<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>不均一電場がもたらす E×B ドリフトに対する量子論的効果</td>
</tr>
<tr>
<td>著者</td>
<td>小坂 亘</td>
</tr>
<tr>
<td>キーワード</td>
<td>北海道大学, 博士, 工学, 甲第 13648 号</td>
</tr>
<tr>
<td>日付</td>
<td>2019-03-25</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/doctoral.k13648</td>
</tr>
<tr>
<td>ドキュメント</td>
<td>Wataru_Kosaka.pdf</td>
</tr>
<tr>
<td>タイプ</td>
<td>theses (doctoral)</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY

北海道大学

博士(工学)

13648 号
不均一電場がもたらす $E \times B$ ドリフトに対する量子論的効果

小坂亘

博士（工学）

北海道大学大学院工学院
量子理工学専攻

平成30年度 (2018)
目次

<table>
<thead>
<tr>
<th>章目</th>
<th>節目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 1 章</td>
<td>序論</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>はじめに</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>電磁場中の荷電粒子についての量子論的観点からの検討</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>本研究の目的と意義</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>本論文の構成</td>
<td>16</td>
</tr>
<tr>
<td>第 2 章</td>
<td>解析手法</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>はじめに</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>支配方程式：電磁場中の単一荷電粒子についての Schrödinger 方程式</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>初期条件・境界条件</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>離散化</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>期待値と分散の計算</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>無次元化</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>保存量（エネルギー・粒子数・x 方向正準運動量）の誤差の監視</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>刻み幅について</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>ドリフト速度・分散の時間変化の算出法</td>
<td>36</td>
</tr>
<tr>
<td>第 3 章</td>
<td>一次勾配電場による量子論的効果の検討</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>はじめに</td>
<td>41</td>
</tr>
</tbody>
</table>
第 4 章 正弦波状電場による量子論的効果の検討

4.1 はじめに ... 55
4.2 正弦波状電場・一様磁場 56
4.3 ドリフト速度の理論的導出 56
4.4 数値解析によるドリフト速度・膨張率と電磁場との関係性の推定 63
4.5 スカラーポテンシャルの重ね合わせとドリフト速度・膨張率の線形性 .. 71
4.6 電場の振幅、波数についての制限 73
4.7 核融合プラズマへの適用 75
4.8 まとめ ... 76

第 5 章 結論 ... 77

5.1 結論 .. 77
5.2 今後の展望 ... 79

参考文献
第1章

序論

1.1 はじめに

核融合炉は現在用いられている原子炉（核分裂炉）などと比較して環境への影響が小さく、燃料の地域依存性が軽微であるため次世代のエネルギー源として注目されている。国際的な協力によりフランスに建造されている国際熱核融合実験炉（ITER）などが特に有名である[1]。核融合を起こすための方式として主に慣性核融合と熱核融合があるが、このITERでは後者の方法が採用されている。この方法は、燃料である三重水素（T）と重水素（D）を一億度という超高温のプラズマにして、これらをトーラス型の磁場中に閉じ込めて高密度を保つことで持続的に核融合反応が起こすという仕組みである[2]。

プラズマの粒子・エネルギーをどの程度の間、磁場中に閉じ込めておけるかは核融合炉の経済性にも関わり重要である。粒子・エネルギーの拡散（あるいは輸送とも呼ばれる）は粒子同士の衝突や電磁場との相互作用などにより様々な種類のものが存在している[2]。粒子の輸送のメカニズムにおいていくつか代表的なものを以下に述べると、まず古典拡散（古典輸送理論）がある。これは、荷電粒子同士のクーロン二体衝突の頻度が大きい場合を仮定しており、粒子的観点から説明すると、衝突のたびにサイクロトロン半径程度の距離だけ磁力線を横切ると考えて酵歩（ランダムウォーク）理論を用いて粒子拡散係数を評
価したものである [3]。衝突頻度が小さい場合（あるいは磁場のトーラス性が重要となる場合とも言える）について取り扱ったのが新古典拡散（新古典輸送理論）であり、多くの実験的事実を説明できたが、プラズマの磁力線を横切る輸送についてはその輸送量や拡散係数の温度に対する依存性が合わなかった [2–4]。

Bohm はこのような異常輸送について定量的評価を最初に行い、拡散係数 \(D_B = (1/16)T/B \) を得た [5]。また、Bohm により電磁的な揺らぎが原因であろうという指摘もあり、このような輸送過程は乱流状態にあるプラズマ運動ととらえられるようになった [6]。実際、プラズマ密度や電場などに揺らぎを考慮した理論的解析により拡散係数が \(T/B \) の依存性を持つことを示すことができ [3]、異常輸送の原因に乱流現象がかかわることは明らかである。\(T/B \) という依存性を持つ場合の拡散係数はボーム型拡散係数と呼ばれる。このボーム型拡散係数は揺らぎの空間スケールが大きい場合のものであり、空間スケールが小さくなるとジャイロボーム型拡散係数 \(D \propto (\rho/L)D_B \) という依存関係になることが導かれる [6]。ここで、\(\rho \) はラーマー半径（サイクロトロン半径）、\(L \) はプラズマの大きさ程度のスケールを表し、ジャイロボーム型拡散はボーム型拡散から \((\rho/L) \) だけ輸送を低減できることがわかる。このように揺らぎによって輸送のタイプが異なり、揺らぎの制御が重要であることが理解されるが、そのような制御が可能かどうかについては研究課題であり [6]、電磁場中のプラズマ拡散現象の理論は発展の途上にあるといえる。

1.2 電磁場中の荷電粒子についての量子論的観点からの検討

前節では電磁場中のプラズマ拡散現象の理論が発展の途上であることを述べた。2010年頃より、不均一性を持った電磁場中における単一荷電粒子について量子論的観点から数値的・理論的に解析が行われ、荷電粒子の不確定性（おおよそに言って粒子サイズ）が時間増加することが示された [7–17]。この不確定性の時間増加は磁場中プラズマの拡散につながることが示唆されている。比較的新しく、まだ基礎的な結果がいくつか報告されている段階である。本研究もこれから新たな知見を加えるものであり、以下にこれまでの
研究の重要な点と本研究の立ち位置について述べる。

70年以前から, Marshak, Cohen により 100万度を超える高温のプラズマの拡散を考えるには荷電粒子の波動性を考慮する必要があるだろうということが指摘されていた [18, 19]。当時の考えられていたプラズマの温度はそこまで高くなかったと思われ、この指摘はむしろ波動性の検討は不要という文脈で用いられるものであることが予想される。また、前節でも少しづつれたように新古典輸送理論により核融合プラズマの多くの現象が説明できており、異常輸送についても乱流の影響など他にも検討が必要なものがあったため、この波動性についての指摘はあまり顧みられてこなかったのだろう。2010年頃、現在の核融合プラズマは一億度を超えるようなプラズマであるため、この指摘に当てはまるはずであるが、現在のプラズマ物理では量子力学的な考えは極めてまれに起こる正面衝突に近い古典二体クーロン相互作用に対して、多体効果を取り入れた古典的クーロン対数 ln Λ に対する量子力学的補正として含まれるのみであることに疑問を持った及川らは磁場中の波動関数が存在位置について磁気長 [20] と呼ばれる程度の不確定性（おおざっぱにいって粒子サイズに相当）を持つことに注目して半古典的な、すなわち、特微的な量に量子力学的な量を用いて時空発展は Newton の運動方程式による数値解析を行った [21, 22]。

ここで、磁気長 σ_B ≡ √ℏ/|q|B ≈ 1.4 × 10^{-8} m (h = ℏ/2π は換算プランク定数, q は荷電粒子の電荷, B は磁束密度の強さ) という値が注目されたのは、自由粒子の場合の典型的な広がり (電子) λ_e ≈ 10^{-11} m, (陽子) λ_i ≈ 10^{-13} m よりはるかに長いためである。運動量 p で運動する自由粒子は de Broglie 波長 λ = ℏ/p の波長を波動性を示す [23]。この λ は粒子のサイズと考えられ、運動量 p に反比例することから典型的核融合プラズマ (温度 T = 10 keV, 密度 n = 10^{20} m^{-3}) のような高温プラズマでは先に示した程度の短い波長 (〜小さな粒子サイズ) となる。一般に、波動性が重要となるのは注目している系の空間スケールとこの波長が同程度となる場合であるため、プラズマを自由粒子とみなすとき、粒子同士が極めて接近する場合を除けば、波動性は考慮しなくて良い
と判断するのは自然だろう。しかしながら、電場中の荷電粒子の場合は電気長 σ_B が運動量に比例しないため核融合プラズマにおいても比較的大きな値であり、平均粒子間距離

$$\Delta \ell \equiv n^{-1/3} \sim 2.2 \times 10^{-7} \text{ m}$$

の1/10程度である。このような検討から及川らは核融合プラズマでは波動性が無視できないのではと考えた。

また、及川らはここで先の発端となった疑問である、なぜ Marshak, Cohen らの指摘を無視しても新古典論がプラズマ電流などの多くの現象を評価できたかという点についても考察し、一方で、拡散現象のような任意の物理量の二乗で表される場合は古典的な値より大きくなる可能性を指摘している [21, 22]。

ここまでは時間発展を Newton の運動方程式で行っており半古典的な解析であったが、同年すぐに、2 次元非定常 Schrödinger 方程式を用いた完全に量子論的な荷電粒子同士のクーロン散乱についての解析が行われ、粒子の不確定性（位置と運動量の標準偏差）がクーロン散乱によってどのように時間発展するか調べられた [7]。ただし、この段階では磁場は考慮していない。結果から、どちらの不確定性も一旦小さくなり、その後クーロン散乱しない場合（自由粒子）に比べて急速に大きくなるという時間発展の様子が示された（自由粒子の場合も標準偏差が時間増加する）。

2011 年に空間勾配を持つ核融合プラズマについて、量子論的に数値解析が行われ、磁場中の荷電粒子の不確定性が磁場の勾配に関わって時間変化することが示された [8–10]。その後、電場についても様々な場合について系統的につれて研究されている [11–15]。これらについて 1.2.1 節でより詳しく述べる。

また、同時期に先ほどのクーロン散乱について一様磁場を加えた場合についても数値解析が行われた [16, 17]。このとき、核融合プラズマにおけるポテンシャルエネルギーが小さいこと（核融合プラズマにおけるポテンシャルエネルギーが小さいこと）に対応させるためである。これより粒子の速度が遅くなるほど粒子の運動エネ
ルギーが不確定性によるエネルギーへと移っていく様子，粒子の存在確率分布が古典的なサイクロトロン運動の軌道全体に広がっていく様子や，粒子の位置の期待値が電荷に吸い込まれていくように見える（波束が広がりすぎてエーレンフェストの定理が成立しない）などが数値実験的に観測された[16]。これを発展させてより長時間の波動関数の時間変化を計算して，荷電粒子が同符号の場合，異符号の場合と比較・整理した結果もあり，符号にかかわらず荷電粒子の存在確率分布が同じようにサイクロトロン運動の軌道上に広がっていく様子が示された[17]。このように，興味深い挙動を示すが，プラズマ拡散につながるとの知見は得られていない。

1.2.1 電磁場の不均一性による不確定性の時間変化

電磁場中の単一荷電粒子の運動について，量子論的な観点からの研究[8–15]から，ドリフト速度における量子力学的補正や不確定性の時間発展は電磁場の不均一性（空間的な勾配）によって生じることがわかっている。これらの研究について不均一性の種類について注目して系統立ててまとめたものを表1.1 に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>電場</th>
<th>磁場</th>
<th>ドリフト速度への量子論的補正・膨張率</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>なし</td>
<td>一様</td>
<td>存在しない[20]</td>
</tr>
<tr>
<td>2</td>
<td>なし</td>
<td>一次勾配</td>
<td>磁場勾配に依存した[8–10, 13]</td>
</tr>
<tr>
<td>3</td>
<td>一様</td>
<td>一次勾配</td>
<td>No. 2 と同じ依存性，一様電場には依存しない[11, 14, 15]</td>
</tr>
<tr>
<td>4</td>
<td>一次勾配</td>
<td>一次勾配</td>
<td>No. 2 と同じ依存性，一次勾配電場には依存しない[12, 14, 15]</td>
</tr>
<tr>
<td>5</td>
<td>二次勾配</td>
<td>一次勾配</td>
<td>No. 2 の依存性に加え，二次勾配電場に依存した[15]</td>
</tr>
<tr>
<td>6</td>
<td>正弦波状</td>
<td>一様</td>
<td>正弦波状電場に依存した</td>
</tr>
</tbody>
</table>

ここで示す解析の支配方程式は，次の電磁場中の単一荷電粒子について非定常
Schrödinger 方程式である。

\[i\hbar \frac{\partial \psi}{\partial t} = \left[\frac{1}{2m} \left(-i\hbar \nabla - qA \right)^2 + qV \right] \psi. \quad (1.1) \]

ここで、\(i \equiv \sqrt{-1} \) は虚数単位、\(t \) は時刻、\(m, q \) は荷電粒子の質量、電荷、\(V, A \) はそれぞれ電場、磁場を与えるベクトルポテンシャル、スカラーポテンシャルである。電磁場の不均一性はポテンシャル \(V, A \) によって、空間的に不均一に変化する関数を与えて表現する。

理論的な解析において Schrödinger 方程式を直接解くことは難しいことが多いが、そのような場合においても、Schrödinger 方程式と等価である Heisenberg の運動方程式は比較的簡単に解けることがある。両者の違いは波動関数 \(\psi \) と古典的な意味の物理量に対応する演算子（例えば正準運動量の演算子：\(\hat{P}_x = -i\hbar \partial / \partial x \)）のとりえ方（描像）にある。Schrödinger 描像では波動関数 \(\psi = \psi(t) \) が時間発展するととらえ、Heisenberg 描像では 演算子 \(\hat{P}_x = \hat{P}_x(t) \) が時間発展するととらえる [23]。Heisenberg 描像で考えると、古典力学における物理量の時間発展（\(P_x(t) \) など）にこの Heisenberg 描像の演算子（\(\hat{P}_x(t) \)）が対応するため、比較的見通しが立ちやすいという利点もある。

一様磁場中の荷電粒子

最も基本的な一様磁場の場合は Landau により理論的に解かれた [20]。このときの磁場については次のようなベクトルポテンシャル \(A \) が仮定された。

\[A = -Bye_x. \quad (1.2) \]

ここで、座標系は \(xyz \) デカルト座標系であり、\(e_x \) は \(x \) 方向の単位ベクトルである。このようなベクトルポテンシャルの選び方は Landau ゲージと呼ばれる。電場は存在せず（\(V = 0 \)）、磁場は \(z \) 方向に一様（\(\mathbf{B} = Be_z \)）である。以上のような設定において、定常解を得ることができる。定常解は式 (1.1) において、時間依存を分離した解 \(\psi(r, t) = \psi(r) \exp(-i\epsilon/h) \) を仮定して得られる解である。そのようにして、式 (1.1) から時間に依存しない Schrödinger 方程式が得られ、また、この Schrödinger 方程式は \(y \) に
のみ依存するために一次元調和振動子の場合と同じ形の方程式へと帰着される。調和振動子の厳密解は知られており [23]、その結果、荷電粒子の持つエネルギー $\epsilon = \epsilon_n$ は量子化されることが示される。

$$\epsilon_n = \left(n + \frac{1}{2}\right) \hbar \omega.$$ (1.3)

ここで n は 0 以上の整数を取る量子数、$\omega = qB/m$ はサイクロトロン角周波数である。このエネルギーの量子化は Landau 準位と呼ばれる。

古典的な意味での荷電粒子の位置 r^{CL} は、量子力学的な描像においては期待値、すなわち波動関数とその複素共役を用いた重み付き空間平均値 $\langle r \rangle \equiv \int_{-\infty}^{\infty} \psi^* r \psi \, dr$ が対応する。一般にこの期待値の周りに分散 $\sigma_r^2 = \langle r^2 \rangle - \langle r \rangle^2$ の平方根（標準偏差）程度に測定値はばらつく。このような粒子を見いだす位置が確率的に分布していることを位置の不確定性と呼んでいる。Landau により求められた波動関数から位置の不確定性について求めると、上述した磁気長 $\sigma_B = \sqrt{\hbar/|q|B}$ が得られる。したがって、一様磁場中の波動関数は磁気長程度の広がりを持っていることがわかる。

磁場があるとき、荷電粒子はその磁場に垂直な平面上で回転運動をする（サイクロトロン運動）。これは古典力学からよく知られていることであり、量子力学的に考えても同様の結果が得られる（例えば [8] など）。イメージをつかむため図 1.1 にサイクロトロン運動する荷電粒子について量子力学的観点から数値解析した結果として、荷電粒子の存在確率分布がサイクロトロン運動の軌道上をなぞるように移動する様子を示す。図 1.1 にはサイクロトロン運動とともに振動する位置の不確定性（分散）の様子が示されている。一様電磁場のときはこの位置の分散は 1 周期後に元に戻ることが示されている [11, 20]。

一次勾配磁場

図 1.1 サイクロトロン運動する荷電粒子の確率分布。明るいほど存在確率が大きいことを表していて、それぞれの図の最も明るい点は存在位置の期待値であり、その軌道は古典的なサイクロトロン運動の軌道と一致する。左の図から 1/4 周期ごと時刻が増えており、それぞれの図の座標原点を回転の中心としてサイクロトロン運動している。確率分布の広がり（位置の分散）は半周期たつまで広がっていき、残りの半周期で元の大さまで戻る。文献 [8] の Fig. 1 と同じ内容の図である。

テンシャル A の与え方は以下の通りである。

$$A = -By \left(1 - \frac{y}{2L_B}\right) e_x.$$ \hspace{1cm} (1.4)

ここで、L_B は磁場の勾配長である。磁場に書き直したとき、位置 y についての一次の項で不均一性が与えられていることからこの場合を一次勾配磁場と呼んでいる。このとき古典的には $B \times \nabla B$ ドリフトにより旋回中心がずれていくことが知られている。このドリフト速度について、

$$u_{\nabla B} = \frac{mv_0^2}{2qBL_B} + \frac{3h}{4mL_B}$$ \hspace{1cm} (1.5)

となることが Chan らによって理論的・数値的に示された [13]。ここで、v_0 は荷電粒子の速度である。式 (3.5) の右辺第1項は古典力学より導出されるドリフト速度であり、第2項がドリフト速度における量子論的補正である。粒子の運動エネルギー $(mv_0^2/2)$ を温度 T を用いて置き換えると、

$$u_{\nabla B} = \frac{3}{2} \frac{1}{qBL_B} \left(\kappa T + \frac{1}{2} \hbar \omega\right)$$ \hspace{1cm} (1.6)

と変形できる。ここで、κ はボルツマン定数である。式 (1.6) の括弧内第二項 $\hbar \omega/2$ は零点振動と呼ばれる、核融合プラズマのような高温条件では第一項の方がはるかに大きく、
量子論的補正の第二項は無視してよいことがわかる。したがって、新古典理論に矛盾しないことが確認できる。

磁場に勾配がある場合、位置・運動量の不確定性がサイクロトロン運動の周囲を重ねるごとに増加する。それらの平均的な時間変化率（以下、これを膨張率と呼ぶ）も及川らにより数値的[8–10]・Chanらにより理論的[13]に評価されており、その結果のひとつとして位置の膨張率を示すと,

\[
\frac{d\sigma^2_r(t)}{dt} = 2 \frac{hv_0}{qBL_B}
\]

である。ここで、\(v_0\)は初速度の\(y\)方向成分である。

具体例として、典型的な核融合プラズマ（温度\(T \approx 10\) keV、数密度\(n \approx 10^{20} \text{ m}^{-3}\)について外部より磁場\(B = 3\) Tを印加したときの陽子について考える。このときの荷電粒子の位置の分散\(\sigma^2_r\)は、磁場中なので\(\sigma^2_B = \hbar/qB \approx 2.2 \times 10^{-16} \text{ m}^2\)の広がりを持っており式(1.7)で時間増加する。速さを熱速度で置き換えて\(v_0 = 10^6 \text{ ms}^{-1}\)、磁場の勾配長\(L_B = 3 \text{ m}\)などとして、式(1.7)から位置の膨張率を見積もると、\(d\sigma^2_r(t)/dt \approx 1.4 \times 10^{-10} \text{ m}^2\text{s}^{-1}\)である。したがって、0.3 ms程で粒子の波動関数の広がり（あるいは波束）が平均粒子間距離\(\Delta \ell \approx 2.2 \times 10^{-7} \text{ m}\)と同程度になっている。また、以上の検討は磁力線に垂直な平面上の広がりであり、磁力線方向にも（単なる自由粒子なので）波束の広がりは起こる。一方で、古典論より予想されるイオン衝突時間は20 ms程度であるから、衝突の前に隣り合う荷電粒子同士の波動関数が重なっていることになる。このような状態が物理的挙動として何を引き起こすのかまだ議論されていない。一種の量子流体と取り扱うべきかと思われ、研究課題の一つである。

一次勾配電場（一様電場）・一次勾配磁場中の荷電粒子

膨張率が磁場の勾配に依存することが明らかとなって、電場の勾配も同様に膨張に関係するのではないかと考えられた。まずは、上述した一次勾配磁場条件に一様電場を加えた場合を考えられ、及川らによって解析がなされた[11]。このときの一様電場・一次勾配
磁場を与えるポテンシャルは、

\[V = -Ey, \quad A = -By \left(1 - \frac{y}{2L_B} \right) e_x \] (1.8)

を仮定した。ここで、\(E \) は電場の大きさである。電場と磁場の影響がそれぞれ独立に与えられるとする（以降に示される二次勾配電場・一次勾配磁場の結果などを見るに、少なくとも勾配が大きい場合はこの仮定は成り立っている）としたとき、一様電磁場の場合（上記の式において \(L_B \to \infty \)）は、解くべき Schrödinger 方程式が変数変換により Landau の解いた一様磁場の場合の方程式と同じ形で書けるため、膨張率は一様電場には依存しないのではないかと予想され、実際に数値解析によりこれを裏付けた [11]。

さらに、これを発展・包含する形で電場・磁場が同じ形で勾配を持つ場合を数値解析した [12]。本論文の第 3 章にて、この場合について詳細に述べている。その具体的なスカラーポテンシャル、ベクトルポテンシャルは以下のとおりである。

\[V = -Ey \left(1 - \frac{y}{2L_E} \right), \quad A = -By \left(1 - \frac{y}{2L_B} \right) e_x. \] (1.9)

ここで、\(L_E \) は電場の勾配長である。電場にも磁場と同じように勾配を与えたので、同じような依存性を見せるのではないかと単純に考えていたが、結果としてこのような一次勾配電場は膨張率に寄与しなかった。著者は数値解析によりこのことを明らかにした。この数値解析を受けて、後に Chan らによってこの条件を包含する二次勾配電場まで持つ場合の解析 [15] がなされ、一次勾配電場が膨張率に寄与しないことが理論的に証明された。また、ドリフト速度の量子論的な補正も \(L_E \) に依存しないことが示された。ただし、これら結果は電場や磁場の勾配長 \(L_E, L_B \) が十分に大きく、\(1/L_E L_B \) などの 2 次の項を無視する近似を置いている。

\(L_B \to \infty \) として、一次勾配電場にのみ注目した場合、Heisenberg の運動方程式が厳密に解け、位置の膨張率には \(L_E^{-2} \) のオーダーで依存性があることが示された。

以上の一次勾配電場の影響についての解析は本論文第 3 章で詳しく述べる。
二次勾配電場・一次勾配磁場中の荷電粒子

二次勾配電場の影響が膨張率に現れなかったことを受けて、さらに次数を増やした場合
ならばどうかと考え、Chanらによって、理論・数値両側面で解析が行われた [15]。この
ときのポテンシャルは以下のように与えており、これまでの条件を包含している。

\[V = -Ey \left(1 - \frac{y}{2L_E} + \frac{y^2}{3L_E^2} \right), \quad A = -By \left(1 - \frac{y}{2L_B} \right) e_x. \]

ここで、\(\ell_E \) は電場の二次勾配長である。

Heisenberg の運動方程式を先ほどのように勾配長の 2 次以降（\(\ell_E \) は 2 乗された量で 1
次分とみなす。例えば \(1/\ell_E^2 L_B \) で 2 次。）を無視する近似を用いて解くことに成功し、理
論的な解を得た。また、この理論解は数値解析結果に照らし合わせられ一致することが確
認されている。この場合のドリフト速度 \(u_{E \times B} \) は、一次勾配電場のときと異なり \(\ell_E \) に比
例して

\[u_{E \times B} = u_{E \times B}^{CL} + \frac{3}{4} \frac{\hbar}{mL_B} + \frac{5}{4} \frac{\hbar}{qB\ell_B^2} E \] (1.10)

とわかった。ここで、\(u_{E \times B}^{CL} \) は古典力学より導出されるドリフト速度である。また、位置
の膨張率は

\[\frac{d\sigma^2_x(t)}{dt} = \left(\frac{3}{2} + \frac{1}{2} \right) \left(\frac{\hbar v_0}{qBL_B} + \frac{\hbar v_0}{q^2B^2\ell_B^2} \frac{mE}{B} \right) \] (1.11)

という関係式が得られた。

これより、より複雑な電場に対してもドリフト速度に対する量子論的補正や膨張率への
寄与が予想された。

正弦波状電場・一様磁場中の荷電粒子

これまでの研究から、電磁場の不均一性がドリフト速度の量子論的補正、および膨張率
に関係していることは明らかである。実際の磁場中プラズマでは、外部の要因で電場が印
加される場合やプラズマ自身が電場をつくる場合も考えられ、多様な電場が生じ得る。そ
のために任意の電場についてドリフト速度の量子論的補正・膨張率を評価することは実
際のプラズマへの適用に対しても有効と考えた．そのようなモチベーションから，以下ののような正弦波状電場・一様磁場を与えるポテンシャルを仮定した解析を行った。

\[V = -\frac{E}{k_E} \sin k_E y, \quad A = -By. \]

ここで，\(E \) は電場の振幅，\(k_E \) は電場の波数である．正弦波の重ね合わせで任意の電場を表現することができるの，その応答としてのドリフト速度・膨張率が重ね合わせで書けるとき（線形性が成り立つとき），任意の電場に対するドリフト速度の量子論的補正と膨張率が求まったことになる．

まず理論解析的アプローチとして，Heisenberg の運動方程式を近似的に解いて，正弦波状電場とドリフト速度の関係式を明らかにした．その結果，

\[u_{E \times B} = \frac{E}{B} J_0 (k_E \rho_0) \exp \left[-\frac{5}{8} (k_E \sigma_B)^2 \right] \tag{1.12} \]

という関係式が得られた．ここで，\(\rho_0 \) はサイクロトロン半径，\(J_0 (x) \) は第一種零次のベッセル関数である．その後，数値解析によりこれを確認した．また，膨張率は数値解析により求め，位置の膨張率は，

\[\frac{d\sigma^2 (t)}{dt} = -2k_E \frac{v_0}{|v_0|} \frac{\hbar}{qB} J_1 (k_E \rho_0) \exp \left[-\frac{5}{8} (k_E \sigma_B)^2 \right] \tag{1.13} \]

を得た．ここで，\(J_1 (x) \) は第一種一次ベッセル関数である．ここで得た膨張率は，\(k_E \) が小さい場合，二次勾配電場の場合 [15] へと近似できるため，両者を比較して一致することを確認した．

そして，これらドリフト速度・膨張率について，正弦波状電場の重ね合わせに対し線形性が成り立つことを数値的に示した．

以上の正弦波状電場の影響についての解析は，本論文第 4 章で詳しく述べる．
1.3 本研究の目的と意義

以上、述べたように、磁化プラズマの拡散現象は統一見解とされた理論が存在しない。また、電磁場中の荷電粒子を量子論的観点から解析して、磁化プラズマの損失、あるいは拡散への影響を検討する試みは、比較的最近始まったばかりである。今のところは基礎的な段階であるが、いくつかの不均一性を持つ電磁場の場合にはドリフト速度への量子論的補正や不確定性の平均的な時間変化（膨張率）について数値解析および理論解析によって定量的に評価することができている。また、これらにより核融合プラズマのような一般に量子論の適用は不要と思われていた場合でも、量子論による検討の必要性が示唆されている。

本研究は、これまでの電場の不均一性により生じるドリフト速度の量子論的補正や膨張率について、より一般的な場合へと理論を拡張することを行った。すなわち、任意の電場に対するドリフト速度の量子論的補正および膨張率の定量的評価を目的とした。この研究により、電場、あるいはポテンシャルがわかると、そのような電磁場中にあるプラズマに対して、量子論的検討が必要であるかどうかを判断できるようになる。量子論的な検討が必要である場合というのは、具体的にはドリフト速度の量子論的補正が無視できない状況や、荷電粒子の波束が重なり合った状態となりえる場合のことである。以降、将来の展望となるが、そのような状態に対して磁化プラズマの拡散が起きるメカニズムを特定する。今のところは量子流体力学の理論を適用することで明らかにできるのではないかと考えている。そして、明らかにしたメカニズムから、磁化プラズマの拡散を阻害する方法を考え案し、核融合プラズマへと適用することにより、核融合炉の閉じ込め性能を向上させ、社会に貢献する。したがって、本研究はこの流れにおいて基礎的な段階にあるものの欠かすことのできないステップであり、社会的意義のある取り組むべき課題である。

学術的な視点からも本研究には意義がある。電磁場中のプラズマは場や他の荷電粒子から力を受けながら運動する粒子として個々に注目する（あるいは集団として統計的に
（Quantum Hydrodynamics, QHD）は超流動ヘリウムなど量子力学的な効果が本質となる流体を取り扱っている [24]。低温物理の分野で目覚ましい成功を収めているが、一般的なプラズマを取り扱ったものもある [25]。上述したような核融合プラズマ中の荷電粒子の波束が隣り合うものと重なる場合、この量子流体力学で記述すべきであろう。本研究はこのような枠組みの中でプラズマを粒子的かつ量子的にとらえた研究である。このような立場の研究は比較的少なく、プラズマの理解に別の観点からの知見を加えることが期待できる。

1.4 本論文の構成

本論文は以下の 5 つの章で構成されている。

第 1 章は上述したように、本論文の背景として異常輸送に示される磁化プラズマの拡散理論の状況と、電磁場中の荷電粒子のドリフト速度・不確定性の平均的な時間変化（膨張率）についての先行研究、および本研究の目的と意義、そして全体の概要を示した。

次の第 2 章では、本研究の数値解析において主要な役割を果たした 2 次元非定常 Schrödinger 方程式解析コードについて説明する。この解析コードの妥当性を示すものと
して、保存量の誤差に注目しているのでその典型的な例を示す。本解析コードは荷電粒子や電磁場の物理的パラメータをインプットとして、時々刻々の荷電粒子の位置・運動量などの値をアウトプットする。ドリフト速度や膨張率はそれらの時々刻々の値を周期平均して得られるため、そのための具体的な方法を説明する。

第3章では、電場・磁場の不均一性としてどちらも空間座標の一次で変化する場合（一次勾配電磁場）について数値解析によりドリフト速度・膨張率と一次勾配電場の勾配長との依存関係を調べた結果を示す。また、Heisenbergの運動方程式を解いて理論的な解析を行い、一次勾配電場のドリフト速度・膨張率に対する影響を厳密に評価したものも示す。

第4章では、電場が正弦波状に空間変化するとした場合（正弦波状電場）において、ドリフト速度についてHeisenbergの運動方程式による理論的な評価、および数値解析によるドリフト速度・膨張率と電磁場のパラメータの関係性を調べた結果を示す。また、正弦波状電場とその応答としてドリフト速度・膨張率について線形性が成り立つことを示す。

第5章では、本研究によって得られた結果を総括した。また、今後の展望として解決に至らなかった課題について述べる。
第2章

解析手法

2.1 はじめに

本解析では、電磁場中の荷電粒子を量子力学的観点から調べるために非定常 Schrödinger 方程式を解いている。この計算コードにより時々刻々の波動関数が数値的に得られ、その波動関数から荷電粒子の位置や運動量などを計算し、最終的にはドリフト速度・分散の時間発展を評価している。以下では、その方法の詳細や妥当性の検証となる保存量の誤差の時間変化について述べる。

2.2 支配方程式：電磁場中の単一荷電粒子についての

Schrödinger 方程式

対象とする電磁場中の単一荷電粒子を記述する方程式は次のような非定常 Schrödinger 方程式である。

\[i\hbar \frac{\partial \psi}{\partial t} = H\psi, \quad (2.1) \]

\[H = \frac{1}{2m} (-i\hbar \nabla - qA)^2 + qV. \quad (2.2) \]
ここで，$i \equiv \sqrt{-1}$ は虚数単位，h は換算プランク定数（ディラック定数），$\psi = \psi (r, t)$ は位置 r，時刻 t の波動関数，m, q は荷電粒子の質量と電荷を示している。$A = A (r)$ はベクトルポテンシャル，$V = V (r)$ はスカラーポテンシャルを表す。本解析で取り扱う粒子の速度は光速度に比べ十分に遅いことを仮定し，相対論的効果は無視している。また，荷電粒子を原子論的にとらえるとスピンもまたその粒子の性質を特長づける物理量であるが，本研究ではスピンは 0 として解析している。スピンと磁場が相互作用をするが，今回ドリフト速度・分散の時間発展などを考える際にはその影響が少ないと考えているためである。

本解析では xyz デカルト直交座標系を採用している。磁場 $B = \nabla \times A$ の方向を z 軸正方向として，サイクロトロン運動をする xy 平面上の運動に注目している。また，電場は磁場と直交し y 軸の方向を向いていると設定している。よって，ベクトルポテンシャル A の z 成分は 0 であり，スカラーポテンシャル V は位置 y にのみ依存する。以上より，Schrödinger 方程式 (2.1)，(2.2) は xy 平面上の運動と z 方向の運動に分離できる。

\[
i h \frac{\partial \psi (x, y, t)}{\partial t} = \left\{ \frac{1}{2m} \left[\left(-i h \frac{\partial}{\partial x} - q A_x \right)^2 + \left(-i h \frac{\partial}{\partial y} - q A_y \right)^2 \right] + qV \right\} \psi (x, y, t), \tag{2.3}
\]

\[
i h \frac{\partial \psi (z, t)}{\partial t} = \frac{1}{2m} \left(-i h \frac{\partial}{\partial z} \right)^2 \psi (z, t). \tag{2.4}
\]

ここで，A_x, A_y はそれぞれベクトルポテンシャル A の x, y 成分を意味する。本解析では式 (2.3) に注目する。

本解析では A も y にのみ依存するものとする。電磁場で書くと，磁場 $B = B (y) e_z$，電場 $E = E (y) e_y$ と表現できる。このとき，ハミルトニアン H が位置 x に依存しないことになるため，交換子 $[-i \hbar \partial / \partial x, H] = 0$ であり，x 方向正準運動量 $-i \hbar \partial / \partial x$ が運動の恒量であることが示される。2.7 節で述べるように，エネルギー保存，粒子保存，$-i \hbar \partial / \partial x$ が理論的に時間変化しないことを数値解析の妥当性の検討に利用している。
2.3 初期条件・境界条件

初期条件として、初期波動関数が次のようなガウス分布で与えられるとした。

\[
\psi (\mathbf{r}, 0) = \frac{1}{\sqrt{\pi} \sigma_B} \exp \left[-\frac{(\mathbf{r} - \mathbf{r}_0)^2}{2\sigma_B^2} + \frac{i \mathbf{P}_0 \cdot \mathbf{r}}{\hbar} \right].
\]

(2.5)

ここで、\(\mathbf{r}_0 = (x_0, y_0, z_0) \) は荷電粒子の初期位置の期待値、\(\mathbf{P}_0 = (P_{x0}, P_{y0}, P_{z0}) \) は初期の正準運動量の期待値である。\(\sigma_B \equiv \sqrt{\hbar / |q|B} \) は磁気長と呼ばれる値である。ここでの \(B \) は荷電粒子が運動する \(xy \) 平面上の座標原点における値とする。Landau の理論解析 [20] によれば、一様磁場中の荷電粒子のエネルギー \(E_N \) は量子化されて \(E_N = \hbar \omega_c (N + 1/2) \) となることが示される。\(N \) が量子数、\(\omega_c = qB/m \) がサイクロトロン角周波数を表している。このときの荷電粒子の存在確率分布は分散が \(\sigma_B^2 \) となり、一様磁場中で定常状態にある荷電粒子はこの磁気長 \(\sigma_B \) 程度の広がりを持つ。本解析では、このような一様磁場中の定常状態を初期状態として、磁場勾配や電場勾配が加わった場合を考えていく。

境界条件は固定境界条件とした。解析したいサイクロトロン運動の中心を原点として、解析領域は十分に広く設定しているので式 (2.5) より境界上での波動関数の大きさは極めて 0 に近くなる。また、この固定境界上から運動エネルギーが供給されないように初期波動関数の値を調整した。これは、運動エネルギーの演算子は \(K \equiv (i\hbar \nabla)^2 \) とかけるので、境界上（厳密には境界から 1 節点分内側）において二階微分 \(\nabla^2 \psi = 0 \) を課したということである。すなわち、

\[
\psi (-L_x, y, 0) = \psi_{0,j} = 2\psi_{1,j} - \psi_{2,j},
\]

(2.6)

\[
\psi (L_x, y, 0) = \psi_{N_x,j} = 2\psi_{N_x-1,j} - \psi_{N_x-2,j},
\]

(2.7)

\[
\psi (x, -L_y, 0) = \psi_{i,0} = 2\psi_{x,1} - \psi_{x,2},
\]

(2.8)

\[
\psi (x, L_y, 0) = \psi_{i,N_y} = 2\psi_{x,N_y-1} - \psi_{x,N_y-2},
\]

(2.9)

として境界上の値を再設定している。ここで、\(L_x, L_y \) は解析領域の端を意味し、\(\psi_{1,j} \) などは波動関数 \(\psi \) を離散化したときの表現であり、これらの表記の定義は以下の 2.4 節に記
述した。厳密には、\(\psi(Lx, y, 0), \psi(0, Ly, 0) \) などについて \(x = Lx, y = Ly \) は定義により解析領域外なので、実際にはその 1 節点分内側であるが、表記が煩雑になるのを避けるため上記のように表している。

図 2.1 に初期状態での確率分布を示す。

図 2.1 は、\(xy \) 平面上における初期確率分布。縦軸は \(x \), 横軸は \(y \) 座標軸であり、カラーパーは存在確率の大きさを表している。この図では初期位置の期待値 \((x_0, y_0) = (-5, 0)\)、初速度の期待値 \((u_0, v_0) = (0, 5)\) と設定している。ただし、物理量は無次元化された値で示している。その無次元化定数は 2.6 に記述している。
2.4 離散化

ベクトルポテンシャルについて Lorentz ゲージ $\nabla \cdot \mathbf{A} = 0$ を満たされるように選ぶと,
Schrödinger 方程式（式 (2.1), (2.2)）を次のように表すことができる。

$$\frac{\partial \psi}{\partial t} = \left[\frac{i\hbar}{2m} \nabla^2 + \frac{q}{m} \mathbf{A} \cdot \nabla + \frac{q^2 A^2}{2i\hbar m} + \frac{q}{i\hbar} V \right] \psi. \quad (2.10)$$

ここで, x, y 方向それぞれの空間刻み幅 $\Delta x, \Delta y$, および時間刻み幅 Δt として離散化を行う。すなわち,

$$x = i \Delta x - L_x, \quad (2.11)$$
$$y = j \Delta y - L_y, \quad (2.12)$$
$$t = n \Delta t \quad (2.13)$$

のように空間・時間ともに離散化する。ここで, L_x, L_y は x, y 方向それぞれの解析領域の大きさ（すなわち, $-L_x \leq x < L_x, -L_y \leq y < L_y$）である。これより離散化した波動関数を $\psi_{i,j} \equiv \psi(x, y, t)$ と表現することにする。位置・時刻を指定するインデックス i, j, n は, 0 以上の整数として, 特に i, j においては解析領域外に飛び出ないようにそれぞれ

$$0 \leq i < N_x, \quad (2.14)$$
$$0 \leq j < N_y \quad (2.15)$$

とする。ここで, $N_x = 2L_x/\Delta x, N_y = 2L_y/\Delta y$ である。

以下, 空間微分に対して有限差分法, 時間積分に対して Crank-Nicolson 法を適用して
Schrödinger 方程式を対応する行列方程式へと書き直す。その後, 行列方程式を解く際に
は反復法の一種である遂次加速緩和 (Successive Over Relaxation: SOR) 法を用いたた
め, その手順を説明する。
2.4.1 有限差分法の適用

有限差分法により空間に対する微分演算を四則演算で近似する。具体的に書き表すと、

\[
\frac{\partial \psi_{i,j}^n}{\partial x} = \frac{\psi_{i+1,j}^n - \psi_{i,j}^n}{2\Delta x} + O((\Delta x)^2), \tag{2.16}
\]

\[
\frac{\partial^2 \psi_{i,j}^n}{\partial x^2} = \frac{\psi_{i+1,j}^n - 2\psi_{i,j}^n + \psi_{i-1,j}^n}{(\Delta x)^2} + O((\Delta x)^2). \tag{2.17}
\]

となる。ここで、\(O(\cdot)\) はランダウの記号であり、式 (2.16), (2.17) では \(\Delta x\) の 2 次の
オーダーより高次の項を省略していることを意味する。偏微分を近似するにあたって、求
めた値（点 \((i,j)\) の値以外も、その値の 2 点の値必要とする。したがって、この方法
で近似できるのは境界上を除いた部分のみに限定される。以下ではしばらくの間、境界上
を除いた内部のある \(i,j\) の場合を考えることにする。\(y\) に関する偏微分も同様に書くことができる。すなわち、

\[
\frac{\partial \psi_{i,j}^n}{\partial y} = \frac{\psi_{i,j+1}^n - \psi_{i,j-1}^n}{2\Delta y} + O((\Delta y)^2), \tag{2.18}
\]

\[
\frac{\partial^2 \psi_{i,j}^n}{\partial y^2} = \frac{\psi_{i,j+1}^n - 2\psi_{i,j}^n + \psi_{i,j-1}^n}{(\Delta y)^2} + O((\Delta y)^2). \tag{2.19}
\]

以下、特にことわらない場合、空間刻み \(\Delta x, \Delta y\) の 2 次のオーダー以上の高次の項を無
視する。これら式 (2.16) から式 (2.19) を式 (2.10) に適用すると次のようにかける。

\[
\frac{\partial \psi_{i,j}^n}{\partial t} = \frac{i\hbar}{2m} \left(\frac{\psi_{i+1,j}^n - 2\psi_{i,j}^n + \psi_{i,j-1}^n}{(\Delta x)^2} + \frac{\psi_{i,j+1}^n - 2\psi_{i,j}^n + \psi_{i,j-1}^n}{(\Delta y)^2} \right) + \frac{q}{m} \left(A_x \frac{\psi_{i+1,j}^n - \psi_{i,j}^n}{2\Delta x} + A_y \frac{\psi_{i,j+1}^n - \psi_{i,j-1}^n}{2\Delta y} \right) + \left(\frac{q^2 A^2}{2i\hbar m} + \frac{q}{i\hbar} V \right) \psi_{i,j}^n. \tag{2.20}
\]
ここでも式 (2.3) 同様に xy 平面上の運動にのみ注目している。さらに、見通しをよくするため以下のように文字を置く。

$$\alpha = \frac{1}{i\hbar} \left(\frac{q^2 A^2}{2m} + qV \right), \quad (2.21)$$

$$\beta_x = \frac{qA_x}{2m\Delta x}, \quad (2.22)$$

$$\beta_y = \frac{qA_y}{2m\Delta y}, \quad (2.23)$$

$$\gamma_x = \frac{i\hbar}{2m(\Delta x)^2}, \quad (2.24)$$

$$\gamma_y = \frac{i\hbar}{2m(\Delta y)^2}. \quad (2.25)$$

式 (2.20) は次のように整理できる。

$$\frac{\partial \psi_{i,j}^n}{\partial t} = (\gamma_y - \beta_y) \psi_{i,j-1}^n + (\gamma_x - \beta_x) \psi_{i-1,j}^n \quad + (\alpha - 2\gamma_x - 2\gamma_x) \psi_{i,j}^n + (\gamma_x + \beta_x) \psi_{i+1,j}^n + (\gamma_y + \beta_y) \psi_{i,j+1}^n. \quad (2.26)$$

2 次元平面上の波動関数の値 $\psi_{i,j}^n$ を $N_x N_y$ 個の成分を持つ列ベクトル $\{\psi\}^n$ を用いて次のように表記する。

$$\{\psi^n\} \equiv \begin{bmatrix} \psi_{0,0}^n \\ \psi_{1,0}^n \\ \vdots \\ \psi_{i,j-1}^n \\ \vdots \\ \psi_{i-1,j}^n \\ \psi_{i,j}^n \\ \psi_{i+1,j}^n \\ \vdots \\ \psi_{i,j+1}^n \\ \vdots \\ \psi_{N_x-2,N_y-1}^n \\ \psi_{N_x-1,N_y-1}^n \end{bmatrix}. \quad (2.27)$$
このベクトル要素の上からの番号 \(k \) は \(k = jN_y + i \) により節点番号 \((i, j)\) から一意に決定される。式 (2.26) は，\(\{\psi^n\} \) と以下に示すような \(N_xN_y \) 個の成分を持つ行ベクトルとの掛け合わせで表現できる。

\[
\frac{\partial \psi^n_{i,j}}{\partial t} = \begin{bmatrix}
\vdots \\
C_{(i,j),(i,j-1)} \\
\vdots \\
C_{(i,j),(i-1,j)} \\
C_{(i,j),(i,j)} \\
C_{(i,j),(i+1,j)} \\
\vdots \\
C_{(i,j),(i,j+1)} \\
\vdots
\end{bmatrix} ^T \{\psi\}^n. \tag{2.28}
\]

ここで，添え字の \(T \) は行列に対して転置することを意味する。\(C_{(i,j),(i,j)} \) の添え字について，左側のカッコ内の番号は \(\psi_{i,j} \) の時間微分であることに由来し，右側のカッコ内の番号は行ベクトルにおいて左から何番目であるかの番号である。式 (2.27) と同様に \(jN_y + i \) で一意に順番が決定される。また，取る値は以下のようなルールで決まっている。

\[
C_{(i,j),(i',j')} = \begin{cases}
\gamma_y - \beta_y & (i',j') = (i,j-1)のとき \\
\gamma_x - \beta_x & (i',j') = (i-1,j) のとき \\
\alpha - 2\gamma_x - 2\gamma_y & (i',j') = (i,j) のとき \\
\gamma_x + \beta_x & (i',j') = (i+1,j) のとき \\
\gamma_y + \beta_y & (i',j') = (i,j+1) のとき \\
0 & それ以外のとき
\end{cases}. \tag{2.29}
\]

ここまで \(\psi^n_{i,j} \) の時間偏微分にのみ注目してきたが，境界上を除く他の節点についても同様に考えることができる。そして，\(i,j \) が境界上の値を取るときは固定境界条件を設定したことから時間変化しないため，どのような \(i',j' \) に対しても \(C_{(i,j),(i',j')} = 0 \) と表現でき
る。すなわち，

\[C_{(0,j),(i',j')} \}, \ C_{(N_x-1,j),(i',j')} \}, \ C_{(i,0),(i',j')} \}, \ C_{(i,N_y-1),(i',j')} = 0 \quad \text{すべての} \ (i',j') \]

である。

以上より式 (2.28) をすべての \(i, j \) に対して同様に表したものを行列方程式として表現すると，

\[
\frac{\partial}{\partial t} \{ \psi^n \} = C \{ \psi^n \} \tag{2.31}
\]

とかける。ここで，\(C \) は \((i,j) \) 行 \((i',j') \) 列の成分が式 (2.29) である \(N_xN_y \times N_xN_y \) 正方行列である。式 (2.31) の両辺に \(i \hbar \) をかけると左辺は形式的に式 (2.1) と一致する。したがって，離散化されたハミルトニアン \(H \) として，

\[
H \equiv i\hbar C \tag{2.32}
\]

であるといえる。

2.4.2 Crank-Nicolson 法の適用

数値的な時間積分は Crank-Nicolson 法を採用した。したがって，時間刻み \(\Delta t \) だけ進んだときの波動関数 \(\psi_{i,j}^{n+1} \) は次のように表される。

\[
\left(1 - \frac{\Delta t}{2} \frac{\partial}{\partial t} \right) \psi_{i,j}^{n+1} = \left(1 + \frac{\Delta t}{2} \frac{\partial}{\partial t} \right) \psi_{i,j}^n + O\left((\Delta t)^2 \right). \tag{2.33}
\]

ここで示されているように Crank-Nicolson 法は時間刻みについて 2 次のオーダーで誤差を持つ。以下では，特にことわりのない場合 \(\Delta t \) の 2 次以上の高次を無視する。

式 (2.33) の左辺の時間偏微分の項を右辺に持っていくと

\[
\psi_{i,j}^{n+1} = \psi_{i,j}^n + \frac{\Delta t}{2} \left(\frac{\partial \psi_{i,j}^{n+1}}{\partial t} + \frac{\partial \psi_{i,j}^n}{\partial t} \right) \tag{2.34}
\]

とすることがで、次の時刻の値を計算するために現在と次の時刻の傾きの平均を用いて近似していることがわかる。\(n + 1 \) ステップ目の値を求めるために既知の \(n \) ステップ
目の値のみならず、未知であるはずの \(n + 1 \) ステップ目の時間偏微分の値を必要とすることから、Crank-Nicolson 法は陰解法であることもわかる。このことから、解を得るためには節点 \(i, j \) のすべての点（\(N_x N_y \) 個）についての連立方程式を解く必要があり、一般に計算コストが陽解法と比べてかかってしまうことを意味する。しかしながら、最も基本的な陰解法である陰的オイラー法の安定性に代表されるように、陰解法には無条件安定という利点もある。この Crank-Nicolson 法もまた無条件安定であることが知られている。したがって、時間ステップを増やすにつけば数値誤差が指数関数的に増加して、たちまち物理的に無意味になってしまうことを避けられる。この無条件安定というのが Crank-Nicolson 法を採用する一つの理由である。

別の利点として、このような有限差分法と Crank-Nicolson 法を組み合わせは理論的に波動関数のノルムを保存するという利点がある。このことはこの方法を採用した時点で、何ら労ぜずに粒子保存が数値解析の精度で自動的に保証されることを意味する。以下に波動関数のノルムが保存されることを示す。まず、式 (2.33) に式 (2.27) の書き方を用いて行列方程式として書き直す。

\[
\left(I - \frac{\Delta t}{2} \frac{\partial}{\partial t} \right) \{ \psi^{n+1} \} = \left(I + \frac{\Delta t}{2} \frac{\partial}{\partial t} \right) \{ \psi^n \}. \tag{2.35}
\]

ここで、\(I \) は \(N_x N_y \times N_x N_y \) の単位行列である。この時間偏微分に対して式 (2.31), (2.32) を適用すると、次のような行列方程式として表現できる。

\[
\left(I - \frac{\Delta t}{2} \hbar \hat{H} \right) \{ \psi^{n+1} \} = \left(I + \frac{\Delta t}{2} \hbar \hat{H} \right) \{ \psi^n \}. \tag{2.36}
\]

ここで、\(\hat{H} \) は小節 2.4.1 の最速で説明した離散化されたハミルトニアンの行列である。式 (2.36) の両辺についてエルミート共役をかけあわせると、

\[
\left| I - \frac{\Delta t}{2} \hbar \hat{H} \right|^2 \{ \psi^{n+1} \}^2 = \left| I + \frac{\Delta t}{2} \hbar \hat{H} \right|^2 \{ \psi^n \}^2 \tag{2.37}
\]

となる。ここで、\(|M|^2 = M^\dagger M \) という計算を表す。\(M \) は任意の行列、上付きの \(\dagger \) はエルミート共役を意味する。これより、波動関数のノルムが等しいことがわかる。なぜ
なら，

$$\left| I - \frac{\Delta t}{2i\hbar} H \right|^2 = \left(I - \frac{\Delta t}{2i\hbar} H \right)^\dagger \left(I - \frac{\Delta t}{2i\hbar} H \right) = \left(I + \frac{\Delta t}{2i\hbar} H^\dagger \right) \left(I - \frac{\Delta t}{2i\hbar} H \right)$$

$$= I - \left(\frac{\Delta t}{2i\hbar} \right)^2 |H|^2. \quad (2.38)$$

同様にして，

$$\left| I + \frac{\Delta t}{2i\hbar} H \right|^2 = \left(I - \frac{\Delta t}{2i\hbar} H^\dagger \right) \left(I + \frac{\Delta t}{2i\hbar} H \right)$$

$$= I - \left(\frac{\Delta t}{2i\hbar} \right)^2 |H|^2. \quad (2.39)$$

であるから式 (2.37) は結局，

$$\left| \{\psi^{n+1}\} \right|^2 = \left| \{\psi^n\} \right|^2 \quad (2.40)$$

であることが示され，波動関数のノルム（粒子の確率密度関数に相当）が時間ステップを進めても保存されることが理論的に保証される．

2.4.3 逐次加速緩和 (SOR) 法の適用

解くべき方程式は行列方程式 (2.36) まで変形（離散化）できた．ここで，

$$D \equiv I - \frac{\Delta t}{2i\hbar} H, \quad (2.44)$$

$$\{\Phi^n\} \equiv \left(I + \frac{\Delta t}{2i\hbar} H \right) \{\psi^n\} \quad (2.45)$$

と文字を置いて，式 (2.36) は次のようにもかえる．

$$D \{\psi^{n+1}\} = \{\Phi^n\}. \quad (2.46)$$

この行列方程式を \{\psi^{n+1}\} について数値的に解く手法として，反復法の一種の逐次加速緩和（Successive Over Relaxation: SOR）法を用いた．したがって，次のような漸化式を
収束判定を満たすまで繰り返し計算した。

\[
\{ \psi^{n+1} \}_{(k+1)} = \{ \psi^{n+1} \}_{(k)} + \omega_{\text{SOR}} R^{(k)}. \tag{2.47}
\]

ここで、上付きの \(k \) が反復回数を示し、\(\omega_{\text{SOR}} \) は加速パラメータである。本解析では \(\omega_{\text{SOR}} = 1.01 \) と設定して毎ステップの解の修正量をわずかながら大きくして収束計算の短時間化を図っている。\(R^{(k)} \) は次のような成分を持つ \(N_x N_y \times 1 \) の列ベクトルと定義している。

\[
R^{(k)}_{(i,j)} = \frac{1}{D_{(i,j),(i,j)}} \left[\Phi^n_{i,j} - \sum_{(i',j')=(0,0)}^{(N_x-1,N_y-1)} D_{(i,j),(i',j')} \left(\psi^{n+1}_{i',j'} \right)^{(k)} \right]. \tag{2.48}
\]

ここで、\(D_{(i,j),(i,j)} \) は \(D \) の対角成分のことで、具体的には

\[
D_{(i,j),(i,j)} = 1 - \frac{\Delta t}{2} (\alpha - 2\gamma_x - 2\gamma_y) \tag{2.49}
\]

である。また、この総和は \((i',j') = (0,0), (1,0), \ldots, (N-2,N-1), (N-1,N-1)\) と文字を置き換えながら加と取っていくことを意味する。

収束判定は式 (2.47) の演算が終了してから、次の反復を行うかを判断するタイミングで行う。収束判定の条件は 2 種類あり、(1) 修正量 \(R^{(k)} \) の二乗平均値,

\[
\epsilon_{\text{Err}}^{(k)} = \sqrt{\sum_{i=0}^{N_x-1} \sum_{j=0}^{N_y-1} \frac{1}{N_x N_y} \left| R^{(k)}_{(i,j)} \right|^2} \tag{2.50}
\]

について、\(\epsilon_{\text{Err}}^{(k)} < \epsilon_{\text{SOR}} \) が満たされた場合、十分に収束したとみなしている。もうひとつ

は、(2) 前回との修正量の二乗平均値との比較：\(\epsilon_{\text{Err}}^{(k)} < \epsilon_{\text{Err}}^{(k-1)} \) が満たされた場合も収束したとみなしている。本解析では \(\epsilon_{\text{SOR}} = 5 \times 10^{-32} \) または \(5 \times 10^{-99} \) と設定している。後者の場合、実際に修正量の二乗平均値 \(\epsilon_{\text{Err}}^{(k)} \) が \(10^{-99} \) のオーダーまで小さくなることはなく、典型的に \(6 \times 10^{-36} \) 程度を下回ると (2) の条件で収束と判定される。
2.5 期待値と分散の計算

波動関数から位置 \(r = (x, y) \) や正準運動量 \(P = (P_x, P_y) \equiv -i\hbar \nabla \) の期待値を得るためには

\[
\langle x \rangle = \int_{-\infty}^{\infty} \psi^* (r, t) x \psi (r, t) \, dx \, dy \tag{2.51}
\]

などの全空間での積分が必要となるが、数値解析においてこれを厳密に実行することは不可能である。そのため、近似的に次のような計算で期待値を求めた。

\[
\langle x \rangle \equiv \sum_{i,j} x_i |\psi_{i,j}|^2 \Delta x \Delta y, \tag{2.52}
\]

\[
\langle P_x \rangle \equiv -i\hbar \sum_{i,j} \psi^*_{i,j} \frac{\psi_{i+1,j} - \psi_{i-1,j}}{2} \Delta y. \tag{2.53}
\]

ここで、時間を指定するインデックス \(n \) 省略し、総和記号を \(\sum_{i,j} \equiv \sum_{i=0}^{N_x-1} \sum_{j=0}^{N_y-1} \) と略記している。ただし、境界を超えるような場合には領域から飛び出ないような \(i, j \) に限るようにする。以上の 2 式を含み以下に示す期待値を計算する式は、\(y \) 成分についても添え字 \(x, y \) や \(i, j \) を適切に入れ替えて同様に得ることができる。また、ベクトルポテンシャル \(A = (A_x, A_y) \) の期待値についても、位置にのみ依存することがわからっているので、

\[
\langle A_x \rangle \equiv \sum_{i,j} (A_x)_{i,j} |\psi_{i,j}|^2 \Delta x \Delta y, \tag{2.54}
\]

で計算できる。力学的運動量 \(m \nu = (m u, m v) = (P_x - qA_x, P_y - qA_y) \) はこれらを組み合わせて以下のように計算できる。

\[
\langle m u \rangle = \langle P_x \rangle - q \langle A_x \rangle. \tag{2.55}
\]
位置・正準運動量・ベクトルポテンシャルの二乗したものを同様に求めた。ただし，P^2_xなどには二階微分を含むので式 (2.17) の方を用いる。

\[
\langle x^2 \rangle \equiv \sum_{i,j} x_i^2 |\psi_{i,j}|^2 \Delta x \Delta y, \tag{2.56}
\]

\[
\langle P^2_x \rangle \equiv -\hbar^2 \sum_{i,j} \psi^*_{i,j} \psi_{i+1,j} - 2\psi_{i,j} + \psi_{i-1,j} \Delta y, \tag{2.57}
\]

\[
\langle A^2_x \rangle \equiv \sum_{i,j} (A^2_{x_{i,j}}) |\psi_{i,j}|^2 \Delta x \Delta y. \tag{2.58}
\]

これらを組み合わせて力的運動量の二乗 $\langle (mu)^2 \rangle$ も

\[
\langle (mu)^2 \rangle \equiv \langle P^2_x \rangle - 2 \langle A_x P_x \rangle + q^2 \langle A^2_x \rangle \tag{2.59}
\]

と得られる。ここで，

\[
\langle A_x P_x \rangle \equiv -i\hbar \sum_{i,j} (A_x)_{i,j} \psi^*_{i,j} \frac{\psi_{i+1,j} - \psi_{i-1,j}}{2} \Delta y \tag{2.60}
\]

である。以上より，全エネルギーの期待値，すなわちハミルトニアンの期待値 $\langle H \rangle$ も以下のように計算できる。

\[
\langle H \rangle = \frac{1}{2m} \left[\langle (mu)^2 \rangle + \langle (mv)^2 \rangle \right] + q \langle V \rangle. \tag{2.61}
\]

ここで，スカラーポテンシャル $\langle V \rangle$ もベクトルポテンシャルの期待値と同様に位置のみ依存するとしているので，

\[
\langle V \rangle \equiv \sum_{i,j} V_{i,j} |\psi_{i,j}|^2 \Delta x \Delta y \tag{2.62}
\]

で得られる。

期待値の時間変化だけでなく分散の時間変化にも注目している。位置の x 成分の分散 σ^2_x を以下のような式で計算した。

\[
\sigma^2_x \equiv \langle x^2 \rangle - \langle x \rangle^2. \tag{2.63}
\]
正準運動量の分散 σ_P^2, 力学的運動量 σ_{mv}^2 も同様に得ることができる。

\[
\begin{align*}
\sigma_P^2 &= \langle P_x^2 \rangle - \langle P_x \rangle^2, \\
\sigma_{mv}^2 &= \langle (mu)^2 \rangle - \langle mu \rangle^2.
\end{align*}
\tag{2.64}
\]

y 成分の分散も同様である。

位置 r の分散 σ_r は $r^2 = x^2 + y^2$ という関係から単純に,

\[
\sigma_r^2 = \sigma_x^2 + \sigma_y^2
\tag{2.66}
\]

で得られる。正準運動量の分散 σ_P^2, 力学的運動量 σ_{mv}^2 も同様に計算した。

2.6 無次元化

実際に数値解析を行うにあたって以下のような定数で無次元化を行っている。以下において断りなく図中などに現れる数や次元を明示しない数はすべて無次元化された値である。

<table>
<thead>
<tr>
<th>物理量</th>
<th>規格化定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>質量</td>
<td>$m_p = 1.6722 \times 10^{-27}$ kg</td>
</tr>
<tr>
<td>電荷</td>
<td>$e = 1.602 \times 10^{-19}$ C</td>
</tr>
<tr>
<td>磁束密度の強さ</td>
<td>$\tilde{B} = 10$ T</td>
</tr>
<tr>
<td>速さ</td>
<td>$\tilde{v} = 10$ m/s</td>
</tr>
<tr>
<td>長さ</td>
<td>$\tilde{\rho} = 1.0438 \times 10^{-8}$ m</td>
</tr>
<tr>
<td>時間</td>
<td>$\tilde{t} = 1.0438 \times 10^{-9}$ s</td>
</tr>
<tr>
<td>電場の強さ</td>
<td>$\tilde{E} = 100$ V/m</td>
</tr>
<tr>
<td>换算プラック定数</td>
<td>$\tilde{\hbar} = 1.7454 \times 10^{-34}$ Js</td>
</tr>
</tbody>
</table>

表 2.1において、上の 4 つ ($m_p, e, \tilde{B}, \tilde{v}$) を用いて方程式を無次元化することで、下 4
つ \((\rho, \tilde{t}, \tilde{E}, \tilde{h})\) の規格化定数は自動的に決定される。具体的には、

\[
\rho = \frac{m_p \tilde{v}}{eB},
\]

(2.67)

\[
\tilde{t} = \frac{m_p}{eB},
\]

(2.68)

\[
\tilde{E} = \tilde{B} \tilde{v},
\]

(2.69)

\[
\tilde{h} = m_p \tilde{v} \rho = \frac{(m_p \tilde{v})^2}{eB}
\]

(2.70)

より得られる。

規格化定数として、質量は陽子の質量 \(m_p\)，電荷は素電荷 \(e\)，磁束密度の強さは \(\tilde{B} = 10\) T などと，基本的には核融合プラズマを意識した量を無次元化に用いているが，速さには \(\tilde{v} = 10\) m/s とかなり遅い値を用いている。これには二つ理由がある。

表 2.1 の上 4 つの規格化定数を用いたとき，\(h\) の無次元化した値はおよそ 0.6 であり，ほぼ 1 のオーダーである。これにより，例えばドリフト速度を考えると，古典的にもあらわれる項と \(h\) を含む量子論的補正項の和で表現されると考えられるが，\(h\) が他の物理量と比べて小さすぎて量子論的補正が数値誤差に絡れて観測できないなどということを避けられる。よって，量子論的効果がわかりやすくなることが期待できる。ただし，他の要因により結果として量子論的効果が数値誤差程度の大きさになってしまう可能性は依然として残っている。

もうひとつは，数値解析に伴う計算コストの増大が理由である。速さの規格化定数 \(\tilde{v}\) をもっと速い値，例えば核融合プラズマの陽子の熱速度程度の速さ \(10^6\) m/s にすると，式 (2.70) より明らかのように \(h\) の規格化定数 \(\tilde{h}\) は \(10^{10}\) 倍に大きくなる。そのような \(\tilde{h}\) によって無次元化した無次元量 \(\tilde{h}\) の値は，\(\tilde{h}\tilde{h} = 1.054 \times 10^{-34}\) Js という関係を満たすので，\(10^{-10}\) 倍に小さくなる。すなわち，この場合の無次元量 \(h\) は \(0.6 \times 10^{-10}\) となる。本数値解析において表現したい重要な物理量として磁気長 \(\sigma_B = \sqrt{h/\tilde{q}B}\) があるが，以上より \(\tilde{v} = 10^6\) m/s を採用すると，無次元化した値で \(\sigma_B \sim \sqrt{0.6} \times 10^{-5}\) となることがわかる。これを利用刻み幅 \(\Delta\) で離散化した解析領域上に表現するためには，\(\Delta \ll \sigma_B\) でなくては
ならないので、膨大な計算コストを要することになる。

2.7 保存量（エネルギー・粒子数・x 方向正準運動量）の誤差の監視

理論的には粒子数、全エネルギー、x 方向正準運動量 $\langle P_x \rangle$ は本解析体系において運動の恒量であり常に初期値と等しい。しかし、数値解析においては解析を進めるにつれて数値誤差が堆積していき、それぞれの初期値から変化してしまう。その時間変化は解析条件によって様々であるが、その様子の典型的な一例を図 2.2 に示す。図 2.2 からそれぞれ、粒子数は 1 となるべきところ 10^{-9} 程度の絶対誤差、全エネルギーはこの計算条件ではおよそ 12.9 となるべきところ 10^{-8} 程度の絶対誤差、x 方向正準運動量は 0 となるべきところ 10^{-11} 程度の絶対誤差があることが確認できる。注目しているドリフト速度などの大きさは解析条件によって様々であるが、おおむね 10^{-6} から 10^{-4} 程度である。そのため、数値誤差が 10^{-8} 程度含まれていても十分に小さいといえる。
Error in energy & particle
Error in $<P_x>$
Gyration
Particle Energy $<P_x>$ (right y-axis)

図2.2 保存量の数値誤差による時間変化。横軸はサイクロトロン運動の周回数、左の縦軸はエネルギーおよび粒子数の絶対誤差の値、右の縦軸はx方向正準運動量の絶対誤差の値を示している。本解析においては粒子の初速度や質量、電磁場の強さなどを様々なに変えた条件を計算しているが、ここではその典型的一例として一様磁場中の場合を示した。具体的なパラメータは無次元化した量で、$m = 1, q = 1, B = 1, u = 0, v = 5$である。このときの保存量の真の値はそれぞれ、(粒子数)= 1, 全エネルギー ∼ 12.9, x方向正準運動量 $<P_x> = 0$ である。
2.8 刻み幅について

波動の数値解析において有限差分法を用いる場合には空間刻み幅 Δ が波の波長 λ より十分に短いことが必要される。力学的な運動量 mv を持つ荷電粒子の波長は de Broglie 波長で与えられる。したがって、少なくとも空間刻み幅として

$$\Delta \ll \lambda = \frac{2\pi h}{mv} \quad (2.71)$$

を満たす程度に小さくとる必要がある。

正準運動量の期待値を求める際に刻み幅に依存して真の値からずれる。これは初期波動関数から影響されない場合でも避けられない。そこで、x 方向の一次元に話を限定すると、波動関数を

$$\psi(x,t) = \frac{1}{\sqrt{\psi \sigma_x}} \exp \left[-\frac{(x - x_m)^2}{2\sigma_x^2} + ik_x x \right] \quad (2.72)$$

とする。ここで、k_x は x 方向の波数、x_m は粒子の位置の期待値である。このときの正準運動量の期待値 $\langle P_x \rangle = \langle -i\hbar \partial / \partial x \rangle$ は解析的に $\langle P_x \rangle = \hbar k_x$ であるが、本解析のように微分演算を 2 階の中央差分法（式 (2.17)）を用いると、

$$\langle P_x \rangle \sim \hbar k_x \frac{\sin k_x \Delta x}{k_x \Delta x} \exp \left(-\frac{\left(\Delta x \right)^2}{4\sigma_x^2} \right) \quad (2.73)$$

と近似できる。これより運動量は Δx に依存して真の値から減衰することがわかる。

2.9 ドリフト速度・分散の時間変化の算出法

ここでは、ドリフト速度、および分散の時間変化について数値的に求めめる方法について述べる。まず、図 2.3 に本解析で典型的なサイクロトロン運動している荷電粒子の位置の期待値 $\langle x \rangle$ の時間変化を示す。この図 2.3 ではドリフト速度などの値がよく知られている一様電磁場条件のときの場合（赤い実線）と、本解析で調べたい非一様
図 2.3 サイクロトロン運動する荷電粒子の位置の期待値 \(\langle x \rangle \) の時間変化。初期位置（正しくはその期待値，次元の初速度についても同様） \((x_0, y_0) = (-5, 0)\) より初速度 \((u_0, v_0) \sim (0, 5)\) で出発させた場合の位置の期待値 \(\langle x \rangle \) の時間変化 \(x(t) \) についてサイクロトロン運動を 5 周する時刻まで示されている。初速度について等号で結ばれていないのは式 (2.73) が \(y \) 方向の運動量について適用され，初期条件として与えた値から減衰しているためである。赤い実線が一様電磁場のみの場合の計算結果を，青いサークルで非一様電磁場を与えたときの計算結果を示す。両者は電磁場の非一様性によってわずかに異なる軌道を描くが，その非一様性（具体的には第 3 章に示す勾配長）の大きさは小さく，この図から違いを見いだすことはできない。

電磁場条件の場合（青いサークル，Non-Uniform）について示されている。両者の違いは非一様性を与えるようなパラメータが加えられているかどうかのみである。このような近似的な条件の組み合わせについて，差を取ることで数値誤差の低減を試みている。

\[
\Delta x(t) \equiv \langle x \rangle_{\text{Non-uniform}}(t) - \langle x \rangle_{\text{Uniform}}(t).
\]
(2.74)

両条件は同じ計算コードを用いて算出され，非一様性に関するパラメータの設定のみが異なる。また，その非一様性に関するパラメータも他のパラメータと比較して小さい値を

37
取っている。例えば、第 4 章では正弦波状電場がドリフト速度などに与える影響を検討するが、電場の大きさ E はローレンツ力に換算して磁場 B と比較したとき、典型的に 4 ケタ程度小さくなるような設定をしている。このような理由から式 (2.74) のように差を取ることで数値誤差を打ち消すことができると予測される。実際、この方法は位置の膨張率 $rac{d\sigma_x^2(t)}{dt}$ [11] などの数値的な算出にすでに使われており、理論解析と矛盾しない結果を示している [11–15]。

差を取りた位置の時間変化 $\Delta x(t)$ について図示する（図 2.4）。この図 2.4 から $\Delta x(t)$

![図 2.4 位置 x の差の時間変化。紫の実線は非一様電磁場の場合と一様電磁場の場合の差を取りた位置 $\Delta x(t)$ を示し、赤い実線は $\Delta x(t)$ について周期平均を取って得られるドリフト速度を傾きとする直線、緑色と青色の破線は最小二乗法により $\Delta x(t)$ をフィッティングしたものである。ただし、青い波線の方は 1 周期分のデータでのみフィッティングしたものので、緑の破線は 5 周期分のデータを用いてフィッティングしたものである。](image)

は時間とともに振動しつつ、一様に増加していることが見て取れる。この振動の成分を取
り除いたものがドリフト速度である。本解析では \(\Delta x(t) \) について周期平均することでドリフト速度を算出した。\(\Delta x(t) \) について最小二乗法により直線化してドリフト速度を求める方法も行われていた [12] が、図 2.4 に示すように、最小二乗法による方法は計算に用いる周期の数に比較的強く影響される。図 2.4 の青い波線は \(\Delta x(t) \) のはじめの 1 周期のみを用いた場合の結果であり、緑の破線は 5 周期分を用いて得られた結果である。図示していないが、最小二乗法に用いる周回数を増やしていくと徐々に 5 周用いた場合へと近づいていくことも確認している。一方で、\(\Delta x(t) \) に対して周期平均を用いた場合の結果が赤い実線で示されている。ここで用いたのは 1 周期分のデータのみであるが、5 周期分を使った最小二乗法の結果に遅色ないものが得られている。また、5 周期分のデータから計算しても同様の直線を描くことができる。このような利点から本解析では、\(\Delta x(t) \) の周期平均を用いてドリフト速度を計算している。

同様の手法を位置、力学的運動量、正準運動量の分散の時間発展（すなわち、膨張率）の算出においても適用した。すなわち、非一様電磁場条件の場合と一様電磁場条件の場合のそれぞれにおいて分散 \(\sigma^2(t) \) を計算し、差を取った。例として、差を取った位置の分散 \(\Delta \sigma^2(t) \) について図 2.5 に示す。ここので、ドリフト速度の場合と同様に、1 周期分の計算結果を用いた周期平均でも 5 周期分の計算結果を用いた最小二乗法による直線化に遅色ない結果が得られた。
図 2.5 位置の分散の差 $\Delta \sigma^2_r (t)$ の時間変化。紫の実線は非一様電磁場の場合と一様電磁場の場合とで差を取った分散 $\Delta \sigma^2_r (t)$ を示し、赤い実線は $\Delta \sigma^2_r (t)$ について周期平均を取って得られる位置の分散の時間変化。すなわち位置の拡散率 $\frac{d\sigma^2_r (t)}{dt}$ を傾きとする直線、緑色と青色の破線は最小二乗法により $\Delta \sigma^2_r (t)$ をフィッティングしたものである。ただし、青い破線の方は 1 周期分のデータでのみフィッティングしたもので、緑色の破線は 5 周期分のデータを用いてフィッティングしたものである。文献 [12] における Fig. 3 と同様の図であるが、凡例 Ave. $\Delta \sigma^2_r (t)$ の表す意味が異なる。文献 [12] にて，“Ave. $\Delta \sigma^2_r (t)$”と表記していたものはこの図において、L.S.M. $\Delta \sigma^2_r (t)$ (5 gyro.) のことである。
第3章
一次勾配電場による量子論的効果の検討

3.1 はじめに

第3章では、空間的に一次勾配を持つ電磁場中の単一荷電粒子についてドリフト速度、位置・力学的運動量・正準運動量の分散の時間変化（膨張率）を調べた結果について述べる。序論でも述べたように、電磁場と膨張率との関の関係式は、当時において既に及川らによって一次勾配電場の場合 [8–10], および一様電場・一次勾配電場の場合 [11] が数値解析を用いて行われていた。著者はこれに続き、電場・磁場がともに一次勾配を持つ場合について数値解析により膨張率と電磁場の関係式を評価した [12]。その内容を第3章として以下に述べる。この数値解析結果を受けて、後にChanらによってドリフト速度への量子論的補正を含めて理論解析も行われた [14, 15]。これらの理論解析では、電磁場の勾配が磁場・電場それぞれが十分ゆるやか（勾配長が大きい）場合を仮定して、磁場について一次勾配、電場について二次勾配まで含む状況を取り扱っている。本研究において、一次勾配電場の場合に限定して近似を用いず理論解析を行ったところ、勾配長の大きさに制限なくドリフト速度・膨張率を評価することができたので、これについて3.4節で報告する。
3.2 一次勾配電磁場

一次勾配電磁場として,

\[E = E \left(1 - \frac{y}{L_E} \right) e_y, \quad (3.1) \]
\[B = B \left(1 - \frac{y}{L_B} \right) e_z \quad (3.2) \]

と与えた。ここで, \(E, B \) はそれぞれ電場, 磁場の強さを表し, \(L_E, L_B \) はそれぞれ電場, 磁場の勾配長である。電場は \(y \) 方向成分, 磁場は \(z \) 方向成分のみをもつとしたため, \(E \times B \) ドリフト速度は \(x \) 方向成分のみを持つ。また, 磁場勾配も \(y \) 方向にのみあるため, \(\nabla B \) ドリフトも \(x \) 方向成分のみを持つ。このような電磁場を与えるスカラーポテンシャル \(V \), ベクトルポテンシャル \(A \) として以下を与えた。

\[V = -Ey \left(1 - \frac{y}{2L_E} \right), \quad (3.3) \]
\[A = -By \left(1 - \frac{y}{2L_B} \right) e_x. \quad (3.4) \]

このベクトルポテンシャルの与え方は Coulomb ゲージ \(\nabla \cdot A = 0 \) を満たしており, Landau ゲージに類似した与え方である。ベクトルポテンシャルの \(x \) 成分, \(y \) 成分をほとんど対称な形で与えるやり方もありえたが, 本解析においては \(x \) 方向正準運動量が運動の恒量になるという性質を誤差評価に活用するため, このような与え方を採用した。

3.3 数値解析によるドリフト速度・膨張率と電磁場との関係

性の推定

ここでは数値解析によりドリフト速度, および位置, 力学的運動量, 正準運動量の膨張率を求める。第 2 章で述べたような数値誤差の低減のための差を取る操作 [9] は, 勾配長 \(L_E, L_B \) がある条件ないし条件（一様電磁場）の組み合わせで行う。この差を取る操作に
よって得られたドリフト速度は、一様電場による単純な \(\mathbf{E} \times \mathbf{B} \) ドリフト速度 \((\mathbf{E}/\mathbf{B})\) を差し引いた値である。すなわち、Chanらによって示された量子論的補正を含む一次勾配磁場による \(\nabla \mathbf{B} \) ドリフト速度 [13],

\[
u_{\text{Drift}} = \frac{mv_0}{2qBL_B} + \frac{3\hbar}{4mL_B}
\]

(3.5)

および電場の勾配長 \(L_E \) による非一様性がドリフト速度に与える影響に注目することになる。

電磁場の非一様性による影響を調べるため、電場・磁場の勾配長 \(L_E, L_B \) を中心に電場・磁場の大きさ \(E, B, y \) 方向初速の大きさ \(v_0 \)，荷電粒子の質量 \(m \) などを変えてそれぞれの場合のドリフト速度を計算した結果、図 3.1のように整理できた。ただし、差を取る組み合わせの間の違いである勾配長 \(L_E, L_B \) の値について、あまりに小さな値を設定した計算（電場・磁場の勾配が強い場合に相当）は数値誤差の低減がうまくいかないため、その \(L_E, L_B \) の大きさは \(10^1 \) から \(10^6 \) などと、本解析の長さの典型的な量と比べて \(4 \) から \(6 \) 倍程度大きい値を取るようにした。図 3.1 の横軸は式 (3.5) であり \(L_E \) を含んでいないが、数値計算結果よく一致している。また、シンポルの違いが \(L_E \) の値の違いを表すが、異なる \(L_E \) を持つ場合でも重なるようにプロットされることが示された。すなわち、\(L_E \) が 10 倍、100 倍変化しても数値的には同程度のドリフト速度を持つことが示されている。これより、一次勾配電場はドリフト速度に対して影響しないことがわかる。あるいは磁場勾配による影響を比べて無視できるほどに小さいことになる。また、図 3.1 には電場の大きさ \(E \) も変化させた結果もプロットされているが、\(L_E \) と同様にドリフト速度への寄与がないこと、あるいは極めて小さいことが示されている。

位置の膨張率 \(\frac{\partial \sigma^2_p (t)}{\partial t} \)，力学的運動量の膨張率 \(\frac{\partial \sigma^2_{mv} (t)}{\partial t} \)，正準運動量の膨張率 \(\frac{\partial \sigma^2_P (t)}{\partial t} \) についてもドリフト速度の場合と同様に計算し、電磁場に対する依存性を調べた。その結果を図 3.2, 3.3, 3.4 に示した。それぞれの図における横軸は、一次勾配磁
図 3.1 ドリフト速度と物理量との関係。縦軸は数値解析より得たドリフト速度、横軸は対応する解析条件を量子論的補正を含めた \(\nabla B \) ドリフト速度の式 (3.5) に代入して得られる値を示す。×, + などのシンボルで電場の勾配長 \(L_E \) の値の違いを表している。斜めの点線が数値解析の結果と式 (3.5) による値が完全に一致した場合に乗りるべき線を表す。

場による膨張率への影響を表す式

\[
\frac{d\sigma^2_r(t)}{dt} = 2 \frac{h}{qB} \frac{v_0}{L_B},
\]

(3.6)

\[
\frac{d\sigma^2_{mv}(t)}{dt} = hqB \frac{v_0}{L_B},
\]

(3.7)

\[
\frac{d\sigma^2_P(t)}{dt} = \frac{1}{2} hqB \frac{v_0}{L_B}
\]

(3.8)

である。この関係式は数値的には及川ら [9, 10] により同様のものが見いだされており、理論的には Chan ら [14, 15] により確認もされている。ひとつの注意点として、文献 [9, 10] では膨張率の評価法が異なる（文献ではサイクロトロン運動の各周回で最も分散が大き
図 3.2 位置の膨張率 $\frac{d\sigma^2(t)}{dt}$ と物理量との関係。縦軸は数値解析より得た位置の膨張率、横軸は一次勾配磁場による位置の膨張率への影響を表す式 (3.6) である。×, + などのシンボルで電場の勾配長 L_E の値の違いを表している。斜めの点線が数値解析の結果と式 (3.6) による値が完全に一致した場合に乗るべき線を表す。文献 [12] における Fig. 4（左）と同じ様の図である。
图 3.3 力学的運動量 $\frac{d\sigma_{\mu\nu}(t)}{dt}$ と物理量との関係。縦軸は数値解析より得た力学的運動量の膨張率、横軸は一次勾配磁場による力学的運動量の膨張率への影響を表す式 (3.7) である。$\times, +$ などのシンボルで電場の勾配長 L_E の値の違いを表している。斜めの点線が数値解析の結果と式 (3.7) による値が完全に一致した場合に乗りべき線を表す。文献 [12] における Fig. 4（右）と同様の図である。
図 3.4 正準運動量の膨張率 $\frac{d\sigma_E(t)}{dt}$ と物理量との関係．横軸は数値解析より得た正準運動量の膨張率，縦軸は一次勾配磁場による正準運動量の膨張率への影響を表す式 (3.8) である．$	imes, +$ などのシンボルで電場の勾配長 L_E の値の違いを表している．斜めの点線が数値解析の結果と式 (3.8) による値が完全に一致した場合に乗るべき線を表す．

47
い値の時間変化で評価している）ために膨張率の式 (3.6), (3.7), (3.8) と数係数が異なる。以上の数値解析結果から、ドリフト速度の場合と同様に、いずれの膨張率に対しても
E, L_E についての依存性は見られなかった。

3.4 Heisenberg の運動方程式による理論解析

数値解析では一次勾配電場を与えるようなスカラーポテンシャル（式 (3.3)）がドリフト速度、および膨張率に対して与える影響は存在しないが、磁場勾配による影響に比べて無視できるほどに小さいことが示された。以下では、Heisenberg の運動方程式を解くことによる理論解析から、一次勾配電場がドリフト速度・膨張率に与える影響について検討する。

本解析条件を含む理論解析が Chan ら [14, 15] によって行われているが、これらは電場の勾配長が大きい場合を仮定している。具体的には式変形の途上で L_E^2 などの高次の項を無視するという近似を用いている。以下では、一次勾配電場・一様磁場の場合に限るが上記のような近似を用いずにドリフト速度・膨張率を厳密に導出した。Chan らの解析では二次勾配電場・一次勾配磁場まで適用できるため、それに比べると限定された電磁場の条件であるが、ここで得られた結果には電場の勾配長 L_E に対して制限がない。

一次勾配電場・一様磁場を与えるハミルトニアン \hat{H} は以下のように表される。

$$\hat{H} = \frac{\hat{P}_x^2}{2m} + qE\hat{y} \left(1 - \frac{\hat{y}}{2L_E}\right)$$ (3.9)

ここで、$\hat{P}_x \equiv \hat{P}_x + qB\hat{y}$ であり、x 方向の力学的運動量 $m\hat{u}$ に等しい。この節では演算子を意味する”を明示する。

48
3.4.1 ドリフト速度の導出

任意の演算子 \(\hat{F} \) に対して、対応する時間発展する演算子 \(\hat{F}(t) \) は

\[
\hat{F}(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathcal{D}^n \hat{F}
\]

(3.10)

である。ここで、\(\mathcal{D} \) は演算子に対する時間微分に相当するものであり、

\[
\mathcal{D}^0 \hat{F} \equiv \hat{F},
\]

\[
\mathcal{D} \hat{F} \equiv \frac{1}{i\hbar} \left[\hat{F}, \hat{H} \right],
\]

\[
\mathcal{D}^2 \hat{F} \equiv \frac{1}{i\hbar} \left[\frac{1}{i\hbar} \left[\hat{F}, \hat{H} \right], \hat{H} \right],
\]

\[
\mathcal{D}^3 \hat{F} \equiv \frac{1}{i\hbar} \left[\frac{1}{i\hbar} \left[\frac{1}{i\hbar} \left[\hat{F}, \hat{H} \right], \hat{H} \right], \hat{H} \right],
\]

\[
\vdots
\]

で定義する。

\[
\left[\hat{P}, \hat{H} \right] = 0 \text{ より } \mathcal{D} \hat{P}_x = 0 \text{ であり、式 (3.10) に代入して、} x \text{ 方向正準運動量 } \hat{P}_x \text{ が運動の恒量であることが直ちに確認できる。}
\]

\[
\hat{P}_x(t) = \hat{P}_x.
\]

(3.11)

\(x \) 方向の力学的運動量 \(\hat{P}_x \) について、同様に式 (3.10) を適用することを考える。準備として、\(\hat{P}_x \) に \(\mathcal{D} \) を作用させた結果を調べる。ここで、重要な性質として

\[
\mathcal{D} \hat{P}_y = -\Omega \hat{Q}_x,
\]

(3.12)

\[
\mathcal{D} \hat{Q}_x = +\Omega \hat{P}_y
\]

(3.13)

という周期性がある。ここで、

\[
\Omega \equiv \omega_c \sqrt{1+\mu},
\]

(3.14)

\[
\mu \equiv \frac{mE}{BqBE},
\]

(3.15)

\[
\dot{Q}_x \equiv \frac{1}{\sqrt{1+\mu}} \left[\hat{P}_x - m \frac{E}{B} \left(1 - \frac{1}{L_E} \hat{y} \right) \right]
\]

(3.16)
と文字を置いている。この周期性から、\(\hat{\Pi}_x \) に \(\mathcal{D} \) を作用させた結果は以下のようにまとめることができる。

\[
\begin{align*}
\mathcal{D}^0 \hat{\Pi}_x &= \hat{\Pi}_x, \\
\mathcal{D}^1 \hat{\Pi}_x &= + \frac{1}{\sqrt{1+\mu}} \Omega^1 \hat{P}_y, \\
\mathcal{D}^2 \hat{\Pi}_x &= - \frac{1}{\sqrt{1+\mu}} \Omega^2 \hat{Q}_x, \\
\mathcal{D}^3 \hat{\Pi}_x &= - \frac{1}{\sqrt{1+\mu}} \Omega^3 \hat{P}_y, \\
\mathcal{D}^4 \hat{\Pi}_x &= + \frac{1}{\sqrt{1+\mu}} \Omega^4 \hat{Q}_x,
\end{align*}
\]

\[
\vdots
\]

\[
\begin{align*}
\mathcal{D}^{2n} \hat{\Pi}_x &= (-1)^n \frac{1}{\sqrt{1+\mu}} \Omega^{2n} \hat{Q}_x, \\
\mathcal{D}^{2n+1} \hat{\Pi}_x &= (-1)^n \frac{1}{\sqrt{1+\mu}} \Omega^{2n+1} \hat{P}_y.
\end{align*}
\]

ここで、\(n \) は非負の整数であるが、偶数番目の一般項の式 (3.22) の場合は \(n \geq 1 \)，奇数番目の一般項の式 (3.23) の場合は \(n \geq 0 \) とする。式 (3.10) に登場する無限級数を偶数項と奇数項に分離して表すと \(\hat{\Pi}_x (t) \) は、

\[
\hat{\Pi}_x (t) = \hat{\Pi}_x + \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{(2n+1)!} \mathcal{D}^{2n+1} \hat{\Pi}_x + \sum_{n=1}^{\infty} (-1)^n \frac{t^{2n}}{(2n)!} \mathcal{D}^{2n} \hat{\Pi}_x.
\]

したがって、式 (3.23), (3.22) を代入すると,

\[
\hat{\Pi}_x (t) = \hat{\Pi}_x + \frac{1}{\sqrt{1+\mu}} \hat{P}_y \sum_{n=0}^{\infty} (-1)^n \frac{(\Omega t)^{2n+1}}{(2n+1)!} + \frac{1}{\sqrt{1+\mu}} \hat{Q}_x \left[\sum_{n=0}^{\infty} (-1)^n \frac{(\Omega t)^{2n}}{(2n)!} - 1 \right].
\]

それぞれの無限級数は三角関数の Taylor 展開に等しいので,

\[
\hat{\Pi}_x (t) = \hat{\Pi}_x + \frac{1}{\sqrt{1+\mu}} \left[\hat{P}_y \sin \Omega t + \hat{Q}_x (\cos \Omega t - 1) \right]
\]

を得る。
求めるドリフト速度 u_{Drift} は式 (3.26) の期待値、および周期平均を取ることで得ることができる。周期平均することで三角関数の項は 0 となり,

$$mu_{\text{Drift}} = \frac{\mu}{1 + \mu} \langle \hat{N}_x \rangle + \frac{1}{1 + \mu} m \frac{E}{B} \left(1 - \frac{1}{L_E} \langle \dot{y} \rangle \right)$$

(3.27)

である。ここで、$\langle \cdot \rangle$ は初期波動関数により計算された期待値を表す。$L_E \to \infty$ の極限、すなわち一様電磁場とすると、$\mu \to 0$ であるから、式 (3.27) は一様電磁場のときの $E \times B$ ドリフト速度 E/B へと帰着することが確認できる。また、h に依存する項が存在しないことからドリフト速度に量子論的補正はあらわれないことがわかる。

同様にして、$\dot{P}_y(t), \dot{x}(t), \dot{y}(t)$ を求めた結果、以下のようなになった。

$$\dot{P}_y(t) = \dot{P}_y \cos \Omega t - \hat{Q}_x \sin \Omega t,$$

$$(3.28)$$

$$m\dot{x}(t) = m\ddot{x} + \hat{N}_x t + \frac{1}{\Omega \sqrt{1 + \mu}} \left[\dot{Q}_x (\sin \Omega t - \Omega t) - \dot{P}_y (\cos \Omega t - 1)\right],$$

$$(3.29)$$

$$m\dot{y}(t) = m\ddot{y} + \frac{1}{\Omega} \left[\dot{P}_y \sin \Omega t + \dot{Q}_x (\cos \Omega t - 1)\right].$$

$$(3.30)$$

電磁運動量 qA について、本解析の設定では y 成分を持たないため y 方向の力学的運動量 $m\dot{v}$ と正準運動量 \dot{P}_y は等しい。そのため、以上で荷電粒子の位置、力学的運動量、正準運動量の時間発展する演算子がすべて得られた。また、ここで力学的運動量の時間発展する演算子（式 (3.26), (3.28)）と位置の時間発展する演算子（式 (3.29), (3.30)）の間について、古典力学における関係と同様に、時間の変数 t についての微分積分で結ばれる関係にあることが確認できる。

3.4.2 分散および膨張率の導出

位置、力学的運動量、正準運動量の時間発展する演算子が得られているので、分散はそれらを組み合わせて導出できる。x 方向正準運動量の分散 $\sigma_{P_x}^2(t)$ は、本解析において運動の恒量であるため、時間発展する演算子を用いる必要すらなく簡単に求まる。

$$\sigma_{P_x}^2(t) = \left\langle \dot{P}_x^2 \right\rangle - \left\langle \dot{P}_x \right\rangle^2.$$

$$(3.31)$$
y 方向正準運動量の分散 $\sigma^2_{Py}(t)$ は式 (3.28) を用いて,

$$\sigma^2_{Py}(t) = \langle \hat{P}_y^2(t) \rangle - \langle \hat{P}_y(t) \rangle^2$$ \hspace{1cm} (3.32)

により求めることができる。すなわち，正準運動量に関する分散は次のようになる。

$$\sigma^2_{Px}(t) = \frac{\hbar qB}{2},$$ \hspace{1cm} (3.33)

$$\sigma^2_{Py}(t) = \frac{\hbar qB}{2} \left(1 + \sin^2 \Omega t \right) + \frac{\mu^2}{1+\mu} \frac{\hbar qB}{2} \sin^2 \Omega t.$$ \hspace{1cm} (3.34)

正準運動量の分散 σ^2_P は $\sigma^2_{Px}(t)$, $\sigma^2_{Py}(t)$ の和を取ることで得ることができる。また，$
\hat{P}_y = m\dot{v}$ であるため，$\sigma^2_{muv}(t) = \sigma^2_{Py}(t)$ である。x 方向の力学的運動量の分散，位置の分散も同様に求まる。

$$\sigma^2_{muv}(t) = \frac{\hbar qB}{2} \left(1 + \cos^2 \Omega t \right) - \frac{\mu}{(1+\mu)^2} \frac{\hbar qB}{2} \left(\cos \Omega t - 1 \right)^2,$$ \hspace{1cm} (3.35)

$$\sigma^2_x(t) = \frac{\sigma^2_B}{2} + \frac{\sigma^2_B}{2} \left(\cos \Omega t - 1 \right)^2 + \frac{\sigma^2_B}{(1+\mu)^2} \sin^2 \Omega t$$

$$+ \frac{\mu}{(1+\mu)^3} \frac{\sigma^2_B}{2} \left\{ 2\Omega t \sin \Omega t + \mu \left[(\Omega t)^2 + \sin^2 \Omega t \right] \right\},$$ \hspace{1cm} (3.36)

$$\sigma^2_y(t) = \frac{\sigma^2_B}{2} + \frac{\sigma^2_B}{2} \left(\cos \Omega t - 1 \right)^2 + \frac{\mu}{1+\mu} \frac{\sigma^2_B}{2} \left[2 - \frac{1}{1+\mu} \left(\cos \Omega t - 1 \right) \right] \left(\cos \Omega t - 1 \right).$$ \hspace{1cm} (3.37)

以上の分散を，時間 t について微分して圏域平均を取ることで膨張率を得る。あるいは分散の定義式の段階で時間微分して圏域平均を行うことで，分散を計算することなく膨張率を導出することも可能である。y 方向正準運動量 \hat{P}_y を例にとって具体的に示すと，式 (3.32) に対して両辺を時間微分すると，

$$\frac{d\sigma^2_{Py}(t)}{dt} = \left\langle \frac{d\hat{P}_y(t)}{dt} \hat{P}_y(t) \right\rangle + \left\langle \hat{P}_y(t) \frac{d\hat{P}_y(t)}{dt} \right\rangle - 2 \left\langle \frac{d\hat{P}_y(t)}{dt} \right\rangle \left\langle \hat{P}_y(t) \right\rangle$$ \hspace{1cm} (3.38)

となる。さらに両辺に対して圏域平均を行うと，左辺は y 方向正準運動量の膨張率の定義式そのものであり，右辺に対して上で求めた $\hat{P}_y(t)$ を代入して計算すれば求められる膨張率を導出できる。当然どちらの方法で膨張率を導出しても同じ結果となる。

52
そのような方法で膨張率を導出した結果，正準運動量，力学的運動量の膨張率は 0 であることが示される。位置 \(\dot{y} \) の膨張率も 0 となるが，\(\dot{x} \) の膨張率は 0 ではなく，
\[
\frac{d\sigma_x^2(t)}{dt} = \frac{\hbar}{m} \mu^2 (1 + \mu)^{-\frac{5}{2}},
\]
となる。これは位置の膨張率 \(\frac{d\sigma_x^2(t)}{dt} \) にも等しい。これより，\(\frac{d\sigma_x^2(t)}{dt} \propto \mu^2 \) のような依存性があることがわかる。本数値解析では，数値誤差を少なくするために \(E, L_E \) のパラメータは典型的に 10^{-4} 以下の比較的小さな値を与えている。そのため，
\(\mu_E^2 \sim (E/L_E) \sim 10^{-16} \) であり，本数値解析で，一次勾配電場によりあらわれる位置の膨
張率の典型的大きさは 10^{-7} から 10^{-4} 程度であり，これと比較して一次勾配電場の影響は 9 栉以上小さいレベルであらわれることになる。したがって，数値解析の精度では 0 とみなされていた違いであり，数値解析において一次勾配電場の影響がまったく見られなかったことに矛盾しない。

また，Chan らによる理論解析結果 [14, 15] では一次勾配電場による影響はドリフト速度・膨張率において 0 であることが示されているが，この結果は \(L_E^{-2} \) 以上の高次の項を
無視するという近似を行っている。したがって，同様の近似を本解析結果にも適用すると
確実に Chan らの結果と一致する。

3.5 まとめ

一次勾配電場・一次勾配電場を与えた場合のドリフト速度への量子力学的な効果，およ
び位置・力学的運動量・正準運動量の膨張率への影響を調べるため，数値的に Schrödinger
方程式を解き，様々な物理的パラメータを変えた場合の応答を調べた。その結果，一次勾
配電場（具体的パラメータとしては電場の強さと電場の勾配長）によるドリフト速度への
量子論的補正および膨張率への影響のいずれも確認できなかった。

Heisenberg の運動方程式を厳密に解き，一次勾配電場によるドリフト速度への量子論
的な補正は存在しないことを示した。また，一次勾配電場による力学的運動量，正準運動

53
量の膨張率への影響は理論的にも存在しないことが確認できた。そして、位置の膨張率への影響は電場の勾配長の逆数の二乗に比例することを示した。数値解析で用いたパラメーター領域ではこの一次勾配電場の影響は一次勾配磁場に比べて極めて小さく、影響が観測されなかったことを理論的に裏付けることができた。
第4章

正弦波状電場による量子論的効果の検討

4.1 はじめに

まず，理論的なアプローチから Heisenberg の運動方程式を解き，ドリフト速度を評価した。そして，数値解析によりここで得た理論解析結果を確認した。次に，数値解析により数値実験的に得られた電場と膨張率との関係を，過去の理論解析結果と比較し妥当性を検討した。以上で得られたドリフト速度・膨張率について，電場の重ね合わせに対して線形性が成り立つかは支配方程式である Schrödinger 方程式からでは自明でなく，数値解析により検証した。解析の都合上，導入した近似により正弦波状電場の振幅，波数に対して
小さい場合のみ取り扱うことになり、完全に任意とはいかなかったが、その範囲でフーリエ級数展開から任意の電場に対する応答が評価できるようになった。

4.2 正弦波状電場・一様磁場

正弦波状電場 \(E = E \cos (k_E y) e_y \) および一様磁場 \(B = Be_z \) を与えるスカラポテンシャル \(V \)，ベクトルポテンシャル \(A \) として,

\[
A = -Be_z, \quad \quad \quad (4.1)
\]
\[
V = -\frac{E}{k_E} \sin k_E y \quad \quad \quad (4.2)
\]

とした。ここで、\(B \) は磁場の大きさ、\(E, k_E \) はそれぞれ正弦波状電場の振幅、波数である。

また、このときドリフト速度は \(E \times B \) の方向、すなわち \(x \) 方向の成分のみを持つ。

4.3 ドリフト速度の理論的導出

4.3.1 古典的ドリフト速度の導出

後の量子力学的な導出（4.3.2 節）でも形式的には同様の形になることが期待されるため、まずは古典的な導出過程について述べる。

本解析で与えた正弦波状電場・一様磁場中の荷電粒子について、Newton の運動方程式より

\[
\frac{du(t)}{dt} = \omega v(t), \quad \quad \quad (4.3)
\]
\[
\frac{dv(t)}{dt} = -\omega u(t) + \frac{qE}{m} \cos k_E y(t) \quad \quad \quad (4.4)
\]

という関係がある。ここで、\(u(t), v(t) \) はそれぞれ \(x \) 方向、\(y \) 方向の速度、\(\omega \equiv qB/m \) は一様磁場のときのサイクロトロン角速度である。この 2 式を組み合わせて、\(x \) 方向速度 \(u(t) \) の二階の微分方程式へと変形する。

\[
\frac{d^2 u(t)}{dt^2} = -\omega^2 u(t) + \omega^2 \frac{E}{B} \cos k_E y(t) \quad \quad \quad (4.5)
\]
正弦波状電場による $\mathbf{E} \times \mathbf{B}$ ドリフト速度は、式 (4.5) を解き、サイクロトロン運動の周期で変動する $u(t)$ を周期平均することで得られる。

式 (4.5) について、電場の振幅 E が十分に弱く、荷電粒子の軌道は一様磁場のときの軌道

$$y_c(t) = y_G + \rho_0 \sin(\omega t + \delta) \quad (4.6)$$

で近似できるとする。ここで、y_G は回転運動の中心位置の y 座標、δ はサイクロトロン運動の初期位相、$\rho_0 = |v_0| / \omega$ はサイクロトロン半径である。式 (4.5) に対して式 (4.6) を代入して、サイクロトロン周期 $T = 2\pi / \omega$ を用いて両辺を周期積分する。

ここで、式 (4.5) の左辺の周期平均は、

$$\frac{1}{T} \int_0^T \frac{d^2 u(t)}{dt^2} dt = \frac{1}{T} \left[\frac{du(t)}{dt} \right]_0^T. \quad (4.7)$$

Newton の運動方程式 (4.3) からこの式 (4.7) は y 方向速度 $v(t)$ が周期的に変化するなら 0 となることがわかる。先ほどの仮定（式 (4.6)）から、両辺を時間微分して、

$$v(t) = \rho_0 \omega \cos(\omega t + \delta) \quad (4.8)$$

を得る。したがって、$v(t)$ は周期性を持ち、式 (4.5) の左辺の周期平均は 0 である。

一方で、式 (4.5) の右辺の周期平均は、第一項は $\mathbf{E} \times \mathbf{B}$ ドリフト速度そのものであり、以下のように整理できる。

$$u_{E \times B}^{CL} = \frac{E}{B} \frac{1}{T} \int_0^T \{ \cos[k_E \rho_0 \sin(\omega t + \delta)] \cos k_E y_G + \sin[k_E \rho_0 \sin(\omega t + \delta)] \sin k_E y_G \} dt. \quad (4.9)$$

この式 (4.9) に、ベッセル関数の積分による表現

$$J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(z \sin \phi - n \phi) \, d\phi \quad (4.10)$$

を適用する。ここで、$J_n(z)$ は第一種 n 次ベッセル関数、z, ϕ は任意の実数である。すなわち、式 (4.10) において $n = 0$ としたものを式 (4.9) に適用して、$\mathbf{E} \times \mathbf{B}$ ドリフト速度は

$$u_{E \times B}^{CL} = \frac{E \cos k_E y_G}{B} J_0(k_E \rho_0) \quad (4.11)$$

57
と得られる。これは \(J_0 (k_E \rho_0) \) を級数展開して 2 項目までで打ち切ると、有限ラーマー半径効果の式に帰着することが確認できる。

\[
u_{E \times B}^C e_x = \frac{E \times B}{B^2} \left(1 - \frac{1}{4} k_E^2 \rho_0^2 \right). \quad (4.12)
\]

ここで、電場を回転中心における値で置き換えて \(E \times B = E B \cos (k_E y_G) e_x \) としている。

4.3.2 量子論的観点からのドリフト速度の評価

前節（4.3.1 節）では Newton の運動方程式に基づいてドリフト速度を求めたが、ここでは Heisenberg の運動方程式からドリフト速度を求める。また、以下では演算子に対してハット \(\hat{\cdot} \) を付けてあらわす。

\(x \) 方向力学的運動量の演算子 \(\hat{\Pi}_x \), および \(y \) 方向正準運動量の演算子 \(\hat{P}_y \) として,

\[
\hat{\Pi}_x \equiv -i \hbar \frac{\partial}{\partial x} + q B \hat{y}, \\
\hat{P}_y \equiv -i \hbar \frac{\partial}{\partial y}
\]

と文字を置く。ここで、電磁運動量の \(y \) 成分が 0 であることから \(\hat{P}_y \) は力学的運動量と等しい。このとき、ハミルトニアン \(\hat{H} \) は次のように表される。

\[
\hat{H} = \hat{\Pi}_x^2 + \hat{P}_y^2 - \frac{E}{2m} \sin (k_E \hat{y}). \quad (4.15)
\]

第 3 章で行ったように、Heisenberg の運動方程式から時間発展する演算子 \(\hat{\Pi}(t) \) を求める。すなわち,

\[
\hat{\Pi}_x(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathcal{D}^n \hat{\Pi}_x, \quad (4.16)
\]
を評価することを考える。ここで，D^n は，

\[
D^0 \dot{\Pi}_x = \dot{\Pi}_x, \\
D^1 \dot{\Pi}_x = \frac{1}{\hbar} \left[\dot{\Pi}_x , \dot{\mathcal{H}} \right], \\
D^2 \dot{\Pi}_x = \frac{1}{\hbar} \left[\frac{1}{\hbar} \left[\dot{\Pi}_x , \dot{\mathcal{H}} \right] , \dot{\mathcal{H}} \right], \\
\vdots
\]

を表す。$D^n \dot{\Pi}_x$ について具体的に計算すると次のような周期的関係が得られる。

\[
D \dot{\Pi}_x = +\omega \dot{P}_y \tag{4.17}
\]

\[
D^2 \dot{\Pi}_x = -\omega^2 \left(\dot{\Pi}_y - \frac{qE}{\omega} \right) \tag{4.18}
\]

\[
D^3 \dot{\Pi}_x = -\omega^3 \left(\dot{P}_y - \frac{qE}{\omega} \gamma \dot{C} \right) \tag{4.19}
\]

\[
D^4 \dot{\Pi}_x = +\omega^4 \left(\dot{\Pi}_y - \frac{qE}{\omega} \frac{1 - \gamma^4}{1 + \gamma^2} \dot{C} \right) \tag{4.20}
\]

\vdots

\[
D^{2n-1} \dot{\Pi}_x = (-1)^{n-1} \omega^{2n-2} \left(\dot{P}_y - \frac{qE}{\omega} \frac{1 - (-1)^{n-1} \gamma^{2n-2}}{1 + \gamma^2} \gamma \dot{C} \right) \tag{4.21}
\]

\[
D^{2n} \dot{\Pi}_x = (-1)^n \omega^{2n} \left(\dot{\Pi}_x - \frac{qE}{\omega} \frac{1 - (-1)^n \gamma^{2n}}{1 + \gamma^2} \dot{C} \right) \tag{4.22}
\]

ここで $\dot{C} \equiv \cos k_E \dot{y} , \gamma \equiv D/\omega$ と略記している。以上より，式 (4.16) は次のように整理できる。

\[
\dot{\Pi}_x(t) - \frac{qE}{\omega} \frac{\omega^2}{\omega^2 + D^2} \dot{C}(t) \\
= \left(\dot{\Pi}_x - \frac{qE}{\omega} \frac{\omega^2}{\omega^2 + D^2} \dot{C} \right) \cos \omega t + \left(\dot{P}_x - \frac{qE}{\omega} \frac{\omega D}{\omega^2 + D^2} \dot{C} \right) \sin \omega t. \tag{4.23}
\]

式 (4.23) の両辺をサイクロトロンの 1 周期で平均する。周期平均された x 方向力学的運動量 \(\overline{\Pi_x(t)} = (1/T) \int_0^T \Pi_x(t) \, dt \) はドリフト速度の演算子 $\dot{u}_E \times B$ を運動量の次元で表したものである。ここで，電場による影響が小さくサイクロトロン周期 T を一定と仮定すると
合のもの \(T = 2\pi/\omega \) で近似できるとする。このとき、式 (4.23) の右辺は 0 となる。したがって、ドリフト速度演算子 \(\hat{u}_{E \times B} \) は形式的に、

\[
\hat{u}_{E \times B} = \frac{1}{m} \bar{P}_z (t) = \frac{E}{B} \left(\frac{\omega^2}{\omega^2 + D^2} \cos k_E \hat{y} \right) (t)
\] (4.24)

とかける。ここで、右辺にある \(\omega^2 / (\omega^2 + D^2) \) は

\[
\frac{\omega^2}{\omega^2 + D^2} = 1 - \left(\frac{D}{\omega} \right)^2 + \left(\frac{D}{\omega} \right)^4 - \cdots
\] (4.25)

という無限等比級数の和をまとめて表したものである。また、式 (4.24) の右辺にある \(E \cos k_E \hat{y} \) は本研究で与えた正弦波状電場そのものであり、この部分を任意の電場で置き換えてもこの形式解が成立する。すなわち、以下では正弦波状電場に対するドリフト速度演算子 \(\hat{u}_{E \times B} \) の具体的な形を検討していくが、同様の手順を行うことで任意の電場に対するドリフト速度を評価できる。

ドリフト速度演算子 \(\hat{u}_{E \times B} \) の具体的な形を知るためには

\[
\hat{\xi} \equiv \frac{\omega^2}{\omega^2 + D^2} \cos k_E \hat{y}
\] (4.26)

が、位置や運動量の演算子 \(\hat{x} (t) \) や \(\hat{P}_z (t) \) などでどのように表現されるかがわければよい。この方程式 (4.26) から \(\hat{\xi} \) を考える代わりに、その時間発展を考えた演算子らで置き換えて得られる方程式を考える。すなわち,

\[
\hat{\xi} \to \hat{\xi} (t), \quad \hat{y} \to \hat{y} (t), \quad \hat{\xi} (t) = \frac{\omega^2}{\omega^2 + D^2} \cos k_E \hat{y} (t). \quad (4.27)
\]

ここで \(t \) がつかない演算子（Schrödinger 描像の演算子）は時間発展する演算子 (Heisenberg 描像の演算子) において \(t = 0 \) を入れたものであり、方程式 (4.26) は、任意時刻 \(t \) で満たされる方程式 (4.28) の特殊な場合 \(t = 0 \) の方程式だといえる。そのため、式 (4.28) を満たす \(\hat{\xi} (t) \) が得られると、求める \(\hat{u}_{E \times B} \) を導くことができる。

また、\(D \) を時間発展する演算子に対して作用させるとき、Heisenberg の運動方程式の定義式から、\(D = d/dt \) と時間微分に置き換えることができる。
以上より、ドリフト速度演算子 \(\hat{u}_{EB} \) を評価するには，

\[
\left(\omega^2 + \frac{d^2}{dt^2} \right) \hat{x}(t) = \omega^2 \cos k_E \hat{y}(t) \tag{4.29}
\]

という非線形微分方程式を解けばよいことになる。ここで，\(\hat{y}(t) \) に，古典的な導出のときと同様に電場の振幅 \(E \) が小さいと仮定して，一様磁場のときの位置座標 \(\hat{y}_c(t) \) を代入する。

\[
qB \hat{y}_c(t) = \hat{P}_x \cos \omega t + \hat{P}_y \sin \omega t - \hat{P}_x. \tag{4.30}
\]

この式 (4.30) について，形式的に次のようにまとめられる。

\[
\hat{y}_c(t) = \rho_0 \sin \theta - \frac{\hat{P}_x}{qB}, \tag{4.31}
\]

\[
\theta = \omega t + \arctan \frac{\hat{P}_y}{\hat{P}_x}, \tag{4.32}
\]

\[
\rho_0 = \frac{1}{qB} \sqrt{\hat{P}_x^2 + \hat{P}_y^2}. \tag{4.33}
\]

これにより，式 (4.29) の右辺 \(\cos k_E \hat{y}(t) \) は，

\[
\cos k_E \hat{y}(t) = \cos (k_E \rho_0 \sin \theta) \cos \left(\frac{k_E \hat{P}_x}{qB} \right) + \sin (k_E \rho_0 \sin \theta) \sin \left(\frac{k_E \hat{P}_x}{qB} \right) \tag{4.34}
\]

と変形できる。ここで，式 (4.34) の第一項および第二項はベッセル関数を用いて表現できる。したがって，非線形微分方程式 (4.29) は，

\[
\frac{1}{\omega^2} \left(\omega^2 + \frac{d^2}{dt^2} \right) \hat{x}(t) = \cos \left(\frac{k_E \hat{P}_x}{qB} \right) \left[J_0 (k_E \rho_0) + 2 \sum_{j=1}^{\infty} J_{2j} (k_E \rho_0) \cos 2j \theta \right]
\]

\[
+ \sin \left(\frac{k_E \hat{P}_x}{qB} \right) 2 \sum_{j=0}^{\infty} J_{2j+1} (k_E \rho_0) \sin (2j+1) \theta \tag{4.35}
\]

となる。検討の結果，この式 (4.35) の特殊解 \(\hat{x}_0(t) \) として，

\[
\hat{x}_0(t) = \cos \left(\frac{k_E \hat{P}_x}{qB} \right) \left[J_0 (k_E \rho_0) + 2 \sum_{j=1}^{\infty} \frac{1}{1-(2j)^2} J_{2j} (k_E \rho_0) \cos 2j \theta \right]
\]

\[
+ \sin \left(\frac{k_E \hat{P}_x}{qB} \right) 2 \sum_{j=0}^{\infty} \frac{1}{1-(2j+1)^2} J_{2j+1} (k_E \rho_0) \sin (2j+1) \theta \tag{4.36}
\]

61
がわかる。式 (4.35) の同次解は、よく知られた微分方程式の形であり、サイクロトロン角周波数 \(\omega \) で振動する解であることがわかる。\(\hat{u}_{E \times B} \) を得る際には非同次微分方程式 (4.35) の解を周期平均することになるので、そのような振動する項は周期平均によって消える。また、同様に特殊解 \(\dot{\xi}(t) \) についても、周期平均で残る部分は第一項の括弧内一項目のみである。したがって、ドリフト速度演算子 \(\hat{u}_{E \times B} = (1/m) \overline{\Pi_x(t)} = (E/B) \dot{\xi}(t) \) は、

\[
\hat{u}_{E \times B} = \frac{E}{B} \cos \left(\frac{k_E \dot{P}_x}{qB} \right) J_0 \left(k_E \rho_0 \right) \] (4.37)

である。これは古典力学により導出したドリフト速度の式 (4.11) と形式的に一致していることが確認できる。式 (4.37) について、初期波動関数で期待値を取ると、古典ドリフト速度 (4.11) と比較できる量となる。しかしながら、式 (4.37) の期待値を厳密に評価するのは難しい。演算子を特殊関数を使ってまとめたまでは期待値計算ができないので、余弦関数部分と 0 次ベッセル関数部分についてそれらを級数展開して考えると、式 (4.37) は無限級数で表現できる。

\[
\hat{u}_{E \times B} = \frac{E}{B} \left[1 - \frac{1}{2} \left(\frac{k_E \dot{P}_x}{qB} \right)^2 + \cdots \right] \left[1 - \frac{1}{4} \left(\frac{k_E}{qB} \right)^2 \left(\Pi_x^2 + \dot{P}_y^2 \right) + \cdots \right]. \] (4.38)

一般に任意の物理量の 2 乗の量に対して期待値を取ると、古典力学で得られる項と、プランク定数 \(h \) を含む量子論的な項の両方が現れる。このような \(h \) を含む項は物理量の 3 乗以降もあらわれるため、すべてを計算しつくすことはできない。しかし、規則性があり何らかの関数形へとまとめることができる可能性もあり、\(k_E \) の 2 次までの項を使って、関数形へとまとめる試みを試みた。その結果、

\[
\langle \hat{u}_{E \times B} \rangle \sim \frac{E}{B} \cos (k_E y_G) J_0 \left(k_E \rho_0 \right) \exp \left[-\frac{5}{8} \left(k_E \sigma_B \right)^2 \right] \] (4.39)

を得た。ここで、\(\rho_0 = \langle \rho_0 \rangle, y_G = -\langle \dot{P}_y \rangle / qB \) として、古典的にも定義されていた物理量とそれぞれに対応する期待値との間の関係を用いて表現している。後者について説明する。古典力学より導出される一様磁場のときの回転中心座標の \(y \) 成分 \(y_G \) は、位置 \(y \) の初
期値 y_0 と初速度の x 成分 u_0 で決定され，$y_G = y_0 - u_0/\omega$ である。一方で，x 方向正準運動量の期待値は $\langle \hat{P}_x \rangle = \langle \hat{P}_x - qB\hat{y} \rangle = mu_0 - qBy_0$ とかける。よって，$-\langle \hat{P}_x \rangle$ を qB で割ったものは y_G に一致していることがわかる。

式(4.39)では k_E の4次以上の項を無視しており，すなわち，$(k_E\rho_0)^4, (k_E\sigma_B)^4, (k_Ey_G)^4$ の単独で k_E が4次となる項や，$(k_E\rho_0)^2, (k_E\sigma_B)^2, (k_Ey_G)^2$ の k_E が2次の項を二つ組み合わせて k_E が4次となる項を無視していることを意味する。

ここで得られた式(4.39)と古典的に導出された式(4.11)を比較すると，余弦関数部分とベッセル関数部分は古典ドリフト速度(4.11)と同じであり，指数関数部分により減衰されることがわかる。この減衰因子がドリフト速度に対する量子論的補正である。次節4.4では数値解析によって，このドリフト速度の減衰について検証した。ただし，減衰因子に注目するため初期の回転中心座標が原点となる場合（すなわち，$\langle \hat{P}_x \rangle = 0$ の場合）を取り扱うことにした。

4.4 数値解析によるドリフト速度・膨張率と電磁場との関係

性の推定

前節では，理論解析からドリフト速度における量子力学的補正が減衰因子としてあらわれるだろうことを示した。以下では実際に数値解析によって様々な電磁場に関するパラメータを変えてドリフト速度を評価し，それらの間の関係性を示す。ドリフト速度のみならず，膨張率についても同様に数値解析を行い関係式を見いただいた。また，得られた結果は既存の関係式に一致することも確認した。

4.4.1 ドリフト速度の電磁場との関係式

まず，電場の波数 k_E とドリフト速度との関係を明らかにするため，k_E の値を様々に変えてそれぞれの場合のドリフト速度を計算した。ただし，初期のサイクロトロン運動の
回転中心の座標 \((x_G, y_G)\) が原点になるように初期位置 \((x_0, y_0)\) と初速度 \((u_0, v_0)\) を設定する。このとき \(\left\langle \hat{P}_x \right\rangle = 0\) となり、回転運動の中心を原点に固定した条件のみを考えることを意味する。

図 4.1 \(E \times B\) ドリフト速度 \(u_{E \times B}\) と電場の波数 \(k_E\) の関係。解析条件として、磁気長 \(\sigma_B = \sqrt{\hbar/|q|B} \approx 0.777\) であり、(A) サイクロトロン半径 \(\rho_0 = m|v_0|/|q|B \approx 1\) の場合、および (B) \(\rho_0 \approx 5\) の場合を示している。縦軸が \(u_{E \times B}\) を一様電磁場のときのドリフト速度 \(E/B\) で規格化した値、横軸が \(k_E \rho_0\) を表す。それぞれの図で \(\rho_0\) は固定しているため、\(k_E\) による依存性を示している。プロット点は数値解析より得られた結果であり、破線で古典力学より導出された解、実線で減衰因子による補正を加味したものを示す。

図 4.1 には、数値解析により得られた \(E \times B\) ドリフト速度と古典力学より予測されたドリフト速度（式 (4.11)）、そしてこれに減衰因子として \(\exp \left[-\frac{5}{8} (k_E \sigma_B)^2 \right] \) を掛けたものが示されている。横軸は \(k_E \rho_0\) であるが、それぞれの図においてサイクロトロン半径 \(\rho_0\) は固定しているため、\(k_E\) に対する \(u_{E \times B}\) の依存関係がわかる。今、回転中心の座標を原点に取るようにしているので、式 (4.11) は \(u_{E \times B}^{\text{CL}} = (E/B) J_0(k_E \rho_0)\) とかける。図 4.1 において、縦軸は \(E/B\) で規格化しているため黒い波線は \(J_0(k_E \rho_0)\) を表している。
一方で、赤い実線で示したものに対応する関係式は、さきほど理論解析により得られたドリフト速度（式 (4.39)）において原点中心（\(\langle \hat{P}_x \rangle = 0 \)）としたものであり,

\[
u_{E \times B} = \frac{E}{B} J_0 (k_E \rho_0) \exp \left[-\frac{5}{8} (k_E \sigma_B)^2 \right]
\] (4.40)

である。計算結果は式 (4.40) の方によく一致しており、ドリフト速度が量子論的補正である減衰因子が掛けられた分だけ遅くなるという理論解析結果が裏付けられた。この減衰因子は \(h \) を含み、\(h \to 0 \) の極限において 1 となる。すなわち、式 (4.40) はそのような古典近似したとき、古典的に得られたドリフト速度の式 (4.11) へと帰着するため、既存の結果に矛盾しない。

得られた波数 \(k_E \) とドリフト速度 \(u_{E \times B} \) の関係式について、他のパラメータも変化させて妥当性を検討した。図 4.2 は、物理的パラメータ \(m, q, B, E, k_E, v_0 \) の様々な組み合わせに対して得られた数値計算結果とそのときの半理論式 (4.40) の値との対応を表している。横軸に式 (4.40), 縦軸に数値計算結果を示しており、斜めの破線によって両者がイコールとなるときに乗るべき線を示している。両者がよく一致している様子が示されており、式 (4.40) が \(k_E \) 以外のパラメータを変更しても成り立つ関係式であることが示された。

4.4.2 ドリフト速度の関係式と既存の結果との整合性

今回与えた正弦波調変電場について、Taylor 展開によって二次勾配電場へと近似することを考える。なぜなら、二次勾配電場によるドリフト速度への量子論的補正は Chan らによって理論的に解析解が得られている [15] ためである。したがって、そのような近似を行ったとき、本研究にて得られたドリフト速度の式 (4.40) が Chan らの得た結果に一致することを以下で確認する。

\(k_E \) が十分小さいとして、スカラーポテンシャル式 (4.2) を Taylor 展開して \(k_E^4 \) 以降を打ち切ると、二次勾配電場を与えるスカラーポテンシャルとして次のように近似で
図 4.2 数値解析結果と $\boldsymbol{E} \times \boldsymbol{B}$ ドリフト速度の半理論式との比較。縦軸は数値解析結果を示し、横軸は対応する計算条件を式 (4.40) に代入して得られた値を示している。斜めの点線は両者が完全に一致したときに乗るべき線を表している。

$$V = -Ey \left(1 - \frac{k_E^2 y^2}{6}\right).$$

このときのドリフト速度について、Chan らの結果によれば量子論的補正を表す項は

$$u_{E \times B}^{\text{QM, Chan}} = -\frac{5}{8} k_E^2 \sigma_B^2 \frac{E}{B}$$

である。一方で、今回得られた式 (4.40) について $J_0 (k_E \rho_0)$ と $\exp \left[-(5/8) (k_E \sigma_B)^2\right]$ を級数展開すると、

$$u_{E \times B} = \frac{E}{B} \left(1 - \frac{1}{4} k_E^2 \rho_0^2\right) - \frac{5}{8} k_E^2 \sigma_B^2 \frac{E}{B} + O \left(k_E^4\right)$$

となる。ここで、O は Landau の記号である。第二項が \hbar を含み、量子論的補正を表す項である。したがって、確かに既存の関係式と一致することが確認できた。
4.4.3 膨張率の電磁場との関係式

位置、力学的運動量、正準運動量の膨張率についても、ドリフト速度のときと同様に数値解析から電磁場との関係式を見いだした。まず、位置の膨張率 \(\frac{d\sigma^2(t)}{dt} \) について、電場の波数 \(k_E \) に対する依存性を調べた結果、次の関係式が成り立つことがわかった。

\[
\frac{d\sigma^2(t)}{dt} = -\left(\frac{3}{2} + \frac{1}{2} \right) k_E \frac{\hbar E v_0}{qB B |w|} J_1(k_E \rho_0) \exp \left[-\frac{5}{8} (k_E \sigma_B)^2 \right]. \tag{4.44}
\]

ここでは、\(J_1(k_E \rho_0) \) は第一種一次ベッセル関数である。3/2 の方が \(x \) 成分、1/2 の方が \(y \) 成分の係数である。また、\(k_E \) に対する依存性について図示したもののが図 4.3 である。図

図 4.3 位置の膨張率 \(\frac{d\sigma^2(t)}{dt} \) の電場の波数 \(k_E \) に対する依存性。解析条件として、磁気長 \(\sigma_B = \sqrt{\hbar/|q|B} \sim 0.777 \) であり。 (A) サイクロトロン半径 \(\rho_0 = m|v_0|/|q|B \sim 1 \) の場合、および (B) \(\rho_0 = 5 \) の場合を示している。横軸が \(k_E \rho_0 \) を表し、縦軸が数値計算より得られた \(\frac{d\sigma^2(t)}{dt} \) を式 (4.44) の第一種一次ベッセル関数 \(J_1(k_E \rho_0) \) と減衰因子 \(\exp \left[-(5/8) (k_E \sigma_B)^2 \right] \) 以外の部分で除した値を表す。プロット点は数値解析より得られた結果であり、破線が \(J_1(k_E \rho_0) \) のみの線、実線がこれに対して減衰因子を掛け合わせたものを表す。
4.3の縦軸は数値解析より得られた位置の膨張率 \(\frac{d\sigma^2_R(t)}{dt} \) を式 (4.44) のペッセル関数と減衰因子を除いた部分で除した値を示している。この図4.3より式 (4.44) が、ドリフト速度の関係式の場合と同じ減衰因子 \(\exp \left[-(5/8) (k_E \sigma_B)^2\right] \) を用いて数値解析結果を再現できていることが見て取れる。また、\(k_E \) 以外の物理量を変化させて数値実験式 (4.44) の妥当性を検討した結果を図4.4に示す。図4.4では、数値実験式 (4.44) が数値解析結果をよく再現できていることが示されており、この関係式の妥当性を確認できた。

力学的運動量の膨張率 \(\frac{d\sigma^2_{nv}(t)}{dt} \)，正準運動量の膨張率 \(\frac{d\sigma^2_{P}(t)}{dt} \) についても同様
に調べた結果、以下の数値実験式を得た。

\[
\frac{d\sigma^2_{\text{num}}(t)}{dt} = - \left(\frac{1}{2} + \frac{1}{2} \right) k_E \hbar q B \frac{v_0}{|v_0|} E J_1 (k_E \rho_0) \exp \left[-\frac{5}{8} (k_E \sigma_B)^2 \right], \quad (4.45)
\]

\[
\frac{d\sigma^2_P(t)}{dt} = - \left(0 + \frac{1}{2} \right) k_E \hbar q B \frac{v_0}{|v_0|} E \frac{v_0}{B} J_1 (k_E \rho_0) \exp \left[-\frac{5}{8} (k_E \sigma_B)^2 \right]. \quad (4.46)
\]

図 4.5, 4.6 は、この二つの膨張率の数値実験式 (4.45), (4.46) のそれぞれについて数値

![Graph](image)

図 4.5 力学的運動量の膨張率について、数値解析結果と数値実験式 (4.45) との比較。

解析結果をよく説明できていることを示している。
図4.6 正準運動量の膨張率について、数値解析結果と数値実験式(4.46)との比較。縦軸が数値解析より得られた正準運動量の膨張率の値を示し、横軸が数値実験式(4.46)に対応する解析条件の物理的パラメータを代入して得られる値を示す。斜めの点線が完全に一致した場合に乗り出す線を表している。

4.4.4 膨張率の関係式と既存の結果との整合性

まず、位置、力学的運動量、正準運動量の膨張率のそれぞれの数値実験式(4.44), (4.45), (4.46) は \(h \rightarrow 0 \) の極限で 0 となる。このことは古典的な観点では膨張率は存在しないことに整合している。また、\(k_E \rightarrow 0 \) のとき、正弦波状電場は一様電場へと帰着する。このときも、それぞれの数値実験式は 0 となり、一様電磁場を印加した場合には膨張率が 0 であることに一致する。

ドリフト速度のときと同様に二次勾配電場の場合へと近似して、Chan らによる理論解
析の結果 [15] と比較する。Chan らによれば二次勾配電場による膨張率は

\[
\frac{d\sigma_r^2(t)}{dt} = -k_E^2 \frac{\hbar m v_0}{q^2 B^2} E, \quad (4.47)
\]

\[
\frac{d\sigma_{mv}^2(t)}{dt} = -k_E^2 \frac{\hbar m v_0}{2 B} E, \quad (4.48)
\]

\[
\frac{d\sigma_P^2(t)}{dt} = -k_E^2 \frac{\hbar m v_0}{4 B} E \quad (4.49)
\]

である。一方で、本研究で数値的に得られたそれぞれの膨張率 (4.44), (4.45), (4.46) を級数展開すると、次のように表現できる。

\[
\frac{d\sigma_r^2(t)}{dt} = -k_E^2 \frac{\hbar}{qB} \frac{m v_0}{qB} E + O(k_E^4), \quad (4.50)
\]

\[
\frac{d\sigma_{mv}^2(t)}{dt} = -k_E^2 \frac{\hbar m v_0}{2 B} E + O(k_E^4), \quad (4.51)
\]

\[
\frac{d\sigma_P^2(t)}{dt} = -k_E^2 \frac{\hbar m v_0}{4 B} E + O(k_E^4). \quad (4.52)
\]

ただし、ここで文献では \(q > 0\) の場合について扱っているため、|q| = q としている。以上より、\(k_E\) が十分小さく与えた正弦波状電場を二次勾配電場で近似したとき、既存の結果と一致することが示された。

4.5 スカラーポテンシャルの重ね合わせとドリフト速度・膨張率の線形性

以上より正弦波状のスカラーポテンシャルによるドリフト速度・膨張率を評価する式が見いだされた。Newton の運動方程式から電場の重ね合わせを考えたとき、解となる粒子の速度も同じように足し合わせで得られることがわかる。しかし、このような線形性について、量子力学的に考えた場合（すなわち, Schrödinger 方程式あるいは Heisenberg の運動方程式から考えた場合）においても成立するかは自明ではない。ここでは、数値解析によってそのような線形性があるか検証した。

71
重ね合わせたスカラーポテンシャルとして,

\[V = -\frac{E_1}{k_{E_1}} \sin k_{E_1} y - \frac{E_2}{k_{E_2}} \sin k_{E_2} y \] \hspace{1cm} (4.53)

を用いる。ここで，\(E_1, E_2 \) は電場の振幅，\(k_1, k_2 \) は電場の波数を表す。二つのスカラーポテンシャルの重ね合わせに対して線形性を示すことができれば，これを繰り返し用いることで任意の数だけ重ね合わせたポテンシャルに対して線形性を示すことができる。

まず，ドリフト速度について線形性が成り立つことを確認する。ドリフト速度の線形性については式 (4.29) から理論的に成立することがわかる。すなわち，式 (4.53) によりつくられる重ね合わせた電場 \((E_1 \cos k_{E_1} y + E_2 \cos k_{E_2} y) e_y \) について，同様にドリフト速度演算子の形式解（式 (4.24)），および具体的評価のための非同次微分方程式 (4.29) を考えてみると，電場の重ね合わせとドリフト速度演算子の間に線形性が保たれていることがわかる。したがって，ドリフト速度については線形性が成り立つと考えられ，以下で数値的にこのことを確認する。

式 (4.53) の第一項のみを与えてドリフト速度を計算した場合 (A)，および第二項のみを与えて計算した場合 (B)，そしてそれらを重ね合わせたポテンシャルである式 (4.53) を用いたときに得られたドリフト速度 (C) について表 4.1 に示す。ここで，(A) および (B) の条

表 4.1 ドリフト速度のスカラーポテンシャルの重ね合わせに対する線形性.

<table>
<thead>
<tr>
<th>Case</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(k_{E_1})</th>
<th>(k_{E_2})</th>
<th>(u_{E \times B} \times 10^{-4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(10^{-4})</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>0.9832558</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>(5 \times 10^{-5})</td>
<td>-</td>
<td>0.5</td>
<td>0.3323709</td>
</tr>
<tr>
<td>A+B</td>
<td>(5 \times 10^{-5})</td>
<td>0.1</td>
<td>0.5</td>
<td>1.3156267</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(10^{-4})</td>
<td>(5 \times 10^{-5})</td>
<td>0.1</td>
<td>0.5</td>
<td>1.3156272</td>
</tr>
</tbody>
</table>

件で得られたドリフト速度の和を取ったものを (A+B) と表記している。この (A+B) のドリフト速度の値と (C) のドリフト速度の値は，(C) の値を真値とみなしたときの相対誤差として \(4 \times 10^{-7} \) 程度の違いしかなく，スカラーポテンシャルの重ね合わせに対して，

72
ドリフト速度に線形性が成り立つと判断した。

同様にして、位置、力学的運動量、正準運動量の膨張率についても線形性が成り立つか確認した。いずれの場合も別々に計算して和を取った膨張率の値 \((A+B)\) と重ね合わせて

表 4.2 膨張率のスカラーボテンシャルの重ね合わせに対する線形性。Case A, B, (A+B), C の具体的条件は表 4.1 に準ずる。

<table>
<thead>
<tr>
<th>Case</th>
<th>(d\sigma_r^2/dt \times 10^{-5})</th>
<th>(d\sigma_{m\nu}^2/dt \times 10^{-6})</th>
<th>(d\sigma_F^2/dt \times 10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.1176163</td>
<td>-0.5811908</td>
<td>-0.2899366</td>
</tr>
<tr>
<td>B</td>
<td>-1.2037388</td>
<td>-5.9718803</td>
<td>-2.9790364</td>
</tr>
<tr>
<td>A+B</td>
<td>-1.3213550</td>
<td>-6.5530711</td>
<td>-3.2689730</td>
</tr>
<tr>
<td>C</td>
<td>-1.3213528</td>
<td>-6.5529788</td>
<td>-3.2689200</td>
</tr>
</tbody>
</table>

条件で計算した値 (C) がよく一致していることが確認できた。それらの差は最も大きい力学的運動量の場合でも相対誤差として \(2 \times 10^{-5}\) を下回る程度であり、膨張率についても、スカラーボテンシャルの重ね合わせに対して線形性が成り立つことが示された。

4.6 電場の振幅、波数についての制限

任意の電場あるいはその電場をつくるスカラーボテンシャルをフーリエ級数展開して、式 (4.53) の形で表現することができれば、以上で示した線形性によって、ドリフト速度・膨張率を評価することができる。ただし、本研究で得られた関係式は、電場の振幅と波数が比較的小さい場合を仮定していた。そのため、取り扱える電場に対して振幅と波数に起因する制限が課せられる。

電場の振幅 \(E\) について,

\[
E \ll |v \times B|
\]

(4.54)

という制限がある。これは理論解析において、古典的導出でも用いられるサイクロトロン運動の軌道が変わらないという仮定のため生じている。ドリフト速度演算子の導出過程に
おいて、電場の振幅の2次以降を無視するという近似であり、より高次の項を取り入れることで電場の振幅の制限を緩和できる。しかし、一般にプラズマ中において、デバイ遮蔽の効果から電場の振幅、あるいは強さは弱められることが予測され、この制限は実際には問題とならないと考えている。

もう一つの制限として、電場の波数 \(k_E \) の制限がある。この制限は、ドリフト速度演算子（式 (4.38)）の期待値の評価を \(k_E^4 \) 以降の項を無視して近似的に行行ったことによる。このとき、具体的には \((k_E \rho_0)^2, (k_E \sigma_B)^2, (k_E y_G)^2 \) を組み合わせて \(k_E \) の4次のオーダーにした項を無視している。一般に磁気長 \(\sigma_B \) の値は小さく、磁場 \(B = 1 \text{T} \) で陽子を考えると \(\sigma_B \approx 10^{-3} \text{m} \) である。そのため、\(k_E \sigma_B \) は一般に小さい値となる。\(k_E y_G \) の値は回転中心が座標系のどこにあるか（言い換えると電場の強度分布に対してどこにあるか）によって様々な値を取りえるが、本研究では量子論的補正に注目するために \(y_G = 0 \) を課している。これは、電場が最も強くなる位置を回転中心とする荷電粒子に注目していると言えることができる。

これらから、波数の制限とは電場の波数 \(k_E \) とサイクロトロン半径 \(\rho_0 \) の積が1より小さい場合、すなわち、

\[
k_E \rho_0 \ll 1
\]

(4.55)

を意味する。言い換えると電場の空間変化長 \(1/k_E \) がサイクロトロン半径 \(\rho_0 \) よりも十分大きい場合である。

このような電場の振幅、波数の制限により、フーリエ級数展開を用いた重ね合わせで、あらゆる電場の影響を厳密に評価するには至らなかったが、電場の空間変化長がサイクロトロン半径よりも十分大きい場合という制限内ならば、任意の電場に対するドリフト速度を量子論的補正を考慮して評価できる。膨張率についても、上述の制限を満たす範囲内での数値実験により見いだされたために同じ制限が課されていると考える。
4.7 核融合プラズマへの適用

本研究で得た、ドリフト速度 (式 (4.40)) と位置の膨張率 (式 (4.44)) に対して典型的な核融合プラズマの諸量を代入して、量子論的効果が問題となりえるか検討する。典型的核融合プラズマとして、粒子種を陽子 (質量 \(m_p = 1.67 \times 10^{-27} \) kg, 電荷 \(q = 1.60 \times 10^{-19} \) C), 密度 \(n = 10^{20} \) m\(^{-3}\), 温度 \(T = 10 \) keV, 磁束密度 \(B = 3 \) T, 電場の振幅は文献 [28] 参考にして \(E = 3000 \) Vm\(^{-1}\), 電場の波数は様々な場合が考えられるがおおざっぱに波長が 1 cm程度の空間変化があるとして \(k_E = 100 \) m\(^{-1}\) を考える。

このとき, 陽子の熱速度はおおよそ 10^6 ms\(^{-1}\) ほどであるから、電場の振幅の制限 \(E \ll |v \times B| \) を満たしている。また、陽子のサイクロトロン半径は 5.9 × 10^{-3} m 程度であるため、波数の制限 \(k_E \rho_0 \ll 1 \) も満たしている。よって、本研究で得たドリフト速度, 膨張率の関係式は適用可能である。

ドリフト速度における量子論的補正とは減衰因子 \(\exp \left[- (5/8) (k_E \sigma_B)^2 \right] \) のことであるが、このときの磁気長 \(\sigma_B \) の値は \(\sigma_B \approx 1.5 \times 10^{-8} \) m と波数に対して極めて小さい。したがって、減衰因子の値は極めて 1 に近い値になる。つまり、核融合プラズマにおいて \(E \times B \) ドリフト速度の量子論的補正は十分無視できる程度であるといえる。これは、古典輸送理論によりドリフト速度がうまく説明できていることに矛盾しない。

一方で、位置の膨張率 \(\overline{d\sigma_F^2(t)/dt} \) について、上述のプラズマの諸量を入れると, \(\overline{d\sigma_F^2(t)/dt} \approx 1.2 \times 10^{-12} \) m\(^2\)s\(^{-1}\) となる。この速さで陽子の不確定性が拡大していき、陽子の波束のサイズが平均粒子間距離 \(\Delta \ell = n^{-1/3} \approx 2.2 \times 10^{-7} \) m へ到達する時間 \(\tau_r \) は,

\[
\tau_r \equiv (\Delta \ell)^2 / \left(\overline{d\sigma_F^2(t)/dt} \right) = 3.7 \text{ ms}
\] (4.56)

と求められる。この値は、古典的な衝突が起きる時間（イオン衝突時間）が 20 ms 程度と評価されることに比較して桁程度小さい。つまり、古典的な衝突が起きるとされる時間ではすでに波動関数の広がり（波束）が隣り合う粒子同士で十分近づいていることを意味する。
し、波動性が無視できない状態となることが示された。

4.8 まとめ

一様磁場および弱い正弦波状電場中の単一荷電粒子について、電磁場のパラメータと、ドリフト速度と位置、力学的運動量、正準運動量の平均的な時間変化率（膨張率）との関係式を明らかにした。ドリフト速度では古典力学より導出されたものに対して量子論的補正として電場の波数と磁気長に依存する減衰因子が掛けられることがわかった。この減衰因子は膨張率の関係式にも存在していた。減衰因子はプランク定数を0へと近づけた極限で1となり古典力学より得られた結果と矛盾しないことを確認した。本研究にて得られたドリフト速度・膨張率の関係式について、電場の波数が小さく、二次勾配電場として近似できる場合について既存の結果と一致することを確認した。

得られた正弦波状電場によるドリフト速度・膨張率は電場の重ね合わせに対して線形に応答することを示した。この線形性により、理論解析における近似のために電場の振幅と波数が小さい場合に限定されるが、フーリエ級数展開を利用することでその範囲で任意の電場に対してのドリフト速度・膨張率の値を評価することができるようになった。

典型的な核融合プラズマ（水素プラズマ）に適用した結果、不均一電場によるドリフト速度への量子論的補正は無視できる程度に小さいこと、および位置の不確定期が時間増加することによって、古典的なイオン衝突時間程度の時間が経つ前に陽子の波束が隣り合う粒子間の距離以上に広がっており、波動性が無視できない状況になっていることが示された。
第5章

結論

5.1 結論

本研究では、電磁場中の単一荷電粒子を対象に量子力学的観点から解析を行い、荷電粒子のドリフト速度における量子論的補正および位置・力学的運動量・正準運動量の分散について周期平均的な増加率（膨張率）を評価した。数値解析的アプローチでは磁場に垂直な平面上の2次元非定常 Schrödinger 方程式を解き、波動関数の時間発展を求め、そこから注目したいドリフト速度および位置・運動量の膨張率を算出した。電磁場や荷電粒子についての物理的なパラメータを様々な変えてドリフト速度・膨張率の値を計算することで電磁場との関係式を明らかにした。理論解析的アプローチでは Schrödinger 方程式と等価である Heisenberg の運動方程式を解くことで、時間発展する演算子としてドリフト速度・膨張率と電磁場との関係を調べた。これらを相補的に用いて以下の二つの場合について、電場の不均一性による量子論的効果について検討した。

一次勾配電場による量子論的効果の検討

電場・磁場がともに空間座標の一次に依存して変化する場合について、そのような電場はドリフト速度の量子論的補正、および膨張率に対して寄与しないことを数値的に示し
た。また、理論解析によりこの一次勾配電場の寄与を厳密に導出し、数値解析の結果の正しさを示した。

正弦波状電場による量子論的効果の検討

空間的に一様な磁場かつ正弦波状の電場の場合について、荷電粒子のドリフト運動、膨張率に与える影響を評価し、これらが電場（スカラーコテンシャル）の重ね合わせに対して線形性を持つか検討した。

理論解析より電場の振幅および波数を小さい場合を仮定してドリフト速度を評価し、これが古典的なドリフト速度と減衰因子の積で表されることを示した。この減衰因子には量子力学的な量であるプランク定数が含まれており、量子論的な補正である。また、この結果を数値解析によって確認した。

数値解析により位置および運動量の膨張率について数値実験的に電磁場との関係式を得た。この結果は電場の波数の小さい場合において、既存の結果と一致していることを確認した。また、ドリフト速度・膨張率の関係式について、正弦波状電場の重ね合わせに対して線形に応答することを数値解析を用いて確認した。この線形性からフーリエ級数展開によって、電場の振幅および波数が小さい領域という限定があるが、任意の電場中の単一荷電粒子のドリフト速度と膨張率を評価することをできるようになった。

本研究で得られた \(\mathbf{E} \times \mathbf{B} \) ドリフト速度・膨張率の関係式に対して典型的な核融合プラズマの諸量を適用した結果、\(\mathbf{E} \times \mathbf{B} \) ドリフト速度における量子論的補正（減衰因子）は極めて小さく無視できること、および膨張率により拡大する陽子の波束（あるいは波動関数の実空間での広がり）が核融合プラズマの平均粒子間距離に到達する時間は 3.7 ms 程度であり、新古典論により与えられる衝突時間 20 ms より短い時間であることが示された。これにより、磁場中の核融合プラズマにおいて、隣り合う荷電粒子同士の波束が互いに重なることが予想され、量子論的検討が必要となることが示された。
総括

本論文では、異常磁場中に運動する单一荷電粒子に対し、不均一性を持つ電場がもたらす、ドリフト速度および不確定性の時間発展に対する寄与を定量的に評価した。その評価式を用いて典型的な核融合プラズマを考慮した場合、ドリフト速度においては量子論的補正は無視できることがわかった。一方で、位置の不確定性の時間増加により陽子の波束が広がっていき、イオン衝突時間より短い時間でプラズマ中の荷電粒子同士の波束が互いに重なりあうことが示され、この波束が重なり合った状態とプラズマの損失の関係を考えるためには量子論的検討の必要性が示唆された。

5.2 今後の展望

本研究で得られたドリフト速度の関係式は電場の振幅 E と波数 k_E が小さい場合を仮定した近似解である。正弦波状電場（ポテンシャル）の重ね合わせにより任意の空間変化を持つ場合についてのドリフト速度・膨張率を評価するという目的に対して、この近似による影響を評価、あるいは解決することが残された課題である。

電場の振幅 E が十分小さいという仮定は、Heisenberg の運動方程式を解く際に、サイクロトロン運動の軌道を電場がない異常磁場の場合で近似したことによる。そのため、E の大きさについての制約は逐次近似法により近似の精度を上げていくことで解決できる。

また、電場の波数 k_E の制約も解決可能と考えている。Heisenberg の運動方程式を解いて、ドリフト速度演算子が $J_0(k_E \hat{p}_0) \cos \left(k_E \hat{p}_x / qB \right)$ であることを導くことができた。この演算子に対して初期波動関数を用いた期待値を取ることで実際のドリフト速度を得るが、この評価にはベッセル関数部分と余弦関数部分を無限級数展開した結果の積に対して期待値を取る必要があり、かなり複雑である。そのため本研究では k_E を小さい場合に限定して近似的に解いた。数値解析によりこのドリフト速度を確認したとき、意外にも k_E
が大きい場合でも一致しているように見える数値解析結果も示されており、ドリフト速度速度演算子の期待値を厳密に評価したとしても近し形になることが期待される。したがって、波数 \(k_E \) についての制限は克服できると考えている。

次に、本研究で得られた理論的・数値的な結果を実際の実験により検証することも考えただけ、本研究で得られたドリフト速度の量子論的補正である減衰因子 \(\exp \left[- (5/8) (k_E \sigma_B)^2 \right] \)
の影響が顕著となるには、磁気長 \(\sigma_B \sim 10^{-8} \text{ m} \) が短いため、磁気長と同程度の数十 nm オーダーのスケールでポテンシャルが空間変化する状況が必要となる。そのような状況を実験室で作り出すのは難しい。核融合プラズマ中のドリフト速度は新古典理論で説明がつくていることが、本研究で得られたドリフト速度への量子論的補正の傍証のひとつと考えることは可能である。

また、本研究は主として核融合プラズマの燃料粒子（水素の同位体イオン）に対する非相対論的量子論での議論に終始したが、将来的により高速な粒子を扱う場合には相対論的量子力学（Dirac 方程式）が必要となることがあるかもしれない。

本研究の取り扱う範囲を超えるが、プラズマ中の荷電粒子の位置の不確定性（波束の広がり）が隣り合う荷電粒子のものと重なったときに何がおきるのか、という点に対する検討は、いずれ磁化プラズマの損失へとつながると考えており、大変重要である。これを考えるためには、プラズマに対して量子流体力学（Quantum Hydrodynamics, QHD）の基板から検討してみることが有用と考えている。QHD による取扱いが成功している代表的なものは超流動や Bose-Einstein 凝縮体などの低温領域の現象であるが、プラズマに対しての取り組みも報告されている [25]。波束が重なった状態とはこの量子流体であると考えて、実際のプラズマの挙動を予言できるのではないだろうか。

以上のように、本研究をプラズマ拡散への適用・応用には課題が残されていたが、まだ始まったばかりであり、克服の可能性は十分にある。
参考文献

[1] 国立研究開発法人量子科学研究開発機構「ITER計画」:
http://www.fusion.qst.go.jp/ITER

[23] 小出昭一郎：「量子力学（I）」（裳華房，初版 1969 年だが 2007 年改訂版第 48 版を参照）.

[24] 坪田誠，ほか：「量子流体力学」（丸善出版，2018）.

謝辞

本論文の作成にあたりまして、多くの人にお世話になりました。ここに感謝を述べさせていただきます。

まず、指導教員である及川俊一准教授には大学生のときから講義も含めて長らくご指導いただきました。大学4年生から博士3年生に至るまで、プログラミングや数値解析の基礎などの基本的なことがから、理論・数値解析結果についての議論や合理的な解釈、論文指導などと幅広く直接の指導をいただき、大変お世話になりました。重ねてお礼申し上げます。本当にありがとうございました。

副査を担当して頂いた、佐々木浩一教授、越崎直人教授、富岡智教授には本論文をより良い形にするための様々なご指摘をいただきました。ここにお礼申し上げます。また、富岡教授には旧プラズマ数理工学研究室時代においても、理論展開や数式変形の確認など丁寧にご指導いただき、本当にためになりました。

松本裕助教にもプラズマ数理工学研究室の時代より長らくお世話になりました。研究室改編後もよく顔を合わせる機会があり、参考となる本の紹介や計算機のOSインストールなどいろいろとアドバイスいただきました。

既に教授をご退職された板垣正文先生にもプラズマ数理時代の修士1年目ごろまで、ゼミでの議論や応用数学の講義などでお世話になりました。ご退職された後においても、節目にご連絡したときなどには励ましの言葉を授けていただき、大変勇気づけられました。

研究室生活をともに過ごした先輩や同期、後輩の皆様へもお礼を申し上げます。研究に関することに限らず、一緒に息抜きをしたりなど、いろんな面で支えられてきました。

そして、これまでの人生を支えてくれました両親と祖父、祖母など家族、親族の皆様にも深く感謝いたします。皆様の援助のおかげでこうしてひとつの節目を迎えることができました。

本論文の作成にあたり、他にも多くの方々にお世話になりました。改めて皆様のご支援に

84
に対しお礼を申し上げます。おかげさまで本論文を書き上げることができました。本当にありがとうございます。

平成31年2月15日

小坂亘