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Abstract

Real-life involves various selections of objects, i.e., combinations which make subsets
of selected objects. As a popular example, a solution of a puzzle is a subset of compo-
nents such as numbers, lines, and positions. Road networks and chemical compounds
are often represented by a subset of connections, i.e., graphs. Especially, life consists
of itemsets such as foods, tools, and clothes. By the concept of the combination, combi-
natorial problems model for a broad range of issues. A combinatorial problem requires
obtaining desirable subsets or objective values with given constraints specifying possi-
ble combinations. For example, the knapsack problem (KP) requires obtaining a subset
of items with the maximum value within a capacity.

For a long time, many researchers have tried to efficiently solve various types of com-
binatorial problems. Generation is to generate subsets satisfying specified constraints,
such as solutions of puzzles and investment plans within a budget. Evaluation is to eval-
uate various properties of interesting subsets, which gives us knowledge such as number
of chemical compounds, reliability of network systems, and so on. Optimization is to
obtain subsets that are optimal in given criteria such as itemsets with maximum value
and network systems with minimum cost.

On the other hand, the enumeration is known as a special case of the generation. It
requires generating all subsets satisfying given constraints without omission and dupli-
cation. Especially, the enumeration is involved in various combinatorial problems, for
example, the computation of the Tutte polynomial by using all the spanning trees in a
given graph. In addition, the enumeration gives us various useful functions such as ran-
dom sampling, counting, and optimizing. However, we have a concerned issue called
the combinatorial explosion which means the rapid growth of the number of possible
combinations. Due to the combinatorial explosion, the enumeration can take exponen-
tial time: If we have n objects, the number of possible combinations is 2n.

Therefore, we deal with the enumeration avoiding the explicit enumeration. It outputs
the solutions one by one, which easily causes the combinatorial explosion. In particular,
we aim to conduct the implicit enumeration that generates subsets by using a compact
form. It has a potential to efficiently enumerate huge number of subsets and quickly
perform various useful functions.



For the implicit enumeration, we focus on the binary decision diagram (BDD) and
the zero-suppressed binary decision diagram (ZDD). The BDD is a data structure for
representing Boolean functions compactly. Because a Boolean function is an indica-
tor function of a set family, BDD construction implies the implicit enumeration. The
ZDD is a derivation of the BDD to represent set families compactly. Especially, on
representing sparse set families, ZDDs are often much smaller than BDDs empirically.
Moreover, the BDD and the ZDD has various useful functions such as set operations,
counting the number of subsets, calculating the occurrence probability, and obtaining an
optimal subset with a linear criterion. Therefore, they have been applied to the various
combinatorial problems, for example, the maximum independent set, N-queens prob-
lem, evacuation planning, and so on.

An important issue for the implicit subset enumeration by BDDs and ZDDs is how
to construct BDDs and ZDDs. The frontier-based search (FBS) is a general procedure
for constructing BDDs and ZDDs representing constrained subgraphs on a given graph.
A characteristic thing of the FBS is to conduct a top-down construction of BDDs and
ZDDs. In addition, there is a generic library called TdZdd for the FBS implementation.
However, there are no formulation of a top-down construction of BDDs and ZDDs.

In this thesis, we formulate a general framework for a top-down construction of BDDs
and ZDDs. The framework conducts the implicit enumeration of various constrained
subsets, whereas the FBS can deal with only graph structures. We named the framework
the TD-DD. In addition, we discuss the time complexity of the TD-DD. Subsequently,
we also apply the TD-DD for combinatorial problems related to Minesweeper puzzles,
strongly connected spanning subgraphs, and Pareto-optimal itemsets with a knapsack
constraint.

In Chapter 4, we deal with the enumeration related to the Minesweeper puzzle. The
Minesweeper puzzle is a popular puzzle game to open all safety cells avoiding mine
cells while referring hints on a given board. The previous studies on the Minesweeper
puzzle are interested in the existence or the number of feasible mine assignments on
a fixed board. However, there are no research problems to generate specific solutions.
Therefore, we define the Minesweeper generation problem (MGP) that requires generat-
ing all the feasible mine assignments of a given fixed board. Subsequently, we propose
two algorithms to solve the MGP using the family algebra of ZDDs or the TD-DD.
We also apply them some related problems and computation of mine probability. The
experimental results showed efficient performances of the algorithm using TD-DD.

In Chapter 5, we deal with the strongly connected spanning subgraphs (SCSSs) on
directed graphs: if every vertices are reachable each other on a subgraph, the subgraph
is an SCSS of an original graph. SCSSs have often been applied to issues on net-
work systems: for example, computation of strongly connected reliability (SCR) and
obtaining the minimum SCSS (min-SCSS) for an efficient visualization. Therefore, we



propose an algorithm to implicit enumerate SCSSs by the TD-DD. We also apply the
algorithm to the computation of the SCR and obtaining the min-SCSS. The experimen-
tal results showed that our algorithm practically ran on real-world graphs with a few
hundred edges. Moreover, we succeeded to compute the exact SCR for various graphs,
which was previously impossible.

In Chapter 6, we deal with the 0-1 multi-objective knapsack problem (MKP) which is
a multi-objective combinatorial optimization problem (MOCO). The MKP is a deriva-
tion of the KP with multiple criteria. The MOCO causes multiple optimal subsets with
different values each other, which are said to be Pareto-optimal. Therefore, we propose
an algorithm using the TD-DD of ZDDs to implicitly enumerate all Pareto-optimal so-
lutions of the MKP. The algorithm utilizes the TD-DD in the preprocess to enumerate
all feasible solutions. Especially, we use an extended framework of the TD-DD derived
from an existing algorithm with novel pruning techniques. In addition, we propose new
pruning techniques based on properties of the ZDD. The experimental results showed
that our algorithm is faster than the existing algorithm on various instances.

In Chapter 7, we summarize the results in this thesis and shows future works.

i





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7
2.1 Sets and Set Families . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Binary Decision Diagrams (BDDs) . . . . . . . . . . . . . . 9
2.3.2 Zero-suppressed Binary Decision Diagrams (ZDDs) . . . . . . 10
2.3.3 Variable Order . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Useful Algorithms on BDDs/ZDDs . . . . . . . . . . . . . . . . . . 12
2.4.1 Family Algebra . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Counting Number of Subsets . . . . . . . . . . . . . . . . . . 13
2.4.3 Computation of Occurrence Probability . . . . . . . . . . . . 15
2.4.4 Optimization with A Linear Criterion . . . . . . . . . . . . . 15
2.4.5 Frontier-Based Search . . . . . . . . . . . . . . . . . . . . . 20

3 Implicit Subset Enumeration by Top-Down Construction of DDs 25
3.1 Subset Enumeration Problem . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Framework of TD-DD . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Itemsets with Knapsack-Type Constraints . . . . . . . . . . . 28
3.3.2 Degree Constrained Subgraphs . . . . . . . . . . . . . . . . 29

3.4 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Concluding Remarks for TD-DD . . . . . . . . . . . . . . . . . . . . 31

iii



4 Implicit Enumeration of Feasible Mine Assignments on Minesweeper
Puzzles 33

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 Minesweeper Puzzles . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Minesweeper Generation Problem . . . . . . . . . . . . . . . 35

4.2 Naive Combinatorial Approach Using Family Algebra . . . . . . . . . 36
4.3 Graph-Based Approach Using Degree Constraints . . . . . . . . . . . 37
4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Solving Various Problems on Minesweeper Puzzles . . . . . . 38
4.4.2 Help with Playing Minesweeper Puzzles . . . . . . . . . . . . 39

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Concluding Remarks for Minesweeper Puzzles . . . . . . . . . . . . 42

5 Implicit Enumeration of Strongly Connected Spanning Subgraphs on
Directed Graphs 43

5.1 Strongly Connected Spanning Subgraphs . . . . . . . . . . . . . . . 44
5.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Top-Down Construction of BDDs for SCSSs . . . . . . . . . 45
5.2.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 Exact Computation of Strongly Connected Reliability . . . . . 48
5.3.2 Finding Minimum SCSS . . . . . . . . . . . . . . . . . . . . 48

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.1 Scalability on Synthetic Networks . . . . . . . . . . . . . . . 49
5.4.2 Scalability on Real-World Networks . . . . . . . . . . . . . . 50
5.4.3 Computation of SCRs . . . . . . . . . . . . . . . . . . . . . 51

5.5 Discussion and Concluding Remarks for Strongly Connected Spanning
Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Implicit Enumeration of Pareto-Optimal Solutions for 0-1 Multi-Objective
Knapsack Problems 55

6.1 0-1 Multi-Objective Knapsack Problems . . . . . . . . . . . . . . . . 56
6.2 Basic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Existing Framework . . . . . . . . . . . . . . . . . . . . . . 57
6.2.2 Proposed Framework . . . . . . . . . . . . . . . . . . . . . 57

6.3 Future Dominance Relations Using ZDDs . . . . . . . . . . . . . . . 59
6.4 Algorithm with Efficient Techniques . . . . . . . . . . . . . . . . . . 60

6.4.1 Preprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.2 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iv



6.4.3 Item Reordering Heuristics . . . . . . . . . . . . . . . . . . 63
6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5.1 Evaluation of Item Reordering Heuristics . . . . . . . . . . . 63
6.5.2 Performance on Uniformly Random Instances . . . . . . . . . 64
6.5.3 Performance on Correlated Random Instances . . . . . . . . . 65
6.5.4 Evaluation of Constructed ZDDs . . . . . . . . . . . . . . . . 67

6.6 Concluding Remarks for 0-1 Multi-Objective Knapsack Problems . . . 68

7 Conclusions and Open Problems 71

Acknowledgements 75

Bibliography 76

v





Chapter 1

Introduction

1.1 Background
A combination is a selection of non-duplicated objects from a collection of distinct

objects. On a set of objects, the set of selected objects by a combination is called a
subset. The concept of the combination and the subset has been inseparable from the
real-world. The followings are typical examples:

• Puzzle: Many puzzles ask us to find a subset of components such as numbers,
lines, positions, and pairs of them. Sudoku, number links, and N-queens problem
are just such puzzles.

• Graph: A graph represents connections of things by using combinatorial struc-
tures vertices and edges. Road networks, chemical compounds, and other various
structures can often be represented by graphs.

• Itemset: The real-life has consisted in selections from various itemsets such as
foods, tools, and clothes. On the real situation, itemsets are involved in purchase
data, selecting investments, and so on.

By the concept of the combination and the subset, combinatorial problems can model
for a broad range of issues in the real-world. A combinatorial problem requires ob-
taining desirable subsets or objective values with given constraints that specify possible
combinations. For example, the knapsack problem (KP) is one of the famous combina-
torial problems. Given a capacity and a set of items having a value and a weight, the
KP requires obtaining a subset of the items with the maximum total value within the
capacity. The KP appears in various situations such as selecting investments, resource
management in software, and the rest.

Because of applying combinatorial problems to real-world issues, many researchers
have tried to efficiently solve various problems for a long time. For example, the fol-
lowing types of problems have been widely studied.
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• Generation: Generate subsets satisfying given constraints: for example, solu-
tions of puzzles such as N-queens problem [14]. This type of problems produces
various fundamental approaches to combinatorial problems such as searching,
branching, and pruning.

• Evaluation: Evaluate the total number, the occurrence probability, and other prop-
erties of subsets satisfying given constraints. Polya’s theory [52] is a famous re-
sult on counting chemical compounds. On analyzing networks, computation of
the Tutte polynomial [60] is useful to the reliability evaluation [54].

• Optimization: Obtain subsets that are said to be optimal in given criteria. For
example, the KP is a classically studied optimization problem. If the number of
criteria is two or more, the problem is said to be a multi-objective combinatorial
optimization problem (MOCO) [58].

On the other hand, the enumeration is known as a special case of the generation. The
enumeration requires generating all subsets satisfying given constraints without omis-
sion and duplication. Moreover, the enumeration is involved in various combinatorial
problems. For example, the Tutte polynomial can be calculated by the enumeration
of all the spanning trees in a given graph. The MOCO takes multiple optimal subsets
that have different values each other. Namely, the MOCO requires the enumeration
of Pareto-optimal solutions. In addition, we can apply the enumeration to other ap-
plications such as random sampling [38], finding frequent itemsets [62], counting, and
optimizing. However, there is a most concerned issue on the enumeration called the
combinatorial explosion. It means the rapid growth of the number of possible combi-
nations. Due to the combinatorial explosion, the enumeration can take an enormous
amount of time: If there are n objects, the number of their possible combinations is
2n which is exponential. Even if subsets must have exactly k objects, the number of
possible combinations is (

n
k

)
=

n(n−1) . . .(n− k+1)
k(k−1) . . .1

that is still huge depending on k.
In this thesis, we deal with the enumeration avoiding the explicit enumeration such as

outputting the solutions one by one, which easily causes the combinatorial explosion.
Therefore, we aim to conduct the implicit enumeration that generates subsets by using a
compact form, for example, a compressed data structure. The implicit enumeration has
a potential to efficiently enumerate huge number of subsets and quickly perform useful
functions for subsets such as random sampling, counting, optimizing, and so on.
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1.2 Related Work
The backtracking is a classic approach to solve various combinatorial problems re-

lated to the generation and the optimization. The backtracking is a branching algorithm
which enumerates partial subsets explicitly like the exhaustive search by using strategic
branching and pruning techniques. For a long time, representative applications of the
backtracking are puzzles such as N-queens problem. Although the backtracking tends
to be faster than the brute force approach, it is not always true that the approach avoids
the combinatorial explosion.

The reverse search [5] is a polite enumeration technique using recursive search with-
out pruning. For each phase of the reverse search, it outputs a subset that is different
from the previous ones, i.e., wasted searches do not occur during the explicit enumer-
ation. However, possible subjects of the reverse search are still widely being studied.
The reverse search has often been applied to the field of the data mining, for example,
community discovering via pseudo clique enumeration [61], mining of frequent patterns
from graph sequences [25], and the rest.

On the other hand, the binary decision diagram (BDD) [15] achieves the implicit
subset enumeration. The BDD is a data structure for representing Boolean functions
compactly. Because a Boolean function is an indicator function of a set family, i.e., a
set of subsets, the construction of BDDs corresponds to the implicit subset enumeration.
In addition, the zero-suppressed binary decision diagram (ZDD) [47] is a derivation of
the BDD to represent set families compactly. Especially, on representing sparse set
families, ZDDs are often much smaller than BDDs empirically.

The BDD and the ZDD have various useful functions such as set operations, counting
the total number of subsets, calculating the occurrence probability, and obtaining an
optimal subset with a linear criterion. These functions are efficiently performed on
compressed forms. Therefore, the BDD and the ZDD have been applied to various
combinatorial problems for example the maximum independent set problem [10], the
computation of Tutte polynomial [54], the computation of a network reliability [24],
N-queens problem [47], the maximum clique problem [17], and the rest.

Whereas the mainstream of constructing BDDs and ZDDs was multi-step by using set
operations in combination, the algorithm in the literature [54] was a one-step algorithm
by a top-down construction of BDDs. In addition, the literature [40] shows an algorithm
for enumerating all s-t paths in a given graph by a top-down construction of ZDDs.
These algorithms are generalized as the frontier-based search (FBS) [34] that constructs
BDDs and ZDDs for the implicit subgraph enumeration. The FBS has been widely used
for solving real-world issues such as loss minimization of power distribution networks
[26] and region partition within a disparity bound [33].

A top-down construction of BDDs and ZDDs has also been developed for solving the
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knapsack problem, maximum independent set problem, and the rest [9]. Moreover, a
generic library TdZdd [29] has been built for the implementation of a top-down con-
struction of BDDs and ZDDs. However, there are no research to formulate a top-down
construction of BDDs and ZDDs. This is an important issue for the implicit subset
enumeration.

1.3 Our Contributions
In this thesis, we have key contributions to the implicit subset enumeration as follows:

We formulate the general framework TD-DD for a top-down construction of BDDs and
ZDDs. The TD-DD conducts the implicit enumeration of various constrained subsets.
We also discuss about the time complexity of the TD-DD. Subsequently, using the TD-
DD, we uniformly deal with the following three types of combinatorial structures:

1. Mine assignments of Minesweeper puzzles with fixed hints

2. Strongly connected spanning subgraphs on directed graphs

3. Pareto-optimal itemsets that satisfy a knapsack constraint

The contributions for each combinatorial structure above are summarized as follows:

1. Implicit enumeration of all the feasible mine assignments of Minesweeper puzzles
with fixed hints: The Minesweeper puzzle is a popular puzzle game. Its goal
is to open all safety cells avoiding mine cells while referring hints on a given
grid board. The previous studies on the Minesweeper puzzle are interested in
the existence or the number of feasible mine assignments on a board with fixed
hints. On the other hand, there are no research problems related to the generation
of specific mine assignments. Therefore, we define the Minesweeper generation
problem (MGP) that requires generating all the feasible mine assignments of a
given board with fixed hints. Especially, we consider the generalized board using
graph structures. We propose two approaches using ZDDs to solve the MGP. One
is a naive combinatorial approach combined with the family algebra. The other
is a degree constraint approach using one-path algorithm by the TD-DD. We also
show its applications to the previously studied problems and a strategy for playing
Minesweeper puzzles. The experimental results showed that the approach using
the TD-DD is better for various instances 1.

2. Implicit enumeration of the strongly connected spanning subgraphs (SCSSs) on
directed graphs: On a directed graph, if every vertices are reachable each other,

1This result has been published in [55]
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the graph is said to be strongly connected and spanning. On computer networks, it
means that every computer can communicate each other. Given a directed graph,
an SCSS of the graph is a subgraph that maintains strongly connected and span-
ning. SCSSs have often been applied to various issues on network systems: for
example, computation of strongly connected reliability (SCR) [13] for analyz-
ing network systems, obtaining the minimum SCSS (min-SCSS) [69] for an effi-
cient visualization, and the rest. Therefore, we propose an algorithm to implicit
enumerate SCSSs by the TD-DD of BDD for solving the issues above. Once a
BDD for SCSSs is obtained, we can easily compute exact SCR and obtain the
min-SCSS by functions of the BDD. The experimental results showed that our
algorithm ran on real-world graphs with a few hundred edges. Moreover, we
succeeded to compute the exact SCR for various graphs, which was previously
impossible 2.

3. Implicit enumeration of the Pareto-optimal solutions of the 0-1 multi-objective
knapsack problem (MKP): The MKP is a derivation of the KP with multiple cri-
teria and is central to the MOCO. For solving the MKP, an efficient dynamic
programming (DP) algorithm with novel pruning techniques has been proposed
in the literature [7]. In contrast, we propose an algorithm based on the TD-DD
for constructing a ZDD representing all the Pareto-optimal solutions. First, in the
preprocess, the algorithm uses the TD-DD for constructing a ZDD representing
all the feasible solutions. Subsequently, the algorithm uses an extended frame-
work of the TD-DD derived from the existing DP algorithm. An important idea
of the algorithm is to use new pruning techniques based on properties of the pre-
processed ZDD, which have better performance than existing ones. In addition,
we propose a new heuristic of item reordering which accelerates our algorithm.
The experimental results showed that our algorithm is faster than the existing DP
algorithm on various types of instances 3.

1.4 Thesis Organization
In the following Chapter 2, we introduce definitions and notations about sets, set

families, graphs, and decision diagrams, which are our main tools used in this thesis.
Especially, we introduce various useful functions of decision diagrams. Chapter 3 pro-
vides a framework, named TD-DD, of the top-down construction of decision diagrams.
In Chapter 4, we apply the framework to solve combinatorial problems related to the

2This result has been published in [56]
3This result has been published in [57]
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Minesweeper puzzle. In Chapter 5, we deal with SCSSs and its applications by TD-
DD. In Chapter 6, we propose a new framework of top-down construction of decision
diagrams for the 0-1 multi-objective knapsack problem. Chapter 7 summarizes the re-
sults in this thesis and shows future works.



Chapter 2

Preliminaries

In this chapter, we introduce required definitions and notations to describe the contribu-
tions in this thesis. More precisely, we first introduce sets and set families that are the
main concepts of this thesis. Next, we introduce graphs because they appear in our con-
tributions frequently. Finally, we introduce decision diagrams that are our main tools to
solve combinatorial problems efficiently.

2.1 Sets and Set Families
We first introduce basic definitions and notations of sets and set families.

Definition 2.1.1. A set is a collection of distinct objects. Each object included in a set
is called an element of the set, and can be anything: for example, numbers, letters, and
other sets. Given a set S, if S has two elements denoted by a and b, we denote S = {a,b}
or S = {b,a}, i.e., the order of the elements is arbitrary. If x is an element of S, we
denote x ∈ S, otherwise x /∈ S. The number of elements in S is called the cardinality of
S, which is denoted by |S|. If |S|= 0, S is said to be the empty set, which is denoted by
the special symbol /0.

Example 2.1.1. The natural numbers at most 5 make a set S = {1,2,3,4,5} whose
cardinality is |S|= 5. For an integer x, x ∈ S if 1≤ x≤ 5, otherwise x /∈ S.

Definition 2.1.2. Given two sets A and B, if x ∈ A for any element x ∈ B, B is called a
subset of A. If B is a subset of A, we denote B⊆ A.

Example 2.1.2. For a set A = {a,b,c}, {a,b} ⊆ A, {c} ⊆ A, and /0⊆ A.

Definition 2.1.3. A set family is a set each of whose element is another set.

Example 2.1.3. A set S= {{a,b},{a,c},{a,b,c}} is a set family.
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Definition 2.1.4. Given a set S, the power set of S is a set family that has any subsets of
S as an element, which is denoted by 2S.

Example 2.1.4. The power set of S = {a,b} is 2S = { /0,{a},{b},{a,b}}.

Definition 2.1.5. Given two sets A and B, the union operation is defined as A∪B := {x |
x ∈ A or x ∈ B}, the intersection operation is defined as A∩B := {x | x ∈ A and x ∈ B},
and the difference operation is defined as A\B := {x | x ∈ A,x /∈ B}.

Example 2.1.5. Let A = {a,b,c} and B = {b,d}. Then A∪B= {a,b,c,d}, A∩B= {b},
and A\B = {a,c}.

Definition 2.1.6. Z is a set of all integers. Z≥0 is a set of integers which are greater
than or equal to zero, namely, Z≥0 := {x ∈ Z | x ≥ 0}. N is a set of positive integers,
namely, N := {x ∈ Z | x > 0}.

Hereinafter, let [n] := {1, . . . ,n} for an integer n ∈ N. For convenience, [n] = /0 if
n≤ 0.

2.2 Graphs
We also introduce basic definitions and notations of graphs. In the following, given a

set S, we denote [S]2 := {{x,y} | x,y ∈ S,x ̸= y} and ⟨S⟩2 := {(x,y) | x,y ∈ S,x ≠ y}.

Definition 2.2.1. A graph (simple graph strictly) is an ordered pair G = (V,E) with a
set of vertices V and a set of edges E where E ⊆ [V ]2 or E ⊆ ⟨V ⟩2. If E ⊆ [V ]2, G is
said to be undirected, otherwise directed. For each edge {u,v} ∈ E or (u,v) ∈ E, u and
v are the endpoint of the edge.

Definition 2.2.2. For any pair of a vertex subset V ′ ⊆ V and an edge subset E ′ ⊆ E of
G, a graph G′ = (V ′,E ′) is called a subgraph of G.

Definition 2.2.3. For any edge subset X ⊆ E of G, V [X ] denotes the induced vertices
that is the set of endpoints of each edge in X, i.e., V [X ] :=

∪
{u,v}∈X{u,v} or V [X ] :=∪

(u,v)∈X{u,v}. Similarly, G[X ] denotes the edge induced subgraph such that G[X ] :=
(V [X ],X).

We deal with set families of edges on graphs for representing sets of edge induced
subgraphs in our contributions.

Example 2.2.1. Figure 2.1 and 2.2 show examples of graphs and their edge induced
subgraphs. Each edge on undirected graph is drawn by a line segment, whereas each
edge on directed graph is drawn by an arrow, whose direction is from u to v if the edge
is (u,v).
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Definition 2.2.4. An s-t path on G where s, t ∈ V and s ̸= t is a sequence of dis-
tinct vertices (s = v1,v2, . . . ,vk = t) where {vi,vi+1} ∈ E if G is undirected, otherwise
(vi,vi+1) ∈ E, for any i ∈ [k−1].

(a) An undirected graph (b) Its edge induced subgraph

Figure 2.1. An undirected graph and its edge induced subgraph

(a) A directed graph (b) Its edge induced subgraph

Figure 2.2. A directed graph and its edge induced subgraph

2.3 Decision Diagrams
In this thesis, we use two data structures the BDD [15] and the ZDD [47] for repre-

senting set families compactly. The BDD is a compact graph representation of Boolean
functions which are indicator functions of set families. The ZDD is a derivation of the
BDD with a special rule for representing set families.

Here, we discuss on a set family X of a set S = {s1, . . . ,sn}, i.e., X⊆ 2S. The elements
are ordered as s1 < .. . < sn. Let S<i := {s1, . . . ,si−1}, S≥i := {si, . . . ,sn}.

2.3.1 Binary Decision Diagrams (BDDs)

An n variable Boolean function has the form f : {0,1}n→ {0,1} and is an indicator
function of a set family as follows. Let xxx = (x1, . . . ,xn) be a variable assignment of a
Boolean function f which is an indicator function of X. xxx corresponds to a subset X ⊆ S
such that si ∈ X iff xi = 1 (i ∈ [n]). Then X ∈ X iff f (xxx) = 1.
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A BDD is a layered directed graph B= (N,A) with a node set N and an arc set A. 1 N
has exactly one root node ρ in the most top layer and exactly two terminal nodes ⊥ and
⊤ in the most bottom layer. Each non-terminal node α ∈ N has a layer label ℓ(α) ∈ [n]
(i.e., α is associated with ℓ(α)-th variable xℓ(α)), and has exactly two outgoing arcs
called 0-arc and 1-arc. The node pointed by b-arc of α is called b-child of α for each
b ∈ {0,1}, which is denoted by αb where ℓ(α)< ℓ(αb) if αb is not a terminal.

A BDD B represents a Boolean function f which is an indicator function of X as
follows: Each directed path from ρ to ⊤ represents a (possibly partial) variable assign-
ment xxx for which f (xxx) = 1. If a path descends a b-arc of a node α , a variable xℓ(α) is
assigned to b. Not assigned variables are don’t-care, i.e., any assignment of them does
not change the result f (xxx) = 1. For each node α ∈ N, let B(α) be the set family that
has any subset X ∪S<ℓ(α) where X is represented by a path from ρ to ⊤ descending α .
Then B(ρ) = X, B(⊤) = 2S, and B(⊥) = /0.

Although a most naive BDD forms a binary tree such as Figure 2.3a, it has 2n− 1
non-terminal nodes. For eliminating redundant nodes in BDDs, the following reduction
rules are applied as long as possible.

• Node deletion: Delete a node α if α0 = α1. When α is deleted, each arc pointing
α change its endpoint into the child of α . (Figure 2.4a)

• Node sharing: Share two nodes β and β ′ where if ℓ(β ) = ℓ(β ′), βb = β ′b for each
b ∈ {0,1}. (Figure 2.4b)

Any BDD becomes the unique reduced form by applying the reduction rules (Figure
2.3b). The BDD size is often evaluated by the number of non-terminal nodes |N|− 2.
For convenience, we write |β | instead of |N|−2.

2.3.2 Zero-suppressed Binary Decision Diagrams (ZDDs)

A ZDD is also a layered directed graph Z = (N,A) as with a BDD. Primary differ-
ences between the BDD and the ZDD are in their representation rules of set families
and their node deletion rules.
Z represents a set family X as follows: Each directed path from ρ to ⊤ represents a

subset X ∈ X. If a path descends an 1-arc of α , then sℓ(α) ∈ X , otherwise not so. For
each node α ∈ N, let Z(α) be the set family that has any subset X ∩S≥ℓ(α) where X is
represented by a path from ρ to ⊤ descending α . Then Z(ρ) = X, Z(⊤) = { /0}, and
Z(⊥) = /0.

The node deletion rule of the ZDD is as follows:
1To avoid the confusion, we use the terms “vertex” and “edge” for a vertex and edge in the graph, and

“node” and “arc” for a vertex and edge in the BDD. Vertices and nodes are denoted using Roman letters
(u,v, . . .) and Greek letters (α,β , . . .), respectively.



2.3. Decision Diagrams 11

(a) A binary tree (b) A BDD

Figure 2.3. A binary tree and a BDD representing a Boolean function f (xxx) = x1x3 ∨ x̄1x̄2x3

which is an indicator function of a set family X= {{s1,s3},{s1,s2,s3},{s3}}

(a) Node deletion (b) Node sharing

Figure 2.4. Reduction rules of the BDD

• Node deletion (ZDD): Delete a node α if α1 = ⊥. When α is deleted, each arc
pointing α change its endpoint into the child of α . (Figure 2.5)

Node sharing rule does not differ between the BDD and the ZDD. Any ZDD also be-
comes the unique reduced form by applying the reduction rules (Figure 2.6). For con-
venience, we write the ZDD size of Z as |Z|.

2.3.3 Variable Order

The variable order such as s1 < .. . < sn is a critical factor of the BDD/ZDD size
changing. Even swapping two elements changes the BDD/ZDD size. Note that, al-
though any set family has its optimal variable order which minimizes the BDD/ZDD
size, the size does not always become small enough, i.e., O(2n).

There are some known results on the variable order: Improving the variable order is
NP-complete [11]. Therefore, various heuristics for good ordering have been studied
[3, 46]. Especially, on dealing with set families of graphs (i.e., S is an edge set or
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Figure 2.5. Node deletion of the ZDD Figure 2.6. A ZDD representing a set family

X= {{s1,s3},{s1,s2,s3},{s3}}

a vertex set), the path width [39] leads a good upper bound of the BDD/ZDD size
[28]. A heuristic algorithm based on the path decomposition finds a good variable order
empirically [28].

2.4 Useful Algorithms on BDDs/ZDDs
The BDD/ZDD has some useful functions such as algebraic operations called the

family algebra [40], counting the number of subsets |B(ρ)| and |Z(ρ)|, computation
of the occurrence probability of the elements in B(ρ) and Z(ρ), optimization with a
linear criterion, and the FBS to construct the BDD/ZDD representing subgraphs. We
introduce them in the following four subsections.

2.4.1 Family Algebra

The BDD supports various logical operations for Boolean functions [15, 40]. We
introduce some operations on the BDD in Table 2.1. Note that f and g are the operands,
and h is the result Boolean function. Let B f and Bg be a BDD for f and g, respectively.
As a known result, the operations ∨ and ∧ can be conducted in the computation time
O(|B f ||Bg|) [67]. Operation ¬ takes O(1) time because we should swap the ⊥ and ⊤.

Table 2.1. Examples of the family algebra on the BDD.
Name Operator Formula h

logical or ∨ f ∨g h(xxx) = 1 ⇐⇒ f (xxx) = 1 or g(xxx) = 1
logical and ∧ f ∧g h(xxx) = 1 ⇐⇒ f (xxx) = 1 and g(xxx) = 1
logical not ¬ ¬ f h(xxx) = 1 ⇐⇒ f (xxx) = 0
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The ZDD supports various set operations including operations which are special to
the ZDD [35, 40]. We introduce some operations on the ZDD in Table 2.2. Note that F
and G are the operands, and H is the result set family. Let ZF and ZG be a ZDD for F
and G, respectively. As a known result, the operations ∪, ∩, and \ can be conducted in
the computation time O(|Z f ||Zg|) [67].

Table 2.2. Examples of the family algebra on the ZDD.
Name Operator Formula H

union ∪ F∪G {X | X ∈ F or X ∈ G}
intersection ∩ F∩G {X | X ∈ F and X ∈ G}
difference \ F \G {X | X ∈ F,X /∈ G}

join 1 F 1 G {X ∪Y | X ∈ F,Y ∈ G}
disjoint-join 1̇ F 1 G {X ∪Y | X ∈ F,Y ∈ G,X ∩Y = /0}

joint-join 1̂ F 1 G {X ∪Y | X ∈ F,Y ∈ G,X ∩Y ̸= /0}
restriction � F�G {X | X ∈ F,∃Y ∈ G,Y ⊆ X}

We omit the detail of algorithms for the family algebra.

2.4.2 Counting Number of Subsets

Given a set family F and an element e, let F� e be a short notation of F� {{e}},
and �̄ be the binary operator where F�̄e := {F ∈ F | e /∈ F}. Similarly, let F 1 e be a
short notation of F 1 {{e}}. For any node α of a BDD B or a ZDD Z, the following
recursive formulas are well-defined:

B(α) =


/0 (α =⊥),
2S (α =⊤),
(B(α0)�̄sℓ(α))∪ (B(α1)� sℓ(α)) (otherwise).

(2.1)

Z(α) =


/0 (α =⊥),
{ /0} (α =⊤),
Z(α0)∪ (Z(α1) 1 sℓ(α)) (otherwise).

(2.2)

Here, we present an algorithm to compute |B(ρ)| and |Z(ρ)|. Obviously, we can
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obtain the following recursive formulas derived from (2.1) and (2.2):

|B(α)|=


0 (α =⊥),
2n (α =⊤),
|B(α0)|+|B(α1)|

2 (otherwise).

(2.3)

|Z(α)|=


0 (α =⊥),
1 (α =⊤),
|Z(α0)|+ |Z(α1)| (otherwise).

(2.4)

They yield a dynamic programming algorithm as follows: Each node α of a BDD B

stores a value ΓB(α) which is equal to |B(α)|. Similarly, each node α of a ZDD Z

stores a value ΓZ(α) which is equal to |Z(α)|. Let Ni := {α | ℓ(α) = i} for each i ∈ [n].
First, we initialize ΓB and ΓZ as ΓB(⊥) = 0, ΓB(⊤) = 2n, ΓZ(⊥) = 0, and ΓZ(⊤) = 1.
Subsequently, computation of ΓB and ΓZ for all node can be conducted by the bottom-
up processes from Nn to N1 according to (2.3) and (2.4). Finally, ΓB(ρ) = |B(ρ)| and
ΓZ(ρ) = |Z(ρ)|. The algorithm takes O(|B|) and O(|Z|) time, respectively. The pseudo
codes of the algorithm are shown in Algorithm 2.4.1 and 2.4.2.

Algorithm 2.4.1 Computing |B(ρ)|
1: ΓB(⊥)← 0,ΓB(⊤)← 2n

2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: ΓB(α)← ΓB(α0)+ΓB(α1

2
5: end for
6: end for
7: return ΓB(ρ)

Algorithm 2.4.2 Computing |Z(ρ)|
1: ΓZ(⊥)← 0,ΓZ(⊤)← 1
2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: ΓZ(α)← ΓZ(α0)+ΓZ(α1)

5: end for
6: end for
7: return ΓZ(ρ)
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2.4.3 Computation of Occurrence Probability

Given a probability function p : S→ [0,1] where each element si ∈ S independently
drops from S in the probability p(si), the occurrence probability of X is defined as
follows:

θ(X) := ∑
X∈X

p(X) (2.5)

where

p(X) := ∏
s j∈S\X

p(s j) ∏
si∈X

(1− p(si)). (2.6)

We present an algorithm to compute θ(B(ρ)) and θ(Z(ρ)).
We can obtain the following recursive formulas derived from (2.1) and (2.2):

θ(B(α)) =


0 (α =⊥),
1 (α =⊤),
θ(B(α0))p(sℓ(α))+θ(B(α1))(1− p(sℓ(α))) (otherwise).

(2.7)

θ(Z(α)) =


0 (α =⊥),
p( /0) (α =⊤),
θ(Z(α0))+θ(Z(α1))(1−1/p(sℓ(α))) (otherwise).

(2.8)

They yield a dynamic programming algorithm as follows: Each node α of a BDD B

stores a value θB(α) which is equal to θ(B(α)). Similarly, each node α of a ZDD
Z stores a value θZ(α) which is equal to θ(Z(α)). First, we initialize θB and θZ as
θB(⊥) = 0, θB(⊤) = 1, θZ(⊥) = 0, and θZ(⊤) = p( /0). Subsequently, computation
of θB and θZ for all node can be conducted by the bottom-up processes from Nn to
N1 according to (2.7) and (2.8). Finally, θB(ρ) = θ(B(ρ)) and θZ(ρ) = θ(Z(ρ)).
The algorithm takes O(|B|) and O(|Z|) time, respectively. The pseudo codes of the
algorithm are shown in Algorithm 2.4.3 and 2.4.4.

2.4.4 Optimization with A Linear Criterion

Let c : S→ N be a cost function where each element si ∈ S has a cost c(si). We are
interested in the linear criteria represented by

c(X) := ∑
si∈X

c(si). (2.9)
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Algorithm 2.4.3 Computing θ(B(ρ))
1: θB(⊥)← 0,θB(⊤)← 1
2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: θB(α)← θB(α0)p(sℓ(α))+θB(α1)(1− p(sℓ(α)))

5: end for
6: end for
7: return θB(ρ)

Algorithm 2.4.4 Computing θ(Z(ρ))
1: θZ(⊥)← 0,θZ(⊤)← p( /0)
2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: θZ(α)← θZ(α0)+θZ(α1)(1−1/p(sℓ(α)))

5: end for
6: end for
7: return θZ(ρ)

In the following, we present an algorithm to find an optimal subset X∗ ∈ X that mini-
mizes/maximizes c, i.e.,

X∗ ∈ arg min
X∈X

c(X) (2.10)

or

X∗ ∈ arg max
X∈X

c(X) (2.11)

where X=B(ρ) or X= Z(ρ).

Minimization

Let Ψ(B(α)) and Ψ(Z(α)) be the minimum value on B(α) and Z(α), respectively:
Namely, Ψ(B(α)) := min{c(X) | X ∈B(α)} and Ψ(Z(α)) := min{c(X) | X ∈ Z(α)}.
Note that Ψ(B(ρ)) = c(X∗) and Ψ(Z(ρ)) = c(X∗). We can obtain the following recur-
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sive formulas derived from (2.1) and (2.2):

Ψ(B(α)) =


∞ (α =⊥),
0 (α =⊤),
min{Ψ(B(α0)),Ψ(B(α1))+ c(sℓ(α))} (otherwise).

(2.12)

Ψ(Z(α)) =


∞ (α =⊥),
0 (α =⊤),
min{Ψ(Z(α0)),Ψ(Z(α1))+ c(sℓ(α))} (otherwise).

(2.13)

They yield a dynamic programming algorithm as follows: Each node α of a BDD B

stores a value ΨB(α) which is equal to Ψ(B(α)). Similarly, each node α of a ZDD
Z stores a value ΨZ(α) which is equal to Ψ(Z(α)). First, we initialize ΨB and ΨZ as
ΨB(⊥) = ∞, ΨB(⊤) = 0, ΨZ(⊥) = ∞, and ΨZ(⊤) = 0. Subsequently, computation
of ΨB and ΨZ for all node can be conducted by the bottom-up processes from Nn to
N1 according to (2.12) and (2.13). Finally, ΨB(ρ) = Ψ(B(ρ)) and ΨZ(ρ) = Ψ(Z(ρ)).
The algorithm takes O(|B|) and O(|Z|) time, respectively. The pseudo codes of the
algorithm are shown in Algorithm 2.4.5 and 2.4.6.

Algorithm 2.4.5 Computing c(X∗) where X∗ ∈ arg min
X∈B(ρ)

c(X)

1: ΨB(⊥)← ∞,ΨB(⊤)← 0
2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: ΨB(α)←min{ΨB(α0),ΨB(α1)+ c(sℓ(α))}
5: end for
6: end for
7: return ΨB(ρ)

Algorithm 2.4.6 Computing c(X∗) where X∗ ∈ arg min
X∈Z(ρ)

c(X)

1: ΨZ(⊥)← ∞,ΨZ(⊤)← 0
2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: ΨZ(α)←min{ΨZ(α0),ΨZ(α1)+ c(sℓ(α))}
5: end for
6: end for
7: return ΨZ(ρ)
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For extracting an optimal subset X∗ from B and Z, we use the computed value ΨB

and ΨZ: We descend the BDD B (resp. the ZDD Z) starting at the root node ρ and
ending at the terminal node ⊤. Let β be a current node. Initially, we have an empty
set X . We repeat the following process while β ̸= ⊤. We select b ∈ {0,1} where
ΨB(β ) = ΨB(βb)+b×c(sℓ(β )) (resp. ΨZ(β ) = ΨZ(βb)+b×c(sℓ(β ))), and descend to
βb. Simultaneously, if b = 1, we add sℓ(β ) to X . Finally, we have X = X∗. Because the
descending process finish in at most n steps, the computation time is O(n). The pseudo
codes of the extracting process are shown in Algorithm 2.4.7 and 2.4.8.

Algorithm 2.4.7 Extract a subset X∗ ∈ arg min
X∈B(ρ)

c(X)

1: β ← ρ,X ← /0
{Assuming that the Algorithm 2.4.5 ran on B}

2: while β ̸=⊤ do
3: Select b ∈ {0,1} where ΨB(β ) = ΨB(βb)+b× c(sℓ(β )
4: if b = 1 then
5: X ← X ∪{sℓ(β )}
6: end if
7: β ← βb

8: end while
9: return X

Algorithm 2.4.8 Extract a subset X∗ ∈ arg min
X∈Z(ρ)

c(X)

1: β ← ρ,X ← /0
{Assuming that the Algorithm 2.4.6 ran on Z}

2: while β ̸=⊤ do
3: Select b ∈ {0,1} where ΨZ(β ) = ΨZ(βb)+b× c(sℓ(β ))
4: if b = 1 then
5: X ← X ∪{sℓ(β )}
6: end if
7: β ← βb

8: end while
9: return X

Maximization

Let ϒ(B(α)) and ϒ(Z(α)) be the maximum value on B(α) and Z(α), respectively:
Namely, ϒ(B(α)) := max{c(X) | X ∈B(α)} and ϒ(Z(α)) := max{c(X) | X ∈ Z(α)}.
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Note that ϒ(B(ρ)) = c(X∗) and ϒ(Z(ρ)) = c(X∗). We can obtain the following recur-
sive formulas derived from (2.1) and (2.2):

ϒ(B(α)) =


−∞ (α =⊥),
c(S) (α =⊤),
max{ϒ(B(α0))− c(sℓ(α)),ϒ(B(α1))} (otherwise).

(2.14)

ϒ(Z(α)) =


−∞ (α =⊥),
0 (α =⊤),
max{ϒ(Z(α0)),ϒ(Z(α1))+ c(sℓ(α))} (otherwise).

(2.15)

They yield a dynamic programming algorithm as follows: Each node α of a BDD B

stores a value ϒB(α) which is equal to ϒ(B(α)). Similarly, each node α of a ZDD
Z stores a value ϒZ(α) which is equal to ϒ(Z(α)). First, we initialize ϒB and ϒZ as
ϒB(⊥) = −∞, ϒB(⊤) = c(S), ϒZ(⊥) = −∞, and ϒZ(⊤) = 0. Subsequently, computa-
tion of ϒB and ϒZ for all node can be conducted by the bottom-up processes from Nn

to N1 according to (2.14) and (2.15). Finally, ϒB(ρ) = ϒ(B(ρ)) and ϒZ(ρ) = ϒ(Z(ρ)).
The algorithm takes O(|B|) and O(|Z|) time, respectively. The pseudo codes of the
algorithm are shown in Algorithm 2.4.9 and 2.4.10.

Algorithm 2.4.9 Computing c(X∗) where X∗ ∈ arg max
X∈B(ρ)

c(X)

1: ϒB(⊥)←−∞,ϒB(⊤)← c(S)
2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: ϒB(α)←max{ϒB(α0)− c(sℓ(α)),ϒB(α1)}
5: end for
6: end for
7: return ϒB(ρ)

For extracting an optimal subset X∗ from B and Z, we use the computed value ϒB and
ϒZ: We descend the BDD B (resp. the ZDD Z) starting at the root node ρ and ending
at the terminal node ⊤. Let β be a current node. Initially, we have a set X = S (resp.
an empty set X). We repeat the following process while β ̸= ⊤. We select b ∈ {0,1}
where ϒB(β ) = ϒB(βb)− (1−b)×c(sℓ(β )) (resp. ϒZ(β ) = ϒZ(βb)+b×c(sℓ(β ))), and
descend to βb. Simultaneously, if b = 0, we delete sℓ(β ) from X (resp. if b = 1, we add
sℓ(β ) to X). Finally, we have X = X∗. Because the descending process finish in at most
n steps, the computation time is O(n). The pseudo codes of the extracting process are
shown in Algorithm 2.4.11 and 2.4.12.
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Algorithm 2.4.10 Computing c(X∗) where X∗ ∈ arg max
X∈Z(ρ)

c(X)

1: ϒZ(⊥)←−∞,ϒZ(⊤)← 0
2: for i = n, . . . ,1 do
3: for α ∈ Ni do
4: ϒZ(α)←max{ϒZ(α0),ϒZ(α1)+ c(sℓ(α))}
5: end for
6: end for
7: return ϒZ(ρ)

Algorithm 2.4.11 Extract a subset X∗ ∈ arg max
X∈B(ρ)

c(X)

1: β ← ρ,X ← S
{Assuming that the Algorithm 2.4.9 ran on B}

2: while β ̸=⊤ do
3: Select b ∈ {0,1} where ϒB(β ) = ϒB(βb)− (1−b)× c(sℓ(β ))
4: if b = 0 then
5: X ← X \{sℓ(β )}
6: end if
7: β ← βb

8: end while
9: return X

2.4.5 Frontier-Based Search

Here, we briefly introduce the FBS, which is a framework for top-down construction
of decision diagrams representing subgraphs of a given graph. Let a given graph be
G = (V,E) where E = {e1, . . . ,en}, E<i := {e1, . . . ,ei−1}, and E≥i := {ei, . . . ,en}.

Basically, the FBS constructs a binary tree in top-down manner. The algorithm pro-
cesses the edges from e1 to em and expands child nodes from ρ to ⊥ and ⊤ by the
exclusion/inclusion of each edge. A core of the FBS is to prune and merge redundant
nodes like the reduction rules of the BDD/ZDD without expanding their child nodes.
Thus, how to efficiently prune and merge redundant nodes is important in the FBS.

On processing an edge ei, the FBS focuses on the local structure called the i-th frontier
that is defined as:

Fi :=V [E<i]∩V [E≥i]. (2.16)

Fi is a set of all the vertices on both of the processed and the unprocessed edges. Then,
each node associated with ei stores an information called the mate, which localizes the
components on Fi made by the processed edges. The mate must have the condition that
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Algorithm 2.4.12 Extract a subset X∗ ∈ arg max
X∈Z(ρ)

c(X)

1: β ← ρ,X ← /0
{Assuming that the Algorithm 2.4.6 ran on Z}

2: while β ̸=⊤ do
3: Select b ∈ {0,1} where ϒZ(β ) = ϒZ(βb)+b× c(sℓ(β ))
4: if b = 1 then
5: X ← X ∪{sℓ(β )}
6: end if
7: β ← βb

8: end while
9: return X

if two nodes store same mate then they can be merged, i.e., they have same solutions
on unprocessed edges. In addition, pruning condition should be defined by the mate.
For example, for s-t path enumeration, a mate represents a set of path matching like
the Figure 2.7. The Figure 2.8 shows examples of the pruning condition defined by the
mate. Finally, we shows a brief sketch of the FBS in the Figure 2.9.
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Figure 2.7. Example mate of the FBS for s-t path enumeration. The i-th frontier is Fi = {b,c,d}.
Two subgraphs are localized as two path matching s-b and c-d. They can be merged, because an

s-t paths is completed by adding the edge {b,c} and {d, t} in both subgraphs.

Figure 2.8. Example pruning condition which can be detected by the mate. In the left case and

the center case, the child node becomes ⊥, because there is no s-t path. In the right case, the

child node becomes ⊤, because an s-t path is completed.
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Figure 2.9. Brief sketch of the FBS





Chapter 3

Implicit Subset Enumeration by
Top-Down Construction of DDs

In this chapter, we introduce the subset enumeration problem (SEP) that is the main
target problem of this thesis. Subsequently, we formulate the key framework TD-DD
by generalizing the FBS mentioned in the above chapter. The TD-DD conducts a top-
down construction of decision diagrams to solve various SEPs efficiently, whereas the
FBS deal with only the SEPs of graph structures.

3.1 Subset Enumeration Problem
Given a set S and a property function C : 2S→{0,1}, if C(X) = 1 for a subset X ∈ 2S,

then we say that X has the property C. An SEP P = ⟨S,C⟩ requires obtaining the set
family XP ⊆ 2S where any subset X ∈ XP has the property C:

XP := {X ∈ 2S |C(X) = 1}. (3.1)

In general, because the number of possible subsets is exponential in |S|, we should avoid
the explicit enumeration for solving SEPs.

In the following section, we present the framework of the TD-DD for solving SEPs,
which achieves an implicit enumeration: Given an SEP P, the algorithm constructs
a BDD/ZDD D where D(ρ) = XP with a top-down manner. As with the previous
chapter, we use the notations such that n = |S|, S = {s1, . . . ,sn} where s1 < .. . < sn,
S<i := {s1, . . . ,si−1}, and S≥i := {si, . . . ,sn} .

3.2 Framework of TD-DD
Let D=(N,A) be an initial decision diagram such that N = {ρ,⊥,⊤}where ℓ(ρ)= 1

and A = /0. Given an SEP P, the algorithm processes the elements of S as the exhaustive
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search; the algorithm constructs the node set Ni := {α | ℓ(α) = i} for i = 1, . . . ,n in this
order, and the b-arc set Ab := {(α,αb) | ∃i ∈ [n],α ∈ Ni} for each b ∈ {0,1}. For each
node α ∈ Ni, let D̄(α)⊆ 2S<i

be the set family that has any subset represented by a path
from ρ to α according to the representation rule of the ZDD. Note that D̄(ρ) = { /0}.

Each node α ∈ Ni is associated with a subproblem of P denoted by P[α] := ⟨S≥i,Cα⟩
where the property Cα is defined as

Cα(X) = 1 ⇐⇒ ∀Y ∈ D̄(α), C(X ∪Y ) = 1. (3.2)

For any pair of nodes β ,β ′ ∈Ni, β and β ′ are equivalent if Cβ (X) = 1 ⇐⇒ Cβ ′(X) = 1
for any X ∈ 2S≥i

. The algorithm merges some equivalent nodes into one node.
The primary process of the algorithm is as follows. Initially, the algorithm generates

the node set N1 = {ρ}. At the i-th step, the algorithm constructs Ni+1 using Ni as fol-
lows. For each node α ∈ Ni, the algorithm generates its children; D̄(α0) (resp. D̄(α1))
is the set family that si is excluded from (resp. included in) each subset of D̄(α). On
generating a new child, the algorithm conducts the following procedures to reduce the
number of nodes:

• ⊥-pruning: Let⊥-prune(α,si,x) be the function, which returns a truth-value True
or False, defined as follows: If i < n,

⊥-prune(α,si,b) = True =⇒ XP[αb] = /0. (3.3)

Otherwise (i = n),

⊥-prune(α,sn,b) = True ⇐⇒ XP[αb] = /0. (3.4)

If ⊥-prune(α,si,b) returns True, the b-child of α is ⊥. Then the algorithm adds
the b-arc (α,⊥) to Ab.

• ⊤-pruning: Let⊤-prune(α,si,b) be the function, which returns a truth-value True
or False, defined as follows: If i < n and D becomes a BDD,

⊤-prune(α,si,b) = True =⇒ XP[αb] = 2S≥i+1
. (3.5)

If i < n and D becomes a ZDD,

⊤-prune(α,si,b) = True =⇒ XP[αb] = { /0}. (3.6)

If i = n,

⊤-prune(α,sn,b) = True ⇐⇒ XP[αb] = { /0}. (3.7)

If ⊤-prune(α,si,b) returns True, the b-child of α is ⊤. Then the algorithm adds
the b-arc (α,⊤) to Ab.
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• merging: Let β be a child of α . If β and a node β ′ ∈ Ni+1 are equivalent, the
algorithm sets β ′ to β .

To apply these procedures efficiently, each node β maintains an additional information
ϕ(β ), referred to as a configuration that satisfies the condition that

ϕ(β ) = ϕ(β ′)⇒ β and β ′ are equivalent. (3.8)

Note that the inverse is not required, which causes redundant node expansions.
The general framework of the top-down construction is shown in Algorithm 3.2.1.

The function generateNode(α,si,b) generates the b-child of α . Simultaneously, it com-
putes the next configuration ϕ(αb). Note that, the constructed decision diagram is not
necessarily reduced because redundant node expansions can be caused.

Algorithm 3.2.1 Top-down construction of a decision diagram for an SEP P = ⟨S,C⟩
with a generateNode function, a ⊥-prune function, and a ⊤-prune function

1: N1←{ρ}, Ni← /0 for i = 2, . . . ,n
2: Generate the terminals ⊥ and ⊤.
3: Ab← /0 for each b ∈ {0,1}
4: for i = 1, . . . ,n do
5: for α ∈ Ni do
6: for b ∈ {0,1} do
7: if ⊥-prune(α,si,b) = True then
8: Ab← Ab∪{(α,⊥)}
9: else if ⊤-prune(α,si,b) = True then

10: Ab← Ab∪{(α,⊤)}
11: else
12: β ← generateNode(α,si,b)
13: if ∃β ′ ∈ Ni+1, ϕ(β ) = ϕ(β ′) then
14: β ← β ′

15: else
16: Ni+1← Ni+1∪{β}
17: end if
18: Ab← Ab∪{(α,β )}
19: end if
20: end for
21: end for
22: end for
23: N← (

∪
i=1,...,m Ni)∪{⊥,⊤}, A← A0∪A1

24: return D= (N,A)
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3.3 Examples
In this section, we introduce two examples of the TD-DD. One is the case that subsets

are constrained by a knapsack-type constraint. The other is the case that subsets are
equal to degree constrained subgraphs (DCSs) on undirected graphs. These examples
are put into practice in some later chapters. We adapt the TD-DD to each SEP by
designing four primary components: configuration, generateNode function, ⊥-prune
function, and ⊤-prune function.

3.3.1 Itemsets with Knapsack-Type Constraints

Let w be a weight function w : S→ N where si ∈ S has the weight w(si). Let w(X)

be the total weight of X ⊆ S: w(X) := ∑si∈X w(si). For a given capacity W , we design
the four primary components to solve the SEP PKP = ⟨S,CKP⟩ where CKP is the property
function defined as

CKP(X) = 1 ⇐⇒ w(X)≤W. (3.9)

Configuration

We use the current total weight as the configuration: for all X ∈ D̄(α),

ϕ(α) := w(X). (3.10)

Here, we have the following lemma.

Lemma 3.3.1. The configuration (3.10) satisfies the condition (3.8).

Proof. For any node α ∈ Ni, the following is satisfied by the definitions:

XPKP[α] = {X ∈ 2≥i | ϕ(α)+w(X)≤W}. (3.11)

For any pair of nodes β ,β ′ ∈ Ni, because (3.11) depends on only the configuration
(3.10), we have

ϕ(β ) = ϕ(β ′)⇒ XPKP[β ] = XPKP[β ′]. (3.12)

generateNode Function

Initially, ϕ(ρ) = 0 because D̄(ρ) = { /0}. Subsequently, for any node α ∈ Ni and
b ∈ {0,1}, generateNode(α,si,b) computes ϕ(αb) = ϕ(α)+b×w(si).
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⊥-prune Function

For any node α ∈ Ni, because XPKP[αb] = /0 iff ϕ(αb) is greater than the capacity W ,
we can design the ⊥-prune function as follows:

⊥-prune(α,si,b) :=

{
True (ϕ(α)+b×w(si)>W ),

False (otherwise).
(3.13)

⊤-prune Function

Because XPKP[αb] = 2S≥i+1
iff all the remaining items S≥i can be taken with the capac-

ity W −ϕ(αb), we can design the ⊤-prune function for the BDD as follows:

⊤-prune(α,si,b) :=

{
True (W − (ϕ(α)+b×w(si))≥ w(S≥i+1)),

False (otherwise).
(3.14)

Let w∗(S≥i) :=min{w(s j) | s j ∈ S≥i}. Because XPKP[αb] = { /0} iff W−ϕ(αb) is less than
w∗(S≥i+1), we can design the ⊤-prune function for the ZDD as follows:

⊤-prune(α,si,b) :=

{
True (W − (ϕ(α)+b×w(si))< w∗(S≥i+1)),

False (otherwise).
(3.15)

Then, we can solve the SEP PKP by the TD-DD.

3.3.2 Degree Constrained Subgraphs

First, we introduce the following definition.

Definition 3.3.1. On an undirected graph G = (V,E), the degree of a vertex v∈V is the
number of edges having the endpoint v, which is denoted by degG(v) := |{e∈E | v∈ e}|.

Given a graph G = (V,E), for any vertex v ∈ V , let dc(v) ⊆ [0, |V |− 1] be a degree
constraint for v. A subgraph G[X ] (X ⊆ E) is called an DCS if it satisfies the condition
degG[X ](v) ∈ dc(v) for all v ∈ V . For a given graph G and a degree constraint dc, we
design the four primary components to solve the SEP PDC = ⟨E,CDC⟩ where CDC is the
property function defined as

CDC(X) = 1 ⇐⇒ ∀v ∈V,degG[X ](v) ∈ dc(v). (3.16)

Let E := {e1, . . . ,en}, E<i := {e1, . . . ,ei−1}, and E≥i := {ei, . . . ,en} for convenience.
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Configuration

We use the current degree of the frontier Fi as the configuration: for all v ∈ Fi and all
X ∈ D̄(α),

ϕv(α) := degG[X ](v). (3.17)

For convenience, we write ϕv(α) = 0 if v /∈ Fi. Let F̄i be the set of vertices which leave
the frontier before the i-th step: F̄i :=V [E<i]\Fi. Here, we have the following lemma.

Lemma 3.3.2. Assuming that any vertex v∈ F̄i satisfies degG[X ](v)∈ dc(v) (X ∈ D̄(α)),
then the configuration (3.17) satisfies the condition (3.8).

Proof. For any node α ∈ Ni, the following is satisfied by the definitions:

XPDC[α] = {X ∈ 2E≥i
| ∀v ∈V [E≥i],ϕv(α)+degG[X ](v) ∈ dc(v)}. (3.18)

For any pair of nodes β ,β ′ ∈ Ni, because (3.18) depends on only the configuration
(3.17), we have

ϕ(β ) = ϕ(β ′)⇒ XPDC[β ] = XPDC[β ′]. (3.19)

generateNode Function

Initially, ϕ(ρ) has no information. Subsequently, for any node α ∈ Ni and b ∈ {0,1},
generateNode function computes ϕ(αb) as follows:

1. The function copies ϕ(αb) from ϕ(α).

2. The function set 0 to ϕv(αb) for all v ∈ Fi+1 \Fi.

3. For all v ∈ ei, the function updates ϕv(αb) by ϕv(αb)+b.

4. The function deletes ϕv(αb) for all v ∈ Fi \Fi+1.

⊥-prune Function

For any node α ∈ Ni, the condition XPDC[αb] = /0 can be detected by checking the
following condition: the degree of a vertex v ∈ ei cannot belong dc(v) finally. Note that
missed cases can occur. Let [ j : k] := [ j, j + k] for short. We can design the ⊥-prune
function as follows:

⊥-prune(α,ei,b) :=

{
True (∃v ∈ ei, [ϕv(α)+b : degG[E≥i+1](v)]∩dc(v) = /0),

False (otherwise).

(3.20)

Fortunately, the ⊥-prune function leads the assumption in Lemma 3.3.2.
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⊤-prune Function

It is enough that the ⊤-prune function detects the condition of XPDC[αb] = { /0} at last
step. Thus, We can easily design the ⊤-prune function for the BDD/ZDD as follows:

⊤-prune(α,ei,b) :=

{
True (i = n),

False (otherwise).
(3.21)

Note that the⊥-prune function is evaluated before the⊤-prune function and can exactly
detect the condition XPDC[αb] = /0 at last step. Then, we can solve the SEP PDC by the
TD-DD (a variant of the FBS).

3.4 Time Complexity
Let N∗ be an upper bound of the number of generated nodes in each step: |Ni| ≤N∗ for

any i ∈ [n]. Let λ be the computation time of each node, namely, the total computation
time of generateNode function, ⊥-prune function, and ⊤-prune function. Then, the
TD-DD takes O(∑i∈[n]λ |Ni|) = O(nλN∗) time.

Because the number of generated nodes is equal to the number of distinct configura-
tions, we should estimate it. For example, N∗ of the TD-DD for PKP is equal to the given
capacity W . In addition, λ is constant, because we can easily precompute w(S≥i+1) and
w∗(S≥i). Then, the TD-DD for PKP takes O(nW ) time which is equal to that of the basic
dynamic programming for the KP on integer space.

3.5 Concluding Remarks for TD-DD
In this chapter, we presented a generalized framework TD-DD for a top-down con-

struction of decision diagram to solve SEPs efficiently. In addition, we introduced two
examples of TD-DD itemsets with knapsack-type constraints and degree constrained
subgraphs. Subsequently, we discussed about the time complexity and analyzed the
TD-DD for knapsack-type constraints. In the following chapters, we solve some SEPs
and various combinatorial problems by using the TD-DD.





Chapter 4

Implicit Enumeration of Feasible Mine
Assignments on Minesweeper Puzzles

Puzzles are general entertainments and topics of combinatorial problems for a long
time: for example the Sudoku [41, 43], the N-queens problem [8, 14], and link puzzles
[68]. The Minesweeper puzzle is also a popular puzzle game, which is frequently bun-
dled with operating systems and GUIs such as Windows, X11, KDE, and GNOME. A
Minesweeper puzzle is played on a grid board with closed cells. The goal of the puzzle
is to open all safety cells avoiding mine cells while referring hints: Safety cells has a
hint number of hidden mines in adjacent cells.

The Minesweeper puzzle has been formalized as some combinatorial problems and
studied as a topic of the computational complexity theory: The Minesweeper con-
sistency problem (MCP) [36] is a decision problem to decide whether a given fixed
Minesweeper board has a feasible mine assignment or not. The MCP belongs to the
class of NP-complete [36] even if the board is one dimensional [19]. In contrast, the
Minesweeper counting problem (#M) [49] requires counting the number of feasible
mine assignments. The Minesweeper constrained counting problem (#MC) [22] ap-
pend a constraint, which is the total number of mines, to #M. The #M and the #MC
belong to the class of #P-complete. Moreover, because the Minesweeper board can
be represented by graphs, the problems above are also studied on general graph-based
boards. However, any study on the Minesweeper puzzle is not interested in specific
feasible mine assignments. This is a major difference as compared with studies on other
puzzles such as N-queens problem.

In this chapter, we define the Minesweeper Generation Problem (MGP) which is a
new problem on the Minesweeper puzzle: The MGP is an SEP which requires obtain-
ing all feasible mine assignments on a given fixed Minesweeper board. An interesting
thing is that the MGP includes the problems MCP and #M, i.e., enumeration solves the
decision problem and the counting problem. Therefore, MGP is harder than or equal to
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both of the MCP and the #M.
Our main contribution is to propose two approaches for solving MGPs by ZDDs and

compare their performances: One is a naive combinatorial approach that uses a bottom-
up algorithm combined with the family algebra. The other is a one-pass approach using
the TD-DD with the concept of degree constrained subgraphs. Subsequently, we show
that our approaches can be applied to the MCP, the #M, and the #MC. Moreover, we con-
sider a situation to play a Minesweeper puzzle with a simple strategy such that guessing
the mine probability of each cell. Using our approaches, we can compute the exact mine
probability. Finally, we show experimental results to evaluate the performance of our
approaches that indicates the approach using the TD-DD is better on various instances.

4.1 Preliminaries
In this section, we introduce the formal rules of the popular Minesweeper puzzle.

Subsequently, we define generalized minesweeper board and the Minesweeper genera-
tion problem which is treated in this chapter.

4.1.1 Minesweeper Puzzles

The popular Minesweeper puzzle is played on a grid board initialized by closed cells
such as Figure 4.1a. Each cell hides a mine, a hint number, or nothing. Here, we
consider that cells with nothing has a hint number zero. The player opens a closed
cell in each step. If the opened cell hides a mine, the player will lose (Figure 4.1b).
Otherwise, the player obtains a hint: the hint number k means that there are exactly k
hidden mines in the adjacent cells of the eight neighbors. The player will win when all
the cells with a hint number or nothing are opened (Figure 4.1c).

(a) An initial grid board (b) A lose situation (c) A win situation

Figure 4.1. A popular Minesweeper puzzle
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4.1.2 Minesweeper Generation Problem

Because the Minesweeper puzzle uses adjacent relations between cells with a hint
number and closed cells, we can define a fixed Minesweeper board by M := (G,h) with
a bipartite graph G = (U ∪V,E) and a function h : U → N:

• Each vertex u ∈U represents a opened cell with the hint number h(u).

• Each vertex v ∈V represents a closed cell.

• Each edge {u,v} ∈ E represents an adjacent relation between cells represented by
u ∈U and v ∈V .

For each vertex u ∈ U , let A(u) be the set of all the adjacent vertices representing a
closed cell: A(u) := {v ∈ V | {u,v} ∈ E}. Note that we ignore the cells with nothing
and the unopened cells with no adjacent hint in short. For example, the bipartite graph
for a fixed 4×4 grid board is shown in Figure 4.2. This definition is also a generalization
of fixed Minesweeper boards: We are also interested in non-grid boards represented by
general bipartite graphs such as Figure 4.3.

Figure 4.2. A 4×4 grid board and its graph representation

Figure 4.3. A graph for non-grid board. Namely, this graph cannot be embedded in grid boards.

We define the Minesweeper generation problem (MGP) on a fixed Minesweeper
board M, which requires all the feasible mine assignments on M, as an SEP PMS =

⟨V,CMS⟩. The property function CMS : 2V →{0,1} is defined as

CMS(X) = 1 ⇐⇒ ∀u ∈U, |A(u)∩X |= h(u). (4.1)
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Namely, X ∈ 2V has the property CMS iff X represents a feasible mine assignment: We
assign the mines to all the cells represented by X . For example, Figure 4.4 represents
the solution for the MGP on the graph in Figure 4.3. In this chapter, we aim to solve
MGPs efficiently by two approaches.

Figure 4.4. Solution for the MGP on the graph in Figure 4.3

4.2 Naive Combinatorial Approach Using Family Alge-
bra

First, we present a naive combinatorial approach to solve MGPs by using the family
algebra. Given a MGP PMS, the output of the algorithm is a ZDD for XPMS .

The main idea is to divide PMS as follows: For each vertex u ∈U , let Pu
MS = ⟨V,Cu

MS⟩
be a sub-SEP with respect to u. The property function Cu

MS : 2V →{0,1} is defined as

Cu
MS(X) = 1 ⇐⇒ |A(u)∩X |= h(u). (4.2)

Then, we have

XPMS =
∩

u∈U

XPu
MS
. (4.3)

Thus, we should construct the ZDDs for Pu
MS (u ∈U) and conduct the intersection op-

erations of them. For constructing objective ZDDs, we introduce a basic bottom-up
algorithm in the following. Let V := {v1, . . . ,vn} and V≥i := {vi, . . . ,vn}.

For each u ∈U , let Zu
i,k be a ZDD representing a set family Xu

i,k ⊆
V≥i

defined as

Xu
i,k := {X ∈ 2V≥i

| A(u)∩X = k}. (4.4)
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Then, we immediately have

vi ∈ A(u) =⇒ Xu
i,k = Xu

i+1,k∪
(
Xu

i+1,k−1 1 vi

)
, (4.5)

and

vi /∈ A(u) =⇒ Xu
i,k = Xu

i+1,k. (4.6)

Therefore, we can construct Zu
i,k as follows: Generate a node with label i where its

0-arc (resp. 1-arc) points the root node of Zu
i+1,k (resp. the root node of Zu

i+1,k−1 if
vi ∈ A(u), otherwise Zu

i+1,k). Then, the generated node becomes the root node of Zu
i,k.

The algorithm conducts this process with the bottom-up manner from the terminals
where ⊥ = Zu

n+1,−1 and ⊤ = Zu
n+1,0 for convenience. Finally, we obtain Zu

1,h(u) that is
an objective ZDD in the computation time of O(h(u)n), because node generations occur
O(h(u)) times for each i ∈ [n]. The algorithm is shown in Algorithm 4.2.1. Finally, we
conduct the intersection operations over Zu

1,h(u) for all u ∈U to solve the PMS.

Algorithm 4.2.1 A bottom-up construction of Zu
1,h(u)

1: for i = n, . . . ,1 do
2: for k = h(u), . . . ,0 do
3: Generate a node α as the root node of Zu

i,k
4: Set α0 to the root node of Zu

i+1,k
5: if vi ∈ A(u) then
6: Set α1 to the root node of Zu

i+1,k−1
7: else
8: Set α1 to the root node of Zu

i+1,k
9: end if

10: end for
11: end for
12: return Z≥1

u,h(u)

4.3 Graph-Based Approach Using Degree Constraints
Next, we present an approach to solve MGPs by using the concept of the degree

constrained subgraph. Given an MGP PMS, the approach converts PMS into an SEP
PDC = ⟨E,CDC⟩ with a degree constraint on the bipartite graph G. The output of the
approach is a ZDD for XPDC that has one-to-one correspondence with XPMS .
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We define the degree constraint dc as

dc(p) =

{
{h(p)} (p ∈U),

{0,degG(p)} (p ∈V ).
(4.7)

As with (3.16), we define the property function CDC : 2E →{0,1} as

CDC(X) = 1 ⇐⇒ ∀p ∈ (U ∪V ),degG[X ](p) ∈ dc(p). (4.8)

For converting each X ∈ XPDC into a solution of the original MGP PMS, we define the
following function fM : XPDC → XPMS:

fM(X) = {v ∈V | degG[X ](v) = degG(v)} (4.9)

We have the following lemma.

Lemma 4.3.1. fM is a bijection.

Proof. For any Y ∈ XPMS , we select a subset X := {{u,v} ∈ E | u ∈U,v ∈ Y}. Then,
degG[X ](u) = A(u)∩Y = h(u) for all u ∈ U , degG[X ](v) = degG(v) for all v ∈ Y , and
degG[X ](v) = 0 for all v ∈V \Y . Hence, X ∈ XPDC and fM(X) = Y .

The degree constraint dc(p) = {0,degG(p)} for all p ∈ V means that any edge con-
necting p is not used or all edges connecting p are used. Note that any edge in E
connects a vertex in U to a vertex in V . Then, for any two subsets X ,X ′ ∈XPDC , we have
fM(X) = fM(X ′) =⇒ X = X ′. Thus, lemma follows.

Note that PDC is solved by the TD-DD according to Section 3.3.2. Therefore, lemma
4.3.1 says that the SEP PMS is solved via the another SEP PDC.

4.4 Applications
In this section, we show that our approach can be applied to various combinatorial

problems related to the Minesweeper puzzle: the MCP, the #M, the #MC, and help with
playing Minesweeper puzzles.

4.4.1 Solving Various Problems on Minesweeper Puzzles

The MCP, the #M, and the #MC can be defined by using the notations of the SEP PMS

as follows:

• Given a fixed Minesweeper board M, the MCP requires to answer whether M has
a feasible mine assignment or not, i.e., XPMS ̸= /0 or XPMS = /0.
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• Given a fixed Minesweeper board M, the #M requires the number of the feasible
mine assignments on M, i.e., |XPMS|

• Given a fixed Minesweeper board M and an integer k ∈ N, the #MC requires
the number of the feasible mine assignments on M with exactly k mines, i.e.,
|{X ∈ XPMS | |X |= k}|

If we have the solution of PMS, we can easily solve the MCP and the #M by the defini-
tion: After obtaining a ZDD for XPMS or XPDC , we use the Algorithm 2.4.2 to count the
number of solutions.

For solving #MC, we construct a ZDD for the set family Xk where

Xk := {X ∈ 2V | |X |= k}. (4.10)

Then, because |XPMS ∩Xk| is the solution of the #MC, we conduct the intersection oper-
ation between the ZDDs. A ZDD for Xk can be constructed by the TD-DD for a special
case of knapsack-type constraints: We set the weight as w(v) = 1 for all v ∈ V and the
capacity as W = k.

Similarly, we utilize XPDC for solving the #MC. Let R be a set of edges such that, for
all v ∈ V , R has exactly one edge e ∈ E where v ∈ e. We construct a ZDD for the set
family X̂k where

X̂k := {X ∈ 2E | |X ∩R|= k}. (4.11)

Then, because |XPDC ∩ X̂k| is the solution of the #MC, we conduct the intersection op-
eration between the ZDDs. A ZDD for X̂k can also be constructed by the TD-DD for a
special case of knapsack-type constraints: We set the weight as w(e) = 1 for all e ∈ R
and w(e′) = 0 for all e′ ∈ E \R and the capacity as W = k.

4.4.2 Help with Playing Minesweeper Puzzles

On playing a Minesweeper puzzle, a simple strategy is to guess the mine probability
for each closed cell, which is the probability that a mine is hidden in the cell. Our
approach can help this strategy.

We formally define the mine probability p(M;v) of vertex v∈V on a fixed Minesweeper
board M as follows:

p(M;v) :=
|{X ∈ XPMS | v ∈ X}|

|XPMS|
. (4.12)

Note that {X ∈ XPMS | v ∈ X} can be replaced with {X ∈ XPDC | ∃e ∈ X ,v ∈ e}. By
using the family algebra, we have {X ∈ XPMS | v ∈ X} = XPMS � v. Similarly, we have
{X ∈ XPDC | ∃e ∈ X ,v ∈ e} = XPDC � e′ where v ∈ e′ and e′ ∈ E. Thus, we can easily
compute the mine probability by using the family algebra and the Algorithm 2.4.2.
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4.5 Experiments
We conduct the experiments for evaluating the performance of two proposed algo-

rithms. Especially, we use not only grid-based board but also graph-based board in the
experiments. All the code was implemented in C++ (g++5.4.0 with the -O3 option). We
used 64-bit Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz CPU and 64 GB
RAM. The experiments were done on the PC with Intel Core i7-3930K 3.2GHz CPU
and 64GB memory.

The instance boards were randomly generated as follows: Some of them are 30×
30 grid, and the others are random graph with 300 vertices and 900 edges (relatively
sparse). We set three types of probability that each cell hides a mine, 10%, 20%, and
30%. We also set nine types of probability that each cell has a hint number, 10%, 20%,
. . . , and 90%.

Tables 4.1 and 4.3 summarize the computation time. ’NA’ indicates the algorithm
with a naive combinatorial approach, and ’DC’ indicates the algorithm with degree
constraints approach. Tables 4.2 and 4.4 summarize the number of feasible mine as-
signments in each instance. The best time is written in bold letters.

On the grid-based boards, the number of feasible mine assignments is over 1020 in
quite of half instances. However,‘ DC’ shows the best time in most instances. Espe-
cially, it is 100 times faster than‘ NA’ n some instances. Thus, the degree constraints
approach is efficient for the MGP with grid-based boards. But in instance consisting of
30% hidden mine and 40% hints number, ’DC’ is inefficient in comparison with ’NA’.
We consider that the reason depends on the complexity of the graph generated by the
board; it is supposed that the degree constraints are easily complicated by connections
of the vertices.

Table 4.1. Computation time (in second) for grid-based board
mine ratio 10% 20% 30%
hint ratio NA DC NA DC NA DC

10% 3.602 0.006 2.917 0.006 2.872 0.005
20% 15.306 0.023 16.124 0.095 16.921 0.024
30% 19.812 0.149 23.974 0.732 22.268 3.472
40% 24.636 0.051 34.478 1.226 36.521 79.872
50% 23.334 0.041 33.440 0.331 37.740 1.884
60% 18.915 0.033 23.872 0.065 35.572 0.273
70% 11.826 0.028 17.801 0.031 23.063 0.035
80% 6.013 0.019 12.659 0.024 18.790 0.030
90% 1.788 0.013 6.128 0.018 11.642 0.023
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Table 4.2. Number of feasible mine assignments for grid-based board
hint ratio\mine ratio 10% 20% 30%

10% 1.53×1030 6.33×1047 1.92×1055

20% 3.76×1030 1.35×1055 8.41×1071

30% 1.12×1020 8.29×1037 2.81×1051

40% 4.09×107 5.24×1021 5.90×1039

50% 512 1.73×107 6.89×1025

60% 16 65536 3.52×106

70% 1 64 6912
80% 1 2 4
90% 2 1 1

On the graph-based board,‘DC’ shows the best time in all instances. Especially, it is
100 times faster than‘NA’ in some instances. The computation time of‘NA’ is not stable
compared with grid-based boards. On the other hand, the computation time of‘ dc’ is
stable. We consider that the result is caused by dispersion of the degree in the original
graph, which affect number of adjacent cells. In contrast, number of adjacent cells of
each cell in grid is approximately constant. Thus, the degree constraints approach is
also efficient for the MGP with boards based on sparse graphs.

Table 4.3. Computation time (in second) for graph-based board (|V |= 300, |E|= 900)
mine ratio 10% 20% 30%
hint ratio NA DC NA DC NA DC

10% 0.171 0.001 0.629 0.002 52.186 0.001
20% 0.816 0.004 89.602 0.024 82.493 0.141
30% 1.156 0.008 100.224 0.025 49.926 0.650
40% 5.859 0.012 12.410 0.071 60.105 2.592
50% 1.189 0.008 81.190 0.007 65.981 0.017
60% 0.917 0.006 2.065 0.007 147.352 0.234
70% 0.461 0.006 0.799 0.008 2.206 0.008
80% 0.203 0.005 0.500 0.008 0.737 0.007
90% 0.051 0.003 0.184 0.005 0.398 0.005
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Table 4.4. Number of feasible mine assignments for graph-based board
hint ratio\mine ratio 10% 20% 30%

10% 10251360 3.63×109 1.23×1015

20% 2419200 7.65×1010 1.75×1014

30% 4 7.97×107 7.15×1010

40% 90 11520 1.28×108

50% 4 12 864
60% 1 4 4
70% 1 1 2
80% 1 1 1
90% 1 1 1

4.6 Concluding Remarks for Minesweeper Puzzles
In this chapter, we develop the MGP which is a problem to generate all feasible mine

assignments on a given fixed Minesweeper board. We also proposed two algorithms for
implicit enumeration by ZDDs to solve the MGP. One is a naive combinatorial approach
combined with the family algebra. The other is a degree constraints approach using a
formulation by degree constrained subgraph and the TD-DD. Subsequently, we showed
their applications to the various problems related to the Minesweeper puzzle such as the
MCP, #M, #MC, and the computation of mine probability. An important contribution
was that we compared performances of the approaches on various instances: the exper-
imental results showed that the approach using the TD-DD was better than the naive
combinatorial approach.

As a future work, we can consider an online problem for the Minesweeper puzzle,
where hints are given one by one. Solving the online problem is close to actual play of
the Minesweeper puzzle.



Chapter 5

Implicit Enumeration of Strongly
Connected Spanning Subgraphs on
Directed Graphs

On network systems, the connections are a fundamental component, such as commu-
nication between facilities. A network system is often represented by a graph; the ver-
tices represent facilities such as servers, and the edges represent connections between
facilities such as cables. On undirected graphs, the property called spanning is com-
monly used for representing the condition that all the vertices are connected, i.e, they
can communicate with each other. As a natural extension of spanning, the directed ver-
sion can be considered: A directed graph is said to be strongly connected if any pair
of vertices has bidirectional paths. On the directed graph, strongly connected leads the
condition that all the vertices can communicate with each other. Because strongly con-
nected is demanded in various network systems such as ad-hoc network, the property
has been applied to various real-world issues such as evaluation of network reliability
[13, 23, 32, 50, 66] and visualization of network systems [1, 2, 4, 65].

On modeling the issues above, subgraphs called strongly connected spanning sub-
graphs (SCSSs) have frequently been used. A subgraph is an SCSS if it is strongly con-
nected and has all the vertices of an original graph. Network reliability is the probability
that a network system can perform a desired operation, such as communication between
facilities, against stochastic equipment failures. Network reliability on directed graphs
is called the strongly connected reliability (SCR) [13] which is the probability that the
graph maintains strongly connected. On visualization of network systems, desirable
graphs are removed complexity of connections as much as possible with maintaining
global connections, namely, small and strongly connected. It is formalized as the min-
imum SCSS problem (min-SCSS) to obtain the SCSS with smallest number of edges.
However, the exact computation of the SCR belongs to the class of #P-complete [63].
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Similarly, the min-SCSS belongs to the class of NP-hard [20]. Therefore, efficiently
dealing with SCSSs is an important issue.

In this chapter, we deal with an SEP to obtain all the SCSSs on a given directed graph.
Especially, we propose the TD-DD (a new variant of the FBS) for constructing BDDs for
SCSSs. Once a BDD for the SCSSs is obtained, we can efficiently compute the exact
SCR and obtain the minimum SCSS by functions of the BDD. Particularly, because
the BDD has several functions to search solutions under various conditions, it can be
flexibly utilized. We conducted computational experiments to evaluate our algorithm.
We used several real-world and synthetic networks with a few hundred edges. The
experimental results showed that our algorithm can construct the BDDs for the SCSSs
in a reasonable time. We also computed the SCR on each instance using the constructed
BDDs, which was previously impossible.

5.1 Strongly Connected Spanning Subgraphs
Here, we introduce the definition and the notations of the strongly connected spanning

subgraph (SCSS) on a directed graph G = (V,E).

Definition 5.1.1. For any pair of vertices (u,v) ∈V 2, v is reachable from u on G, which
is denoted by u⇝G v, if G has a u-v path. Similarly, u ̸⇝G v denotes that v is not
reachable from u on G.

Definition 5.1.2. G is said to be strongly connected if u⇝G v for all (u,v) ∈V 2.

Definition 5.1.3. For any edge subset X ⊆ E, G[X ] is said to be spanning if V [X ] =V .

Definition 5.1.4. For any edge subset X ⊆ E, the edge induced subgraph G[X ] is an
SCSS of G if G[X ] is strongly connected and spanning. If G[X ] is an SCSS, X is a
strongly connected edge subset (SCES) of G.

In this chapter, we treat the SEP PSC = ⟨E,CSC⟩ on G where the property function
CSC is defined as

CSC(X) = 1 ⇐⇒ ∀(u,v) ∈V 2,u⇝G[X ] v. (5.1)

Namely, XPSC is the set of all the SCESs of G. Note that we assume that the input graph
G is strongly connected. Figure 5.1 shows an example of all the SCSSs of a strongly
connected graph.
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Figure 5.1. All the SCSSs of a graph. The left-top graph is the original and itself is an SCSS.

5.2 Proposed Method
We design four primary components to construct a BDD for XPSC by a TD-DD. Sub-

sequently, we analyze its time complexity. Let E := {e1, . . . ,en}, E<i := {e1, . . . ,ei−1},
and E≥i := {ei, . . . ,en}. In the following, we assume that ei = (si, ti) for each i ∈ [n].

5.2.1 Top-Down Construction of BDDs for SCSSs

Configuration

For each i ∈ [n], i-th frontier is defined as Fi := V [E<i]∩V [E≥i] as with Section
2.4.5. We use the reachability on the frontier vertices as the configuration. For any node
α ∈ Ni, ϕ(α) is defined as a reachability matrix indexed by F2

i :

ϕ(α)u,v :=

{
1 (∀X ∈ D̄(α),u⇝G[X ] v),

0 (otherwise).
(5.2)

We assume that ⊥-pruning is always conducted if possible. This assumption deduces
that each vertex excluded from the past frontier is reachable from (resp. to) the new
frontier on G[X ] (X ∈ D̄(α)). By this assumption, we obtain the following lemma.

Lemma 5.2.1. The configuraiton (5.2) satisfies the condition (3.8).

Proof. For any node α ∈Ni, let Eα be a contracted edge set of G, which is derived from
the configuration ϕ(α), defined as

Eα := {(u,v) ∈ F2
i | ϕ(α)u,v = 1}. (5.3)
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Similarly, let Gα be a contracted graph of G defined as

Gα := (V [E≥i],E≥i∪Eα). (5.4)

According to the assumption above, each edge subset X ∈ XPSC[α] satisfies that X ∪Eα
is an SCES of Gα . Therefore, we have

CSC[α](X) = 1 ⇐⇒ ∀(u,v) ∈V [E≥i]2,u⇝Gα [X∪Eα ] v. (5.5)

Let β ,β ′ ∈ Ni. Because (5.5) depends on only the configuration (5.2), we have

ϕ(β ) = ϕ(β ′)⇒ XPSC[β ] = XPSC[β ′]. (5.6)

generateNode Function

Initially, ϕ(ρ) has no information. Subsequently, for any node α ∈ Ni and b ∈ {0,1},
generateNode function computes ϕ(αb) as follows:

1. Remove the rows and columns corresponding to the vertices excluded from the
frontier, i.e, Fi \Fi+1.

2. Inset the rows and columns corresponding to the vertices included in the frontier,
i.e, Fi+1 \Fi.

3. If b = 0, end the update. Otherwise, including a new edge changes the reachabil-
ity; thus, we update ϕ(αb) as the transitive closure of the frontier.

⊥-prune Function

Here, we design a⊥-prune function that does not contradict the assumption of Lemma
5.2.1. We use the following properties of CSC[α] where α ∈ Ni:

• CSC[α](X) = 1 implies CSC[α](X ∪{ei}) = 1 for any X ⊆ E≥i, because an edge
subset that contains an SCES is also an SCES.

• If ϕ(α)si,ti = 1, then CSC[α](X)= 1 implies CSC[α](X \{ei})= 1 for any X ⊆E≥i,
because ei = (si, ti) ∈ Eα .

Thus, we have a chance to conduct ⊥-pruning for the case that ei is excluded and
ϕ(α)si,ti = 0 is satisfied.

Let G− e := (V,E \{e}) be a graph that is obtained by removing an edge e from G.
A graph Gα−ei has no SCES if and only if {ei} forms a cut set from si to ti. Therefore,
we design ⊥-prune(α,ei,b) as:

⊥-prune(α,ei,b) =

{
True (b = 0, ϕ(α)si,ti = 0, and si ̸⇝Gα−ei ti),

False (otherwise).
(5.7)
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⊤-prune Function

Similarly, we have a chance to conduct⊤-pruning for the case that ei is included. The
following property is observed: CSC[α]({ei}) = 1 implies CSC[α]({ei}∪X) = 1 for any
X ⊆ E≥i+1. Therefore, we design ⊤-prune(α,ei,b) as

⊤-prune(α,ei,b) =

{
True (b=1,∀(u,v) ∈V [E≥i]2,u⇝Gα [Eα∪{ei}] v),

False (otherwise).
(5.8)

5.2.2 Time Complexity

For updating the configuration, the number of removed (resp. Insert) rows and columns
is constant because |Fi\Fi+1| (resp. |Fi+1\Fi|) is 0, 1, or 2. Updating ϕ(β ) is performed
in O(|Fi|2) time by the BFS/DFS on the frontier. Thus, our generateNode function can
be processed in O(|Fi|2) time.

For evaluating ⊥-prune(α,ei,b) efficiently, we precompute the transitive closure of
G[E≥i+1]. Using the transitive closure of G[E≥i+1], the reachability from si to ti on
Gα−ei is verified in O(|Fi|2) time by the BFS/DFS on the frontier. The precomputation
of the transitive closures can be efficiently performed in decreasing order i = n, . . . ,1;
We compute the transitive closure of G[E≥i] as the extension of the transitive closure
of G[E≥i+1] by the BFS/DFS on the V [E≥i]. Although the precomputation requires
O(∑n

i=1 |V [E≥i]|2) time, it is typically much faster than the FBS.
For evaluating ⊤-prune(α,ei,b) efficiently, we precompute an integer

r := min{i ∈ {1, . . . ,m} |V [E≤i] =V}. (5.9)

Subsequently, i < r implies ⊤-prune(α,ei,1) = False as V [X ∪{ei}] ̸= V for any X ∈
D̄(α). If i ≥ r, ⊤-prune(α,ei,1) is evaluated by the BFS/DFS on the frontier with
computation time O(|Fi|2).

The time complexity of the proposed algorithm strongly depends on the number of
possible configurations for each step i ∈ [n], i.e., the number of nodes |Ni| as mentioned
in Section 3.4. Although we have |Ni| ≤ 2|Fi|2 , it is a rough estimation because con-
figurations represent transitive closures. Let T (k) be the number of transitive closures
on k labeled vertices. It is known as OEIS A006905 (https://oeis.org/A006905) in the
literature [51]. Then, we have |Ni| ≤ T (|Fi|). We show a partial table of T (k) and 2k2

in
Table 5.1.

As a result, because each node α ∈ Ni takes O(|Fi|2) time as mentioned above,
the total time complexity of the algorithm is O

(
∑n

i=1 |V [E≥i]|2 +∑i∈[n] |Fi|2T (|Fi|)
)
=

O(EV 2 +EF̂2T (F̂)) where F̂ = maxi∈[n] |Fi|. Although T (k) is still huge as in Table
5.1, we show that the algorithm run on graphs of moderate sizes in the experimental
results below.
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Table 5.1. A partial table of T (k) and 2k2
(1≤ k ≤ 10)

k T (k) 2k2

1 2 2
2 13 16
3 171 512
4 3994 65536
5 154303 33554432
6 9415189 68719476736
7 878222530 562949953421312
8 122207703623 18446744073709551616
9 24890747921947 2417851639229258349412352

10 7307450299510288 1267650600228229401496703205376

5.3 Applications
In the previous section, we present a new variant of the FBS that constructs a BDD for

XPSC . The constructed BDD also allows us to solve SCSS-related problems efficiently.

5.3.1 Exact Computation of Strongly Connected Reliability

The strongly connected reliability (SCR) of G is the probability that G remains strongly
connected after stochastic edge dropping. Let σ(G) be the SCR of G. We assume that
each edge ei independently drops with probability p(ei). Then σ(G) is defined as:

σ(G) := ∑
X∈XPSC

p(X) (5.10)

where

p(X) := ∏
ei∈X

(1− p(ei)) ∏
e j∈E\X

p(e j). (5.11)

Namely, the SCR is equal to the occurrence probability of SCESs. Thus, once a BDD
B for XPSC is obtained, we can compute the SCR σ(G) by the Algorithm 2.4.3 in the
computation time O(|B|).

5.3.2 Finding Minimum SCSS

Given a weight function w : E → N, let w(X) := ∑e∈X w(e). An SCSS that has the
smallest total weight of edges is called the minimum SCSS. The SCES of the minimum
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SCSS is defined as follows:

X∗ ∈ arg min
X∈XPSC

w(X). (5.12)

This is a linear optimization (minimization). Thus, once a BDD B for XPSC is obtained,
we can obtain X∗ by the Algorithm 2.4.5 and the Algorithm 2.4.7 in the computation
time O(|B|).

5.4 Experiments
We conducted computational experiments to evaluate the proposed algorithm. All

the codes were implemented in C++ (g++4.8.4 with the -O3 option) using the TdZdd
library [29], which is a highly optimized implementation for the FBS framework. All
experiments were conducted on a 64-bit Ubuntu 16.04 LTS with an Intel Core i7-3930K
3.2 GHz CPU and 64 GB RAM.

5.4.1 Scalability on Synthetic Networks

First, to observe the performance of the proposed algorithm, we applied our method to
two classes of synthetic networks. The first class was 5×w gird graphs that had 5w ver-
tices, 18w−10 directed edges (undirected edges were replaced with two directed edges
in both directions), and a pathwidth of 5. The second class was random graphs that
had the same number of vertices of 5×w grid, 9w−5 directed edges, and a pathwidth
of Θ(n). We used the algorithm proposed in [45] to generate the strongly connected
random graphs. For each w ∈ {5, . . . ,20}, one hundred random graphs were generated,
and we evaluated the average performance on the random graphs.

The results of the synthetic networks are shown in Figure 5.2 and 5.3. The grid graphs
show that the computation time increased slowly; our algorithm executed in 16 seconds
for n = 100. However, for the random networks, the computation time increased rapidly
for networks with 80≤ |V | vertices. These results show that the large pathwidth affected
the computation time of our algorithm.

The size of the constructed BDDs had a similar tendency with the computation times.
The BDD size was increased slowly for the grid graphs and rapidly for the random
networks with 80≤ |V | vertices. Meanwhile, the sizes of the reduced BDDs were suffi-
ciently small.



50 Chapter 5. Implicit Enumeration of Strongly Connected Spanning Subgraphs on Directed Graphs

 0

 50

 100

 150

 200

 250

 300

 350

 20  30  40  50  60  70  80  90  100

C
om

pu
ta

tio
n 

T
im

e 
(s

ec
)

#Vertices

Grid
Random

Figure 5.2. Computational time on 5×w grid graphs and random graphs.

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08

 20  30  40  50  60  70  80  90  100

B
D

D
 S

iz
e

#Vertices
Grid (Obtained BDD)

Random (Obtained BDD)
Grid (Reduced BDD)

Random (Reduced BDD)

Figure 5.3. BDD size on 5×w grid graphs and random graphs.

5.4.2 Scalability on Real-World Networks

Next, to evaluate the practical performance of the proposed algorithm, we applied
our method to real-world networks. The real-world graphs were obtained from SNDlib
[70]. All the self-loops and multiple edges are deleted. Because all the graphs were
undirected, we replaced each edge with two directed edges in both directions.

The results are shown in Table 5.2. The algorithm succeeded in constructing the
BDDs for SG on almost all the networks, however failed on three networks due to the
memory limit. Although each succeeded instance might have a few hundred edges, the
algorithm executed in a few seconds or a few minutes. By comparing a brain network
and the failed ones, we found that the computational cost of the algorithm depends on
the network structure.

As shown in the cardinality column, the numbers of SCESs are enormous. This
implies that the naive exhaustive search is unrealistic. Particularly, the ta2 network has

2,320,225,475,355,945,207,334,621,674,664,990,580,848,170,679,757,701,120
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(≃ 2.3×1054) SCESs. This shows the advantage of our approach; the BDD representa-
tion of the SCESs is efficient.

5.4.3 Computation of SCRs

We also conducted the experiments to compute the exact SCR using the constructed
BDDs for analyzing the reliability of each network used in the experiments above. Once
the BDDs are obtained, we can easily compute the exact SRC iteratively for various
settings of the edge dropping probability. Therefore, we used the probability of the
edge dropping that was moved from 1.0 to 0.0 and decreased by 0.01. The results are
shown in Figure 5.4.

For the synthetic networks, the grid graphs have relatively high reliability until the
edge dropping probability is less than 0.1, whereas the reliability of the random graphs
was much lower. We consider that it is attributable to the sparsity of the random graphs;
the number of edges is 9w−5 in contrast with the number of vertices 5w.

The real-world networks brain, ta2, and zib54 have low reliability; meanwhile, the
newyork and pdh networks have much higher reliability. By comparing these networks,
each of the networks with high reliability tends to have relatively many edges in contrast
with the number of vertices. Although this may be a natural consequence, its practical
verification was impossible previously.

5.5 Discussion and Concluding Remarks for Strongly
Connected Spanning Subgraphs

In this chapter, we proposed an algorithm to construct a BDD representing all SCSSs
by the TD-DD, which is a new variant of the FBS. Moreover, we applied the algorithm
to compute the exact SCR and obtain the minimum SCSS. The experimental results
showed that the proposed algorithm ran on the real-world networks with a few hundred
edges, even though they have a large number of SCSSs such as 2.3× 1054. The algo-
rithm also succeeded to compute the SCR of the networks above, which was previously
impossible.

Our algorithm implicitly solved the enumeration problem of SCSSs. Regarding the
explicit enumeration, only the algorithm to enumerate the minimal SCSSs is known
[12]. Hence, we first tackled the enumeration problem of general SCSSs. Moreover, the
enumeration algorithm in [12] requires the computation time depending on the number
of minimal SCSSs, whereas our algorithm requires the computation time depending on
the pathwidth of the given graph. This is an advantage of our algorithm in several graph
classes having a small pathwidth and many minimal SCSSs.
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Table 5.2. Computational results on real-world networks. Time denotes the time to construct the

BDDs, BDD Size 1 denotes the size of the constructed BDDs, BDD Size 2 denotes the size of

the reduced BDDs, and Cardinality denotes the number of SCESs. For the last three networks,

the algorithm failed due to the memory limit.
Network Name |V | |E| Time (sec) BDD Size 1 BDD Size 2 Cardinality

abilene 12 30 0.00 284 94 1.2e+06
atlanta 15 44 0.01 4,964 630 5.9e+10
brain 161 332 2.31 9,095 2,990 1.6e+07

cost266 37 114 0.46 382,680 22,221 5.3e+28
france 25 90 0.05 45,715 5,420 2.2e+23
geant 22 72 0.07 81,391 5,611 1.3e+18

germany50 50 176 138.56 124,052,168 3,454,355 1.3e+47
giul39 39 172 972.38 781,882,756 15,878,463 2.2e+49
india35 35 160 90.05 83,212,903 2,422,816 4.8e+45

janos-us-ca 39 122 0.37 416,769 29,749 7.4e+30
janos-us 26 84 0.08 59,486 5,320 3.4e+21
newyork 16 98 12.70 12,178,145 607,550 9.8e+28
nobel-eu 28 82 0.03 35,481 2,822 9.1e+19

nobel-germany 17 52 0.00 2,790 458 6.3e+12
nobel-us 14 42 0.01 15,526 2,285 6.1e+10
norway 27 102 0.28 325,280 19,543 1.2e+28

pdh 11 68 4.73 4,555,544 551,065 1.9e+20
pioro40 40 178 198.94 182,362,754 1,415,844 3.6e+51
polska 12 36 0.00 4,525 794 1.4e+09

sun 27 102 0.37 325,355 19,543 1.2e+28
ta1 24 102 0.08 52,991 4,489 2.5e+28
ta2 65 216 2.56 2,573,009 98,115 2.3e+54

zib54 54 160 0.18 158,979 13,571 1.2e+37
dfn-bwin 10 90 - - - -
dfn-gwin 11 94 - - - -
di-yuan 11 84 - - - -
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Figure 5.4. The results of the SCRs computation.

An important future work is to compute (possibly approximate) SCRs in networks
with large path-width. This may require new techniques such as the approximation of
BDDs and the reduction of the networks.





Chapter 6

Implicit Enumeration of
Pareto-Optimal Solutions for 0-1
Multi-Objective Knapsack Problems

Decision making with capacity is a frequent situation in the real-life, for example, re-
source allocation, selection of investments, and so on. They have often been formalized
and solved as a combinatorial problem called the 0-1 knapsack problem (KP): Given a
set of items and a capacity, where each item has a value and a weight, the KP requires
to find a subset having the maximum total value within the capacity. Many studies
on the KP are shown in the literature [37]. However, this formulation is not always
proper because values can include multiple criteria in the real situation. Therefore, the
0-1 multi-objective knapsack problem (MKP), which is a multi-objective combinatorial
optimization (MOCO) [44], has been studied. If each item has a value including m cri-
teria, the MKP is said to be m-objective; The KP is the 1-objective case of the MKP.
The MKP have many practical applications, for example, capital budgeting [53] and se-
lection of transportation investment alternatives [59]. In the MOCO, desirable solutions
have the property called the Pareto-optimality, i.e., a criterion cannot be improved with-
out changing another criterion for the worse. If a solution has the Pareto-optimality, the
solution called a Pareto-optimal solution. The goal of the MKP is to obtain a (possibly
partial) set of Pareto-optimal solutions.

As a known result, although the KP belongs to the class of NP-hard, a pseudo-
polynomial time algorithm by a dynamic programming (DP) runs on the KP efficiently.
On the other hand, its simple extended algorithm does not efficiently run on the MKP
because of increasing the dimension of the search space. Therefore, various approaches
for the MKP have been studied: Metaheuristics such as simulated annealing and genetic
algorithm efficiently find a set of approximate solutions, which are not necessarily a
Pareto-optimal solution [21, 30, 64]. A labeling algorithm [18] and ε-constraint method



56 Chapter 6. Implicit Enumeration of Pareto-Optimal Solutions for 0-1 Multi-Objective Knapsack Problems

[16] find all Pareto-optimal solutions only for 2-objective cases. For general cases, the
literature [7] proposed a framework for the DP with novel pruning techniques. Espe-
cially, it is experimentally shown that the DP with pruning is faster than both of the
labeling algorithm and the ε-constraint method on 2-objective cases. Therefore, the DP
with pruning is a better approach on the MKP.

In this chapter, we present more effective pruning techniques to the DP approach
above by the TD-DD. An important idea is to use ZDDs for itemsets with knapsack-
constraints (mentioned in Section 3.3.1) as a support data structure, which stores all the
feasible solutions. The algorithm prunes more undesirable solutions than the existing
approach. Moreover, the algorithm constructs a ZDD for Pareto-optimal solutions by
an extended framework of the TD-DD with the new pruning techniques. Experimental
results showed that the proposed algorithm is faster than the existing DP on various
types of instances.

6.1 0-1 Multi-Objective Knapsack Problems
Let S be a set of n items S := {s1, . . . ,sn} each of that si ∈ S has an m-dimensional

value vector vvv(si)∈Zm
≥0 where vvv(si)= (v(si)1, . . . ,v(si)m) ̸= 000. For any subset X ⊆ S, let

vvv(X) := ∑si∈X vvv(si). Here, we define the order relation < between two m-dimensional
vectors aaa,bbb ∈ Zm

≥0 as

aaa < bbb ⇐⇒ ∀i ∈ [m],ai ≤ bi and ∃ j ∈ [m],a j < b j. (6.1)

Similarly, its reversal order relation > is also defined. We also define the partial order
relation ∆, called the dominance relation, between two subsets X ,Y ⊆ S as

X∆Y ⇐⇒ vvv(X)< vvv(Y ). (6.2)

If X∆Y , we say that X is dominated by Y , and Y dominates X .
Let w be a weight function w : S→ N and w(X) := ∑si∈X w(si) for any X ⊆ S. For a

capacity W ∈ N, let XW := {X ⊆ S | w(X) ≤W}, which is equal to the solution of the
SEP PKP. Given a capacity W , a subset X ∈ XW is said to be Pareto-optimal if X is not
dominated by any other subset Y ∈ XW .

A 0-1 multi-objective knapsack problem (MKP) requires obtaining all the subsets,
called Pareto-optimal solutions, that are Pareto-optimal. Namely, an MKP is an SEP
PMK = ⟨S,CMK⟩ where CMK is defined as

CMK(X) = 1 ⇐⇒ X ∈ XW ,¬(∃Y ∈ XW ,X∆Y ). (6.3)
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6.2 Basic Framework
In this section, we introduce the existing dynamic programming framework proposed

by Bazgan et al. [7] to solve MKPs. Subsequently, we propose a new framework based
on the TD-DD that constructs a ZDD for XPMK . Let S≥i := {si, . . . ,sn}.

6.2.1 Existing Framework

An existing framework is based on a dynamic programming. The algorithm maintains
subsets by states each of that is a pair of a current total weight and a current value vector:
Let λ be a state which has a weight w(λ ) and value vector vvv(λ ). Two states λ ,λ ′ are
equivalent if w(λ ) = w(λ ′) and vvv(λ ) = vvv(λ ′).

The algorithm consists of n steps. Let Xi be a set of states at step i ∈ [n]. For conve-
nience, let Xn+1 be a set of states at the end of the algorithm. Initially, X1 = {λ̄} where
w(λ̄ ) = 0 and vvv(λ̄ ) = 000. At step i ∈ [n], the algorithm conducts the following proce-
dures: For each λ ∈ Xi, the algorithm stores it with Xi+1, and generate a new state λ+

where w(λ+) = w(λ )+w(si) and vvv(λ+) = vvv(λ )+ vvv(si). If w(λ+)≤W , the algorithm
store it with Xi+1. Note that equivalent states are not stored with duplication.

At last of each step, the algorithm conducts a pruning procedure. For any state λ ∈Xi,
let Ei(λ ) ⊆ 2S≥i

be a set of extendable subsets where each X ∈ Ei(λ ) satisfies w(λ )+
w(X)≤W . Then, the algorithm uses a relation ∆i between states in Xi+1 which satisfies

λ∆iλ ′ =⇒∀X ∈ Ei(λ ),∃Y ∈ Ei(λ ′),vvv(λ )+ vvv(X)< vvv(λ ′)+ vvv(Y ). (6.4)

Let Ri be a set of such relations. For any state λ ∈ Xi+1, if λ∆iλ ′ for a relation ∆i ∈ Ri

and a state λ ′ ∈ Xi+1, the algorithm prune λ . Especially, the algorithm requires that at
least one relation ∆∗n ∈ Rn between states in Xn+1 satisfies

vvv(λ )< vvv(λ ′) =⇒ λ∆∗nλ ′. (6.5)

Then, the set of remaining states in Xn+1 corresponds to all the Pareto-optimal solutions.
The pseudo code of the framework is shown in Algorithm 6.2.1. Bazgan et al. proposed
some relations for pruning in the literature [7].

6.2.2 Proposed Framework

We propose a framework that is a transformation of the TD-DD in accordance to
the existing framework above. A main difference between proposed framework and the
TD-DD is that the framework does not use⊥-prune function and⊤-prune function. The
algorithm conducts a pruning procedure at last of each step instead.
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Algorithm 6.2.1 Existing framework for solving MKPs

1: X1←{λ̄} where w(λ̄ ) = 0 and vvv(λ̄ ) = 000
2: Xi← /0 for i = 2, . . . ,n+1
3: for i = 1, . . . ,n do
4: for λ ∈ Xi do
5: Xi+1← Xi+1∪{λ}
6: Generate λ+

7: if w(λ+)≤W then
8: Xi+1← Xi+1∪{λ+}
9: end if

10: end for
11: for λ ∈ Xi+1 do
12: if ∃∆i ∈ Ri,∃λ ′ ∈ Xi+1,λ∆iλ ′ then
13: Xi+1← Xi+1 \{λ}
14: end if
15: end for
16: end for
17: return Xn+1

As a preprocess, we obtain a ZDD Ẑ for XW by the TD-DD in Section 3.3.1 and
reduce it. After that, the algorithm processes the items s1, . . . ,sn in this order, updates
the configuration, and merges equivalent nodes as with the TD-DD. Let N̂ be the node
set of Ẑ and ρ̂ be the root node of Ẑ. Let D= (N,A) be an initial decision diagram such
that N = {ρ,⊥,⊤} and A = /0.

We define the configuration as the pair of a node in N̂ and a current value vector:

ϕ(α) := (τ(α),vvv(α)) (6.6)

where τ(α) ∈ N̂, ℓ(α) = ℓ(τ(α)), and vvv(α) = vvv(X) for all X ∈ D̄(α). For all generated
node α , the algorithm stores it with the node set Nℓ(τ(α)). Initially, τ(ρ) = ρ̂ and vvv(ρ) =
000. For any α ∈ Ni and b ∈ {0,1}, generateNode(α,si,b) computes the configuration of
αb as follows: τ(αb) = τ(α)b and vvv(αb) = vvv(α)+b× vvv(si). Note that the current total
weight is not explicitly maintained because it is implicitly maintained by τ(α): For all
X ∈ D̄(α), X /∈ XW iff τ(α) =⊥ because X is represented by a path ρ̂ to ⊥ on Ẑ.

At last of each step i ∈ [n], the algorithm conducts a pruning procedure as follows:
First, any α ∈Ni+1 is changed into⊥ if τ(α) =⊥. Subsequently, we consider relations,
which are an extension of (6.5), between remaining nodes. Let R be a set of relations,
called future dominance relations (FDRs), between nodes such that each ∆̂ ∈ R satisfies

α∆̂β =⇒∀X ∈ Ẑ(τ(α)),∃Y ∈ Ẑ(τ(β )),vvv(α)+ vvv(X)< vvv(β )+ vvv(Y ). (6.7)
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A set family Ẑ(α) corresponds to a set of extendable subsets in the existing framework.
If α∆̂β , we say that α is dominated by β , and β dominates α . For each FDR ∆̂ ∈ R,
the algorithm changes α into ⊥ for any α ∈ Ni+1 which is dominated by another node.
Especially, the algorithm requires that at least one FDR ∆∗ ∈ R satisfies

ℓ(α) = n+1,∃Y ∈ Ẑ(τ(β )),vvv(α)< vvv(β )+ vvv(Y ).=⇒ α∆∗β (6.8)

Then, all the Pareto-optimal solutions are represented by a path from ρ to a remaining
node in Nn+1. Thus, all the remaining nodes in Nn+1 are changed into ⊤. The pseudo
code of the framework is shown in Algorithm 6.2.2.

6.3 Future Dominance Relations Using ZDDs
In this section, we design two FDRs for pruning. They are based on the capacity and

the tight upper bound, respectively, each of which can be computed by using Ẑ.

Relation Based on Implicit Capacity

For any node γ ∈ N̂, we define the implicit capacity IC(γ) as

IC(γ) := max
X∈Ẑ(γ)

w(X). (6.9)

Here, we have the following lemma.

Lemma 6.3.1. Any pair of nodes α,β ∈ N satisfies

IC(τ(α))≤ IC(τ(β )) and vvv(α)< vvv(β )
=⇒∀X ∈ Ẑ(τ(α)),∃Y ∈ Ẑ(τ(β )),vvv(α)+ vvv(X)< vvv(β )+ vvv(Y ),

(6.10)

and

ℓ(α) = n+1 =⇒ IC(τ(α))≤ IC(τ(β )). (6.11)

Proof. Obviously, IC(τ(α)) ≤ IC(τ(β )) implies Ẑ(τ(α)) ⊆ Ẑ(τ(β )). Thus, for any
subset X ∈ Ẑ(τ(α)), there is a subset Y ∈ Ẑ(τ(β )) where vvv(X) = vvv(Y ) or vvv(X)< vvv(Y ).
Especially, if ℓ(α) = n+1, then IC(τ(α)) = 0≤ IC(τ(β )).

By the above lemma, we define a FDR ∆IC, which satisfies the conditions (6.7) and
(6.8), as

α∆ICβ ⇐⇒ IC(τ(α))≤ IC(τ(β )) and vvv(α)< vvv(β ). (6.12)
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Relation Based on Tight Upper Bound

For any node γ ∈ N̂, we define the greedy extension ggg(γ) by the following procedures:
Initially, X = /0. We start the descent from γ and finish at ⊤. Let β is the current node.
We update X ← X ∪{sℓ(β )}, and descend 1-arc of β . Finally, ggg(γ) := vvv(X). Note that,
because Ẑ is a reduced ZDD, any 1-arc does not point ⊥.

For any node γ ∈ N̂, let uuu(γ) be an m-dimensional vector , which is the tight upper
bound of Ẑ(γ), defined as

uuu(γ) :=

(
max

X∈Ẑ(γ)
v(X)1, . . . , max

X∈Ẑ(γ)
v(X)m

)
. (6.13)

Here, we have the following lemma.

Lemma 6.3.2. Any pair of nodes α,β ∈ N satisfies

vvv(α)+uuu(τ(α))< vvv(β )+ggg(τ(β ))
=⇒∀X ∈ Ẑ(τ(α)),∃Y ∈ Ẑ(τ(β )),vvv(α)+ vvv(X)< vvv(β )+ vvv(Y ),

(6.14)

and

ℓ(α) = n+1 =⇒ uuu(τ(α)) = ggg(τ(β )) or uuu(τ(α))< ggg(τ(β )). (6.15)

Proof. By the definition, vvv(X) = uuu(α) or vvv(X)< uuu(α) for any subset X ∈ Ẑ(τ(α)). In
addition, there is a subset Y ∈ Ẑ(τ(β )) where vvv(Y ) = ggg(τ(β )). Especially, if ℓ(α) =

n+1, then uuu(α) = 000. Thus, the lemma follows.

By the above lemma, we define a FDR ∆u, which satisfies the conditions (6.7) and
(6.8), as

α∆uβ ⇐⇒ vvv(α)+uuu(τ(α))< vvv(β )+ggg(τ(β )). (6.16)

6.4 Algorithm with Efficient Techniques
By the above section, we can apply the proposed framework to MKPs. However,

naive procedures make the computation time longer. Therefore, in this section, we
present some techniques to reduce the computation time practically.

6.4.1 Preprocess

To evaluate the future dominance relations ∆IC and ∆u efficiently, we precompute
IC(α), ggg(α), and uuu(α) for all nodes α ∈ N̂. Because the computation of IC(α) and uuu is
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a maximization with respect to w and vi (i∈ [m]), we precompute them by the bottom-up
dynamic programming like the Algorithm 2.4.10. Similarly, ggg(α) can be precomputed
by a bottom-up procedure. The pseudo code of the preprocess is shown in the Algorithm
6.4.1. Note that we use the notation N̂i := {α ∈ N̂ | ℓ(α) = i}.

6.4.2 Pruning

The pruning procedures should be accelerated as much as possible because it requires
the highest computation time: A naive procedure is to compare all the pairs of nodes in
Ni+1, which requires O(m|Ni+1|2) amount of time. Here, we present some techniques
for accelerating the naive pruning procedures. A main effect of the techniques is to
reduce the candidates for the comparison.

Pruning with ∆IC

We define the reversal lexicographical order ≥lex on m-dimensional vectors as

aaa≥lex bbb ⇐⇒ ∃i ∈ [m],ai > bi,∀ j ∈ [i−1],a j = b j or aaa = bbb. (6.17)

Note that aaa > bbb implies aaa≥lex bbb. We also define an order relation ≥IC on Ni as

α ≥IC β ⇐⇒ IC(τ(α))> IC(τ(β )) or IC(τ(α)) = IC(τ(β )),vvv(α)≥lex vvv(β ).
(6.18)

Here, we have the following lemma.

Lemma 6.4.1. α∆ICβ =⇒ β ≥IC α .

Proof. Immediately consequence of the definitions.

Because ≥IC is a total order, we can sort all the nodes in Ni in the decreasing order of
≥IC. We can efficiently conduct the pruning with ∆IC for each node α ∈ Ni in the sorted
order as follows: The algorithm maintains a list of m-dimensional vectors DL that stores
candidates for the comparison in the decreasing order of ≥lex. Initially, DL is empty.
Subsequently, for each node α ∈ Ni, the algorithm conducts the following procedures.
Let the current DL store the k vectors ddd1, . . . ,dddk in this order. For convenience, let
dddk+1 := 000.

1. Let j be the current index on DL. Initially, j = 1.

2. While ddd j ≥lex vvv(α), we have a chance to prune α by the definition of ≥lex: If
vvv(α)< ddd j, prune α and finish the procedure. If vvv(α) = ddd j, finish the procedure.
Otherwise, j is updated by j+1.
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3. Insert vvv(α) into the j-th position of DL.

4. Delete all the vectors dddl where dddl < vvv(α) for l = j, . . . ,k.

After the procedures, all the vectors in DL are sorted in the decreasing order of≥lex. Let
δ be the maximum cardinality of DL until the end of the pruning with ∆IC. The time
complexity of the pruning with ∆IC is O(mδ |Ni|) where δ ≤ |Ni|.

Pruning with ∆u

Similarly, we can efficiently conduct the pruning with ∆u as follows: The algorithm
constructs a list of m-dimensional vectors GL that stores candidates for the comparison
in the decreasing order of ≥lex. Initially, GL is empty. Subsequently, for each node α ∈
Ni, the algorithm conducts the following procedures which are similar to the pruning
with ∆IC. Let the current GL store the k vectors ggg1, . . . ,gggk in this order. For convenience,
let gggk+1 := 000. We use the notation ttt(α) := vvv(α)+ggg(τ(α)) for short.

1. Let j be the current index on GL. Initially, j = 1.

2. While ggg j ≥lex ttt(α), we check whether ttt(α) is unnecessary or not for the compar-
ison: If ttt(α)< ggg j or ttt(α) = ggg j, finish the procedure, namely, ttt(α) is unnecessary
for the comparison. Otherwise, j is updated by j+1.

3. Insert ttt(α) into the j-th position of GL.

4. Delete all the vectors gggl where gggl < ttt(α) for l = j, . . . ,k.

After the procedures, all the vectors in GL are sorted in the decreasing order of ≥lex.
Next, for each node α ∈ Ni, the algorithm conducts the pruning with ∆u by using GL as
follows:

1. Let j be the current index on GL. Initially, j = 1.

2. While ggg j ≥lex vvv(α)+uuu(τ(α)), we have a chance to prune α: If vvv(α)+uuu(τ(α))<

ggg j, prune α and finish the procedure. Otherwise, j is updated by j+1.

Let δ̂ be the maximum cardinality of GL until the end of the pruning with ∆u. The time
complexity of the pruning with ∆u is O(mδ̂ |Ni|) where δ̂ ≤ |Ni|.
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6.4.3 Item Reordering Heuristics

The order of items is an important issue in the single-objective knapsack problem. As
a well known result, decreasing order with respect to v(si)1

w(si)
, i.e., value per unit weight, is

better. For the MKP, Bazgan et al. proposed the order Omax, which refers to the ranking
of items with respect to each objective v(si) j. For details, please refer to [7].

Here, we propose a new order which is a natural expansion of single-objective cases
as follows: Let ppp(si) be the potential vector of an item si ∈ S where

ppp(si) :=
(

v(si)1

w(si)
, . . . ,

v(si)m

w(si)

)
. (6.19)

We define Opot as the decreasing order of the potential vectors on ≥lex. Moreover, we
define Op̃ot as the reverse order of Opot.

6.5 Experiments
All the code was implemented in C++ (g++5.4.0 with the -O3 option). We used 64-

bit Ubuntu 16.04 LTS with an Intel Core i7-3930K 3.2 GHz CPU and 64 GB RAM. All
the instances satisfy the condition that 10≤ v(si) j,w(si)≤ 100 for each si ∈ S and each
j ∈ [m]. The capacities of all the instances are W = 10n. The following three types of
instances were considered.

• Type 1: All the values and weights are decided uniformly at random. Type 1 is an
easier setting than the following two types.

• Type 2: For each si ∈ S, its value vector satisfies the condition that 50m− 10 ≤
∑m

j=1 v(si) j ≤ 50m+10. This causes a negative correlation between the objectives
which renders it difficult to solve instances. All the weights are decided uniformly
at random.

• Type 3: All values are decided uniformly at random. For each si ∈ S, its weight
satisfies the condition that 1

m ∑m
j=1 v(si) j−10 ≤ w(si) ≤ 1

m ∑m
j=1 v(si) j +10. This

causes a positive correlation between the values and weights. Type 3 is the most
difficult setting among the aforementioned three types.

6.5.1 Evaluation of Item Reordering Heuristics

First, to observe the effect of reordering heuristics, we compared the three reordering
heuristics (Omax, Opot, and Op̃ot) and random order on 100 instances of each type. Table
6.1 indicates that Opot accelerates the proposed algorithm. However, the computation
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Table 6.1. Average computation time (sec) of each reordering

Bazgan et al.’s Method Proposed Method
Type n m random Omax Opot Op̃ot random Omax Opot Op̃ot

200 2 5.31 3.05 4.32 9.79 10.78 5.81 4.35 12.96
1 100 3 18.42 19.64 19.17 59.57 15.98 11.85 7.59 28.92

70 4 19.20 29.03 21.89 81.88 9.84 7.34 5.59 30.77
150 2 7.16 6.15 6.02 8.42 11.86 10.37 6.63 9.99

2 60 3 10.81 16.06 12.94 20.47 5.84 7.78 3.69 10.12
50 4 70.17 105.25 70.17 126.93 17.12 25.08 9.71 40.93

120 2 18.37 9.24 11.60 9.89 35.31 19.55 18.82 18.22
3 50 3 52.91 40.81 41.47 36.29 31.30 23.38 20.95 22.83

35 4 33.39 29.91 29.26 26.27 7.50 6.43 5.96 6.71

time of the previous algorithm proposed by Bazgan et al. did not vary considerably with
reordering heuristics. Thus, in the following experiments, we used Opot for reordering
items.

6.5.2 Performance on Uniformly Random Instances

Subsequently, to compare the basic performance of the previous algorithm proposed
by Bazgan et al. with that of the proposed algorithm, we investigated the average com-
putation time and the number of states generated by each algorithm for instances of
Type 1. The two-objective (m = 2) cases have n = 25× k items. The three-objective
(m = 3) cases have n = 10× k items. The four-objective (m = 4) cases have n = 10× k
items. For each pair of parameters n and m, we used 100 instances. The results are
shown in Fig.6.1.

For the two-objective cases, the number of states generated by the proposed algo-
rithm was approximately half that generated by the previous algorithm. However, the
difference between the computation times of both algorithms was slight. The reason is
that the effect of the overhead of constructing ZDDs in the proposed algorithm appears
greater than that of the pruning process, because two-objective cases are relatively easy
to solve.

For the three-objective cases, the proposed algorithm was up to two times faster and
generated up to four times fewer states than the previous algorithm.

Moreover, the differences in the computation times and numbers of states were con-
siderably larger for the four-objective cases. The proposed algorithm was up to four
times faster and generated up to six times fewer states than the previous algorithm. This
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shows that the proposed algorithm is more effective than the previous algorithm as the
number of objectives increases.
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Figure 6.1. Computational results for instances of Type 1.

6.5.3 Performance on Correlated Random Instances

Next, to evaluate the performance of the proposed algorithm in detail, we conducted
an experiment with correlated random instances of Type 2 and 3. These instances are
relatively difficult to solve. We investigated the average computation time and number
of states generated by each algorithm.

Type 2

The settings of instances of Type 2 are as follows. The two-objective (m = 2) cases
have n = 50× k items. The three-objective (m = 3) cases have n = 15× k items. The
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four-objective (m = 4) cases have n = 10× k items. For each pair of parameters n and
m, we used 100 instances.

The results for the instances of Type 2 are shown in Fig.6.2. For the two-objective
cases, the proposed algorithm generated fewer states than the previous algorithm but
the two algorithms required approximately equal computation times. These results are
similar to those obtained for random instances.

However, the differences between the two algorithms were revealed in the three-
and four-objective cases. The proposed algorithm always performed better than the
previous algorithm. It was approximately three and six times faster, respectively, and
generated approximately three and four times fewer states, respectively, for three- and
four-objective cases in comparison with the previous algorithm. This suggests that the
number of objectives is crucial for the efficiency of the proposed algorithm in compari-
son with the previous algorithm.
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Figure 6.2. Computational results for instances of Type 2.
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Table 6.2. Average number of Pareto-optimal solutions and nodes of output ZDDs
m = 2 m = 3 m = 4

Type n #Pareto #Nodes n #Pareto #Nodes n #Pareto #Nodes
1 350 450 7793 120 1645 5451 80 2976 5126
2 250 651 8142 75 2758 4873 50 4196 3670
3 150 748 5767 50 3108 4482 40 10482 8765

Type 3

The settings of instances of Type 3 are as follows. The two-objective (m = 2) cases
have n = 25× k items. The three-objective (m = 3) cases have n = 10× k items. The
four-objective (m = 4) cases have n = 10× k items. For each pair of parameters n and
m, we used 100 instances.

For the instances of Type 3, the results are shown in Fig.6.3. For the two-objective
cases, the proposed algorithm generated fewer states than the previous algorithm; how-
ever, it was up to two times slower. Its computation time was up to two times longer.
These results show that the overhead of constructing ZDDs in the proposed algorithm
is predominant in this type of instances.

However, the proposed algorithm performed better than the previous algorithm in
three- and four-objective cases. It was approximately two and four times faster, respec-
tively, and generated approximately three and four times fewer states, respectively, for
three- and four-objective cases in comparison with the previous algorithm. These results
show that the proposed algorithm is efficient for solving difficult instances.

6.5.4 Evaluation of Constructed ZDDs

Finally, we investigated the number of Pareto-optimal solutions and the size of the
output ZDDs for each type. The results are shown in Table 6.2. They suggest that the
number of Pareto-optimal solutions suddenly increases as the objectives increase and
the instances become difficult to solve.

Each Pareto-optimal solution has approximately n
5 items depending on the method of

generation of instances. Thus, the size of output ZDDs was slightly large in the two-
objective cases that had fewer Pareto-optimal solutions than the other cases. However,
for the three- and four-objective cases, the ZDDs were sufficiently small for the total
number of items in all the Pareto-optimal solutions.
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Figure 6.3. Computational results for instances of Type 3.

6.6 Concluding Remarks for 0-1 Multi-Objective Knap-
sack Problems

In this chapter, we proposed an algorithm to implicitly enumerate Pareto-optimal
solutions of the MKP using the TD-DD of the ZDD. The algorithm uses the TD-DD
in the preprocess. Subsequently, the algorithm uses an extended framework of the TD-
DD derived from an existing DP algorithm with novel pruning techniques. An important
idea of the algorithm is the new pruning techniques that utilizes properties of ZDDs. The
experimental results showed that the proposed algorithm was faster than the existing
algorithm on various types of three- and four-objective instances. We also confirmed
that the sizes of the constructed ZDDs are rather small.

An important direction of future work is to consider whether main ideas in this chapter
can be applied to MOCOs with linear criteria or not. It is also important to apply ZDDs
representing Pareto-optimal solutions to real-world issues.
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Algorithm 6.2.2 Constructing a ZDD for XPMK

1: Precompute Ẑ for XW

2: N1←{ρ} where τ(ρ) = ρ̂ and vvv(ρ) = 000
3: Ni← /0 for i = 2, . . . ,n+1
4: Generate the terminals ⊥ and ⊤.
5: Ab← /0 for each b ∈ {0,1}
6: for i = 1, . . . ,n do
7: for α ∈ Ni do
8: for b ∈ {0,1} do
9: β ← generateNode(α,si,b)

10: if τ(β ) =⊥ then
11: β ←⊥
12: else
13: if ∃β ′ ∈ Nℓ(τ(β )), ϕ(β ) = ϕ(β ′) then
14: β ← β ′

15: else
16: Nℓ(τ(β ))← Nℓ(τ(β ))∪{β}
17: end if
18: end if
19: Ab← Ab∪{(α,β )}
20: end for
21: end for
22: for α ∈ Ni+1 do
23: if ∃∆∗ ∈ R,∃β ∈ Ni+1,α∆∗β then
24: Change α into ⊥
25: end if
26: end for
27: end for
28: for α ∈ Nn+1 do
29: Change α into ⊤
30: end for
31: N← (

∪
i=1,...,m Ni)∪{⊥,⊤}, A← A0∪A1

32: return D= (N,A)
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Algorithm 6.4.1 Preprocess

1: IC(⊥)← 0, IC(⊤)← 0, ggg(⊤)← 000, uuu(⊥)← 000, uuu(⊤)← 000
2: for i = n, . . . ,1 do
3: for α ∈ N̂i do
4: IC(α)←max{IC(α0), IC(α1)+w(si)}
5: ggg(α)← ggg(α1)+ vvv(si)

6: u(α) j←max{u(α0) j,u(α1) j + v(si) j} for j = 1, . . . ,m
7: end for
8: end for



Chapter 7

Conclusions and Open Problems

In this thesis, we dealt with the implicit enumeration to solve combinatorial problems
efficiently avoiding the combinatorial explosion. As an approach to the implicit enu-
meration, we used the BDD and the ZDD which are a compact representation of set
families. The BDD/ZDD has various useful functions such as set operations (family
algebra), counting the number of subsets, computation of occurrence probability, and
optimization with linear criteria. In addition, we focused on the FBS which is a top-
down construction framework of BDDs/ZDDs for constrained edge subsets on graphs.

In Chapter 3, we presented a generalized framework of the FBS, named the TD-
DD, for a top-down construction of BDDs/ZDDs on various combinatorial structures.
The TD-DD has four main components configuration, generateNode function, ⊥-prune
function, and ⊤-prune function. We should design the components adequately for the
implicit enumeration of desirable subsets. As examples, we introduced the TD-DD for
itemsets with knapsack-constraints and degree constrained subgraphs.

Subsequently, we showed usefulness of the TD-DD for various combinatorial prob-
lems: the problems are related to various combinatorial structures such as feasible mine
assignments of Minesweeper puzzles, SCSSs on directed graphs, and Pareto-optimal
solutions of MKPs. As an important contribution, we proposed novel algorithms based
on the TD-DD for the implicit enumeration of the combinatorial structures above. We
also conducted computational experiments to show the performances of our algorithms.

In Chapter 4, we applied the TD-DD for the Minesweeper puzzle: We defined a
problem called the MGP which requires obtaining all the feasible mine assignments
on a given fixed board. Subsequently, we proposed two approaches using ZDDs. One
is a naive combinatorial approach combined with the family algebra. The other gives
the MGP another formulation by degree constraints on graphs and uses the TD-DD for
degree constrained subgraphs. We also showed that our approach can be applied to the
MCP, the #M, the #MC, and the computation of mine probability. The experimental
results showed that the approach using the TD-DD is better on various instances.



72 Chapter 7. Conclusions and Open Problems

In Chapter 5, we dealt with strongly connected spanning subgraphs on directed graphs:
We proposed an algorithm for the implicit enumeration of SCSSs on a given directed
graphs. The algorithm is based on the TD-DD of BDDs. We also applied the algorithm
to computing the SCR and obtaining the min-SCSS which are useful for various issues
on network systems. The experimental results showed that the algorithm ran on vari-
ous synthetic graphs and real-world graphs with a few hundred edges. Moreover, we
succeeded the exact computation of the SCRs on real-world graphs above, which was
previously impossible.

In Chapter 6, we dealt with Pareto-optimal solutions of the MKP: We proposed an
algorithm to solve the MKP using the TD-DD. Characteristic things of the algorithm
are to use the TD-DD for knapsack-constraints and linear optimization on the ZDD as
support techniques. Especially, the algorithm uses extended framework of the TD-DD
derived from the existing algorithm. An important contribution is to propose the new
pruning techniques utilizing the ZDD. In addition, we presented a new heuristic for item
reordering, which accelerates our algorithm. The experimental results showed that our
algorithm was faster than the existing algorithm on various types of instances.

Thus, we succeeded to effectively apply the TD-DD for various combinatorial prob-
lems on puzzles, graphs, and itemsets. However, the proposed algorithms cannot run on
large-scale instances. It is a significant issue of this research. In addition, we only dealt
with combinatorial structures which are a part of discrete structures, i.e., permutations,
strings, and the rest. Therefore, the author now explores the following future directions.

• Applying the TD-DD to other types of decision diagrams for the implicit enumer-
ation of various discrete structures: Types of decision diagrams are not only the
BDD/ZDD but also the multi-valued decision diagrams (MDD) [31], the permu-
tation decision diagrams (π-DD) [48], the rotation-based permutation decision
diagrams (Rot-π-DD) [27], the sequence decision diagrams (SeqDD) [42], and
the rest. The MDD has some additional arcs for each node which can support to
represent a set of tuples of subsets. The π-DD represents a set of permutations,
and the Rot-π-DD is a derivation of the π-DD with different representation rules.
The Seq-BDD represents a set of strings. The author would like to apply the
TD-DD to other types of decision diagrams above for the implicit enumeration of
various discrete structures.

• Implicit partial enumeration of large-scale significant SCSSs: In Chapter 5, we
succeeded in dealing with small-scale graphs. On the other hand, various real-
world issues tend to involve more large-scale instances recently due to the growth
of the information technology. However, because large-scale subsets occur in-
crease of the BDD size, dealing with large-scale instances is difficult for our cur-
rent approach. Therefore, we need a novel approach reducing the BDD size. One
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of such approach is to accept omission on the implicit enumeration, namely, we
obtain a subset of desirable set family by constructing approximated BDDs. An
important issue of the approach is to efficiently avoid omission of significant sub-
sets which causes clear errors in applications such as computation of occurrence
probability and optimization. For solving the issue, the restrict approach for some
problems on undirected graphs has been studied in the literature [9], which prunes
subsets guessed to have a little effect for the objective. The author considers ap-
plying the approach to our algorithm.

• Applications of the framework for solving the MKP in Chapter 6: An important
characteristic of the framework is the procedure of pruning dominated nodes after
generating all child nodes at each step. The author guesses that the procedure can
be extended for dealing with constraints affecting between subsets, for example,
considering priority of subsets like the Pareto-optimality. The author also guesses
that the framework can be used for obtaining approximated Pareto-optimal solu-
tions on large-scale instances of the MKP, because the existing algorithm in the
literature [7] has been extended for such purpose [6].

As shown in this thesis, the implicit enumeration by the TD-DD can be a practical
method for combinatorial problems, and we have future work for various directions.
Thus, we believe that new useful techniques for the implicit enumeration based on the
TD-DD are developed to solve various combinatorial problems and real-world issues.
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