitochondrial dysfunction, and caspase activation (Ramesh and Reeves, 2002). These events cause both acute and chronic kidney injury, and the nephrotoxicity is characterized by activation of both proinflammatory cytokines and chemokines (Havasi and Borkan, 2016).

The mechanisms of metabolism of diclofenac and cisplatin are different. Therefore, it is possible that glycans reflect the limited pathway of kidney injury, and glycan expression profiles change due to AIN but do not reflect ATN. Although further studies including investigation of species differences are needed, glycans have the potential to be useful biomarkers for AIN in avian species. The glycan expression profile may reflect some types of kidney injury, and these molecules have the potential for use as biomarkers for the evaluation of functional disorders in birds.
ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan awarded to M. Ishizuka (No. 16H0177907), Y. Ikenaka (No. 26304043, 15H0282505, 15K1221305), S. Nakayama (16K16197), and the foundations of Sumitomo and JSPS Core to Core Program (AA Science Platforms) and Bilateral Joint Research Project (PG36150002 and PG36150003). We also acknowledge the financial support by the Nihon Seimei Foundation, the Soroptimist Japan Foundation, the Nakajima Foundation, and the Inui Memorial Trust for Research on Animal Science. One of the authors (C. Ishii) is a Research Fellow of the Japan Society for the Promotion of Science (No. 15J01937). This research was also supported by JST/JICA, SATREPS (Science and Technology Research Partnership for Sustainable Development). We are grateful to Takahiro Ichise, So Shinya, Kazuki Takeda, Ayuko Morita, Misaki Maehara, Takamitsu Kondo, Masao Togao, Kodai Motohira, Mio Yagihashi and Nagisa Hirano (Graduate School of Veterinary Medicine, Hokkaido University) for their technical support. The English in this manuscript was proofread by Dolphin Corporation.
REFERENCES

decline in Pakistan. Nature 427:630–633 Available at http://dx.doi.org/10.1038/nature02317.

Table 1. Plasma concentrations of UA (uric acid), P (inorganic phosphate), Ca (calcium), AST (aspartate aminotransferase), LDH (lactate dehydrogenase), CK (creatine phosphokinase), and TPP (total protein) in diclofenac- or cisplatin-treated and control chickens

<table>
<thead>
<tr>
<th></th>
<th>Pre-injection</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
<th>96 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>UA (mg/dL)</td>
<td>5.0 ± 0.5</td>
<td>3.2 ± 0.3</td>
<td>2.4 ± 1.0</td>
<td>2.7 ± 0.6</td>
<td>2.9 ± 0.6</td>
</tr>
<tr>
<td>P (mg/dL)</td>
<td>7.1 ± 0.5</td>
<td>6.2 ± 0.4</td>
<td>6.4 ± 0.6</td>
<td>6.1 ± 0.0</td>
<td>6.1 ± 0.9</td>
</tr>
<tr>
<td>Ca (mg/dL)</td>
<td>9.7 ± 0.5</td>
<td>9.6 ± 0.5</td>
<td>9.8 ± 0.5</td>
<td>10.1 ± 0.2</td>
<td>10.3 ± 0.5</td>
</tr>
<tr>
<td>Cont. (n = 3) AST (IU/L)</td>
<td>132 ± 8</td>
<td>142 ± 5</td>
<td>168 ± 18</td>
<td>164 ± 17</td>
<td>149 ± 18</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>706 ± 358</td>
<td>575 ± 164</td>
<td>639 ± 99</td>
<td>497 ± 48</td>
<td>514 ± 171</td>
</tr>
<tr>
<td>CK (IU/I)</td>
<td>1110 ± 468</td>
<td>844 ± 107 *2</td>
<td>1290 *1</td>
<td>1437 ± 191 *2</td>
<td>514 ± 171</td>
</tr>
<tr>
<td>TPP (g/dL)</td>
<td>2.9 ± 0.1</td>
<td>2.7 ± 0.3</td>
<td>2.9 ± 0.3</td>
<td>2.9 ± 0.3</td>
<td>2.6 ± 0.5</td>
</tr>
<tr>
<td>UA (mg/dL)</td>
<td>4.4 ± 1.0</td>
<td>3.7 ± 1.0</td>
<td>3.8 ± 1.2</td>
<td>72.9 ± 117.8</td>
<td>48.8 ± 78.6</td>
</tr>
<tr>
<td>P (mg/dL)</td>
<td>7.5 ± 0.3</td>
<td>6.8 ± 0.7</td>
<td>7.0 ± 0.4</td>
<td>8.1 ± 1.4</td>
<td>8.8 ± 3.2</td>
</tr>
<tr>
<td>Ca (mg/dL)</td>
<td>9.9 ± 0.2</td>
<td>9.7 ± 0.2</td>
<td>9.3 ± 0.1</td>
<td>9.3 ± 0.2</td>
<td>9.1 ± 1.2</td>
</tr>
<tr>
<td>Diclofenac A (1.5 mg/kg, n=4)</td>
<td>AST (IU/L)</td>
<td>132 ± 5.9</td>
<td>198 ± 10.1</td>
<td>250 ± 16.1</td>
<td>304 ± 69.6</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>433 ± 43</td>
<td>1490 ± 234</td>
<td>1967 ± 639</td>
<td>1710 ± 1002</td>
<td>941 ± 202 *3</td>
</tr>
<tr>
<td>TPP (g/dL)</td>
<td>3.0 ± 0.3</td>
<td>2.9 ± 0.2</td>
<td>3.1 ± 0.2</td>
<td>3.1 ± 0.2</td>
<td>2.8 ± 0.3</td>
</tr>
<tr>
<td>Diclofenac B (2.0 mg/kg, n=4)</td>
<td>UA (mg/dL)</td>
<td>3.7 ± 0.5</td>
<td>52.6 ± 64.5</td>
<td>74.5 ± 103.9</td>
<td>12.0 ± 6.6 *3</td>
</tr>
<tr>
<td>P (mg/dL)</td>
<td>7.9 ± 0.7</td>
<td>7.2 ± 0.8</td>
<td>7.3 ± 0.9 *3</td>
<td>7.9 ± 1.2 *3</td>
<td>6.1 ± 1.1 *3</td>
</tr>
<tr>
<td>Ca (mg/dL)</td>
<td>9.8 ± 0.3</td>
<td>9.7 ± 0.1</td>
<td>9.2 ± 0.6</td>
<td>9.6 ± 0.4 *3</td>
<td>9.5 ± 0.2 *3</td>
</tr>
</tbody>
</table>
AST (IU/L) 130 ± 14 228 ± 67 287 ± 22 282 ± 12 *3 258 ± 12 *3
LDH (IU/L) 492 ± 132 1596 ± 672 2437 ± 978 *3 2032 ± 984 *3 985 ± 313 *3
TPP (g/dL) 2.9 ± 0.2 2.9 ± 0.3 2.9 ± 0.3 3.1 ± 0.6 *3 2.8 ± 0.4 *3
UA (mg/dL) 3.5 ± 0.3 8.0 ± 1.0 77.0 ± 16.2 — —
P (mg/dL) 4.7 ± 0.4 6.3 ± 0.2 8.0 ± 1.0 — —
Ca (mg/dL) 10.5 ± 0.5 10.9 ± 0.3 11.6 ± 1.5 — —

Cisplatin (3.5 mg/kg, n = 4)

AST (IU/L) 137 ± 8 170 ± 8 246 ± 19 — —
LDH (IU/L) 425 ± 74 370 ± 71 870 ± 302 — —
CK (IU/I) 870 ± 69 1069 ± 70 *3 1020 ± 169 — —
TPP (g/dL) 3.4 ± 0.2 3.8 ± 0.0 3.3 ± 0.6 — —

* The values were calculated from one chicken*1, two chickens*2 or three chickens*3, because the others exceeded the detection limit (LDH: 3937 IU/L, CK: 2000 IU/L).

In diclofenac group B, one chicken died on the 3rd day of administration.

There were no significant differences between pre- and post-administration (Steel’s test, \(P < 0.05 \)).
Figure legends

Fig. 1. Gross pathological features of kidneys in diclofenac- or cisplatin-treated and control chickens

The chickens treated with diclofenac (a) or cisplatin (b) showed pale and enlarged kidneys compared with the controls (c). The kidney weights are shown in Table S2.

Fig. 2. Histopathological features of the kidneys in diclofenac- or cisplatin-treated and control chickens

Chickens treated with diclofenac (a) or cisplatin (b) showed severe renal lesions compared with controls (c). Briefly, there were degenerative and necrotic lesions, such as proteinaceous casts (arrowheads), heterophil infiltration into the tubulointerstitium and dead cells in the proximal tubular lumens (white arrows), and dilation of proximal and distal tubular lumens (black arrows). Diclofenac-treated chickens showed much infiltration of heterophils and cisplatin-treated chickens had a large number of proteinaceous casts. The controls showed normal renal structures.

Fig. 3. Spearman’s rank correlation coefficients of expression levels for 14 increased N-glycans (μM) on the final day and renal damage score in the diclofenac-treated group.

No. 16, 29 and 38 had significant correlation and lines showed the linear approximation.
Fig. 1. Gross pathological features of kidneys in diclofenac- or cisplatin-treated and control chickens
Fig. 2. Histopathological features of the kidneys in diclofenac- or cisplatin-treated and control chickens
Fig. 3. Spearman’s rank correlation coefficients of expression levels for 14 increased N-glycans (μM) on the final day and renal damage score in the diclofenac-treated group.
S1 Text. Significance of each biochemical test

The plasma concentrations of UA, AST, CK, LDH, P, and Ca are indicators of various tissues as follows [1]. AST activity is considered to be a very sensitive but nonspecific indicator of hepatocellular disease because muscular damage changes AST levels in avian species. CK elevation is associated with significant disruption of skeletal muscle, cardiac muscle, and nervous tissue. Generally, increased CK levels are compared with AST and LDH levels. Elevated AST without elevation of CK is highly suggestive of liver disruption and concurrent elevation of AST and CK suggests muscle disruption or concurrent damage to the liver and muscle or liver and nervous tissue. Elevation of LDH is nonspecific because it is found in skeletal and cardiac muscle, liver, kidney, bone, and erythrocytes, but LDH levels may follow the process of liver disease and change more quickly than AST levels. Elevated P levels resulting from renal disease suggest chronicity, although this is less common in bird species, and increases are also observed in hypoparathyroidism and nutritional secondary hyperparathyroidism. Blood Ca levels are directly linked to albumin levels, and dehydration sometimes causes elevation of albumin level, leading to an increase in blood Ca. Elevated levels of Ca are also associated with vitamin D3 toxicity, osteolytic bone tumors, and renal adenocarcinoma.

Reference

S2 Text. Glycoblotting-based plasma glycomics.

Experimental Procedures: Plasma N-Glycomics by Glycoblotting

N-glycans from plasma samples were purified by glycoblotting using BlotGlyco®. These are commercially available synthetic polymer beads with high-density hydrazide groups (Sumitomo Bakelite, Tokyo, Japan). All procedures used the SweetBlot automated glycan purification system containing a 96-well plate platform (System Instruments, Hachioji, Japan).

Enzymatic Degradation of Plasma N-Glycans

Aliquots of 10 μL of plasma samples were dissolved in 50 μL of a 106 mM solution of ammonium bicarbonate containing 12 mM 1,4-dithiothreitol and 0.06% 1-propanesulfonic acid, 2-hydroxyl-3-myristamido (Wako Pure Chemical Industries, Osaka, Japan). After incubation at 60°C for 30 minutes, 123 mM iodoacetamide (10 μL) was added to the mixtures followed by incubation in the dark at room temperature to enable reductive alkylation. After 60 minutes, the mixture was treated with 200 U of trypsin (Sigma-Aldrich, St. Louis, MO) at 37°C for 2 hours, followed by heat inactivation of the enzyme at 90°C for 10 minutes. After cooling to room temperature, the N-glycans were released from the tryptic glycopeptides by incubation with 325 U of PNGase F (New England BioLabs, Ipswich, MA) at 37°C for 6 hours.

N-Glycan Purification and Modification by Glycoblotting

Glycoblotting of sample mixtures containing whole plasma N-glycans was performed in accordance with previously described procedures. Commercially available BlotGlyco® beads (500 μL) (10 mg/mL suspension; Sumitomo Bakelite) were aliquoted into the wells of a MultiScreen Solvinert hydrophilic polytetrafluoroethylene (PTFE) 96-well filter plate (EMD
Millipore, Billerica, MA). After removal of the water using a vacuum pump, 20 μL of PNGase F-digested samples were applied to the wells, followed by the addition of 180 μL of 2% acetic acid in acetonitrile. The filter plate was then incubated at 80°C for 45 minutes to capture the N-glycans onto the beads by a chemically stable and reversible hydrazine bond. The beads were then washed using 200 μL of 2 M guanidine-HCl in 10 mM ammonium bicarbonate, followed by washing with the same volume of water and 1% triethyl amine in methanol. Each washing step was performed twice. The N-glycan linked beads were next incubated with 5% acetic anhydride in ethanol for 30 minutes at room temperature so that unreacted hydrazide groups would become capped by acetylation. After capping, the reaction solution was removed under vacuum and the beads were serially washed with 2 × 200 μL of 10 mM HCl, methanol, and dioxane as a pretreatment for sialic acid modification. On-bead methyl esterification of carboxyl groups in the sialic acids was carried out with 100 μL of 20 mM 3-methyl-1-P-tolyltriazene (Tokyo Chemical Industry, Tokyo, Japan) in dioxane at 60°C for 90 minutes to dryness. After methyl esterification of the more stable glycans, the beads were serially washed in 200 μL of dioxane, water, 1% triethylamine in methanol, and water. The captured glycans were then subjected to transiminization reaction with BOA (O-benzylhydroxylamine) (Tokyo Chemical Industry) for 45 minutes at 80°C. After this reaction, 150 μL of water was added to each well, followed by the recovery of derivatized glycans under vacuum.

Matrix-Assisted Laser Desorption Ionization, Time-of-Flight (MALDI-TOF) and TOF/TOF Analysis

The N-glycans purified by glycoblotting were directly diluted with α-cyano-4-hydroxycinnamic acid diethylamine salt (Sigma-Aldrich) as ionic liquid matrix and spotted onto the MALDI target plate. The analytes were then subjected to MALDI-TOF
MS analysis using an Ultraflex time-of-flight mass spectrometer III (Bruker Daltonics, Billerica, MA) in reflector, positive ion mode and typically summing 1000 shots. The N-glycan peaks in the MALDI-TOF MS spectra were selected using FlexAnalysis v. 3 (Bruker Daltonics). The intensity of the isotopic peak of each glycan was normalized using 40 μM internal standard (A2 amide; Tokyo Chemical Industry) for each status, and its concentration was calculated from a calibration curve using human plasma standards. The glycan structures were estimated using the GlycoMod Tool (http://br.expasy.org/tools/glycomod/), so that our system could quantitatively measure 40 N-glycans.
Table S1. Weights of the body, liver, and kidney after exposure in chickens

In the case of body weight, the value of the day prior to euthanasia was used because they were fasted from the night of the previous day.

<table>
<thead>
<tr>
<th>Group</th>
<th>Body weight (g)</th>
<th>Liver weight (g)</th>
<th>Kidney weight (g)</th>
<th>Liver/B.W. (%)</th>
<th>Kidney/B.W. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1489 ± 121</td>
<td>23.9 ± 0.6</td>
<td>9.5 ± 0.7</td>
<td>1.6 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Diclofenac A (1.5 mg/kg)</td>
<td>1549 ± 41</td>
<td>25.6 ± 3.9</td>
<td>13.1 ± 4.4</td>
<td>1.6 ± 0.2</td>
<td>0.8 ± 0.3</td>
</tr>
<tr>
<td>Diclofenac B (2.0 mg/kg)</td>
<td>1455 ± 110</td>
<td>26.5 ± 5.5</td>
<td>14.2 ± 5.9</td>
<td>1.8 ± 0.4</td>
<td>1.0 ± 0.4</td>
</tr>
<tr>
<td>Cisplatin (3.5 mg/kg)</td>
<td>1293 ± 86</td>
<td>28.1 ± 6.9</td>
<td>13.1 ± 2.1</td>
<td>2.2 ± 0.4</td>
<td>1.0 ± 0.1</td>
</tr>
</tbody>
</table>

There are no significant differences between control and treatment groups (Steel’s test, $P < 0.05$).
Fig. S1. Histopathological features of the liver in diclofenac- or cisplatin-treated and control chickens.

Chickens treated with diclofenac (a) or cisplatin (b) showed mild hyperemia compared with controls (c).
Table S2. Ratios of all detected N-glycans (μM) on the final day/pre-administration

i. High mannose type

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>m/z</th>
<th>Presumptive composition</th>
<th>Cont.-1</th>
<th>Cont.-2</th>
<th>A-1</th>
<th>B-1</th>
<th>B-2</th>
<th>B-4</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1362.481</td>
<td>(Hex)2 + (Man)3 (GlcNAc)2</td>
<td>0.85</td>
<td>0.82</td>
<td>1.90</td>
<td>1.02</td>
<td>1.37</td>
<td>0.85</td>
<td>1.07</td>
<td>0.90</td>
<td>0.93</td>
<td>0.73</td>
</tr>
<tr>
<td>2</td>
<td>1524.534</td>
<td>(Hex)3 + (Man)3 (GlcNAc)2</td>
<td>0.85</td>
<td>0.84</td>
<td>1.20</td>
<td>0.91</td>
<td>0.83</td>
<td>0.66</td>
<td>0.98</td>
<td>0.88</td>
<td>0.94</td>
<td>0.64</td>
</tr>
<tr>
<td>3</td>
<td>1686.587</td>
<td>(Hex)4 + (Man)3 (GlcNAc)2</td>
<td>0.91</td>
<td>0.83</td>
<td>0.92</td>
<td>0.68</td>
<td>0.72</td>
<td>0.58</td>
<td>1.07</td>
<td>0.86</td>
<td>1.01</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>1848.640</td>
<td>(Hex)5 + (Man)3 (GlcNAc)2</td>
<td>0.91</td>
<td>0.85</td>
<td>0.92</td>
<td>0.62</td>
<td>0.81</td>
<td>0.62</td>
<td>1.11</td>
<td>0.84</td>
<td>1.00</td>
<td>0.67</td>
</tr>
<tr>
<td>5</td>
<td>2010.692</td>
<td>(Hex)6 + (Man)3 (GlcNAc)2</td>
<td>0.89</td>
<td>0.88</td>
<td>0.86</td>
<td>0.60</td>
<td>0.74</td>
<td>0.58</td>
<td>1.06</td>
<td>0.81</td>
<td>0.92</td>
<td>0.65</td>
</tr>
<tr>
<td>6</td>
<td>2172.745</td>
<td>(Hex)7 + (Man)3 (GlcNAc)2</td>
<td>0.84</td>
<td>0.91</td>
<td>0.73</td>
<td>0.51</td>
<td>0.55</td>
<td>0.46</td>
<td>0.94</td>
<td>0.65</td>
<td>0.75</td>
<td>0.55</td>
</tr>
</tbody>
</table>

ii. Complex type, Hybrid type

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>m/z</th>
<th>Presumptive composition</th>
<th>Cont.-1</th>
<th>Cont.-2</th>
<th>A-1</th>
<th>B-1</th>
<th>B-2</th>
<th>B-4</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1565.560</td>
<td>(Hex)2 (HexNAc)1 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>0.00</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>1.06</td>
<td>1.04</td>
<td>1.00</td>
<td>0.89</td>
</tr>
<tr>
<td>8</td>
<td>1708.619</td>
<td>(Hex)1 (HexNAc)1 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>1.09</td>
<td>0.92</td>
<td>1.98</td>
<td>1.74</td>
<td>1.67</td>
<td>0.93</td>
<td>1.17</td>
<td>1.00</td>
<td>1.00</td>
<td>0.90</td>
</tr>
<tr>
<td>9</td>
<td>1727.613</td>
<td>(Hex)3 (HexNAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.90</td>
<td>0.79</td>
<td>2.83</td>
<td>1.22</td>
<td>1.09</td>
<td>0.72</td>
<td>1.11</td>
<td>1.00</td>
<td>1.04</td>
<td>0.88</td>
</tr>
<tr>
<td>10</td>
<td>1793.671</td>
<td>(HexNAc)3 (Deoxyhexose)1 + (Man)3 (GlcNAc)2</td>
<td>0.74</td>
<td>0.71</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.94</td>
<td>0.70</td>
<td>0.85</td>
<td>0.55</td>
</tr>
<tr>
<td>11</td>
<td>1809.666</td>
<td>(Hex)1 (HexNAc)3 + (Man)3 (GlcNAc)2</td>
<td>0.82</td>
<td>0.71</td>
<td>1.00</td>
<td>0.70</td>
<td>0.69</td>
<td>0.00</td>
<td>0.85</td>
<td>0.78</td>
<td>0.85</td>
<td>0.51</td>
</tr>
<tr>
<td>12</td>
<td>1870.672</td>
<td>(Hex)2 (HexNAc)1 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.96</td>
<td>0.92</td>
<td>1.93</td>
<td>1.59</td>
<td>1.32</td>
<td>0.86</td>
<td>1.13</td>
<td>0.92</td>
<td>1.02</td>
<td>0.77</td>
</tr>
<tr>
<td>13</td>
<td>1914.698</td>
<td>(Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2</td>
<td>0.97</td>
<td>0.87</td>
<td>0.00</td>
<td>N. A.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.88</td>
<td>0.60</td>
<td>0.83</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>1955.724</td>
<td>(Hex)1 (HexNAc)3 (Deoxyhexose)1 + (Man)3 (GlcNAc)2</td>
<td>0.76</td>
<td>0.81</td>
<td>0.77</td>
<td>0.48</td>
<td>0.58</td>
<td>0.46</td>
<td>1.01</td>
<td>0.66</td>
<td>0.75</td>
<td>0.58</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1971.719</td>
<td>(Hex)2 (HexNAc)3 + (Man)3 (GlcNAc)2</td>
<td>0.66</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>0.00</td>
<td>N. A.</td>
<td>0.00</td>
<td>N. A.</td>
<td>N. A.</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>2032.724</td>
<td>(Hex)3 (HexNAc)1 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.96</td>
<td>0.89</td>
<td>3.27</td>
<td>2.36</td>
<td>1.78</td>
<td>0.98</td>
<td>1.15</td>
<td>0.98</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>17</td>
<td>2073.751</td>
<td>(Hex)2 (HexNAc)2 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.87</td>
<td>0.81</td>
<td>3.01</td>
<td>1.69</td>
<td>1.95</td>
<td>0.84</td>
<td>1.14</td>
<td>1.11</td>
<td>0.96</td>
<td>1.07</td>
</tr>
<tr>
<td>18</td>
<td>2117.777</td>
<td>(Hex)2 (HexNAc)3 (Deoxyhexose)1 + (Man)3 (GlcNAc)2</td>
<td>0.88</td>
<td>0.89</td>
<td>1.16</td>
<td>0.76</td>
<td>0.66</td>
<td>0.52</td>
<td>1.07</td>
<td>0.75</td>
<td>0.82</td>
<td>0.60</td>
</tr>
<tr>
<td>19</td>
<td>2219.809</td>
<td>(Hex)2 (HexNAc)2 (Deoxyhexose)1 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.90</td>
<td>0.87</td>
<td>0.90</td>
<td>0.67</td>
<td>0.64</td>
<td>0.52</td>
<td>0.88</td>
<td>0.85</td>
<td>0.87</td>
<td>0.49</td>
</tr>
<tr>
<td>20</td>
<td>2235.804</td>
<td>(Hex)3 (HexNAc)2 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>0.90</td>
<td>4.47</td>
<td>2.59</td>
<td>1.49</td>
<td>0.75</td>
<td>1.12</td>
<td>0.89</td>
<td>N. A.</td>
<td>0.86</td>
</tr>
<tr>
<td>21</td>
<td>2260.835</td>
<td>(Hex)1 (HexNAc)3 (Deoxyhexose)1 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.82</td>
<td>0.83</td>
<td>0.86</td>
<td>0.58</td>
<td>0.00</td>
<td>0.59</td>
<td>1.08</td>
<td>0.65</td>
<td>0.95</td>
<td>0.55</td>
</tr>
<tr>
<td>22</td>
<td>2276.830</td>
<td>(Hex)2 (HexNAc)3 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.80</td>
<td>N. A.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.60</td>
<td>N. A.</td>
<td>0.95</td>
<td>0.00</td>
<td>0.78</td>
<td>0.00</td>
</tr>
<tr>
<td>23</td>
<td>2279.830</td>
<td>(Hex)3 (HexNAc)3 (Deoxyhexose)1 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>1.06</td>
<td>0.00</td>
<td>0.00</td>
<td>N. A.</td>
</tr>
<tr>
<td>24</td>
<td>2304.862</td>
<td>(Hex)1 (HexNAc)4 (Deoxyhexose)2 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>0.81</td>
<td>2.77</td>
<td>1.69</td>
<td>1.54</td>
<td>0.00</td>
<td>1.23</td>
<td>0.67</td>
<td>0.88</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>2321.841</td>
<td>(Hex)2 (HexNAc)1 (Deoxyhexose)1 (NeuAc)2 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>1.05</td>
<td>0.80</td>
<td>0.91</td>
<td>0.73</td>
</tr>
<tr>
<td>26</td>
<td>2336.851</td>
<td>(Hex)3 (HexNAc)4 + (Man)3 (GlcNAc)2</td>
<td>0.88</td>
<td>0.92</td>
<td>2.17</td>
<td>1.67</td>
<td>N. A.</td>
<td>0.79</td>
<td>1.14</td>
<td>0.81</td>
<td>0.88</td>
<td>0.71</td>
</tr>
<tr>
<td>27</td>
<td>2378.862</td>
<td>(Hex)2 (HexNAc)2 (NeuAc)2 + (Man)3 (GlcNAc)2</td>
<td>0.95</td>
<td>0.95</td>
<td>2.33</td>
<td>1.73</td>
<td>1.72</td>
<td>0.85</td>
<td>1.04</td>
<td>0.69</td>
<td>0.90</td>
<td>0.56</td>
</tr>
<tr>
<td>28</td>
<td>2422.888</td>
<td>(Hex)2 (HexNAc)3 (Deoxyhexose)1 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.88</td>
<td>0.89</td>
<td>1.13</td>
<td>0.57</td>
<td>0.66</td>
<td>0.47</td>
<td>1.15</td>
<td>0.99</td>
<td>0.98</td>
<td>0.95</td>
</tr>
<tr>
<td>29</td>
<td>2438.883</td>
<td>(Hex)3 (HexNAc)3 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.85</td>
<td>0.84</td>
<td>3.96</td>
<td>2.34</td>
<td>1.99</td>
<td>0.84</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
</tr>
<tr>
<td>30</td>
<td>2482.909</td>
<td>(Hex)3 (HexNAc)4 (Deoxyhexose)1 + (Man)3 (GlcNAc)2</td>
<td>0.87</td>
<td>0.79</td>
<td>1.65</td>
<td>0.00</td>
<td>0.00</td>
<td>0.83</td>
<td>0.90</td>
<td>0.60</td>
<td>0.86</td>
<td>0.49</td>
</tr>
<tr>
<td>31</td>
<td>2524.920</td>
<td>(Hex)2 (HexNAc)2 (Deoxyhexose)1 (NeuAc)2 + (Man)3 (GlcNAc)2</td>
<td>0.75</td>
<td>0.99</td>
<td>1.29</td>
<td>0.80</td>
<td>0.51</td>
<td>0.56</td>
<td>1.07</td>
<td>0.63</td>
<td>1.06</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>2727.999</td>
<td>(Hex)2 (HexNAc)3 (Deoxyhexose)1 (NeuAc)2 + (Man)3 (GlcNAc)2</td>
<td>1.00</td>
<td>0.91</td>
<td>0.99</td>
<td>0.68</td>
<td>0.59</td>
<td>0.51</td>
<td>1.09</td>
<td>0.64</td>
<td>1.12</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>2743.994</td>
<td>(Hex)3 (HexNAc)3 (NeuAc)2 + (Man)3 (GlcNAc)2</td>
<td>0.95</td>
<td>0.90</td>
<td>2.74</td>
<td>1.45</td>
<td>1.64</td>
<td>0.89</td>
<td>1.13</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>--------------------------</td>
<td>----</td>
<td>----------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>34</td>
<td>2788.020</td>
<td>(Hex)3 (HexNAc)4 (Deoxyhexose)1 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>0.78</td>
<td>0.91</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
</tr>
<tr>
<td>35</td>
<td>2804.015</td>
<td>(Hex)4 (HexNAc)4 (NeuAc)1 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>0.00</td>
<td>2.4/N.</td>
<td>2.84</td>
<td>1.4/N.</td>
<td>0.00</td>
<td>1.25</td>
<td>0.90</td>
<td>1.05</td>
<td>0.80</td>
</tr>
<tr>
<td>36</td>
<td>2890.052</td>
<td>(Hex)3 (HexNAc)3 (Deoxyhexose)1 (NeuAc)2 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
</tr>
<tr>
<td>37</td>
<td>3049.105</td>
<td>(Hex)3 (HexNAc)3 (NeuAc)3 + (Man)3 (GlcNAc)2</td>
<td>1.05</td>
<td>1.08</td>
<td>1.63</td>
<td>1.08</td>
<td>1.09</td>
<td>0.80</td>
<td>1.04</td>
<td>0.63</td>
<td>0.85</td>
<td>0.46</td>
</tr>
<tr>
<td>38</td>
<td>3109.126</td>
<td>(Hex)4 (HexNAc)4 (NeuAc)2 + (Man)3 (GlcNAc)2</td>
<td>0.99</td>
<td>1.01</td>
<td>3.81</td>
<td>2.21</td>
<td>2.08</td>
<td>1.16</td>
<td>1.17</td>
<td>0.71</td>
<td>0.96</td>
<td>0.58</td>
</tr>
<tr>
<td>39</td>
<td>3195.163</td>
<td>(Hex)3 (HexNAc)3 (Deoxyhexose)1 (NeuAc)3 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>1.06</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>0.00</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
<td>N. A.</td>
</tr>
<tr>
<td>40</td>
<td>3414.237</td>
<td>(Hex)4 (HexNAc)4 (NeuAc)3 + (Man)3 (GlcNAc)2</td>
<td>N. A.</td>
<td>1.21</td>
<td>2.84</td>
<td>1.76</td>
<td>2.03</td>
<td>N. A.</td>
<td>1.14</td>
<td>0.61</td>
<td>0.89</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table S3. Ratios of increased N-glycans (μM) on the final day/pre-administration in diclofenac-treated group

<table>
<thead>
<tr>
<th>ID</th>
<th>Kidney damage score</th>
<th>No. 8</th>
<th>No. 9</th>
<th>No. 12</th>
<th>No. 16</th>
<th>No. 17</th>
<th>No. 20</th>
<th>No. 24</th>
<th>No. 26</th>
<th>No. 27</th>
<th>No. 29</th>
<th>No. 33</th>
<th>No. 35</th>
<th>No. 38</th>
<th>No. 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-4</td>
<td>1</td>
<td>0.9</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.0</td>
<td>1.2</td>
<td>N. D.</td>
<td>N. D.</td>
</tr>
<tr>
<td>B-2</td>
<td>2</td>
<td>1.7</td>
<td>1.1</td>
<td>1.3</td>
<td>1.8</td>
<td>1.9</td>
<td>1.5</td>
<td>1.5</td>
<td>1.1/N. D.</td>
<td>1.7</td>
<td>2.0</td>
<td>1.6</td>
<td>1.4/N. D.</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>A-1</td>
<td>4</td>
<td>2.0</td>
<td>2.8</td>
<td>1.9</td>
<td>3.3</td>
<td>3.0</td>
<td>4.5</td>
<td>2.8</td>
<td>2.2</td>
<td>2.3</td>
<td>4.0</td>
<td>2.7</td>
<td>2.4/N. D.</td>
<td>3.8</td>
<td>2.8</td>
</tr>
<tr>
<td>B-1</td>
<td>5</td>
<td>1.7</td>
<td>1.2</td>
<td>1.6</td>
<td>2.4</td>
<td>1.7</td>
<td>2.6</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>2.3</td>
<td>1.4</td>
<td>2.8</td>
<td>2.2</td>
<td>1.8</td>
</tr>
</tbody>
</table>