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Chapter 1

Introduction

1.1 Background

The board games have deep strategies and the charms attracting the people, and a lot

of people play and enjoy the board games in the world. There are easy-to-understand

results such as winning or losing, and it is easy to compare the strength of player

by using the game results. The board game is sometimes called mind sport [min97],

and there are the board games where human professionals exist. The board games

are used not only for entertainment but also for the research, and the board games

have been used as a testbed for a long time. Development of the computer player

beyond human has been considered as grand challenge, and the studies to create

strong computer players have been actively performed. Development of a computer

player is a study on a search problem that determines the next move from a large

search space. The computer player has to decide the next move in an environment

where hostile players exist and the number of positions occurring in the future is

huge. The search algorithms that are used to efficiently search the large search

space could be applied not only for board games but also for other problems, e.g.,

planning problems, searching for new materials, and optimization problems. Studies

on search algorithms are expected to be applicable to a broader range of artificial

intelligence domains.

1
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For an efficient search, two highly accurate evaluation functions are necessary. One

is the value function which scores the position, and the other is the policy function

which scores the candidate moves. The early period in the development of computer

players, the evaluation functions have consisted of the features extracted by hand

and their weights [CHhH02, ISR02]. The evaluation accuracy of the evaluation

functions mainly depends on the weights. As the number of weights increases, it is

difficult to determine the weights manually that improves the evaluation accuracy.

To efficiently determine the better weights, a lot of machine learning algorithms that

update the weights have been proposed [Tes95, HK14]. These methods have been

shown to be able to create highly accurate evaluation functions in chess, shogi, and

so on. However, extracting the features of position have to be performed by the

human, and it is difficult to apply those methods into the board games where the

extracting the features is difficult such as Go.

Recently, a convolutional neural network (CNN) is used for developing the evaluation

functions, and it is shown that those evaluation functions have high evaluation

accuracy even in Go [MHSS15, CS15]. CNN is a neural network model that has

achieved great success in the field of computer vision, and it is shown that CNN can

learn abstract features of images [KSH12]. The evaluation functions using CNN treat

the position of the board as an image, and CNN can learn the features of the position

that are difficult to be expressed manually. The highly accurate evaluation functions

can be obtained by the learning that imitates the moves of experts; however, the

evaluation accuracy of the evaluation functions created by imitation learning cannot

exceed human. Therefore, a reinforcement learning algorithm using game of self-play

has attracted attention because it can be expected to acquire the evaluation accuracy

exceeding expert. In 2016, the computer player developed by reinforcement learning

algorithm beat the top professional players of human in Go [SHM+16]. This event

received attention from all over the world, and the effectiveness of the reinforcement

learning algorithm which creates evaluation functions using CNN was clarified.
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1.2 Objective

I propose the learning algorithms for creating the functions necessary to develop

the computer player and show the effectiveness of the proposed learning methods

through the development of computer player. In this thesis, two learning methods

are proposed roughly. One is the learning method that creates the classifier of

the board states, e.g., opening game and end game. The other is a reinforcement

learning algorithm using game of self-play to create the value and policy functions

using CNN.

The board game to be used is Hex, which is a board game developed by Piet Hein

and John Nash independently [Bro00]. Hex is classified as a two-player, zero-sum,

and perfect information game. One of the features of Hex is that the first player

has the winning strategy [Nas52], and the solvers have been actively developed to

solve concrete winning sequences. In Hex, the computer player developed by the

proposed method can be compared with the perfect player which is the solver. From

the comparison, it can be clarified that whether the proposed method can create

the perfect player. Hex is a board game with a relatively large search space in the

games that have proved a winning strategy, and it is one of the advantages of using

Hex that the proposed computer player can be compared with the perfect player

in such a game. Also, the international competition of the computer player is held

every year, and there are a lot of computer Hex players using different game tree

search algorithms and evaluation functions. By using Hex, it is possible to discuss

the performance of the computer player due to the differences in the tree search

algorithms and the evaluation functions.

A shift of the strategy according to the board state during the game is often per-

formed in Shogi because it allows the player to perform a better search according

to the board state [ISR02]. The board states of the game are roughly classified into

three, i.e., the opening game, the middle game, and the end game. The transitions

of the phases can be clarified and described by rules to some extent in the long

history of the studies. However, it is difficult to design the rules to determine the
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timing appropriately and handle exceptional positions. For the purpose of flexibly

classifying the board state, I propose the learning method to create the classifier of

the board state based on a support vector machine (SVM) [CV95]. The classifier

determines whether it is better to change the strategy in a given position. In this

thesis, at first, I develop a novel value function consisted of the global and local

evaluations using the network characteristics calculated from the board networks.

The player using the proposed value function can change the strategy by changing

the ratio of global and local evaluations. Next, I propose the classifier to change

the strategy according to the given position, and the classifier is trained by using

the expert moves. To demonstrate that the created classifier can classify the board

state appropriately and dynamically changing the strategy is effective, I develop the

computer player using the proposed value function and classifier, and I compare it

with the previous computer player.

In the above study, the board states are classified by two groups, and the value

function is composed of the network characteristics extracted by hand. However, it

is impossible to determine the number of board states in a real game, and there may

be the features of the board that the used network characteristics cannot express.

To create the evaluation functions that evaluate the position more flexibly and accu-

rately, I focus on the reinforcement learning and the CNN. Reinforcement learning

algorithm using game of self-play does not need to collect a huge amount of expert’s

data, and there is a possibility that the highly accurate evaluation functions ex-

ceeding human can be created; therefore, a lot of reinforcement learning algorithms

have been proposed. Silver et al. proposed AlphaGo Zero algorithm and AlphaZero

algorithm to create the value and policy functions using CNN [SSS+17, SHS+17]. In

these algorithms, the value function is trained to predict the game result such as win

or lose, and the policy function is trained to predict the search probabilities of each

move output by monte carlo tree search (MCTS). It is shown that these algorithms

can create highly accurate evaluation functions; however, a lot of simulations and

high computational cost are necessary to obtain the search probability and train

the functions. I propose a novel reinforcement learning algorithm using game of

self-play to create the value and policy functions. The primary difference between
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the proposed algorithm and the previous algorithm is the learning method of the

policy function. In the proposed algorithm, the policy function is trained based on

the search result by the value function and the game result without using the search

probabilities. The policy function makes it possible to appropriately determine the

search targets while predicting the best move of the search result by the value func-

tion. It can be expected that the computational cost of the proposed algorithm

is lower than that of the previous algorithms because it is enough for the self-play

player to search the game tree with 1-ply, which means that the candidate move is

sufficient to be evaluated only once. In this thesis, I propose the method that ap-

plies the CNN to Hex first. I create the input of CNN by focusing on three mutually

adjacent cells in order to make it easy to learn the features of the position. From

the comparison between the proposed CNN model and the linear model that uses

the network characteristics, I demonstrate the effectiveness of the policy functions

using CNN. Next, I propose the reinforcement learning algorithm that trains the

value and policy functions from the game of self-play. The evaluation functions are

trained by the proposed learning algorithm, and I develop the computer player using

the trained evaluation functions. From the comparison between the proposed com-

puter player and the previous computer players, I demonstrate that highly accurate

evaluation functions can be created by the proposed algorithm.

1.3 Outline of Thesis

This thesis is organized as follows. In chapter 2, I review a board game Hex in

detail. The rules, the features, the method of creating the board network, the

specific methods of Hex, the game tree search algorithms, the major computer Hex

algorithms, etc. are explained. In chapter 3, I describe the study that applies the

complex network into Hex and creates the classifier using SVM. I treat the position

as the board network and propose the novel value function consisting of the global

and local evaluations using network characteristics. From the comparison between

the computer player using the proposed value function and the previous computer
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player, I demonstrate that combining the global and local evaluations is effective. In

addition, I create the classifier based on SVM that can classify the board state and

develop the computer player who changes the strategy dynamically according to the

output of the classifier. To demonstrate the classifier can classify the board state

appropriately, I compare the proposed computer player with the previous computer

players. In chapter 4, the value and policy functions using CNN are developed,

and I propose the reinforcement learning algorithm to train the evaluation functions

by using games of self-play. First, I train the policy function using CNN by the

supervised learning and compare it with the linear policy function using the network

characteristics in order to show that the CNN model can learn the features which

are difficult to quantify by using board networks. Next, I train the value and policy

functions by the proposed learning algorithm. It is demonstrated that the proposed

evaluation functions have the high evaluation accuracy from the comparison between

the proposed computer player and world-champion programs 2017. In Chapter 5, I

summarize this paper.



Chapter 2

Hex

The game of Hex is a classic board game for two players. It was invented by Piet

Hein in 1942, and it is also known that John Nash developed Hex independently in

1948 [Bro00]. Hex is classified as a two-player, zero-sum, and perfect information

game.

In this chapter, I describe the features and rules of Hex first. Then, the studies

of solving the winning strategy of Hex, the board network created by the h-search

algorithm, the game tree search algorithms, and the typical computer Hex algorithms

that is the artificial player playing Hex are described.

2.1 Rules and Features

Hex is played on a rhombic board consisting of hexagonal cells. The game was

developed for an n ×m board (where n and m are natural numbers); however, an

n × n board is generally used. John Nash advocated that 14 × 14 board is the

optimal size. Figure 2.1a shows a 13 × 13 board. Two players have uniformly

colored pieces(e.g., black and white). In this paper, black was assigned as the first

player and white was the second player. The game proceeds with players placing

their stones in turn on empty cells. The two opposing black sides of the board are

7
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(b) Game board showing a winning configuration
for white player

Figure 2.1: 13× 13 Hex board. The top and bottom sides are assigned to the black
player, and the left and right sides are assigned to the white player. The player who
connects the assigned sides with their stones wins.

assigned to the black player, and the other opposing sides are assigned to the white

player. The goal of the game is to connect the two opposing sides using the player’s

colored pieces. Figure 2.1b shows a winning configuration for a black player.

It has been shown that the game cannot end in a draw [Gal79], the game is

a PSPACE-complete problem [ET76], and the first player has a winning strat-

egy [Nas52]. The winning strategy is the concrete sequence of moves to win. In

Hex, the game result is determined by the first move if the winner plays perfectly.

However, it is difficult to solve the specific winning strategy because Hex has a large

branching factor. The problem of finding the specific winning strategy of Hex is

used as a testbed of the method for efficiently searching for a large search space.

Currently, a specific winning strategy for all first moves has been demonstrated for

9 × 9 or smaller boards, and only one first move has been demonstrated even in

10× 10 [PH13]. The details of above are described in the next section.

The international competition of the computer Hex algorithm, which is an artificial

player playing Hex, has been held since 2000 [Ans00b, Hay06, AHH09b, AHH09a,

AHH10a, Hay12, HAHP13, HPTvdV17, HWY+]. The competition is called Com-

puter Olympiad, and both 11× 11 and 13× 13 boards have been used in the recent

Computer Olympiad [HW17]. The first computer Hex algorithm was developed by

Claude Shannon and E.F. Moore in 1953 [Sha53], and many computer Hex algo-

rithms have been developed since.
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2.1.1 Swap Rule

It is known that the first player has an advantage in Hex. Generally, the first player

has an advantage in the cells around the center of the board because it makes easy to

connect the assigned sides with stones. To reduce the advantage of the first player,

the swap rule is usually applied in an official game. The swap rule allows the second

player to decide which color the second player plays after the first player plays the

first move. For example, when the first player plays the first move advantageous to

the first player, it would be better to use the swap rule for the second player. Because

the second player becomes the first player, and the second player can continue the

game with the first move advantageous to the second player. When the swap rule

is applied to the game, the first move is often played near the sides.

2.2 Solving Hex

John Nash has proved that the first player has the winning strategy in Hex [Nas52],

but it is difficult to find the specific winning sequences in large board size because

Hex has the large branching factor. To efficiently find the winning strategy from

the large search space, the search methods have been proposed. In this section, the

methods of solving the winning strategy are described.

In 2002, Yang et al. solved some opening moves on 7 × 7 board by hand [YLP01,

YLP03]. They proposed a decomposition method that combines the local games to

find the winning strategy for a bigger local game. Small local games are easy to

be solved, and it is possible to reduce the computational cost for solving the large

local games by combining the small local game. Yang et al. defined over forty local

games (patterns). In 2005, Noshita et al. proposed union-connections to solve the

game simply in 7×7 [Nos04]. Their method simplified the previous proof and made

it possible to find winning move-sequence for central move on 8× 8 board by hand.

Additionally, Mashima et al. improved the Noshita’s method and found a winning

sequence for a central move on 9× 9 [MSN06].
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Figure 2.2: These diagrams show which player has the winning strategy for all
opening moves on 9 × 9 or less. The black and white players have the winning
strategy at the cells occupied by black and white, respectively. These diagrams are
drawn with reference to these papers [HAH09, PH13].

The studies that use the computer to find the winning sequence have been also

performed. Hayward et al. solved all 7 × 7 openings by using the computer in

2003 [HBJ+05]. They introduced an inferior cell analysis and H-search into the

solver of the winning strategy to reduce the computational cost. The inferior cell

is a cell whose other cells are better or whose the evaluation value does not change

even if a stone is placed in the cell. In many cases, there is no problem that inferior

cells are pruned from the search; hence, Hayward et al. prune the inferior cell to

efficiently find the winning strategy. When Hayward et al. solved the 7 × 7 board

in 2003, only one pattern of the inferior cell was used; however, a lot of inferior

cells have been found until now. Björnsson has found new inferior cell patterns

in 2007 [BHJvR07], and Henderson et al. solved all 8 × 8 openings by using 273

inferior patterns in 2009 [HAH09]. The solutions of less than 8× 8 are summarized

in [AHH11].

In 2013, all 9×9 openings have been solved by Pawlewicz and Hayward [PH13]. The

major difference between the solvers of 8× 8 and 9× 9 is the tree search algorithm.

The depth-first search was used to solve the 8× 8 openings, but in 9× 9, the search

algorithm was changed from depth-first search to depth-first proof-number (DFPN)

search in order to deal with the large search space. DFPN search was proposed by
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Nagai et al. [NI02], and it is the method that changes the search algorithm of the pn-

search proposed by Allis et al. [AvdMvdH94]. The pn-search is used in two-player

and perfect-information game to solve the game quickly, and it uses and-or tree

and best-first search. DFPN search uses the depth-first search instead of best-first

search, and this change make it possible to search better than pn-search in terms of

memory efficient. Pawlewicz et al. parallelized the DFPN search and proposed the

Scalable Parallel DFPN Search (SPDFPN) that scales well. SPDFPN search could

find all 9× 9 openings and a 10× 10 opening.

Figure 2.2 shows the opening moves with a winning strategy at the opening of 9× 9

or less.

2.3 Board Network

The board states of the Hex board can be expressed as a network by treating cells

as nodes and connecting adjacent nodes with a link (or edge). The board network

is used for evaluating the position and the next candidate moves in Hex. In chess,

shogi, and reversi, the positions and moves can be evaluated by using the values

defined by the piece or cell position, For example, in chess and shogi, each piece

have the different value (the king has the highest value in the pieces), and in reversi,

each cell position has the different value (the corner cells have the highest values).

On the other hand, in Hex, the stones have the same value, and the value of cell

positions is not constant. Therefore, using the network characteristics calculated

from the board network is effective to evaluate the position.

The board network consists of nodes and links. In the board network, the cell and the

connecting adjacent cells are expressed as nodes and links, respectively. Figure 2.4

shows the board network of Figure 2.3. The board networks are created in such a way

for each player. The nodes where the stone is placed are excluded from the board

network. The links are connected between the nodes adjacent to the node where

the own stone is placed because there is an adjacency relationship between those
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Figure 2.3: An example of 5 × 5
board

(a) Red’s network (b) Blue’s network

Figure 2.4: The board network of Figure 2.3.
The cells and connecting adjacent nodes are
treated as nodes and links (or edges), respec-
tively.

nodes. Additionally, the links connected to the opponent stone are excluded. The

nodes adjacent to the own side is assumed that there are the adjacency relationship;

thus, the links are connected between the those nodes. The player having the link

between two own sides wins the game, and this link is called winning connection.

In the following, I describe the board game using the graph similar to the board

network, a special link including the future information, and H-search algorithm for

finding the special link.

2.3.1 Shannon Switching Game

Shannon switching game is a board game for two-player invented by Claude Shan-

non, and this game is also known as the Generallized Hex [Gar61, AQS97]. The

board of this game is a graph consisting of nodes and edges, and the graph board

includes two special nodes. There are two players and the two players play in turn.

One player is called short player, and the short player colors one of the edges in-

cluded the graph by own color. The other player is called cut player and deletes one

of the uncolored edges in the graph. The short player wins the game when the short

player connects two special nodes using own colored edges, and the cut player wins

the game when it is impossible for the short player to connect two special nodes.

David Gale proposed a game that this game is played on a grid graph similar to

the board network of Hex, and this game is known as Grid or Bridge-it [HvR06].
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Shannon has developed a computer that plays Bridge-it, and the method which is

used to develop the computer has made a big contribution to the development of

computer Hex.

2.3.2 Virtual Connection

The virtual connection is a special link between two cells or groups that are not

actually adjacent to each other [Ans00a, Ans02]. The virtual connection has the

future information that is after playing several moves. It is possible to evaluate the

position in consideration of future information by using the network characteristics

calculated from the board network including the virtual connection.

There are two types of virtual connection as follows.

Virtual Connection

Virtual Connection (VC) is a link between two nodes or groups that is guar-

anteed to be able to connect after several turns if the player plays the best

move. The player can connect two nodes or groups even if the player has the

second move. VC is a link included to the board network.

Virtual Semi Connection

Virtual Semi Connection (VSC) is a link between two nodes or groups that is

guaranteed to be able to connect after several turns if the player has the first

move and plays the best move. The player must have the first player in order

to connect the nodes having VSC. VSC is not included in the board network,

and it is used for finding VC.

2.3.3 Two Rules for Creating Virtual Connection

VC and VSC are created by repeatedly applying following two rules. VC is defined

as V C(x,A, y) (VSC is V SC(x,A, y)). Both x and y are the nodes or the node sets
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(a) AND Deduction Rule
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x yD
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(b) OR Deduction Rule

Figure 2.5: Two deduction rules for creating virtual connections. x, y, and u are
cells or cell groups, and A, B, and D are node sets constituting VC or VSC. The
square and cross-hatching square show VC and VSC, respectively.

which are connected by VC. A is a node set that is used for creating VC between x

and y, and it is called career nodes.

AND Deduction Rule

If there are V C(x,A, u) and V C(u,B, y), in addition, x ̸= y, x /∈ B, y /∈ A,

and A ∩B = ϕ hold, the following is defined.

• V C(x,A ∪B, y) exists if u is own cell or cell sets.

• V SC(x,A ∪ u ∪B, y) exists if u is empty node.

Figure 2.5a shows a simple example of AND deduction rule.

OR Deduction Rule

It assumes that there are V SC(x,Ak, y)(k = 1, 2, ..., n). When Ak is empty

node and all following conditions are satisfied for all k, there is V C(x,D, y).

(x ∩Ak = ϕ) and (y ∩Bk = ϕ) (for all k = 1,2,...,n)

Ak ∩Bk = ϕ (for all k = 1,2,...,n)

Ck = Ak ∪ uk ∪Bk

D =
n∪

k=1

Ck

Figure 2.5b shows a simple example of OR deduction rule.



2.3. Board Network 15

The algorithm that repeatedly applies above two rules is called H-search, and H-

search can find many virtual connections [Ans00a]. However, it is known that there

are virtual connections which can not be found by H-search. To find those virtual

connections, XH-search which is the algorithm for finding more virtual connections

has proposed in 2009 [HAH10]. XH-search can find more virtual connections than

H-search by adding the Crossing Rule in addition to above two rules. A lot of virtual

connections can be found by the XH-search, and part of the patterns that can create

the virtual connection is published by King [Kin18]. However, the computational

cost of XH-search is higher than H-search, and it takes a time to create the board

network. Also, it is known that there are virtual connections which cannot be found

by XH-search as with H-search. In order to reduce the time to find the virtual

connections, FastVC-search has been proposed in 2015 [PHHA15]. FastVC-search

can find the virtual connections quickly more than H-search. It is a trade-off between

the number of found virtual connections and the computing cost. It is necessary to

consider which is important, whether to find the more virtual connection or to find

virtual connection quickly. For example, when monte carlo tree search is used as

the game tree search algorithm, finding the virtual connection quickly is important

because the number of simulations can be increased. On the other hand, in minimax

tree search, it would be effective that finding more virtual connections even if the

required time becomes long because it is expected that the evaluation accuracy

increases.

2.3.4 The Algorithm for Creating Board Network

I describe how to create the board network including the virtual connections. I

define cell i as node vi, and connect it to adjacent nodes with a link. V is a set

of nodes and E is a set of links. Function C is defined as the condition of nodes.

C(vi) = 0 if vi is an empty cell, C(vi) = 1 if vi is occupied by Black, C(vi) = −1

if occupied by White. Further, the two opposing sides belonging to each player are

represented by nodes vs and vt. C(vs) = 1 and C(vt) = 1 for sides belonging to

Black, and C(vs) = −1 and C(vt) = −1 for those belonging to White.
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(a) Gb
B(VB, EB) (b) Gb

W (VW , EW )

Figure 2.6: The board network with virtual connections of Figure 2.3

The process to create a board network Gb
B(VB, EB) for Black is shown below. The

board network for White Gb
W (VW , EW ) can be obtained in an analogous manner by

replacing black with white.

1. Links e(vi, vj) are added to E between all nodes adjacent to vi and vj.

2. Links e(vi, vs) are added to E between all nodes vi adjacent to vs, and e(vj, vt)

is added to E between all nodes vj adjacent to vt.

3. Nodes belonging to White vi (C(vi) = −1) are removed from V, and links

e(vi, vj) belonging to the vi are removed from E.

4. The H-search algorithm and pattern matching are applied to the board net-

work, and the V Cs yielded are added to E.

Figure 2.6 shows an example of the board network with the virtual connections.

2.4 Artificial Players

In this section, I describe the famous game tree search algorithms called minimax

tree search and monte carlo tree search. In addition, I also introduce the major

computer Hex algorithms that are artificial players playing Hex and the specific

method of Hex used by many computer players. Almost computer Hex algorithms
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use game tree search algorithm to decide next move. The game tree is a directed

graph that the position and move are the node and branch, respectively. Generally,

the more the player performs a look-ahead, the better the player can select the move;

therefore, the game tree search algorithm that can efficiently look ahead is required.

2.4.1 Minimax Tree Search

Minimax tree search is a method of searching the game tree to decide the move which

minimizes the maximum loss for the searching player [KM75]. It is widely used in

perfect information games such as chess, reversi, and shogi. To use the minimax tree

search, the value function must be defined. In minimax tree search, first, the possible

nodes and branches are created from the current node in the game tree. Then, the

leaf nodes, which are terminal nodes of the game tree, are evaluated by the value

function. Finally, the move with the best evaluation value for the player is selected

as the next move. The strength of the player is decided mainly by the evaluation

accuracy of the value function because the next move is decided according to the

evaluation value output by the value function. Therefore, the evaluation accuracy

of the value function is very important in minimax tree search.

Generally, the evaluation accuracy of the value function becomes high at the posi-

tions which are near the terminal position because predicting the game result at near

the terminal position is easy. Therefore, the game tree is searched deeply. There are

two typed of the interior nodes in the game tree. One is the node that the searching

player has next play, and the other is the node that the opponent player has next

play. The next move is the move with the highest evaluation value when the search-

ing player has the next play. Whereas, the next move is the move with the lowest

evaluation value when the opponent player has the next play because it is expected

that the opponent player plays the worst move for the player. Minimax tree search

selects the move which minimizes the maximum loss by alternately selecting the

best move and the worst move for the searching player.

The computational cost is high when the search depth is deep because the number
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of positions to be evaluated increases. In order to reduce the time required for the

search, alpha-beta tree search has been proposed [KM75]. The alpha-beta search is

a type of minimax search that introduces the pruning methods called alpha cutoff

and beta cutoff. Pruning is a method of deleting branches in the game tree, which

makes it possible to reduce the number of positions to be evaluated by the value

function. The alpha cutoff and beta cutoff are performed when it is theoretically

found that the branch to be pruned is finally not selected even if the further search is

performed. It is guaranteed that the search result of the alpha-beta search and pure

minimax tree search is the same. This pruning is called backward pruning [Mar13].

The iterative deepening depth-first search (IDDFS) has been proposed as a search

method that is more efficient than the alpha-beta search [Kor85]. IDDFS is a depth-

first search that gradually increases the search depth. First, the shallow search is

performed. Then, in a deep search, the positions are evaluated in order from the

positions having good evaluation values output by the shallow search. Evaluating

from the position with the high evaluation value increases the possibility of pruning

and consequently speeds up the search.

Policy Function

Policy function scores the next candidate moves, which are branches in the game tree,

and it is used to decide the order of evaluating the position by the value function.

The value function is applied in order from the move with the high evaluation value

of the policy function, and it increases the chances of the pruning. The policy

function is also used for the forward pruning [Mar13]. Forward pruning is aggressive

pruning, and the result of game tree search which is applied forward pruning is

not guaranteed that it is same as the search result of pure minimax tree search.

For example, tapered N-best search is the method of searching the top N moves of

the evaluation value [GEC67]. Forward pruning can greatly reduce the number of

positions to be evaluated, and it makes search more efficient and a deeper search.

On the other hand, there is a risk of pruning good moves if the policy function has

low evaluation accuracy. Therefore, the evaluation accuracy of the policy function
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is very important when forward pruning is applied to alpha-beta search.

2.4.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a game tree search algorithm that applies the

Monte Carlo method to the game tree [BH04, Cou07b] The position is evaluated

based on the random simulations, and the score of the position is winning percentage

computed by a lot of simulations from the current position to the terminal position.

The MCTS is effective in games where it is difficult to quantify the features of

position, e.g., Go, because the value function is not required, unlike the minimax

tree search. The position of Go is difficult to quantify the features, and the minimax

tree search was not a good choice as the game tree search algorithm. The strength

of the computer Go algorithm improved greatly with the appearance of the MCTS.

In the MCTS, it is possible to select a better move by performing a lot of simu-

lations. However, it takes computational costs to perform many simulations. The

simulations to the moves which are unlikely to be eventually selected are not neces-

sary. Remi Coulom proposed a UCB1 applied to Trees (UCT) search that can select

better move than the pure MCTS by reducing wasteful searching in 2007 [Cou07b].

The UCT search is the search algorithm that applies Upper Confidence Bound I

(UCB1) to the MCTS. In the UCT search, the node to be simulated is decided by

the current winning percentage and search frequency of the node. UCT search is

possible to perform many simulations on the nodes with the high winning percent-

age, which is the promising position, by increasing the simulating probability of the

node. Whereas, the number of simulations to the nodes with low winning percent-

age decrease because they are bad positions for the searching player. Additionally,

the simulating probabilities of the nodes with the low search frequency increases

in order to reduce the nodes whose have high/low winning percentage due to luck.

UCT search is adopted not only in Go but also in many other games such as Hex

and Amazons, and its effectiveness is shown [Lor08].
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2.4.3 Computer Hex Algorithms

The computer Hex algorithm is an artificial player playing Hex. The computer Hex

algorithms are usually developed by using Benzene framework [AHH12, You13].

Benzene framework is open source project and the some specific methods of Hex are

implemented. I introduce the major computer Hex algorithms as follows.

EZO

EZO is computer Hex algorithm developed by Kei Takada et al. and uses

the iterative deepening depth-first search as the game tree search algorithm.

EZO has participated in all Computer Olympiad from 2013 to 2018, and the

competition results are silver, bronze, silver, and silver in order from the old-

est [HAHP13, HPTvdV17, HWY+, HW17]. EZO used the value function

focusing the local network relating the result of the game in 2013, and then,

EZO used the value function which combines the global and local evaluations

in 2015. The detail of above is explained in chapter 3. In 2016, EZO used

the value and policy functions consisting of 12 network characteristics, and

two functions were optimized by using the expert game records. EZO in 2016

and 2018 were called EZO-CNN and DeepEZO respectively, and they used the

value and policy functions based on convolution neural networks. EZO-CNN

and DeepEZO are described in detail in chapter 4.

Wolve

Wolve is the computer Hex algorithm that uses the iterative deepening depth-

first search [Hen10]. Wolve uses shannon’s electric circuit evaluation function

as with Hexy, Six and Mongoose. This evaluation function is explained in

Chapter 3. Wolve has participated in competitions from 2006 to 2011 [Hay06,

AHH09b, AHH09a, AHH10a, Hay12]. Wolve won the gold medal in 2008

and the silver medal in the others. The differences between Wolve and other

computer Hex algorithms using the same evaluation function are that Wolve

introduces the new method for creating virtual connection and inferior cell

analysis. Wolve is the strongest computer Hex algorithm in the players that
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uses shannon electric circuit model and alpha-beta search.

MoHex

MoHex uses Monte Carlo tree search as the game tree search algorithm [AHH10b].

MoHex was the world-champion program at the Computer Olympiad (2009

to 2011). MoHex has made a great success by pruning the move that does

not need to be searched and improving the efficiency of the random simula-

tion in the MCTS. In 2013, MoHex2.0, which has further developed MoHex,

has proposed by Huang et al [HAH+14]. The quality of MCTS simulation

used by MoHex2.0 is improved by learning the board pattern using the expert

game records. Additionally, the parameter related to the search was tuned

by Confident Local Optimization (CLOP) [Cou12]. MoHex2.0 has been the

world-champion program at the Computer Olympiad (2013 to 2017). MoHex-

CNN is a computer Hex developed by Gao et al. in 2017 [GHM17]. Gao

et al. proposed a move prediction model using Deep Convolutional Neural

Network and combine the prediction model with MCTS search of MoHex2.0.

MoHex-CNN outperformed MoHex2.0 and won the gold medal in 2017 tour-

nament on 13 × 13 board. Additinally, MOHEX-3HNN have been proposed

by Gao et al. in 2018 [GMH18]. MoHex-3HNN uses the neural network model

called Three Head Neural Network (3HNN) and combines it with Policy Value

MCTS. MoHex-3HNN won the international tourments in 2018.

2.4.4 Mustplay

Mustplay is the move which is the most obstructive move against the player with

the winning connection [HBJ+05]. This method is applied in many computer Hex

algorithms. Figure 2.7 shows an example of the mustplay. When the white player

has the next move at the position where the black player has some winning VSC,

the white player must play the move which can erase the VSC as much as possible.

The black player can win the game if the white player cannot erase all winning VSC

of the black player because the black player can create winning VC after playing
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Figure 2.7: An example of mustplay. The left diagrams show the winning virtual
semi-connection of the black player. The colored cells are carrier cells for building
each virtual semi-connection. The right diagram shows the mustplay cell, which is
the colored cell, for the white player. The mustplay cell is a common cell of carrier
cells for the black player.

next move. If the white player erases all VSC of the black player by playing the

mustplay, the game is continued.

2.5 Conclusion

In this chapter, I described the features and rules of Hex first. In Hex, it is proven

that the game does not end in a draw and the first player has the winning strategy.

A lot of studies for solving the specific winning sequence have been performed, and

the winning strategy was proven by hand in early studies. The computer was also

used as the board size became large. All 9×9 or less opening moves have been solved

by using the DFPN search until now. In the process of solving the winning strategy,

the H-search which creates the virtual connections and inferior cell analysis which

finds the meaningless move have proposed. These methods improved the strength

of the computer Hex algorithms.

The board state can be expressed as the board network by treating cells as nodes and

connecting adjacent nodes as a link. The board network can be used to evaluate

the positions and moves. The board network can include the future information

by adding the virtual connections to the board network. Generally, the evaluation

accuracy of the evaluation functions can improve when the board network with

virtual connections is used for evaluating the position and moves. Almost computer

Hex algorithms are based on the alpha-beta search or the MCTS. In alpha-beta tree

search, it is important to develop the value and policy functions with high evaluation
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accuracy in order to develop the strong computer player.



Chapter 3

Application of Complex Network

to Hex

3.1 Introduction

The value function is a very important function because the next move of the com-

puter player is mainly decided based on the value function. In Hex, to define the

value function, the board networks and the network characteristics calculated from

the board networks have been used. The previous value function, called shannon’s

electric circuit resistance evaluation function, treats the board network as an elec-

tric circuit and uses the resistance value of the electric circuit to evaluate the po-

sition [Ans00a]. Although this value function evaluates the position from one per-

spective, it is shown that this value function has high evaluation accuracy. However,

the computer Hex algorithm using this value function cannot win the player based

on the MCTS in the recent tournament, and it means that the evaluation accuracy

of the value function is insufficient [AHH09a].

I propose a novel value function consisted of the global and local evaluations using

the network characteristics. The network characteristic is index proposed in the

field of the complex network to quantify the feature of the network [SR07]. The

24
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global evaluation evaluates the overall strategy of the position, and the local evalu-

ation evaluates the local strategy directly relating to win or lose of the game. It is

expected that the evaluation accuracy is improved by evaluating the positions from

two perspectives. I demonstrate that combining the global and local evaluations

correctly is effective from the comparative experiments.

I also propose the method that creates the classifier of the board state, e.g., opening

game and end game, by using the support vector machine (SVM) [CV95]. The

classification of the board state is performed in many games because the strategy

of the computer player can be changed according to the board state [ISR02]. The

changing strategy allows the player to search the better moves according to the

board state. The board state is usually classified based on the rule defined by hand

in other game. However, the long experience and the deep knowledge are required to

design the better rule, and it is difficult to handle exceptional situations. To flexibly

classify the board state, I create the classifier by using SVM, which is known that

the classifier created by SVM has high generalization ability. The board state is

represented by 12 network characteristics, and the game records of exper are used

to train the classifier by SVM. To demonstrate that the proposed classifier can

classify the board state appropriately, I develop the computer Hex algorithm called

EZO that uses the proposed value function and the classifier, and I compare it with

the previous computer Hex algorithms. EZO can change the strategy by changing

the ratio of global and local evaluations, and EZO dynamically changes the strategy

according to the output of the classifier.

This chapter is organized as follows. First, the method to create two networks, the

board network and shortest path network, for the global and local evaluations is

described in Section 3.2. Next, I propose the novel value function using two evalua-

tions in Section 3.3. To demonstrate that combining the global and local evaluations

is effective, the comparison between MoHex and CHEv , which is a computer Hex

algorithm that uses the proposed value function and alpha-beta tree search, is per-

formed in Section 3.4. In Section 3.5, the classifier using SVM, which determines

the ratio of the global and local evaluations, is created. Lastly, the computer Hex
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Figure 3.1: The left diagram shows an example of 5× 5 position. The middle
diagrams show the board networks Gb(V,E). The right diagrams show the shortest
path networks Gl(V,E) which are the shortest paths between vs and vt.

algorithm EZO that uses the proposed value function and the trained classifier is

developed, and the effectiveness of the proposed method is demonstrated through

the comparison with other computer Hex algorithms in Section 3.6.

The using computer processor was Phenom II X6 (6 cores, 2.9 GHz clocks) in this

chapter. This chapter is described based on these my papers [THIY14, THIY15b,

THIY15a].

3.2 Board Network and Shortest Path Network

To evaluate the position from the global and local evaluations, I use the board

network and the shortest path network. The board networks, Gb
B(VB, EB) and

Gb
W (VW , EB), are created by the method described in Section 2.3. V and E include

all nodes and links on the board network, respectively. The board networks are

used to evaluate the global strategy considering the whole board. The shortest

path networks, Gl
B(V

′
B, E

′
B) and Gl

W (V ′
W , E ′

W ), are created by nodes and links that

are included in the shortest path between side nodes vs and vt. The shortest path

networks are used to evaluate local strategy related to win or lose. Figure 3.1 shows

an example of the board network and the shortest path network.
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Figure 3.2: The electric circuit applied the voltage for the black and white players.

3.3 Value Functions in Hex

The objective of Hex is to connect two own sides with stones; therefore, the board

should be evaluated by qualifying how easy it is possible to connect two sides. In this

section, I describe the value function consisting of the global and local evaluations

and the previous value function which is called shannon’s electric circuit resistance

evaluation function. The proposed and previous value functions qualify how easy the

player connects to two sides from the variety of the paths and the electric resistance,

respectively.

3.3.1 Shannon’s Electric Circuit Resistance Value Function

The previous value function, called shannon’s electric circuit resistance value func-

tion, was created by receiving the inspiration from the machine playing Hex de-

veloped by Claude Shannon and E.F. Moore [Ans00a]. The machine developed by

Shannon played next move based on the electric resistance between two sides. In the

electric resistance model, the board network can be regarded as the electric circuit,

and the electric resistance is used to evaluates how easy the player connects two

sides.

The voltage is applied to the two sides (see Figure 3.2), and the electric resistance

for each player is computed from each electric circuit. The resistance r(c) of the cell
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c is defined as follows:

r(c) =


1 if c is empty

0 if c is occupied by own color

+∞ if c is occupied by opponent color

(3.1)

Additionally, the resistance between two cells (c1 and c2) are defined as follows:

r(c1, c2) = r(c1) + r(c2) (3.2)

Finally, the electric resistance value function E is defined as follows:

E =
Rb

Rw

, (3.3)

where Rb and Rw is a total resistance of the black and white player, respectively.

The black player is advantageous when E is small, and E = 0 when the black player

has the winning connection. The white player is advantageous when E is large, and

E = +∞ when there is the winning connection of the white player.

3.3.2 Proposed Value Function

The proposed value function consists of the global and local evaluations. The global

evaluation evaluates the overall strategy of the position by using the board network,

and the local evaluation evaluates the local strategy directly relating to win or lose of

the game by using the shortest path network. The electric resistance model evaluates

the position from only one perspective. However, the proposed value function can

evaluate the position from two perspectives, and it is expected that the features of

the position can be more accurately captured and the evaluation accuracy of the

value function improves.

The global and local evaluations are evaluated by using the betweenness centrality,

which is one of the network characteristics. The betweenness centrality is an index
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Figure 3.3: These figures show an example of having high and low betweenness
centrality. The board network and shortest path network of the black player have
a low betweenness centrality. On the other hands, the two networks of the white
player have a high betweenness centrality.

of how the node is contributed to the other shortest paths (see Section 3.3.3). In the

previous study, I showed that betweenness centrality is a useful index for evaluating

the position by using the expert records [THIY14]. The position where has the

variety of the paths has the low betweenness centrality, and the position with low

betweenness centrality is better. Figure 3.3 shows the board network and shortest

path network for the black and white player in the same position, and they show

concretely the relationship between the betweenness centrality and the variety of

paths. In the position of Figure 3.3, the black player has an advantageous. In the

board network of the black player, the average of the betweenness centrality is low

because there are many nodes having direct links with other nodes, and there are

variety of paths between two nodes. However, in the board network of the white

player, the average of the betweenness centrality is high because a number of nodes

are included in the shortest paths between other two nodes. It is also true for the

shortest path networks of black and white players.

The total value function Ev consisted of global and local evaluations is defined as

follows:

Ev = (1− α)
CW

CB

+ α
C ′

W

C ′
B

, (3.4)
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where CB is the average of betweenness centralities of Black’s board networkGb
B(VB, EB),

and CW represents this for White’s network Gb
W (VW , EW ). C ′

B is the maximum value

of betweenness centrality in the shortest path network Gl
B(V

′
B, E

′
B) between vs and

vt for Black, and C ′
W is that for White. Only shortest paths between vs and vt are

used to compute C ′
B and C ′

W in order to consider the paths directly related to win

or lose. α is a constant parameter used to adjust the weight of the global and local

evaluations. The black player has an advantageous when Ev is high, and the white

player has an advantage when Ev is low.

3.3.3 Network Characteristics

Network characteristic is defined to quantify the feature of the network [SR07].

The network characteristics used in this study are described in this section. The

centrality of the network is useful for quantifying the variety of paths, so the network

characteristics related to the centrality are mainly used in this study.

Degree Centrality

A degree is the number of links connecting the node. The degree of node n is

denoted deg(n), and the degree centrality of node D(n) is defined as:

D(n) = deg(n). (3.5)

Generally, the node with a high degree is important in the network.

Betweenness Centrality

Betweenness centrality quantifies the number of times a node is included in

the shortest paths between two other nodes. This concept has introduced by

Freeman [Fre77]. The node with higher betweenness centrality can influence

the shortest paths between the other two nodes and can be regarded as a

highly influential node in the network. Betweenness centrality Bvi of the node
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vi is defined as follow:

Bvi =
2

(N − 1)(N − 2)

N∑
k=1

N∑
j=1

g(vi, vk, vj), (3.6)

where N is the number of nodes in the network and g(vi, vk, vj) is a function

which calculates whether vi is included in the shortest path network between

vk and vj. g(vi, vk, vj) = 1 for vi is included, g(vi, vk, vj) = 0 for vi is not

included, and g(vi, vk, vj) = 0 if vi = vk, vj = vk or vi = vj.

Closeness Centrality

Closeness centrality is the average length of the shortest path network between

the node and all other nodes in the network. The node with lower closeness

centrality is centrality node and close to other nodes. Closeness centrality Cvi

of the node vi is defined as follows:

Cvi =
N − 1

N∑
k=1

len(vi, vk)

, (3.7)

where len(vi, vk) is the length of the shortest path between vi and vk, and N

is the number of nodes in the network.

3.4 Experiments for Proposed Value Function

In order to demonstrate that combining the global and local evaluations is effective,

I developed the computer Hex algorithm CHEv using the proposed value function

and compared CHEv to MoHex.

3.4.1 Experimental Conditions

The proposed computer Hex algorithm, CHEv , uses the proposed value function and

α is a constant value through the games. CHEv uses 2-ply alpha-beta tree search,
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and the searching time using 2-ply is about 35 seconds. The policy function of

CHEv consists of betweenness centrality. CHEv searches the moves in order from

the nodes with the high value of betweenness centrality. MoHex is MCTS player and

the reigning Computer Olympiad Hex gold medalist (see Section 2.4.3). MoHex was

downloaded from Benzene project site and 2011 version [AHH12]. The search time of

MoHex was restricted within 10 seconds per a move. CHEv was not implemented by

using Benzene framework, and CHEv did not use mustplay and inferior cell analysis.

On the other hands, MoHex used mustplay and inferior cell analysis.

The board size was 11×11 and the swap rule was not applied. The first move of the

game is decided by the search of each player. The games are performed on 100 trials

for each α and each player (the first and second player). The solver for Hex which is

implemented in Benzene was used for game judgment. The solver is performed after

every move for 10 seconds. The game is finished when the solver finds the winning

player.

3.4.2 Experimental Result

Figure 3.4 shows the winning percentage of CHEv against MoHex for each α. The

highest winning percentage is obtained when α = 0.075 (79%) for the first player

and α = 0.05 (18%) for the second player. For the first player, the highest winning

percentage (α = 0.075) is much higher than the winning percentage of the method

that uses only the global value function (α = 0.0) and only the local value function

(α = 1.0). It means that combining the global and local evaluations improve the

evaluation accuracy of the value function. It is also true for the second player

although the difference is small.

The reason why the winning percentage of the first player is higher than the winning

percentage of the second player is that swap rule is not applied and the first move

of the game is decided from the search of each player. It is expected that the first

move is played at the cell that the first player has an advantageous.
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Figure 3.4: The winning percentage against MoHex for each α. 100 trials are per-
formed for each parameter.

It is shown that the value function combining the global and the local evaluations

is effective. However, the winning percentage of CHEv against MoHex is 79% of the

first player and 18% of the second player, in other words, the winning percentage

of MoHex against CHEv is 82% of the first player and 22% of the second player.

Consequently, CHEv is weaker than MoHex.

In this experiment, the comparison between the proposed value function and pre-

vious value function was not performed. This is because the game result which

is played by computer Hex algorithms using value function is uniquely decided;

therefore, it is difficult to properly discuss the effectiveness of combining the two

evaluations. The search result of the player using the value function is constant

in the same position. Once a game is enough and more games are meaningless to

compare those computer Hex algorithms. However, the search result of the player

based on MCTS may change even in the same position because the search includes

the randomness. I did not compare the proposed value function with previous value

function because it would be appropriate that multiple games are performed to

discuss the effectiveness of combining global and local evaluations.
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3.5 Changing Strategy According to Board State

To improve the strength of the proposed computer Hex algorithm, I propose a

method that changes α in response to the positions. α decides the ratio of the global

and local evaluations, and it is possible to change the influence of local evaluation

by changing α. It is possible to play the move related to win or lose by increasing

the local evaluation because the local evaluation considers the shortest path network

between two sides. In Hex, it is expected that it is more effective to increase the

influence of the local evaluation and play the move related to win or lose in the

latter part of the games. This is because there is a possibility that the game result

is decided with one move. In this section, I show that it is effective to increase α in

the middle of the game. The timing of increasing α is decided by a classifier using

Support Vector Machine (SVM) [CV95].

The method which changes the strategy according to the position is a popular

method and often used in other games such as Go and Shogi [ISR02]. For ex-

ample, the phases of the game in Shogi is roughly classified into three, i.e. the

opening game, the middle game, and the endgame. The transitions of the phases

can be clarified and described by rules to some extent in the long history of the

studies. However, changing the strategy based on the rule needs to correspond to

many situations, and it is difficult to design the rule appropriately. The originality

of the proposed method is to change the strategy using SVM, which is a kind of

machine learning, without using rules.

3.5.1 Effectiveness of Increasing Local Evaluation

To demonstrate that increasing α in the latter part of the games is effective, I

compared the winning percentages of the value function with high and low α. The

high α is set to 0.5 and low α is set to 0.075 for the first player and 0.05 for the

second player. The last two values of α are decided from the experimental result in

section 3.4.2
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Figure 3.5: The difference of the number of wins between high and low α. The
horizontal axis is normalized number of turn.

I used the same positions to compare the winning percentage of high and low α. The

initial positions are given by the game records between CHEv with fixed low α and

MoHex in section 3.4.2. In section 3.4.2, the games were performed 100 trials for

the first and second players. There were 659 and 654 positions in the game records

for the first and second player, respectively. By comparing the winning percentages,

it becomes clear if α should be kept low or should be changed to high α after the

given positions. In order to calculate the winning percentages, the games starting

from the same positions were performed 10 times.

Figure 3.5 shows the differences between the number of wins of high and low α. The

horizontal axis shows the normalized number of turns where 1.0 means the end of the

games. The vertical axis shows the difference of the number of wins between high

α (α=0.5) and low α (α=0.075 or α=0.05). R0.5, R0.05, and R0.075 are the number

of wins against MoHex when α is fixed to 0.5, 0.05, and 0.075, respectively. The

meaning of high values of the vertical axis is that the winning percentages increase

by changing to higher α after the given positions. When the value of vertical axis is

10, it means that only high α can win against MoHex and low α cannot win after

the given positions. The results show that there are some cases where the α should
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be changed to high α in the latter part of the games.

It becomes clear that there are positions that increasing the influence of local eval-

uation is effective. However, it is not clear when to increase α. Additionally, the

results show that it can be worse when α increases at the wrong timings. α should

be changed at the correct timings. In the next section, I will describe a method for

appropriately determining the timings where α increases.

3.5.2 Classifier based on SVM

I create a classifier that determines which of high and low α is appropriate for the

give position by using SVM. SVM is a supervised learning model with the purpose

of solving classification and regression problems. It is known that the model created

by SVM has high generalization ability so that the margin with learning data is

maximized. A feature vector of the data is generally used for the input to the SVM

model. In this study, the feature vector of a position is input to SVM model, and

SVM model is the binary classifier and determines whether α is high or low.

In order to classify positions appropriately, it is necessary to use the feature vec-

tor that reflects the features of the position in detail. The following 12 network

characteristics (6 for each player) are used to capture the feature of the positions.

• the maximum, minimum, variance and average of betweenness centralities over

all nodes of the board network Gb(V,E).

• the maximum values of betweenness centrality in the shortest path network

Gl(V,E). The shortest paths between vs and vt are only considered to calculate

the betweenness centrality.

• the shortest path length between vs and vt.

The averages of betweenness centrality capture the global strategies, and the others

of betweenness centrality capture the biases of the strategy. The maximum values
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Table 3.1: The number of positions of learning date and correct answer of SVM

the number of position the number of position correct ansewer
(the first/second player) (the first/second player)

positive label 42 / 12
34 / 9

(88.1% / 75.0%)

negative label 617 / 642
617 / 642

(100.0% / 100.0%)

of betweenness centrality in the shortest path network capture the local strategies.

The shortest path lengths estimate how close to win or lose.

The training data is prepared from the position used in section 3.5.1. The positions

that satisfies R>4 in Figure 3.5 are positive labels (the positions where α should

be high) and the others are negative labels (the positions where α should be low).

For SVM, I use R, which is the environment for statistical computing, and “kern-

lab” library[R C15, KSHZ04]. Learning for SVM is performed by using the radial

basis function (RBF) kernel, and the non-linear classifier is created. The learning

parameters are determined by the grid search.

Table 3.1 shows the number of positions used for learning and the classification

correct answer rate of the classifier for learning positions. For the first player, the

number of learning positions is 42 for positive labels and 617 for negative labels. The

classification correct answer rates are 88.1% and 100.0% for positive and negative

labels, respectively. In addition, the number of learning positions for the second

player is 12 for positive labels and 642 for negative labels. The classification correct

answer rates are 75.0% and 100.0% for positive and negative labels, respectively.

The classification correct answer rate for negative label is high; therefore, it can be

said that there are few erroneous classifications for the position where α should not

be increased.
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3.6 Experiment for Classifier based on SVM

I demonstrate that it is effective to increase α in the game and that the trained

classifier can increase α at the appropriate timing.

3.6.1 Experimental Conditions

Four computer Hex algorithms were used in the experiment. One was that the

proposed computer Hex algorithm EZO. EZO used 2-ply alpha-beta search, classifier

created by SVM in Section 3.5.2, and Ev as the value function. α started at 0.075

and 0.05 for the first and second player, respectively. The classifier was used at the

initial positions of each search, and α was changed to 0.5 when the classifier outputs

high α. After that, α was kept constant (α=0.5). Another computer Hex algorithm

was the CHEv described in Section 3.4. α of CHEv were fixed at 0.075 and 0.05 for

the first and second player, respectively. The others were Wolve and MoHex. The

search times of Wolve and MoHex were 10 seconds per move. EZO and CHEv were

not implemented in Benzene and did not use mustplay and inferior cell analysis. On

the other hands, Wolve and MoHex used mustplay and inferior cell analysis. Each

computer Hex algorithm used only one thread for the search.

The board size 11 × 11, and the swap rule was not applied. The game results

were determined by using solver, and the solver was performed 10 seconds in each

position. The game results between EZO, CHEv , and Wolve is determined uniquely;

therefore, they were compared indirectly thorough MoHex. The number of games

against MoHex was 100 for each computer Hex algorithm.

3.6.2 Experimental Results

Table 3.2 shows the game results of each computer Hex algorithm against MoHex.

It shows that EZO got the higher winning percentage than the winning percentage

of CHEv in both the first and second player. In other words, changing α in the game
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Table 3.2: The winning percentages of each computer Hex program against MoHex
for 100 trials (first/second player). ± represents standard error, 68% confidence.

Win % vs. MoHex
EZO 92 ± 2.7 / 24 ± 4.2
CHEv 79 ± 4.1 / 18 ± 3.8
Wolve 82 ± 3.8 / 42 ± 4.9
MoHex 83 ± 3.7 / 17 ± 3.7

Table 3.3: The number of games when α is changed and not changed, and the game
results

the number of game
Win Lose

(the first/second player)

changed α 19 / 9
16 / 8 3 / 1

(84.2% / 88.9%) (15.8% / 11.1%)

not changed α 81 / 91
76 / 16 5 / 75

(93.8% / 17.6%) (6.2% / 82.4%)

is effective and better than fixed-α. In addition, the winning percentage of EZO is

higher than the winning percentage of Wolve for the first player.

Table 3.3 shows the number of games when α is changed and not changed in 100

trials and the game results. The number of games that changed α was 19 for the

first player and 9 for the second player. The winning percentage of the games that

changed α is high, and it means that the classifier can increase α in position where

it is effective to increase α. In addition, I pay attention to the game that α is not

change in the game. The number of games that α was not changed is 76, and the

winning percentage is 93.8%. This winning percentage is larger than 79.0%, which

is the winning percentage of CHEv where also does not change α. This means that

there were games that can win for increasing α even though the games were losing

when α was fixed. From these results, it was shown that the developed classifier can

determine the timing appropriately to increase α.
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Confidence Intervals

The confidence intervals are estimated by the follows:

±z
√

p(1− p)

n
, (3.8)

where, p is the winning rate, n is the number of trials, and z is the 1− 1
2
α quantile

of a standard normal distribution corresponding to the target error rate α . For

example, z = 1 and z = 1.96 for the confidence error rates are 68% and 95%,

respectively.

3.6.3 Discussion

The winning percentage of EZO for the first player is better than Wolve but is

worse for the second player. According to their original paper [Hen10], they use the

same value function for the first and the second player. I also use the same value

function basically although the parameter is chosen for each player. Despite the fact

that our method has been adjusted for the second player, the winning percentage

of the second player cannot overtake Wolve. One possible reason is that the specific

methods for Hex are implemented in Wolve and it might be effective for the second

player. Wolve uses the mustplay and inferior cell analysis (see Section 2.2). These

methods may be useful for the second player but not for the first player because

the first player has the winning strategies and the second player starts game with a

disadvantage. The winning percentage of EZO may be improved by implementing

these methods.

3.7 Conclusion

In this chapter, I proposed a novel value function using network characteristics based

on the global and local evaluations and a method to dynamically change strategy by
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using the classifier developed by SVM. The first experiment showed that it is effective

to properly combine the global and local evaluations. In addition, it was showed that

it is effective to increase the evaluation ratio of local evaluation in the latter part of

the game by using the position appearing in the game records between CHEv and

MoHex. The feature of position was expressed by 12 network characteristics, and

the classifier that input is the position features is created to determine the evaluation

ratio of global and local evaluations by using SVM. The computer Hex algorithm,

EZO, was developed and used the proposed value function and the trained classifier.

From the tournament using four computer Hex algorithms, it was showed that it

is effective to dynamically change strategies by using the proposed classifier and

proposed value function has the higher evaluation accuracy than the previous value

function in terms of the first player.

In this chapter, I created the value function using network characteristics extracted

by hand, and the board states are classified by only two groups. However, the

number of board states cannot be defined in a real game because a lot of situations

can be assumed. In addition, there may be the features of the position that the used

network characteristics cannot express. In next chapter, I will describe the method

using the CNN and the reinforcement learning algorithm to create the evaluation

functions that evaluate the position more flexibly and accuracy.



Chapter 4

Learning Algorithm for Creating

Value and Policy Functions using

Convolutional Neural Network

4.1 Introduction

Traditionally, the evaluation functions have consisted of the features extracted by

hand and their weights [HK14]. Also, in the games which are difficult to extract the

features of position, e.g., Go, the evaluation value of the position is computed from

the winning percentage based on the playout simulations. However, the computer

player using these value functions could not win the game against the professional

humans, which means that the evaluation accuracy of the evaluation functions was

not sufficient. Recently, to create the highly accurate evaluation functions, the eval-

uation functions using a convolutional neural network (CNN) have been proposed,

and it has been shown that the evaluation accuracy of functions that use CNN is

greater than that of the traditional evaluation functions [Cou07a, MHSS15]. CNN

is a feed-forward artificial neural network that can learn the features of images, and

it has made better results in the field of computer vision [KSH12]. The evaluation

functions using CNN treat the board position as the image, and CNN can learn the

42
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features of the position that are difficult to be expressed manually. It is expected

that those evaluation functions can evaluate the positions and the moves based on

learned features including the information of the board state.

The methods that create the policy function using CNN by the supervised learning

have been proposed [CS15, DNW16]. The policy function is trained to imitate the

moves of experts. It is shown that the policy function using CNN can imitate the

expert moves more than the traditional policy function using the quantified features,

and it means that CNN can learn the features of the position that are difficult to

define by hand. However, supervised learning using the moves of experts is difficult

to exceed experts, and it is necessary to prepare large amounts of data of experts. For

the purpose of developing the evaluation functions with high evaluation accuracy,

reinforcement learning algorithms are attracted attention.

In this chapter, I first propose the method that applies CNN in Hex, and then,

I proposed a reinforcement learning algorithm using games of self-play to create

value and policy functions using CNN in Hex. In order to make it easy to learn the

features of positions in Hex, I propose the input of CNN focusing on three mutually

adjacent cells. To demonstrate that the proposed CNN model can learn the features

which are difficult to quantify by using board networks, I develop the policy function

using the proposed CNN model and compare it with the linear policy function using

the network characteristics. Two policy functions are trained by using the same

expert’s game records. In addition, the proposed policy function is compared with

the previous CNN model to show that the proposed CNN model has high evaluation

accuracy.

Next, I propose a novel reinforcement learning algorithm using game of self-play

to create the value and policy functions using CNN in Hex. Many reinforcement

learning algorithms have been developed in Backgammon, Chess, and so on [Tes95,

Jas18, TKK12, BTW98, VSBU09]. It also has been demonstrated that employing

reinforcement learning to train functions with CNN is effective for several board

games, e.g., Hex and Go [TIY17, ATB17, SHM+16]. Silver et al. proposed a rein-

forcement learning algorithm that creates the value and policy functions, and this
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algorithm has been extremely successful with Go (AlphaGo Zero [SSS+17]), Chess,

and Shogi (AlphaZero algorithm [SHS+17]). In these methods, the value function is

trained to predict the game result, and the policy function is trained to predict the

search probabilities of each move output by the MCTS. To obtain the search proba-

bilities, a lot of simulations are required, and the computational cost of simulations

is high. Therefore, I proposed the novel reinforcement learning algorithm without

using the search probabilities. The self-play player uses the minimax tree search

of depth one with forward-pruning based on the moves determined by the policy

function. The primary difference between the proposed method and the previous

methods, e.g., AlphaGo Zero and AlphaZero algorithm, is the method to create the

policy function, and the proposed algorithm does not use the search probabilities

for learning. When the policy function does not use the search probabilities, it has

to be trained using the state evaluation values of the evaluation functions, such as

DDPG [LHP+15]. The policy always follows the value function. In the case of the

game tree search, the policy function can be trained to predict the best moves of

the search results by the value function. However, there are bad moves that have

resulted in losses in those search results, and learning bad moves may decrease the

ability to select the good move for the policy function. Therefore, in the proposed

algorithm, the policy function is trained to predict the search result of the minimax

tree search in the winner position in the case where the next player won, and to

increase the number of moves to be searched in the loser position in the case where

the next player lost. In order to demonstrate the effectiveness of the proposed al-

gorithm, I compare the proposed algorithm with the learning algorithm having the

policy function that estimates the value functions regardless of the winner or loser

positions. Another difference with previous studies is that the value function is

trained based on the depth one special case of the TreeStrap algorithm [VSBU09],

which can be regarded as a type of Value Iteration [SGG+15]. I developed the com-

puter Hex algorithm using the value and policy functions trained by the proposed

algorithm, called DeepEZO, and compared it with world-champion programs in 2017

to demonstrate the performance of DeepEZO.

This chapter is organized as follows. First, the method to create the input of CNN



4.2. Representation of Board Position for CNN 45

is described in section 4.2. In section 4.3, the policy function using the proposed

CNN model is developed, and it is compared with other policy functions in order

to demonstrate that CNN model has high evaluation accuracy and can learn the

features which are difficult to quantify by using board networks. In section 4.4 and

later, the proposed reinforcement learning algorithm is described. I develop the

computer Hex algorithm, DeepEZO, using the trained value and policy functions.

DeepEZO is compared with the computer Hex algorithms using the evaluation func-

tions trained by the different learning algorithm to demonstrate the effectiveness of

the proposed learning algorithm. In addition, the tournaments using DeepEZO and

world-champion programs in 2017 are performed to show that the trained evaluation

functions have high evaluation accuracy.

This chapter is described based on these my papers [THIY18, TIY17, TIY]. The

computer used in this chapter had an Intel(R) Core(TM) i7-7700KCPU (4.20GHz)

and a Nvidia GTX 1080 GPU. This computer was used in all experiments. Also,

the CNN models, value and policy functions, were developed using Torch [CKF11].

4.2 Representation of Board Position for CNN

In Hex strategy, it is important to consider cell adjacency because the goal of Hex

is to connect two opposite sides. To make it easier to learn cell adjacency, I propose

the input of CNN focusing on the three mutually adjacent cells [THIY18].

A cell can take three states corresponding to the placement of a player’s stone,

placement of the opponent’s stone, and where no stone is placed. Therefore, the

combined states of three adjacent cells yield 27 patterns. Here, the position is

represented by 27 channels, and each pattern forms a channel. Figure 4.1 shows an

example of creating inputs from a position at which the black player makes a move.

In each channel, the number corresponding to a specific channel pattern becomes

one, and the others remain zero. When the white player has the next move, I reflect

the board in one of the diagonals and swap the black and white cells because the Hex
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Figure 4.1: Creating position input. The left diagram shows positions on a 5 × 5
board. The middle diagram shows the sides in the left diagram with stones. Here,
cells on corners are considered cells in which both black and white stones are placed.
The right diagram is the input of the left diagram. Places corresponding to three
mutually adjacent cells patterns become one.

board is symmetric. When the board is reflected, the left and right sides become

the top and bottom sides, respectively. This configuration is obtained to eliminate

the learning cost required to consider that the side to be connected by the player is

different.

4.2.1 Other Representations of Board Position

Young et al. have proposed the NeuroHex which is a computer Hex algorithm [YVH17].

NeuroHex plays the next move based on the trained CNN model. Their CNN uses

the input consisting of the simple channels expressing the position and the channels

emphasizing the local information related to the game result. The number of total

channels are six: the present black and white stones, black stone set connected to

the edges of black (top and bottom), and white stone set connected to the edges of

white (right and left).

Gao et al., 2017 have proposed the CNNmodel for evaluating the next move [GHM17].

The input features have nine binary channels. This input contains the information

of cell (black, white, and empty), two edges (black and white), and simple bridge

pattern which is the specific pattern in Hex. In addition, Gao et al., 2018 proposed

the simple input consisted of four channels, which contain the basic board state

information [GMH18].
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4.3 Policy Function using Proposed CNN Model

I propose the policy function using CNN and compare it with the policy function

O(n) of the linear function based on the network characteristics in order to demon-

strate that the proposed CNN model can learn the features of the position that

are difficult to express in network characteristics and can obtain a high evaluation

accuracy. In addition, the proposed CNN model is also compared with the previous

CNN model.

In this section, first, the comparison between the proposed CNN model and the

linear function O(n) is performed. It is demonstrated that which model can more

imitate the expert’s move and which model is superior in the game tree search.

Next, the proposed CNN model is compared with the previous CNN model called

NeuroHex by using the computer Hex algorithms that decide the next move based

on the CNN model.

4.3.1 Proposed CNN Model

The proposed CNN model outputs the evaluation value of all next candidate moves

from the input of the current position. The input described in section 4.2 is used.

Table 4.1 shows the structure of the proposed CNN model. Convolutional layers

1 to 7 use 3 × 3 filters with stride and zero-pad of 1. Convolutional layer 8 uses

2× 2 filters with the stride of 1. All activation functions in each convolutional layer

are parametric rectified linear units(PReLU) [HZRS15]. The last convolutional layer

has shared bias. Except for the first and last convolutional layers, all layers have 128

channels. Our network does not include the pooling layer because the cell location

has very important meaning in Hex. In the output layer, I use the softmax function,

and the output layer yields a probability distribution of all next candidate moves.

I introduced a 20% SpatialDropout to the input layer to increase generalization

ability [TGJ+15].
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Table 4.1: Network structure of proposed CNN model

Layer type Image size Channel Kernel size
Input 14 × 14 27 −

Conv 1 - 7 14 × 14 128 3 × 3
Conv 8 13 × 13 128 2 × 2
Output 13 × 13 1 −

4.3.2 Linear Policy Function using Network Characteristics

The linear policy function O(n) consists of 12 network characteristics (6 for each

player) calculated for each node (cell) for evaluating node n, and it is defined as

follows:

O(n) =
12∑
i=1

wiei(n), (4.1)

where ei(n) is the i-th network characteristic of node n, and wi is the weight of

the i-th network characteristic. The six network characteristics used are as follows:

betweenness, closeness, degree centrality, the minimum of path length to sides, sum

of betweenness centrality between two nodes adjacent to sides, and electrical resis-

tance (see Section 3.3.3). Each network characteristic measures the importance of

each cell in the board network from different perspectives. wi is to be optimized by

the optimization algorithm, and details will be described in Section 4.3.3.

4.3.3 Learning of Two Policy Functions

The proposed CNN model and linear model are trained to imitate the expert moves.

The training data used for learning is same. The learning conditions, e.g., the

objective function and the training data, are described in the bellow.

Objective Function of Proposed CNN Model

The proposed CNN model is trained by using a stochastic gradient descent to mini-

mize the cross entropy objective function Loss, and Loss in the position-move pairs
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(s,m) are defined as follows:

Loss =
1

N

∑
(s,m)∈S

(− log(outs[m])), (4.2)

where S is a set of position-move pairs; N are the number of position-move pairs;

outs[m] is the output value (probability value) of node m at position s.

I used a mini-batch size of 32 and Adam optimizer [KB14]. The weights of the

model are initialized to random weights.

Objective Function of Linear Policy Function

The weights of each network characteristics wi are to be optimized by using Minimax

Tree Optimization (MMTO) [HK14, Hok06]. MMTO was proposed for Shogi and

has been shown to greatly improve the strength of computer Shogi. This method

optimizes the weighted parameters in the evaluation function to make the expert

moves the highest evaluated values among all candidate moves. MMTO optimizes

the weight vector w to maximize the evaluation value of the expert move m at

position s. The objective function JMMTO(S,w) is minimized and defined as follows:

JMMTO(S,w) = J(S,w) + JC(w) + JR(w), (4.3)

where J(S,w) measures the degree of coincidence between the best move by O(n)

and the expert move; JC(w) and JR(w) are constraints and regularization terms,

respectively; S is a set of positions-move pairs.

J(S,w) is defined as follows:

J(S,w) =
∑
s∈S

∑
n∈Ns

T (h(s.ms,w)− h(s.n,w)), (4.4)

where Ns is the set of candidate move sets at position s, excluding the expert move

ms. s.m denote the placement of a stone from position s to move m, and h(s.m,w)

is the value of O(m) with weight w at position s. T is a sigmoid function, and the
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gain is negative.

JC(w) is a constraint term, and JC(w) = λ0g(w). λ0 is a Lagrange multiplier, and

g(w) = 0 is the constraint condition. In this study, λ0 is the median of {∂J(S,w)
∂wi

|wi ∈

w}. JR(w) is a regularization term, and I use l2-regularization JR(w) = λ1|w|2.

The weight vector w is updated using the following equation:

wi(t+ 1) = wi(t)− c× sgn(
∂J(P,v(t))

∂vi

), (4.5)

where sgn(f(x)) is a function that returns 1 for f(x) > 0, 0 for f(x) = 0, and -1 for

f(x) < 0. The constant c is the learning rate, and it decreases gradually.

Position-Move Pairs Data for Learning

The position-move pairs (s,m) appearing in game records between the computer

Hex algorithms were used to train the proposed CNN model and the linear model

O(n). The computer Hex algorithms used were EZO, and MoHex2.0, and Wolve.

These programs are medalists in the Computer Olympiad, and it is expected that

they can be expected as expert. The games were played between them with different

search time and search width on a 13 × 13 board. The first move of the game was

selected randomly from the all first moves. Also, in order to learn the better move,

only the position-move pairs from which the winner plays the next move were used

as training data. Moreover, if the position coincides with the original position after

the board is reflected, I use the reflected position as well for training.

The training data of the proposed CNN model is slightly different from the data

used for training the linear model O(n). Some data is not used for training the linear

model. In Hex, if a player has the winning connection, the player can win by playing

a move optimally. If a winning connection exists, move evaluation is unnecessary

because the cell where the next stone will be played is obvious. Hence, the positions

of existing winning connections can be excluded from the training data for training

the linear model. Notably, training is not disadvantageous for the linear model even
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Figure 4.2: The learning results of the proposed CNN model and the linear model
O(n).

if the number of positions to be trained is small. This is because the excluded

positions are not necessary to evaluate the move. Also, the network characteristics

do not change even if the position is reflected; therefore, the reflected position is not

used for training of linear model.

The numbers of training data are 1,915,103 and 475,421 for the proposed CNN

model and the linear model, respectively. The positions included in the test data

are the positions where the winning connection does not exist, and the test data

used by proposed CNN model and the linear model are same. The number of test

data is 83,872.

4.3.4 Learning Result

Figure 4.2a shows the translation of Loss, and Figure 4.2b shows that each weight

of the linear model O(n) is converged.

To clarify which model, the proposed CNN model and the linear model, can eval-

uate expert moves as the best move from all candidate moves, the two models are

compared using common test data. Figure 4.3 shows the cumulative frequency dis-
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Figure 4.3: The cumulative frequency distribution. The meaning of 1 on the hor-
izontal axis is that the model can make the expert move the highest evaluation
value.

tribution of the evaluation value rank of expert moves, and it shows that proposed

CNN model evaluates a greater number of expert moves higher than the linear

model.

4.3.5 Comparison using Computer Hex Algorithms

It is shown that the proposed policy function using CNN can imitate the expert’s

move more than the linear policy function. However, the policy function is generally

used to determine the search order in the game tree search. The ability required for

the policy function is not to determine one good move but to decide the good search

targets of game tree search. To demonstrate the proposed CNN model is superior

in game tree search, the computer Hex algorithms using each policy function are

developed and compared.

The computer Hex algorithm, EZO-CNN, using the proposed CNN model and the

computer Hex algorithm, EZO-MMTO, using the linear model were compared to

demonstrate that the proposed CNN model is high performance in game tree search.

EZO-CNN and EZO-MMTO used the same evaluation function, and the difference

between them was only the policy function. The evaluation function consists of the
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Figure 4.4: Winning percentage of the computer Hex algorithms against the of
MoHex2.0 according to the search width of each computer Hex algorithm. The
error bar shows standard error (68% confidence)

network characteristics used in the linear model, and the weights were optimized by

MMTO. Wolve was also prepared for comparison with the previous method. The

games between above three players are uniquely determined; therefore, it is difficult

to evaluate the models from the direct comparison. The comparison was performed

from the indirect games through MoHex2.0.

The board size was 13 × 13 board. The first player has an advantage in Hex, and

this advantage can be reduced by starting the game from the side of the board. The

game started at cells within two rows from the side of the board (a1-a13, b1-b13,

l1-l13, m1-m13, c1-k1, c2-k2, c12-k12, and c13-k13). There are 88 first moves, and

10 games (five games for the first and second player) were performed from each first

moves. The number of total games was 880. All computer Hex algorithms used

the two threads for game tree search and the solver. EZO-CNN, EZO-MMTO, and

Wolve used the 4-ply iterative deepening depth-first search as the game tree search

algorithm, and the search widths at each depth were 5, 8, and 11. The search time

per move of these three players was not limited, and MoHex2.0 search time per move

was up to 10s.

Figure 4.4 shows the winning percentage of each computer Hex algorithm against
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MoHex2.0. The average total search time in the game in the case of EZO-CNN is

247, 526, and 890s in the order of search widths of 5, 8, and 11. Similarly, in the

case of EZO-MMTO, it is 212, 493, and 894s, and in the case of Wolve, it is 116,

261, and 472s. The search time of MoHex2.0 is approximately 205s. The results

show that the winning percentages of EZO-CNN are higher than EZO-MMTO of

the same search width. It means that the proposed CNN model is better than the

linear model because the difference between EZO-CNN and EZO-MMTO is only the

policy function. Additionally, EZO-CNN can get higher winning percentages than

Wolve. However, the search time of EZO-CNN is longer than MoHex2.0, and the

winning percentage of EZO-CNN against MoHex2.0 is low. This may mean that

the evaluation accuracy of the evaluation function is low because the next move is

determined based on the evaluation function.

4.3.6 Comparison of Proposed CNN model and Previous

CNN model

In this section, to demonstrate that the proposed CNN model using the input fo-

cusing on three mutually cells has high evaluation accuracy, the comparative ex-

periments are performed. The comparison is performed by using the computer Hex

algorithms that decide the next move based on the CNN model.

NeuroHex

Young et al., 2016 have proposed the computer Hex algorithm, NeuroHex, using the

move prediction model based on CNN to show that it is effective to use CNN in Hex

and to use Q-learning for creating the model [YVH17]. NeuroHex decides the next

move based on the output of the move prediction model without using game tree

search. The model outputs the evaluation value of all next candidate moves from the

current position input, and NeuroHex plays the move with the highest evaluation

value. The model consists of 10-layer CNN and one fully connected output layer.

The shape of the filter used for each CNN layer is unique and is hexagonal in order
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Table 4.2: Winning percentage % of the proposed CNN model against NeuroHex.

NeuroHex is second player NeuroHex is first player
Proposed CNN model 81.7 79.9

Table 4.3: Indirect comparison of the proposed CNN model and NeuroHex through
MoHex2.0. Each value shows the winning percentage % against MoHex2.0 (the
first/second player).

1s 3s 9s 30s
Proposed CNN model 38.5/24.3 35.5/16.0 27.2/17.2 21.3/10.7

NeuroHex 14.2/5.3 12.4/3.0 7.7/1.8 4.1/0.0

to capture the features of local stones. The input to the model is described in

section 4.2

The model was trained by supervised learning and Q-learning. The model learned

to output the electrical resistance by using a lot of positions, and then, the model

is trained by Q-learning over two weeks. In experiments, NeuroHex was compared

to MoHex2.0, and the results show that NeuroHex can win some games against

MoHex2.0 if the search time of MoHex2.0 is less than nine seconds. However, Neu-

roHex cannot win the game when the search time of MoHex2.0 is 30 seconds. It was

shown that the move prediction model can be created by using Q-learning, but the

evaluation accuracy is not high.

Experiments

The comparison between NeuroHex and the proposed CNN model was performed.

Each player decide the next move based on the output by the CNN model without

the game tree search, and the next move is move with the highest evaluation value.

Two models were compared from the direct and indirect games on the 13×13 board.

In indirect comparison, the opponent player was MoHex2.0. The first move of the

direct and indirect games were all opening moves, and it means that there were 169

moves for the first move. Each player plays as the first and second player from each

first move, and the number of total game was 338 games.

Table 4.2 and 4.3 show the results of the direct and indirect comparisons. The
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proposed model got about 80% against NeuroHex and higher winning percentage

than NeuroHex against MoHex2.0. In addition, the proposed model can get the

winning percentage of 21.3% for the first player against MoHex2.0 (search for 30

seconds) without the game tree search. These results show that the evaluation

accuracy of the proposed model is higher than the previous CNN model.

4.4 Proposed Reinforcement Learning Algorithm

for Creating Value and Policy Functions

From previous experiments, it was showed that the proposed CNN model can learn

features of position that are difficult to express in network characteristics. However,

imitation learning using the moves of experts is difficult to exceed experts, and it

is necessary to prepare large amounts of data of experts. To develop the evalua-

tion functions with high evaluation accuracy, I proposed the reinforcement learning

algorithm using game of self-play.

In this section, the proposed value and policy functions, the self-play player, and

proposed learning algorithm are described. The value and policy functions are com-

posed of the CNN, and they are trained using games of self-play by the self-play

player with minimax tree search. The value function is trained to predict the game

result, and the policy function is trained to appropriately determine the search tar-

gets while predicting the search result by the value function.

4.4.1 Proposed Value and Policy Functions

I explain the structure of the proposed value and policy functions using CNNs. The

input using two functions is same, and it is described above (see Section 4.2).
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Table 4.4: Network structure of proposed value function.

Layer type Image size Channel Kernel size

Input 14 × 14 27 −
Conv 1 12 × 12 128 3 × 3

Conv 2 10 × 10 128 3 × 3

Conv 3 8 × 8 128 3 × 3

Conv 4 6 × 6 128 3 × 3

Conv 5 4 × 4 128 3 × 3

Conv 6 2 × 2 128 3 × 3

Conv 7 1 × 1 128 2 × 2

Full Connection − 168 −
Output − 1 −

Value Function

The proposed value function takes the board position as the input, and outputs a

scalar evaluation value of the given position. Table 4.4 shows the network structure

for the proposed value function. The value function consists of convolution layers

and a fully connected layer, and all activation functions are rectified linear units

(ReLU) [XG11]. The stride size is one for all convolutional layers. In the output

layer, the output range is 0 to 1 because a sigmoid activation function is used. The

value function aims to output 1 if the next player has a winning position, and 0 if

the next player has a losing position.

Policy Function

The structure of the policy function is different from previous CNN model in Sec-

tion 4.3.1. The proposed policy function takes the board position as its input and

outputs the probability distribution of all next candidate moves. Table 4.5 shows the

network structure for the proposed policy function. The policy function consists of

only convolutional layers, and all activation functions in each convolutional layer are

ReLUs. Convolutional layers 1 to 7 use 3×3 filters with a stride and zero-pad of one,

and convolutional layer 8 uses 2× 2 filters with a stride of one. We introduce a 10%

SpatialDropout to the input layer to increase generalization ability [TGJ+15]. In
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Table 4.5: Network structure of proposed policy function.

Layer type Image size Channel Kernel size

Input 14 × 14 27 −
Conv 1 - 7 14 × 14 128 3 × 3

Conv 8 13 × 13 128 2 × 2

Output 13 × 13 1 −

the output layer, the probability distribution is output using the softmax function.

4.4.2 Self-Play Player with Proposed Selective Search

The self-play player uses a minimax tree search of depth one with forward-pruning.

Here, the moves to be searched are determined by the proposed policy function. The

output of the policy function is a probability distribution of next moves, and only

moves with a high-probability value are searched. Specifically, moves for which the

probability value exceeds 1/C are searched, where C is the number of cells on the

board (e.g., C = 169 on a 13×13 board). Exceptionally, if the number of moves that

exceed the threshold is less than three, the three highest moves are searched, i.e., the

minimum search width is three. When there are no more than three empty cells at

the given position, the player searches all empty cells. There are no specific methods

available for determining the minimum search width. Here, it was determined by

considering the balance between the risk of pruning good moves and the efficiency

of the search carried out by reducing the number of moves to be searched. Where

the selected moves are played from the root position, each position is evaluated by

the proposed value function. The move with the highest evaluation value is selected

as the next move.

4.4.3 Proposed Learning Algorithm

Algorithm 1 shows the proposed learning algorithm. Here, positions that have ap-

peared in games of self-play are used to train the proposed functions. We define a

position at the t-th turn as st, a move at st as at, and the evaluation value at st
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Algorithm 1 Proposed learning algorithm.

1: function Learning
2: for epoch = 0 to E do
3: Initialize training data set D
4: for game = 0 to G do
5: p1 uses the latest functions
6: p2 uses the latest or past functions
7: Randomly select which player is first
8: Get random number T
9: t← T
10: st ← GetStartingPosition(p1,p2,T )
11: while not terminal st do
12: p← Next player selected from p1 and p2
13: p searches best move at at st
14: (st, at) is added to D
15: (srotatedt , arotatedt ) is added to D
16: st+1 ← Position playing at at st
17: t← t+ 1
18: end while
19: (st,∅) and (srotatedt ,∅) are added to D
20: end for
21: Update the proposed functions using D
22: end for
23: end function
24: function GetStartingPosition(p1,p2,T )
25: s0 ← Initial position
26: s1 ← Position playing the random move at s0. The move is selected from

the cells within two rows from the side.
27: if T is 1 then
28: return sT
29: end if
30: for i = 1 to T − 1 do
31: p← Next player selected from p1 or p2
32: p searches best move ai at si
33: si+1 ← Position playing ai at si
34: end for
35: sT ← Position playing random move at sT−1

36: return sT
37: end function
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as v(st). In addition to the position-move pairs in games of self-play, the rotated

position-move pairs (srotatedt , arotatedt ) are used as training data because they are es-

sentially the same as the original pairs. The reflection operation is similar to the

method described in Section 4.2. The training data set D is initialized (D becomes

an empty set) for each epoch because high-quality data are required to create highly

accurate functions.

Because learning various positions leads to improved generalization ability for the

proposed functions, the following techniques are introduced to games of self-play in

order to increase the number of training positions.

Player Randomness

Two randomness techniques to a player’s search are introduced, one of which is re-

lated to the moves to be searched. The player searches moves with a low-probability

value. Moves with a probability value that is less than 1/C are searched with a prob-

ability of 20%. This is done to avoid searching only the currently favored moves.

This operation is not performed to play the next move randomly, as with ϵ-greedy,

but to determine the moves to be searched that are evaluated by the value function.

The other technique is related to the evaluation value output by the value function.

A small random number is added to the evaluation value. The value function has an

output ranging from 0 to 1 because it uses the sigmoid function. The range of the

random number to be added is -0.05 to 0.05. This range was determined empirically;

however, by adding this random number, the player can approximate random play

if they use an untrained instance of the proposed value function.

Random First Move

The first moves of games of self-play are selected randomly from cells within two

rows from the side of the board. In Hex, first moves near the center of the board

are advantageous for the first player. When starting a game near the center, it is

expected that many favorable positions will appear for the first player. The value
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function must accurately evaluate positions where it is difficult to determine which

player has an advantage. Learning from many difficult positions can be expected to

lead to accurate evaluations by the proposed value function; thus, games of self-play

begin at cells within two rows from the side of the board. The number of cells at

the start of the game is 88 in a 13× 13 board (a1 to a13, b1 to b13, l1 to l13, m1 to

m13, c1 to k1, c2 to k2, c12 to k12 and c13 to k13).

Random Move During Games of Self-play

A random move is played during a game of self-play. The self-play players play a

game over T moves until position sT . Here, T is a random integer (1 ≤ T ≤ 60).

The maximum value of T was determined empirically, and it is possible that the

game will end within the maximum T value even if the player plays randomly. At

position sT , the next move aT is played randomly from all empty cells. The self-

play players play the game from position sT+1 after playing aT at sT until the game

terminates.

Older Trained Functions

The most recent functions and older functions are used in games of self-play. The

proposed functions are stored every 25 epochs. Here, an epoch is the period required

to learn positions that have appeared in a given number of games of self-play. One

player always uses the most recent value and policy functions. However, another

player may use older functions. The functions to be used are selected randomly from

the latest, second, or third latest functions, and the selection of these functions is

performed randomly for each game.

Determined Move at Position Where Winning Connection Exists

At the position where a winning connection exists, the self-play players play move of

mustplay (see Section 2.4.4). This is because the game tree search is not required in
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the position where the winning connection exists. At the position where a winning

connection exists, the player with the winning connection plays the winning move to

connect two opposite sides, and the other player plays the most obstructive move.

4.4.4 Loss Functions

The weights of the proposed functions are updated by the stochastic gradient descent

method using the position-move pairs (s,a) in games of self-play. Here, I describe

the loss function of each function.

Value Function

The proposed value function is trained by the depth one special case of the TreeStrap

algorithm [VSBU09], and predicts the game’s result. The reason for which the

TreeStrap algorithm is used is that the method that is less sensitive to the strength

of the player is necessary because the value function is initialized to random weights

in the proposed algorithm. We give the final reward to only terminal positions. The

loss function Lossval is minimized and defined as follows.

Lossval =
∑

(s,a)∈D

losse(s, a), (4.6)

losse(s, a) =

− log(1− v(s)) (s is terminal)

(v(s)− v(s′))2 (otherwise),

(4.7)

where D is a set of position-move pairs (s,a) in games of self-play, v(s) is the

evaluation value of the position output by the proposed value function at position

s, and s′ = m(s, a) is the position at which move a was played at position s. In

terminal positions, the player who lost the game has the next move. Thus, the

proposed value function should output zero at the terminal positions in D.

A log loss is used at terminal positions to evaluate the terminal position accurately.

The error given to the value function at the terminal position is larger than that
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when using the squared temporal-difference error. The value function is trained

more strictly to the terminal positions.

Policy Function

To determine the moves to be searched according to the positions, the loss function of

the proposed policy function differs depending on whether the position is a “winner

position” where the next player won or a “loser position” where the next player

lost. If the training position is the winner position, the policy function learns to

reduce the search width because the search width was sufficient. However, if the

training position is a loser position, the policy function learns to increase the search

width. The reason for increasing the search width in the loser position is to search

for better moves that are pruned from the tree search. The policy function is used as

the deciding search width for the player; therefore, one of the reasons for losing the

game is that the policy function has a low evaluation accuracy, and prunes the better

moves from the search. To play a good move in the loser position, it is necessary to

search widely. By changing the learning policy according to the position, it becomes

possible to determine the number of moves to be searched.

The proposed policy function is trained to minimize the following loss function

Losspolicy:

Losspolicy =
∑

(s,a)∈D

lossp(s, a), (4.8)

lossp(s, a) =


− log π(a, s) (s is winner position)

−λ
∑
m∈A

π(m, s) log π(m, s) (otherwise),
(4.9)

where A is a set of all moves on the board, π(a, s) is the output of the proposed

policy function for move a at position s, and π(a, s) is the probability value. Here,

λ is a constant parameter that controls the search width, and I used λ = 10−1 in

this study. As a result, I minimize the cross-entropy loss in the winner position and

maximize the entropy loss in the loser position.
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4.5 Training the Proposed Functions

I trained the value and policy functions using the proposed learning algorithm,

and developed the computer Hex algorithm DeepEZO using the proposed functions.

To demonstrate that the learning is properly performed by the proposed learning

algorithm, I indicate the winning percentages of DeepEZO against the previous

computer Hex algorithm MoHex2.0. The proposed algorithm is also compared with

the learning algorithm, where the policy function predicts the moves selected by the

search based on the value function in order to demonstrate the effectiveness of the

proposed learning algorithm,

The only difference between the proposed algorithm and the learning algorithm to

be compared is the update method of the policy function. In the learning algo-

rithm to be compared, the policy function is trained to predict the search results in

both winner and loser positions, which means that the loss function uses only cross

entropy loss. In the proposed algorithm, the policy function is trained to predict

the good moves in the winner position, and to increase the number of moves to be

searched in the loser positions. The policy function is used when deciding the moves

to be searched; therefore, if I assume that the highly accurate value function is ob-

tained, there is no reason to be lost, except for the cases where the policy function

prunes the winning moves, or when it is impossible to win the game. In this sense,

the moves in the loser positions should not be entrained, and the function should

increase the number of moves to be searched.

In this section, I first describe the computer Hex algorithm used in this section, and

then the proposed functions are trained. Next, two policy functions are compared.

4.5.1 Computer Hex Algorithms

The computer Hex algorithms used in this section were implemented using the open-

source Benzene framework [AHH12, You13]. All players are allowed to prune prov-

ably inferior moves and play the mustplay [HBJ+05]. These methods exclude moves
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that are meaningless to the search, and it allows the player to play definitive moves

to win or lose.

DeepEZO

DeepEZO is the proposed computer Hex algorithm and uses the iterative deepening

depth-first search as the game tree search algorithm [Kor85], as well as the proposed

value and proposed policy functions. The method employed to determine the moves

to be searched is the same as that described in Section 4.4.2. There is not randomness

in the search during the evaluation games. DeepEZO only searches moves with a

high-probability value from the policy function (no other moves are searched). Here,

the minimum search width is three.

I also prepared DeepEZO-Cross, where the policy function is obtained by the learn-

ing with only cross entropy. The evaluation functions used for DeepEZO-Cross are

obtained by the learning, where only the cross entropy loss is used as the loss function

of the policy function. The policy function is always trained to predict the search

results regardless of the winner or loser positions. DeepEZO and DeepEZO-Cross

use the same algorithms, except for the value and policy functions.

MoHex2.0

MoHex2.0 uses the MCTS as the game tree search algorithm [HAH+14]. MoHex2.0

has been the world-champion program at the Computer Olympiad (2013 to 2017),

and is the strongest computer Hex algorithm.

MoHex-CNN was the world-champion program for the 13×13 board at the 2017 [HW17,

GHM17]. To demonstrate the effectiveness of the proposed functions, it is impor-

tant to compare the proposed functions with the currently best program. However,

MoHex-CNN is not currently available. Thus, MoHex2.0 was used in this study be-

cause it was the world-champion for the 11× 11 in 2017, and is a sufficiently strong

program.
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In this paper, MoHex2.0 uses one thread for the search, and does not use pondering.

This means that MoHex2.0 parameters “num threads,” “lock free,” and “ponder”

are one, zero, and zero, respectively.

4.5.2 Experiments

The proposed functions were trained in reinforcement learning using self-play. I

show that the learning is properly performed based on the winning percentages of

DeepEZO against MoHex2.0. The effectiveness of the proposed training method is

shown compared with that of DeepEZO-Cross in terms of the winning percentages

against MoHex2.0.

In order to show that the trained policy function can prune bad moves and keep

good moves properly, I indicate the difference in the winning percentages against

MoHex2.0 between the two types of DeepEZO with a different search width (Deep-

EZO and DeepEZO-all). DeepEZO-all searches all next candidate moves at all

positions. The search results of DeepEZO and DeepEZO-all are the same unless

the policy function prunes the best move because they use the same value function.

I also compared DeepEZO-Cross and DeepEZO-Cross-all, and the only difference

between DeepEZO-Cross and DeepEZO-Cross-all is also the search width.

Game Conditions Between DeepEZO and MoHex2.0

The games between DeepEZO (DeepEZO-all, DeepEZO-Cross, and DeepEZO-Cross-

all) and MoHex2.0 started at all opening cells in the board. There are 169 opening

cells on a 13 × 13 board. One game was played for the first and second players for

each opening. A total of 338 games were played. The search depth of DeepEZOs

was two, and the search time of MoHex2.0 was up to 30s per move. These computer

Hex algorithms used one thread for the search, and they did not use a parallel solver.
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Training Conditions

The number of games of self-play in a single epoch G was 1,000, and the total

number of epochs was 2,600, which means that 2.6 million games were played. The

weights of the value and policy functions were initialized to random weights. I used

a mini-batch size of 32 positions and Adam [KB14] as the optimizer to train the

proposed functions.

Training Result

Figure 4.5 shows the winning percentages of DeepEZOs against MoHex2.0 in the

training process. The average total search time in a game for DeepEZO, DeepEZO-

all, DeepEZO-Cross, DeepEZO-Cross-all, and MoHex2.0 was 30s, 295s, 26s, 283s,

and 505s, respectively. The training periods were approximately 45 days and 54

days for DeepEZO and DeepEZO-Cross, respectively.

Both DeepEZO and DeepEZO-all had winning percentages greater than 50% against

MoHex2.0, and the search time of DeepEZO was less than that of MoHex2.0. These

results show that the learning of the proposed algorithm was properly performed,

and the evaluation accuracy of the evaluation functions was high. In addition, the

results confirm that the winning percentages of DeepEZO and DeepEZO-all are not

significantly different, and that the search time of DeepEZO is less than that of

DeepEZO-all. It is expected that the policy function can appropriately determine

the moves to be searched.

There is no significant difference between the DeepEZO and DeepEZO-Cross al-

gorithms. This result means that both methods can create a policy function that

can appropriately determine moves to be searched and the value function with high

evaluation accuracy. However, in this experiment, two policy functions may not be

compared properly because DeepEZO and DeepEZO-Cross mainly select the next

move based on the value function.
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Figure 4.5: Winning percentages of DeepEZO and DeepEZO-all compared with
MoHex2.0 in the training process (error bar shows the standard error of games; 95%
confidence).

4.5.3 Analysis of Policy Function

I analyze the trained policy function in terms of the number of moves to be searched

and direct match performances in order to demonstrate the difference between the

trained policy functions.

Number of Moves to be Searched

To show that the proposed policy function can reduce the number of moves to be

searched, I compared the number of moves searched by DeepEZO, DeepEZO-all,

and DeepEZO-Cross at each position in games against MoHex2.0 in 2,600 epochs.

The number of moves to be searched for DeepEZO-all is equal to the number of

possible moves. Figure 4.6 shows the number of moves to be searched by Deep-

EZO, DeepEZO-Cross, and DeepEZO-all. The number of positions of DeepEZO,

DeepEZO-Cross, and DeepEZO-all is 8,239, 8,516, and 16,381, respectively. All of

the positions were categorized according to the number of turns, and the number of

moves to be searched in each category was averaged. The results confirm that many

moves were pruned from the game tree search by the proposed policy function, and
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Figure 4.6: Number of moves to be searched at each position classified based on the
number of turns from the positions in games against MoHex2.0 in 2,600 epochs.

there is no significant difference between DeepEZO and DeepEZO-Cross algorithms.

Game of Two Policy Functions

To demonstrate which policy function can select good moves, two policy functions

were compared directly. I prepared two players who play the move with the highest

evaluation value of the policy function, and two players play the games directly.

Pprop is the player who uses the policy function created by the proposed learning

algorithm, and Pcross is the player who uses the policy function created by the

other learning algorithm. The game conditions are the same as those described in

Section 4.5.2, with the exception of the players used.

Figure 4.7 shows the winning percentage of Pprop against Pcross. The results confirm

that Pprop can realize a higher winning percentage against Pcross, which means that

the evaluation accuracy of the policy function created by the proposed learning

algorithm is higher than the policy function created by the learning in which the

policy function is trained to always predict the search result.
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Figure 4.7: Winning percentage of Pprop against Pcross in the training process (error
bar shows standard error of games; 95% confidence).

4.6 Experiment with Computer Hex Algorithms

Here, I discuss the performance of DeepEZO and DeepEZO-Cross when performing

the deep search in order to demonstrate that DeepEZO, which uses the evaluation

functions created by the proposed algorithm, is superior than DeepEZO-Cross. In

Section 4.5.2, the proposed functions were trained, and it is shown that the policy

function created by the proposed algorithm has a higher evaluation accuracy. In

addition, there is no significant difference between DeepEZO and DeepEZO-Cross

with a 2-ply search. There is no problem if the policy function can make the good

moves the search target, even if the evaluation accuracy of the policy function is

low because it is possible to finally select the good moves by performing the search

with the value function. However, in a deep search, the policy function with a low

evaluation accuracy may have the negative effect on the search result because the

number of positions to be evaluated increases.

4.6.1 Computer Hex Algorithms

To demonstrate the performance of DeepEZO under the same search conditions, I

also prepared Wolve and EZO-CNN, which are classical computer Hex algorithms.
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EZO-CNN

EZO-CNN uses iterative deepening depth-first search, and placed second at the

2017 Computer Olympiad (described in section 4.3.5). EZO-CNN was the strongest

computer Hex algorithm of the programs based on the minimax tree search. The

value function employed by EZO-CNN is an optimized function consisting of 12

network characteristics. EZO-CNN uses a policy function with a CNN created by

supervised learning. The search width of EZO-CNN is constant at each position,

which means that moves are searched in descending order of the probability value

of the move obtained by the policy function.

Wolve

Wolve uses iterative deepening depth-first search, and was the second-place com-

puter Hex algorithm at the 2012 Computer Olympiad [Hen10]. The value and policy

functions employed by Wolve are based on the electric resistance model, which is

used by many other programs, such as Hexy and Six.

4.6.2 Game Conditions

The tournaments were played by DeepEZO, DeepEZO-Cross, MoHex2.0, EZO-CNN,

and Wolve. The search depth of EZO-CNN and Wolve was four, and the search

width was eight. The search time of MoHex2.0 was up to 30s per move. To ensure

equal conditions as the existing computer Hex algorithms, I prepared two types of

DeepEZO, i.e., DeepEZO-4ply, which searched at a depth of four and has no time

limit, and DeepEZO-30s, which searches for 30s per move and has no depth limit.

We also prepared DeepEZO-Cross-4ply and DeepEZO-Cross-30s. In total, seven

computer Hex algorithms were used in the tournament.

The games started at all opening moves in the board. Two games were played for the

first and second player for each opening, and 676 games were played in total. With
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the exception of the number of games, the experimental conditions were similar to

those described in Section 4.5.2.

4.6.3 Tournament Results

Table 4.6 shows the tournament results. The elo score is computed by BayesElo [Cou10],

and the standard error is about±11 with 95% confidence. As can be seen, DeepEZO-

30s has the highest elo score. To show the specific difference of the search between

DeepEZO and DeepEZO-Cross, I indicate the number of positions to be evaluated

and the search depth. The average number of positions to be evaluated in one po-

sition of DeepEZO-4ply and DeepEZO-Cross-4ply is 501.5 and 575.4, respectively.

DeepEZO-Cross-4ply searches wider than DeepEZO-4ply, and this difference may

be one of the reasons for which the average search time of DeepEZO-Cross-4ply is

longer than that of DeepEZO-4ply. In addition, the average search depth in one po-

sition of DeepEZO-30s and DeepEZO-Cross-30s is 5.3 and 5.0, respectively. Further,

the maximum search depth of DeepEZO-30s and DeepEZO-Cross-30s is 22 and 21,

respectively. While the difference is small, it is shown that DeepEZO-30s searches

deeply with the same search time.

DeepEZO-30s obtained a winning percentage of 79.3% against MoHex2.0 with the

same search time. DeepEZO-4ply obtained a winning percentage of approximately

80.0% against programs based on the minimax tree search with the same search

depth. DeepEZO obtained a very high winning percentage against world-champion

programs, and it is obvious that the evaluation accuracy of the proposed evaluation

functions is very high.

The search time of DeepEZO-30s was greater than that of MoHex2.0 even when the

search time per move for each method was 30s because MoHex2.0 stops the search

if the best move cannot change, even if it uses the remaining time. The average

search time for each game differed; however, both programs required 30s per move.
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4.7 Discussion

The experimental results indicate that the alpha-beta search using the proposed

value and policy functions created by the proposed learning algorithm perform more

pruning than the alpha-beta search using the functions created by the learning

method that trains the policy function to predict the search result in both winner

and loser positions. Figure 4.6 shows that there is not much difference in the number

of positions to be searched between two functions at each position. However, the

number of positions to be evaluated for DeepEZO-4ply is smaller than that for

DeepEZO-Cross-4ply. In addition, even within the same search time, DeepEZO-30s

has a deeper search than DeepEZO-Cross-30s. These results indicate that DeepEZO-

4ply performs more pruning than DeepEZO-Cross-4ply. It is believed that these

results can be obtained because the policy function created by the proposed learning

algorithm has a higher evaluation accuracy, as can be seen from Figure 4.7. These

are among the reasons for which DeepEZO-30s has the highest elo score from among

all computer Hex algorithms. The reason for which the evaluation accuracy of the

policy function created by the proposed learning algorithm is high is that only

the good moves are learned. The moves at the loser position may be poor moves

because they eventually lead to losses. It is considered that learning only good

moves consistently improved the evaluation accuracy of the policy function.

The primary differences between the proposed learning method and the existing

methods (i.e., AlphaGo Zero and the AlphaZero algorithm [SSS+17, SHS+17]) are

the game tree search algorithm and the method employed to create the policy func-

tion. In both methods, the policy function is created to increase the evaluation value

of good moves and to reduce the value of bad moves. However, with the proposed

method, the number of moves to be searched must be less than that of the existing

methods. For each method, the number of moves to be searched depends on the

evaluation value of the policy function, and moves with high values are more likely

to be searched. The proposed method trains the policy function to increase the

evaluation value of only the selected move in the winner position; thus, the number

of moves to be searched tends to decrease at the winner position. However, the
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existing method trains the policy function to learn the search probability of each

candidate move, and does not learn to increase the evaluation value of only the

selected move. Of course, the number of moves to be searched will become small in

the position where the winning move is obvious, but in the position where several

actions are equally suitable, the number of moves to be searched will not become

small. As a result, the proposed method may increase the risk of pruning the good

moves by reducing the number of moves; however, there is a possibility that deeper

searches and better move selection can be performed if the evaluation accuracy of

the policy function is sufficiently high.

In terms of the training cost, the proposed learning algorithm may incur a lower cost

than the AlphaZero algorithm. The AlphaZero algorithm requires the search prob-

abilities of each candidate move to train the policy function. To obtain the search

probabilities, many simulations are required, and this increases the computational

cost. However, the proposed algorithm uses the search results instead of the search

probabilities to train the policy function. The search result can be obtained from a

1-ply search, which means that each candidate move is sufficient to be evaluated only

once. Because the proposed algorithm can reduce the number of evaluations and

the computational cost, it may be possible to create the highly accurate evaluation

functions more rapidly with the proposed learning algorithm.

We confirmed that the winning percentage of DeepEZO-30s against MoHex2.0 was

greater than that of DeepEZO-4ply against MoHex2.0 (Table 4.6). This shows

that the strength of DeepEZO-30s was greater than that of a limited-width 4-ply

search, and that the generalization ability of the proposed value function is very

high. The search result of the minimax tree search changes if the evaluation of a

certain position changes; therefore, the search result will be a worse move if the value

function evaluates a certain position incorrectly. Although the number of positions

to be evaluated is increased by performing a deep search, DeepEZO-30s can play a

better move by evaluating the position appropriately.

Learning for the proposed functions required 45 days; however, this can be reduced

easily. Most of the learning time was spent on games of self-play; therefore, the
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learning time can be reduced by increasing the speed of games of self-play. Each

game is completely independent, and parallelization can be implemented easily. In

this study, I used only a single CPU and a single GPU, and I expect that the learning

time can be reduced considerably by parallelization of additional computational

resources.

4.8 Conclusion

In this chapter, I proposed the input of CNN in Hex and the reinforcement learning

algorithm to create value and policy functions. The proposed input focuses on three

mutually adjacent cells. To demonstrate the effectiveness of the proposed CNN

model, I compared the proposed CNN model with the linear policy function using

the network characteristics. The experimental results show that the proposed CNN

model can imitate the expert moves more than the linear policy function and is

superior as the policy function in the game tree search. It means that the proposed

CNN model can extract the features that cannot be represented by network char-

acteristics in Hex. In addition, the proposed CNN model was compared with the

previous CNN model. Two models were compared from the direct and indirect com-

parison, and the results show that the proposed CNN model has higher evaluation

accuracy.

Next, I proposed a reinforcement learning algorithm to create value and policy func-

tions through games of self-play. The self-play player uses the minimax tree search

of 1-ply. The value function was trained to predict the game result, and the policy

function was trained to change the number of moves to be searched according to

the given position. To demonstrate the effectiveness of the proposed learning algo-

rithm, I compared the proposed learning algorithm with other learning algorithms.

In addition, I developed the computer Hex algorithm DeepEZO using the minimax

tree search, and compared it to other computer Hex algorithms. The experimental

results show that DeepEZO outperforms all of the other programs, which means

that the trained value function has a high evaluation accuracy and generalization
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ability, and that the trained policy function can appropriately determine moves to

be searched at each position. I also demonstrated that the policy function trained

by the proposed learning algorithm has a higher evaluation accuracy than the policy

function that is trained to always predict the search result.



Chapter 5

Conclusion

In chapter 1, the background and objective of this thesis were described. I introduced

the evaluation functions to be needed for developing the computer player and the

methods to create the evaluation functions. I also described the difference between

the proposed method and the previous method, and the originality of this thesis was

explained.

In chapter 2, I described Hex which is a board game used in this thesis. I explained

the H-search algorithm which is the method to create the board network, the study

of solving the winning strategy, the game tree search algorithms, and the major

computer Hex algorithms. The board state of Hex can be expressed as the board

network by treating cells as nodes and connecting adjacent nodes with a link, and

the board network is used for evaluating the positions and moves. Almost computer

Hex algorithms are developed based on the minimax tree search or MCTS. There

are specific methods of Hex, e.g., the inferior cell analysis and mustplay, to perform

an efficient search.

In chapter 3, I described the method that applies the knowledge of the complex

network to Hex and creates the classifier of the board state. I developed the value

function consisted of the global and local evaluations using two board networks. The

previous value function called shannon electric circuit model evaluates the position

from one perspective; however, the proposed value function evaluates the position
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from two perspectives. By evaluating the position from two different perspectives, it

is expected that the evaluation accuracy of the value function improves. I developed

the computer Hex algorithm using the proposed value function and compared it

with MoHex. The experimental results showed that combining the global and local

evaluations properly is effective. Next, I created the classifier which determines

the timing to change the strategy by using a support vector machine. The timing

to change the strategy is determined by rule in the previous study; however, it

is difficult to design the rule appropriately. It can be expected that more flexible

classification of the position becomes possible by using SVM. To demonstrate the

effectiveness of the proposed method, I developed the computer Hex algorithm using

the proposed value function and classifier, and the proposed computer Hex algorithm

can change the strategy by changing the ratio of the global and local evaluations.

I performed the comparative experiments using the MoHex and Wolve, and the

experimental results showed that the developed classifier can determine the timing

appropriately to change the strategy.

In chapter 4, I described the method that applies the CNN to Hex and the rein-

forcement learning algorithm to create the value and policy functions from games of

self-play. To apply the CNN to Hex, I proposed the input focusing on three mutu-

ally adjacent cells in order to make it easy to learn the features of positions in Hex.

To demonstrate the effectiveness of the proposed CNN model, I developed the pol-

icy function using the proposed CNN model and compared it with the linear policy

function consisted of 12 network characteristics. The proposed policy function could

imitate the expert’s move more than the liner policy function, and it was superior

as the policy function in the game tree search, which means that CNN model can

learn the features that are difficult to express in network characteristics and can

evaluate the moves based on it. In addition, the direct and indirect comparisons

were performed between the proposed policy function and the previous CNN model.

The results indicated that the proposed policy function has high evaluation accu-

racy. Then, I proposed the reinforcement learning algorithm to create the value and

policy function from games of self-play. The primary difference between the previous

algorithm and the proposed algorithm is how to train the policy function. The pre-
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vious algorithm uses the search probabilities of each move output by MCTS to train

the policy function; however, the proposed algorithm uses the search result of the

game tree search instead of the search probabilities. To demonstrate the effective-

ness of the proposed learning algorithm, I developed the computer Hex algorithm

DeepEZO using the trained evaluation functions and compared it with the previous

computer Hex algorithms. In addition, the proposed algorithm was compared with

the learning algorithm that the learning method of the policy function is different.

The result of the comparative experiments shows that DeepEZO outperformed all of

the other programs, and it is demonstrated that the proposed algorithm can create

the highly accurate value and policy functions.

Finally, this thesis is summarized with some remarks, and some directions toward

the future work are described. I proposed the learning algorithm to create evalua-

tion functions necessary for the development of the computer player. In particular,

the reinforcement learning algorithm proposed in chapter 4 is a versatile learning

algorithm, and it can be applied to other games. It can be expected that the

computational cost necessary for the learning is less than the previous algorithms;

therefore, it may be effective to apply the proposed method in games with many

candidate moves. In this thesis, I demonstrated the effectiveness of the proposed

method by using Hex. In Hex, it is shown that the first player has the winning

strategy, and the solver has been developed actively. The comparison between the

proposed computer player and the solver is interesting and useful in discussing the

effectiveness of the proposed method. Development of a learning algorithm that can

create perfect players is a very challenging problem.
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