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Introduction

Materials Informatics (MI) gains recently remarkable attention from both academic

and industrial field with the goal of efficient material research. A traditional ap-

proach for material development is carried out in research laboratory with hidden

failure experiment and its feedback by individual specialized researchers. This

approach normally requires time and cost to develop practical materials due to its

try-and-error process, but at the same time, this costly error process can be a great

information for the next success. The material design now is advanced with a de-

velopment of computation equipment and methodology; some specified systems

can be simulated by computation with sufficient accuracy, such as fluid dynamics

and chemical dynamics. In the field of materials design, density functional the-

ory(DFT) is one of the revolutionary methods for novel materials modeling since

it can provide various kind of information from its calculations, for example, band

structure for electronic device, bulk modulus for structure materials, reaction path

evaluation for catalysis, etc. In particular, material predictions have been achieved

by DFT calculations against nano materials, such as nanoclusters, nanotubes and

two dimensional materials. And some of them are successfully synthesized and

applied into functional materials, especially, two dimensional materials are remark-

able nanomaterials because of its unique properties with wide range application:

from mechanical to medical usage. However, simulation has still disadvantage of

its accuracy and implementation for real material design, therefore, it cannot be the

most efficient method for material design. Consequently, simulations still rely on

researchers experience in the process of designing the new model materials, even

though this process can be replaced costly experimental process. MI is one covering
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tool for this empirical side in material design, predicting new materials from exist

data by applying data science. This method has great potential to discover new

materials since the all prediction process is conducted by stiff computer algorithm,

consequently, all data is treated equally unlike researchers inspiration. However,

MI has no established concrete method because of its novelty. In this study, both

computational(DFT) and MI method is implemented to discover novel two dimen-

sional materials.

In the 1st chapter, the overview of MI is explained: from the history to its concept

and outlook to the future research. The current progress in MI among both aca-

demic and industries are explained.

In the 2nd chapter, two dimensional materials, target materials of this research is

introduced in the view of its history and remarkable properties.

In the 3rd chapter, the fundamentals of first principle calculation is introduced. The

fundamental equations and theories are explained.

In the 4th chapter, the implementation of calculation code is explained. In particu-

lar, GPAW code, a DFT calculation code applied in the studies, are explained from

the point of view to feature functions, installation and high throughput calculation.

In the 5th chapter, the research result achieved by first principle calculation is in-

troduced. Hexagonal boron nitride (h-BN) is commonly known substance with

graphite-like layered materials. And two-dimensional boron phosphide (h-BP) is

predicted its existence and semiconductive property by first principle calculation.

Group XV atoms are common in these h-BN and h-BP two-dimensional materials,

hence, boron with Group XV atoms(M: As, Sb and Bi) are investigated and eval-

uated by first principle calculations due to designing novel materials. As a result,

those single layer boron based novel two-dimensional materials turned out to be

energetically stable, and their electronic property suggests a potential application

for semiconductor and catalyst. Band gap and binding energy in these single layer

boron based two-dimensional materials turned out to be proportionate to the Allen

electronegativity. Additionally, the layered structures are investigated, and zigzag

formation is proposed in B-Sb and B-Bi. And electronic structure turned out to
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differ from single layer materials.

In the 6th chapter, the fundamentals of machine learning is introduced for the expla-

nation for ML method within this research. In particular, the variation of machine

learning method is explained in the views of ML implumentation, and Naive Bayes,

implemented algorithm in the study, is introduced.

In the 7th chapter, the implementation of machine learning is explained. In par-

ticular, scikit-learn, a machine learning module for machine learning in Python

language program is introduced for MI implementation.

In the 8th chapter, the combined research result with first principle calculations and

MI is introduced. novel two-dimensional magnets are explored by materials infor-

matics approach and investigated by first principle calculations. 216 computational

two-dimensional material data within an open database is collected and explored

by machine learning. Gaussian naive Bayes algorithm is applied in order to predict

MoS2 shaped(AB2) and graphene shaped(AB) two-dimensional magnets with high

magnetic moment. As a result, novel 254 AB and AB2 two dimensional materials.

are explored as candidates with high magnetic moments. By the evaluation of first

principle calculations, 7 candidates are found to be energetically stable and have

high magnetic moment: MnPd2 , FeS, CrSe, CrS, MnTe, MnSe, and MnS.

In the 9th chapter, the research achievement are summarized. And perspective of

MI is discussed the feedback of this research. The both advantage and disadvantage

of theoretical data is explained in the consideration of doctoral studies. And future

perspective of MI is described by the consideration of experimental data implemen-

tation.



Chapter 1

Materials Informatics

1.1 History

Materials Informatics (MI) is a new stream of materials design technique originated

from the “Materials Genome Initiatives” project in the United States. MI is the com-

bined field of “Materials Science” and “Informatics” , which aims to reduce time

and cost for material development and practical application by applying data science

into material development. In traditional approach, new materials are designed, syn-

thesized, and evaluated by researchers’ inspiration or experience. Some innovative

materials, such as “Polytetrafluoroethylene(known as TeflonT M)”, “Neodymium

magnet(strongest permanent magnet; discovered by Masato Sagawa)”,“Conductive

polymers(Nobel Prize in Chemistry by Hideki Shirakawa, Alan MacDiarmid and

Alan Heeger.), have been discovered by chance. This discovery process stands on

assumption of human, which generally requires ”try-and-process“. For example,

researchers are firstly design materials with his/her assumption imaginary, then val-

idate this assumption by experiment: synthesizing and evaluating materials. Then,

the feedback is obtained from the experimental result and rebuild next strategy.

This process continues until the desired materials developed and evaluated, there-

fore, this approach sometimes cost time and money. In recent years, performance

of computers has dramatically improved, as well as the computer simulation tech-

niques,such as first principle calculations, have been developed. Consequently,

some costly process is alternated by computer simulation in materials design, how-
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ever, the ”try-and-error“ framework is still stand.

The raise of Informatics suggests one promising sight in Materials Science.

James Nicholas Gray(1944–2007), an American computer scientist, proposed that

this age is shifting to 4th paradigm in science.

1, Empirical approach (thousand years ago) Observation of natural phe-

nomenon and describing its mechanism. Example: Discovery of heliocen-

trism, stellar parallax, Mendelian inheritance, etc.

2, Theoretical approach (last few hundred years) Building models, or general-

izing observed phenomenon by mathematical equation. Example: Newtonian

mechanics, quantum physics theory, electromagnetics, logic gate, etc.

3, Computational approach (last few decades) Simulating complex phenomenon

by computation. Example: molecular modeling, fluid dynamics simulation,

weather forecast, electrical circuit modeling, etc.

4, Data exploration approach (nowadays) Gathering data from theory, experi-

ment and simulation.This research field is generally called “XX + informat-

ics” Example: Bioinformatics, Materials informatics, Chemoinformatics, As-

troinformatics, etc.

As his prediction, in these days, the interdisciplinary fields, which is com-

monly expressed as “XX + informatics” is raised in various fields. The field of

Material Science is not exception: the first movement of Materials Informatics

has begun in the United States. Combinatorial approach is firstly considered as

the potential method to shorten material development period, such as electron-

ics, catalysis and coatings. National Institute of Standard and Technology(NIST),

a non-regulatory agency of the United States of Commerce, built NIST Combi-

natorial Materials Center to develop organic material synthesis, high-throughput

screening and methodology of data accumulation. On the other hand, the Na-

tional Science Foundation(NSF) launched “Combinatorial Science and Materials
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Informatics Collaboratory(CoSMIC) to develop high-throughput experiment and

data analysis methodology by using mathematical and statistical approach. For the

Integration of obtained knowledge from those project, ”Materials Genome Initia-

tive(MGI)“ was established on 2011 as the national project of the United States

under Barak Obamas’s administration, in order to find a breakthrough method for

material design by applying data science approach. The one notable achievement

of MGI is discovery of solid state electrolyte for Li-ion battery without any experi-

mental try-and-error process: The research group of MIT and Samsung electronics

discovered the novel solid state electrolyte by using computer simulations and data

science approach[3]. MGI researchers said to be deeply involved this research.

After the establishment of MGI, countries all over the world begin to establish own

project related to Materials Informatics:

• European Union : NOMAD

NOMAD(Novel Materials Discovery)[4] is representative laboratory to dis-

cover materials by big data analysis and computational simulation. This lab-

oratory maintains database of input and output files of computational codes

to share among countries and research institutes, especially focused on func-

tional materials such as solar cells, structural materials and candidates of bat-

teries.

Switzerland has also established AiiDA[5] with the aim to collect electronic

structures calculated by first principle calculations.

• China : Chinese MGI

China has also undertaken for Chinese ”MGI“ project under the Chinese

Academy of Sciences[6]. In the educational side, Shanghai University es-

tablished ”Materials Genome Institute“ to train for the expert of Materials

Informatics[6].

• Japan : MI2I

Japan has launched ”Materials research by Information Integration Initiative(MI2I)“
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in National Institute of Material Science(NIMS) under the project of Japan

Science and Technology Agency(JST). MI2I is mainly focused on developing

storage battery materials, magnetic materials, thermal management materi-

als and thermoelectric materials. MI2I is aims to establish under the goals

below[7]:

– Creating a system of industryacademiagovernment collaboration over a

wide range of areas, from materials science to information and mathe-

matical sciences

– Promoting the participation of companies from various fields in the cre-

ation of an open innovation hub for work on data-driven (information-

integrated) materials research.

The achievement by Materials Informatics is also raised in recent years:

In Japanese research, several research group achieved to find out new materials

by applying first principle calculation and Materials Informatics approach. The re-

search group of SHARP Corporation and Kyoto University discovered new lithium

iron phosphate cathode in 2014[8] The research group of Tokyo Institute of Tech-

nology succeeded to develop novel red light emitting diode without rare earth[9]

The experimental approach is also ongoing by Materials Informatics approach, such

as high-temperature ferroelectric perovskites[10],

Industries also begin to work on into Materials Informatics to develop their

products with efficiency. BASF(World’s largest chemical company) has began re-

search collaboration with Citrine Informatics to use artificial intelligence (AI) to

accelerate the development of new environmental catalyst technologies[11]. Toyota

research institute in the U.S. has invested 35 million dollars for 4 years research to

help accelerate the design and discovery of advanced materials by using AI[12]. In

Japanese companies, Fujitsu, NEC and Hitachi has started to apply Materials Infor-

matics approach in order to develop batteries and heating materials[13]. Fujitsu has

established special team for Materials Informatics in device and material laboratory.

By combing Fujitsu’s technology of supercomputer, a tons of material data has been
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collected by first principle calculation for data-mining.

1.2 The material data handling
Materials Informatics fundamentally needs material data in advance(Figure 6.2).

This data includes both experimental and theoretical(simulation). One of the most

important data in database is negative data. Researchers tend to pay attention to

materials with remarkable properties because it will be the clue of novel material

discovery. However, in Materials Informatics approach, negative data will func-

tion to identify ”less promising“ candidates by analyzing data structure of whole

material database. The existing materials data is preprocessed due to adaptation of

machine learning.

Figure 1.1: The image of Materials Informatics.

Data acquisition method is first and important point for Materials Informatics

since the quality of data is strong factor for material prediction. In the data science,

ideal data is identified in the following 3 aspects.

• Quality of data
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Fixed quality is needed. If the most of data is fake, or data quality is sparse,

nature of data cannot be captured.

• Homogeneity of data

Dispersed data is preferable to capture the nature of data, in other words,

negative study data could be helpful.

• Quantity of data

Large quantity of data can hide negative aspect(such as internal error) of data

statistically.

In the material data, ”experiment“ and ”simulation“ data is exist. These two

data has each character in the sight of data science, so the data should handle in ”the

right place“.

Simulations

Simulation can provide ideal data for informatics in the sight of its homogeneity,

flexibility and reproductivity.

The most common method for data acquisition is first principle calculation in

these days. First principle calculation provides various kind of information in one

calculated results, such as structure parameters, electronic properties, bulk modulus,

reaction paths etc. However, simulation provides limited information by its nature.

For example, DFT calculation result fundamentally cannot include the thermal ef-

fect, and accuracy of result is dependent on constituent atoms, or its calculation

parameters. Additionally, DFT calculation models contain no aspects for material

design, for example, unrealistic structure for synthesis, lack of aspects in material

functions(e.g. thermal effect in catalysis) etc.

Experimental

The experimental data is the most realistic data for material design., which can

provide experimental condition information simulation cannot provide, such as re-

action pressure, temperature. This aspect has already reported in the oxidation cou-

pling of methane(OCM) catalyst[14]. However, existing experiment data has dis-

advantage for implementation to Materials Informatics in the views of following 3
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aspects:

• Quality

The data quality of experiment relays on actual operator of experi-

ment(sample preparation, data collection, etc). His/her skills and goal for

the experiment directly reflects on the quality of data.

• Homogeneity

The reported experimental data is normally concentrated in the field of ”good“

result. Experiment cost time and money so that experiment is not usually

carried out to obtain ”negative“ data intentionally, and negative data is seldom

reported on the paper.

• Dependency of analyzing instrument

Accuracy of analyzing instrument is different from each laboratory(calibration,

analyzing method, etc) and individual instrument.

Therefore, reported existing data, such as accumulated data by text mining

from papers, are carefully handled for the data processing process. The one so-

lution for this disadvantage can be developing high-throughput experiment. This

experiment approach provides experimental data with homogeneous data with the

same analyzing instruments rapidly. The rapidness also encourages to collect neg-

ative data intentionally, which is often avoided or ignored in conventional experi-

ment. Hence, the development of high-throughput experiment technique is highly

required for the advance of Material Informatics.

The collected data is properly organized in various usage aspects, such as uni-

fied units, standardized formats, guaranteed accuracy, etc. The important concept

of building database can be ”Ontology“. Ontology is one field of information sci-

ence, which defines the categories, properties, relations and relations in certain data.

The one successful example of ontology is gene ontology(GO)[15] in Bioinformat-

ics. GO realized the cross-comparison and combining of different types of gene

information obtained from different institution since containing data is well orga-

nized and described with each relationship by ontology. By this example, building
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ontology on material data is one of the most important key to accelerate material

discovery by Materials Informatics in the views of collecting ”useful“ data Materi-

als data ontology is recently being advocated in the sight of catalyst design[16].

1.3 Spectroscopy analysis in data science
The another problem of handling experimental data is mass analysis techniques.

High-throughput experiment can provide experimental data quickly, including spec-

troscopy data. However, spectroscopy analysis still relies on experimental op-

erator because of its complexity. One potential solution is applying informatics

approach on spectroscopy analysis. The development of high-throughput analyz-

ing is now ongoing issue by the implementation of informatics into analytical sci-

ence, such as X-ray near edge spectrum(XANES) in XAS[17, 18, 19, 20], Raman

spectroscopy[21, 22], and the research achievements are now frequently reported

in these days. The database construction is also ongoing for informatics approach,

such as X-ray absorption spectroscopy(XAS)[23].

Figure 1.2: The role of data-driven spectroscopy analysis in Materials Informatics.



Chapter 2

Two dimensional materials

Two dimensional materials are commonly popular crystalline materials with single

layer of atoms. The most popular two dimensional materials are graphene, one of

the carbon allotrope consisting plane single layer of carbon atoms with honeycomb

structure. Since the discovery of graphene in unique properties[24, 25], its unique

properties has been focused to develop novel materials, such as electronics, semi-

conductor, battery and energy conversion[26]. On the other hand, another types

of two dimensional materials are predicted to be theoretically exist by first princi-

ple calculations[27]. In this section, two dimensional materials, main target of this

research, are introduced.

2.1 Variation of two dimensional materials and their

properties
Since the discovery of graphene, various types of two dimensional materials are

synthesized experimentally, and tons of potential two dimensional materials are

proposed by first principle calculations.

2.1.1 Synthesized compounds

• Graphene

Graphene was discovered by Andrei Konstantinovich Geim, a Russian

physicist(1958-), in 2004. Regarding to those research achievement, Geim

won Nobel Prize in Physics with Konstantin Novoselov, as “for ground-
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breaking experiments regarding the two-dimensional material graphene”[28].

The word itself, “Graphene”, is formerly existed as the combination word

of “Graphite” and the suffix -ene. It is firstly named by Hanns–Peter

Boehm[29], who observed single–layer carbon foil in 1962[30]. Geim is

defined “Graphene is a single atomic plane of graphite, whichand this is

essentialis sufficiently isolated from its environment to be considered free-

standing”[31].

Several methods are available for the synthesis of graphene. Graphite is com-

monly known to have structure consisting multi–layered graphene with van

der Waals force between layers. Hence, Geim and Novoselov firstly used

adhesive tape to peel from bulk graphite to graphene flakes and transferred

them to a silicon wafer[28]. Structure of graphene is well known as the plane

honeycomb–like single sheet consisting with carbon atoms. The distance of

atoms are 1.42 Å[32]. First principle calculation suggest that a graphene sheet

needs more than 6000 carbon atoms to be thermodynamically stable[33]. This

instability in two dimensional crystal is considered for the reason of “rip-

pling” of the flat sheet in graphene[34, 35].

• Hexagonal boron nitride(h-BN)

Hexagonal boron nitride(h-BN), polymorph of boron nitride, is commonly

known because of its graphite-like layered structure. Weak van der Waals

force is exist in its interlayer, as similar as graphene. Hence, h-BN has also

known as the name “white graphene”. In the application aspects, h-BN is

firstly commercialized in cosmetics around 1940 in Japan due to its white

color. Since h-BN is chemically and thermally high stable, its ceramics are

widely applied to the materials for high-temperature environment. The an-

other implementation is as hybrid materials, such as alloys, resins, ceramics,

rubbers, by the usage of its self-lubricating properties. These hybrid materi-

als are applied to make bearings or be used in steel industries. Thus, h-BN

is can be defined as the most used two dimensional structured materials. The

hybrid material of graphene and h-BN is called “Borocarbonitrides”, which
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have B-C, B-N, C-N, and C-C bonds in its honeycomb ring[36, 37]. Boro-

carbonitrides varies its band gap(1.0-3.9 eV[38]) by tuning the content of the

carbon and boron nitride domains, considering promising material in elec-

tronic devices.

• Transition metal dichalcogenides(TMDCs)

Transition metal dichalcogenides(TMDCs) are also commonly known two

dimensional crystal compounds, such as MoS2[39], MoSe2[40], MoTe2[41,

42], WS2[43], and WSe2[44]. MoS2 has direct band gap and application to

transistors and in optics as emitters and detectors are proposed[45, 46, 47, 48].

• Germane

Germane is a graphene-like single layer material composed of germanium

one hydrogen bonded in the z-direction for each atom[49, 50]. Germane

was firstly synthesized by molecular beam epitaxy on (111) gold surface, and

structure was observed with scanning tunneling microscopy[51]. The prop-

erty was evaluated by first principle calculation and it revealed to be potential

material candidate for field-effect transistors[52]

• Bithmuthene

Bithmuthene is a two dimensional materials of Bismuth(Bi), synthesized on

SiC(0001) surface[53] and predicted to be a topological insulator by first prin-

ciple calculation.

• Silicene

Silicene is a two dimensional materials of Silicon(Si) with graphene-like hon-

eycomb structure, however, it have periodically buckled unlike graphene.

2.1.2 Theoretically predicted materials

First principle calculation is commonly used simulation method to understand the

physical properties of nano materials. This simulation method provides various

type of physical parameters within its simulated result(refer Chapter 3 and Chapter

4), hence, the exploration of potential nano materials are achieved, including two
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dimensional materials. It is reported that potential 700 two dimensional materials

have been predicted to be energetically stable by first principle calculations[27].

• Si2BN

Si2BN is a theoretically predicted two dimensional materials by first principle

calculation. This material is considered to have metallic properties with only

sp2 bonds[54].

• Transition metal trichalcogenides (TMTs)

TMTs are promising two dimensional material candidates in photoelectronic

properties predicted by first principle calculations, with the composition of

MX3(M=transition metal, X=chalcogenide)[55, 56]. TMTs is considered as

the potential candidate for photocatalytic water splitting[57, 58], optoelec-

tronic devices[57, 58, 59, 60, 61], Thermoelectric (TE) materials[62] and so-

lar energy conversion[57] energy conversion.



Chapter 3

Fundamentals of density functional

theory

Density functional theory (DFT) is one of the most popular method, and commonly

used in computational physics. DFT is powerful tool to describe the properties of

condensed matter systems due to its availability to various kind of materials, from

bulk to nano-scaled matter. DFT method stands on first principle theory based on

Schrödinger equation. Schrödinger equation is expressed as wave function, describ-

ing quantum state in certain condition. However, Schrödinger equation itself is im-

possible to solve because of N-body problem. In the natural condition, many-body

system is common so that approximation technique had been invented to describe

real quantum system. DFT was developed as the solution to overcome this problem

in order to reduce the 3N degree of freedom if the N body system by assuming its

electron density in three spacial coordinates. In this section, the basic idea of DFT

is given to introduce how the properties of designed materials are obtained from

calculated result.

3.1 Born-Oppenheimer Approximation
The first approach to solve many-body problem in quantum physics was achieved by

Born-Oppenheimer Approximation by assuming that nuclei is instantaneous. This

approximation is based on the idea of justification that nuclear motion (≈ 103 m/s) is

negligible by the comparison of electronic motion (≈ 106 m/s). This approximation
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implies that the solution of electron wave function is expressed as fixed Schrödinger

equation for Hamiltonian:

Ĥ = O[ρ] (3.1)

3.2 HohenbergKohn theorems
1st theorem

The ground state density of many electron system (ρ(−→r )) is correspondent to the

external potential(Vext) The ground state expectation value (Ô) can be described as

a unique function of the exact ground state electron density(equation(3.2)).

< ψ|Ô|ψ >= O[ρ] (3.2)

2nd theorem

The ground state total energy (EVext [ρ]≡H[ρ]) can be described as equation(3.3) if

(Ô) is Hamiltonian.

EVext [ρ] =< ψ|T̂ +V̂ |ψ >+< ψ|V̂ext |ψ > (3.3)

= FHK[ρ]+
∫

ρ(−→r )Vext(
−→r )d−→r (3.4)

• EVext [ρ]: The ground state total energy(=Minimal value for the ground state)

• FHK[ρ]: Hohenberg-Kohn density functional

These theorem implies that ground state density is correspondent to the exter-

nal potential. As considering 1st theorem, the electron density contains as much

information as the wave function. Consequently, 2nd theorem implies that ground

state density minimizes EVext [ρ], which can be obtained by applying Rayleigh-Ritz

method. The equation is the same for all many-electron system since the value

FHK[ρ] contains no terms of the nuclei and nuclear positions However, these theo-

rem didn’t provide the way to calculate the ground state density because they didn’t

give the value of FHK[ρ]. Therefore, the Kohn-Sham theory is introduced to solve

this FHK[ρ], which is the fundamental key to develop DFT.
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3.3 Kohn-Sham equations
Kohn and Sham developed “Kohn-Sham equation” in 1965[63] to compute ground

state, by providing the solution of FHK[ρ]. In this theory, FHK[ρ] was rewrote as the

following equation (3.5)

FHK[ρ] = T0[ρ]+VH [ρ]+Vxc[ρ] (3.5)

• T0[ρ]: the functional of kinetic energy for non-interaction electrons.

• VH [ρ]: Hartree contribution.

• Vxc[ρ]: Exchange correlation functional

This theorem, however, considers no electron-electron interaction, VH [ρ] ap-

proximates in electron interaction since it describes with the field obtained by av-

eraging at the position of existing electrons. Vxc[ρ] describes the effect originated

from electron exchange interaction and electron correlation. Hence, EVext [ρ] can be

expressed as

EVext [ρ] = T0[ρ]+VH [ρ]+Vxc[ρ]+Vext [ρ] (3.6)

This equation can be interpreted with the Kohn-Sham Hamiltonian as follows:

Ĥks = T̂0 +V̂H +V̂xc +V̂ext (3.7)

=− h̄
2m e

∇
2
i +

e2

4πε0

∫
ρ(−́→r )

|−→r −−́→r |
d−́→r ++V̂xc +V̂ext (3.8)

The exchange correlation operator V̂ext can be expressed as the functional

derivative:

V̂xc =
∂Vxc[ρ]

∂ρ
(3.9)

Therefore, Kohn-Sham theorem can be stated ”The exact ground state density

ρ(−→r ) of N-electron system can approximate as
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ρ(−→r ) =
N

∑
i=1

ψ
∗
i (
−→r )ψi(

−→r ) (3.10)

where the single particle wave function ψi(
−→r ) are the N lowest energy solu-

tions of the Kohn-Sham equation.”

Ĥksψi = εiψi (3.11)

3.4 Exchange-correlation functional
As explained in the previous section, exchange correlation functional, which ex-

press the effect originated from electron exchange interaction and electron correla-

tion, need to define to solve the Kohn-Sham equation. However, exact expression

of this effect is unavailable so the approximation approach is introduced. The old-

est approximation is LDA (Local Density Approximation), which is defined as the

following equation.

V LDA
xc [ρ] =

∫
ρ(−→r )εxc(ρ(

−→r ))d−→r (3.12)

where )εxc(ρ(
−→r )) is the exchange correlation function. This approximation

stands on the idea that the each point of exchange correlation energy is approxi-

mated locally by exchange correlation energy of homogeneous electron gas with

the same electron density. LDA provides good results for geometrical quantities in

atoms and simple molecule systems, such as bond length, electron densities, vibra-

tional frequencies and energy differences (ex: ionization potentials)[64]. However,

LDA overestimates the ground state energy in open shell atom system.

GGA (Generalized Gradient Approximation) approximation[65, 66, 67] is de-

veloped to overcome those defect of LDA approximation due to introducing the

idea of density gradient in its approximation.

V GGA
xc [ρ] =

∫
ρ(−→r )εxc(ρ(

−→r ), |∇ρ(−→r ))d−→r (3.13)

The function εxc(ρ(
−→r ), |∇ρ(−→r )) is variously defined and many forms are pro-
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posed. Therefore, derivations has been developed to improve calculation accuracy,

such as PW91[67] and B3LYP[68]. In this study, GGA approximation of Perdew

Burke Ernzerhof (PBE) exchange correlation function is applied [69], which is com-

monly used exchange correlation functional due to its accuracy and

3.5 Linear combination of atomic orbitals
Linear combination of atomic orbitals(LCAO) is a calculation approximation

method implemented in first principle calculation. This method approximates cer-

tain monocular orbital as atomic orbitals of constituent atoms by linear conbination.

In mathematical form, therefore, can be expressed as the following equation where

n atomic orbitals are

φi = c1iχ1 + c2iχ2 + c3iχ3 + · · ·+ cniχn (3.14)

= ∑
r

criχr (3.15)

where φi, χr

This LCAO method is implemented in SIESTA (Spanish Initiative for Elec-

tronic Simulations with Thousands of Atoms) code[70], as well as in GPAW code,

which has the most cheapest computational cost among implemented wave func-

tions in GPAW code. Therefore, all initial calculation(finding lattice constant, struc-

ture relaxation) is performed by LCAO method to obtain “rough” result for initial

evaluation in the sight of reduction for calculation time.

3.6 Density of states
Density of states(DOS) is a effective diagram to evaluate electronic structure from

the first principle calculation result. The density of states is defined by the following

equation:

ρ(ε) = ∑
n
< ψn|ψn|> δ (ε− εn) (3.16)
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where ε is number of electronic states with energy.

This equation can be rewritten as follows by acting with the unit operator:

ρ(ε,r) =
∫

dr∑
n
< ψn|r >< r|ψn > δ (ε− εn) (3.17)

This ρ(ε,r) is called the local density of states(LDOS). Additionally, it is use-

ful to obtain the projected density of states(PDOS) within well known basis function

such as atomic prbitals when the electronic structure is evaluated. PDOS can be de-

fined by the following equation:

ρ(ε) = ∑
n
< ψn|φ a

i >< φ
a
i |ψn > δ (ε− εn) (3.18)

3.7 Bader charge analysis
The ground state electron density contains the information of the location of elec-

trons. The Bader charge analysis[71, 72, 73] is commonly applied method. The

electron density is divided by zero flux surfaces.

S = {r ∈ R3|∇n(r)/u(r) = 0} (3.19)

3.8 Adsorption energy and interlayer binding energy
The adsorption energy(Eads) is good indicator to consider the interaction between

surface and adsorbate. The adsorption energy can be calculated by comparison of

total energy difference:

Eads = Eadsorbate+slab− (Eadsobate +Eslab) (3.20)

where Eadsorbate+slab, Eadsorbate and Eslab indicate total energy of slab and ad-

sorbate, adsorbate alone, and slab alone, respectively. Additionally, the interlayer

binding energy Eint between facing layers are calculated by the following equation:

Eint = Etotal−N×E1layer (3.21)
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where Etotal , N and E1layer express calculated total free energy of layered material,

number of layer in material (≥ 2), and total free energy of single layer material.



Chapter 4

Implementation of DFT calculation

code : GPAW

DFT calculation code is developed and distributed by various organizaitons. The

most popular commercial DFT calculation code is Vienna Ab initio Simulation

Package(VASP)[74, 75], CASTEP and Gaussian[76]. For the non-commercial

code, Quantum Espresso[77, 78] and SIESTA[70] are popular and widely used.

However, in this study, GPAW[79, 80] code is implumented since it is highly inte-

grated with Python language[81, 82].This feature allows to automate high-troughput

calculation process since Python integrates many data processing modules(the ad-

vantages of Python into data science is described in Chapter7) by building Python

script. Subsequently, GPAW is provided by GNU Public License version 3, and

able to install on Linux operating system. Therefore, the calculation environment

can be built without any software license fee.

4.1 GPAW
The following analysis is performed by GPAW code in order to evaluate the elec-

tronic structure of designed two dimensional materials.

• Densiy of states (DOS) : Evaluation of electronic structure of two dimensional

materials.

• Bader charge analysis : Considering the charge transfer between target atoms.

Bader charge output is calculated by FORTRAN code provided from Henkel-



4.1. GPAW 30

man Group[83] from the Gaussian CUBE format, which can be obtained from

GPAW calculation.

• Adsorption energy : Considering the interlayer interaction in multi-layered

two dimensional materials. Adsorption energy is calculated from the output

value from GPAW code.

Atomic model can be built by “Atomic Simulation Environment(ASE)”,

Python module for setting up, manipulating, running, visualizing and analyzing

atomistic simulations[84, 85].

4.1.1 Installation

GPAW is available on Linux and MacOS. In this study, GPAW on Linux operat-

ing system(Ubuntu 16.04 LTS) is used. Calculation environment was build on the

following computation machines:

• 16 GB memory with AMD Opteron(tm) Processor 6164 HE CPU(48 core;

1.7 GHz) ×5

• Project (L) server provided by Hokkaido University academic cloud (10 core;

Virtual machine).

To increase the calculation performance, the following packages are preferred

to be installed. Those packages are for parallel computation and routine solving

system that support DFT calculation, such as matrix calculation.

• OpenMPI(Message Passing Interface)

standard library for parallel computation[86].

• FFTW(Fastest Fourier Transform in the West)

Software library for computing the discrete Fourier transform in one or more

dimensions, of arbitrary input size, and of both real and complex data[87].

• LAPACK(Linear Algebra PACKage)

Software library that provides routines for solving systems of simultaneous
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linear equations, least-squares solutions of linear systems of equations, eigen-

value problems, and singular value problems[?].

• ScaLAPACK(Scalable Linear Algebra PACKage)

Software library of high-performance linear algebra routines for parallel dis-

tributed memory machines[88].

Those required packages are easily to install by using APT(Advanced Pack-

age Tool), a default software managing tool on Ubuntu. In particular, “apt-get“

command is used for the installation by typing the following command in terminal.

• sudo apt-get update (updating software source libraries)

• sudo apt-get install gpaw (installing GPAW code with related programs, such

as Python-ASE, libxc, etc)

• sudo apt-get install python-matplotlib (installing visualization libraries for

Python, used as a part of Python-ASE)

• sudo apt-get install python-tk (Needed if GUI environment is used, such as

Python-ASE, matplotlib, etc)

• sudo apt-get install liblapack-dev (installing LAPACK)

• sudo apt-get install openmpi-bin (installing OpenMPI)

• sudo apt-get install libopenmpi-dev (installing OpenMPI)

• sudo apt-get install libscalapack-mpi-dev (installing ScaLAPACK)

4.1.2 Applying calculation

The calculation with GPAW is applied in the calculation server on remote control.

OpenSSH[89] is used to access for the remote control.

• sudo apt-get install openssh-server (installing OpenSSH server)
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Calculation parameter is set by writing Python code(See the tutorial page for

detailed informations[90]) Parallel calculation can be submitted by the following

command:

• nohup mpirun -np X gpaw-python run.py & (X is replaced by number of CPU

cores operated in calculation)

Note that Bader charge analysis is needed for external program from Henkelam

Group at Texas University[87].



Chapter 5

Boron based two dimensional

materials

*The content of this chapter is reprited from [91] Copyright 2017 AIP Publishing (License Id:4526971111334)

Boron based novel two dimensional materials(B-As, B-Sb, and B-Bi) are dis-

covered and investigated by first principle calculation. The idea of this materi-

als comes from the existence of hexagonal boron nitride(h-BN) and prediction of

hexagonal boron phosphide(h-BP) by first principle calculation[92]. In these mate-

rials, boron(B) is the common element, and nitrogen(N) and phosphorus(P) are the

same Group XV elements. Therefore, the existence of B-As, B-Sb, and B-Bi are

considered and investigated by first principle calculation, and possible application

is suggested.

5.1 Structure and physical property of single layered

materials
Computational workflow of optimization of single layered materials is shown in

Figure 5.1. Structures are designed by modifying the structure of h-BN, by replac-

ing N for another Group XV elements(B-N, B-P, B-As, B-Sb and B-Bi). Some two

dimensional materials are reported to have puckered structure, such as Si, SiGe,

GaP, SnSi, AlSb, InAs, InSb honeycomb two dimensional materials[1]. Hence,

both plane and puckered structures are relaxed to consider the existence of puckered
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structure. Spin polarization is considered in all calculations. Lattice optimization

is performed by expanding and shrinking the lattice in 0.5 % and lowest energy

structure is taken Structures of designed two dimensional materials are initially op-

timized within LCAO based calculation[93] in order to reduce computational time.

LCAO calculation is performed under the h-grid spacing of 0.18 Å and special K

point of 2 × 2 × 1 in Brillouin-zone sampling[94] with exchange correlation of

Perdew Burke Ernzerhof (PBE)[69] where periodic boundary conditions are ap-

plied in x and y directions.

Final calculation is performed with finite difference wave function with 0.18

Å and special K point of 12 × 12 × 1 in Brillouin-zone sampling[94] with ex-

change correlation of Perdew Burke Ernzerhof (PBE)[69] where periodic boundary

conditions are applied in x and y directions.

Charge transfer on each constituent atom is calculated by Bader charge analysis

method[71, 72].

Figure 5.1: Computational workflow for designing novel boron based two dimensional ma-
terials.

All optimized single layered structure shows plane honeycomb structure, as



5.1. Structure and physical property of single layered materials 35

similar as graphene, and h-BN and the unit cell has diagonally 60◦ and 120◦ as

angles (See Figure 5.2) No puckered structure is found by final relaxation result of

all designed materials.

Figure 5.2: Optimized structure of designed two dimensional materials.

The optimized structural details of design materials are collected in Table 5.1.

The bond length of two dimensional BN and BP are reported as 1.45 [95] and

1.87 [96]in previous DFT calculation respectively, which are good agreement to

optimized bond length shown in Table 5.1. The bond length of h-BN nanosheet

was measured experimentally by high-resolution transmission electron microscopy

with layer-by-layer peeling of the h-BN nanosheets technique and its value was

reported 1.44 Å[97], which is also agreeable to caluclated bond length in Table

5.1. Thus, applied calculation condition is confirmed as sufficient for structural op-

timization. The lattice constant and distance between B and Group XV element

in those materials extend as a period number of Group XV element increases(B-

N<B-P<B-As<B-Sb<B-Bi; See Table 5.1). This can be explained as the fact that

covalent bond length tends to be longer as the atomic number of elements increases

[98, 99, 100].
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Table 5.1: Structure property of designed single-layered B-M (M=N,P,As,Sb and Bi) 2D
materials.

Materials B-N B-P B-As B-Sb B-Bi
dA

1 2.51 3.20 3.40 3.74 3.89
dbond

2 1.45 1.85 1.96 2.16 2.30

Projected density of state(PDOS) is obtained to evaluate the electronic struc-

ture of designed two dimensional materials. The overlap of p-orbitals between

boron and Group XV elements with each other, as shown in Figure 5.3 This result

indicates that bond is formed between B and XV elements in the designed mate-

rials, which supports the fact that binding energy between atoms are exothermic

reaction(See Table 5.2).

Calculated binding energies of designed materials are all negative(exothermic),

indicating that they are energetically stable. Additionally, those binding energies are

similar to dissociation energies of existing compounds[101], in other words, these

designed materials are possibly synthesized via experiment judging from its energy

stability. Charge transfer values calculated by Bader charge analysis are also shown

in Table 5.2 in other to evaluate the bond character. Boron in B-N material transfers

2.1 electrons to nitrogen, indicating the strong ironic bonding formation. However

the electron transfer boron to XV elements reduces its value as the increase of Group

number of the XV elements. This fact is correspondent to binding energy decrease

as the increase of Group number of the XV elements. The one notable point on

charge transfer from boron is changed minus to plus between “B-N, B-P, B-As” and

“B-Sb, B-Bi”. This can be explained by the electronegativity difference(∆χB−M) of

boron and each Group XV element, which is calculated by the following equation:

∆χB−M = χM−χB (5.1)

where χM and χB are Allen electronegativity[102] of each Group XV element

and Allen electronegativity[102] of boron respectively. (The values of Allen elec-

1Length of optimized lattice constant (Å) (See Figure 5.2)
2Distance between boron and Group XV element (Å)
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Figure 5.3: Projected density of states(PDOS) of the designed single layer two dimensional
materials.

tronegativity of B, N, P, As, Sb, Bi are 2.05, 3.07, 2.25, 2.21, 1.98, and 2.01, re-

spectively.) The electronegativity difference values(See Table 5.2) are also changed

minus to plus between “B-N, B-P, B-As” and “B-Sb, B-Bi”, as same as the charge

transfer from boron(See Table 5.2).

Table 5.2: Physical property of designed single-layered B-M (M=N, P, As, Sb and Bi) two
dimensional materials.

Materials B-N B-P B-As B-Sb B-Bi
Ebind

1 -3.34 -2.01 -2.76 -1.47 -1.09
Egap

2 4.00 0.85 0.72 0.23 0.68
VB

3 2.13 0.71 0.27 -0.38 -0.26
VM

4 -2.11 -0.67 -0.22 0.44 0.334
∆χB−M

5 1.02 0.202 0.160 -0.067 -0.041
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plots the difference in electronegativity (∆χB−M) against the band gaps of the

designed materials.

Figure 5.4: The relationship between electronegativity difference (∆χB−M) and band gaps
(Egap). Note that the band gap of Group IV - Group III-V two dimensional
materials are referenced from the paper by Şahin et al.[1].

The electronegativity difference has also strong relationship to band gap of

designed two dimensional materials as shown in Figure 5.5. This tendency can be

seen another two dimensinal materials, such a as designed Group IV and Group III-V

two dimensional materials reported in H. Şahin et al.[1], which is Figure 5.6 shows

that the electronegativity difference is proportional to the band gap, especially for

smaller values. This suggests that the difference in electronegativity can be used as

an indicator for predicting the band gap of this type of two dimensional materials.

The reactivity of designed materials are also investigated by the evaluation of

absorption energy of hydrogen atom. 2×2 supercell model with hydrogen atom

of designed materials are constructed (See Figure 5.7) and first calculation is per-

formed. Two absorption site are considered in the calculation model: on top site

of XV elements(See Figure 5.7 (a), and on top site of boron atom (See Figure 5.7

1Binding energy between boron and Group XV element (eV/atom))
2Band gap (eV) calculated by density of state(DOS) of designed single layer 2D materials(eV)
3Charge transferred from boron(B)(eV/Atom)
4Charge transferred from M
5Electronegativity difference of boron and each Group XV element. The value of electronegativ-

ity was applied the one proposed by Leland C. Allen[102]
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Figure 5.5: The relationship between electronegativity difference (∆χB−M) and band gaps
(Egap). Note that the band gap of Group IV - Group III-V two dimensional
materials are referenced from the paper by Şahin et al.[1].

Figure 5.6: The relationship between electronegativity difference (∆χB−M) and charge
transfer of boron (δion)
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(b)) To consider the effect of van der Waals force, two different exchange correla-

tion functional is applied for the calculation for comparison: PBE[69] and van der

Waals density functional(vdW-DF)[103].

Figure 5.7: The calculation models to evaluate reactivity with H. Pink atoms and blue
atoms were indicated as boron and Group XV elements respectively. The one
which H locates on top of B named “A site”, the other which H locates on top
of M (=N, P, As, Sb, Bi) is named “B site”.

The calculated adsorption energy with PBE(Eads−PBE) and vdW-DF(Eads−vdW ),

and the distance between hydrogen atom and nearest atom with PBE(dPBE) and

vdW-DF(dvdW ) are shown in Table 5.3. The adsorption energies in Site 2 show

positive value(endothermic) both PBE and vdW-DF functional calculated results,

indicating no reactiveness. On the other hand, the adsorption energy in Site 1 shows

positive value(exothermic) in B-Sb and B-Bi, with adsorption energies -0.20 eV

and -0.55 eV in PBE functional, and -0.25 eV and -0.05 in vdW-DF functional,

respectively. The binding energies of B-Sb and B-Bi are weaker than those of

B-N, B-P, and B-As, which would allow for greater reactivity in the presence of

other atoms. In general, defect free two dimensional materials such as graphene

and boron nitride are not reactive against hydrogen, however, defect free two di-

mensional B-Sb and B-Bi are reactive against hydrogen. Thus, reactive defect free

two dimensional materials are discovered. The distances between hydrogen atom

and nearest atom are no significant difference in each material calculated result in
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both PBE and vdW-DF functional. This fact can be understood that van der Waals

force has no effect when calculating the adsorption energy nor the hydrogen-surface

distance.

Table 5.3: The calculation result of 2×2 supercell model with hydrogen atom for reactivity
evaluation.

Site Materials
Nearest atom

from H
Eads−PBE

1

(eV)
Eads−vdW

2

(eV)
dPBE

3

(Å)
dvdW

4

(Å)
B-N 2.30 2.44 1.34 1.32
B-P 0.61 0.70 1.22 1.21

Site 1 B-As B 0.23 0.24 1.20 1.20
B-Sb -0.20 -0.25 1.20 1.20
B-Bi -0.55 -0.05 1.20 1.20
B-N N 3.05 3.20 1.08 1.09
B-P P 0.84 0.95 1.43 1.43

Site 2 B-As As 1.05 1.16 1.54 1.54
B-Sb Sb 0.87 0.96 1.72 1.73
B-Bi Bi 1.19 1.32 1.83 1.86

5.2 Structure and physical property of multi layered

materials
Two-layer models are optimized and investigated in order to understand the prop-

erties of the B-Group XV element two dimensional materials when layered. Multi-

layered are are investigated by as same method as single layer calculation showed

in Figure 5.1 with the same cell size structure model. To consider the van der Waals

forces within inter-layer sections, both Perdew Burke Ernzerhof (PBE) [69] and van

der Waals density functional (vdW-DF)[103] are implemented for the calculation.

Two types of layered structure is considered to build starting model for the calcula-

tion: “Cross” and “Overlap” structure(See Figure 5.8), which “Cross” structure is

general form of hexagonal boron nitride(h-BN).

1Adsorption energy calculated with the PBE exchange correlation
2Adsorption energy calculated with the vdW-DF exchange correlation
3Distance between hydrogen atom and the nearest atom calculated with the PBE exchange cor-

relation
4Distance between hydrogen atom and the nearest atom calculated with the vdW-DF exchange
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Figure 5.8: An example of normal structure and alternated structure of h-BN, named
“Cross” and “Overlap” structure

The optimized structures are showed two types form, “zigzag” and “plane”

from the cross section view(See Figure 5.9). The interlayer binding energies are

calculated by equation(3.21) and shown in Table 5.4, to evaluate the existence of

van der Waals force between layers. The binding energies calculated with PBE

functional are positive (endothermic) in B-N, B-P, and B-As, while those of calcu-

lated with vdW-DF are negative (exothermic). This fact shows that B-N, B-P, and

B-As are formed layered structure by weak physisorption between interlayer, which

is originated from van der Waals force. The binding energy of B-As in “zigzag”

structure“(See Figure 5.9) is positive (endothermic) for both PBE and vdW-DF

functional calculations, indicating that ”zigzag“ structure of B-As is energetically

unstable.

Distance between the closest atoms between facing layers (dnear) is calculated

structure by vdW-DF functional, as shown in Table 5.5. dnear of B-N in “Cross”

structure is calculated as 3.559 Å(See Table 5.5), which is in good agreement with

the previously-reported experimentally measured distance of 3.33 Å[104]. dnear

of B-N and B-P in “Overlap” structure are slightly longer than those of ”Cross“

structure. B-As, meanwhile, is seen to have an interlayer distance of 1.814 Åwhen in

a “Cross” structure, the shortest of the reported “Cross” structures, and an interlayer

distance of 4.379 Å, when in an “Overlap” structure, the longest of the reported

correlation
1Interlayer binding energy between layers calculated with the PBE exchange correlation
2Interlayer binding energy between layers calculated with the vdW-DF exchange correlation
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Figure 5.9: Cross section view of designed 2 layered designed two dimensional materials.



5.2. Structure and physical property of multi layered materials 44

Table 5.4: Interlayer binding energy between layers(Elayer).

Materials Structure Elayer−PBE
1(eV) Elayer−vdW

2(eV)
B-N Cross 5.59×10−2 −4.51×10−2

Overlap 4.50×10−2 −9.13×10−2

B-P Cross 1.55×10−2 −12.0×10−2

Overlap 2.49×10−2 −9.66×10−2

B-As Cross 0.80×10−2 17.5×10−2

Overlap 1.73×10−2 −9.84×10−2

B-Sb Cross −1.22 −1.17
Overlap −0.85 −0.83

B-Bi Cross −2.04 −2.07
Overlap −1.67 −1.68

“Overlap” structures.

Table 5.5: Distance between the closest atoms between facing layers (dnear) from the results
using exchange correlation function of vdW-DF

Materials Structure dnear (Å)
B-N Cross 3.559

Overlap 3.649
B-P Cross 3.918

Overlap 4.176
B-As Cross 1.814

Overlap 4.379
B-Sb Cross 2.636

Overlap 1.710
B-Bi Cross 2.737

Overlap 1.619

Charge transfer on the upper layer is evaluated by Bader charge analysis(See

Table 5.6). The charge transfer values on boron(B) are positive in B-N, B-P, and

B-As, while the those of B-Sb and B-Bi are negative, as similar as the single layer

case as shown in Table 5.2

The reason of structure formation of “plane” and “zigzag” (See 5.9) can be

provided to consider the interlayer bonding states in each materials. The interlayer

binding energy between layers of “overlap” B-N, B-P, and B-As is considered as

1Charge transferred from boron(B)(eV/Atom)
2Charge transferred from Group XV elements(M)(eV/Atom)
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Table 5.6: Charge transferred from B to M in the designed 2 layered B-M (M=N,P,As,Sb
and Bi) materials calculated with exchange correlation function of vdW-DF.
Note that the charge transfer is calculated by Bader analysis on the upper layer.

Materials Structure VlayerB
1 VlayerM

2

B-N
Cross 2.12 2.11
Overlap 2.09 2.08

B-P
Cross 0.86 0.84
Overlap 0.74 0.72

B-As
Cross 0.005 0.033
Overlap 0.29 0.27

B-Sb
Cross 0.49 0.50
Overlap 0.40 0.46

B-Bi
Cross 0.47 0.47
Overlap 0.34 0.44

physisorption originated from van der Waals force due to their values calculated

from vdW-DF functional result(See 5.4). On the other hand, the interlayer binding

energy between layers of “zig-zag” B-Sb and B-Bi is the reflection of chemisorption

due to their their values calculated from PBE functional result(See Table 5.4). The

charge densities of two layered B-Sb and B-Bi (See 5.6) is smaller than those of

single layer B-Sb and B-Bi(See Table 5.2). This fact show that those two layered

materials form an ionic bond in the interlayer between B and Sb or Bi each other(See

Figure 5.10), which supports the forming of chemisorption occurrence in “zig-zag”

B-Sb and B-Bi. Additionally, the Sb and Bi atoms have a larger atom radius than B,

which could be changing the “plane” form to the “zigzag” form in each layer.

Density of states(DOS) are investigated to investigate electronic structure of

two dimensional materials, as shown in Figure 5.11 and Figure 5.12 DOS of bilayer

two dimensional material is strongly coupled when layers are constructed as shown

in Figure 5.11 (“Cross” case) and Figure 5.12(“Overlap” case). The peaks as well

as band gaps are significantly different. This suggests that electronic structure of

bilayer two dimensional material can be essentially tuned and design by controlling

the structures of layers.



5.2. Structure and physical property of multi layered materials 46

Figure 5.10: The scheme of the reason of “Zigzag” formation.
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Figure 5.11: Density of states (DOS) of designed 1 layered (filled) and 2 layered (plotted)
materials relaxed from “Cross” structure
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Figure 5.12: Density of states (DOS) of designed 1 layered (filled) and 2 layered (plotted)
materials relaxed from “Overlap” structure



Chapter 6

A method of Materials Informatics

Materials Informatics approach in this study is Machine leaning is subset field in the

academic field of Computer Science, aimed to “Artificial Intelligence(AI)” , which

aims to realize “learning” process by computer. The word “machine learning” was

made by Arthur Samuel[105]. The machine learning consists of various algorithm

to recognize statistic “rule” in given dataset. Those machine learning algorithms are

roughly classified by 2 categories as the follow.

Supervised learning Supervised learning is the learning method with given two

(“input(target)” and “output(descriptor)”) pair of datasets. Computer is “su-

pervised” between these two “input(target)” and “output(descriptor)” by ap-

plied learning algorithm. This learning method can be divided in two groups

due to the types of applying data: “Regression” and “Classification”. “Re-

gression” is applied to the data that express “value”, in other words, “Re-

gression” can handle all physical parameter without data preprocessing. On

the other hand, “Classification” can only be applied to the data that express

“class”, for example, “oxide” or “non-oxide”, “conductive” or “insulative”

etc. However, “Classification” can be applied to “value” by classifying.

Unsupervised learning Unsupervised learning is the learning algorithms to dis-

cover structures and properties from the learning data without answers. This

learning method can be grouped in two main algorithms: “Clustering” and

“Association”. Clustering aims to finds the inherent groups in the data, for
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example, finding which elements in the substance is effective to the stability.

Association aims to discover the rule that explains large portions.

In this study, supervised learning is generally used to predict novel materials since

the property target is specified when the materials designed by Materials Informatics

approach. Thus, this section deals with how supervised learning is applied for actual

material exploration.

• Data preparation Data must be prepared in advance for machine learning,

by obtained from both theoretical and experimental result. Those data is nor-

mally collected in database for unitary management, under standard format

and unified unit system. In Informatics approach, negative data has great

meaning because data is processed statistically. Therefore, failure data should

be dealt with as same as successful data that tend to be reported in publication.

• ”data preprocessing“, ”descriptor hunting“, and ”algorithm choice“

Before machine learning is applied, 3 important process is applied to obtain

accurate material prediction: ”data preprocessing“, ”descriptor hunting“, and

”algorithm choice“(Figure 6.1) Data preprocessing

In a many cases, collected data is not directly applicable for machine learn-

ing. For example, unit standardization in data, classifying target data in order

to implement classifier algorithm in machine learning, etc. On another sight,

data addition is performed to help search descriptors, such as adding elec-

tronegativity of constituent atom. Data preprocessing is applied appropriately

for successful machine learning Descriptor hunting

Descriptor is a dataset(physical value etc.) which describes ”target“ in statis-

tic aspect. The important rule of choosing descriptors is ”reversible“. In solv-

ing ”inverse problem“ process, the descriptor would be the input to predict

”target“ value, hence, it is important to choose descriptors that can estimate

what material is. For example, atomic number of constituent atom can be

good descriptor because it can provide the composition of materials from it-

self. On the other hand, for example, it is difficult to estimate material from
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thermal conductivity, therefore, it is unsuitable physical property for descrip-

tor Algorithm choosing

Machine learning algorithm needs carefully to be chosen by judging from

train data structure. For example, deep learning algorithm generally requires

mass of data(>100,000) so enough quantity of data is needed. The impor-

tant thing is to choose appropriate algorithm which can capture data structure

correctly, not increasing fitting degree.

Figure 6.1: The scheme of supervised machine learning.

• Machine learning

For the novel materials prediction, supervised machine learning is the most

common way(Figure 6.2). Firstly, target material property for designing ma-

terials(e.g. higher magnetic moment, particular band gap etc.) must be set for

”answer“ for machine learning. Then, descriptors are chosen by the reference

from training material data. For example, the structure of materials, atomic

number of constituent atoms, etc. In the machine learning process, com-

puter learns those paired ”descriptors(input)“ and ”target property(answer)“.

By this learning process, computer read the data structure and get ”smart“.

Trained data can be evaluated by “cross validation”(See next section “Cross
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validation”). By judging from cross validation score, evaluation of descrip-

tors, etc., machine learning model is set for next step: solving “Inverse prob-

lem”.

• Inverse problem

The extracted descriptors are input into the ”smart“ computer and inverse

problem is solved. Consequently, the ”smart“ computer predicts target ma-

terials property from each extracted descriptors. Then, preferable material

property(e.g. higher magnetic moment, particular band gap etc.) is extracted

from whole predicted list, then, the extracted list would be the potential ma-

terial candidates(Figure 6.2).

• Evaluation

The candidates are statistically predicted in principle, which has no relation-

ship with actual material property in themselves. Thus, evaluation of candi-

dates is needed ether theoretical or experimental way. As seen in the result of

evaluation, actual material candidates are revealed, and it can be feedback to

add lacking data in material database in order to increase accuracy of predic-

tion as necessary.

Figure 6.2: The scheme of supervised machine learning.
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On the other hand, however, unsupervised learning can be useful to capture the

data decline within materials database for descriptor hunting.

6.1 Cross validation
Cross validation is a method to evaluate the learning algorithm and descriptor choice

in supervised learning. k-fold cross-validation is popular and it performed by split-

ting two data blocks: “test” data(K) and “train” data(K−1)(Figure 6.3) in k-order.

Each k(=1,2,..,K) fits the parameter λ (subset size, etc) to the other K−1 parts.

Then, the error in predicting kth part can be calculated by giving β̂−k(λ ) fitted

function:

Ek(λ ) = ∑i∈kth part(yi− xiβ̂−k(λ ))2 (6.1)

Therefore, the cross validation error can be expressed as the following equa-

tion:

CV (λ ) =
1
K ∑

K
k=1Ek(λ ) (6.2)

Figure 6.3: The scheme of k-fold cross-validation(k=4).

Note that cross validation is performed within certain given data for machine

learning. Hence, it can evaluate the degree of fitting in given data dimension, how-

ever, the evaluated score has nothing to do with external dimension of data.
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6.2 Naive bayes

Naive Bayes is supervised learning algorithm based on Bayes’ theorem. This algo-

rithm is well known for the application to text categorization, such as spam filter

in e–mail. In this study Gaussian Naive bays classifier, he derived model of Naive

Bayes classifier that conditional probability(P(A|B)) is assumed as Gaussian distri-

bution, is implemented for machine learning in the consideration of data structure

of trained data. Bayes’ theorem is defined as the following equation (6.3)[106].

P(A|B) = P(B|A)P(A)
P(B)

(6.3)

• P(A|B): Conditional probability

• P(A): Probability of observing A

• P(B): Probability of observing B

where A and B are event and P(A)> 0.

As the classifier model in conditional probability, the model is defined as equa-

tion (6.4)[107]:

p(Ck|x1, ...,xn) (6.4)

for each K possible results or class Ck where a vector x=x1, ...,xn with n inde-

pendent features.

p(Ck,x1, ...,xn) (6.5)

As considering equation (6.4) and (6.5) the equation is rewritten as the follow-

ing equation (6.9) by using chain rule for for repeated application.
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p(Ck,x1, ...,xn) = p(x1, ...,xn,Ck) (6.6)

= p(x1|x2, ...,xn,Ck)p(x2|x3, ...,xn,Ck) (6.7)

= ... (6.8)

= p(x1|x2, ...,xn,Ck)p(x2|x3, ...,xn,Ck)...p(xn−1|xn,Ck)p(xn|Ck)p(Ck)

(6.9)

Assuming that each feature xi is independent other future x j(i 6= j) in given the

category Ck, the following equation (6.10) is introduced:

p(xi|xi+1, ...,xn,Ck) = p(xi|Ck) (6.10)

Thus, joint model is introduced as equation (6.11)

p(Ck|x1, ...,xn) ∝ p(Ck,x1, ...,xn) (6.11)

Therefore, equation can be solved as follows:

= p(Ck)(x1|Ck)p(x2|Ck)p(x3|Ck)... (6.12)

= p(Ck)
n

∏
i=1

p(xi|Ck) (6.13)

To construct classifier from the probability model, a class label ŷ =Ck is intro-

duced. Thus, the Naive Bayes classifier is defied as follows:

ŷ = argmax
K∈{1,...,K}

p(Ck)
n

∏
i=1

p(xi|Ck) (6.14)



Chapter 7

Implementation of machine learning

environment

Machine learning(ML) environment is now provided by various form. In the com-

mercial software, MATLAB supports machine learning environment by applying

the optional module “ Statistics and Machine Learning Toolbox”. It also provides

IoT solutions, such as integration to Raspberry Pi, and used by various compa-

nies. Therefore, it provides high efficiency to develop integrated system for data-

driven solutions. R language is the most popular programming language among

researchers for statistical computing, including modules for machine learning. It is

also provided under GNU General Public License so the license. However, Python

language is getting popular for data scientific solutions recently. Python itself is a

high-level programming language for general-purpose programming; however, the

various modules are implemented, which includes data processing, machine learn-

ing and data handling. The representative libraries for machine learning are below:

• Theano

Library for deep learning primarily developed by a Montreal Institute for

Learning Algorithms at the Université de Montréal[108]

• TensorFlow

Machine learning library for deep learning developed by Google under the

“Google Brain” project[109].
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• Caffe

Framework for image processing based on constitutional neural net-

work(CNN) implemented in MATLAB[110]

• Chainer

Framework for neural network processing developed by Japanese venture

company Preferred Networks[111] in partnership with IBM, Intel, Microsoft,

and Nvidia[112].

• Scikit-learn

Machine learning library for Python language[113].

Each library has own characteristic aspects in its functions(GPU support, al-

gorithms, code readability, etc), thus, developers can choose the appropriate library

for their own demands for implementation.

Python also has various libraries for scientific analysis. The representative (and

used in this study) modules are introduced below:

• Numpy

Python modules for advanced calculation, such as many dimensional ar-

ray(vectors, matrix etc) calculation. The core program is written with C or

FORTRAN language in order to accelerate computation performance[114].

• Scipy

Python library for numerical analysis, such as image processing, signal pro-

cessing etc[115].

• Pandas

Python library for data manipulation and analysis[116].

• Matplotlib

The visualization modules for Python[117].

Those libraries can be integrated in one code by importing each modules. For

example, data preprocessing for Pandas, machine learning for Sickit-learn, and vi-
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sualization for Matplotilib. This flexibility of integration makes Python popular in

data scientist.

7.1 Scikit–learn
Scikit–learn is a python library for data mining and data analysis built under BSD

license[113]Scikit–learn supports various kind of machine learning algorithms: re-

gression, classification and clustering. Scikit–learn is mainly written in Python lan-

guage so it is easy to integrate with another Python libraries, such as Scipy (data

processing), Seaborn(data visualization), etc. Some core algorithms are build with

Cython to improve computational performance since Python itself performs compa-

rably slow because it is script language. Due to its abundant option of data analysis

tools and multiplicity of use, a lot of commercial companies are also used to build

their own platforms, such as “Sportify”, “Evernote”, etc[118].

7.1.1 Functions

Scikit-learn supports various kind of machine learning algorithms. The version of

0.20.2 supports the following functions below[119]:

• Classification

Algorithms to identify to which category an object belongs to, such as lin-

ear models, kernel ridge regressions, support vector machines(SVM), nearest

neighbors, Naive Bayes, ensemble methods, etc.

• Regression

Algorithms to predict a continuous-valued attribute associated with an ob-

ject, such as linear models, kernel ridge regressions, support vector ma-

chines(SVM), nearest neighbors, Naive Bayes, ensemble methods, etc.

• Clustering

Algorithms to group of similar objects into sets, such as K-means, affinity

propagation, mean-shift, spectral clustering, Gaussian mixtures, etc.

• Dimensionality reduction



7.1. Scikit–learn 59

Algorithms to reduce the number of random variables to consider, such as

principal component analysis(PCA), future selections, etc.

• Model search

Algorithms to compare, validate and choose parameter and models, such as

grid search, cross validation etc.

• Preprocessing

Algorithms for data preprocessing, such as feature extraction and normaliza-

tion.

In the tutorial page of Scikit-learn provides the algorithm cheat-sheet to help

choosing algorithm[120] within the implemented various types of algorithm.

7.1.2 Installation

Scikit-learn can be installed with various way. In this study, programming envi-

ronment is installed on operating system(Ubuntu 16.04) by using APT(Advanced

Package Tool), a default software managing tool on Ubuntu.

To install Scikit-kearn by APT, the following command is typed and executed

on terminal:

• sudo apt-get install python-sklearn

• sudo apt-get install python-sklearn-pandas

Note that version of Scikit-learn is older(0.17.0-4) when you installed with

APT on Ubuntu 16.04(The newest version is 0.20.2 on December 2018).

There are two another installation ways for Scikit-learn: by using “PIP” and

“Anaconda”, which way is available for new version of Scikit-learn. PIP is package

management tool for Python which is available under Python development environ-

ment. Scikit-learn is installed by using command “pip install -U scikit-learn”.

Anaconda is a data science platform distributed by Anaconda, Inc[121]. Both

PIP and Anaconda are free and open-source, cross-platform suitable for Win-

dows, Linux and MacOS. For the installation, binary file are available on official

website[121]. Anaconda initially contains Scikit-learn.
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Note that the explained 3 installation ways are not mixed in one computer un-

less the package dependencies of Python would be corrupted and result to program

error.



Chapter 8

Two dimensional magnets

*The content of this chapter is reprited from [122] Copyright 2018 IOP Publishing Ltd(License Id:4526980353029)

Novel two dimensional magnet materials are discovered by Materials infor-

matics approach. The idea of this study comes from the recent achievement of

material discovery by data science with first principle calculation datasets[123,

124, 125, 126]. First principle calculation is commonly used method on com-

putational physics, and several new materials are designed, such as boron ni-

tride nanotubes[127], post-perovskite phase of MgSiO3[128] and so on. High-

throughput calculation is one of the efficient ways to obtain large amount of homo-

geneous data[129] to apply data science method and some computational database

are available on the Internet, such as AFLOWLIB.ORG[130], COMPUTATIONAL

MATERIALS REPOSITORY[131] and Materials project[132] In this study, two di-

mensional magnet materials are designed by using materials informatics approach

since it is possible to synthesize two magnet materials experimentally as the one

example Co and chromium triiodide (CrI3) films[133, 134] for application, such as

electrical control for realizing magnetoelectronics[135].

8.1 Method
The procedure of Materials informatics method of this study is mainly classified in

3 steps: (1)Machine learning, (2)Reversed problem, and (3)Evaluation. However,

the most of cases, it is rare that prepared data is simply applicable to the machine

learning. Hence, data preprocessing is applied, for example, adding extra infor-
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mation(atomic number, electronegativity of constituent atoms, etc) for searching

appropriate descriptors. The preprocessing data itself is performed as necessary for

machine learning, such as normalization, classification of data, etc.

Figure 8.1: The overview of exploring two dimensional magnets by Materials Informatics
approach

Applied data is obtained from the computational material database published

on the Internet “Computational 2D Materials Database”[2] as a part of “COM-

PUTATIONAL MATERIALS REPOSITORY”[131] 216 two dimensional materials

data(Note that this number is varied in recent since the data has been uploaded by
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the owner) is explored to determine descriptors for the magnetic moments. Mag-

netic moment values obtained from the database are classified in 4 groups for data

processing: 0 µB-0.4µB as 0 (157 data), 0.5µB-1.4µBas 1 (23 data), 1.5µB-2.4µB as

2 (22 data), and 2.5µB-3.4µB as 3(14 data). This classification is aimed in two in-

formatics aspects: (1) making structural data easier by classifying 4 groups, which

enables to apply classifier algorithm in machine learning. (2)Reducing data bias

by intentional classification rule(trained data contains relatively lager material data

with low magnetic moment. Thus, classification rule is set in narrow range in lower

magnetic moment). The trained machine is evaluated using cross validation where

the data is randomly organized into 10 % test data and 90 % trained data and average

score of 10 random test and trained data set is taken.

In the trained data, there are two structure types of two dimensional materials

(MoS2 based AB2, and graphene based AB structures), as shown in Figure 8.2.

Therefore, the reversed problem is performed to predict novel AB and AB2 type

two dimensional materials with high magnetic moment by using learning algorithm

with high cross validation score against trained data(in this case, Gaussian Naive

Bayes classification algorithm. In details, see “Result and discussion” section)

Figure 8.2: The structural models of MoS2 based AB2 in top (a) and side (b) view and
graphene based AB in top (c) and side (d) view .

Evaluation
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Predicted two dimensional materials are optimized in structure and evaluated phys-

ical properties by first principle calculation. vdW-DF functional[136] is applied for

considering the van der Waals force. Spin polarization is considered in all calcu-

lations. Structures of designed two dimensional materials are initially optimized

within LCAO based calculation[93] in order to reduce computational time. 4 × 4

× 1 of special k-spacial point Brillouin-zone sampling[94] is set for all calculations

where periodic boundary conditions are applied in x and y directions. Lattice opti-

mization is performed by expanding and shrinking the lattice in 0.5 % and lowest

energy structure is taken. Magnetic moment (µB) per atom and heat of formation

(eV/per an atom) from calculated result is plotted in Figure 8.4.

The formation energy per atom of predicted two dimensional materials AB and

AB2 are calculated by Equations 8.1 and 8.2, respectively:

EAB =
E2DAB−EA−EB

2
(8.1)

EAB2 =
E2DAB2−EA− (EB×2)

3
(8.2)

where A and B represents the bulk A and B per atom.

8.2 Result and discussion
The data mining is performed to the 216 computational two dimensional materials

data[2] and 4 descriptors for predicting magnetic moment is explored: atom number

of A element, atom number of B element×X(X is 1 if the structure is AB and 2 if the

structure is AB2), density of A element, and density of B element×X(X is 1 if the

structure is AB and 2 if the structure is AB2). “Gaussian naive bayes classification”

is chosen as the appropriate algorithm to predict magnetic moment by the result of

the mean score of 73 % in average of 10 random states, the median score of 72%, the

standard deviation of 5%, and the highest score of 81 % in cross validation against

the provided 4 descriptors. Note that magnetic moment values obtained from the

database are classified in 4 groups, explained in “Method” section(0 µB-0.4µB as
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0, 0.5µB-1.4µB as 1, 1.5µB-2.4µB as 2, and 2.5µB-3.4µB as 3). The meaning of

these 4 descriptors can be seen by the visualizing the trained 216 data as shown

in Figure 8.3 to find relationship descriptors and magnetic moment in order to find

tendency within data. As seen in Figure 8.3 (a), high magnetic moments concentrate

in the range of 21-25 for atomic number of A(See yellow filled area). Consequently,

Figure 8.3 (b) indicates the concentration of high magnetic moments in the range of

6-9 g/cm3 for the density of atomic number A(6-9 g/cm3)(See yellow filled area).

Those tendency is considered to result to be these 4 descriptors effective for high

cross validation score within “Gaussian naive bayes classification” algorithm.

Figure 8.3: (a) Atomic number of A and B with corresponding magnetic moments and (b)
Atomic density of A and B with corresponding magnetic moments in reported
216 two dimensional materials data[2]. Note the magnetic moments in data is
classified into 4 groups. The area with high magnetic moments are also filled
in yellow.
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To obtain the combination of composition of novel two dimensional magnets,

revered problem is solved with “Gaussian naive bayes classification” algorithm

against trained 216 data. The 4 descriptor variables, combination of atomic num-

bers of 8-82 as well as the corresponding densities are generated to apply reversed

problem. For the cases of B2, the atom numbers and corresponding densities are

multiplied by 2. As a result, total of 746,496 predicted material candidates is ob-

tained. Those 746,496 of candidates are screened into the magnetic moment of

Group 3(254 candidates), which have a magnetic moment of 2.5 ∼ 3.49̇. Note

that those candidates have no duplication to original 216 two dimensional materials

data. Those candidates that might have high magnetic moment are evaluated by

DFT calculations for structural optimization, formation energy, and obtaining mag-

netic moments in each materials, and results are shown in the Table 8.1(AB type

two dimensional materials) and Table 8.2(AB2 type two dimensional materials)

Magnetic moment (µB) per atom and heat of formation (eV/per an atom) from

calculated result are plotted in the Figure 8.4 in order to discover the potential two

dimensional magnets.

The ideal materials need to have stable formation energy and high magnetic

moment, therefore, the area of high magnetic moments (>1.5µB) and low forma-

tion energy(<1 eV) is colored in Figure 8.4. Within the colored area, stable 7 two

dimensional materials with high magnetic moment are discovered: MnPd2, FeS,

CrSe, CrS, MnTe, MnSe, and MnS. Those materials are not listed original 216 two

dimensional material data so it is proven that novel two dimensional magnets are

discovered with materials informatics method. Lastly, although some of the sug-

gested two dimensional materials such CoMo2 and FeCr2 as seen in Figure 8.4

have an unstable formation energy, a high magnetic moment is observed. One can

consider that such thermodynamically unstable materials can potentially be stabi-

lized by adsorbing gasses or doping. Therefore, the predicted materials in Figure

8.4 give a good suggestion for the experimental synthesis of strong magnets.
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Figure 8.4: Calculated average magnetic moment(µB) per atom and formation energy(eV) of the predicted 2D materials listed in Table 8.1 and Table
8.2 The pink-filled area indicates potential two dimensional magnetic materials which have both stable energy state(<1 eV in formation
energy) and high magnetic moment(>1.5µB).
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Table 8.1: Predicted new AB type two dimensional magnets.

No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

1 CoCd 5.31 1.00 8.41 4.86

2 CoCr 7.47 1.49 6.60 3.81

3 CoGe 4.07 0.63 7.35 4.24

4 CoHf 7.46 0.44 6.96 4.02

5 CoHg 4.33 1.03 8.45 4.88

6 CoMo 9.11 0.00 6.60 3.81

7 CoO -2.52 1.41 5.71 3.30

8 CoPb 5.32 0.78 8.41 4.86

9 CoPt 5.28 1.41 7.25 4.19

10 CoRe 4.43 0.37 6.91 3.99

11 CoRh 6.36 1.55 6.98 4.03

12 CoS 0.46 1.38 6.97 4.02

13 CoSc 5.15 0.00 6.77 3.91

14 CoSe 1.20 1.39 7.37 4.25

15 CoSn 4.70 0.72 8.14 4.70

16 CoTa 9.49 0.90 6.84 3.95

17 CoTe 2.43 1.39 8.01 4.63

18 CoTi 6.63 0.48 6.49 3.75

19 CoV 7.22 1.00 6.46 3.73

20 CoW 10.67 0.00 6.67 3.85

21 CoZr 6.00 0.42 7.04 4.07

22 CrCd 5.11 2.54 9.06 5.23

23 CrCr 9.53 5.00 8.42 4.86

24 CrHf 11.34 1.38 7.72 4.46

25 CrHg 3.84 2.52 8.83 5.10

26 CrO -4.72 0.00 5.66 3.27
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

27 CrPt 4.29 2.00 7.42 4.28

28 CrRe 4.55 0.50 7.03 4.06

29 CrRh 5.78 1.58 7.19 4.15

30 CrS -1.22 2.00 7.12 4.11

31 CrSe -0.44 2.00 7.45 4.30

32 CrSn 5.15 1.89 8.33 4.81

33 CrTa 12.51 0.49 7.13 4.11

34 CrTe 1.05 2.00 8.16 4.71

35 CrTi 10.02 1.02 7.11 4.11

36 CrV 9.59 0.49 7.01 4.05

37 CrW 11.77 0.00 7.06 4.08

38 CrZr 9.86 1.02 7.63 4.41

39 FeGe 4.23 1.14 7.52 4.34

40 FeHf 8.55 0.07 7.13 4.11

41 FeNb 8.51 0.00 6.65 3.84

42 FeO -4.27 0.00 5.84 3.37

43 FePb 5.22 1.27 8.41 4.85

44 FePd 5.21 1.90 7.57 4.37

45 FePt 4.53 1.98 7.32 4.23

46 FeRe 88.51 0.00 6.65 3.84

47 FeS -0.24 1.99 7.19 4.15

48 FeSc 6.65 0.53 7.13 4.11

49 FeSe 0.37 1.98 7.44 4.29

50 FeSn 4.72 1.24 8.22 4.75

51 FeTa 10.18 0.11 6.74 3.89

52 FeTe 1.83 1.99 8.16 4.71
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

53 FeTi 7.40 0.02 6.65 3.84

54 FeV 7.71 0.50 6.44 3.72

55 FeW 10.85 0.34 6.83 3.94

56 FeZr 7.00 0.03 7.14 4.12

57 GeHf 4.64 0.00 7.80 4.50

58 GeHg 2.35 0.00 8.39 4.84

59 GeNb 6.14 0.50 7.67 4.43

60 GeO -80.53 0.51 7.77 4.49

61 GePb 3.03 0.00 8.68 5.01

62 GePd 1.52 0.00 7.37 4.25

63 GePt 0.96 0.00 7.37 4.25

64 GeRe 1.89 1.06 7.35 4.24

65 GeRh 1.96 0.00 7.27 4.20

66 GeS 0.86 0.00 8.14 4.70

67 GeTi 4.24 0.00 7.57 4.37

68 GeV 5.26 0.60 7.44 4.29

69 GeW 8.52 1.00 7.50 4.33

70 GeZr 3.57 0.00 7.90 4.56

71 MnCd 5.41 2.34 9.75 5.63

72 MnCr 9.62 4.56 7.95 4.59

73 MnGe 3.57 1.50 7.40 4.27

74 MnHf 10.06 0.56 7.31 4.22

75 MnHg 4.04 2.36 9.46 5.46

76 MnNb 9.22 0.04 7.13 4.11

77 MnO -4.59 2.45 6.15 3.55

78 MnPb 4.72 1.59 8.63 4.98
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

79 MnPd 4.04 2.49 7.65 4.41

80 MnPt 3.52 2.49 7.56 4.37

81 MnRe 4.27 0.93 6.94 4.01

82 MnRn 93.48 1.48 7.23 4.18

83 MnS -1.63 2.49 7.28 4.20

84 MnSc 8.03 1.24 7.77 4.49

85 MnSe -0.95 2.49 7.61 4.39

86 MnSn 4.28 1.54 8.48 4.90

87 MnTe 0.48 2.49 8.24 4.76

88 MnTi 8.63 0.51 7.03 4.06

89 MnV 8.70 0.00 6.35 3.67

90 MnW 11.23 0.42 6.91 3.99

91 MnZr 8.47 0.51 7.57 4.37

92 NiCr 6.88 2.00 6.87 3.97

93 NiGe 2.87 0.00 7.02 4.05

94 NiMo 9.83 1.11 7.17 4.14

95 NiO -1.61 0.67 5.73 3.31

96 NiPt 5.54 0.82 7.26 4.19

97 NiRe 4.89 0.62 7.02 4.05

98 NiS 0.57 0.59 6.96 4.02

99 NiSc 4.36 0.43 7.03 4.06

100 NiSe 1.05 0.00 7.29 4.21

101 NiTi 6.16 0.99 6.84 3.95

102 NiV 6.94 1.49 6.80 3.92

103 NiW 10.97 1.03 7.06 4.08

104 NiZr 5.79 0.93 7.32 4.23
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Table 8.2: Predicted new AB2 type two dimensional magnets.

No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

1 CoBe2 1.85 0.08 2.94 2.54

2 CoCa2 1.69 0.33 4.25 3.68

3 CoCl2 -2.12 1.00 3.50 3.03

4 CoCr2 3.05 2.56 3.14 2.72

5 CoFe2 1.87 2.66 3.16 2.74

6 CoHf2 1.23 0.23 3.40 2.94

7 CoMg2 0.78 0.32 3.23 2.80

8 CoMn2 2.30 3.39 3.30 2.86

9 CoNa2 1.90 0.64 3.95 3.42

10 CoNb2 2.70 0.00 3.29 2.85

11 CoO2 -1.36 0.70 2.68 2.32

12 CoPb2 1.24 0.38 3.87 3.35

13 CoPd2 1.37 0.92 3.30 2.86

14 CoPt2 1.77 0.98 3.30 2.86

15 CoRe2 -0.89 0.97 3.13 2.71

16 CoRh2 1.90 1.56 3.16 2.74

17 CoRu2 3.46 1.84 3.13 2.71

18 CoS2 -0.57 0.00 3.32 2.87

19 CoSc2 0.27 0.00 3.46 2.99

20 CoSe2 -0.54 0.02 3.46 3.00

21 CoSn2 0.83 0.00 3.75 3.25

22 CoTa2 3.27 0.00 3.26 2.83

23 CoTe2 0.23 0.13 4.01 3.48

24 CoTi2 1.36 0.26 3.23 2.80

25 CoV2 2.66 0.98 3.16 2.74

26 CoW2 4.60 0.00 3.16 2.74
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

27 CoY2 0.61 0.00 3.76 3.26

28 CoZr2 0.70 0.26 3.49 3.02

29 CrBe2 3.30 0.97 3.04 2.63

30 CrCa2 2.16 1.64 4.22 3.66

31 CrCl2 -3.12 1.33 3.51 3.04

32 CrCr2 2.65 1.65 3.23 2.80

33 CrFe2 2.39 1.20 3.13 2.71

34 CrGe2 -29.19 1.99 7.60 4.39

35 CrHf2 2.60 0.00 3.40 2.94

36 CrKr2 3.07 1.91 5.18 4.48

37 CrMg2 1.46 1.34 3.41 2.95

38 CrNa2 1.85 1.63 4.11 3.56

39 CrNb2 2.87 0.00 3.32 2.88

40 CrO2 -4.88 0.00 2.61 2.26

41 CrPb2 1.55 1.42 3.98 3.45

42 CrS2 -1.92 0.00 3.20 2.77

43 CrSc2 1.75 1.09 3.49 3.02

44 CrSe2 -1.37 0.00 3.37 2.92

45 CrTa2 3.60 0.00 3.30 2.86

46 CrTe2 -0.05 0.00 3.65 3.16

47 CrV2 2.65 0.93 3.16 2.74

48 CrW2 3.91 0.00 3.16 2.74

49 CrZr2 2.09 0.28 3.49 3.02

50 CuHf2 2.96 0.78 3.47 3.00

51 CuPb2 0.66 0.00 3.87 3.36

52 CuPd2 1.35 0.00 3.30 2.86
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

53 CuPt2 1.99 0.00 3.26 2.83

54 CuRe2 0.35 0.01 3.15 2.73

55 CuRh2 2.58 0.87 3.18 2.75

56 CuRu2 4.19 1.33 3.11 2.70

57 CuTa2 5.06 0.76 3.31 2.87

58 CuW2 6.18 0.00 3.21 2.78

59 FeBe2 2.29 0.52 2.94 2.55

60 FeCa2 1.94 0.88 4.16 3.60

61 FeCl2 -2.79 1.33 3.48 3.02

62 FeCr2 2.65 1.76 3.01 2.60

63 FeFe2 2.06 2.95 3.16 2.74

64 FeHf2 1.42 0.00 3.40 2.94

65 FeMg2 1.49 0.95 3.56 3.08

66 FeMn2 2.66 2.08 3.22 2.79

67 FeNa2 1.94 1.00 3.97 3.44

68 FeNb2 2.40 0.00 3.32 2.88

69 FeO2 -2.44 0.64 2.65 2.29

70 FePb2 1.38 0.86 3.90 3.38

71 FePt2 1.08 1.42 3.33 2.88

72 FeRe2 -1.23 0.77 3.14 2.72

73 FeRh2 1.53 1.75 3.23 2.80

74 FeRu2 3.12 1.41 3.14 2.72

75 FeSc2 0.86 0.48 3.49 3.02

76 FeSe2 -0.80 0.57 3.50 3.03

77 FeTa2 2.89 0.00 3.25 2.81

78 FeTe2 -0.03 0.62 3.80 3.29
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

79 FeV2 2.31 0.62 3.16 2.74

80 FeW2 4.33 0.33 3.17 2.75

81 FeZr2 0.78 0.00 3.46 2.99

82 GeFe2 10.71 1.98 3.26 2.83

83 GeHf2 1.70 0.00 3.39 2.94

84 GeMn2 2.17 2.47 3.29 2.85

85 GeO2 -2.65 0.00 2.98 2.58

86 GePb2 1.04 0.00 3.87 3.36

87 GePd2 -0.17 0.00 3.20 2.77

88 GePt2 0.39 0.00 3.20 2.77

89 GeTi2 1.87 0.83 3.26 2.83

90 GeV2 2.71 1.98 3.26 2.83

91 GeW2 4.40 0.00 3.13 2.71

92 GeZr2 0.83 0.00 3.43 2.97

93 MnBe2 2.64 0.87 2.94 2.54

94 MnCa2 1.91 1.35 4.19 3.63

95 MnCl2 -3.51 1.67 3.53 3.06

96 MnCr2 2.50 1.46 3.11 2.69

97 MnFe2 2.45 1.86 3.07 2.66

98 MnHf2 2.08 0.24 3.39 2.93

99 MnKr2 2.87 1.67 5.58 4.83

100 MnMg2 1.49 1.32 3.59 3.11

101 MnMn2 2.44 1.57 3.20 2.77

102 MnNa2 1.74 1.44 4.02 3.48

103 MnNb2 2.36 0.19 3.26 2.82

104 MnO2 -3.49 0.32 2.62 2.27
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

105 MnPb2 1.37 1.36 3.90 3.38

106 MnPd2 0.59 1.55 3.33 2.88

107 MnPt2 0.69 1.49 3.26 2.82

108 MnRh2 0.72 1.20 3.15 2.73

109 MnRu2 2.41 1.63 3.15 2.73

110 MnS2 -1.37 0.79 3.33 2.89

111 MnSc2 70.54 0.90 3.46 3.00

112 MnSe2 -1.16 0.95 3.50 3.03

113 MnSn2 1.35 1.17 3.90 3.38

114 MnTa2 2.99 0.06 3.18 2.75

115 MnTe2 -0.32 0.98 3.80 3.29

116 MnTi2 1.93 0.00 3.20 2.77

117 MnV2 2.19 0.47 3.06 2.65

118 MnW2 4.04 0.00 3.18 2.75

119 MnY2 1.80 0.96 3.84 3.33

120 MnZr2 1.47 0.00 3.43 2.97

121 NiBe2 1.51 0.00 2.82 2.44

122 NiCa2 0.71 0.00 4.06 3.52

123 NiCl2 -1.48 0.67 3.43 2.97

124 NiHf2 1.76 0.52 3.41 2.95

125 NiMg2 0.57 0.00 3.43 2.97

126 NiNa2 1.36 0.13 3.84 3.33

127 NiO2 0.13 0.61 2.69 2.33

128 NiPb2 0.67 0.00 3.76 3.25

129 NiPd2 1.50 0.56 3.23 2.80

130 NiPt2 1.97 0.53 3.23 2.80
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No. Material
Formation energy

(eV)

Average magnetic moment

(µB)

Lattice constant

X Y

131 NiRe2 -0.24 0.73 3.15 2.73

132 NiRh2 2.37 1.20 3.15 2.73

133 NiRu2 4.06 1.63 3.15 2.73

134 NiS2 0.18 0.00 3.27 2.83

135 NiSc2 0.10 0.00 3.43 2.97

136 NiTa2 4.05 0.60 3.28 2.84

137 NiW2 5.27 0.00 3.18 2.75

138 NiY2 0.27 0.00 3.77 3.26

139 ScHf2 3.37 0.49 3.70 3.20

140 ScMo2 5.18 1.87 3.47 3.01

141 ScRe2 -0.47 1.24 3.34 2.89

142 ScRh2 -0.03 0.00 3.38 2.92

143 ScRu2 2.67 0.61 3.34 2.89

144 ScTa2 5.24 0.35 3.54 3.06

145 ScW2 6.08 0.88 3.41 2.95

146 TiCr2 2.81 2.35 3.31 2.87

147 TiRe2 -1.55 0.00 3.25 2.81

148 TiRh2 -0.25 0.00 3.28 2.84

149 TiTa2 4.41 0.18 3.41 2.95

150 TiW2 5.10 0.00 3.31 2.87



Chapter 9

Conclusions and future research

By the obtained research results, conclusion can be summarized by the following:

• Boron based two dimensional materials

Boron based two dimensional materials are explored and evaluated by us-

ing first principle calculations. Hexagonal boron nitride (h-BN) like B-M

(M=P, As, Sb and Bi) materials are designed and revealed to have flat-surface

structure with energetically stability, which indicates to be able to synthesize

experimentally. Designed novel B-As, B-Sb and B-Bi single layer two dimen-

sional materials have narrow band gap as same as the previously explored B-P

single layer two dimensional materials. This narrow band gap property indi-

cates to be a potential candidate for semiconductor material. Those band gaps

are revealed to have strong correlation to Allen electronegativity, which can

be expanded in Group IV and Group III-V binary honeycomb structured com-

pounds. This decline can be useful to design single layer two dimensional

semiconductor. B-Sb and B-Bi materials are turned out to have reactive site

to hydrogen atom by the evaluation of adsorption energy, which is potential

property to consider the use Additionally, bilayer structure is also evaluated

in the views of interlayer correlation and electronic structure. All designed

materials have layered structure: B-N, B-P and B-As materials are formed

interlayer binding caused by physisorption, while interlayer binding of B-Sb

and B-Bi materials is originated from chemisorption. Electronic structure

differs how layers are designed, indicating that the controlling layer structure
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can encourage to tune electronic structure of materials, as well as by con-

trolling the composition. Therefore, those obtained results can be useful to

design catalysts and semiconductor within two dimensional materials.

• Two dimensional magnets

Novel two dimensional magnets are explored by machine learning and eval-

uated by first principle calculations. 216 two dimensional data is collected

from open computational database and learned by Gaussian naive Bayes

algorithm in order to predict novel two dimensional materials with high

magnetic moment. The following 4 descriptors are revealed: atom num-

ber of A element×(number of atom in a unit cell), atom number of B

element×(number of atom in a unit cell), density of A element×(number

of atom in a unit cell), and density of B element×(number of atom in a

unit cell). The reversed problem is solved with the same learning algorithm

against 746,496 combinations of the 4 descriptors to obtain each correspond-

ing magnetic moment 254 two dimensional magnets are screened by choosing

the materials with high magnetic moment within 746,496 materials. These

254 undiscovered two dimensional magnets are evaluated by first principle

calculations and 7 stable two dimensional magnets are revealed. As a result,

7 undiscovered two dimensional magnets with high magnetic moment are

discovered from 216 original data by using machine learning.

By the comparison of these two research, Materials Informatics approach is

more focused on exploring materials as “magnetic moment” is specifically set as

target in “Two dimensional magnets” research. On the other hand, “Boron based

two dimensional materials” is more conventional as they designed as the reference

of previous research in “B-N” and “B-P” two dimensional materials. Therefore,

these research provides the superiority of Material Informatics for designing novel

functional materials. For the future research, feedback phase should be consid-

ered to improve accuracy of material prediction(See blue arrows in Figure 9.1).

As mentioned in Chapter 6, dispersed data is key for successful prediction, there-

fore, adding lacking data(including failure data) to cover whole data dimension in
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database is potential for feedback.

Figure 9.1: The scheme of workflow of Materials Informatics. Blue arrows indicate the
potential workflow of future research

The achieved researches still stands inside the frame of theoretical study. The

ultimate goal of material science is developing materials in practical use. Simu-

lations, including first principle calculations, can be the potential tool to generate

material data because it can provide large quantity of data compared with experi-

ment. However, simulation result can provide the one-sided information that cannot

include actual condition of materials. For example, the descriptors of catalysts ex-

perimental data of oxidation coupling of methane(OCM) reaction revealed to have

the terms of experimental condition[14]. Thus, attempting Materials Informatics

approach on experimental data would be the next step of developing novel material

in practical use.
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[70] José M Soler, Emilio Artacho, Julian D Gale, Alberto Garcı́a, Javier Jun-

quera, Pablo Ordejón, and Daniel Sánchez-Portal. The SIESTA method for

ab initio order-N materials simulation. Journal of Physics: Condensed Mat-

ter, 14(11):2745, 2002.

[71] Graeme Henkelman, Andri Arnaldsson, and Hannes Jónsson. A fast and

robust algorithm for Bader decomposition of charge density. Computational

Materials Science, 36(3):354–360, 2006.

[72] Edward Sanville, Steven D Kenny, Roger Smith, and Graeme Henkelman.

Improved grid-based algorithm for Bader charge allocation. Journal of com-

putational chemistry, 28(5):899–908, 2007.

[73] J e Enkovaara, Carsten Rostgaard, Jens Jørgen Mortensen, Jingzhe Chen,

M Dułak, Lara Ferrighi, Jeppe Gavnholt, Christian Glinsvad, V Haikola,



Bibliography 92

HA Hansen, et al. Electronic structure calculations with GPAW: a real-

space implementation of the projectoraugmented-wave method. Journal of

Physics: Condensed Matter, 22(25):253202, 2010.

[74] Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab initio

total-energy calculations using a plane-wave basis set. Physical review B,

54(16):11169, 1996.

[75] Georg Kresse and Jürgen Furthmüller. Efficiency of ab-initio total energy cal-

culations for metals and semiconductors using a plane-wave basis set. Com-

putational materials science, 6(1):15–50, 1996.

[76] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,

X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gom-

perts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.

Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Go-

ings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski,

J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, T. Vreven, K. Throssell, Jr. J. A. Montgomery, J. E. Peralta,

F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N.

Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P.

Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam,

M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Mo-

rokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian16 Revision

B.01, 2016. Gaussian Inc. Wallingford CT.

[77] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto

Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococ-

cioni, Ismaila Dabo, et al. QUANTUM ESPRESSO: a modular and open-

source software project for quantum simulations of materials. Journal of

physics: Condensed matter, 21(39):395502, 2009.



Bibliography 93

[78] P Giannozzi, Oliviero Andreussi, T Brumme, O Bunau, M Buongiorno

Nardelli, M Calandra, R Car, C Cavazzoni, D Ceresoli, M Cococcioni, et al.

Advanced capabilities for materials modelling with Quantum ESPRESSO.

Journal of Physics: Condensed Matter, 29(46):465901, 2017.
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