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Abstract

Relational data encoding pairwise relationships between objects appears in many fields.

For example point-of-sale (POS) data of an e-commerce (EC) site contain relational

data between customers and items, and follower lists in social networking services

(SNS) such as Twitter is relational data among users. Recently, with the rapid ad-

vancements in internet technologies, a large amount of relational data has been accu-

mulated in many business fields. Therefore, extracting insights by analysing relational

data becomes an important challenge for many business persons to refine their business

activities.

Biclustering is one of the most popular techniques to extract useful insights from

relational data. Biclustering abstracts the given data matrix into a low-dimensional

block structure by simultaneously clustering both the row and column objects. For

extracting robust bicluster structure from noisy real-world relational data, there have

been studied many statistical models for biclustering. Among these models, the Infinite

Relational Model (IRM) proposed by Kemp et al. is one of the most fundamental

biclustering models. The IRM abstracts given relational data into a block structure, in

which each block has its own link probability. The IRM can automatically estimates

the optimal number of clusters. Furthermore, posterior inference for the IRM can be

performed efficiently using collapsed Gibbs sampler.

The IRM and its extended models commonly assume that each block of the bicluster

structure has an uniform density. However, this assumption is not acceptable in many
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real-world situations. For example, when analyzing shopping behavior of customers on

an EC site, there may be items that a certain customer would like to purchase but

cannot afford, whereas a customer with a larger budget can purchase any item on sale.

Therefore, the bicluster structure underlying real-world relationships may represent

highly distorted relationships rather than ideal relationships. To obtain an essential

bicluster structure in such a situation, it is natural to assume additional latent factors

that affect the observed link probabilities of objects regardless of their membership to

the cluster.

In this thesis, in order to overcome the drawback of existing standard biclustering

models, we study a novel biclustering problem termed relevance-dependent biclustering.

In our relevance-dependent biclustering, we assume that each object has an additional

latent variable indicating a relevance value that determines how strongly the object

relates to the cluster. Therefore, the relevance-dependent biclustering can capture

block structure with un-uniform density, where the un-uniformness is explained by the

effect of the latent relevance values. This is a major advantage of relevance-dependent

biclustering because the meaning of obtained clusters can be understood easily by

inspecting only a few highly relevant objects.

In Chapter 3, we discuss the relevance-dependency modeling using Boolean func-

tions. More specifically, for each entry of given relational data, we introduce a latent

binary variable that indicates whether the entry relates to the block structure (fore-

ground distribution) or to a background noise (background distribution). Then, we

introduce a mechanism that the binary variable for an entry is determined by calcu-

lating an arbitrary Boolean function of Bernoulli trials from row and column objects.

Thus, a probability for the Bernoulli trial can be interpreted as the relevance parameter

for the object. By incorporating the mechanism, we propose an extension of the IRM

termed the Relevance-Dependent IRM (RDIRM). The RDIRM is also an instance of

Bayesian nonparametric models. Therefore, the RDIRM can automatically estimate
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the number of clusters. Furthermore, thanks to the conjugacy between component

distributions, posterior inference for the RDIRM can be performed efficiently using

collapsed Gibbs sampler.

In Chapter 4, we generalize the relevance modeling in the RDIRM. By considering

continuous relaxation of the Boolean function in the RDIRM, we propose a mixed-

membership mechanism that contains all the Boolean functions as special cases. In

the mixed-membership approach, we can resolve two critical limitations of relevance

modeling in the RDIRM. First, in the mixed-membership mechanism, the form of the

relaxed Boolean function can be automatically estimated from given data. Further-

more, in the mixed-membership mechanism, we can straightforwardly consider rele-

vance values with three or more dimensions. Therefore, we can introduce multiple

background distribution for considering different types of irrelevant objects. By incor-

porating the mixed-membership mechanism, we propose an extension of the RDIRM

termed Multi-Layered IRM (MLIRM), which has two background distributions. The

relevance parameters in the MLIRM can explain, not only passive objects with few

links, but also spamming objects with extremely many links. Similar to the RDIRM,

the posterior inference for the MLIRM can also be performed using collapsed Gibbs

sampler.

In Chapter 5, we introduce a link function approach for modeling relevance-dependency.

More specifically, we introduce the Relevance-dependent Bernoulli Distribution (R-

BD), which is a novel prior distribution for relevance-dependent binary matrices. In

our R-BD, a link strength for an entry is defined by three non-negative parameters: a

typical link strength common to all entries in the matrix, and two relevance parame-

ters for each row and column objects. Then, an observed link probability is directly

calculated by transforming the product of these three non-negative variables into a

probability using Bernoulli-Poisson link function. The main advantages of the R-BD

is as follows. First, the relevance-modeling in the R-BD do not have to consider any
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background distributions. Thus, the number of latent variables to be estimated is sig-

nificantly smaller than those in the RDIRM and MLIRM. Second, the link probability

in the R-BD can be modulated widely from 0.0 to 1.0 without introducing complicated

mechanism as in the MLIRM. Thus, the effect of relevance values in the R-BD is more

interpretable than that in the RDIRM and MLIRM. Finally, as all the parameters

of the R-BD can be completely marginalized out, we do not have to explicitly esti-

mate R-BD’s parameters when performing posterior inference. By incorporating the

R-BD as a component distribution, we propose a novel biclustering model termed the

Relevance-dependent Infinite Biclustering (R-IB). Thanks to the property of the R-

BD, the posterior inference for the R-IB can also be performed using a collapsed Gibbs

sampler. Furthermore, the R-IB can be inferred faster than not only the RDIRM and

MLIRM, but also the original IRM.

Finally, we conclude this thesis and discuss future work in Chapter 6. In this study,

we introduced the relevance-dependent biclustering problem. Then, we explored several

approach for modeling relevance-dependency and developed new relevance-dependent

biclustering models for each approach. Furthermore, for each model, we derived an

efficient collapsed Gibbs sampler to perform posterior inference. Through this study,

the author succeeded in opening the beginning of relevance-dependent biclustering

research. For future work, it is of interest to apply the relevance-modeling of this

study to more general machine learning problems such as matrix factorization.
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Chapter 1

Introduction

Relational data encoding pairwise relationships between objects appears in many fields.

For example, point-of-sale (POS) data of an e-commerce (EC) site contain relational

data between customers and items, and follower lists in social networking services (SNS)

such as Twitter is relational data among users. Recently, with the rapid advancements

in internet technologies, a large amount of relational data has been accumulated in

many business fields. Therefore, extracting insights by analysing such relational data

becomes an important challenge for many business persons to refine their business

activities. For example, someone might want to obtain the following knowledge:

• How should we categorize customers to help us understand their preferences more

clearly?

• How many roles are there in our company? Which employees work on similar

tasks?

Biclustering [23, 13, 14, 9, 20, 5, 36] is one of the most popular techniques to extract

useful insights from relational data. Biclustering abstracts the given data matrix into a

low-dimensional block structure by simultaneously clustering both the row and column

objects. For example, biclustering of POS data can be used to elucidate bipartite

1



2 CHAPTER 1. INTRODUCTION

relationships between particular customers and particular items that sell well. For

extracting robust bicluster structure from noisy real-world relational data, there have

been proposed many statistical models for biclustering [62, 63, 47, 34, 72, 71]. Among

these models, the Stochastic Block Model (SBM) [47] proposed by Nowicki et al. is one

of the most fundamental biclustering models. The SBM abstracts given relational data

into a block structure, in which each block has its own link probability. More recently,

Kemp et al. have proposed the Infinite Relational Model (IRM) [34], a Bayesian

nonparametric extension of the SBM that can automatically estimates the optimal

number of clusters from given relational data. Furthermore, posterior inference for the

IRM can be performed efficiently using collapsed inference methods [70, 41, 32, 37].

Because the IRM is so popular, many extensions of the IRM have been proposed [1,

43, 57, 24, 58, 44, 56, 30, 19].

The SBM, IRM and its extended models commonly assume that each block of the

bicluster structure has an uniform density (Fig. 1.1a). However, this assumption is

not acceptable in many real-world situations. For example, when analyzing shopping

behavior of customers on an EC site, there may be items that a certain customer

would like to purchase but cannot afford, whereas a customer with a larger budget can

purchase any item on sale. Therefore, the bicluster structure underlying real-world re-

lationships may represent highly distorted relationships rather than ideal relationships.

To obtain an essential bicluster structure in such a situation, it is natural to assume

additional latent factors that affect the observed link probabilities of objects regardless

of their membership to the cluster. Although the necessity of considering clusters with

uneven density has been discussed in social community analysis [4], this problem has

not yet been studied directly.

In this thesis, in order to overcome the drawback of existing standard biclustering

models (Fig. 1.1a), we study a novel biclustering problem termed relevance-dependent

biclustering (Fig. 1.1b). In our relevance-dependent biclustering, we assume that each



3(a) Standard Biclustering
(b) Our proposal: Relevance-dependent Biclustering
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Figure 1.1: Diagrams of (a) standard biclustering and (b) relevance-dependent biclus-

tering.

object has an additional latent variable indicating a relevance value that determines

how strongly the object relates to the cluster. That is, a large relevance value means

that the corresponding object strongly follow the ideal density defined by block struc-

ture, whereas a small relevance value indicates that the corresponding object is rel-

atively non-informative and weakly relevant to the block structure. Therefore, the

relevance-dependent biclustering can capture block structure with un-uniform densi-

ties, where the un-uniformness is explained by the effect of the latent relevance values.

This is a major advantage of relevance-dependent biclustering because the meaning of

obtained clusters can be understood easily by inspecting only a few highly relevant

objects. Furthermore, all obtained clusters are interpretable because they are related

to at least one meaningful (dense) block. In this thesis, we explore several approaches
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for modeling relevance-dependency in relational data. For each approach, we propose

a new relevance-dependent biclustering model that can automatically estimate the

number of clusters. Furthermore, we derive an efficient collapsed Gibbs sampling [41]

algorithm for performing posterior inference for each proposed model.

In Chapter 3, we discuss the relevance-dependency modeling using Boolean func-

tions. More specifically, for each entry of given relational data, we introduce a latent

binary variable that indicates whether the entry relates to the block structure (fore-

ground distribution) or to a background noise (background distribution). Then, we

introduce a mechanism that the binary variable for an entry is determined by calculat-

ing an arbitrary Boolean function of Bernoulli trials from row and column objects. By

introducing probability parameter that controls Bernoulli trial of corresponding object,

the probability can be interpreted as the relevance parameter for the object. Thus, a

probability for the Bernoulli trial can be interpreted as the relevance parameter for the

object. By incorporating the mechanism, we propose an extension of the IRM termed

the Relevance-Dependent IRM (RDIRM). The RDIRM is also an instance of Bayesian

nonparametric models. Therefore, the RDIRM can automatically estimate the number

of clusters. Furthermore, thanks to the conjugacy between component distributions,

posterior inference for the RDIRM can be performed efficiently using collapsed Gibbs

sampler1.

In Chapter 4, we generalize the relevance modeling in the RDIRM. By considering

continuous relaxation of the Boolean function in the RDIRM, we propose a mixed-

membership mechanism that contains all the Boolean functions as special cases. In

the mixed-membership approach, we can resolve two critical limitations of relevance

modeling in the RDIRM. First, in the mixed-membership mechanism, the form of the

relaxed Boolean function can be automatically estimated from given data. Further-

more, in the mixed-membership mechanism, we can straightforwardly consider rele-

1 This result has been published in [48, 49].



5

vance values with three or more dimensions. Therefore, we can introduce multiple

background distribution for considering different types of irrelevant objects. By incor-

porating the mixed-membership mechanism, we propose an extension of the RDIRM

termed Multi-Layered IRM (MLIRM), which has two background distributions. The

relevance parameters in the MLIRM can explain, not only passive objects with few

links, but also spamming objects with extremely many links. Similar to the RDIRM,

the posterior inference for the MLIRM can also be performed using collapsed Gibbs

sampler2.

In Chapter 5, in order to develop more computationally efficient relevance-dependent

biclustering model, we introduce a link function approach for modeling relevance-

dependency. More specifically, we introduce the Relevance-dependent Bernoulli Dis-

tribution (R-BD), which is a novel prior distribution for relevance-dependent binary

matrices. In our R-BD, a link strength for an entry is defined by three non-negative

parameters: a typical link strength common to all entries in the matrix, and two rele-

vance parameters for each row and column objects. Then, an observed link probability

is directly calculated by transforming the product of these three non-negative variables

into a probability using Bernoulli-Poisson link function [74]. The main advantages of

the R-BD is as follows. First, the relevance-modeling in the R-BD do not have to

consider any background distributions. Thus, the number of latent variables to be esti-

mated is significantly smaller than those in the RDIRM and MLIRM. Second, the link

probability in the R-BD can be modulated widely from 0.0 to 1.0 without introducing

complicated mechanism as in the MLIRM. Thus, the effect of the relevance values in

the R-BD is interpretable. Finally, as the all parameters of the R-BD can be completely

marginalized out, we do not have to explicitly estimate R-BD’s parameters when per-

forming posterior inference. By incorporating the R-BD as a component distribution,

we propose a novel biclustering model termed the Relevance-dependent Infinite Biclus-

2 This result has been published in [50, 52].
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tering (R-IB). Thanks to the property of the R-BD, the posterior inference for the R-IB

can also be performed using a collapsed Gibbs sampler. Furthermore, the R-IB can be

inferred faster than not only the RDIRM and MLIRM, but also the original IRM3.

Finally, we conclude this thesis and discuss future work in Chapter 6. In this study,

we introduced the relevance-dependent biclustering problem. Then, we explored several

approaches for modeling relevance-dependency and developed new relevance-dependent

biclustering models for each approach. Furthermore, for each model, we derived an

efficient collapsed Gibbs sampler to perform posterior inference. Through this study,

the author succeeded in opening the beginning of relevance-dependent biclustering

research. For future work, it is of interest to apply the relevance-modeling of this

study to more general machine learning problems such as matrix factorization.

3 This result has been published in [51, 53].



Chapter 2

Preliminaries

In this chapter, we introduce basic terms and notations. First, we define the rela-

tional data discussed in this thesis. Then, we review the baseline standard biclustering

models (i.e., the SBM and IRM). Finally, we discuss the drawbacks of these standard

biclustering models.

2.1 Relational Data

Let R be the I × J binary matrix that represents relational data between a set of

objects T1 = {O1,i}
I
i=1 and another set of objects T2 = {O2,j}

J
j=1. An entry Ri,j = 1(0)

indicates that there is a link (non-link) between O1,i and O2,j . For example, customer

i’s purchase of item j can be represented by Ri,j = 1. Conversely, Ri,j = 0 indicates

that customer i has not bought item j (Fig. 2.1).

Note that several variations of relational data can be considered straightforwardly.

For example, discrete-valued relational data [7, 71, 28, 76, 8, 77, 76, 75] are preferable

for encoding customer ratings for items on an EC site. As another example, real-

valued relational data [39, 31, 38, 60, 59, 42, 15, 22] can be considered for encoding

relationships on sensor networks or traffic volume on transportation networks. In

7



8 CHAPTER 2. PRELIMINARIES

User O1

Item O2

Purchase

(a) Graph representation

U
se
r
O

1

Item O2

(b) Matrix representation

Figure 2.1: (Best viewed in color.) Diagrams of relational data discussed in this thesis.

addition, we can consider relational data that encode relationships among three or

more domains (e.g., customers × items × time) using tensor representation [27, 28].

Furthermore, many other variants of relational data can be considered [64, 40, 18, 67,

68]. Although considering these variants are important, we focus on two-domain binary

relationships which is the most common type of the relational data.

2.2 Stochastic Block Model (SBM)

In this section, we briefly review the Stochastic Block Model (SBM) [47], one of the most

popular latent variable models for co-clustering relational data. The SBM considers a

stochastic distribution over R. Let K and L be the number of clusters for T1 and T2,

respectively. The SBM assumes latent variables z1,i ∈ {1, . . . , K} and z2,j ∈ {1, . . . , L}

for T1 and T2, respectively. These latent variables indicate cluster assignments for

objects. That is, z1,i = k means that the i-th row object is assigned to k-th row
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α1 β α2

π1 ηk,l π2

K × L

z1,i z2,j

Ri,j

I J

Figure 2.2: Graphical representation for the generative model of the SBM. Circle nodes

denote random variables, square nodes denote hyperparameters, shaded nodes denote

observations, and round-edged squares indicate number of individual variables. Di-

rected connections denote probabilistic dependencies.

cluster. Similarly, z2,j = l means that the j-th column object is assigned to l-th

column cluster. Note that, in this thesis, we also use 1-of-K representation for z1,i and

z2,j as Z1,i = {Z1,i,k}
K
k=1 ∈ {0, 1}

K and Z2,j = {Z2,j,l}
L
l=1 ∈ {0, 1}

L, respectively, where
∑K

k=1 Z1,i,k =
∑L

l=1 Z2,j,l = 1. Therefore, a situation that i-th row object is assigned

to k-th row cluster is described as z1,i = k or Z1,i,k = 1 through this theses. Let η be

the K × L matrix of link probabilities between K clusters for T1 and L clusters for

T2, where ηk,l ∈ [0, 1] indicates the probability that there is a link between an object

assigned to cluster k and an object assigned to cluster l. Thus, in the SBM, the link

probability between O1,i and O2,j is given as follows:

P (Ri,j = 1 | z1,i, z2,j ,η) =ηz1,i,z2,j , (2.1)
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which is also represented as

P (Ri,j = 1 |Z1,i,Z2,j ,η) =Z
⊤
1,iηZ2,j

=
K∑

k=1

L∑

l=1

Z1,i,kZ2,j,lηk,l. (2.2)

As we can easily see from the form of Eq. (2.2), the SBM factorizes relational data R

into three low dimensional matrices Z1, Z2, and η. In the SBM, a Dirichlet distribution

is assumed as a prior for each cluster assignment, and a beta distribution is assumed

as a prior for a link probability between two clusters ηk,l. More specifically, the full

description of the generative model for the SBM is as follows:

π1 |α1 ∼ Dirichlet(α1), (2.3)

π2 |α2 ∼ Dirichlet(α2), (2.4)

Z1,i |π1 ∼ Categorical(π1), (2.5)

Z2,j |π2 ∼ Categorical(π2), (2.6)

ηk,l | β ∼ Beta(β, β), (2.7)

Ri,j |η,Z1,i,Z2,j ∼ Bernoulli
(
Z⊤

1,iηZ2,j

)
, (2.8)

where Dirichlet(·), Categorical(·), Beta(·, ·), and Bernoulli(·) are the Dirichlet, cate-

gorical, beta, and Bernoulli distributions, respectively. Figure 2.2 shows a graphical

representation of the SBM. We now briefly review the above process. First, categorical

parameters for row objects π1 and column objects π2 are drawn from Dirichlet priors

with parameters α1 and α2, respectively (Eqs. (2.3) and (2.4)). Note that we consider

the K and L-dimensional Dirichlet priors for rows and columns, respectively. Second,

the cluster assignments Z1,i and Z2,j are drawn from corresponding categorical distri-

butions (Eqs. (2.5) and (2.6)). Here, each row object is assigned to one of K clusters.

Similarly, each column object is assigned to one of L clusters. Third, each link prob-

ability ηk,l between row cluster k ∈ {1, . . . , K} and column cluster l ∈ {1, . . . , L} is
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U
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×
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Figure 2.3: (Best viewed in color.) Diagrams of a clustering result obtained by the

SBM.

drawn from beta distribution with parameter β (Eq. (2.7)). Finally, a link Ri,j between

the i-th row object and j-th column object is generated by a Bernoulli trial with prob-

ability Z⊤
1,iηZ2,j (Eq. (2.8)). In the SBM, each object is assigned to one of the finite

number of clusters. Therefore, fitting the SBM to given relational data, we can obtain

a K × L block structure. That is why the above model is called the Stochastic Block

Model. Figure 2.3 shows the diagram of a clustering result obtained by the SBM.

There are several approaches to perform posterior inference for the SBM. Espe-

cially, the Gibbs sampler and the variational Bayes inference are frequently used. The

Gibbs sampler guarantees asymptotic convergence to the true posterior by drawing

infinitely many samples, whereas the variational Bayes inference is an approximative

approach. In this paper, we apply an improved Gibbs sampler called the collapsed

Gibbs sampler [41] to infer the posterior. In the collapsed Gibbs sampler, some of the

model parameters are integrated out. Therefore, we need to sequentially update only

the remaining parameters.

Now, we show posteriors for running the collapsed Gibbs sampler for the SBM. For
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the SBM, thanks to conjugacy, the Dirichlet parameters π1,π1 and the link probabil-

ities η can be integrated out. Therefore, the inference of the SBM is performed by

sampling only cluster assignments z1 and z2. Because z2 can be sampled in the same

manner as z1, we concentrate on z1. The conditional posterior for z1,i = k∗ is derived

as follows:

P (z1,i = k∗ | z1,−i, z2,R) ∝(m1,−i,k∗ + α1,k∗)×
L∏

l=1

B(m+i
k∗,l + β,m+i

k∗,l + β)

B(m−i
k∗,l + β,m−i

k∗,l + β)
, (2.9)

where, z1,−i is the cluster assignments for all row objects excluding O1,i, B(·, ·) is the

beta function, and α1,k∗ is the k∗-th value of the Dirichlet hyperparameter α1. The

symbol m1,−i,k∗ denote the number of row objects assigned to cluster k∗ excluding O1,i.

The symbols m+i
k∗,l, m

−i
k∗,l, m

+i
k∗,l, and m

−i
k∗,l denote the numbers of links and non-links,

and are computed as follows:

m+i
k∗,l =

∑∑

x∈T1,j∈T2:
z1,x=k∗(z1,i:=k

∗),z2,j=l

Rx,j, m+i
k∗,l =

∑∑

x∈T1,j∈T2:
z1,x=k∗(z1,i:=k

∗),z2,j=l

Rx,j,

m−i
k∗,l =

∑∑

x∈T1,j∈T2:
z1,x=k∗(x 6=i),z2,j=l

Rx,j, m−i
k∗,l =

∑∑

x∈T1,j∈T2:
z1,x=k∗(x 6=i),z2,j=l

Rx,j,

where Ri,j = 1 − Ri,j . Then, starting from randomly initialized cluster assignments,

a collapsed Gibbs solution can be obtained by updating each cluster assignment using

Eq. (2.9).

After the burn-in period of Gibbs iterations, the expected a posteriori (EAP) esti-

mation for a link probability ηk,l that we integrated out can be computed as follows:

ηEAP

k,l =
mk,l + β

mk,l +mk,l + 2β
, (2.10)

where

mk,l =
∑∑

i∈T1,j∈T2:
z1,i=k,z2,j=l

Ri,j , mk,l =
∑∑

i∈T1,j∈T2:
z1,i=k,z2,j=l

Ri,j .
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β

γ1 γ2

ηk,l

∞×∞

z1,i z2,j

Ri,j

I
J

Figure 2.4: Graphical representation for the generative model of the IRM. Circle nodes

denote random variables, square nodes denote hyperparameters, shaded nodes denote

observations, and round-edged squares indicate number of individual variables. Di-

rected connections denote probabilistic dependencies.

As described above, in the SBM, a prior distribution for cluster assignments is

a finite-dimensional Dirichlet distribution. Therefore, we must carefully choose the

numbers of clusters K and L to avoid an underfitted or overfitted solution.

2.3 Infinite Relational Model (IRM)

The Infinite Relational Model (IRM) proposed by Kemp et al. [34] is a well-known

extension of the SBM that can automatically estimate the number of clusters. In

the IRM, a Dirichlet Process (DP) [17] is used as a prior distribution for the number

of clusters. The DP is a nonparametric stochastic process that can be viewed as

an infinite-dimensional Dirichlet distribution. In the IRM, the numbers of mixture
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components K and L are theoretically infinite. Therefore, the number of clusters for

abstracting relational data is automatically estimated. To implement these infinite

mixture models, we can use either a Stick-Breaking Process (SBP) [61] or a Chinese

Restaurant Process (CRP) [6, 2]. Typically, a CRP is used to develop a collapsed Gibbs

sampler for an infinite mixture model, whereas the SBP is used to develop variational

Bayes inference.

The generative process of the IRM with the CRP representation is described as

follows:

Z1,i | γ1 ∼ CRP(γ1), (2.11)

Z2,j | γ2 ∼ CRP(γ2), (2.12)

ηk,l | β ∼ Beta(β, β), (2.13)

Ri,j |Z1,i,Z2,j ,η ∼ Bernoulli(Z⊤
1,iηZ2,j), (2.14)

where γ1 and γ2 are the concentration parameters for CRPs. Figure 2.4 shows the

graphical representation of the IRM. As we can see, the difference between the genera-

tive processes of the SBM and IRM lies in the prior distributions for cluster assignment.

In the CRP, given z1,−i, the posterior probability P (z1,i | z1,−i) that i-th row object is

assigned to cluster k∗ is given as follows:

P (z1,i = k∗ | z1,−i) ∝







m1,−i,k∗ , (if m1,−i,k∗ > 0)

γ1. (if k∗ is a new cluster)
(2.15)

As Eq. (2.15) shows, the assignment z1,i basically depends on the probability in propor-

tion to the number of objects that is assigned to each cluster. However, a new cluster

is generated by a probability in proportion to γ1. Therefore, in the IRM, the numbers

of clusters K and L change stochastically in each iteration. In summary, the posterior
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for updating z1,i for the IRM is derived as follows:

P (z1,i = k∗ | z1,−i, z2,R) ∝







m1,−i,k∗×
L∏

l=1

B(m+i
k∗,l + β,m+i

k∗,l + β)

B(m−i
k∗,l + β,m−i

k∗,l + β)
, (if m1,−i,k∗ > 0)

γ1×

L∏

l=1

B(m+i
k∗,l + β,m+i

k∗,l + β)

B(β, β)
. (if m1,−i,k∗ = 0)

(2.16)

Note that the EAP estimation of the link probability ηEAP
k,l for the IRM can also be

computed using Eq. (2.10).

2.4 Drawback of the Standard Biclustering Models

As described in chapter, in both the SBM and the IRM, a link probability between

object i and object j is conditioned on Z⊤
1,iηZ2,j . That is, these models commonly

assume that the link probability between two individual objects depends only on their

cluster assignments z1,i and z2,j . Many other extension of the SBM [72, 1, 43, 56] also

follow this assumption.

However, the models with this assumption often obtain unexpected solutions. In

other words, when analyzing real-world relational data, these IRM families often dis-

cover many small or sparse clusters. One of our major objectives in analyzing real-world

relationships is to obtain insights into major segments and their interactions, meaning

considering POS data, we want to know the following:

• major groups of customers with same preferences,

• major segments of items,

• pairs of a customer group and an item group which is strongly connected.

Therefore, both the small sized clusters and sparse clusters, which are not connected

to any other primary clusters, are of no interest.
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Why do the IRM and its families find unexpected solutions? As observed in the

introduction, this is because real-world co-cluster structures are often destructed by

structured noise. For example, the link probability related to a customer with a smaller

budget decreases regardless of his or her preference compared with another customer

with a larger budget. Similarly, a recently published book might be purchased by

fewer customers regardless of its content compared with a long-standing book. In such

cases, the related observations contain many non-links that must be regarded as noise.

However such noise is distributed in a non-uniform manner that depends on related

objects. Therefore, to obtain clear co-cluster structure, we must consider that observed

relational data depend on both co-cluster structure and structured noise. Conventional

models, which assume only co-cluster structure, can not distinguish between structured

noise and co-cluster structure. Therefore, the IRM families find unexpected solutions.



Chapter 3

Relevance Modeling with Logical

Functions

In this chapter, we discuss the relevance-dependency modeling using Boolean functions.

More specifically, for each entry of given relational data, we introduce a latent binary

variable that indicates whether the entry relates to the block structure (foreground

distribution) or to a background noise (background distribution). Then, we introduce

a mechanism that the binary variable for an entry is determined by calculating an

arbitrary Boolean function of Bernoulli trials from row and column objects. By in-

troducing probability parameter that controls Bernoulli trial of corresponding object,

the probability can be interpreted as the relevance parameter for the object. Thus, a

probability for the Bernoulli trial can be interpreted as the relevance parameter for the

object. By incorporating the mechanism, we propose an extension of the IRM termed

the Relevance-Dependent IRM (RDIRM). The RDIRM is also an instance of Bayesian

nonparametric models. Therefore, the RDIRM can automatically estimate the number

of clusters. Furthermore, thanks to the conjugacy between component distributions,

posterior inference for the RDIRM can be performed efficiently using collapsed Gibbs

sampler. Experiments on real-world datasets show that our model extracts a clear

17
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A customer An item

Preference Contents
Function

Probability
of purchase

Link/non-link

Cluster structure

(a) SBMs’ assumption

A customer An item

Preference
Contents
Function

Probability
of purchase

Link/non-link

Cluster structure

Probability
blurred by

structured noise

Noise source
· budget
· login Freq.

· etc...

Noise source
· price

· released date

· etc...

(b) Our assumption

Figure 3.1: Diagrams of (a) SBMs and (b) our assumptions.

bicluster structure. Moreover, we confirm that the estimated relevance values enable

us to extract representative objects for each cluster.

3.1 Motivations

As we have discussed in Chapter 2, the SBM, IRM, and its families commonly assume

that a link probability between two individual objects depends only on their cluster

assignments (Fig. 3.1a). However, models with this assumption often output unex-

pected solutions. This is because, in real-world relationships, the underlying bicluster
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structures are often destroyed by structured noise that blurs the underlying bicluster

structure with individually different probabilities depending on the pair of related ob-

jects. For example, compared with customers with larger budgets, link probabilities

related to those with smaller budgets decrease regardless of their preferences. As an-

other example, link probabilities related to recently published books, in comparison

with long-standing books, might reflect purchases by smaller numbers of customers

regardless of their contents or topics. In these cases, the related observations con-

tain many non-links which should be regarded as noise. Unfortunately, the amount of

such noise depends on the related objects. In other words, this noise has a stochastic

structure that destroys the underlying bicluster structure in a non-uniform manner

(Fig. 3.1b). The conventional models, which assume only bicluster structure, can not

distinguish between the structured noise and bicluster structure. Therefore, to obtain

informative bicluster structures that clearly indicate each customer’s preference and

each item’s functions, we need to consider both the bicluster structure and structured

noise underlying real-world relational data.

To overcome the structured noise problem, we propose a new probabilistic mecha-

nism called the relevance dependent mechanism that describes the generative process

for the structured noise. In our mechanism, a relevance parameter (∈ [0, 1]) is intro-

duced for each object. The relevance parameter controls how closely the object’s links

follow the bicluster structure. That is, links related to an object with high relevance

(close to 1.0) primarily follow the bicluster structure. Conversely, links related to an

object with low relevance (close to 0.0) primarily originate from the noise source. For

example, customers with larger budgets can purchase whatever they needs. As another

example, long standing books might be acknowledged by many customers. Therefore,

their related observations (links and non-links) might be relevant to a customer’s pref-

erence or the topic of a book. In such cases, the relevance parameters for them become

close to 1.0. As a result, their related observations are primarily explained by bicluster
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structure. On the other hand, considering customers with smaller budgets, the related

observations might contain many non-links because such customers can purchase only

a few items even if they need many items. Similarly, recently published books might

be acknowledged by a small number of customers. Therefore, observations related to

the books might also contain many non-links. In these cases, the relevance parameters

for them become close to 0.0. Consequently, these many non-links are explained by

the noise source in our mechanism. Since our mechanism strictly follows the principles

of hierarchical Bayesian modeling, we can incorporate the mechanism into arbitrary

conventional Bayesian biclustering models. Moreover, we propose a new biclustering

model, the Relevance Dependent Infinite Relational Model (RDIRM), incorporating

our new mechanism into the IRM. In the RDIRM, observed relational data is factor-

ized into a bicluster structure and structured noise. Consequently, we can obtain not

only a clear bicluster structure but also a relevance level for each object that reflects

its relevance to the bicluster structure.

3.2 Relevance Dependent Infinite Relational Model

(RDIRM)

In this section, we propose relevance dependent mechanism that gives a generative

process for modeling structured noise in relational data. We also propose a new bi-

clustering model, called the Relevance Dependent Infinite Relational Model (RDIRM),

and review some related works.

3.2.1 The Relevance Dependent Mechanism

To describe the generative process in which underlying bicluster structure is blurred

by a noise source, we consider a background link probability η0. We assume that
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each observation within relational data is generated from a mixture distribution of

cluster dependent link probability Z⊤
1,iηZ2,j and the background probability η0. Then,

to describe the situation that noise level depends on the corresponding objects, we

introduce relevance parameters ρ1,i, ρ2,j ∈ [0, 1] for each object and construct relevance

dependent mechanism as follows:

r1,i→j | ρ1,i ∼ Bernoulli(ρ1,i), (3.1)

r2,j→i | ρ2,j ∼ Bernoulli(ρ2,j), (3.2)

ri,j = f(r1,i→j , r2,j→i), (3.3)

ξi,j = ri,j ×Z
⊤
1,iηZ2,j + (1− ri,j)× η0, (3.4)

where f(·, ·) is an arbitrary Boolean function that returns one or zero. In this mecha-

nism, the link probability for an entry (i, j) is described either the foreground probabil-

ity Z⊤
1,iηZ2,j or the background probability η0 depending on their relevance parameters

ρ1,i, ρ2,j . For example, when f is a logical sum, it corresponds to assuming the mixture

rate to be 1−(1−ρ1,i)(1−ρ2,j). When f is a logical product, the mixture rate becomes

ρ1,i×ρ2,j. Using the proposed mechanism, we can describe the situation that underlying

bicluster structure is blurred by structured noise. That is, if ρ1,i and ρ2,j become close

to 1.0, the corresponding observation Ri,j follows to the cluster structure. Conversely,

if ρ1,i and ρ2,j decrease to 0.0, the link probability is blurred by background probability

η0. Therefore, by incorporating this relevance dependent mechanism into conventional

models, we can construct a new biclustering model that can factorize relational data

into a clear bicluster structure and structured noise.

3.2.2 The Relevance Dependent Infinite Relational Model

Here, we propose a new biclustering model called the RDIRM, which is an extension of

the IRM incorporating the relevance dependent mechanism we described in 3.2.1. In

the RDIRM, a link probability ξi,j between object i and object j follows the relevance
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(a) Toy data (b) IRM (c) RDIRM:fg (d) RDIRM:bg

Figure 3.2: Toy data example: (a) synthetic 50×50 relational data (white corresponds

to zero, and black corresponds to one); (b) IRM solution (rows and columns are sorted

by obtained cluster indices); (c) and (d) RDIRM solutions: (c) shows the area assigned

to foreground (ri,j = 1), and (d) shows the area assigned to background (ri,j = 0) (gray

area indicates that the corresponding entries are assigned to another layer).

dependent mechanism, and the foreground link probability Z⊤
1,iηZ2,j follows the IRM.

The full description of the generative model for the RDIRM is as follows:

Z1,i | γ1 ∼ CRP(γ1), Z2,j | γ2 ∼ CRP(γ2), (3.5)

ηk,l | β ∼ Beta(β, β), η0 | β ∼ Beta(β0, β0), (3.6)

ρ1,i | β1 ∼ Beta(β1, β1), (3.7)

ρ2,j | β2 ∼ Beta(β2, β2), (3.8)

r1,i→j | ρ1,i ∼ Bernoulli(ρ1,i), (3.9)

r2,j→i | ρ2,j ∼ Bernoulli(ρ2,j), (3.10)

ri,j = f(r1,i→j , r2,j→i), (3.11)

ξi,j = ri,j ×Z
⊤
1,iηZ2,j + (1− ri,j)× η0, (3.12)

Ri,j | ξi,j ∼ Bernoulli(ξi,j). (3.13)

Figure 3.3 graphically represents this model.
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β β0

γ1 γ2

ηk,l η0

∞×∞

z1,i ξi,j z2,j

β1 ρ1,i r1,i→j r2,j→i ρ2,j β2

Ri,j

I J

Figure 3.3: Graphical representations for the generative models of the RDIRM. Circle

nodes denote random variables, square nodes denote hyperparameters, shaded nodes

denote observations, and round-edged squares indicate number of individual variables.

Directed connections denote probabilistic dependencies, and non-directed connections

denote dependencies determined by an arithmetic function.

Now, we explain briefly the generative process of the RDIRM. First, the cluster

assignments Z1 and Z2 are given as in the original IRM (Eq. (3.5)). Second, the fore-

ground distribution ηk,l and the background distribution η0 are independently drawn

from corresponding beta priors (Eq. (3.6)). Third, for each object, the relevance pa-

rameters ρ1,i and ρ2,j are given from beta priors (Eqs. (3.7) and (3.8)). Fourth, the

two binary variables r1,i→j and r2,j→i are drawn by Bernoulli trials with correspond-

ing relevance values (Eqs. (3.9) and (3.10)). Fifth, either the foreground ηk,l or the

background η0 is selected by the interaction of r1,i→j and r2,j→i via logical function f

(Eqs. (3.11) and (3.12)). Finally, an entry Ri,j is generated from the selected probability
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(Eq. (3.13)).

The difference between our RDIRM and the original IRM is that our RDIRM

describes a generative process for relationships with structured noise by introducing

objects’ relevance parameters and their interaction mechanism. That is, our RDIRM

can bicluster relational data based on a subset of observations that comes from the

underlying bicluster structure.

When f is a logical sum, an observation is drawn from the foreground when at

least one of the related objects O1,i or O2,j has high relevance. This models situations

in which entries from the bicluster structure can be generated by a one-sided request,

such as sending an e-mail or following a hyperlink on the Internet. In contrast, when

f is a logical product, the entry follows the bicluster structure only when the related

objects cooperate with each other. This models situations in which an object i that

aims to have a link with another object j can be constrained by the relevance of object

j. Certainly, we can adopt other logical functions for other interaction models.

For an intuitive understanding of our RDIRM, we show a toy example. Figure 3.2a

shows hand-constructed relational data. As we can see in Fig. 3.2a, there is a 3 × 3

bicluster structure in the data. However, we can also see that the cluster structure is

blurred by structured noise. Figures 3.2b-3.2d show the solutions obtained by the IRM

and the RDIRM with f(·, ·) as the logical product. As Fig. 3.2b shows, the IRM fails

to extract true partitions, because it assumes that all observations are relevant to the

underlying cluster structure. In contrast, the RDIRM (Figs. 3.2c and 3.2d) finds true

partitions by considering the mixture of the cluster structure and the structured noise.

Note that the inference algorithm for the RDIRM is detailed in Section 3.3.

3.2.3 Related Works

First, we briefly review some related work. Next, we show that our RDIRM can be

viewed as a generalization of some conventional models.
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Many studies of statistical models for extracting hidden low-dimensional represen-

tations from matrix-represented relational data exist [59, 60, 7, 47, 34]. These models

are useful for predicting missing entries, an important task in many application do-

mains such as recommendation systems or collaborative filtering. Among these models,

matrix factorization based approaches are known to have the better predicting abil-

ity [59, 60, 66].

Another motivation for modeling relational data is to find an interpretable struc-

ture underlying the data. The Latent Dirichlet Allocation (LDA) [7] is based on K-

mixture models, which assume a mixture of K component distributions for each object

within data. In general, K-mixture models assume a Dirichlet prior, defined on a

K-dimensional simplex, for the objects’ latent variables. Therefore, using a mixture

model based approach, we can obtain more interpretable insights from data, greatly

facilitating exploratory data analysis.

The SBM and IRM are extended K-mixture models for relational data. These

models assume K and L mixture components for row objects and column objects,

respectively. Therefore, these models are suitable for analyzing directed networks (e.g.,

e-mail transactions) and multi-domain relationships (e.g., relationships between users

and items). Especially, the IRM has the great advantage that it can automatically

estimate the number of mixture components K and L (so called ∞-mixture model).

At present, our major motivation is to extract an interpretable cluster structure from

blurred relational data; thus, we focus on the ∞-mixture based model in this paper.

Recently, there have been many studies aimed at improving the performance of the

above mentioned models. To improve predicting accuracy, [64, 40, 18, 42, 72] extended

the conventional models to ensure the models utilize side information such as meta

information or partially observed supervisory variables.

Another challenge in this field is to handle noisy data. In real-world data, an ideal

cluster structure is often blurred by a large number of irrelevant entries. Unfortunately,
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such noisy entries are often distributed in a non-uniform manner. That is, some objects

clearly follow a cluster structure, while other objects contain large number of irrelevant

entries. In such cases, not only relevant entries but also irrelevant entries follow some

probabilistic structure. Therefore, it is important to consider a generative mechanism

to extract a clear cluster structure from blurred real-world relationships.

Our RDIRM can be viewed as one of the noise filtering models called subset models

that assume only a part of the observations are relevant to underlying cluster structure.

These subset models commonly assume a background probability to describe irrelevant

entries. Clustering models that consider the influence of irrelevant entries were first

discussed by Newton [46] and Hoff [25] relative to clustering biological sequences.

For biclustering relational data, there have been an extensions of the IRM in which

the background probability affects link probabilities. The Subset IRM (SIRM) pro-

posed by Ishiguro et al. [33] also considers a generative model in which link probability

is a mixture distribution of a foreground probability Z⊤
1,iηZ2,j and a background prob-

ability η0. In the SIRM, binary variables s1,i, s2,j ∈ {0, 1} are introduced to indicate

whether each object is relevant to the underlying bicluster structure. Then, a subset

of R, where s1,i × s2,j = 1, is explained by the clustering model Z⊤
1,iηZ2,j , while the

rest are explained by the background probability η0. In the SIRM, specifically, the link

Ri,j is drawn as follows:

Ri,j |Z1,i,Z2,j , s1,i, s2,j ,η, η0

∼Bernoulli









I(s1,i × s2,j = 1)

I(s1,i × s2,j = 0)





⊤


Z⊤

1,iηZ2,j

η0








 , (3.14)

where I(·) is one if the predicate holds and zero otherwise.

The proposed RDIRM can be viewed as a generalization of the SIRM. In the

RDIRM, continuous relevance parameters ρ1,i, ρ2,j ∈ [0, 1] are introduced instead of

the s1,i and s2,j in the SIRM. Consequently, the RDIRM can estimate the confidence
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that an object is relevant to the underlying cluster structure. To clarify the relation-

ships between our RDIRM and the SIRM, the link probability of the RDIRM can be

rewritten equivalently as follows:

r1,i→j | ρ1,i ∼Bernoulli(ρ1,i),

r2,j→i | ρ2,j ∼Bernoulli(ρ2,j),

Ri,j |Z1,i,Z2,j , r1,i→j , r2,j→i,η, η0

∼Bernoulli









f(r1,i→j , r2,j→i)

1− f(r1,i→j , r2,j→i)





⊤


Z⊤

1,iηZ2,j

η0








 . (3.15)

Note that these equations are equivalent to the SIRM when the relevance parameters

are constrained to have ρ1,i, ρ2,j ∈ {0.0, 1.0} and the Boolean function f is the logical

product. As is evident from the forms of Eqs. (3.14) and (3.15), we can see that our

RDIRM is a natural generalization of the SIRM.

3.3 Inference

We also use the Collapsed Gibbs Sampler to infer the parameters of the RDIRM. Given

ri,j, the relational data R are separated into foreground and background parts; thus,

the relevance parameters ρ1,i, ρ2,j and the link probabilities ηk,l, η0 can be integrated

out. Therefore, the inference for the RDIRM is performed by sampling the assignments

z1, z2 and the binary variables r1, r2 one after the other. In this section, we show the

derived posteriors for running Gibbs sampling.

3.3.1 Sampling Cluster Assignments z1, z2

Because z2 can be sampled in the same manner as z1, we concentrate on z1. We can

assume that the switch variables r (r1 and r2) have already been given before taking a
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sample of z1,i. Given r, the cluster assignments depend only on the foreground part of

the observations. Therefore, the conditional posterior for z1,i = k∗ is derived as follows:

P (z1,i = k∗ | z1,−i, z2, r,R)

∝







m1,−i,k∗×
L∏

l=1

B(m+i
k∗,l:f + β,m+i

k∗,l:f + β)

B(m−i
k∗,l:f + β,m−i

k∗,l + β)
, (if m1,−i,k∗ > 0)

γ1×

L∏

l=1

B(m+i
k∗,l:f + β,m+i

k∗,l:f + β)

B(β, β)
, (if m1,−i,k∗ = 0)

(3.16)

where the counts m·,·:f and m·,·:f denote the number of links and non-links for which

ri,j = 1, and are computed as follows:

m+i
k∗,l:f =

∑∑

x∈T1,j∈T2:
z1,x=k∗(z1,i:=k

∗),z2,j=l

Rx,j × rx,j, m+i
k∗,l:f =

∑∑

x∈T1,j∈T2:
z1,x=k∗(z1,i:=k

∗),z2,j=l

Rx,j × rx,j,

m−i
k∗,l:f =

∑∑

x∈T1,j∈T2:
z1,x=k∗(x 6=i),z2,j=l

Rx,j × rx,j, m−i
k∗,l:f =

∑∑

x∈T1,j∈T2:
z1,x=k∗(x 6=i),z2,j=l

Rx,j × rx,j.

Note that if ri,j = 1 for all (i, j),then Eq. (3.16) is equivalent to the original IRM’s

sampler.

3.3.2 Sampling Switch Variables r1,i→j, r2,j→i

As the sampling of r2,j→i can be performed in the same manner as the sampling of

r1,i→j , we concentrate on r1,i→j . Given z1 and z2, we have a finite number K × L of

clusters. Thus, the conditional posterior for r1,i→j is derived as follows:

P (r1,i→j | z1, z2, r1,−(i→j), r2,R)

∝P (Ri,j | r1,i→j , r1,−(i→j), r2,R−(i,j))
1−f(r1,i→j ,r2,j→i)

× P (Ri,j | z1, z2, r1,i→j , r1,−(i→j), r2,R−(i,j))
f(r1,i→j ,r1,j→i)

× P (r1,i→j | r1,i→(−j)), (3.17)

where R−(i,j) denotes the entire set of R excluding Ri,j. Similarly, r1,−(i→j) denotes

the entire set of r1 without r1,i→j , and r1,i→(−j) denotes a vector of r1,i→ts that are
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related to object i without r1,i→j . The terms on the right-hand side of Eq. (3.17) are

computed as follows:

P (Ri,j | r1,i→j , r1,−(i→j), r2,R−(i,j)) =
(m

−(i,j)

f
+ β0)

Ri,j(m
−(i,j)

f
+ β0)

1−Ri,j

m
−(i,j)

f
+m

−(i,j)

f
+ 2β0

, (3.18)

P (Ri,j | z1, z2, r1,i→j , r1,−(i→j), r2,R−(i,j)) =
(m

−(i,j)
k,l:f + β)Ri,j(m

−(i,j)
k,l:f + β)1−Ri,j

m
−(i,j)
k,l:f +m

−(i,j)
k,l:f + 2β

,

(3.19)

P (r1,i→j | r1,i→(−j)) =
(n

−(i,j)
r1,i + β1)

r1,i→j(n
−(i,j)
r1,i

+ β1)
1−r1,i→j

J − 1 + 2β1
, (3.20)

where m
−(i,j)

f
and m

−(i,j)

f
denote the numbers of links and non-links, respectively, such

that rs,t = 0 for all pairs (s, t) 6= (i, j); m
−(i,j)
k,l:f and m

−(i,j)
k,l:f denote the numbers of

links and non-links, respectively, such that z1,s = k, z2,t = l and rs,t = 1 for all

pairs (s, t) 6= (i, j); and n
−(i,j)
r1,i and n

−(i,j)
r1,i

denote the numbers of r1,i→t = 1{t 6= j} and

r1,i→t = 0{t 6= j}, respectively, within r1,i→(−j). Specifically, these counts are computed

as follows:

n
−(i,j)
r1,i =

∑

t∈T2:t 6=j

r1,i→t, n
−(i,j)
r1,i

=
∑

t∈T2:t 6=j

(1− r1,i→t),

m
−(i,j)

f
=
∑∑

s∈T1,t∈T2:
(s,t) 6=(i,j)

Rs,t × (1− f(r1,s→t, r2,t→s)),

m
−(i,j)

f
=
∑∑

s∈T1,t∈T2:
(s,t) 6=(i,j)

(1−Rs,t)× (1− f(r1,s→t, r2,t→s)),

m
−(i,j)
k,l:f =

∑∑

s∈T1,t∈T2:
z1,s=k,z2,t=l,(s,t) 6=(i,j)

Rs,t × f(r1,s→t, r2,t→s),

m
−(i,j)
k,l:f =

∑∑

s∈T1,t∈T2:
z1,s=k,z2,t=l,(s,t) 6=(i,j)

(1−Rs,t)× f(r1,s→t, r2,t→s),

respectively.
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3.3.3 Estimations for ηk,l, η0, ρ1,i,and ρ2,j

The EAP estimations for the marginalized parameters ηk,l, η0, ρ1,i, and ρ2,j are com-

puted as follows:

ηEAP

k,l =
mk,l:f + β

mk,l:f +mk,l,f + 2β
, (3.21)

ηEAP

0 =
mf + β0

mf +mf + 2β0
, (3.22)

ρ1,i
EAP =

nr1,i
+ β1

J + 2β1
, ρ2,j

EAP =
nr2,j

+ β2

I + 2β2
, (3.23)

where

mk,l:f =
∑∑

i∈T1,j∈T2:
z1,i=k,z2,t=l

Ri,j × f(r1,i→j , r2,j→i),

mk,l:f =
∑∑

i∈T1,j∈T2:
z1,i=k,z2,t=l

(1−Ri,j)× f(r1,i→j , r2,j→i),

mf =
∑∑

i∈T1,j∈T2

Ri,j × (1− f(r1,i→j , r2,j→i)),

mf =
∑∑

i∈T1,j∈T2

(1−Ri,j)× (1− f(r1,i→j , r2,j→i)),

nr1,i
=
∑

j∈T2

r1,i→j , nr2,j
=
∑

i∈T1

r2,j→i.

3.3.4 Selecting Boolean Function f

In our relevance dependent mechanism, the problem of selecting Boolean function f(·, ·)

remains. In analyzing real-world data, we might often encounter the situation that we

have no prior knowledge available for selecting a Boolean function. Therefore, it is

desirable to simultaneously estimate the form of the Boolean function and the model

parameters. Although we postpone the essential study of this problem for our future

work, we discuss some heuristic strategies here.

One solution is to compare the values of the log likelihood of trained models for

several Boolean functions. A higher value of log likelihood indicates that the model fits
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the training dataset better; thus, it might be a reasonable criterion. Another approach

is to compare the sizes of estimated cluster blocks K × L. If a Boolean function

successfully estimates the noise source for a given dataset, the RDIRM might extract

a simple and clear bicluster structure. Therefore, selecting a Boolean function by the

number of estimated cluster blocks might also be a reasonable strategy.

Although these approaches work to some extent, they sometimes give different

results. Therefore, at this time, we select the Boolean function according to the back-

ground knowledge for datasets.

3.4 Experiments

In this section, we present our experimental results. Although the comparison between

the SIRM and our RDIRM might be interesting, we compare the performance of the

RDIRM with that of the original IRM to clarify the effectiveness of the relevance

dependent mechanism. 1 Through all the experiments, we assume that the priors of

all binary variables in the generative models are uniform (Beta(1.0, 1.0)). In addition,

we estimate the concentration parameters γ1, γ2 for the DPs assuming gamma priors

by sampling method presented in [16].

3.4.1 Experiments on Synthetic Datasets

We prepared 12 synthetic datasets. First, according to the generative model of the

RDIRM, we created five synthetic datasets, Data1(0.0), Data1(0.2), Data1(0.5), Data1(0.8),

and Data1(1.0), where the numbers in parentheses indicate the background link prob-

1 In the SIRM, a part of objects are removed for the clustering targets. However, considering a

situation where in the clustering result is used for recommendation, every object must be assigned

to its nearest cluster. Hence, the SIRM does not meet our requirement. Therefore, we compare the

RDIRM with the original IRM.
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abilities η0 for the datasets. We set the logical function f for the RDIRM to be the

logical sum. The cluster assignments z1 and z2 were independently generated from

fixed-dimensional categorical distributions. The parameter values used for generating

the datasets were I = J = 200, β = (0.5, 0.5), and β1 = β2 = (4.0, 3.0); the number of

clusters were set as K = 4 and L = 5; and the parameters for the categorical distribu-

tions were (0.4, 0.3, 0.2, 0.1) and (0.33, 0.27, 0.20, 0.13, 0.07) for T1 and T2, respectively.

Next, we also created five synthetic datasets in a similar manner (from Data2(0.0) to

Data2(1.0)), except that we set the logical function f to be the logical product and set

both β1 and β2 to be (4.0, 2.0). Finally, we created two datasets without background

influences, (Data1(NULL) and Data2(NULL)). We applied the logical sum version of

the RDIRM to Data1 and the logical product version to Data2, respectively.

We use three measurements to evaluate clustering performance. One is the Adjusted

Rand Index (ARI) [29], which is widely used for computing the similarity between true

and estimated clustering results. The ARI takes a value in the range 0.0 – 1.0, taking

the value 1.0 when a clustering result is exactly equivalent to ground truth. The second

is the number of erroneous estimated clusters (EC). We computed the average of these

measures for the two sets T1 and T2. The third is the test data log likelihood (TDLL),

which indicates the predictive robustness of a generative model. We hid 1.0% of the

observations during inference (keeping it small so that the latent cluster structure do

not change), and measured the averaged log likelihood that a hidden entry takes the

actual value. A larger value is better, and a smaller one means that the model overfits

the data. Finally, we repeated the experiment 10 times for each dataset using different

random seeds to find an overall average.

Table 3.1 lists the computed measures. For every dataset except Data1(NULL) and

Data2(NULL), we confirm that the RDIRM outperformed the IRM. In particular, the

RDIRM maintained good performance for sparse (η0 ≈ 0.0) or dense (η0 ≈ 1.0) data.

We also list in Table 3.2 the EAP estimations of the background probability ηEAP
0 and
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Table 3.1: ARI, EC, and TDLL on synthetic datasets.

ARI EC TDLL

Dataset IRM RDIRM IRM RDIRM IRM RDIRM

Data1(NULL) 1.000 0.999 0.000 0.030 -0.302 -0.261

Data1(0.0) 0.712 0.999 0.678 0.022 -0.410 -0.315

Data1(0.2) 0.806 1.000 0.480 0.010 -0.432 -0.363

Data1(0.5) 0.868 0.993 0.270 0.090 -0.459 -0.405

Data1(0.8) 0.834 0.999 0.388 0.013 -0.462 -0.385

Data1(1.0) 0.806 0.999 0.435 0.025 -0.425 -0.330

Data2(NULL) 1.000 0.996 0.000 0.000 -0.316 -0.232

Data2(0.0) 0.629 0.980 1.053 0.020 -0.424 -0.196

Data2(0.2) 0.627 0.913 0.735 0.105 -0.576 -0.431

Data2(0.5) 0.759 0.930 0.488 0.105 -0.614 -0.526

Data2(0.8) 0.724 0.917 0.738 0.097 -0.558 -0.438

Data2(1.0) 0.644 0.981 0.910 0.083 -0.390 -0.183

the estimated ratios of the foreground for synthetic datasets except Data1(NULL) and

Data2(NULL). The ground truths of the foreground ratios (FRs) are 0.8197 and 0.4622

for Data1 and Data2, respectively. As the table shows, the RDIRM performs well in

estimating ground truths.

3.4.2 Experiments on Real-world Datasets

We applied the RDIRM to three real-world datasets. The first dataset is “MovieLens2”,

which contains a large number of user ratings of movies on a five-point scale. In our

experiment, we created a binary relational dataset with a threshold that yields Ri,j = 1

2http://www.grouplens.org/, as of 2003.
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Table 3.2: Estimated background probabilities (ηEAP
0 ) and the FRs.

Dataset ηEAP
0 FR

Data1(0.0) 0.0085 0.8484

Data1(0.2) 0.1970 0.8462

Data1(0.5) 0.4531 0.8588

Data1(0.8) 0.7674 0.8607

Data1(1.0) 0.9876 0.8611

Data2(0.0) 0.0022 0.4884

Data2(0.2) 0.2139 0.4548

Data2(0.5) 0.5033 0.4658

Data2(0.8) 0.7845 0.4397

Data2(1.0) 0.9872 0.4654

for ratings higher than 3 points and Ri,j = 0 for all other ratings. That is, an entry

Ri,j = 1 indicates that user i likes movie j. There are a total of 943 users and 1,682

movies in the dataset, and 3.5% of the observations are links. The second dataset

is “animal-feature” [55], which includes relationships between 50 mammals and 85

features. Each feature is rated on a scale of 0–100 for each animal. We prepared

binary relational data with a threshold that yields Ri,j = 1 for all ratings higher

than the average of the entire set of ratings (20.79). That is, we used the relational

value Ri,j = 1 (Ri,j = 0) to indicate that animal i has (does not have) feature j. In

this dataset, 36.8% of the relations are links. The last dataset is “Enron” [35], which

contains e-mail transactions among the employees of the Enron company. We extracted

e-mail transactions from October 2001, when the Enron accounting scandal was first

reported. This dataset contains 149 Enron employees. For this dataset, Ri,j = 1

(Ri,j = 0) was used to indicate if an e-mail was (not) sent from employee i to employee

j. In this dataset, 2.6% of the observations are links.
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We used a logical sum version of the RDIRM for MovieLens and Enron. For animal-

feature, we used a logical product version of the RDIRM. The reason for using the

logical sum for MovieLens was that a user can watch any movie according to his or

her preference, and movies are usually promoted independently of users. Similarly,

for Enron, an employee can send e-mails to anyone if he/she would like to and one

can receive e-mails from anyone who would like to send one. Therefore, it seemed

natural that the foregrounds (relevant entries) for MovieLens and Enron are generated

according to the user’s (sender’s) relevance ρ1,i or the movie’s (receiver’s) relevance ρ2,j.

In contrast, animals’ features are acquired through evolutionary history depending on

the type of animal. For example, aquatic features such as “swims” or “water” cannot

be acquired by terrestrial animals. Therefore, the type of animal limits the features it

can acquire, and similarly, the type of a feature limits the types of animals that can be

related to that feature. Therefore, we used the logical product version of the RDIRM

for the animal-feature dataset.

Figure 3.4 shows the clustering results and computed TDLLs for these real-world

datasets. Figure 3.5 shows color maps for the estimated foreground probabilities

ηEAP
k,l . The background probabilities η0 that the RDIRM estimated were 0.0000, 0.0036,

and 0.0016 for the MovieLens, animal-feature, and Enron datasets, respectively. For

MovieLens and animal-feature, we can see that the original IRM organized many non-

informative cluster-blocks, because the IRM considered all entries to be relevant for

the bicluster structure. In contrast, the RDIRM found more clear cluster structures by

using the proposed relevance dependent mechanism, which selects an informative sub-

set of entries via interactions of the objects’ relevance values. For Enron, the number

of obtained cluster blocks for the IRM and RDIRM are nearly equivalent. However,

the RDIRM found more strongly connected cluster blocks (Figs. 3.5e and 3.5f). For all

the datasets, the computed TDLLs show that the RDIRM outperformed the original

IRM for both datasets in predicting hidden entries.
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Additionally, for qualitative comparison, we list the examples of clusters obtained

for MovieLens and animal-feature. 3 The left side of Table 3.3 lists examples of the

movie clusters produced by the RDIRM for MovieLens. In the columns for the number

of links and ρ2,j
EAP, we can see that ρ2,j

EAP tends to increase with the number of

links. This indicates that we can regard the relevance values as an indication of the

popularity of the movies within the cluster. In contrast, the original IRM treats all links

and non-links as relevant observations. Therefore, the cluster assignment for a movie

is affected by not only the movie’s category but also the number of related links. The

right side of Table 3.3 lists examples of the feature clusters obtained by the RDIRM

for the animal-feature dataset. As with the results for MovieLens, we can see that

the estimated ρ2,j tends to increase with the number of links. One interesting result

produced by the RDIRM is that representative features such as “swims,” “water,”

“paws,” “nestspot” and “meet” were found to have high relevance in their clusters.

From these results, we can say that the relevance values estimated by the RDIRM

indicate the popularity or representativeness of the objects. Consequently, we confirm

that the RDIRM successfully discovered clear and major cluster structures by excluding

structured noise in relational data.

3.5 Chapter Summary

In this chapter, we proposed a relevance dependent mechanism that enables biclustering

models to distinguish between bicluster structure and structured noise. Then, we pro-

posed a new probabilistic biclustering model called the Relevance Dependent Infinite

Relational Model (RDIRM), that is suitable for analyzing relational data with struc-

tured noise. The RDIRM incorporates the relevance dependent mechanism, thereby

3 For Enron, insufficient meta information for each employee is available. Therefore, for qualitative

comparison, we only show the results for MovieLens and animal-feature.
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enabling the RDIRM to jointly estimate both a clear bicluster structure and structured

noise.

Our experiments on synthetic datasets confirmed that the RDIRM can find proper

clusters in relational data with structured noise, especially, in sparse or dense data.

Moreover, our experiments on real-world datasets confirmed that the clusters obtained

by the RDIRM represent major categories and that the estimated relevance parameters

can be interpreted as measures of the popularity or representativeness of the objects.

For future work, there are several promising extensions of the RDIRM can be

considered. First, in our relevance dependent mechanism, structured noise underlying

relationships is explained by only a single background probability η0. Consequently,

our mechanism can not explain the situation in which both non-link noise and link

noise (i.e., spamming link) are present. Thus, a relevance dependent mechanism with

multiple backgrounds can be expected to be helpful.

Second, the RDIRM includes the IRM for the clustering model; thus, objects are

partitioned into non-overlapping clusters. However, mixed or multiple membership

assumptions are appropriate for many real-world situations. Therefore, in the future,

we plan to challenge the structured noise problem on more advanced relational models

such as mixed (or multiple) membership models [1, 43], hierarchical structure models

[57], and time-varying models [30, 19].

In addition, we are interested in developing a more efficient algorithm for the

RDIRM that can handle large scale datasets. Although our MCMC based algorithm

works efficiently, it is not sufficient for handling large scale data. Therefore, to make

our RDIRM and its extensions available for business purposes, we plan to develop such

a scalable algorithm in our future studies.
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(a) MovieLens (IRM), TDLL = -0.135 (b) MovieLens (RDIRM), TDLL = -0.097

(c) animal-feature (IRM), TDLL = -0.393 (d) animal-feature (RDIRM), TDLL = -0.213

(e) Enron (IRM), TDLL = -0.055 (f) Enron (RDIRM), TDLL = -0.046

Figure 3.4: Clustering results for real-world datasets. Note that the objects within

each cluster are sorted in descending order of estimated relevance values ρ1,i
EAP and

ρ2,j
EAP. “TDLL” is the computed test data log likelihood for each dataset.
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Figure 3.5: The estimated foreground link probabilities ηEAP
k,l .
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Table 3.3: Examples of clusters obtained by the RDIRM. The first column lists the

object (Title/Feature). The second column lists the number of links related to the

object (LNKS). The third column lists the estimated relevance (ρ2,j
EAP). For the fourth

column, we list the cluster indices obtained by the original IRM (ZIRM) to show that

number of links affects the cluster assignments. The left and right side tables represent

the MovieLens and animal-feature datasets, respectively.

Movie cluster 6

Title LNKS ρ2,j
EAP ZIRM

Star Wars 501 0.9111 28

Return of the Jedi 379 0.5534 9

Independence Day 228 0.0921 25

Star Trek 220 0.1905 25

Movie cluster 7

Title LNKS ρ2,j
EAP ZIRM

Silence of the Lambs 344 0.9132 26

Pulp Fiction 294 0.7598 26

Usual Suspects 232 0.6233 20

Alien 223 0.5164 20

Terminator 217 0.5608 20

Seven(Se7en) 167 0.3376 15

Movie Cluster 2

Title LNKS ρ2,j
EAP ZIRM

W. W. & the C. F. 189 0.7196 27

Birdcage 154 0.4762 17

Truth About C. & D. 148 0.3386 17

Happy Gilmore 74 0.0360 2

Kingpin 73 0.1196 2

Feature cluster 1

Feature LNKS ρ2,j
EAP ZIRM

swims 10 0.9808 2

water 10 0.9808 2

coastal 8 0.9231 2

arctic 9 0.8846 2

flippers 7 0.8077 2

Feature cluster 5

Feature LNKS ρ2,j
EAP ZIRM

paws 19 0.9615 27

nestspot 31 0.9423 20

claws 19 0.9038 22

small 23 0.7885 21

Feature cluster 6

Feature LNKS ρ2,j
EAP ZIRM

meat 20 0.9808 17

fierce 21 0.9231 17

hunter 17 0.8846 17

stalker 10 0.4808 16

scavenger 6 0.1538 1

flys 1 0.0769 1



Chapter 4

Relevance Modeling with Mixture

Modeling

In this chapter, we generalize the relevance modeling in the RDIRM. By considering

continuous relaxation of the Boolean function in the RDIRM, we propose a mixed-

membership mechanism that contains all the Boolean functions as special cases. In

the mixed-membership approach, we can resolve two critical limitations of relevance

modeling in the RDIRM. First, in the mixed-membership mechanism, the form of the

relaxed Boolean function can be automatically estimated from given data. Further-

more, in the mixed-membership mechanism, we can straightforwardly consider rele-

vance values with three or more dimensions. Therefore, we can introduce multiple

background distribution for considering different types of irrelevant objects. By incor-

porating the mixed-membership mechanism, we propose an extension of the RDIRM

termed Multi-Layered IRM (MLIRM), which has two background distributions. The

relevance parameters in the MLIRM can explain, not only passive objects with few

links, but also spamming objects with extremely many links. Similar to the RDIRM,

the posterior inference for the MLIRM can also be performed using collapsed Gibbs

sampler. Experiments conducted using real-world datasets have confirmed that the

41
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proposed model successfully extracts clear and interpretable cluster structures from

real-world relational data.

4.1 Motivations

We propose a novel generative framework that captures a clear de-blurred cluster struc-

ture and object biases independently from blurred relational data. In the proposed

framework, an observed link is drawn from a mixture distribution of multiple layers.

The first layer is an abstract class of clustering models, such as the IRM. The other

layers are uniform probabilities independent of the objects’ cluster assignments. Then,

the mixing ratio of each layer for a given pair of objects is controlled by the interaction

of bias parameters, which are latent variables defined for each object. We propose a

mechanism that describes the general form of interactions between biases and provide

a hierarchical generative process for the mechanism. By estimating each layer, the bias

parameters, and the form of interactions from given relational data, we can diminish

the adverse effects of object biases and obtain a clear cluster structure. In addition, the

estimated bias parameters enable us to extract representative objects strongly related

to the underlying co-cluster structure. This is a great advantage of our framework,

since one can easily understand the meaning of obtained clusters by inspecting only a

few objects highly related to underlying co-cluster structure.

Since our multi-layered framework strictly follows the principles of hierarchical

Bayesian modeling, we can incorporate the arbitrary Bayesian co-clustering models into

the framework. By incorporating the IRM to the mixed-membership mechanism, we

propose a new co-clustering model called the Multi-Layered Infinite Relational Model

(MLIRM), which is a concrete instance of the proposed framework that incorporates

the IRM. The MLIRM simultaneously estimates the object bias parameters and co-

cluster structure underlying bias-corrected observations. Thanks to the property of the
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embedded IRM, the MLIRM automatically estimates the number of clusters from the

given data.

4.2 Multi-Layered Infinite Relational Model (MLIRM)

First, we propose the mixed-membership mechanism for modeling blurred relational

data. Then, we propose a new generative model; i.e., the Multi-Layered Infinite Rela-

tional Model (MLIRM). Furthermore, we explain the relationships between the MLIRM

and several recently proposed models including the IRM and RDIRM.

4.2.1 Mixed-Membership Mechanism

To capture the cluster structure and object biases independently, we propose a mixed-

membership mechanism. In the proposed framework, we assume that each observation

within relational data comes from a mixture distribution of three layers: a clustering

layer Z⊤
1,iηZ2,j , a background link layer η1 ∈ [0, 1] and a background non-link layer η0 ∈

[0, 1]. The clustering layer is an arbitrary clustering model (e.g., IRM), which describes

observations coming from the underlying cluster structure. The two background layers

are probabilities independent from cluster assignment, which describe observations

coming from object biases. The biased object means an object (e.g., user, item) with

weak attribution to cluster structure. We consider two typical types of biased objects: a

spamming object, which has extremely many links, and a passive object, which has few

links (many non-links). To capture both links and non-links from biases, we introduce

two background layers η1 and η0.

Here, we define a mechanism in which a mixture ratio of three layers for a pair of ob-

jects is controlled by the interaction of biases inherent to related objects. We introduce

bias parameters θ1,i = (θ1,i:fg, θ1,i:bg1, θ1,i:bg0)
⊤ and θ2,j = (θ2,j:fg, θ2,j:bg1, θ2,j:bg0)

⊤ for each

object, where fg, bg1, and bg0 indicate the clustering layer, the background link layer,
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fg

bg1

bg1

bg0

bg0
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bg0
××

θ1,i
⊤

θ2,j

φ

00

00
00
00

00
00

θ1,i
⊤φ·,·:fgθ2,j θ1,i

⊤φ·,·:bg1θ2,j θ1,i
⊤φ·,·:bg0θ2,j

J

I → wi,j:fg× +wi,j:bg1× +wi,j:bg0×

Link probability

P (Ri,j)
Clustering layer

fg: Z⊤
1,iηZ2,j

Background link layer

bg1: η1

Background non-link layer

bg0: η0

Figure 4.1: (Best viewed in color.) Diagram of the mixed-membership mechanism

and the background non-link layer, respectively. Each bias parameter is a probability

vector whose dimension corresponds to the number of layers. These parameters control

an object’s relevance to each layer. Furthermore, let wi,j = (wi,j:fg, wi,j:bg1, wi,j:bg0) be

the mixture ratio of each layer for an entry Ri,j . Then, we consider the interaction

mechanism that transforms two bias parameters θ1,i and θ2,j into a mixture ratio wi,j .

When considering the roles of object biases and the corresponding mixture ratio, it is

important that there is a positive correlation between the two bias parameters θ1,i,θ2,j

and the corresponding mixture ratio wi,j . For example, when an bias parameter for the

i-th row object leans to the foreground layer (θ1,i:fg → 1.0), the mixture ratio related

to the i-th row object should also lean to the foreground (wi,j:fg → 1.0). However,

the form of transformation f : θ1,i,θ2,j → wi,j is non-trivial. Thus, we introduce a
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constrained 3× 3× 3 interaction weight φ in order to describe the general form of the

interaction between two biases. Using indices s, t, u ∈ {fg, bg1, bg0}, the mechanism is

given as follows:

wi,j:u =θ1,i
⊤φ·,·:uθ2,j =

∑

s

∑

t

θ1,i:sθ2,j:tφs,t:u

s.t.
∑

u′φs,t:u′ = 1, φs,t:u ∈ [0, 1] and

φs,t:u = 0.0 if (u 6= s and u 6= t) ∀s, t, u, (4.1)

where φ·,·:u is a matrix that is a slice of φ related to u. The constraints in Eq. (4.1)

ensure a positive correlation between θ1,i,θ2,j andwi,j . More intuitively, the constraints

can be understood as follows:

• If row object i and column object j select the same layer according to θ1,i and

θ2,j , respectively, Ri,j is generated from the layer with probability 1.0.

• If row object i and column object j select different layers from each other, one

of the two layers is selected stochastically with a probability defined by the cor-

responding slice of φ. Finally, Ri,j is generated from the selected layer.

Thus, in the proposed framework, link probability between two objects is given as

follows:

P (Ri,j = 1 |Z⊤
1,iηZ2,j , η1, η0,θ1,i,θ2,j ,φ)

=
(

wi,j:fg wi,j:bg1 wi,j:bg0

)








Z⊤
1,iηZ2,j

η1

η0








=
(
θ1,i

⊤φθ2,j
)⊤








Z⊤
1,iηZ2,j

η1

η0







, (4.2)
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where θ1,i
⊤φθ2,j =

{
θ1,i

⊤φ·,·,uθ2,j
}

u∈{fg,bg1,bg0}
.

To give the hierarchical generative model for the proposed framework, we use the

extended definition of the Dirichlet distribution presented by Ferguson [17]. By taking

the limit as any one of the Dirichlet parameters approaching zero, the corresponding

random variables also degenerate to zero. Thus, a prior for φ with the positive cor-

relation constraint given by Eq. (4.1) can be constructed using Dirichlet distributions

with constrained parameters. In summary, the hierarchical generative model of the

multi-layered framework is as follows:

θ1,i |α1 ∼ Dirichlet(α1), θ2,j |α2 ∼ Dirichlet(α2), (4.3)

φs,t |as,t ∼ Dirichlet(as,t)

s.t. as,t:u = 0.0 if u 6= s and u 6= t, (4.4)

Ri,j |Z
⊤
1,iηZ2,j , η1, η0,θ1,i,θ2,j ,φ

∼ Bernoulli








(
θ1,i

⊤φθ2,j
)⊤








Z⊤
1,iηZ2,j

η1

η0














, (4.5)

where Dirichlet(·) is the Dirichlet distribution, and Bernoulli(·) is the Bernoulli dis-

tribution. Figure 4.1 presents a diagram of the proposed multi-layered framework.

Now, we briefly review the above mentioned process. First, the bias parameters θ1,i

and θ2,j for each object O1,i and O2,j are given from Dirichlet priors with parame-

ters α1 = {α1,s}s∈fg,bg1,bg0 and α2 = {α2,t}t∈fg,bg1,bg0, respectively (Eq. (4.3)). Second,

an interaction weight φ = {φs,t}s,t∈{fg,bg1,bg0} is given by Dirichlet distributions with

constrained hyperparameters as,t (Eq. (4.4)). Finally, the link Ri,j is generated by a

Bernoulli distribution (Eq. (4.5)).
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4.2.2 The Multi-Layered Infinite Relational Model

Here, we propose a new generative model called the MLIRM, which is a concrete in-

stance of the mixed-membership mechanism proposed in Section 4.2.1. In the MLIRM,

the IRM is embedded as a prior for the clustering model Z⊤
1,iηZ2,j given in Eq. (4.5).

Therefore, in the IRM, the link probability of Ri,j is given by ηk,l, where z1,i = k and

z2,j = l. To estimate the number of clusters automatically from the given data, the

IRM uses the CRP as the prior distribution for z1 and z2. To summarize, the full

description of the generative model for the MLIRM is as follows:

z1,i | γ1 ∼ CRP(γ1), z2,j | γ2 ∼ CRP(γ2), (4.6)

ηk,l | β ∼ Beta(β, β), (4.7)

η1 | β ∼ Beta(β, β), η0 = 1− η1, (4.8)

θ1,i |α1 ∼ Dirichlet(α1), θ2,j |α2 ∼ Dirichlet(α2), (4.9)

φs,t |as,t ∼ Dirichlet(as,t) s.t. as,t:u = 0.0 if u 6= s and u 6= t, (4.10)

Ri,j | z1,i, z2,j ,η, η1, η0,θ1,i,θ2,j ,φ ∼ Bernoulli








(
θ1,i

⊤φθ2,j
)⊤








ηz1,i,z2,j

η1

η0














, (4.11)

where Beta(·,·) is the beta distribution. Figure 4.2a shows a graphical representation for

the MLIRM. Equations (4.6) and (4.7) are the embedded IRM for the clustering layer

of the MLIRM. Note that γ1 and γ2 are the concentration parameters for the CRPs.

Equation (4.8) defines the background layers. In the MLIRM, we define η1 = 1 − η0

in order to ensure that η1 and η0 capture irrelevant links and irrelevant non-links,

respectively.

4.2.3 Relationships to Existing Relational Models

Here, we examine several recently proposed models that are closely related to the

MLIRM, and show that the proposed MLIRM can be viewed as a generalization of
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these models.

The IRM proposed by Kemp et al. [34] is one of the best-known clustering models

that can account for a potentially infinite number of clusters in relational data. In the

IRM, the link probability between O1,i and O2,j depends only on their non-overlapping

cluster assignments z1,i and z2,j . Then, the link Ri,j is drawn as follows:

Ri,j | z1,i, z2,j ,η ∼ Bernoulli
(
ηz1,i,z2,j

)
. (4.12)

Note that the IRM is a special case of the proposed MLIRM when the bias parame-

ters θ1,i = (θ1,i:fg, θ1,i:bg1, θ1,i:bg0)
⊤ and θ2,j = (θ2,j:fg, θ2,j:bg1, θ2,j:bg0)

⊤ are constrained to

(1, 0, 0); i.e., the IRM assumes relational data is generated only by the clustering layer

of the MLIRM.

Clustering models considering the influences of the background layer were first

discussed by Hoff [25, 26] relative to clustering biological sequences. For biclustering

relational data, there have been several extensions of the IRM so that the background

layer affect link probabilities. The Subset IRM (SIRM) proposed by Ishiguro et al. [33]

and the Relevance Dependent IRM (RDIRM) proposed by Ohama et al. [48, 49] both

consider a generative model in which link probability is a mixture distribution of a

clustering layer ηk,l and a background layer η0. In the SIRM, binary variables s1,i, s2,j ∈

{0, 1} are introduced to indicate whether each object is relevant to the underlying

cluster structure. Then, a subset of R, where s1,i × s2,j = 1, is explained by the

clustering model ηk,l, while the rest are explained by the background probability η0.

Specifically, in the SIRM, the link Ri,j is drawn as follows:

Ri,j | z1,i, z2,j , s1,i, s2,j ,η, η0

∼Bernoulli









I(s1,i × s2,j = 1)

I(s1,i × s2,j = 0)





⊤


ηz1,i,z2,j

η0








 , (4.13)

where I(·) is 1 if the predicate holds and is zero otherwise. The RDIRM proposed by

Ohama et al. relaxes the constraints of the SIRM. In the RDIRM, rather than s1,i
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and s2,j in the SIRM, continuous relevance parameters ρ1,i, ρ2,j ∈ [0, 1] are introduced;

therefore, the RDIRM can estimate the confidence of an object being relevant to the

underlying cluster structure. Furthermore, they introduced the static function f :

[0, 1]2 → [0, 1] to control the interaction between relevance parameters. Then, two

versions of the RDIRM were proposed, the product model f(ρ1,i, ρ2,j) = ρ1,i × ρ2,j

(RDIRM-prod) and the summation model f(ρ1,i, ρ2,j) = 1−(1−ρ1,i)(1−ρ2,j) (RDIRM-

sum). In general, the RDIRM generates a link as follows:

Ri,j | z1,i, z2,j , ρ1,i, ρ2,j ,η, η0

∼Bernoulli









f(ρ1,i, ρ2,j)

1− f(ρ1,i, ρ2,j)





⊤


ηz1,i,z2,j

η0








 . (4.14)

The SIRM and RDIRM can be viewed as special cases of the MLIRM. The MLIRM

is equivalent to the RDIRM in Eq. (4.14), if the bias parameters θ1,i and θ2,j are

constrained to θ1,i:bg1 = θ2,j:bg1 = 0 and if the interaction tensor φ is given statically.

In addition to these constraints, the MLIRM is equivalent to the SIRM in Eq. (4.13)

if θ1,i,θ2,j ∈ {(1, 0, 0), (0, 0, 1)} and φfg,bg0 = φbg0,fg = (0, 0, 1).

Similar to the MLIRM, the RDIRM also considers that an entry Ri,j is drawn from

a mixture distribution of foreground and background layers. However, the RDIRM is

too restrictive to capture bias values underlying real-world relationships. The RDIRM

considers only the single background layer η0. Therefore, the estimated value of η0 tends

to lean either on 0.0 or 1.0. Consequently, the RDIRM can only capture either passive

or spamming objects. Furthermore, the RDIRM requires specifying the static function

f(·, ·) appropriately for given data. In general, however, this is difficult as we often

have no prior knowledge about given data. In contrast, our MLIRM can simultaneously

capture both passive and spamming objects. In addition, the interaction function φ

can be estimated automatically from the data. To summarize, the advantages of the

MLIRM are as follows.
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• The MLIRM introduces two background layers η1 and η0 in order to accommodate

relational data with both spamming and passive objects.

• The generative process for transformation f : θ1,i,θ2,j → wi,j via φ enables the

interaction structure of two bias parameters to be estimated automatically.

4.3 Inference

In this section, we derive an efficient Gibbs sampler to perform posterior inference for

the MLIRM.

4.3.1 Marginal Likelihood

Thanks to the conjugacy between MLIRM parameters and its prior distributions, η,

η1, η0, θ1, θ2, and φ can be fully marginalized out.

Introducing three auxiliary variables r1,i→j , r2,j→i, ri,j ∈ {fg, bg1, bg0}, Eqs. (4.9)–

(4.11) can be equivalently representaed by an augmented representation as follows:

z1,i | γ1 ∼ CRP(γ1), z2,j | γ2 ∼ CRP(γ2), (4.15)

ηk,l | β ∼ Beta(β, β), (4.16)

η1 | β ∼ Beta(β, β), η0 = 1− η1, (4.17)

θ1,i |α1 ∼ Dirichlet(α1), θ2,j |α2 ∼ Dirichlet(α2), (4.18)

φs,t |as,t ∼ Dirichlet(as,t) s.t. as,t:u = 0.0 if u 6= s and u 6= t, (4.19)

r1,i→j |θ1,i ∼ Categorical(θ1,i), r2,j→i |θ2,j ∼ Categorical(θ2,j), (4.20)

ri,j | r1,i→j , r2,j→i,φ ∼ Categorical(φr1,i→j ,r2,j→i
), (4.21)

Ri,j | z1,i, z2,j ,η, η1, η0, ri,j ∼ Bernoulli
















I(ri,j = fg)

I(ri,j = bg1)

I(ri,j = bg0)








⊤






ηz1,i,z2,j

η1

η0
















, (4.22)
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where Categorical(·) is the categorical distribution. The graphical representation of

the augmented representation for the MLIRM is depicted in Fig. 4.2b.

Thanks to the conjugacy between categorical and Dirichlet distributions, marginal-

izing θ1, θ2, and φ out, Eqs. (4.18)–(4.22) can be equivalently rewritten as follows:

r1,i→j |α1 ∼ DCM(α1), r2,j→i |α2 ∼ DCM(α2), (4.23)

ri,j | r1,i→j = s, r2,j→i = t,as,t ∼ DCM(as,t) (4.24)

s.t. as,t:u = 0.0 if u 6= s and u 6= t,

Ri,j | zi,1, z2,j ,η, η1, η0, ri,j

∼ Bernoulli
















I(ri,j = fg)

I(ri,j = bg1)

I(ri,j = bg0)








⊤






ηzi,1,z2,j

η1

η0
















, (4.25)

where DCM(·) is the Dirichlet compound multinomial distribution. In Eqs. (4.23)–

(4.25), the multinomial parameters θ1, θ2, and φ have been integrated out. Further-

more, given ri,j , each observation Ri,j is definitively assigned to one of the three layers.

Thus, the Bernoulli parameters η, η1, and η0 can also be integrated out. Consequently,

we obtain a marginal representation of the MLIRM as depicted in Fig. 4.2c. Following

the marginal representation, the closed-form marginal likelihood for the MLIRM is

described as follows:

P (R, z1, z2, r, r1, r2)

=P (R | z1, z2, r)× P (r | r1, r2)

× P (r1)× P (r2)× P (z1)× P (z2), (4.26)

where the terms on the right hand side of Eq. (4.26) can be derived as described below.

First, thanks to the conjugacy between the beta and Bernoulli distributions, the



52 CHAPTER 4. RELEVANCE MODELING WITH MIXTURE MODELING

first term on the right hand side of Eq. (4.26) is derived as follows:

P (R | z1, z2, r)

=

∫∫

P (R | z1, z2, r,η, η1)P (η)P (η1)dηdη1

=
B(mbg1 +mbg0 + β,mbg0 +mbg1 + β)

B(β, β)

×
∏

k

∏

l

B(mk,l:fg + β,mk,l:fg + β)

B(β, β)
, (4.27)

where B(·, ·) denotes the beta function. The symbols m and m are the number of links

and non-links, and are computed as follows:

mbg1 =
∑

i∈T1

∑

j∈T2

Ri,jI(ri,j = bg1), (4.28)

mbg0 =
∑

i∈T1

∑

j∈T2

Ri,jI(ri,j = bg0), (4.29)

mk,l:fg =
∑

i∈T1

∑

j∈T2

Ri,jI(ri,j = fg)I(z1,i = k)I(z2,j = l), (4.30)

mbg1 =
∑

i∈T1

∑

j∈T2

(1−Ri,j)I(ri,j = bg1), (4.31)

mbg0 =
∑

i∈T1

∑

j∈T2

(1−Ri,j)I(ri,j = bg0), (4.32)

mk,l:fg =
∑

i∈T1

∑

j∈T2

(1−Ri,j)I(ri,j = fg)I(z1,i = k)I(z2,j = l). (4.33)

Second, the terms related to the DCM distribution in Eq. (4.26) are derived as
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follows:

P (r | r1, r2)

=
∏

s

∏

t

Γ(
∑

u as,t:u)

Γ(
∑

u(as,t:u + ns,t:u))

×
∏

s

∏

t

∏

u∈{s,t}

∏

u

Γ(as,t:u + ns,t:u)

Γ(as,t:u)
, (4.34)

P (r1) =

(
Γ(
∑

s α1,s)

Γ(
∑

s α1,s + J)

)I ∏

i∈T1

∏

s

Γ(α1,s + n1,i:s)

Γ(α1,s)
, (4.35)

P (r2) =

(
Γ(
∑

t α2,t)

Γ(
∑

t α2,t + I)

)J ∏

j∈T2

∏

t

Γ(α2,t + n2,j:t)

Γ(α2,t)
, (4.36)

where Γ(·) is the gamma function. The symbols n, n1, and n2 denote the counts defined

for the auxiliary variables r, r1, and r2, respectively, and are computed as follows:

ns,t:u =
∑

i∈T1

∑

j∈T2

I(r1,i→j = s)I(r2,j→i = t)I(ri,j = u), (4.37)

n1,i:s =
∑

j∈T2

I(r1,i→j = s), n2,j:t =
∑

i∈T1

I(r2,j→i = t). (4.38)

Finally, the cluster assignments z1 and z2 follow the CRP. Therefore, we obtain

P (z1) = γK1
Γ(γ1)

∏

k Γ(m1,k)

Γ(I + γ1)
, (4.39)

P (z2) = γL2
Γ(γ2)

∏

l Γ(m2,l)

Γ(J + γ2)
, (4.40)

where m1,k =
∑

i I(z1,i = k) and m2,l =
∑

j I(z2,j = l).

4.3.2 Posterior Inference

Since the closed-form marginal likelihood for the MLIRM is now available, the pos-

terior inference for the MLIRM can be performed efficiently using collapsed inference

methods [41, 70]. In this paper, we use the collapsed Gibbs sampler [41] to infer the
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MLIRM because the algorithm guarantees asymptotic convergence to the true posterior

by drawing infinitely many samples.

As the parameters for the MLIRM have been marginalized out, the only variables

we have to estimate are z1, z2, r1, r2, and r.

Sampling Cluster Assignments z1 and z2

z1,i and z2,j can be sampled in the same way; thus, here, we concentrate only on z1,i.

Given r, the cluster assignments depend only on the subset of observations, where

ri,j = fg. Therefore, the conditional posterior for z1,i = k∗ is derived from Eq. (4.26)

as follows:

P (z1,i = k∗ | z1,−i, z2, r,R)

∝







m1,−i,k∗ ×
∏

l

B(m+i

k∗,l:fg
+β,m+i

k∗,l:fg
+β)

B(m−i

k∗,l:fg
+β,m−i

k∗,l:fg
+β)

m1,−i,k∗ > 0,

γ1 ×
∏

l

B(m+i

k∗,l:fg
+β,m+i

k∗,l:fg
+β)

B(β,β)
m1,−i,k∗ = 0,

(4.41)

where z1,−i denotes the cluster assignments for all objects in T1 excluding O1,i and

m1,−i,k∗ is the number of objects assigned to cluster k∗ excluding O1,i. The symbols

mfg and mfg with superscripts are computed as follows:

m−i
k∗,l:fg=

∑

x 6=i

∑

j∈T2

Rx,jI(rx,j=fg)I(z1,x=k
∗)I(z2,j=l), (4.42)

m−i
k∗,l:fg=

∑

x 6=i

∑

j∈T2

(1−Rx,j)I(rx,j=fg)I(z1,x=k
∗)I(z2,j=l), (4.43)

m+i
k∗,l:fg = m−i

k∗,l:fg +
∑

j∈T2

Ri,jI(z2,j = l), (4.44)

m+i
k∗,l:fg = m−i

k∗,l:fg +
∑

j∈T2

(1−Ri,j)I(z2,j = l). (4.45)

Sampling Auxiliary Variables r1, r2, and r

The naive sampler of r1,i→j , r2,j→i, and ri,j can be derived in a straightforward manner.

However, sampling these variables one after the other causes slow mixing of the Markov
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chain because these variables are highly correlated. Therefore, for efficient mixing, we

group these variables and update them simultaneously. Here, let rg

i,j be the grouped

variables {r1,i→j , r2,j→i, ri,j}. Then, the conditional posterior is given as follows:

P (rg

i,j={s
∗, t∗, u∗} |R, z1, z2, r−(i,j), r1,−(i→j), r2,−(j→i))

∝P (Ri,j |R−(i,j), z1, z2, ri,j=u
∗, r−(i,j))

×P (ri,j=u
∗ | r−(i,j), r1,i→j=s

∗, r1,−(i→j), r2,j→i=t
∗, r2,−(j→i))

×P (r1,i→j=s
∗ | r1,−(i→j))

×P (r2,j→i=t
∗ | r2,−(j→i)), (4.46)

where r1,−(i→j) and r2,−(j→i) denote the entire set of r1 and r2 excluding r1,i→j and

r2,j→i, respectively. Similarly, r−(i,j) denotes the entire set of r without ri,j . The terms

on the right hand side of Eq. (4.46) are computed as follows:

P (Ri,j |R−(i,j), z1, z2, ri,j = u∗, r−(i,j))

=







(m
−(i,j)
k,l:fg +β)Ri,j (m

−(i,j)
k,l:fg +β)Ri,j

m
−(i,j)
k,l:fg +m

−(i,j)
k,l:fg +2β

u∗=fg,

(m
−(i,j)
bg1 +m

−(i,j)
bg0 +β)Ri,j (m

−(i,j)
bg1 +m

−(i,j)
bg0 +β)Ri,j

m
−(i,j)
bg1 +m

−(i,j)
bg0 +m

−(i,j)
bg1 +m

−(i,j)
bg0 +2β

u∗=bg1,

(m
−(i,j)
bg0 +m

−(i,j)
bg1 +β)Ri,j (m

−(i,j)
bg0 +m

−(i,j)
bg1 +β)Ri,j

m
−(i,j)
bg0 +m

−(i,j)
bg1 +m

−(i,j)
bg0 +m

−(i,j)
bg1 +2β

u∗=bg0,

(4.47)

P (ri,j=u
∗ | r−(i,j), r1,i→j=s

∗, r1,−(i→j), r2,j→i=t
∗, r2,−(j→i))

=
n
−(i,j)
s∗,t∗:u∗ + as∗,t∗:u∗

∑

u(n
−(i,j)
s∗,t∗:u + as∗,t∗:u)

, (4.48)

P (r1,i→j = s∗ | r1,−(i→j)) ∝ α1,s∗ +
∑

y∈T2:y 6=j

I(r1,i→y = s∗), (4.49)

P (r2,j→i = t∗ | r2,−(j→i)) ∝ α2,t∗ +
∑

x∈T1:x 6=i

I(r2,j→x = t∗), (4.50)
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where the related counts are computed as follows:

m
−(i,j)
k,l:fg =mk,l:fg −Ri,jI(ri,j = fg)I(z1,i = k)I(z2,j = l), (4.51)

m
−(i,j)
bg1 =mbg1 −Ri,jI(ri,j = bg1), (4.52)

m
−(i,j)
bg0 =mbg0 −Ri,jI(ri,j = bg0), (4.53)

m
−(i,j)
k,l:fg =mk,l:fg − (1−Ri,j)I(z1,i = k)I(z2,j = l), (4.54)

m
−(i,j)
bg1 =mbg1 − (1−Ri,j)I(ri,j = bg1), (4.55)

m
−(i,j)
bg0 =mbg0 − (1−Ri,j)I(ri,j = bg0), (4.56)

n
−(i,j)
s,t:u =ns,t:u − I(r1,i→j = s)I(r2,j→i = t)I(ri,j = u). (4.57)

4.3.3 Estimating Hyperparameters

In general, the hyperparameters of a statistical model should be tuned carefully in

order to obtain a better solution. For the hyperparameters of the MLIRM, we derive

posterior samplers using data augmentation [16, 74, 69, 45] techniques.

Data Augmentation

Let us consider two situations that have the following probability densities:

P (N |U) ∝
Γ(U)

Γ(U +N)
, (4.58)

P (N ′ |U ′) ∝
Γ(U ′ +N ′)

Γ(U ′)
, (4.59)

where N,N ′ are positive integer random variables and U,U ′ are positive real random

variables, respectively. Unfortunately, in these case, we cannot derive straightforward

posterior Gibbs samplers for U and U ′ because conjugate priors for Eqs. (4.58) and

(4.59) have not been developed so far.

To over come the above-mentioned difficulties, data augmentation techniques con-

sider expanded joint probabilities over target and auxiliary variables. Let us denote
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by Gam(e0, f0) the gamma prior with shape parameter e0 and rate parameter f0; i.e.,

P (λ | e0, f0) = λe0−1e−f0λ/G(e0, f0) where G(e0, f0) = Γ(e0)/f0
e0 . The key strategies

are to use the following expansions:

Γ(U)

Γ(U +N)
=

1

Γ(N)

∫ 1

0

pU−1(1− p)N−1dp, (4.60)

Γ(U ′ +N ′)

Γ(U ′)
=

N ′
∑

q=1

S(N ′, q)U ′q, (4.61)

where S(·, ·) is the Stirling number of the first kind.

By expanding Eq. (4.58) using Eq. (4.60), the joint distribution over N and p given

U is described as

P (N, p |U) ∝
1

Γ(N)
pU−1(1− p)N−1. (4.62)

Therefore, a random sample from posterior P (p |N,U) can be obtained as

p |N,U ∼ Beta(U,N), (4.63)

because P (p |N,U) = P (N, p |U)/P (N |U) = pU−1(1 − p)N−1/B(U,N). Given p and

assuming gamma prior as U ∼ Gamma(e0, f0), the posterior for U is given by

P (U |N, p) ∝ P (p |N,U)P (U) ∝ eU ln p × U e0−1e−f0U . (4.64)

Consequently, posterior sampling for U can be performed as

U |N, p ∼ Gamma(e0, f0 − ln p). (4.65)

Similarly, by expanding Eq. (4.59) using Eq. (4.61), the joint distribution over N

and q, given U , is described as

P (N ′, q |U ′) ∝ S(N ′, q)U ′q, (4.66)

where the posterior for q follows an Antoniak distribution [3] as

q |N ′, U ′ ∼ Antoniak(N ′, U ′). (4.67)
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The Antoniak distribution (also called the Chinese Restaurant Table distribution [75])

is the distribution of the number of occupied tables if N ′ customers are assigned to one

of infinite tables with CRP(U ′), and is sampled as q ∼
∑N ′

w=1 Bernoulli(U
′/(U ′+w−1)).

Given q and assuming gamma prior as U ′ ∼ Gamma(e0, f0), the posterior for U
′ is given

by

P (U ′ |N ′, q) ∝ P (q |N ′, U ′)P (U ′) ∝ U ′q × U ′e0−1
e−f0U

′

. (4.68)

Consequently, the posterior sampling for U ′ can be performed as

U ′ |N ′, q ∼ Gamma(e0 + q, f0). (4.69)

Sampling Hyperparameters

In this section, we show that posterior samplers for all hyperparameters (i.e., γ1, γ2, β,

α1, α2, and a) can be derived using the data augmentation techniques we introduced

in Section 4.3.3.

Since a beta function is equivalently rewritten as B(x, y) = Γ(x)Γ(y)
Γ(x+y)

, Eq. (4.27) can

be equivalently rewritten as follows:

P (R | z1, z2, r)

=
Γ(2β)

Γ(mbg1 +mbg0 +mbg0 +mbg1 + 2β)

×
Γ(mbg1 +mbg0 + β)

Γ(β)
×

Γ(mbg0 +mbg1 + β)

Γ(β)

×
∏

k

∏

l

{
Γ(2β)

Γ(mk,l:fg +mk,l:fg + 2β)
×

Γ(mk,l:fg + β)

Γ(β)
×

Γ(mk,l:fg + β)

Γ(β)

}

. (4.70)

Therefore, by expanding Eq. (4.70) using Eqs. (4.60) and (4.61), we can obtain a joint

distribution over β and several auxiliary variables, where posterior samplers for the
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auxiliary variables are derived as follows:

pbg ∼ Beta(2β,mbg1 +mbg0 +mbg0 +mbg1), (4.71)

qbg ∼ Antoniak(mbg1 +mbg0, β), (4.72)

qbg ∼ Antoniak(mbg0 +mbg1, β), (4.73)

pk,l ∼ Beta(2β,mk,l:fg +mk,l:fg), (4.74)

qk,l ∼ Antoniak(mk,l:fg, β), (4.75)

qk,l ∼ Antoniak(mk,l:fg, β). (4.76)

Consequently, assuming the prior as β ∼ Gamma(e0, f0), β can be updated as

β | − ∼ Gamma(e0 + qbg + qbg +
∑

k

∑
l(qk,l + qk,l),

f0 − 2 ln pbg −
∑

k

∑
l ln pk,l), (4.77)

where β | − denotes a posterior sample of β given all the remaining variables.

For a, α1, α2, γ1, and γ2, posterior samplers can be straightforwardly derived by

expanding Eqs. (4.34), (4.35), (4.36), (4.39), and (4.40) using Eqs. (4.60) and (4.61).

Consequently, these hyperparameters can be updated as follows:

ps,t ∼ Beta(
∑

uas,t:u,
∑

uns,t:u), (4.78)

qs,t:u ∼ Antoniak(ns,t:u, as,t:u), (4.79)

as,t:u | − ∼ Gamma(e0 + qs,t:u, f0 − ln ps,t), (4.80)

p ∼ Beta(
∑

sα1,s, J), (4.81)

qi,s ∼ Antoniak(n1,i:s, α1,s), (4.82)

α1,s | − ∼ Gamma(e0 +
∑

iqi,s, f0 − I ln p), (4.83)

p ∼ Beta(γ1, I), γ1 | − ∼ Gamma(e0 +K, f0 − ln p). (4.84)

Note that posterior samplers for α2 and γ2 are omitted because these can be sampled

in the same way as α1 and γ1, respectively.
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Algorithm 1 Collapsed Gibbs inference for the MLIRM

z1, z2, r1, r2, r ← Initialize latent variables

repeat

for i = 1 to I do

z1,i ← Random sample using Eq. (4.41)

end for

for j = 1 to J do

z2,j ← Random sample in same manner as z1,i

end for

for i = 1 to I do

for j = 1 to J do

{r1,i→j , r2,j→i, ri,j} ← Random sample using Eq. (4.46)

end for

end for

Update hyperparameters according to Section 4.3.3

until convergence of marginal likelihood Eq. (4.26)

4.3.4 Pseudocode for Performing Posterior Inference

Using the posterior samplers derived in Sections 4.3.2 and 4.3.3, the posterior infer-

ence for the MLIRM can be completely performed by a closed-form Gibbs sampling

algorithm. The pseudocode for the inference algorithm is summarized as Algorithm 1.

4.3.5 Computational Efficiency

Here, we briefly discuss the computational cost of the MLIRM and related models.

As evident from the form of Eq. (4.41), posterior update for a cluster assignment

z1,i requires O(KL) computation. Therefore, updating z1 and z2 requires O((I +
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J)KL) computation. Additionally, the MLIRM requires O(IJ) computation to update

auxiliary variables r1, r2, and r. Consequently, collapsed Gibbs sampling for the

MLIRM roughly requires an O((I + J)KL + IJ) computation, which is the same

as that for the RDIRM. For the IRM and SIRM, collapsed Gibbs samplers require an

O((I+J)KL) computation [51, 53]. Therefore, the MLIRM requires more computation

than the IRM or SIRM. However, the computational efficiency of the generative models

depends very much on the choice of inference algorithm. Therefore, evaluating the

computational efficiency of these models using more modern inference algorithms [70,

32, 11] is one of the promising directions for future work.

4.4 Experiments

In this section, we present the experimental results using a toy synthetic dataset and

several real-world datasets, i.e., “Animal” [55], “Enron” [35], and “MovieLens1”. In all

experiments, we fit the hyperparameters of the MLIRM using the samplers we derived

in Section 4.3.2. In addition, the hyperparameters for the conventional models are also

estimated using Gibbs samplers, which can be derived via same data augmentation

techniques. Note that we set e0 = f0 = 1.0 for all models in all experiments discussed

in this paper.

4.4.1 Synthetic Data

First, we explored the ability of the proposed MLIRM to recover the underlying clus-

ter structure using synthetic data. Figure 4.3a shows the hand-constructed synthetic

data used in this experiment. As can be seen in Fig. 4.3a, there are many biased

objects with extremely many links or few links. Figures 4.3b–4.3k show the clustering

results obtained by the MLIRM and several of the related models that were reviewed

1http://www.grouplens.org/, as of 2003.
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in Section 4.2.3.

As shown in Figure 4.3b, the IRM fails to detect true partitions because it assumes

that all observations are relevant to the underlying cluster structure. In contrast, the

MLIRM (Figs. 4.3c, 4.3d, and 4.3e) found true partitions by estimating the layer to

which each observation was relevant. We also show the solutions obtained by the SIRM

and RDIRM, which have a similar assumption, i.e., a background layer blurs cluster

structure. In the SIRM (Figs. 4.3f and 4.3g), either the clustering layer or the back-

ground layer is selected in an object-wise manner. Therefore, the SIRM cannot consider

that an observation is affected by both the cluster structure and object biases. On the

other hand, the RDIRM (Figs. 4.3h–4.3k) found more accurate partitions compared to

the SIRM. However, the RDIRM considers only one background layer; therefore, only

non-links were captured as irrelevant entries.

4.4.2 Real-world Datasets

We applied the MLIRM to three real-world datasets. The first dataset was the “Ani-

mal” dataset, which includes relationships between 50 mammals and 85 features. Each

feature was rated on a scale of 0–100 for each animal. We prepared binary relational

data with a threshold that yields Ri,j = 1 for all ratings higher than the overall average

ratings; i.e., Ri,j = 1(0) indicated that animal i has (does not have) feature j. The sec-

ond dataset was the “Enron” dataset, which contains e-mail transactions among Enron

employees. We extracted the e-mail transactions on October 2001, which is when the

Enron accounting scandal was first reported. This dataset contains 149 Enron employ-

ees. For this dataset, Ri,j = 1(0) was used to indicate if an e-mail was (not) sent from

employee i to employee j. The last dataset is the “MovieLens” dataset, which contains

ratings for 1,682 movies by 943 users on a five-point scale. In our experiment, Ri,j = 1

when the rating was higher than three points and Ri,j = 0 otherwise; i.e., Ri,j = 1

indicates that user i liked movie j.
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Table 4.1: Quantitative results for three real-world datasets (i.e., Animal (AN), Enron

(EN), and MovieLens (ML)). TE, TL, and #KL indicate train error (0-1 loss), test

data log likelihood, and number of the obtained cluster blocks (K × L), respectively.

The best results are highlighted in bold. The parenthesized numbers indicate standard

deviations.

AN IRM SIRM RDIRM-prod RDIRM-sum MLIRM

TE 0.127 (0.003) 0.129 (0.003) 0.076 (0.005) 0.079 (0.004) 0.056 (0.008)

TL -0.426 (0.016) -0.480 (0.017) -0.384 (0.023) -0.402 (0.022) -0.344 (0.021)

#KL 382.3 (34.7) 376.5 (34.5) 338.9 (41.0) 394.0 (41.2) 309.0 (26.7)

EN IRM SIRM RDIRM-prod RDIRM-sum MLIRM

TE 0.030 (0.001) 0.028 (0.001) 0.018 (0.001) 0.018 (0.001) 0.014 (0.002)

TL -0.123 (0.006) -0.133 (0.006) -0.129 (0.005) -0.133 (0.007) -0.099 (0.005)

#KL 376.8 (81.8) 391.9 (63.7) 60.3 (15.9) 379.5 (145.2) 45.7 (12.3)

ML IRM SIRM RDIRM-prod RDIRM-sum MLIRM

TE 0.032 (0.000) 0.032 (0.000) 0.020 (0.000) 0.022 (0.000) 0.019 (0.000)

TL -0.090 (0.000) -0.093 (0.000) -0.089 (0.000) -0.090 (0.000) -0.055 (0.000)

#KL 2091.4 (66.0) 2137.5 (32.4) 1350.9 (35.0) 2024.5 (52.7) 1431.1 (22.7)

For quantitative comparison, three measurements were used; i.e., train error (0-1

loss), test log likelihood, and number of obtained cluster blocks K×L. Throughout the

experiments, we randomly hid 5% of observations during the training period. These

hidden entries were used to calculate the test log likelihood, and the remaining entries

were used to compute the train error and the number of cluster blocks K × L. The

train error (∈ [0, 1]) indicates the flexibility of an evaluated model. A low train error

value means that the model fits better to the training data. The test log likelihood was

used to evaluate the predictive robustness of relational models. The test log likelihood

is a real-valued measurement indicating the averaged log likelihood of a hidden entry
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that takes an actual value; a larger value means the model is more robust in link

prediction. The small test log likelihood value indicates that the model overfits the

data. In addition, we computed the number of obtained cluster blocksK×L in order to

evaluate the simplicity of the discovered cluster structure. A smaller value means the

model abstracts the given data effectively. We calculated each measurement averaged

over the last 300 samples of Gibbs iterations.

Table 4.1 lists the computed measures. In the case of every dataset for all measure-

ments, except for the number of cluster blocks K×L for the “MovieLens” dataset, the

MLIRM significantly outperformed the other models. For the “MovieLens” dataset,

the MLIRM and RDIRM-prod obtained nearly identical values for the number of K×L

because this dataset was sparse, and a single background layer was sufficient to explain

irrelevant entries. As is evident from the table, we have confirmed that the MLIRM

performs well in both predictive robustness and its ability to discover simple abstrac-

tions from given relational data.

In addition, we qualitatively examined the clustering results for the “Animal” and

the “Enron” datasets. To clarify the effects of the proposed model, we compared the

results obtained by the IRM and the proposed MLIRM. Figure 4.4 shows the clustering

results. As is evident from the figure, we have confirmed that the MLIRM adequately

excludes irrelevant entries and finds clear cluster structures. Furthermore, to obtain

ideas from learned interaction weights φ, we illustrate the most probable layer obtained

for each dataset in Figure 4.6. As can be seen in Fig. 4.6, the proposed MLIRM can

flexibly estimate the form of interaction from given data.

Here, we focus closely on the results for the “Animal” dataset. As shown in

Figs. 4.4d and 4.4e, there are several features (column objects), in which many re-

lated entries are assigned to background layers. To quantify an object’s relevance to
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each layer u, we compute the relevance scores S1,u(i) and S2,u(j) as follows:

S1,u(i) :=

∑

y∈T2
I(ri,y = u)

J
, S2,u(j) :=

∑

x∈T1
I(rx,j = u)

I
. (4.85)

Table 4.2 lists the top scoring features for each layer. As can be seen in the left hand

side of the table, interpretable feature clusters, such as carnivorous features or aquatic

features, were obtained. In addition, typical features, such as “meat,” “fast,” “swims,”

and “claws” were extracted for each cluster. Furthermore, as is shown in the right hand

side of Table 4.2, the MLIRM extracted non-informative features with few links or an

extreme number of links. For example, the feature “orange” has links to only four out

of 50 animals. Thus, such objects are irrelevant to the underlying cluster structure.

Another example is “newworld,” which has links to 41 out of 50 animals. Such objects

are spam objects; therefore, they are also worthless for clustering. Figure 4.5 depicts

the detailed clustering results for the “Animal” dataset. As can be seen from this

figure, in the MLIRM, both spamming and passive objects are assigned to their nearest

meaningful cluster, which forms at least one dense block. Therefore, clusters obtained

by the MLIRM are more informative than those obtained by the IRM. As a result, we

have confirmed that the MLIRM has the ability to extract informative clusters and

typical objects for each cluster.

Next, we closely look at the results for the “Enron” dataset. As can be seen

in Figures 4.4b–4.4h, most e-mails were sent and received by only a few employees.

In this case, the IRM forcedly fits itself to the data. As a result, the IRM found

many small non-informative clusters (Fig. 4.4b). For the proposed MLIRM, unlike

the IRM, nearly all non-links were explained by the background non-link layer, and

simple cluster structure are successfully obtained. We confirmed that the clusters

obtained by the MLIRM correspond to the major roles of employees, such as “vice

presidents,” “ordinary employees,” “VIPs related to the pipeline business,” and “CEOs

and presidents.” One interesting fact is that only one employee was extracted as a

spammer (horizontal dotted line in Fig. 4.4g). This employee was a key person in the
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Table 4.2: Top scored features for each layer obtained by the MLIRM for the “Animal”

dataset. The table on the left lists examples of obtained feature clusters and the top

scoring features for each cluster. The top (bottom) right table lists features highly

relevant to the background link (non-link) layer.

feature S2,fg(j) z2,j

meat 0.98 15

hunter 0.86 15

meatteeth 0.84 15

fierce 0.62 15

fast 1.00 21

tail 0.98 21

agility 0.96 21

swims 0.98 22

coastal 0.98 22

strainteeth 0.98 22

claws 1.00 24

paws 0.84 24

nocturnal 0.76 24

feature S2,bg1(j)

newworld 0.74

chewteeth 0.72

black 0.60

oldworld 0.57

solitary 0.40

white 0.38

feature S2,bg0(j)

orange 0.80

yellow 0.80

skimmer 0.78

bush 0.76

stripes 0.76

desert 0.72

Enron scandal and sent e-mails to many other employees in response to the scandal.

These qualitative results indicate that the proposed MLIRM can extract simple and

clear cluster structures as well as typical objects within each cluster. Therefore, the

proposed MLIRM is useful in discovering interpretable cluster structures from blurred

real-world relational data.
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4.5 Chapter Summary

In this chapter, we proposed a new generative framework that extracts a de-blurred

cluster structure by estimating the bias of each object and its interactions. In addition,

we proposed a new generative model called the MLIRM, which is a concrete instance of

the proposed framework that incorporates the IRM. Experiments have confirmed the

MLIRM’s superiority in predictive accuracy and simplicity of abstraction. Moreover,

we observed that the MLIRM successfully found clear bicluster structures and typical

objects within each cluster. Therefore, the proposed MLIRM is useful for discovering

interpretable cluster structure from blurred real-world relational data.

Finally, we briefly discuss future directions of this chapter. There are two promising

aspects for future work.

One is enhancing the computational efficiency. In this study, the posterior inference

for the MLIRM and conventional models was performed using a collapsed Gibbs sam-

pling algorithm in order to compere the potential capability of these generative models.

However, in general, Gibbs sampling algorithms are relatively computationally expen-

sive compared with more modern algorithms, such as variational inference [70, 32] or

gradient-based stochastic methods [11]. Therefore, investigating the scalability and

computational efficiency of the MLIRM is an important direction of our future work.

The other is enhancing model capability. The MLIRM includes the IRM for the

clustering model; thus, objects are partitioned into non-overlapping clusters. However,

mixed or multiple membership assumptions are appropriate in many real-world situa-

tions. Therefore, in the future, we plan to apply the proposed multi-layered framework

to other advanced clustering models, such as mixed membership [73, 1, 19] or multiple

membership models [43, 56, 54]. We are also interested in developing efficient online

algorithms for MLIRM in order to accommodate large-scale datasets.
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β

γ1 γ2
ηk,l η1, η0
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α1 θ1,i θ2,j α2
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(a) Basic representation

β

γ1 γ2
ηk,l η1, η0

K × L

z1,i Ri,j z2,j

α1 θ1,i r1,i→j ri,j r2,j→i θ2,j α2

I J

φs,t

{fg, bg1, bg0}2
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(b) Augmented representation

βγ1 γ2

z1,i Ri,j z2,j

α1 r1,i→j ri,j r2,j→i α2

I J

{fg, bg1, bg0}2

as,t

(c) Marginal representation

Figure 4.2: Graphical representations of the MLIRM. (a) A basic graphical repre-

sentation of the MLIRM corresponding to Eqs. (4.6)–(4.11) in Section 4.2.2. (b) An

augmented representation for the MLIRM with auxiliary variables r1,i→j , r2,j→i, and

ri,j (which corresponds to Eqs. (4.15)–(4.22) in Section 4.3.1). (c) The marginal rep-

resentation obtained by integrating η, η1, η0, θ1, θ2, and φ out from the augmented

representation (which corresponds to Eq. (4.26) in Section 4.3.1). Note that circle

nodes denote random variables, square nodes denote hyperparameters, shaded nodes

denote observations, and round-edged squares indicate the number of dimension for

individual variables. Directed connections denote probabilistic dependencies.
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(a) Synthetic data (b) IRM

(c) MLIRM: fg (d) MLIRM: bg1 (e) MLIRM: bg0

(f) SIRM: fg (g) SIRM: bg

(h) RDIRM-prod: fg (i) RDIRM-prod: bg (j) RDIRM-sum: fg (k) RDIRM-sum: bg

Figure 4.3: Synthetic data example. (a) Synthetic 50 × 50 relational data (white

corresponds to zero, black to one). (b) IRM solution (rows and columns are sorted by

the estimated cluster indices). (c)–(e) MLIRM solutions. (c) shows the area assigned

to the clustering layer ri,j = fg, (d) to the first background layer ri,j = bg1, and (e)

to the background layer ri,j = bg0 (gray area indicates that corresponding entries are

assigned to other layers). (f)–(k) Solutions produced by SIRM, RDIRM-prod, and

RDIRM-sum, respectively.
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(a) Animal (IRM) (b) Enron (IRM)

(c) Animal (MLIRM: fg)

Spamming features are extracted.

(d) Animal (MLIRM: bg1)

Passive features are extracted.

(e) Animal (MLIRM: bg0)

VPs

Ordinary
employees

VIPs of
pipeline biz.

CEOs and
presidents

(f) Enron (MLIRM: fg)

Key person of
Enron scandal

(g) Enron (MLIRM: bg1) (h) Enron (MLIRM: bg0)

Figure 4.4: Clustering results for the “Animal” and “Enron” datasets. (a) and (b)

depict the IRM solutions and (c)–(h) are the MLIRM solutions (objects within each

cluster for MLIRM solutions are sorted by descending order of relevance scores S1,fg(i)

and S1,fg(j)).



4.5. CHAPTER SUMMARY 71grizzly+bear, german+shepherd, tiger, leopard, fox, wolf, rat, weasel, bobcat, lion, raccoonskunk, mole, hamster, squirrel, rabbit, mouseantelope, horse, moose, giraffe, zebra, deerkiller+whale, blue+whale, humpback+whale, seal, walrus, dolphindalmatian, persian+cat, siamese+cat, chihuahua, collieox, sheep, buffalo, pig, cowspider+monkey, gorilla, chimpanzee, bathippopotamus, elephant, rhinocerosbeaver, otterpolar+bear orange, red, yellow, stripes, hands, flys, tunnels, insects, scavenger, desert, cave flippers, strainteeth, swims, arctic, coastal, ocean, water brown, tail, chewteeth, newworld, oldworld furry, walks, quadrapedal, ground blue, tusks, plankton, skimmer toughskin, big, strong, group meatteeth, meat, fierce white, patches, domestic pads, nocturnal, hibernate paws, claws, solitary forager, forest, nestspot bulbous, slow, inactive fast, active, agility bipedal, tree hunter, stalker hooves, horns hops, weak vegetation, grazer plains, fields lean, muscle mountains spots small smart fish timid jungle bush longneck smelly black hairless gray buckteeth giant+panda longleg
(a) IRM solutionleopard, bobcat, fox, lion, wolf, tiger, rat, german+shepherd, weasel, raccoongiraffe, moose, cow, pig, ox, buffalo, sheepblue+whale, humpback+whale, dolphin, walrus, killer+whale, sealhamster, squirrel, mouse, rabbit, skunk, molesiamese+cat, dalmatian, collie, chihuahua, persian+catantelope, deer, horse, zebraelephant, rhinoceros, hippopotamuschimpanzee, spider+monkey, gorillapolar+bear, grizzly+bearotter, beaverbatgiant+pandaleopard, bobcat, fox, lion, wolf, tiger, rat, german+shepherd, weasel, raccoongiraffe, moose, cow, pig, ox, buffalo, sheepblue+whale, humpback+whale, dolphin, walrus, killer+whale, sealhamster, squirrel, mouse, rabbit, skunk, molesiamese+cat, dalmatian, collie, chihuahua, persian+catantelope, deer, horse, zebraelephant, rhinoceros, hippopotamuschimpanzee, spider+monkey, gorillapolar+bear, grizzly+bearotter, beaverbatgiant+panda swims, coastal, strainteeth, water, arctic, flippers, fish, ocean, plankton, red, blue, skimmer, newworld fast, tail, agility, brown, lean, active, patches scavenger, flys, tunnels, black, desert, cave walks, quadrapedal, ground, longleg, bush claws, paws, nocturnal, pads, solitary meat, hunter, meatteeth, fierce, stalker tree, forest, nestspot, small weak, hibernate, white, hops fields, plains, orange, yellow hooves, longneck, horns, chewteeth inactive, slow, bulbous hairless, gray, tusks vegetation, grazer, smelly bipedal, hands, insects muscle, oldworld, spots strong, big buckteeth, stripes forager, mountains toughskin jungle timid smart furry domestic group

(b) MLIRM solutions

Figure 4.5: Detailed illustrations of clustering results on “Animal” dataset with object

labels. Note that, in the MLIRM solution, two background layers (i.e., bg1 and bg0)

are depicted jointly. The gray scaled texts of mammal and feature names for MLIRM

solutions indicate the corresponding relevance scores (black to 1.0 and white to 0.0).
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Figure 4.6: (Best viewed in color.) The estimated interaction φ for (a) “Animal” and

(b) “Enron” datasets (color bar of the left hand side (top) of each figure is the mean

estimated bias parameters θ̄1,i (θ̄2,j); the central color map indicates the most probable

layer for ri,j conditioned on r1,i→j and r2,j→i).



Chapter 5

Relevance Modeling with Link

Function

In this chapter, in order to develop more computationally efficient relevance-dependent

biclustering model, we introduce a link function approach for modeling relevance-

dependency. More specifically, we introduce the Relevance-dependent Bernoulli Dis-

tribution (R-BD), which is a novel prior distribution for relevance-dependent binary

matrices. In our R-BD, a link strength for an entry is defined by three non-negative

parameters: a typical link strength common to all entries in the matrix, and two rele-

vance parameters for each row and column objects. Then, an observed link probability

is directly calculated by transforming the product of these three non-negative variables

into a probability using Bernoulli-Poisson link function [74]. The main advantages of

the R-BD is as follows. First, the relevance-modeling in the R-BD do not have to

consider any background distributions. Thus, the number of latent variables to be esti-

mated is significantly smaller than those in the RDIRM and MLIRM. Second, the link

probability in the R-BD can be modulated widely from 0.0 to 1.0 without introduc-

ing complicated mechanism as in the MLIRM. Thus, the effect relevance values in the

R-BD is interpretable. Finally, as the all parameters of the R-BD can be completely

73
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marginalized out, we do not have to explicitly estimate R-BD’s parameters when per-

forming posterior inference. By incorporating the R-BD as a component distribution,

we propose a novel biclustering model termed the Relevance-dependent Infinite Biclus-

tering (R-IB). Thanks to the property of the R-BD, the posterior inference for the R-IB

can also be performed using a collapsed Gibbs sampler. Furthermore, the R-IB can

be inferred faster than not only the RDIRM and MLIRM, but also the original IRM.

Experimental results show that the R-IB extracts more essential bicluster structure

with better computational efficiency than conventional models. We further observed

that the biclustering results obtained by R-IB facilitate interpretation of the meaning

of each cluster.

5.1 Motivations

Few studies consider relevance dependency in biclustering. The Relevance Dependent

Infinite Relational Model (RDIRM) [48, 49] assumes that only a subset of entries is

relevant to the cluster structure.

More specifically, in the RDIRM, mixing parameters ρ1,i, ρ2,j ∈ [0, 1] are introduced

for each object, and observations are drawn from a mixture of foreground ηz1,i,z2,j and

background η0 densities as follows:

r1,i→j | ρ1,i ∼ Bernoulli(ρ1,i),

r2,j→i | ρ2,j ∼ Bernoulli(ρ2,j),

ri,j = f(r1,i→j , r2,j→i),

Ri,j | z1,i, zj,2,η, η0, ri,j ∼ Bernoulli(ri,j × ηz1,i,z2,j + (1− ri,j)× η0), (5.1)

where f(·, ·) is a Boolean function typically set to the logical product.

Although the aim of the RDIRM is to exclude non-informative entries as noise, this

mechanism can be considered an approach for modeling relevance dependency because
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mixing parameters ρ1 and ρ2 affect the observed link probabilities regardless of a given

object’s cluster membership.

However, there is a number of drawbacks in their approach. First, in the RDIRM,

a link probability for an entry depends on many internal parameters: foreground prob-

ability ηz1,i,z2,j , background probability η0, mixing parameters ρ1,i, ρ2,j , and Boolean

function f(·, ·). This makes the effect of the relevance on link probabilities too com-

plex to interpret. Second, to infer the RDIRM, not only I+J cluster assignments z1, z2

must be estimated but also I × J latent variables r1, r2. Thus, the RDIRM can be ap-

plied to only very small relational data. Finally, no reasonable strategy is available to

select the Boolean function f(·, ·). Ohama et al. [50] tackled this problem by assuming

the prior for Boolean functions. However, the interpretability of relevance is degraded

as the estimated probabilistic Boolean function becomes increasingly complex.

In this chapter, we introduce the Relevance-Dependent Bernoulli Distribution (R-

BD) as a prior for relevance-dependent binary matrices. In the R-BD, instead of the

mixed-membership modeling in the RDIRM and MLIRM, a Bernoulli-Poisson link

function [74] is used for relevance-dependency modeling. Therefore, the posterior in-

ference for the R-BD can be performed efficiently without partitioning given relational

data into foreground and background part. By incorporating the R-BD as a observa-

tion model of the IRM, we propose the novel Relevance-Dependent Infinite Biclustering

(R-IB) model, which automatically estimates the number of clusters. Posterior infer-

ence for the R-IB can be performed efficiently using a collapsed Gibbs sampler because

the parameters of the R-IB model can be fully marginalized out.
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Figure 5.1: Outcomes drawn from the R-BD (λ = 0.6931) with different Dirichlet

parameters. (a) shows probability densities and (b) shows binary matrices drawn from

corresponding density, where black corresponds to 0 and white to 1.

5.2 Relevance-dependent Infinite Biclustering (R-

IB)

First, we introduce the R-BD: a novel prior for relevance-dependent binary matrices.

Then, by incorporating the R-BD, we propose the R-IB model.

5.2.1 Relevance-Dependent Bernoulli Distribution

To design a prior distribution for an I × J relevance-dependent binary matrix x, we

consider three non-negative parameters λ, ψ1,i, and ψj,2. The first parameter λ in the

range [0,+∞) is a typical link strength that controls the overall density for matrix x.

The remaining parameters ψ1,i and ψ2,j (also in [0,+∞)) are the relevance parameters

for the i-th row and the j-th column, respectively. Then, we define the relevance-
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dependent link strength for an entry xi,j by multiplying these parameters as ψi,1ψj,2λ.

Finally, to obtain a binary random variable, we define Relevance-dependent Bernoulli

distribution (R-BD) as follows:

xi,j |ψ1,i, ψ2,j , λ ∼ Bernoulli
(
1− e−ψ1,iψ2,jλ

)
, (5.2)

where the function 1 − e−· is the Bernoulli-Poisson (BerPo) link function [74] that

transform a non-negative variable s into a probability.

The relevance modeling in our R-BD is more interpretable than that in the RDIRM,

because the effect of relevance is defined by a simple multiplication of non-negative

variables.

Another remarkable property of R-BD is that all internal parameters (i.e., λ, ψ1,

and ψ2) can be marginalized out. Following the property of BerPo link, Eq. (5.2) can

be equivalently rewritten by truncating a Poisson random variable x∗i,j as

x∗i,j |ψ1,i, ψ2,j , λ ∼ Poisson(ψ1,iψ2,jλ),

xi,j = I(x∗i,j ≥ 1), (5.3)

where I(·) is 1 if the predicate holds and is 0 otherwise. Posterior sampling of x∗i,j can

be easily performed as follows:

x∗i,j | xi,j , ψ1,i, ψ2,j , λ ∼







δ(0), if xi,j = 0

ZTP(ψ1,iψ2,jλ). if xi,j = 1
(5.4)

Note that δ(0) is a point mass at zero and ZTP(·) denotes a zero-truncated Poisson

distribution [21], which is also known as the conditional Poisson distribution [10] or

the positive Poisson distribution [65]. This representation enables the construction

of conjugate priors for R-BD parameters. Assuming gamma and Dirichlet priors as

λ ∼ Gamma(a, b) 1, {ψ1,i}
I
i=1/I ∼ Dirichlet(c1), and {ψ2,j}

J
j=1/J ∼ Dirichlet(c2), we

1 Gamma(a, b) denotes a gamma distribution with shape parameter a and rate parameter b, i.e.,

P (λ | a, b) = λa−1e−bλ/G(a, b) where G(a, b) = Γ(a)/ba. Γ(·) denotes the gamma function.
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obtain a closed-form marginal likelihood for auxiliary counts x∗ as follows:

P (x∗) =
1

∏I

i=1

∏J

j=1 x
∗
i,j !
×

I∏

i=1

Γ(c1 +Mi,·)

Γ(c1)
×

J∏

j=1

Γ(c2 +M·,j)

Γ(c2)

×
IMΓ(Ic1)

Γ(Ic1 +M)
×

JMΓ(Jc2)

Γ(Jc2 +M)
×
G(a+M, b+ IJ)

G(a, b)
, (5.5)

where Mi,· =
∑J

j=1 x
∗
i,j, M·,j =

∑I

i=1 x
∗
i,j , and M =

∑I

i=1

∑J

j=1 x
∗
i,j. Thus, the pa-

rameters for R-BD no longer need to be estimated explicitly because they have been

marginalized out. This gives the R-BD an affinity with collapsed inference.

Figure 5.1 depicts the random binary matrices drawn from R-BD with different

Dirichlet parameters. Although the binary matrices drawn from R-BD indicate various

density patterns, the expected link strengths for these matrices are equal to exactly λ.

Therefore, the estimated value of λ can be interpreted as a representative link strength

value of a given binary matrix.

5.2.2 Relevance-Dependent Infinite Biclustering

Here, we describe the proposed R-IB model. CRP(γ) denotes a CRP with concentration

parameter γ. The full description of the R-IB model, incorporating R-BD to the

observation model of the IRM, is as follows:

z1,i | γ1 ∼ CRP(γ1),

z2,j | γ2 ∼ CRP(γ2),

ψ1,k/m1,k | c1, z1 ∼ Dirichlet(

m1,k
︷ ︸︸ ︷
c1, . . . , c1),

ψ2,l/m2,l | c2, z2 ∼ Dirichlet(

m2,l
︷ ︸︸ ︷
c2, . . . , c2),

λk,l | a, b ∼ Gamma(a, b),

Ri,j | z1,i, z2,j , ψ1,i, ψ2,j ,λ ∼ Bernoulli
(
1− e−ψ1,iψ2,jλz1,i,z2,j

)
, (5.6)

where m1,k (m2,l) is the number of row (column) objects assigned to cluster k (l). Note

that ψ1,k (ψ2,l) is a set of relevance parameters ψ1,i (ψ2,j), where z1,i = k (z2,j = l).
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Thanks to the conjugacy between R-BD and its priors, by introducing auxiliary

Poisson counts R∗, the model parameters λ, ψ1, and ψ2 can be marginalized out. The

marginal likelihood for R∗, given z1 and z2, is then given as

P (R∗ | z1, z2) =
1

∏I

i=1

∏J

j=1R
∗
i,j!
×

I∏

i=1

Γ(c1 +Mi,·)

Γ(c1)
×

J∏

j=1

Γ(c2 +M·,j)

Γ(c2)

×
K∏

k=1

m
Mk,·

1,k Γ(m1,kc1)

Γ(m1,kc1 +Mk,·)
×

L∏

l=1

m
M·,l

2,l Γ(m2,lc2)

Γ(m2,lc2 +M·,l)

×
K∏

k=1

L∏

l=1

G(a+Mk,l, b+m1,km2,l)

G(a, b)
, (5.7)

where Mk,l =
∑I

i=1

∑J

j=1R
∗
i,jI(z1,i = k)I(z2,j = l), Mk,· =

∑L

l=1Mk,l, and M·,l =
∑K

k=1Mk,l.

Figure 5.2 shows an R-IB solution for a synthetic dataset, in which link probabilities

are distorted by object relevance. As can be seen in Fig. 5.2a, a 3×3 bicluster structure

is present in the data. As shown in Fig. 5.2b, the IRM fails to extract the true

partitions, because the IRM assumes uniform density within each block. In contrast,

the R-IB (Fig. 5.2c) successfully finds the true partitions by estimating relevance values.

5.3 Inference

Posterior inference for the R-IB can be performed via collapsed Gibbs sampling. As

the parameters of R-BD have been marginalized out, the only variables we have to

estimate are cluster assignments z1, z2 and auxiliary counts R∗.

As z1,i and z2,j can be sampled in the same way, we concentrate on z1,i. Using (5.7)

and the likelihood for the CRP, given R∗, the posterior probability that the i-th object
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Figure 5.2: Synthetic example: (a) 500 × 500 relational data; (b) IRM solution; (c)

R-IB solution. In (b) and (c), the left and top matrices indicate z1 and z
⊤
2 in a 1-of-K

representation, respectively. Colored areas in z1 and z
⊤
2 indicate relevance parameters

for corresponding objects. For an intuitive understanding, each relevance parameter ψ

is transformed into a probability in [0, 1] as 1− e− log(2)×ψ.

is assigned to cluster k∗ is given by

P (z1,i = k∗ | −)

∝







m−i
1,k∗×

(
m+i

1,k∗

)M+i

k∗,· Γ(m+i
1,k∗c1)Γ(m

−i
1,k∗c1 +M−i

k∗,·)
(
m−i

1,k∗

)M−i

k∗,· Γ(m−i
1,k∗c1)Γ(m

+i
1,k∗c1 +M+i

k∗,·)

×
L∏

l=1

G(a+M+i
k∗,l, b+m+i

1,k∗m2,l)

G(a+M−i
k∗,l, b+m−i

1,k∗m2,l)
, if m−i

1,k∗ > 0

γ1×
Γ(c1)

Γ(c1 +Mi,·)

×
L∏

l=1

G(a+M+i
k∗,l, b+m+i

1,k∗m2,l)

G(a, b)
, if m−i

1,k∗ = 0

(5.8)

where superscript −i indicates that the corresponding statistic is computed while ex-

cluding the i-th row object. Conversely, +i means that the corresponding statistic is

computed while including the i-th row object in cluster k∗.
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From (5.4), the posterior sampling for R∗
i,j is given by

R∗
i,j | − ∼







δ(0), if Ri,j = 0

ZTP(ψ1,iψ2,jλz1,i,z2,j). if Ri,j = 1
(5.9)

Note that explicit samples for λ, ψ1, and ψ2 are only required during the sampling of

R∗, and are drawn as follows:

λk,l | − ∼ Gamma(a+Mk,l, b+m1,k ×m2,l), (5.10)

ψ1,k/m1,k | − ∼ Dirichlet(c1 +M1,k), (5.11)

ψ2,l/m2,l | − ∼ Dirichlet(c2 +M2,k), (5.12)

where c1 +M1,k (c2 +M2,l) is the set of c1 +Mi,· (c2 +M·,j) in row (column) cluster

k (l).

As the sampling for R∗ is computationally insignificant compared with that for

z1 and z2, both the R-IB and IRM require the O((I + J)KL) computation for each

iteration. However, the computation of a beta function required for the IRM is more

expensive than that of a gamma function required for the R-IB. As a result, compu-

tational time of the R-IB is significantly shorter than that of both the RDIRM and

IRM.

Estimating Hyperparameters

The hyperparameters for the R-IB (i.e., γ1, γ2, c1, c2, a, and b) can also be sampled

assuming the gamma prior Gamma(e0, f0). Because of the conjugacy between gamma

distributions, the rate parameter b is straightforwardly updated as b ∼ Gamma(e0 +

aKL, f0 +
∑

k,l λk,l). For the remaining hyperparameters, posterior sampling is per-

formed using the data augmentation [16, 45, 69, 74] technique that we have described

in Sec. 4.3.3.

For the shape parameter a, by applying Eq. (4.61) to each term of the K × L

product in (5.7), we obtain a joint distribution over a and qk,l. Then, assuming a ∼
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Gamma(e0, f0), a can be updated as

qk,l | − ∼ Antoniak(Mk,l, a), (5.13)

a | − ∼ Gamma

(

e0 +
K∑

k=1

L∑

l=1

qk,l, f0 +
K∑

k=1

L∑

l=1

ln
b+m1,km2,l

b

)

, (5.14)

where Antoniak(Mk,l, a) is an Antoniak distribution [3]. This is the distribution of the

number of occupied tables if Mk,l customers are assigned to one of an infinite number

of tables with CRP(a), and is sampled as qk,l ∼
∑Mk,l

p=1 Bernoulli(a/(a+ p− 1)).

Similarly, by applying Eq. (4.60) and (4.61) to the terms related to c1 in Eq. (5.7),

we obtain a joint distribution over c1, p1,k, and q1,i. Consequently, c1 is updated as

q1,i | − ∼ Antoniak(Mi,·, c1), (5.15)

p1,k | − ∼ Beta(m1,kc1,Mk,·), (5.16)

c1 | − ∼ Gamma

(

e0 +
I∑

i=1

q1,i, f0 −

K∑

k=1

m1,k ln p1,k.

)

. (5.17)

Note that c2 can be sampled in the same way as c1.

Furthermore, assuming a gamma prior for γ1, the posterior is proportional to

γe0+K−1
1 e−f0γ1Γ(γ1)/Γ(I + γ1). We then update γ1 as

p | − ∼ Beta(γ1, I), (5.18)

γ1 | − ∼ Gamma(e0 +K, f0 − ln p). (5.19)

Note that γ2 can be sampled in the same way as γ1.

5.4 Experiments

We present experimental results obtained using real-world datasets. The purposes of

the experiments are as follows:

• To quantitatively show that the R-IB can capture more essential cluster structures

with better computational efficiency than the IRM and RDIRM (Sec. 5.4.2).
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• To show the usefulness of relevance-dependent biclustering results obtained by

the R-IB in understanding the meaning of each cluster (Sec. 5.4.3).

In all the experiments, we also fit all hyperparameters of both the proposed and baseline

models assuming the same gamma priors (Gamma(1.0,1.0)).

5.4.1 Datasets

The first dataset was the Animal [55] dataset, which maps relationships between 50

mammals and 85 attributes. Each attribute is rated on a scale of 0–100 for each animal.

We prepared binary relational data with a threshold that yielded Ri,j = 1 for all ratings

higher than the overall average rates. Therefore, Ri,j = 1(0) indicated that the i-th an-

imal had (or lacked) the j-th attribute. The second dataset was the Enron [35] dataset,

which comprises e-mails sent between Enron employees. We extracted e-mail trans-

actions between August and October 2001, and constructed three relational datasets:

Enron08, Enron09, and Enron10. These contained e-mail transactions between 149

employees in the corresponding month. For these datasets, Ri,j = 1(0) was used to

indicate whether an e-mail was, or was not, sent by the i-th employee to the j-th em-

ployee. The final dataset was the MovieLens2 dataset, which comprises five-point scale

ratings of 1,682 movies submitted by 943 users. For this dataset, we set Ri,j = 1 when

the rating was higher than three and Ri,j = 0 otherwise, so that Ri,j = 1(0) indicated

whether or not the i-th user liked the j-th movie. The densities of the Animal, En-

ron08, Enron09, Enron10, and MovieLens datasets were 0.368, 0.015, 0.016, 0.026, and

0.035, respectively (summarized in Table 5.1).
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Table 5.1: Summary of the datasets.

Datasets I J Density

Animal 50 85 0.368

Enron08 179 179 0.015

Enron09 179 179 0.016

Enron10 179 179 0.026

MovieLens 943 1,682 0.035

5.4.2 Quantitative Comparison

Many real-world relational data contains many zero entries. Thus, in order to evaluate

the ability of the R-IB to capture essential bicluster structure, we evaluated the link

prediction ability for held-out entries by calculating the averaged Area Under the Curve

of both the Precision-Recall curve (AUC-PR) and the ROC curve (AUC-ROC) [12].

We compared three biclustering models: the IRM, the RDIRM, and the R-IB. We ran

4,000 Gibbs iterations for each model on each dataset and used the final 500 iterations

to calculate the measurement. All scores were calculated using 10-fold cross validation,

and the overall average and deviation were reported.

Table 5.2 lists the results. As can be seen, R-IB significantly outperformed the

RDIRM with almost all datasets. For the AUC-PR, the IRM demonstrated the best

performance for only the Animal dataset. Compared with the IRM, the other models

require additional parameters to be estimated. This caused the RDIRM, and R-IB to

overfit the data, because the Animal dataset was too small to allow the underlying

cluster structure to be generalized. However, the difficulty in obtaining insights from

the data increased as the datasets became larger. As we consider the performance

with larger datasets to be a more important criterion, the results demonstrated the

2http://www.grouplens.org/, as of 2003.
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Table 5.2: Computed AUC-PR (top) and AUC-ROC (bottom) on real-world datasets.

Best results are highlighted in bold. Parenthesized numbers indicate standard devia-

tions.

AUC-PR IRM RDIRM R-IB

Animal 0.811 (0.036) 0.752 (0.053) 0.802 (0.026)

Enron08 0.274 (0.069) 0.204 (0.048) 0.289 (0.074)

Enron09 0.271 (0.049) 0.213 (0.045) 0.296 (0.055)

Enron10 0.352 (0.040) 0.310 (0.033) 0.381 (0.042)

MovieLens 0.410 (0.006) 0.413 (0.006) 0.447 (0.006)

AUC-ROC IRM RDIRM R-IB

Animal 0.886 (0.016) 0.846 (0.026) 0.878 (0.017)

Enron08 0.880 (0.024) 0.859 (0.036) 0.884 (0.026)

Enron09 0.883 (0.026) 0.879 (0.021) 0.892 (0.026)

Enron10 0.896 (0.019) 0.893 (0.011) 0.905 (0.018)

MovieLens 0.934 (0.001) 0.937 (0.001) 0.940 (0.001)

superiority of our R-IB over conventional models in link prediction accuracy.

We also evaluated the Test Data Log-Likelihood (TDLL), which is one of the most

popular measures for evaluating generalization ability of statistical models. Table 5.3

lists the results. As can be seen, the RDIRM indicated better performances than those

of the proposed R-IB model. In our R-IB, the binary observations are modeled via

asymmetric BerPo link function. Therefore, the R-IB tends to fit strongly to non-zero

observations. Consequently, in terms of the likelihood, the RDIRM indicated better

performances. However, as we have already discussed in this section, real-world binary

relational data is often very sparse. Therefore, the AUC is more important measure

than the TDLL for evaluating the usefulness of the model in many real-world situations.

Finally, the average number of Gibbs iterations within 5 min was used as the metric
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Table 5.3: Computed TDLL on real-world datasets. Best results are highlighted in

bold. Parenthesized numbers indicate standard deviations.

TDLL IRM RDIRM R-IB

Animal -0.415 (0.031) -0.467 (0.026) -0.499 (0.044)

Enron08 -0.061 (0.009) -0.060 (0.007) -0.062 (0.010)

Enron09 -0.067 (0.011) -0.062 (0.006) -0.065 (0.011)

Enron10 -0.085 (0.013) -0.081 (0.006) -0.085 (0.012)

MovieLens -0.092 (0.001) -0.091 (0.001) -0.089 (0.001)

to evaluate the computational efficiency of the different models. As shown in Fig. 5.3,

our R-IB overwhelmingly outperformed the RDIRM. Even in the worst case, posterior

sampling for the R-IB was 16.1 times faster than that for the RDIRM. Furthermore,

the proposed R-IB significantly outperformed the baseline standard biclustering model

(i.e., the IRM), providing experimental confirmation of the computational efficiency of

our model, as discussed in Sec. 5.3.

These quantitative results confirmed that the R-IB can extract more essential bi-

cluster structures with better computational efficiency than conventional models.

Discussion

Although the quantitative results described in Sec. 5.4.2 illustrate the computational

efficiency of the proposed R-IB model, further evaluations of the scalability of the

model are required. Here, we briefly discuss the computational properties of the R-IB

model.

As we have shown in Sec. 5.3, the R-IB requires an O((I + J)KL) computation for

each Gibbs iteration. This is significantly faster than the RDIRM, which requires an

O(IJ) computation to update latent variables r1 and r2. However, in general, size of

latent blocks KL underlying relational data increase as the size of given data grows.
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Figure 5.3: Average number of Gibbs iterations per five minutes in logarithmic scale.

All the models were implemented in Java and run on a PC with an IntelR© XeonR© 2.7

GHz CPU.

Therefore, it is worth exploring more computationally efficient inference algorithms for

the R-IB in order to apply the model to huge relational data (e.g., MovieLens20M,

which is the largest MovieLens dataset).

Scalability of the R-IB depends on the choice of the inference algorithm. In this

study, to evaluate the potential capability of the proposed and conventional models, we

used collapsed Gibbs samplers, which enable us to infer the models without any approx-

imations. However, in terms of computational efficiency, collapsed Gibbs sampler is

relatively expensive because it cannot be parallelized straightforwardly. Thus, to eval-

uate the applicability for large scale data, we need to develop more advanced inference

algorithms (e.g., variational inference and stochastic optimization) with affinities for

parallelized or distributed computation. Such advanced algorithms will be investigated

as part of our future work.
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5.4.3 Qualitative Comparison

We qualitatively compared our outcomes for the Animal and Enron09 datasets with

those obtained using the IRM.

Figure 5.4 shows the clustering results on the Animal dataset. As can be seen from

Fig. 5.4a and b, our R-IB abstracted relational data into relevance-dependent blocks in

such a way that each block followed the R-BD, whereas blocks obtained using the IRM

followed a uniform density. Thus, the IRM form non-informative clusters for irrelevant

objects with few links (e.g., column cluster 1 in Fig. 5.4a). In contrast, as Fig. 5.4b

shows, all clusters obtained by the proposed R-IB were informative because they were

related to at least one meaningful (dense) block.

To assess the contents of the extracted clusters, Fig. 5.5 shows the content of several

clusters obtained by R-IB. In each cluster, we can understand its meaning by inspecting

only a few top-ranked objects. For example, “Meatteeth” and “Fierce” in column

cluster 3 clearly suggest that the cluster denotes carnivorous features. Similarly, other

top-ranked objects (e.g., “(Eat) fish,” “Quadrapedal,” and “Vegetation”) also facilitate

interpretation of the corresponding clusters. Objects with smaller relevance values

were also interesting. For example, “Meatteeth” and “Stalker” in column cluster 3 are

definitely related because many carnivorous mammals stalk other animals to prey on

them. However, as the third column of column cluster 3 (Fig. 5.5) shows, the IRM

assigned them to different clusters because the IRM does not consider the heterogeneity

of objects’ relevance.

The results obtained by R-IB on the Animal dataset further suggested that the rel-

evance of column objects varied more widely than that of row objects (see the relevance

values listed in Fig. 5.5). Here all row objects were selected from a specified category

(i.e., mammals). Thus, the row objects followed the underlying cluster structure with

the same degree of clarity. In contrast, the attributes of the column objects covered

a range of categories such as habitat, favorite food, appearance, and behavioral char-
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acteristics. Therefore, the relevance of the column objects was heterogeneous. Thus,

the R-IB was shown to be able not only to extract the relevance-dependent bicluster

structure but also to assess the necessity of relevance modeling of an arbitrary dataset.

Figure 5.6 shows the solutions obtained from the Enron09 dataset. As can be seen,

the IRM produced several non-informative large blocks containing objects with few

links (e.g., block A in Fig. 5.6a). Although the IRM also produced a comparatively

large cluster block comprising many moderately strongly linked objects (block B in

Fig. 5.6a), it was difficult to understand the meaning of the block. In contrast, R-IB

produced a more interpretable bicluster structure (Fig. 5.6b). In the R-IB solution,

the relevance parameters for objects with few links yielded small values, and these

objects were assigned to the nearest meaningful cluster. Therefore, almost all the

clusters produced by the R-IB were informative and worthy of inspection. In block

C of Fig. 5.6b, the top five relevant row objects were four vice presidents and an

anonymized person, and the top two relevant column objects were presidents. This

allowed us to assume that the main role of block C could be understood as “reports from

vice presidents to presidents.” Similarly, blocks D and E in Fig. 5.6b were interpreted

as “mails between cash analysts” and “reports from employees to the chief financial

officer,” respectively.

These results confirmed that the R-IB successfully extracted a relevance-dependent

bicluster structure, allowing deep insights to be gained from real-world relational data.

5.5 Chapter Summary

In this chapter, we proposed the R-BD as a prior distribution for relevance-dependent

binary matrices. We further proposed conjugate priors for the R-BD to make collapsed

inferences available. By incorporating R-BD as an observation model, we introduced

a novel infinite biclustering model (i.e., R-IB) that is able to extract a relevance-
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dependent bicluster structure from relational data with an unknown number of clusters.

Finally, we proposed an efficient collapsed Gibbs sampler to infer the R-IB. Experi-

ments using real-world datasets confirmed that the R-IB was able to extract more

essential clusters with better computational efficiency than conventional models. We

further confirmed that relevance-dependent clusters obtained by the R-IB were more

interpretable than those obtained by standard biclustering.

There are two promising directions for future work. First, in this study, we applied

collapsed Gibbs samplers to perform posterior inference for the R-IB and conventional

models. However, in general, collapsed Gibbs samplers are relatively expensive in

terms of computational cost. Thus, one direction is to enhance the scalability and

the computational efficiency of the R-IB model, whereas the other is to enhance the

capability of the model. Second, the R-IB model can be viewed as an extension of

the IRM. Hence, objects within relational data are partitioned into non-overlapping

clusters. However, cluster structure underlying real-world relationships could be more

complicated. In the future, we intend to extend the R-IB model to be able to discover

more advanced structures, such as those with mixed membership [1, 19, 73] or multiple

membership [43, 54, 56] assumptions.
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Figure 5.4: Clustering results on the Animal dataset. The central color map denotes

estimated link probabilities.



92 CHAPTER 5. RELEVANCE MODELING WITH LINK FUNCTIONRow cluster 2Name Relevance IRMHamster (1.411) 3Rabbit (1.131) 3Mouse (1.031) 3Squirrel (0.895) 3Skunk (0.865) 3Mole (0.668) 3 Name Relevance IRMWolf (1.379) 1Leopard (1.172) 1Lion (1.092) 1Tiger (0.860) 1Grizzly bear (0.830) 10G. shepherd (0.666) 5Row cluster 3 Row cluster 4Name Relevance IRMFox (1.254) 1Bobcat (1.030) 1Raccoon (1.027) 1Rat (0.851) 1Weasel (0.839) 1Row cluster 6Name Relevance IRMH. Whale (1.175) 4Seal (1.151) 4Walrus (1.017) 4Dolphin (0.837) 4B. whale (0.820) 4Name Relevance IRMElephant (1.303) 8Rhinoceros (0.922) 8Hippopotamus (0.775) 8Row cluster 7 Name Relevance IRMChimpanzee (1.566) 7Gorilla (0.804) 7S. monkey (0.630) 7Row cluster 8Column cluster 1Name Relevance IRM(Eat) fish (6.318) 28Water (1.111) 2Swims (1.023) 2Ocean (0.746) 2Arctic (0.443) 2Flippers (0.415) 2Coastal (0.297) 2Strainteeth (0.225) 2Blue (0.188) 6Plankton (0.156) 6Skimmer (0.079) 6 Name Relevance IRMMeatteeth (2.036) 7Fierce (1.967) 7Meat (1.529) 7Hunter (1.270) 7Cave (0.102) 1Stalker (0.088) 3 Name Relevance IRMVegetation (4.492) 14Fields (0.585) 16Hooves (0.469) 10Grazer (0.360) 14Longneck (0.049) 10Horns (0.045) 10Column cluster 4Name Relevance IRMQuadrapedal (2.373) 12Walks (1.414) 12Ground (1.133) 12Orange (0.054) 1Yellow (0.026) 1Column cluster 7 Name Relevance IRMActive (1.874) 11Fast (1.816) 11Agility (1.093) 11Nocturnal (0.191) 3Column cluster 6Column cluster 3
Figure 5.5: Example of clusters obtained by the R-IB with the Animal dataset. Objects

within each cluster are sorted in descending order of estimated relevance values. For

each object, we list the cluster index that the IRM estimated for the corresponding

object (third column). The most relevant object within each cluster is highlighted in

bold.
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Figure 5.6: Clustering results on the Enron09 dataset.





Chapter 6

Conclusion

In this thesis, we addressed the problem of analyzing relational data while taking

account of the relevance of objects. We introduced the relevance-dependent biclustering

problem, which simultaneously estimates the bicluster structure and the relevance of

objects. Then, we explored several approaches for modeling relevance-dependency and

developed new relevance-dependent biclustering models for each approach.

In Chapter 3, we discussed the relevance-dependency modeling using Boolean func-

tions. We introduced a latent binary variable that indicates whether each observation

relates to the block structure (foreground distribution) or to a background noise (back-

ground distribution). Then, we introduced a mechanism that the binary variable for

an entry is determined by calculating an arbitrary Boolean function of Bernoulli trials

from row and column objects. By incorporating the mechanism, we proposed a new

relevance-dependent biclustering model termed the RDIRM, which can automatically

estimate the number of clusters.

In Chapter 4, we generalized the relevance modeling in the RDIRM. By considering

continuous relaxation of the Boolean function in the RDIRM, we proposed a mixed-

membership mechanism that contains all the Boolean functions as special cases. In the

mixed-membership approach, we resolved two critical limitations of relevance modeling

95
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in the RDIRM. First, in the mixed-membership mechanism, the form of the relaxed

Boolean function can be automatically estimated from given data. Furthermore, in

the mixed-membership mechanism, we can straightforwardly consider relevance values

with three or more dimensions. Therefore, we can introduce multiple background

distribution for considering different types of irrelevant objects. By incorporating the

mixed-membership mechanism, we proposed the MLIRM, which has two background

distributions. The relevance parameters in the MLIRM can explain, not only passive

objects with few links, but also spamming objects with extremely many links.

In Chapter 5, we introduced a link function approach for modeling relevance-

dependency. We introduced the Relevance-dependent Bernoulli Distribution (R-BD),

which is a novel prior distribution for relevance-dependent binary matrices. In the R-

BD, a link strength for an entry is defined by three non-negative parameters: a typical

link strength common to all entries in the matrix, and two relevance parameters for

each row and column objects. Then, an observed link probability is directly calculated

by transforming the product of these three non-negative variables into a probability

using Bernoulli-Poisson link function. The main advantages of the R-BD is as follows.

First, the relevance-modeling in the R-BD do not have to consider any background dis-

tributions. Thus, the number of latent variables to be estimated is significantly smaller

than those in the RDIRM and MLIRM. Second, the link probability in the R-BD can

be modulated widely from 0.0 to 1.0 without introducing complicated mechanism as

in the MLIRM. Thus, the effect relevance values in the R-BD is interpretable. Finally,

as the all parameters of the R-BD can be completely marginalized out, we do not have

to explicitly estimate R-BD’s parameters when performing posterior inference. By in-

corporating the R-BD as a component distribution, we proposed a novel biclustering

model termed the R-IB. Thanks to the property of the R-BD, the posterior inference

for the R-IB can also be performed using a collapsed Gibbs sampler. Furthermore,

the R-IB can be inferred faster than not only the RDIRM and MLIRM, but also the
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original IRM.

Through this study, we succeeded in opening the beginning of relevance-dependent

biclustering research. In this research, we applied our relevance-dependency models

to biclustering problem, where objects in relational data are partitioned into non-

overlapping clusters. However, mixed-membership or multiple membership assump-

tions are appropriate in many real-world situations. Therefore, for future work, we have

a plan to consider relevance-dependency modeling for more general machine learning

problems such as matrix factorization1.

1We have published a result in [54].





Bibliography

[1] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.

Mixed membership stochastic blockmodels. Journal of Machine Learning Re-

search, 9:1981–2014, 2008.

[2] David J. Aldous. Exchangeability and related topics. In École d’Été de Probabilités

de Saint-Flour XIII — 1983, volume 1117 of Lecture Notes in Mathematics, pages

1–198. Springer Berlin Heidelberg, 1985.

[3] Charles E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian

nonparametric problems. The Annals of Statistics, 2(6):1152–1174, 1974.
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