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Chapter 1

Introduction

Algebraic structure often appears in various theories in computer science as a

means of representing systems in a formal way and reasoning about their properties

such as their correctness. Related technologies include term rewriting, equational

reasoning, and their application to formal methods in software engineering.

Executable implementation of these technologies often involves nondeterministic

computation. In nondeterministic computational processes, users and/or algorithms

make a series of choices (or decisions) at the beginning and subsequent temporal

points (or choice points). In this dissertation, we refer to such a series of choices as

a context for such a process. Naturally, one hopes that the context will lead to suc-

cess defined for such a computation, but in general, it is not an easy task to make

a right decision to lead the nondeterministic computation to success. Surprisingly,

however, a lot of researchers have managed to make their computation lead to suc-

cess by setting parameters and strategies beforehand to control the nondeterminism

‘appropriately’. This often involves a lot of handmade trial-and-errors and/or tricks

to suppress the nondeterminism in their experiments. However, the author believes

that most of them will admit that there was a fairly amount of accumulation of in-

appropriate settings and failures before their ‘success’. Thus, we should develop a

highly universal technology to solve this problem to lead nondeterministic compu-

tation to a real success.

In a simple computational system, what is necessary is just backtracking, go-
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ing back to the previous choice point when we have had a failure. In a complex

system with an unlimited search space, however, backtracking is often impossible,

because the system may be run indefinitely without success or failure. Therefore, a

concurrent computation (or a sequential computation simulating concurrency) is nec-

essary here. However, a naive implementation of such a concurrency often learns

the hard way, facing the reality in which the number of processes grows exponen-

tially too large to be practical. To solve this problem, Kurihara and other researchers

[28, 35, 36, 37] have been developing a computational system in which a lot of com-

putation and reasoning can be done efficiently in a single process. Its idea is based

on an empirical knowledge that processes with ‘similar’ contexts often have a lot

of mutually-related computational tasks which can be carried out simultaneously

as they involve exactly common computation. Though the average computational

complexity may be still exponential even in such a system, one can handle a larger

size of problems in practice by suppressing the base of the exponential function with

the special mechanism implementing the idea described above.

In this dissertation, the systems for running mutually-related virtual processes

efficiently as a physical single process is referred to as multi-context reasoning systems

[28] [35] [23] [24] [22]. Those systems are used to reason about algebraic computa-

tional systems such as term rewriting systems (TRSs), which are a concise and rigor-

ous representation of computational systems in terms of rewrite rules. In fact, TRSs

are studied and used in various areas of computer science, including automated the-

orem proving, analysis and implementation of abstract data types, and decidability

of word problems.

The number of manipulations over the database increases when the size of prob-

lems gets larger. Although most of the common mutually-related manipulations can

be merged into a single process, there may still exist plenty of duplicated calcula-

tions which can degrade the performance. Lazy evaluation is a powerful evaluation

scheme for dealing with large databases, because it evaluates an executable expres-

sion only when it is called for the first time and then stores the result to avoid dupli-
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cated calculations. We exploit this mechanism in our implementations to improve

the efficiency.

1.1 Multi-Context Completion System

The well-known procedure for the completion of TRS was invented by Knuth

and Bendix [27] in 1970 and affected a lot of researchers since then. Given a set of

equations and a reduction ordering on a set of terms, the procedure (called KB in this

dissertation) uses the ordering to orient equations (either from left to right or from

right to left to transform them into rewrite rules) and tries to generate a complete

TRS equationally equivalent to the input set of equations. The resultant TRS can be

used to decide the equational consequences (word problems) of the input equations.

Actually, however, the KB leads to three possible results: success, failure, or di-

vergence. In the success case, the procedure stops and outputs a complete TRS. In

the failure case, the procedure stops but only returns a failure message with an un-

orientable equation. In the divergence case, the procedure falls into an infinite loop,

trying to generate an infinite set of rewrite rules. The result of KB seriously depends

on the given reduction ordering. With a good ordering, it would lead to a success,

but otherwise, it would cause the failure or the divergence. In the latter case, we

could try to avoid them by changing the ordering to appropriate one, but the prob-

lem is that it is very difficult for ordinary software designers and AI researchers to

design or choose an appropriate ordering.

Therefore, automatic search for appropriate orderings is desired. But accord-

ing to the possibility of divergence, we cannot try candidate orderings one by one.

Also, it is not efficient to simply create processes for each different ordering and run

them in parallel on a machine, because the number of candidate orderings normally

exceeds ten thousands even for a small problem.

In 1999, this problem was partially solved by a multi-context completion proce-

dure called MKB [28]. MKB is a single procedure that efficiently simulates execution
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of multiple processes each running KB with a different reduction ordering. The key

idea of MKB lies in a data structure called node. The node contains a pair s : t of

terms and three sets of indices to orderings to show whether or not each process

contains rules s → t, t → s, or an equation s = t. The well-designed inference rules

of MKB allows an efficient simulation of multiple inferences in several processes all

in a single operation.

1.2 Multi-Context Rewriting Induction

An algebraic inductive theorem is a proposition for algebraic specifications de-

fined on inductively-defined data structures such as natural numbers and lists. The

proof of such inductive theorems based on equational logics has been studied for

decades. The frameworks for inductive theorem proving are classified into two cat-

egories: the explicit induction which directly follows the paradigm of inductions,

and the implicit induction in which some part of the paradigm is implicit in the

sense that, typically, the induction rule and/or the well-founded induction order

need not be provided explicitly by the users [43]. These two types of induction both

have to find an induction pattern (a finite cyclic representation) for an infinite de-

ductive proof and an induction order for ensuring the termination. The theorem

prover Nqthm developed by Boyer&Moore [10] stands for the former one, because

it requires that the induction patterns be provided as inference rules. Generally

speaking, however, providing such induction patterns is difficult in practice. The in-

ductionless induction proposed and extended by [29] [17] falls into the latter category,

because, with no induction patterns provided, it implicitly tries to prove inductive

theorems based on the principle of ground completion. However, this method was

claimed to be so inefficient and practically useless, because, based on the notion of

“proof by consistency”, it has to search all over the search space for an inconsis-

tency before it concludes that there is no inconsistency and thus the given formula

should be certainly an inductive theorem [43]. On the other hand, the term rewriting
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induction (RI for short) proposed by Reddy [34] implicitly obtains the induction pat-

terns by the inference procedure itself and in this sense, it is a practically promising

framework for implicit induction.

However, there are several kinds of strategic issues in constructing successful

proofs by RI:

• which reduction order should be applied

• which (axiomatic or hypothetical) rules should be applied during rewriting

• which variables should be instantiated for induction

It is not a trivial task to choose appropriate strategies in general, because of the non-

determinism during the induction procedure. Since inappropriate ones can easily

lead the procedure to divergence (i.e., infinite computation), we cannot physically

create and run a number of parallel processes because such naive parallelization

would cause serious inefficiency. This makes it really hard to fully automate the

RI-based inductive theorem proving.

Aoto [2] proposed a variant of RI, called the rewriting induction with termination

checker (RIt), which partially solved the problem by using an external automated

termination checker instead of a specific reduction order. Therefore, the users no

longer had to provide promising reduction orders and they could implicitly exploit

modern termination proving methods more powerful than the simply parameter-

ized reduction orders (e.g., recursive path orders and polynomial orders). However,

a new issue came out: in which direction the hypothetical equations should be ori-

ented. Since the use of the termination checker increased the possibility of success

in the orientation and we could decide the direction of the equations dynamically,

more flexibility in the orientation strategy was given, from the viewpoint of strat-

egy. Based on a multi-context strategy a procedure called multi-context rewriting

induction with termination checker (MRIt) has been proposed by Sato [35] in order to

exploit such flexibility in orientation and solve the other strategic issues of RI.
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1.3 Lemma Generation

In general, an execution of RI leads to one of the following three results: success,

failure, or divergence. The divergence occurs when the procedure generates in vain

an infinite sequence of conjectures which cannot be proved automatically as lemmas

for establishing the target theorem. To avoid the divergence, the users often need

to supply appropriate lemmas which can be proved and used to solve the overall

problems, but in practice, requiring their mathematical intuition and experience,

this is so difficult to general users.

Automated lemma generation, therefore, is desired. Generally, there are two cat-

egories for lemma generation methods: bottom-up and target-aimed (top-down). The

bottom-up methods generate lemmas from the given equational axioms with no

consideration of the target theorem [25]. These methods have outstanding ability of

generating conjectures, but their computational cost is extremely high. Meanwhile,

the target-aimed methods work in a different way by considering the candidate

conjectures to speculate appropriate lemmas [41] [31]. Even though the generating

power is limited, the computational cost is comparatively low. Thus it is desirable

to strengthen the power of the target-aimed method while preserving its acceptable

cost.

Target-aimed methods are classified into sound and unsound ones. The sound

methods [31] generate only correct conjectures in the sense that the goal is an in-

ductive theorem if and only if the generated conjectures are inductive theorems.

These methods have a very low computational cost, but the ability of generating ap-

propriate lemmas is extremely low. On the other hand, the unsound methods [41]

try to generate useful conjectures without being restricted by the soundness. This

gives higher ability of generating appropriate lemmas with a modest computational

cost. We focus on the latter one to keep balance between power and cost. Basically,

the unrestricted use of classic generalization techniques for the unsound methods

based on replacing constants and ground terms with universally-quantified vari-

6



ables limits the practical usefulness. The framework based on divergence-detection

proposed by Walsh [41] greatly improves the practical usefulness by the following

steps: 1) detect a potential divergence from the sequence of generated conjectures;

2) generate candidate lemmas by locating the differences between two consecutive

conjectures in the diverging sequence.

We put into the Walsh’s framework a new heuristic lemma generation method,

peripheral sculpture, to make the theorem prover more powerful without introduc-

ing significant cost increase. Since the method is unsound, there is no guarantee of

the correctness of the generated candidate lemmas. If the system accepts a wrong

lemma, it could cause an infinite sequence of wasteful inferences. Therefore, we

need to separate into parallel contexts the choices of whether to accept the candidate

lemma or not. From this point of view, the combination of multi-context induction

and lemma generation can be a new research area of automated reasoning. As a

means to study this area, we extended the efficient multi-context rewriting induction

system of Sato and Kurihara [35] with our lemma generation method. The exper-

imental results show that, with no much redundant costs, we have succeeded in

solving several lemma-required benchmark problems which encountered complex

differences (i.e., parallel and nested differences) and which the original systems [35]

[41] could not solve.

1.4 Overview

In this dissertation, we proposed new automated lemma generation methods for

multi-context schemes. We also present: 1) new implementations of multi-context

completion system lz-mkb based on MKB, 2) new implementations of multi-context

algebraic inductive theorem prover lz-itp based on MRIt, both of which efficiently

simulate the execution of parallel KB/RIt processes by dynamically dealing with

the nondeterministic choices. Because these systems rely on the manipulation of

the node database, we exploit the lazy evaluation schemas [23] [24] to gain more

7



efficiency.

In Chapter 1, we introduce the background of our research which, in the field

of Artificial Intelligence, is a subject including term rewriting, equational reasoning,

and their application to formal methods.

In Chapter 2, we introduced the basis of term rewriting systems (TRSs) and two

TRS-based automated reasoning systems. Starting from a well-known completion

procedure KB, we show the details of rewriting induction procedure RI/RIt.

In Chapter 3, we start with an unsound automated lemma generation method

with divergence detection, then propose a new automated lemma generation method:

peripheral sculpture to handle the lemma-generation problems for rewriting induc-

tion.

There are several problems of KB or RI/RIt in practice. Firstly, the problem of

KB is that it is difficult to set an appropriate reduction orders before the procedure

starts. Secondly, the problem of RI/RIt is that the nondeterministic choices may

cause the procedures to end up with failing results (i.e., divergence or fail). Thirdly,

appropriate lemmas are often required in practice for RI/RIt to achieve successful

proofs. The first problem can be partially solved by the multi-context reasoning

system MKB which simulates the mutually related processes in a single process effi-

ciently. As for the second problem, MRIt pursues all nondeterministic choices trying

to lead the procedure to a successful result by exploit the schema of MKB. We also

expand our method into multi-context schema to offer a practically useful frame-

work for inductive theorem provers. We introduce these two systems in Chapter

4.

In Chapter 5, we discuss the lazy evaluation technique we embed in our system

as well as other details of implementation of multi-context reasoning systems: lz-

mkb and lz-itp.

In Chapter 6, we summarize and show the results of our experiments. These re-

sults are pleasing in the sense that 1) the newly proposed lemma generation method

worked well with other methods in multi-context framework and solved some lemma-
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required problems that could not be solved by the original methods; 2) the new

implementation of MKB and MRIt with lazy evaluation are more effective than the

original ones. We give conclusions in Chapter 7.
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Chapter 2

Preliminary

We briefly review the basic notions for term rewriting systems(TRS) [5] [33] [6]

[12] [40]. We start with the basic definitions.

2.1 Term Rewriting System

A signature Σ is a set of function symbols, where each f ∈ Σ is associated with a

non-negative integer n, the arity of f . The elements of Σ with arity n=0 are called

constants. Let V denote a set of variables such that Σ ∩ V = ∅.

Definition 2.1.1. A term is either a variable or a function symbol (of arity n ≥ 0)

followed by n terms as arguments (possibly delimited by commas and enclosed by

parentheses).

Definition 2.1.2. The set T (Σ, V ) of all terms over Σ and V is recursively defined as

follows: V ⊆ T (Σ, V ) (i.e., all variables are terms) and if t1, . . . , tn ∈ T (Σ, V ) and

f ∈ Σ, then f(t1, . . . , tn) ∈ T (Σ, V ), where n is the arity of f .

Example 2.1.3. Let f be a function symbol with arity 2 and {x, y} are variables, then

f(x, y) is a term.

We write s ≡ twhen the terms s and t are identical. The set of variables occurring

in a term t is represented by V(t). When the function symbol is binary (i.e., of arity 2)
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and its name consists of special characters (such as + and :), the term may be written

in infix form (such as 0 + x and x : nil).

Definition 2.1.4. A term s is a subterm of t, if either s ≡ t or t ≡ f(t1, . . . , tn) and s is

a subterm of some tk(1 ≤ k ≤ n).

Definition 2.1.5. A substitution σ is a mapping from V to T (Σ, V ) such that σ(x) 6= x

for only finitely many xs, and is extended to a mapping from T (Σ, V ) to T (Σ, V ) by

defining σ(f(s1, . . . , sm)) = f(σ(s1), . . . , σ(sm)), where m is the arity of f .

Definition 2.1.6. The domain of σ is the set Dom(σ) = {x ∈ V | σ(x) 6= x}. We write

a substitution σ as {x1 7→ t1, . . . , xn 7→ tn} if σ(xi) = ti for xi ∈ {x1, . . . , xn} and

σ(x) = x for x 6∈ {x1, . . . , xn}.

The application σ(s) of σ to s is often written as sσ. A term t is an instance of

a term s if there exists a substitution σ such that sσ ≡ t. If sσ is a ground term

(containing no variables), it is a ground instance of s.

Definition 2.1.7. A substitution σ that replaces distinct variables by distinct vari-

ables (i.e. σ is injective and xσ is a variable for every x ) is called a renaming.

Definition 2.1.8. Two terms s and t are variants of each other and denoted by s ∼= t,

if s is an instance of t and vice versa (i.e., s and t are syntactically the same up to

renaming variables).

Now we can define TRS as follows:

Definition 2.1.9. A rewrite rule l → r is an ordered pair of terms such that l is not a

variable and every variable contained in r is also in l.

Definition 2.1.10. A term rewriting system (TRS), denoted by R, is a set of rewrite

rules.

When we use TRS to solve completion problems, some properties such as ter-

mination and confluence are expected to hold most of the time. To talk about those

properties, we need more definitions as follows.
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Definition 2.1.11. Let � be an extra constant called a hole. A context C is a term in

T (Σ ∪ {�}, V ). If C is a context with n occurrences of holes and t1, . . . , tn are terms,

then C[t1, . . . , tn] is the result of replacing the holes by t1, . . . , tn from left to right.

The empty context consists of only a single hole.

Definition 2.1.12. The reduction relation→R⊆ T (Σ, V )×T (Σ, V ) is defined by s→R t

iff there exists a rule l → r ∈ R, a context C, and a substitution σ such that s ≡ C[lσ]

and C[rσ] ≡ t. A term s is reducible if s→R t for some t; otherwise, s is a normal form.

Definition 2.1.13. A TRS R terminates if there is no infinite rewrite sequence s0 →R

s1 →R · · · . We also say that R has the termination property or R is terminating.

The termination property of TRS can be proved by the following definition and

theorem.

Definition 2.1.14. A strict partial order � on T (Σ, V ) is called a reduction order if it

possesses the following properties.

• closed under substitution:

s � t implies sσ � tσ for any substitution σ.

• closed under context:

s � t implies C[s] � C[t] for any context C.

• well-founded:

there exist no infinite decreasing sequences t1 � t2 � t3 � · · · .

Theorem 2.1.15. A term rewriting system R terminates iff there exists a reduction

order � that satisfies l � r for all l→ r ∈ R.

After termination we talk about confluence, which is also an important property

often expected.

Definition 2.1.16. Two terms s, t in TRS R are joinable (notation s ↓ t), if there exists

a term v such that s →∗
R v and t →∗

R v, where→∗
R is the reflexive transitive closure

of→R.
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The reflexive, symmetric, transitive closure of→R is denoted by↔∗
R.

Theorem 2.1.17. A TRS R is confluent iff for all terms s, t, u ∈ T (Σ, V ), u →∗
R s and

u→∗
R t implies s ↓ t.

Definition 2.1.18. The composition στ of two substitutions σ and τ is defined as

s(στ) = (sσ)τ . A substitution σ is more general than a substitution σ′ if there exists

a substitution δ such that σ′ = σδ. For two terms s and t, if there is a substitution σ

such that sσ ≡ tσ, σ is a unifier of s and t. We denote the most general unifier of s and

t by mgu(s, t).

Definition 2.1.19. Consider two rewrite rules l1 → r1 and l2 → r2 in a TRSR with no

common variables. (If they have common variables, we can rename them properly.)

If a term s is a subterm of l1 denoted by l1[s], and if there exists an mgu(s, l2) = σ,

then the pair 〈l1σ[r2σ], r1σ〉 of terms is called a critical pair of l1 → r1 and l2 → r2.

Example 2.1.20. Let f be a function symbol, {a, b, c} be terms, and consider two

rewrite rules f(a)→ b and a→ c. By setting s = a (the argument of f(a)) and l2 = a

(the left-hand side of the second rule) , we have the empty mgu (or the identical

mapping, meaning that no variables need to be replaced). Since l1[r2] = f(c) and

r1 = b, we obtain 〈f(c), b〉 as a critical pair.

In TRS, confluence can be decided with critical pairs.

Theorem 2.1.21. A terminating TRS is confluent iff all critical pairs (p, q) satisfy p ↓ q.

Theorem 2.1.22. If a TRS R satisfies termination and confluence, we say R is complete

(or convergent) or R has the completion property.

We fix some definitions and notations on term rewriting induction as follows.

Definition 2.1.23. The set of all defined symbols of R is defined as DR = {root(l) | l→

r ∈ R}, where the root symbol of a term s ≡ f(s1, . . . , sn) is f , denoted by root(s).

Example 2.1.24. Let a TRS R = {f(a) → b, g(c) → d}, the defined symbols DR =

{f, g}.
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Definition 2.1.25. The function symbols other than defined symbols are constructors.

A term consisting of only constructors and variables is a constructor term.

Definition 2.1.26. A term is a basic term if its root symbol is a defined symbol and its

arguments are constructor terms. We denote all basic subterms of a term t by B(t).

Definition 2.1.27. A TRS R is ground-reducible (also called quasi-reducible) if every

ground basic term is reducible in R. Plaisted [32] proved that ground-reducibility is

decidable.

An equation is expressed in the form s↔ t. We do not distinguish between s↔ t

and t↔ s.

Theorem 2.1.28. An equation s ↔ t is an inductive theorem of R if all its ground

instances sσ = tσ are equational consequences of the equational axioms R (i.e.,

sσ ↔∗
R tσ).

2.2 Equational Reasoning with Term Rewriting

We recall the standard automated reasoning systems on term rewriting systems.

2.2.1 Equational Completion

Given a set of equations E0 and a reduction order �, the standard completion

procedure KB (or Knuth-Bendix completion) [27] tries to generate a convergent set Rc

of rewrite rules that is contained in � and that induces the same equational theory

as E0. The KB procedure implements the following six inference rules.

DELETE: (E ∪ {s↔ s}; R) ` (E; R).

COMPOSE: (E; R ∪ {s→ t}) ` (E; R ∪ {s→ u}),

if t→R u.

SIMPLIFY: (E ∪ {s↔ t}; R) ` (E ∪ {s↔ u}; R),

if t→R u.
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ORIENT: (E ∪ {s↔ t}; R) ` (E; R ∪ {s→ t}),

if s � t.

DEDUCE: (E; R) ` (E ∪ {s↔ t}; R),

if u→R s and u→R t.

COLLAPSE: (E; R ∪ {t→ s}) ` (E ∪ {u↔ s}; R),

if l→ r ∈ R, t→{l→r} u, and t B l.

The inference rule DELETE removes a trivial equation. The inference rule ORI-

ENT select from E an equation that can be oriented by the reduction order � and

adds the resultant rule to R. The inference rule SIMPLIFY reduces an equation using

R. The inference rule COMPOSE reduces the right-hand side of a rule. The infer-

ence rule DEDUCE calculates and adds a critical pair in R to E as an equation. The

inference rule COLLAPSE reduces the left-hand side of a rule and adds the results

as an equation to E, where the new symbol B here denotes the encompassment order

defined as follows.

Definition 2.2.1. An encompassment order B on a set of terms is defined by s B t iff

some subterm of s is an instance of t and s 6 .= t.

Example 2.2.2. Let {f, g} be function symbols and {x, y, z} be variables, then f(x, g(x)) B

f(y, g(z)) but f(x, g(y)) 6B f(z, g(z)).

KB starts from the initial state (E0,R0) where R0 = ∅. The procedure changes

the states in a possibly infinite completion sequence (E0; R0) ` (E1; R1) ` · · · by its

inference rules. The result of the completion sequence is the sets Ec and Rc. When

Ec = ∅, Rc will be a confluent and terminating TRS satisfying ↔∗
Rc

=↔∗
E0

, which

means KB procedure has succeeded. And the sequence has failed if Ec 6= ∅.

Example 2.2.3. Let E0 be a set of equations representing the axioms of the group
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theory as follows:

E0 =


f(1, x) ↔ x,

f(i(x), x) ↔ 1,

f(f(x, y), z) ↔ f(x, f(y, z))


We obtain the following convergent TRS Rc equivalent to E0 by applying the stan-

dard completion procedure KB.

Rc =



i(1) → 1,

i(i(x)) → x,

f(x, 1) → x,

f(1, x) → x,

f(x, i(x)) → 1,

f(i(x), x) → 1,

f(x, f(i(x), y)) → y,

f(i(x), f(x, y)) → y,

i(f(x, y)) → f(i(y), i(x)),

f(f(x, y), z) → f(x, f(y, z))


It is known that KB procedure may fail or diverge unless it succeeds. The result

of KB seriously depends on the given reduction order. With a good order, it would

lead to a success, but otherwise, it would cause the failure or the divergence. In the

latter case, we could try to avoid them by changing the ordering to appropriate one,

but the problem is that it is very difficult for ordinary software designers and AI

researchers to design or choose an appropriate order. One may think concurrently

running processes with each possible reduction order in one of the processes is a

solution. However, when the number of those orders gets very large, it is clear that

the direct implementation of this idea would cause serious inefficiency.
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2.2.2 Rewriting Induction

The rewriting induction (RI) [1] [34] works on two sets 〈E,H〉, where E denotes

the conjectures containing the equations to be proved, while H indicates the induc-

tive hypotheses generated during the inferences. Given as input a ground-reducible

and convergent (terminating and confluent) TRS R, a reduction order � covering R,

and a set E0 of target inductive theorems or related lemmas, the RI theorem prover

starts from 〈E0, H0〉, where H0 = ∅, and generates a derivation sequence 〈E0, H0〉 `

〈E1, H1〉 ` · · · until it (hopefully) stops with success at 〈Ef , Hf〉 such that Ef = ∅.

The inference rules of RI are summarized as follows:

DELETE: 〈E ∪ {s↔ s},H〉 ` 〈E,H〉.

SIMPLIFY: 〈E ∪ {s↔ t},H〉 ` 〈E ∪ {s′ ↔ t},H〉

if s→R∪H s′.

EXPAND: 〈E ∪ {s↔ t},H〉 `

〈E ∪ Expdu(s, t),H ∪ {s→ t}〉

if u ∈ B(s) and s � t,

where:

Expdu(s, t) = {C[r]σ = tσ | s ≡ C[u], l→ r ∈ R,

σ = mgu(u, l), l : basic}.

POSTULATE: 〈E,H〉 ` 〈E ∪ E′,H〉.

The DELETE rule removes meaningless conjectures. The SIMPLIFY rule rewrites a

conjecture in E by applying a rewrite rule taken from R ∪H.

The EXPAND rule generates conjectures and hypotheses from the current conjec-

tures and R. The new conjectures are generated by the function Expdu(s, t), which

overlaps a basic subterm u of s with each basic left-hand side of rewrite rules l → r

in R. Those conjectures will become the subgoals of the proof for the original conjec-
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ture s = t, while the original conjecture is transformed into an inductive hypothesis

s→ t usable in the succeeding inferences.

The POSTULATE rule adds a set of equations E′ to E. Logically speaking, the

equations in E′ can be any equations, but in practice, they should be the lemmas that

will be necessary or useful for leading the theorem prover to success. Generally,

such lemmas should be added manually by highly experienced users’ intuitions or

generated mechanically by some heuristic algorithms.

In general, it is not straightforward to provide a suitable reduction order and

to choose appropriate inference rules to be applied in the reasoning steps. Aoto

[2] proposed a variant of the rewriting induction, using an arbitrary termination

checker instead of a reduction order. The new system, called RIt, is defined by

modifying the expand rule as follows.

EXPAND: 〈E ∪ {s = t},H〉 `

〈E ∪ Expdu(s, t),H ∪ {s→ t}〉

if u ∈ B(s) and

R ∪H ∪ {s→ t} terminates.

It allows us to use more powerful termination checking techniques. However, the

neccessity of approprite choice of the direction of the equation in applying the ex-

pand rule arises, because we can often orient an equation in both directions.
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Chapter 3

Lemma Generation

There are two categories for lemma generation methods: bottom-up and target-

aimed (top-down). The bottom-up methods generate lemmas from the given equa-

tional axioms with no consideration of the target theorem [25]. These methods have

outstanding ability of generating conjectures, but their computational cost is ex-

tremely high. Meanwhile, the target-aimed methods work in a different way by

considering the candidates for conjecture to generate potentially appropriate lem-

mas [41, 31]. Even though the generating power is limited, the computational cost is

comparatively low. Thus it is desirable to strengthen the power of the target-aimed

method while preserving its acceptable cost.

Target-aimed methods are classified into sound and unsound ones. The sound

methods [31] generate only correct conjectures in the sense that the goal is an in-

ductive theorem if and only if the generated conjectures are inductive theorems.

These methods have a very low computational cost, but the ability of generating ap-

propriate lemmas is extremely low. On the other hand, the unsound methods [41]

try to generate useful conjectures without being restricted by the soundness. This

gives higher ability of generating appropriate lemmas with a modest computational

cost. We focus on the latter one to keep balance between power and cost. Basically,

the unrestricted use of classic generalization techniques for the unsound methods

based on replacing constants and ground terms with universally-quantified vari-

ables limits the practical usefulness. The framework based on divergence-detection
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proposed by Walsh [41] greatly improves the practical usefulness by the following

steps: 1) detect a potential divergence from the sequence of generated conjectures;

2) generate candidates for lemma by locating the differences between two consec-

utive conjectures in the diverging sequence. We put into the Walsh’s framework a

new heuristic lemma generation method, peripheral sculpture, to make the theorem

prover more powerful without introducing significant cost increase.

In this chapter, we first discuss the divergence detection method and then intro-

duce our new method.

3.1 Divergence Detection

In this section, we take simple examples for illustrating a successful proof and a

divergence case in RI.

3.1.1 A Simple Successful Proof

Consider the following axioms given as a TRS R1 defining the binary function

append (@ for short) on lists constructed from the cons ( : for short) operator, where

the constant nil denotes an empty list.

R1 =


nil@xs→ xs, (1)

(x : ys)@zs→ x : (ys@zs) (2)

 .

The target inductive theorem denoted by T1 is the associativity of append.

T1 : (xs@ys)@zs↔ xs@(ys@zs). (3)

With a reduction order� such as the lexicographic path order based on a precedence

@ > : , the derivation starts from 〈E0,H0〉, where E0 consists of the target theorem (3)

and H0 is the empty set. The first step of the derivation is conducted by the EXPAND
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rule applied on the basic subterm u ≡ xs@ys of (3) to get 〈E1,H1〉, where E1 consists

of the two equations

xs@zs1↔ nil@(xs@zs1),

(x : (ys@zs))@zs1↔(x : ys)@(zs@zs1),

created by the expand function, and H1 consists of a single rewrite rule

(xs@ys)@zs→ xs@(ys@zs)

created by orienting the equation (3). To be more specific, the function Expdu(s, t)

was invoked with s ≡ (xs@ys)@zs, t ≡ xs@(ys@zs) and C = �@zs. The first and

the second equations of E1 were obtained by overlapping u with the left-hand sides

of (1) and (2), respectively. Then, several SIMPLIFY rules were applied to 〈E1,H1〉

for normalization until no more applications were possible. As the result, we obtain

〈E2,H2〉, where E2 consists of two equations

xs@zs1↔ xs@zs1,

x : (ys@(zs@zs1))↔x : (ys@(zs@zs1)),

and H2 = H1. After that, the DELETE rule was invoked twice to remove the self-

evident conjectures from E2 to get 〈E3,H3〉, where E3 = {}, H3 = H2. Therefore, the

proof succeeds, because E3 is empty.

3.1.2 A Divergence Case

Execution of automated RI theorem provers may diverge due to the accumulation

of the generated “unprovable” conjectures. We illustrate such a case in the follow-

ing:
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Example 3.1.1.

R2 =



nil@xs→ xs,

(x : ys)@zs→ x : (ys@zs),

r(nil)→ nil, (4)

r(x : xs)→ r(xs)@(x : nil) (5)


.

Two rewrite rules (4), (5) were added to R1 in this problem, where the new function

r defines the reverse operation on a list. The target inductive theorem is

T2 : r(r(xs))↔ xs.

The derivation starts from applying the EXPAND rule to get 〈E1,H1〉, where

E1 =


r(nil)↔ nil, (6)

r(r(xs)@(x : nil))↔ x : xs (7)


and H1 = {r(r(xs)) → xs}. Obviously, (6) is normalized by (4) to get the equation

nil ↔ nil to be removed by DELETE. However, since no rewrite rule of R2 ∪H1 can

rewrite (7), it is expanded, and then the derivation goes to 〈E2,H2〉, where

E2 =


r(nil@(x1 : nil))↔ x1 : nil, (8)

r((r(xs)@(x : nil))@(x1 : nil))↔ x1 : (x : xs) (9)

,

H2 =


r(r(xs))→ xs,

r(r(xs)@(x : nil))→ x : xs (10)

 .

Note that (7) was turned into (10), when (8) and (9) were generated by EXPAND. The

good thing is that (8) will be simplified and removed after several steps of rewrit-

ing. However, the bad thing is that (9) still cannot be simplified. The derivation

22



continues in this way for several steps before getting to 〈E3,H3〉, where

E3 =


r((nil@(x1 : nil))@(x2 : nil))↔ x2 : (x1 : nil),

r(((r(xs)@(x : nil))@(x1 : nil))@(x2 : nil))↔ x2 : (x1 : (x : xs))

,

H3 =



r(r(xs))→ xs, (11)

r(r(xs)@(x : nil))→ x : xs, (12)

r((r(xs)@(x : nil))@(x1 : nil))

→ x1 : (x : xs)


.

Clearly, there exists a regular pattern of growth in the accumulation of hypothe-

ses. In fact, this process will continue indefinitely and generate an infinite set of

hypotheses, meaning that this derivation is diverging.

It is known that in this case we can suppress the divergence by using the POS-

TULATE rule to provide the following equations as conjectures (becoming lemmas

when proved):

r(xs@ys)↔ r(ys)@r(xs), (13)

(xs@ys)@zs↔ xs@(ys@zs). (14)

To be more specific, we can use the POSTULATE rule to put conjecture (13) into the

set of equations, hoping that it may be useful for ending the divergence. However,

we see that the proof of (13) itself requires a new postulation, because it will turn

out that the derivation for proving (13) causes another divergence. To solve this

problem, we can use the POSTULATE rule again to additionally put conjecture (14)

into the set. Fortunately, conjecture (14) can be proved without any help of extra

lemmas, and thus it is established as a lemma. It will turn out that lemma (14) is

helpful for ending the divergence generated when trying to prove (13), and thus

(13) is established as a lemma. Now lemma (13) can be used to end the divergence

mentioned in the previous paragraph to finally establish the target T2 as a theorem.

Of course, the real problem here is how we can come up with (13), (14), or any other

conjectures leading our proof to success. This is the main topic of this paper.
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3.1.3 Term Annotation and Difference Match

As discussed in [7] [11] [18], a crucial point in proving inductive theorems is

to transform the induction conclusion to enable the use of the induction hypothesis.

This can be often done by controlling the deduction so that it will remove (or “ripple

out”) the “difference” between the conclusion and the hypothesis. The difference is

also called the “wave-front”. In the following, we present some basic definitions

and notations related to this subject. (Actually, we present them in a formal way

suitable for the term rewriting community.)

In [7] [11], a wave-front is described as a term t with a proper subterm t′ deleted.

The deleted subterm may itself contain wave-fronts. This means that we can identify

the innermost deleted subterms. A wave-front is often represented by an annotation

which encloses t in a box and underlines the deleted subterm t′. (Note, however,

that in the theory of the standard term rewriting, a “term” with a subterm deleted

cannot be a term!) In this paper, we formally define the notion of term annotation

and wave-fronts as follows.

Definition 3.1.2. Let us call the elements of T (Σ, V ) and T (Σ ∪ {�}, V ) the ordinary

terms and contexts, respectively. Let box and ul be the distinguished unary function

symbols not contained in the signature Σ at hand. Then an annotated term is defined

inductively as follows.

• IfC is an ordinary context (which can be empty),D1, . . . , Dn(n > 0) are nonempty

ordinary contexts with a single hole, and s1, . . . , sn are either ordinary or an-

notated terms, then

C[box(D1[ul(s1)]), . . . ,box(Dn[ul(sn)])],

displayed with annotations as

C[ D1[s1] , . . . , Dn[sn] ],
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is an annotated term.

Each context Di(i ∈ {1...n}) is called a wave-front, and its hole is called a wave-hole.

Definition 3.1.3. A pair of annotated terms u and v, written u → v, is an annotated

rule.

Definition 3.1.4. Let w be an ordinary or annotated term. Then its body, body(w), is

defined as follows.

body(w) =


w, if w∈ T (Σ, V ),

C[D1[body(s1)], ..., Dn[body(sn)]], if w≡C[ D1[s1] , ..., Dn[sn] ].

The skeleton of w, skel(w), is defined as follows.

skel(w) =


w, if w∈ T (Σ, V ),

C[skel(s1), ..., skel(sn)], if w≡C[ D1[s1] , ..., Dn[sn] ].

Intuitively, body(w) is an ordinary term obtained by canceling all annotations

from w; skel(w) is obtained by erasing all wave-fronts from the body. The wave-

fronts are also regarded as the difference between the body and the skeleton. (In [7],

the body function is called erase and its return value the body.)

For instance, consider an annotated term

w ≡ r( r(xs)@(x : nil) ).

Then its body and skeleton are as follows:

body(w) = r(r(xs)@(x : nil)),

skel(w) = r(r(xs)).

Note that in this example, t ≡ skel(w) and s ≡ body(w) are the left-hand side of (11)

and (12), respectively. Intuitively, the symbols removed from s to get t constitute the

difference between s and t. However, given two terms s and t, the difference between
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them is not unique in general. Formally, the difference match function dm(s, t) in

Definition 3.1.5 adapted from [7] computes all the differences 〈w, δ〉 such that

• s ≡ body(w) (w is obtained by annotating s)

• t ≡ skel(w)δ (the annotation in w defines the difference between s and t)

• δ is a variable renaming substitution with domain V(skel(w)).

Definition 3.1.5. Let x, y ∈ V , s ≡ f(s1, . . . , sn), s′ ≡ f(s′1, . . . , s
′
n) and t ≡ g(t1, . . . , tm)

where f 6= g.

dm(x, y) = {〈x, {x 7→ y}〉}

dm(x, t) = {}

dm(s, s′)= {〈f(w1, . . . , wn),
∪

i δi〉|〈wi, δi〉 ∈ dm(si, s
′
i) for all 1 ≤ i ≤ n

and δ1...δn are mutually compatible} ∪∪
i{〈 f(s1, ..., si−1, wi, si+1, ..., sn) , δ〉|〈wi, δ〉 ∈ dm(si, s

′)}

dm(s, t) =
∪

i{〈 f(s1, ..., si−1, wi, si+1, ..., sn) , δ〉|〈wi, δ〉 ∈ dm(si, t)}

where two substitutions σ1 and σ2 are compatible if σ1(x) = σ2(x) for every x ∈

Dom(σ1)∩Dom(σ2). For two compatible substitutions σ1 and σ2, the union σ1∪σ2 of

them can be uniquely defined as the substitution σ satisfying Dom(σ) = Dom(σ1) ∪

Dom(σ2), σ(x) = σ1(x) for x ∈ Dom(σ1), and σ(x) = σ2(x) for x ∈ Dom(σ2).

In the sequel, each element 〈w, δ〉 returned from the dm function will be simply

displayed as an annotated termwδ. For example, an element 〈 x1 : xs1 , {xs1 7→ xs}〉

returned from dm((x1 : xs1), xs) will be displayed as x1 : xs .

As commented in [9], annotated terms can be considered as decorated trees

where the skeleton is represented as a tree and each wave-front as a box decorating

a node. The wave-fronts (boxes) often move up or down through the skeleton tree

to make different annotations during difference matching. In such cases, we follow

the heuristics described in [9] [41] etc. by only considering the maximal difference

match in which wave-fronts are as high as possible in the skeleton tree.
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Example 3.1.6. Let

s ≡ x2 : (y2 : ys2),

t ≡ x1 : xs1.

Then

dm(s, t) =


x2 : (x1 : xs1) ,

x1 : (xs1 : ys2) ,

x1 : (y2 : xs1)


.

Clearly, the first element is maximal, as the box is attached at the highest position

(root) of the tree for the skeleton x1 : xs1.

The original definition of the difference matching algorithm in [7] is presented

in a logic programming style where the predicate dm(s, t, w, δ) with inputs s and t

supplies appropriate outputs w and δ satisfying the specified relationship among

the four arguments, when it succeeds. Repeating this predicate call, one can col-

lect all of such outputs. Our dm function is its functional version that returns those

outputs as a set of 〈w, δ〉 pairs. It was commented in [41] that using ground differ-

ence matching with renaming of variables seemed to be sufficient for identifying

accumulating term structure. Therefore, we have slightly restricted the general defi-

nition of the original version according to its normal usage in the inductive theorem

proving context (as is implicit in [41]). More precisely, our version restricts the sub-

stitution δ to a variable renaming substitution rather than an arbitrary substitution.

Though there exists a fast polynomial algorithm for difference matching using dy-

namic programming [8], in this paper, we introduced the concise specification based

on [7].

Note that this restricted version of the dm function is clearly related to the home-

omorphic embedding [5] used in the theory of the simplification ordering, because

the set dm(s, t) contains an element 〈w, δ〉 if and only if t is homeomorphically em-

bedded in sδ. The exact information on how to embed is encoded inw, an annotation

to s, so that we can get t from sδ by removing all the symbol occurrences other than

those in skel(wδ).
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3.1.4 Automated Lemma Postulation

In [11], an effective tactic named rippling was proposed by Bundy et al. Walsh

[41] combined this technique with difference matching [7] to overcome the difficulty

faced when the induction theorem provers generate diverging sequences. Based on

this technique, Shimazu, Aoto and Toyama [38] formalized an automated lemma

postulation procedure in the framework of the rewriting induction as follows.

We first show a simplified version. Suppose that a sequence of hypotheses (which

is seemingly diverging) contains the following rewrite rules.

C[s]→ t, (19)

C[D[s]]→ F [t]. (20)

Note that the difference matching between them gives an annotation to (20) as fol-

lows.

C[ D[s] ]→ F [t] .

Then the technique for lemma postulation may be applied in the three steps as fol-

lows.

The first step applies the rewrite rule (19) to (20) in reverse (i.e., t → C[s]) to get

an equation

C[D[s]]↔ F [C[s]].

Though in [38], this step is referred to as a rather general name, modification, in this

paper, it will be called joining, as the resultant equation implies that C[D[s]] and

F [C[s]] are joinable by (19) and (20) at F [t].

The second step replaces occurrences of s (if it is a non-variable) with a fresh

variable x to get a new conjecture:

C[D[x]]↔ F [C[x]].

This step has been called simply generalization elsewhere [38]. Here we call it non-var

28



generalization to distinguish it from variable-renaming generalization introduced in

the next section. Formally, an equation s↔ t is a non-var generalization of an equation

sσ = tσ, if xσ is a non-variable for all x ∈ Dom(σ).

This lemma postulation method is unsound, because the generated conjectures

are not necessarily inductive theorems of R even if the target equation is actually

an inductive theorem. Hence the third step filtering is invoked to check if there is a

real possibility that it is actually an inductive theorem. To test the equality, the sys-

tem substitutes randomly-generated ground terms to the variables in the equation

before normalizing its left- and right-hand sides to see their joinability. (Since R is

convergent, this test is decidable.) The conjecture which has led to a counterexample

for the equality is filtered out. On the other hand, the survived conjecture is added

(by the POSTULATE inference rule) to the conjecture set E as a candidate for lemma

to be proved later in the process.

Note that if the conjecture is directed from left to right, it works as a rewrite rule

C[D[x]]→ F [C[x]] for removing (or “rippling out”) the difference (or “wave-front”)

D from the left-hand side of (20) to get a term F [C[s]]. Since F [C[s]] can be further

rewritten by (19) to F [t], the hypothesis (20) may be reduced to a trivial equation

F [t]↔ F [t].

This procedure is formally described as the following inference rule:

POSTULATE BY JOINING:

〈E,H〉 ` 〈E ∪ {C[D[x]]↔ F [C[x]]},H〉,

if {C[s]→ t, C[D[s]]→ F [t]} ⊆ H,where x is a fresh variable.

Note that introducing a renaming substitution, the procedure in [38] is presented

in a slightly more general form. Here, however, we adopted the presentation with-

out explicit renaming, following the convention where variables in equations may

be renamed whenever appropriate.

Example 3.1.7. Suppose we have the following two hypotheses annotated by difference-
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matching (12) with (11):

r(r(xs))→ xs,

r( r(xs)@(x1 : nil) )→ x1 : xs .

Clearly, we have C = r(�), D = �@(x1 : nil), F = x1 : �, s = r(xs), t = xs, and

obtain

r(r(xs)@(x1 : nil))↔ x1 : r(r(xs))

by joining. Then non-var generalization is applied to get a conjecture

r(ys@(x : nil))↔ x : r(ys).

It turns out that this conjecture is in fact a lemma that is sufficient to lead to a proof

for the target theorem, T2, shown in Example 3.1.1.

3.2 Peripheral Sculpture

In this section, we introduce zipped difference to analyze the potential divergence

patterns and then present a lemma postulation method called peripheral sculpture

based on divergence detection. We introduce the basic definitions and inference

rules.

3.2.1 Zipped Difference

Definition 3.2.1. Let w ≡ C[ D1[s1] , . . . , Dn[sn] ] be an annotated term. Then its

peripheral part, peri(w), and calm part, calm(w), are the unannotated contexts defined

respectively as follows.

peri(w) = C,

calm(w) = C[D1, ..., Dn].

The variables occurring in peri(w) are peripheral.
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Example 3.2.2. Consider an annotated term

w ≡ (y@ (x : y) )@ (x : y) .

Then y is a peripheral variable but x is not.

Definition 3.2.3. Given a (finite or infinite) sequence of terms S = {si | i = 0, 1, ...},

a zipped difference for S is a sequence Z = {wi | i = 0, 1, ...} of annotated terms such

that

∀i, ∃δi : 〈wi, δi〉 ∈ dm(si+1, si) and ∀i, j : calm(wi) ∼= calm(wj).

Recall that s ∼= t means s is a variant of t. An element wi ∈ Z consisting of the small-

est number of occurrences of function symbols and variables is minimal. Definition

3.2.3 was inspired by Walsh [41].

Example 3.2.4. Let

S =


s0 ≡ xs,

s1 ≡ x1 : xs1,

s2 ≡ x2 : (y2 : ys2)

 .

Then dm(s1, s0) contains two differences

{ x1 : xs , xs : xs1 },

and dm(s2, s1) contains the maximal difference

x2 : (x1 : xs1)

and two non-maximal ones. The zipped difference is

Z = { x1 : xs1 , x2 : (y2 : ys2) },

where the minimal element is x1 : xs1 . However, xs : xs1 cannot be an element

of a zipped difference, and hence only Z is the correct zipped difference.
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Example 3.2.5. We apply Definition 3.2.3 to a sequence of hypotheses H as well, by

regarding→ as a binary function symbol with infix notation. Consider the following

sequence H3 from Section 3.2 (with variable renaming):

H3 =



h0 ≡ r(r(xs))→ xs,

h1 ≡ r(r(xs1)@(x1 : nil))→ x1 : xs1,

h2 ≡ r((r(ys2)@(y2 : nil))@(x2 : nil))

→ x2 : (y2 : ys2)


.

Then dm(h1, h0) contains two differences


r( r(xs)@(x1 : nil) )→ x1 : xs ,

r( r(xs)@(x1 : nil) )→ xs : xs1

 ,

and dm(h2, h1) contains the maximal difference

r( (r(xs1)@(x1 : nil))@(x2 : nil) )→ x2 : (x1 : xs1)

and four non-maximal differences. The following is the the zipped difference:

Z ′ =


r( r(xs1)@(x1 : nil) )→ x1 : xs1 ,

r( (r(ys2)@(y2 : nil))@(x2 : nil) )

→ x2 : (y2 : ys2)


.

Intuitively, given a potentially diverging sequence S, its zipped difference pos-

tulates a divergence pattern of S, representing a common annotation pattern for the

differences between successive terms. The calm parts of its elements represent a sta-

ble context and the remaining parts in the wave-holes are considered to represent a

growing pattern of the divergence.
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3.2.2 Lemma Postulation by Peripheral Sculpture

Given a sequence of hypotheses H, the first two rules can be represented as fol-

lows when a zipped difference Z for H exists (where the variables may be renamed

in the second rule.):

C[s1, ..., sn]→ C ′[t1, ..., tm], (22)

C[ D1[s1] , . . . , Dn[sn] ]→ C ′[ D′
1[t1] , . . . , D

′
m[tm] ]. (23)

In this subsection, we present a lemma postulation method applicable in this

situation.

Definition 3.2.6. Let ν1, . . . , νk be fresh variables, and consider a renaming substitu-

tion

δ = {x1 7→ ν1, ..., xk 7→ νk},

with the domain

{x1, . . . , xk} =V(C) ∩ V(C ′) ∩ [(∪iV(Di[si])) ∪ (∪iV(D′
i[ti]))].

Then

Cδ[s1, ..., sn]→ C ′δ[t1, ..., tm]

is called a peripheral sculpture of Z.

Note that every variable in the domain should occur in every one of the three

parts: C,C ′, and the remaining part. We rename the occurrences only in C and C ′

with the remaining part untouched.

Example 3.2.7. Suppose we have

w + (x+ (x+ (x+ 0)))→ w + (x+ (x+ x)),

w + (x+ (x+ s(x+ 0) ))→ w + (x+ (x+ s(x) )),

and

Z = {w + (x+ (x+ s(x+ 0) ))→ w + (x+ (x+ s(x) ))}.
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Then its peripheral sculpture is

w + (ν + (ν + (x+ 0)))→ w + (ν + (ν + x)).

Given a sequence H of hypotheses, the following non-deterministic procedure

tries to generate a conjecture to be proved as a lemma for the target theorem.

(i) Compute a zipped difference Z for H.

(ii) If Z exists, compute a peripheral sculpture S of H with respect to Z.

(iii) If S exists, send it to the filtering process to see its possibility of being a theo-

rem.

(iv) If S has survived, return S itself or its non-var generalization as a conjecture.

Step 2 is the key to this method. In practice, the two rules (22) and (23) are

the first (minimal) and the second (second-minimal) elements of H and the remain-

ing elements are just used for checking the existence of Z. If Z does not exist, the

procedure is aborted. If there are more than one Z’s, every Z is considered non-

deterministically.

Note that the longer sequence we have for H, the more reliable conjecture we get,

because Z for a longer H shows us a longer diverging pattern. On the other hand,

longer H may lead to less efficiency caused by the delay of useful lemma generation.

Based on experience, the length 3 is recommended in [41].

The procedure can be formally described as an inference rule as follows:

POSTULATE BY PERIPHERAL SCULPTURE:

〈E,H〉 ` 〈E ∪ {p↔ q},H〉,

if

-


C[s1, ..., sn]→ C ′[t1, ..., tm],

C[ D1[s1] ... Dn[sn] ]→C ′[ D′
1[t1] ... D

′
m[tm] ]

 ⊆ H,
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- there exists a zipped difference Z for H, and

- p→q is a peripheral sculpture of Z or its non-var generalization.

Note that the filtering process in Step 3 is not involved in the inference rule. This

is because the filtering does not affect the exact form of the generated conjecture.

We regard the filtering as a part of the control strategy of the theorem prover which

uses it as a deciding factor for applying the postulation rule.

Example 3.2.8. Consider the following TRS R3.

R3 =



0 + y → y,

s(x) + y → s(x+ y),

0 ∗ y → 0,

s(x) ∗ y → y + (x ∗ y)


,

where + and ∗ are recursively defined as the algebraic addition and multiplication.

The target theorem is:

T3 : s(s(0)) ∗ x↔ x+ x.

Starting with T3, the procedure diverges by constantly expanding new conjectures

which cannot be simplified to a trivial equation. The difference matching procedure

annotates the diverging sequence H as follows.

x+ (x+ 0)→ x+ x,

x+ s(x+ 0) → x+ s(x) ,

x+ s(s(x+ 0)) → x+ s(s(x)) .

In Step 1, we have a zipped difference

Z =


x+ s(x+ 0) → x+ s(x) ,

x+ s(s(x+ 0)) → x+ s(s(x))

 .
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In Step 2, we have a peripheral sculpture S:

ν + (x+ 0)→ ν + x.

After Steps 3 and 4, we get a new conjecture:

ν + (x+ 0)↔ ν + x.

It will turn out that this conjecture is actually a lemma to resolve the divergence to

complete the proof of T3.

The next example demonstrates that POSTULATE BY PERIPHERAL SCULPTURE

may be applicable to more complex diverging patterns involving ‘parallel’ and ‘nested’

differences.

Example 3.2.9. With R3 in the previous example, our target theorem here is

T4 : s(s(s(s(0)))) ∗ x↔ s(s(0)) ∗ (s(s(0)) ∗ x).

The diverging sequence is annotated as follows.

(x+ (x+ 0)) + ((x+ (x+ 0)) + 0)

→ x+ (x+ (x+ (x+ 0))),

(x+ s(x+ 0) ) + s((x+ s(x+ 0) ) + 0)

→ x+ s(x+ s(x+ s(x+ 0) ) ) ,

(x+ s(s(x+ 0)) ) + s(s((x+ s(s(x+ 0)) ) + 0))

→ x+ s(s(x+ s(s(x+ s(s(x+ 0)) )) )) .
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In Step 1, we have a zipped difference Z =



(x+ s(x+ 0) ) + s((x+ s(x+ 0) ) + 0)

→ x+ s(x+ s(x+ s(x+ 0) ) ) ,

(x+ s(s(x+ 0)) ) + s(s((x+ s(s(x+ 0)) ) + 0))

→ x+ s(s(x+ s(s(x+ s(s(x+ 0)) )) ))



.

In Step 2, we have a peripheral sculpture S:

(ν + (x+ 0)) + ((x+ (x+ 0)) + 0)→ ν + (x+ (x+ (x+ 0))).

After Step 3, we have three subterms

{x+ (x+ 0), x+ 0, 0}

for non-var generalization procedure. By generalizing them, a conjecture (corre-

sponding to x + (x + 0)) and an equivalent of S passed the random testing, where

the former one

(ν + (x+ 0)) + (y + 0)↔ ν + (x+ y)

leads to a successful proof. Note that this conjecture is a consequence of the right

identity and the associativity of +, but we are not given the corresponding axioms

or lemmas.
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Chapter 4

Multi-Context Reasoning System

There are several problems of KB or RI/RIt in practice. Firstly, the problem of

KB is that it is difficult to set an appropriate reduction order before the procedure

starts. Secondly, the problem of RI/RIt is that the nondeterministic choices may

cause the procedures to end up with failing results (i.e., divergence or fail). Thirdly,

appropriate lemmas are often required in practice for RI/RIt to achieve successful

proofs.

The first problem can be partially solved by the multi-context reasoning system

MKB which simulates the mutually related processes in a single process efficiently.

As for the second and third problems, MRIt pursues all nondeterministic choices

trying to lead the procedure to a successful result by exploiting the schema of MKB.

In this chapter we expand our method into multi-context schema to develop a prac-

tically useful framework for inductive theorem provers.

We discuss MKB and MRIt in more detail in this chapter.

4.1 Multi-Context Completion System

A completion procedure for multiple reduction orderings called MKB developed

in [28] accepts a finite set of reduction orderings O = {�1, . . . ,�n} and a set of

equations E0 as input. The proper output is a set of convergent rewrite rules Rc. To

achieve the multi-completion, MKB effectively simulates KB procedures in n parallel
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processes {P1, . . . , Pn} corresponding to O. Let I = {1, . . . , n} be the index set and

i ∈ I be an index. In this setting, Pi executes KB for the reduction order �i and

the common input E0. The inference rules of MKB which simulate the related KB

inferences all in a single operation are based on a special data structure called the

node defined below.

Definition 4.1.1. A node is a tuple 〈s : t, R0, R1, E〉, where s : t is an ordered pair

of terms s and t each called datum, and R0, R1, E are subsets of I called labels such

that:

• R0, R1 and E are mutually disjoint. (i.e., R0 ∩R1 = R0 ∩ E = R1 ∩ E = ∅)

• i ∈ R0 implies s �i t, and i ∈ R1 implies t �i s

Intuitively, the set R0(R1) represents the indices of processes executing KB in

which the set of rewrite rules R currently contains s → t (t → s), and E represents

those of processes in which E contains an equation s ↔ t (or t ↔ s). The node

〈s : t, R0, R1, E〉 is considered to be identical with the node 〈t : s,R1, R0, E〉, so the

inference rules of MKB working on a setN of nodes defined below implicitly specify

the symmetric cases.

DELETE: N ∪ {〈s : s, ∅, ∅, E〉} ` N , if E 6= ∅.

ORIENT: N ∪ {〈s : t, R0, R1, E ∪ E ′〉} `

N ∪ {〈s : t, R0 ∪ E ′, R1, E〉},

if E ′ 6= ∅, E ∩ E ′ = ∅, and s �i t for all i ∈ E ′.

REWRITE 1: N ∪ {〈s : t, R0, R1, E〉} `

N∪


〈s : t, R0\R,R1, E\R〉

〈s : u,R0 ∩R, ∅, E ∩R〉

,

if 〈l : r, R, . . . , . . . 〉 ∈ N, t→{l→r} u,

t ∼= l, and (R0 ∪ E) ∩R 6= ∅.
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REWRITE 2: N ∪ {〈s : t, R0, R1, E〉} ` N∪
〈s : t, R0\R,R1\R,E\R〉

〈s : u,R0 ∩R, ∅, (R1 ∪ E) ∩R〉

,

if 〈l : r, R, . . . , . . . 〉 ∈ N, t→{l→r} u,

t B l, and (R0 ∪R1 ∪ E) ∩R 6= ∅.

DEDUCE: N ` N ∪ {〈s : t, ∅, ∅, R ∩R′〉},

if 〈l : r, R, . . . , . . . 〉 ∈ N,

〈l′ : r′, R′, . . . , . . . 〉 ∈ N,R ∩R′ 6= ∅,

and s←{l→r} u→{l′→r′} t.

GC: N ∪ {〈s : t, ∅, ∅, ∅〉} ` N .

SUBSUME: N ∪


〈s : t, R0, R1, E〉

〈s′ : t′, R′
0, R

′
1, E

′〉

 `
N ∪ {〈s : t, R0 ∪R′

0, R1 ∪R′
1, E

′′〉},

if s : t and s′ : t′ are variants and

E ′′ = (E\(R′
0 ∪R′

1)) ∪ (E ′\(R0 ∪R1)).

Given the current set N of nodes, 〈E[N, i], R[N, i]〉 defined in the following rep-

resents the current set of equations and rewrite rules in a process Pi.

Definition 4.1.2. Let n = 〈s : t, R0, R1, E〉 be a node and i ∈ I be an index. The

E-projection E[n, i] of n onto i is a (singleton or empty) set of equations defined by

E[n, i] =


{s↔ t}, if i ∈ E,

∅, otherwise.

Similarly, the R-projection R[n, i] of n onto i is a set of rules defined by

R[n, i] =


{s→ t}, if i ∈ R0,

{t→ s}, if i ∈ R1,

∅, otherwise.
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These notions can also be extended for a set N of nodes as follows:

E[N, i] =
∪
n∈N

E[n, i], R[N, i] =
∪
n∈N

R[n, i]

MKB starts with the initial set N0 of nodes:

N0 = {〈s : t, ∅, ∅, I〉 | s↔ t ∈ E0},

which means, given the initial set of equations E0, we have 〈E[N0, i],R[N0, i]〉 =

〈E0, ∅〉 for all i ∈ I . The state sequence of MKB is generated as N0 ` N1 ` · · · ` Nc.

If E[Nc, i] is empty and all critical pairs of R[Nc, i] have been created, MKB returns

R[Nc, i] as the result, which is a convergent TRS obtained by a successful KB se-

quence in the process Pi.

4.2 Multi-Context Rewriting Induction System

Based on the ideas of multi-completion (MKB) [28] [36] [37] and rewriting induction

with termination checkers (RIt) [2], the multi-context rewriting induction (MRIt) [22] [35]

efficiently simulates RIt processes, each corresponding to a non-deterministic com-

putation which has made a particular series of commitments at the choice points

they encountered for various decisions.

In particular, reduction orders (in which way to orient an equation; implicitly in-

ducing induction patterns based on Noetherian induction) can be selected dynam-

ically by calling external, modern automated termination checkers more powerful

than the classical, simply parameterized reduction orders (such as recursive path

orders and polynomial orders), based on the work of [42]. Other choices include

induction strategies (which variable to select for induction) and rewriting strategies

(which rule to apply and which subterm to be applied to).
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To distinguish processes, each process is represented by a sequence of natural

numbers a1a2 . . . ak (for some k ≥ 0) called an index, when the i-th decision of this

process was the choice No. ai (1 ≤ i ≤ k). Thus the index can be interpreted as

a position of a node at depth k in a search tree. In particular, the initial process

(the root node) is represented by an empty sequence (denoted by ε). We do not

distinguish between a process and its index.

In order to efficiently simulate a lot of closely-related inferences made in different

processes, MRIt exploits the data structure called nodes and represent the state of the

inference system by a set of nodes. The node is a tuple 〈s : t,H1, H2, E〉, where s : t

is an ordered pair of terms s and t, and H1, H2, E are subsets of process indices

called labels. Intuitively, E represents all processes containing s↔ t as a conjecture,

and H1 (resp. H2) represents all processes containing s → t (resp. t → s) as an

inductive hypothesis. The set of possible indices I is infinite in MRIt. The node

〈s : t,H1, H2, E〉 is considered to be identical with 〈t : s,H2, H1, E〉.

Given the current set N of nodes, E[N, p] and H[N, p] defined below represent

the current sets of conjectures (equations) and hypotheses (rules), respectively, held

in the process p.

E[N, p] =
∪
n∈N

E[n, p], H[N, p] =
∪
n∈N

H[n, p].

E[n, p] =


{s↔ t}, if p ∈ E,

∅, otherwise.

H[n, p] =


{s→ t}, if p ∈ H1,

{t→ s}, if p ∈ H2,

∅, otherwise.

where n = 〈s : t,H1, H2, E〉. E[n, p] and H[n, p] are called E-projection and H-

projection of n onto p, respectively.

Given the initial set of conjectures E0 and a ground-reducible and convergent
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TRS R, MRIt starts with the initial set N0 of nodes:

N0 = {〈s : t, ∅, ∅, {ε}〉 | s↔ t ∈ E0}.

Note that 〈E[N0, ε],H[N0, ε]〉 = 〈E0, ∅〉. The inference rules of MRIt are listed in

Appendix A. A series of applications of those rules to the sets of nodes generates a

derivation N0 ` N1 ` · · · ` Nc. If E[Nc, p] is empty for some process p, the system

concludes that all the initial conjectures E0 are inductive theorems of R.

We elaborate on inference rules DELETE, FORK and EXPAND of MRIt to show how

the multi-context reasoning works.

The DELETE rule of MRIt simulates its counterpart of RIt. That is, if a trivial

conjecture appears in any process, it is removed.

DELETE: N ∪ {〈s : s,H1, H2, E〉} ` N .

Assume that process p1 holds a trivial conjecture s↔ s in the corresponding E1 and

that process p2 also holds s ↔ s in the corresponding E2. To remove the trivial con-

jectures, the DELETE of RIt is invoked in each process, p1 and p2. In MRIt, such ma-

nipulations are effectively done by simply removing one node 〈s : s,H1, H2, {p1, p2}〉

from the node set. Note that H1, H2 can be empty in the sense that the deletion hap-

pens in E in RIt.

Suppose that the process with an index p = a1a2 . . . ak has n possible choices.

Then it will be forked into n different processes p 1, p 2, . . . , p n, each taking care of

one of the choices. In [35] this operation is simulated in the node structure by replac-

ing the index p in every label of every node with those new n indices, and formalized

as the FORK inference rule:

FORK: N ` ψP (N).

To formally understand this inference rule, we need the following definitions and

notations introduced in [35]. The basic fork function over a given set P of processes,

denoted by ψP : I → P(I), is defined as follows:
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Definition 4.2.1.

ψP (p) =


{p1, p2, . . . , pψ(p)}, if p ∈ P,

{p}, otherwise.

where I is the set of all indices (processes), P(I) the power set of I , and ψ(p) the

number of processes that p is to be forked into.

The notation ψP (N) used in FORK represents the set of nodes created from N by

replacing all the processes p in P with p 1, p 2, . . . , p ψ(p).

The EXPAND rule of MRIt is the counterpart of that of RIt, playing the leading

role in rewriting induction.

EXPAND: N ∪ {〈s : t,H1, H2, E ∪ E ′〉} `

N ∪ {〈s : t,H1 ∪ E ′, H2, E〉}

∪ {〈s′ : t′, ∅, ∅, E ′〉 | s′ ↔ t′ ∈ Expdu(s, t)}

if E ′ 6= ∅, u ∈ B(s) and

H[N, p] ∪ R ∪ {s→ t} terminates for all p∈E ′.

Focusing on a node n = 〈s : t,H1, H2, E∪E ′〉 and a basic term u ∈ B(s), this inference

rule applies the EXPAND rule of RIt to all processes (E ′) that can orient s ↔ t from

left to right. As a result, new nodes 〈s′ : t′, ∅, ∅, E ′〉 are created for all conjectures

s′ ↔ t′ generated by Expdu(s, t). The labels of the original node n is modified so

that the processes of E ′ moves from the third to the first label, meaning that in those

processes the equation s↔ t was oriented from left to right. Note that the choice of

the direction of orientation and the choice of the basic subterm are two kinds of non-

deterministic choices. In practice, therefore, the theorem prover should combine

EXPAND operation with two types of FORK operations: One is to fork a process into

two processes depending on the two possible direction of orientation, and another is

to fork each of the resultant processes with k basic subterm choices into k processes.

The formal treatment of this combination is presented in [35].

44



Let `=
RIt be the reflexive closure of `RIt (meaning `=

RIt denotes either = or `RIt).

The following two propositions shown in [35] state the soundness of FORK and other

inference rule of MRIt other than FORK.

Proposition 4.2.2. Let N ′ = ψP (N) be the set of nodes obtained by applying FORK

to N . Then 〈E[N, p],H[N, p]〉 = 〈E[N ′, q],H[N ′, q]〉 for all p ∈ I and q ∈ ψP (p).

In other words, FORK has no effect on processes, only generating copies of some

processes.

Proposition 4.2.3. Let N ′ be the set of nodes obtained by applying to N an inference

rule of MRIt other than FORK. Then 〈E[N, p],H[N, p]〉 `=
RIt 〈E[N ′, p],H[N ′, p]〉 for all

p ∈ I .

In other words, the inference rules of MRIt other than FORK simulate an RIt inference

in some processes and have no effect on other processes.

4.3 Postulation in Multi-Context System

In this section, we will extend MRIt to develop an inductive theorem prover

MRIt+ which combines 1) multi-context reasoning and 2) RIt with divergence-detection-

based automated lemma postulation, where we replace the general POSTULATE rule

of RIt with more specific inference rules for postulation discussed in Chapter 3: POS-

TULATE BY JOINING and POSTULATE BY PERIPHERAL SCULPTURE.

Suppose we have several processes P = {p1, p2, ...} and a potentially diverg-

ing sequence {h1 ≡ s1 → t1, h2 ≡ s2 → t2, ...} held by p ∈ P . Also suppose that

there are k conjectures {li ↔ ri} that can be added to 〈E,H〉 in p by applying either

POSTULATE BY JOINING or POSTULATE BY PERIPHERAL SCULPTURE. To deal with

these conjectures, we have process p fork into k + 1 processes where each process

p i(1 ≤ i ≤ k) holds one new conjecture li ↔ ri, respectively, and the remaining pro-

cess p (k+ 1) continues without any of the newly generated conjectures. Such a pro-

cess without postulation is necessary because divergence detection is ”unsound”,

45



meaning that the postulated conjecture may be incorrect, causing a search in vain

for its proof.

Note that the same inference (postulation) discussed in the previous paragraph

can be made in other processes as well containing s1 → t1 and s2 → t2 as hypotheses.

Actually, this can be handled efficiently by the standard technique of multi-context

equational reasoning as in the following inference rule.

MULTI-CONTEXT POSTULATE

N ` ψP (N) ∪ {〈li : ri, ∅, ∅, Pi〉 | 1 ≤ i ≤ k}

if 〈E,H〉 `RIt 〈E ∪ {li ↔ ri},H〉

for some process p ∈ P (1 ≤ i ≤ k)

where n1 = 〈s1 : t1, H1, ..., ...〉 ∈ N,

n2 = 〈s2 : t2, H2, ..., ...〉 ∈ N,

P = H1 ∩H2,

Pi = {p.i | p ∈ P},

E = E[N, p],

H = H[N, p],

ψ(p) = k + 1 for all p ∈ P,

and `RIt denotes one-step derivation in RIt.

Since we have added MULTI-CONTEXT POSTULATE to MRIt, we need to augment

these results with the following proposition. (The easy proof is omitted.)

Proposition 4.3.1. Let N ′ be the set of nodes obtained by applying MULTI-CONTEXT

POSTULATE to N . Then 〈E[N, p],H[N, p]〉 `=
RIt 〈E[N ′, q],H[N ′, q]〉 for all p ∈ I and

q ∈ ψP (p).

In other words, MULTI-CONTEXT POSTULATE simulates an RIt inference (in fact, POS-

TULATE either BY JOINING or BY PERIPHERAL SCULPTURE) in some processes and
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has no effect on other processes.
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Chapter 5

Implementation

In this chapter, we discuss the implementation of multi-context algebraic reason-

ing systems: multi-context completion system (lz-mkb) [23] [24], multi-context in-

ductive theorem prover (lz-itp) [22] and the multi-context inductive theorem prover

with automated lemma generation (MRIt+) [21].

The implementations are made in Scala. Scala is a programming language which

supports functional programming and object-oriented programming. The programs of

lz-mkb and lz-itp were designed in an object-oriented way so that we could build

and reuse the classes to organize the term structures, substitutions, nodes, inference

rules, etc. At the same time, we followed the discipline of functional programming

(e.g., “uniform return type” principle [30]) in coding so that it could be safer and

easier to execute the program in a physically parallel computational environment.

We also enabled lazy evaluation mechanism of Scala to improve the performance

when the systems face large problems.

5.1 Implementation of Completion System

The node, a basic unit of MKB, is implemented as a class which contains an

equation object as a datum and three bitsets as labels. We chose bitset（1）to gain

efficiency because there were numerous set operations during the computation. We

（1）a data structure defined in Scala’s library
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also created a class called nodes for the set N of nodes for which several inference

rules of MKB are defined. We will discuss the implemented operations below in

comparison with the original inference rules of MKB one by one.

The operation N.subsume() combines two nodes into a single one when they

contain the variant data (which are the same as each other up to renaming of vari-

ables). The duplicate indices in the third labels are removed to preserve the label

conditions. We exploited a programming technique called lazy evaluation to gain ef-

ficiency in the implementation. To discuss the details, we consider the pseudocode

of implementation presented as Algorithm 5.1, based on the presentation in [23]. The

operation N.subsume() is invoked by the operation union(N,N ′) which is designed

for combining nodes N and N ′. We observe that in every iteration of the while loop,

the union(N,N ′) operation is called at least once (i.e., for every chosen n, subsume()

would be called at line 9 once; And for those that satisfied the proper conditions of

line11 and line 13, two more operations are required). This means subsume() would

be invoked frequently during the whole procedure. It would make the program

slower to simply check all of the nodes in N , when N was updated after rewrite

operations. To gain efficiency, we created a lazy hash map [Is,N], where N is a list

of nodes and Is is a lazy value defined in the node class as the size of the node (i.e.,

for a node n = 〈s : t, r0, r1, e〉, n.size = s.size+ t.size), so that we need only check the

nodes with the same size as the original nodes. This check can be done efficiently by

using the hash map with the node size as its key. In other words, for every n ∈ N ,

n uses its size In as the key to [Is,N], then the set Nn containing all the nodes with

same size In is looked up for the nodes with variant data. In our Scala program, the

hash map [Is, N ] is declared to be lazy, because it is calculated only once and then

be stored as a constant object ready to be returned for repeated calculation requests

afterwards.

The operation N.delete() simply removes from N all nodes that contain a trivial

equation, and returns the remaining nodes as N ′. This operation is only applied to

the nodes created by rules REWRITE and DEDUCE.
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Algorithm 5.1 lz-mkb(E,O)
1: No := {〈s : t, ∅, ∅, I〉 | s↔ t ∈ E}where I = {1, . . . , |O|}
2: Nc := ∅
3: while success(No, Nc) = false do
4: if No = ∅ then
5: return(fail)
6: else
7: n := No.choose()
8: 〈D,N,M〉 := rewrite({n}, Nc)
9: No := union(No − {n},N.delete())

10: n := M.head
11: if n 6= 〈. . . , ∅, ∅, ∅〉 then
12: n := n.orient()
13: if n 6= 〈. . . , ∅, ∅, . . . 〉 then
14: 〈D,N,M〉 := rewrite(Nc, {n})
15: No := union(No,N.delete())
16: Nc := Nc + M−D

17: Nc := Nc.garbagecollect()
18: No := union(No, deduce(n,Nc).delete())
19: end if
20: Nc := union(Nc, {n})
21: end if
22: end if
23: end while
24: return R[Nc, i] where i = success(No, Nc)
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The operation n.orient() orients the equation from left to right or right to left

by changing their labels from E to R0 or E to R1 according to the reduction order

in each process. Notice that the application of the reduction order to an equation

should be done twice (i.e., one with s : t and one with t : s) in theory, but in practice

we implemented it so that it was executed only once, noting that at most one of them

should be true. The indices still remaining after this operation in E correspond to

the reduction orders that failed to orient the equation.

The operation rewrite(N, N’) is not included in the class of nodes but it takes

nodes as arguments. In the original idea of MKB, REWRITE 1 and REWRITE 2, they

simulate the COMPOSE, SIMPLIFY and COLLAPSE (if appropriate conditions are sat-

isfied) in one single operation. More exactly, REWRITE 1 and REWRITE 2 are repeat-

edly applied to N ∪ N ′, rewriting the data of N by the rules of N ′ until no more

rewriting is possible. It returns the set of nodes created in this process and the mu-

tation operations are applied to N so that N is updated as

N := N − {original nodes} ∪ {updated nodes}.

In our implementation, we follow the discipline of functional programming by

never mutating the nodes. We just update them from outside. This means the

method needs to return the intermediate results as fresh sets of nodes. The result

is structured as a tuple 〈D,N,M〉where:

D: the nodes rewritten by rewrite(N,N ′)(i.e., the original ones with the original da-

tum s : t)

N: the nodes “created” by rewrite(N,N ′)(i.e., the new nodes with the original da-

tum s : t and updated labels)

M: the nodes “modified” during rewrite(N,N ′)(i.e., the new nodes with a new da-

tum s : u and updated labels)

Normally, after the rewrite(N, N’) operation,N should be updated asN := N+M−D.
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If N only has one node in it (i.e., N = {n}), the modified n would be returned by

M.head.

Notice that to the symmetric cases of nodes, we just use the mirrors which refer to

the symmetric nodes of the originalN andN ′ as input. In other words, in every one-

step rewrite, we need to do this operation four times with different combinations

from {(N,N ′), (N.mir,N ′.mir), (N.mir,N ′), (N,N ′.mir)} one by one. Surely (N,N ′)

is updated after every single rewrite 1 or rewrite 2. In this way, we obtain a tuple

〈D∞,N∞,M∞〉 of three nodes in which every calculated node is included and no

more rewrite can be applied. Finally, the tuple 〈D∞,N∞−D∞,M∞−D∞〉 is returned

as the result of the operation rewrite(N,N ′).

The operation N.deduce(n) generates all the possible critical pairs between n and

{n} ∪ N . We consider all combinations of pair of nodes. For example, consider

two nodes n = 〈a : b, R0, R1, . . . 〉 and n′ = 〈c : d,R′
0, R

′
1, . . . 〉. The operation

{n}.deduce(n′) considers the critical pairs from {a ↔ b, c ↔ d}, which means the

modification of labels should be considered for each of {R0∩R′
0, R0∩R′

1, R1∩R′
0, R1∩

R′
1}.

The operation N.garbagecollect() has no related inference rules in KB. In MKB,

it can effectively reduce the size of the current node database by removing nodes

with three empty labels, because no processes contain the corresponding rule or

equation.

Notice that the procedure success(No, Nc) checks if this completion process has

succeeded. The process succeeds if there exists an index i ∈ I such that i is not

contained in any labels of No and any E labels of Nc nodes. Then E[No ∪ Nc, i] = ∅,

and R[Nc, i] is a convergent set of rewrite rules contained in �i. We also created

lazy values in nodes to hold the occurrences of the index i in the labels, so that we

do not need to calculate it in the unchanged Nc every time. This also makes the

computation efficient as N.choose() operation will always choose the minimal node

in terms of its size.
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5.2 Implementation of Inductive Theorem Prover

The node is also a basic unit of MRIt. It is implemented as a class which contains

an equation object as a datum and three sets as labels. We also created a class called

nodes for the set N of nodes for which several inference rules of MRIt are defined.

The index of MRIt which corresponds to a process running RI procedure is imple-

mented as a class containing a sequence of natural numbers holding a lazy hash

code to gain efficiency during the numerous index comparisons.

The rule FORK is the key to cover all parallel processes running in different states.

Note that due to the nondeterministic choices of contexts (e.g., in which direction to

orient, which subterm to be expanded or which rewrite strategy should be applied),

we cannot decide the number of processes and strategies statically. Therefore, we do

not fix the number of processes in the new procedure, and allow it to dynamically

change. For example, if a process with the index

p = [a1a2 . . . ak]

have n possible choices of contexts, we have it forked into n processes as:

[a1a2 . . . ak1], [a1a2 . . . ak2], . . . , [a1a2 . . . akn].

Based on the label representation, we can simulate the fork operation by replacing

the label p in the labels of all nodes with the set of n identifiers p1, . . . , pn. In practice,

we embed this fork operation into other operations if necessary.

The operation lemmaExplore(N, n) is a newly introduced operation of MRIt. In

rewriting induction, it is well-known that it is effective for proving some problems

by supplying appropriate lemmas. This is where we can embed our new method

peripheral sculpture with any other lemma generation methods. We consider with

the pseudocode of our implementation in Algorithm 5.2. The procedure is based on

the open/closed (set-of-support/have-been-given) lists algorithm, which is well-
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Algorithm 5.2 lz-itp(E,R)
1: No := {〈s : t, ∅, ∅, {ε}〉 | s↔ t ∈ E}
2: Nc := ∅
3: while success(No, Nc) = false do
4: if No = ∅ then
5: return(fail)
6: else
7: n := No.choose()
8: 〈F1,F2,M,N〉 := simplify(No, Nc, n)
9: No := union(No − {n},N.delete())

10: No := F1

11: Nc := F2

12: n := M.head
13: if n 6= 〈. . . , ∅, ∅, ∅〉 then
14: if n 6= 〈. . . , ∅, ∅, . . . 〉 then
15: 〈F1,F2,M,N〉 := simplify(No, Nc, n.mir)
16: No := union(No,N.delete())
17: No := F1

18: Nc := F2

19: n := M.head
20: 〈F1,F2,M,C〉 := expand(No, Nc, n)
21: No := union(No,C.delete())
22: No := F1.subsume P ()
23: Nc := F2.subsume P ()
24: n := M.head
25: end if
26: n := n.subsume P ()
27: Nc := union(Nc, {n}).gc()
28: No := union(No, lemmaExplore(Nc, n))
29: end if
30: end if
31: end while
32: return H[Nc, i] where i = success(No, Nc)
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known in the literature of search and automated reasoning for artificial intelligence.

When a node n = 〈s : t,H1, H2, E〉（2）is simplified (both s and t are the normal forms

in the corresponding processes) and expanded (line 24). We put it into Nc as the

hypothesis and try to analyze all processes P held by n (line 28). It is not efficient

to directly analyze all processes covered by n. Because although after operation

N.subsum P (), the state 〈E[Nc, i],H[Nc, i]〉 becomes unique, there may still exist du-

plicate projections where H[Nc, i] = H[Nc, j]. We created a hash map [Si,Li] in order

to deal with the lemma generations in every process i ∈ P , where Si indicates the

hash code of H[Nc, i] (we created a class projection for projections, which contains

the lazy hash code) and Li denotes the result of possible lemmas. Since the key is

unique in a hash map, we filter the duplicate keys easily by creating the map. The

lemma generation function scans every set of hypotheses in different processes cor-

responding to the keys as the values of hash map [Si,Li]. Finally, the new nodes as

possible lemmas in corresponding processes of n are constructed, then they are put

into No (line 28).

The operation expand(N,N ′, n) is the core of the whole procedure. Let n = 〈s :

t,H1, H2, E ∪ E ′〉. The operation applies the EXPAND rule of RI in all processes of

E ′ that can orient the equation s ↔ t from left to right. The set E ′ is moved from

the third label to the first in n since in each process in E ′ the conjecture s ↔ t is

removed and the new hypothesis s → t is added after the expansion. Moreover,

for each new conjecture s′ ↔ t′ in Expdu(s, t), a new node 〈s′ : t′, ∅, ∅, E ′〉 is created

in order to store the conjecture in the processes of E ′. Note that (1) the direction of

orientation and (2) the choice of the basic subterm to be expanded are two kinds of

nondeterministic choices. Therefore there are two possible fork operations, where

one is that to fork the original index p ∈ N ∪N ′ into p1 and p2 by different choice of

orienting directions (i.e., left to right or right to left), another is to fork the index p′

into p′1, . . . , p′k, if term s has k basic subterms to expand. In our implementation, we

follow the discipline of functional programming by never mutating the nodes. We

（2）n.mir represents the symmetric case of n
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just update them from outside. This means the method needs to return the interme-

diate results as fresh sets of nodes. The result is structured as a tuple 〈F1,F2,M,C〉

where:

F1: the forked nodes from N (i.e., the labels of original nodes in N are forked into

new labels depending on the nondeterministic choices)

F2: the forked nodes from N ′ (i.e., the labels of original nodes in N ′ are forked into

new labels depending on the nondeterministic choices)

M: the nodes “modified” during expand(N,N ′, n) operation (i.e., a set only contains

one node n′ which holds the same datum s : t but modified labels)

C: the nodes newly created by expand(N,N ′, n) operation (i.e., the nodes containing

new conjectures)

The SIMPLIFY R rule applies the SIMPLIFY rule of RI using a rewrite in the equa-

tional axiom R, which is common to all processes. E is the set of all processes that

have s↔ t as a conjecture. Since this equation is transformed to an equation s′ ↔ t,

the set E is removed from the original node, and a new node 〈s′ : t, ∅, ∅, E〉 is cre-

ated. The SIMPLIFY H rule is almost the same as SIMPLIFY R. The difference is that

SIMPLIFY R applies a rule of R, while SIMPLIFY H applies an inductive hypothesis

of H, which may exist only in some distinguished processes. This makes the third

labels of the original node and the new node E\H and E ∩H , respectively.

The operation simplify(N,N ′, n) applies the rule SIMPLIFY R and SIMPLIFY H

to n as much as possible. Note that in the original MRIt, the two rules are de-

fined separately. However, in our implementation we combine the two rules into

one operation because we have to fork the other nodes N and N ′ at the same time.

The rewrite strategy often plays an important role in simplification [16] [19] [35].

Therefore we fork the original index p ∈ N ∪ N ′ into p1, . . . , pk, if there are k nor-

mal forms generated by different strategies (e.g., outermost and innermost strategy).

Like the result tuple of EXPAND operation, the result of SIMPLIFY operation is also
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structured as a tuple 〈F1,F2,M,N〉, where N represents the nodes newly created by

simplify(N,N ′, n) (i.e., the nodes containing rewritten term s′ with modified labels).

The operation N.delete() removes from N all nodes that contain a trivial equa-

tion, and returns the remaining nodes as N ′. This operation is applied to the nodes

created by rules SIMPLIFY R, SIMPLIFY H and EXPAND.

The operation N.gc() implements the rule GC of MRIt, removes the nodes with

three empty labels. It can effectively reduce the size of the current node database

by removing nodes with three empty labels, because no processes contain the corre-

sponding rule or equation.

The operation N.subsume() combines two nodes into a single one when they

contain the variant data (which are the same as each other up to renaming of vari-

ables). The duplicate indices in the third labels are removed to preserve the label

conditions. The operation N.subsume() is invoked by the operation union(N,N ′)

which is designed for combining nodes N and N ′. We exploited the same lazy tech-

nique as [23] [24] to gain efficiency by creating a hash map [Is,N], where N is a list

of nodes and Is is a lazy value defined in the node class as the size of the node, so

that we need only check the nodes with the same size as the original nodes. This

check can be done effciently by using the hash map with the node size as its key. In

other words, for every n ∈ N , n uses its size In as the key to [Is, N ], then the set Nn

containing all the nodes with same size In is looked up for the nodes with variant

data.

The operation N.subsume P () stops redundant processes, which have the same

state as other existing processes. The function sub(N,L) is defined as sub(N,L) =

{〈s : t,H1\L,H2\L,E\L〉 | 〈s : t,H1, H2, E〉 ∈ N}. It simply removes all indices in L

from every node in N .

The procedure success(No, Nc) checks if this induction procedure has succeeded.

The process succeeds if there exists an index i ∈ I such that i is not contained in

any labels of No and any E labels of Nc nodes. Then E[No ∪ Nc, i] = ∅, and R[Nc, i]

is a set of rewrite rules corresponding to the equations employed as the inductive
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hypotheses in the proof. The proof details will also be captured by the program as

an output.

Note that in lines 22 to 26 of Algorithm 5.2, we apply SUBSUME P rule of MRIt

to No, Nc and n by the same context. This means we should implicitly subsume

the same duplicate indices L (depends on their states) with No, Nc and n (i.e., No =

sub(No, L), Nc = sub(Nc, L), n = sub({n}, L).head). For the same reason, we build

simplify(No, Nc, n) and expand(No, Nc, n) to take three parameters in order to fork

nodes from No and Nc at the same time.

The operation N.choose() always chooses the minimal node in terms of its size

to make the computation efficient. And there is another heuristic idea in our imple-

mentation different from the original MRIt. We try to simplify the conjectures at the

very first before we expand them. Because we found that some inductive theorems

were often reducible by the given TRS. We are not sure if this will make the proofs

shorter (because in some cases it does while others not). However in many cases

observed in our experiments, this will reduce the choices of nodes as well as the

scale of the whole node database.

5.3 Lazy Evaluation

Lazy evaluation, also called call-by-need is an evaluating strategy which delays the

evaluation of an expression until its value is needed and which also avoids repeated

evaluations with the help of the ‘memoization’ mechanism to share the common

computational results.

The advantage of lazy evaluation is often described as two parts:

(i) It only evaluates accessed parts of a value structure, so that it can define po-

tentially infinite data structure in a natural way.

(ii) It stores the result once evaluation is done to avoid needless calculations, with

the help of the ‘memoization’ mechanism.
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In our implementation, we defined the following data structures: Term, Equation,

Rule, Node, Nodes. Among them, nodes is a potentially infinite data structure because

it is a set of nodes the number of which may keep increasing during the procedure.

One may think that we can simply define the nodes as a lazy structure, so that when

one of its nodes is accessed, other ones remain untouched. However, because we use

the open/closed lists algorithm to search the database and pick from the open list

the node with the smallest term pair, the system has to check every node of the open

list to decide which one to pick first. That means every node would be accessed at

least once, which would not benefit from the advantage (i) of lazy evaluation.

The same situation applies to the implementation of term. A size() function of

term returns the number of its subterms. Even if we define the subterms as a lazy

structure, since every subterm will be accessed at least once, it will turn out that

there is no difference from the normal ‘eager-evaluation’ settings.

However, we can make use of the advantage (ii) of lazy evaluation by storing

the result of evaluation. For example, we can still define subterms of a term as a

lazy structure, because it is so frequently accessed during the procedures and the

returning results do not change as long as the term does not change.

Example 5.3.1. There are two functions and one lazy value. Firstly, define a lazy

value subts (line 2) for storing the result of getsubterms (line 3). Then define a nor-

mal function (line 1) to get this value. Notice that, getsubterms() is only invoked

once no matter how many times subterms() is invoked.

1 def subterms()= subts

2 lazy val subts = this.getsubterms()

3 def getsubterms(): Seq[Term] = {

4 //calculate and return all subterms

5 ...

6 }

As for the size() function, we can also put its result into a lazy value just like the
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tricky usage introduced in Example 5.3.1 to make it a “lazy function”.

Another example is a lazy hash table to divide the set of nodes by their size.

Because subsume() function is invoked frequently during the whole procedure both

in MKB/MRIt, it would make the program slower to simply check all of the nodes

in N , when N was updated after rewrite operations. To gain efficiency, we created

a lazy hash map [Is,N], where N is a list of nodes and Is is a lazy value defined in

the node class as the size of the node (i.e., for a node n = 〈s : t, r0, r1, e〉, n.size =

s.size + t.size), so that we need only check the nodes with the same size as the

original nodes. This check can be done efficiently by using the hash map with the

node size as its key. In other words, for every n ∈ N , n uses its size In as the key

to [Is,N], then the set Nn containing all the nodes with same size In is looked up for

the nodes with variant data.

Example 5.3.2. Define the hash map [Is, N ] as a lazy value lazy, so that it is calculated

only once and then be stored as a constant object ready to be returned for repeated

calculation requests afterwards.

1 lazy val hashtable:HashMap[Int,List[Node]]={

2 //calculate and return hashtable

3 }

All of the lazy values used in multi-context reasoning schema are summarized

in Table 5.1. The ‘Class’ column indicates the classes holding the lazy values, while

the ‘Lazy values’ column represents the specific lazy values set in the corresponding

classes.

Table 5.1 lazy values
Class Lazy values

Nodes hash table labels
Term size subterm
Node label size(hash index)
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Chapter 6

Experiments and Discussion

6.1 Completion Problems

In this section, we will show how lz-mkb performed with the lazy evaluation

when run on a PC with i5 CPU and 4GB main memory. All the problems solvable

using the lexicographic path orderings for the termination check were selected as the

sample problems from [39]. For example, the problem 1 is from the group theory. It

contains three equations

E0 =


f(x, f(y, z)) = f(f(x, y), z),

f(x, i(x)) = e,

f(x, e) = x


where {f, i, e} are function symbols (f is a binary operation, i represents the inverse

and e is the identity element) and {x, y, z} are variables. Given E0 and total lexi-

cographic path orderings on {f, i, e}, the program returned a complete TRS Rc as
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follows:

Rc =



f(x, i(x))→ e

f(i(y), y)→ e

i(e)→ e

i(f(x, z))→ f(i(z), i(x))

i(i(x))→ x

f(x, e)→ x

f(e, x)→ x

f(i(x), f(x, z))→ z

f(x, f(i(x), z))→ z

f(f(x, y), z)→ f(x, f(y, z))


The computation time for each examined problem is summarized in Table 6.1.

The results obtained by the program using the lazy evaluation are labeled lz-mkb,

and those obtained by the original one are labeled mkb. Clearly, lz-mkb is more

efficient than mkb in all the problems examined.

Table 6.1 computation time of mkb and lz-mkb

problem mkb(ms) lz-mkb(ms) reduced time reduced(%)

1 15003 1959 13044 86.94
2 160 130 30 18.75
5 14997 2738 12259 81.74
8 275 205 70 25.45

11 90 60 30 33.33
14 480 351 129 26.88
17 85 65 20 23.53
19 730 471 259 35.48
30 140 95 45 32.14

avg. - - - 40.47

We have summarized the lazy values used during the experiments in Table 5.1.

The label in Node n = 〈s : t, r0, r1, e〉 calculates the union of r0, r1 and e. The variable

labels in Nodes N collects all labels of the nodes in N . Associated with N is a hash
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table which stores the nodes using their size as the hash key. It is used to gain effi-

ciency during the optional operation N.subsume(). The size and subterm in Term

are called frequently during the whole rewrite operation.

To see the different effects to the efficiency of the program with lazy Nodes(hash

table,labels), lazy Term(size,subterm) or lazy Node(label,size), we ran them sepa-

rately with the same problems as Table 6.1. The results are shown in Tables 6.2, 6.3,

and 6.4.

Table 6.2 mkb and lz-mkb (lazy nodes only)

problem mkb(ms) lz-mkb(ms) reduced time reduced(%)

1 15003 12303 2700 18.00
2 160 140 20 12.5
5 14997 14468 529 3.53
8 275 230 45 16.36

11 90 75 15 16.67
14 480 400 80 16.67
17 85 80 5 5.88
19 730 570 160 21.92
30 140 130 10 7.14

avg. - - - 13.18

Table 6.3 mkb and lz-mkb (lazy term only)

problem mkb(ms) lz-mkb(ms) reduced time reduced(%)

1 15003 2624 12379 82.51
2 160 145 15 9.38
5 14997 3890 11107 74.06
8 275 255 20 7.27

11 90 76 14 15.56
14 480 440 40 8.33
17 85 80 5 5.88
19 730 660 70 9.59
30 140 110 30 21.43

avg. - - - 26.00

We can see the program with “lazy nodes only” (Table 6.2) works well with

about 13 % reduced time on the average, because among all the callings of operation

union(N,N’) quite many of them return the original N , so the duplicate calculation
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of the hash table is avoided. Also, the examination with “lazy term only” (Table

6.3) shows the best result with 26 % reduced time due to the frequency of rewriting

callings during the whole procedure. However, the results with “lazy node only”

(Table 6.4) are not very well with only 1.2 % reduced time (they have nearly the

same computation time with the program without lazy values). The label and size

in Node are always called at least once for every node by Nodes to create its hash

table or check the end conditions, which could be the explanation for the results in

Table 6.4.

Table 6.4 mkb and lz-mkb (lazy Node only)

problem mkb(ms) lz-mkb(ms) reduced time reduced(%)

1 15003 14880 123 0.82
2 160 155 5 3.13
5 14997 14921 76 0.51
8 275 270 5 1.82

11 90 90 0 0
14 480 475 5 1.04
17 85 85 0 0
19 730 725 5 0.68
30 140 136 4 2.86

avg. - - - 1.21

6.2 Rewriting Induction Problems

In this section, we talk about some experimental results of lz-itp. In the imple-

mentation of lz-itp, we used a built-in termination checker (developed by ourselves)

based on the dependency-pair method [4] [14] [15]. We also used the combination

of polynomial interpretation and SAT solving as proposed in [13] in order to find

reduction orders for ensuring termination. All experiments were performed on a

PC with i5 CPU and 4GB main memory.
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First we consider a propositional logic problem from [10]:

R =



not(T )→ F

not(F )→ T

and(T, p)→ p

and(F, p)→ F

or(T, p)→ T

or(F, p)→ p

implies(p, q)→ or(not(p), q)

We prove the theorem

implies(and(p, q), or(p, q)) = T

by at least two EXPAND operations. It is obvious that the left-hand side of the theo-

rem can be rewritten to

or(not(and(p, q)), or(p, q))

by the last rule implies(p, q)→ or(not(p), q) first. Then it can be expanded to

or(not(and(T, p)), T ) = T,

or(not(and(F, p)), p) = T,

where the first conjecture will be rewritten to or(not(p), T ) = T which needs the

second expansion to finish the proof.

We can also expand the original target directly into

implies(p, or(T, p)) = T,

implies(F, or(F, p)) = T.
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After the simplification of the first conjecture we will still get

or(not(p), T ) = T

to be ready for the second expansion. As we can see, although the length of the

proof did not change, in our program, the first method checked 7 nodes with one

successful process over 2 processes and the second checked 11 nodes with 2 success-

ful processes over 6 processes.

Some other problems from [1] [10] also showed the similar performance sum-

marized in the Table 6.5 and Table 6.6: where “# of nod.” shows the number of

Table 6.5 simplify first
problem time (ms) # of nod. # of succ. # of proc.

ex 1 17988 263 9 105
ex 2 6706 305 2 32
ex 3 1108 37 2 9

Table 6.6 expand first
problem time (ms) # of nod. # of succ. # of proc.

ex 1 47866 276 18 223
ex 2 7075 398 2 26
ex 3 1322 57 2 11

processed nodes when the procedure succeeded; “# of succ.” shows the number

of successful processes on average during the computation; “# of proc.” shows the

number of all processes when a process has succeeded. We can see that in these

problems, the “simplify first” strategy could reduce the number of processed nodes

so that the computation time of the whole procedure was also reduced.

In our implementation, the SIMPLIFY operation tries two rewrite strategies: the

leftmost innermost strategy and the leftmost outermost strategy. Since MRIt also

works on the set of nodes, we exploited the lazy evaluation scheme for the nodes

manipulation proposed in [23] [24] to gain more efficiency. Moreover, we imple-

mented the lemma exploration function with divergence detection [41] to deal with
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the lemma-required problems. The problems selected from [1] which need appro-

priate lemmas were examined as shown in Table 6.7.

Table 6.7 experimental results of inductive theorem problems
problem lem 1 lem 2 lem 3 lem 4 lem 5 lem 6

lz-itp 602 932 12379 17738 1050 1023
mrit+ 615 969 12801 18090 1075 1049
mrit - - 12952 - - -

Note that the mrit+ in Table 6.7 stands for an implementation of MRIt with

lemma exploration, while the mrit stands for the original implementation of MRIt.

The mrit failed in most of the cases with a time limit in 60000ms. We can see lz-itp

which used the lazy evaluation was more efficient than mrit+.

6.3 Lemma-Required Problems

In this section, we present some results of the experiments to see how POS-

TULATE BY PERIPHERAL SCULPTURE and POSTULATE BY JOINING are effective in

MULTI-CONTEXT POSTULATE.

6.3.1 Settings for Experiments

The experiments were performed with MRIt and MRIt+ on a PC with i5 CPU and

4GB memory. We used a total of 80 test problems, most of which were modified from

Dream Corpus examples created by the Mathematical Reasoning Group, University

of Edingurgh. The test problems borrowed from Dream Corpus are available at:

http://kussharo.complex.eng.hokudai.ac.jp/∼haru/mrit/. All the problems men-

tioned in Table 6.8 are listed in Appendix B. In Dream Corpus, there were 69 uncon-

ditional equational problems suitable for the input to our system. In addition, we

included 11 other problems which cannot be solved without lemma generation. For

MRIt+, we had developed a built-in termination checker based on the dependency-

pair method [4] [14] [15]. We had also implemented the combination of polynomial
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interpretation and SAT solving as proposed in [13]. The time limit for each problem

solving was set to 15 minutes.

We used the following strategy to apply the inference rules of MRIt+.

(i) Choose a node n with the smallest size (where the size of a node 〈s : t, ...〉 is

the number of symbols constituting s and t), then apply EXPAND.

(ii) Normalize all nodes by applying SIMPLIFY-R and SIMPLIFY-H.

(iii) Apply DELETE, GC, SUBSUME and SUBSUME-P as much as possible, and if there

exists a process p such that E[N, p] = ∅, then stop with success.

(iv) Apply MULTI-CONTEXT POSTULATE, then activate the filtering process (where

the maximal size of the randomly-generated ground terms is limited to 3), and

go back to step (i).

To increase the capability of dealing with more potential proofs, we changed a

condition in the EXPAND inference rule from u ∈ B(s) to u ∈ QB(s) based on [3] as

follows. A term u is a quasi-basic term with respect to R, if (1) root(u) is a defined

symbol and (2) for all l → r ∈ R such that l is a basic term, l is unifiable with

cap(u), where cap(f(u1, ..., un)) is a term f(w1, ..., wn) with each wi obtained from ui

by replacing maximal subterms with defined root symbol by fresh constants. The set

of quasi-basic terms of s is denoted by QB(s).

For example, when R = {0 + x→ x, s(x) + y → s(x+ y)}, the term z + (v + 0) is

not basic but quasi-basic, as each left-hand is unifiable with z + c, where c is a fresh

constant.

Note that in the original definition by Aoto [3], cap was defined with fresh vari-

ables (rather than constants) prohibited from being instantiated when unifying cap(u)

with l. This would require a slightly special unification algorithm. Implementable

with the standard unification algorithm, our definition is slightly simpler than and

clearly equivalent to Aoto’s (as constants are never instantiated).
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6.3.2 Results of Experiments

Among the test problems, 36 problems were solved by MRIt (without auto-

mated lemma generation). As for the rest of the problems (which, intuitively, need

lemmas), MRIt+ (with MULTI-CONTEXT POSTULATE including both BY PERIPHERAL

SCULPTURE and BY JOINING) solved 18 more problems that MRIt failed to solve.

We also separately tested these problems according to the combinations of the two

postulation methods and summarized the results in Table 6.8.

Table 6.8 experimental results of lemma-required problems
SCULPTURE JOINING SCULPTURE&JOINING

No. time SUG/ #of time SUG/ #of time SUG/ #of
(ms) GENR proc. (ms) GENR proc. (ms) GENR proc.

p 1 1688 19/113 13 ∞ - - 1662 19/113 13
p 2 1286 10/14 11 ∞ - - 1232 10/14 11

p 21 967 13/13 15 ∞ - - 992 13/13 15
p 22 28850 200/200 286 2362 7/7 22 2793 32/32 47
p 23 6875 29/29 26 5347 6/22 11 7090 35/51 28
p 24 7853 74/74 79 1348 2/2 9 1408 23/23 24
p 25 1612 25/25 40 ∞ - - 1732 25/25 40
p 26 10475 66/66 47 ∞ - - 29508 212/262 127
p 27 2225 14/14 19 2001 2/2 15 1904 16/16 21
d 25 ∞ - - 9433 133/240 36 9088 133/240 45
d 43 ∞ - - 775 18/32 4 737 18/32 4
d 47 ∞ - - 258 8/10 4 212 8/10 4
d 60 ∞ - - 1679 26/26 10 1683 26/26 10

d 111 ∞ - - 878 4/46 12 805 4/46 12
d 116 ∞ - - 729 4/40 12 891 4/40 12
d 232 460 6/6 5 ∞ - - 656 10/12 5
d 270 68603 864/2076 54 ∞ - - 48090 472/1170 222
d 1052 3108 16/16 28 2829 15/15 12 2902 19/19 15

In Table 6.8, the problem numbers with the prefix “d ” indicate some of the 69

problems selected from Dream Corpus, and those with “p ” indicate some of the

11 problems added by the authors. The first header indicates whether the problems

were tested by SCULPTURE only, JOINING only or both SCULPTURE and JOINING. The

“time(ms)” column shows the computation time of MRIt+ in milliseconds, where∞

indicates that MRIt+ did not succeed within the time limit of 15 minutes (900000

ms). The “SUG/GENR” column shows the rate of generated conjectures that got
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through the test by the conjecture filter, where GENR indicates the number of gen-

erated conjectures and SUG indicates the number of suggested lemmas that passed

the conjecture filter. The “# of proc.” column shows the number of the generated

processes in MRIt+, where the data are given only for the successful trials, as other

trials are considered to have generated an indefinite number of processes.

The results are very pleasing. The problems p 1,p 2,p 21,p 25, p 26, d 232 and

d 270 could not be solved by JOINING but solved by SCULPTURE. In particular, p 1

was solved automatically, although the work in [41] had suggested some additional

manual works to resolve the divergence. The problems d 25, d 270 and all prob-

lems with the prefix “p ” introduced complex differences as discussed in Example

4.9 (i.e., parallel and nested differences), but our method could treat such differ-

ences appropriately at a relatively small cost. Note that, by renaming reverse to r,

the problem d 43, r(r(x : xs)) = x : xs, is essentially equivalent to Example 3.1,

r(r(xs)) = xs, because r(r(nil)) = nil, the base case for the latter, is trivially estab-

lished by proving (6). In fact, both problems have been solved by MRIt+.

By observing the “SUG/GENR” columns, we see that the conjecture filter pre-

vents incorrect conjectures from being suggested as lemmas for further processing.

Clearly, the rate of correctly generated lemmas depends on the specific problems

with specific methods. The average rate of correctly generated lemmas was 87% in

SCULPTURE and 67% in JOINING.

6.3.3 Effectiveness of Peripheral Sculpture

The SCULPTURE method and the JOINING method can mutually strengthen the

ability of generating effective lemmas to solve more problems, because one can solve

some problems that the other could not. In addition, these two methods can also

solve the same problems by postulating different conjectures. In our experiments,

we have observed such different resolutions of different divergences in five prob-

lems: p 22, p 23, p 24, p 27 and d 1052. For example, in the experiment with p 24,
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we observed a process generating the following diverging sequence:

y + (x+ y)→ (y + y) + x,

y + s(x+ s(y) ) → (y + s(y) ) + s(x) ,

......

SCULPTURE successfully resolved this divergence and completed the proof after pos-

tulating the following conjecture:

ν + (x+ y) = (ν + y) + x.

Meanwhile, another process started to generate another diverging sequence as fol-

lows:
y + 0→ y,

y + s(0) → s(y) ,

......

JOINING resolved this divergence and completed the proof after postulating the fol-

lowing conjecture:

y + s(x) = s(y + x).

Since these two processes are run concurrently, MRIt+ will complete the proof suc-

cessfully as soon as one of them succeeds. In our actual experiment, JOINING reached

the success earlier than SCULPTURE. Note that the overhead by running SCULPTURE

together with JOINING for this case (p 24) was only 1408− 1348 = 60 ms, i.e., 4.3%.

Intuitively, JOINING focuses on the parts inside the wave-fronts, while SCULP-

TURE works on the opposite way by focusing on the parts outside the wave-fronts.

Such different characteristics of them are why we can expect them to resolve differ-

ent divergences in different processes of MRIt+.
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6.3.4 Effectiveness of Multi-Context Postulation

An obvious advantage of multi-context reasoning systems commented in [35] is

that they allow, in parallel, various strategies to be tried and various non-deterministic

choices to be made in an efficient way. Thanks to this advantage, MULTI-CONTEXT

POSTULATE can increase the possibility of success by combining different postula-

tion methods in multi-context reasoning. In particular, there is no need to care about

the unsoundness of the lemma postulation methods. By observing the “SCULP-

TURE&JOINING” column in Table 6.8, we see that SCULPTURE and JOINING worked

very well together in MULTI-CONTEXT POSTULATE and solved the problems that

might not have been solved otherwise. Since it is hard in practice to predict which

process may face what kind of divergence, we use MULTI-CONTEXT POSTULATE to

automatically give every diverging process a chance to adopt different postulation

methods in different combinations.

In particular, multi-context reasoning can help different postulating methods co-

operate with each other for leading to easier proofs. For example, in d 270, SCULP-

TURE suggested a conjecture

(ν + (x+ 0)) + (y + 0) = ν + (x+ y)

which could lead to a successful proof by picking up the subterm x+0 for expansion.

However, if JOINING had been enabled as well, it additionally suggested a smaller-

sized conjecture

(x+ y) + z = x+ (y + z)

after ν + (x + 0) was picked up for expansion. Simple enough to be focused on by

the heuristics of MRIt+, this conjecture turned out to be very useful for a shorter

proof. This is why MULTI-CONTEXT POSTULATE with both PERIPHERAL SCULPTURE

and JOINING spent less time than that with SCULPTURE only, as shown in the d 270

row of Table 6.8.
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Chapter 7

Conclusion

In this dissertation, we proposed a new automated lemma generation method pe-

ripheral sculpture and multi-context schemes to incorporate this method for rewriting

induction. We also presented: 1) new implementations of multi-context completion

system lz-mkb based on MKB, 2) new implementations of multi-context algebraic

inductive theorem prover lz-itp based on MRIt, both of which efficiently simulate

the execution of parallel KB/RIt processes by dynamically dealing with the non-

deterministic choices. Because these systems rely on the manipulation of the node

database, we exploit the lazy evaluation schemas [23] [24] to gain more efficiency.

In rewriting induction (RI), the importance of lemma generation arises because

the divergence prevents the procedure from getting a successful proof if no appro-

priate lemmas are postulated. Supplying appropriate lemmas is generally difficult

since acquiring mathematical intuition and experience to postulate lemmas is not

a trivial task to general users. Automated lemma generation, therefore, is desired.

The classic unsound lemma generation method [41] gives higher ability of generat-

ing appropriate lemmas with a modest computational cost. We put into the Walsh’s

framework a new heuristic lemma generation method, peripheral sculpture by the fol-

lowing steps: 1) detect a potential divergence from the sequence of generated con-

jectures; 2) generate candidate lemmas by calculating the peripheral sculptures in the

diverging sequence. Our method greatly improves the practical usefulness to make

the theorem prover more powerful without introducing significant cost increase.
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Since the method is unsound, there is no guarantee of the correctness of the gen-

erated candidate lemmas. If the system accepts a wrong lemma, it could cause an

infinite sequence of wasteful inferences. Therefore, we need to separate into par-

allel contexts the choices of whether to accept the candidate lemma or not. From

this point of view, the combination of multi-context induction and lemma genera-

tion can be a new research area of automated reasoning. As a means to study this

area, we extended the efficient multi-context rewriting induction system of Sato and

Kurihara [35] with our lemma generation method. The experimental results show

that, with no much redundant costs, we have succeeded in solving several lemma-

required benchmark problems which encountered complex differences (i.e., parallel

and nested differences) and which the original systems [35] [41] could not solve.

There are several problems of KB or RI/RIt in practice. Firstly, the problem of

KB is that it is difficult to set an appropriate reduction orders before the procedure

starts. Secondly, the problem of RI/RIt is that the nondeterministic choices may

cause the procedures to end up with failing results (i.e., divergence or fail). Thirdly,

appropriate lemmas are often required in practice for RI/RIt to achieve successful

proofs. The first problem can be partially solved by the multi-context reasoning

system MKB which simulates the mutually related processes into virtually single

processes. As for the second and third problems, MRIt pursues all nondeterministic

choices trying to lead the procedure to a successful result by exploiting the schema

of MKB. We expanded our method into multi-context schema to offer a practically

useful framework for inductive theorem provers. In the implementation, we de-

signed the systems in an object-oriented way so that we could build and reuse the

classes to organize the term structures, substitutions, nodes, inference rules, etc.

At the same time, we followed the discipline of functional programming in coding

so that it could be safer and easier to execute the program in a physically parallel

computational environment. We also enabled lazy evaluation mechanism of Scala to

improve the performance when the systems face large problems. The results show

that our algebraic reasoning systems lz-mkb and lz-itp are more efficient than the
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original ones of MKB or MRIt.

Combination with other postulation methods (target-aimed or bottom-up) in

multi-context reasoning systems to develop more powerful and efficient inductive

theorem provers is clearly one of the future works.
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Appendix A: Inference Rules of MRIt

DELETE: N ∪ {〈s : s,H1,H2, E〉} ` N

EXPAND: N ∪ {〈s : t,H1,H2, E ∪ E′〉} `

N ∪ {〈s : t,H1 ∪ E′,H2, E〉}

∪ {〈s′ : t′, ∅, ∅, E′〉 | s′ ↔ t′ ∈ Expdu(s, t)}

if E′ 6= ∅, u ∈ B(s) and

H[N, p] ∪ R ∪ {s→ t} terminates for all p ∈ E′

SIMPLIFY-R: N ∪ {〈s : t,H1,H2, E〉} `

N∪


〈s : t,H1,H2, ∅〉,

〈s′ : t, ∅, ∅, E〉


if E 6= ∅ and s→R s′

SIMPLIFY-H: N ∪ {〈s : t,H1, H2, E〉} `

N ∪


〈s : t,H1,H2, E\H〉,

〈s′ : t, ∅, ∅, E ∩H〉


if E ∩H 6= ∅, 〈l : r,H, . . . , . . . 〉 ∈ N ,

and s→{l→r} s
′

FORK: N ` ψP (N)

for some fork function ψ and a set P of processes in N

GC: N ∪ {〈s : t, ∅, ∅, ∅〉} ` N

SUBSUME: N ∪


〈s : t,H1,H2, E〉,

〈s′ : t′,H ′
1,H

′
2, E

′〉

 `
N ∪ {〈s : t,H1 ∪H ′

1,H2 ∪H ′
2, E

′′〉}

if s : t and s′ : t′ are variants and
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E′′ = (E\(H ′
1 ∪H ′

2)) ∪ (E′\(H1 ∪H2))

SUBSUME-P: N ` sub(N,L)

if ∀p ∈ L,∃p′ ∈ I(N)\L :

〈E[N, p],H[N, p]〉 = 〈E[N, p′],H[N, p′]〉

where I(N) denotes the set of all processes that appear in a label of a node in N and

sub(N,L) = {〈s : t,H1\L,H2\L,E\L〉| 〈s : t,H1,H2, E〉 ∈ N}.

Appendix B: Problems and Generated Lemmas

Some problems used in our experiments and lemmas automatically generated

by MRIt+ with the SCULPTURE&JOINING setting are listed in this appendix.

Each problem starts with its name, followed by rewrite rules (as axioms), followed

by an equation (as an inductive theorem to be proved), and ends with the generated

lemmas displayed in square brackets.

• p 1

nil@x→ x

(x : ys)@zs→ x : (ys@zs)

(xs@xs)@xs= xs@(xs@xs)

[(xs@ys)@zs = xs@(ys@zs)]

• p 2

0 + y → y

s(x) + y → s(x+ y)

(x+ x) + x = x+ (x+ x)

[(x+ y) + y = x+ (y + y)]
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• p 21

0 + y → y

s(x) + y → s(x+ y)

(x+ y) + x = x+ (y + x)

[(x+ y) + z = x+ (y + z)]

• p 22

0 + y → y

s(x) + y → s(x+ y)

(x+ y) + x = x+ (x+ y)

[x+ s(y) = s(x+ y)]

• p 23

0 + y → y

s(x) + y → s(x+ y)

(x+ y) + x = y + (x+ x) (x+ 0) + y = x+ y

(x+ s(y)) + z = s((x+ y) + z)


• p 24

0 + y → y

s(x) + y → s(x+ y)

(x+ x) + y = x+ (y + x)

[x+ s(y) = s(x+ y)]

• p 25

0 + y → y

s(x) + y → s(x+ y)
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(x+ x) + y = x+ (x+ y)

[(x+ y) + z = x+ (y + z)]

• p 26

0 + y → y

s(x) + y → s(x+ y)

(y + x) + x = x+ (x+ y)x+ (y + 0) = x+ y

x+ (y + s(z)) = s(x+ (y + z))


• p 27

0 + y → y

s(x) + y → s(x+ y)

(y + x) + x = x+ (y + x)

[x+ s(y) = s(x+ y)]

• d 25

(x : xs)@ys→ x : (xs@ys)

nil@ys→ ys

reverse(x : xs)→ reverse(xs)@(x : nil)

reverse(nil)→ nil

reverse(xs@ys) = reverse(ys)@reverse(xs)

[xs@(ys@zs) = (xs@ys)@zs]

• d 43

(x : xs)@ys→ x : (xs@ys)

nil@ys→ ys

reverse(x : xs)→ reverse(xs)@(x : nil)
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reverse(nil)→ nil

reverse(reverse(x : xs)) = x : xs

[reverse(xs@(x : nil)) = cons(x, reverse(xs))]

• d 47

(x : xs)@ys→ x : (xs@ys)

nil@ys→ ys

reverse(x : xs)→ reverse(xs)@(x : nil)

reverse(nil)→ nil

length(x : xs)→ s(length(xs))

length(nil)→ 0

length(reverse(xs)) = length(xs)

[length(xs@(x : nil)) = s(length(xs))]

• d 60

0 + y → y

s(x) + y → s(x+ y)

0 ∗ y → 0

s(x) ∗ y → y + (x ∗ y)

double(0)→ 0

double(s(x))→ s(s(double(x)))

double(x) = s(s(0)) ∗ x

[x+ s(y) = s(x+ y)]

• d 111

0 + y → y

s(x) + y → s(x+ y)

difference(0, j)→ 0
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difference(s(i), 0)→ s(i)

difference(s(i), s(j))→ difference(i, j)

difference((y + x), x) = y

[x+ s(y) = s(x+ y)]

• d 116

0 + y → y

s(x) + y → s(x+ y)

difference(0, j)→ 0

difference(s(i), 0)→ s(i)

difference(s(i), s(j))→ difference(i, j)

difference(s(y + x), x) = s(y)

[x+ s(y) = s(x+ y)]

• d 232

0 + y → y

s(x) + y → s(x+ y)

0 ∗ y → 0

s(x) ∗ y → y + (x ∗ y)

s(s(0)) ∗ x = x+ x

[x+ (y + 0) = x+ y]

• d 270

0 + y → y

s(x) + y → s(x+ y)

0 ∗ y → 0

s(x) ∗ y → y + (x ∗ y)

s(s(s(s(0)))) ∗ x= s(s(0)) ∗ (s(s(0)) ∗ x)
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 (x+ (y + 0)) + (z + 0) = x+ (y + z)

(x+ y) + z = x+ (y + z)


• d 1052

0 + y → y

s(x) + y → s(x+ y)

0 ∗ y → 0

s(x) ∗ y → y + (x ∗ y)

(x+ y) ∗ z = (x ∗ z) + (y ∗ z)

[(x+ y) + z = x+ (y + z)]
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