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Abstract

Depending upon the fluid flow and sediment transport conditions, a vari-
ety of structures can develop on the riverbed whenever perturbations are
induced. These include ripples, dunes, antidunes and alternate bars. Among
these, alternate bars are megascale bedforms that arise upon the order of
the channel width and sediment size. Alternate bars can cause riverbanks to
erode, where it is thought that bar formation can trigger incipient meander-
ing. While alternate bars are formed due to bed instability, meandering is
formed due to bank instability.

This study aims to perform linear stability analysis of the formation of
sand bars on the riverbed with the use of a new bank erosion model. The
process-based bank erosion model states that the time variation of bank
junction is proportional to the lateral sediment transport rate at the junction
between the bed and bank regions, which is evaluated by the lateral sediment
transport rate in the bank region and the time variation of the bed elevation
at the junction. Furthermore, the model used in the study accounts for the
variability of the parameters that influence the formation of bars, and to
clarify the effect of bank erosion into the analysis by determining its effect
on bar wavelength.

The St. Venant shallow water equations are used as governing equations
and the process-based bank erosion model is derived to its simple form follow-
ing the assumptions of the study. In addition, a parameter, ε, is introduced
in order to provide a protection that inhibits bank erosion, such as slump
block armouring or the presence of vegetation. From linear stability analy-
sis, the solutions of banks that are in-phase are obtained for the case of bar
instability with and without bank erosion. The growth rates of perturbation
are solved using ε - expansion to consider the effect of the slump block ar-
mouring or the presence of vegetation. The Chebyshev polynomials are also
employed for numerical solution. If the growth rate is positive, the base state
is unstable and it is considered that bars theoretically form; otherwise, the
flat bed is stable and no bars grow.

The results from linear stability analysis are presented in three cases.
Firstly, the parameters such as Froude number, Shields number and bed
friction coefficient are varied. Secondly, the aspect ratio and the parameter
that inhibits bank erosion ε are varied. Thirdly, the phases at the banks



and the spatial distribution of the perturbed variables are presented. In the
first case, the growth rates of perturbation are plotted in the dimensionless
wavenumber - aspect ratio plane, or the k-β plane. It is found that when
the Froude number is increased, the unstable region shifts to a range of
smaller wavenumbers or the wavelength increases. Also, when the bed friction
coefficient is increased, the critical aspect ratio tends to decrease. In a similar
way, when the aspect ratio is increased from β = 10 to 40, the growth rates
are amplified. Meanwhile, when the Shields number is increased, the effect
of bank erosion is minimized; at Shields number equal to 0.06, the effect of
bank erosion is relevant.

For the second case, the growth rates are plotted against k, and β is
varied from 10 to 20. The parameter that inhibits bank erosion, ε, is also
varied from 0 to 1. As a general observation, it is found that the contours
shift to a range of smaller wavenumbers and the maximum growth rates are
damped when ε is increased. On the other hand, for β = 10 and 20, the phase
diagrams and the spatial distribution diagrams reveal that the perturbation
variable for the streamwise flow velocity is out-of-phase with the perturba-
tion variable for the lateral flow velocity, while the perturbation variable for
the flow depth is out-of-phase with the perturbation variable for the bed el-
evation. The phase diagrams also show that the perturbation progresses in
the downstream direction in a periodic manner, and that left bank and the
right bank perturbations are in-phase with each other, confirming that the
solution is for in-phase banks.

In order to validate the theoretical results, a comparison is performed for
the calculated wavelength values with wavelength values obtained from ex-
perimental studies on bar formation. The dominant wavenumber correspond-
ing to the maximum growth rate of perturbation as obtained from stability
analysis is selected as the representative wavelength for actual comparison of
bar wavelength. It is found that the calculated wavelength values generally
underestimate the observed wavelength values. In addition, the experimen-
tal data obtained for both erodible and non-erodible banks are plotted in
the instability diagram generated for bar instability with and without bank
erosion, respectively. It is revealed that the experimental data fall within the
stable region. It is suggested that the aspect ratio be increased to a value
higher than the critical aspect ratio obtained from the analysis.

The study concludes that the aspect ratio, Froude number, Shields num-
ber, bank slopes and roughness coefficient are the parameters that influence
the formation of bars. It is found that bars are more likely to develop at
low aspect ratios when the bed friction coefficient is increased. The study
also reveals that the Froude number and the parameter ε that inhibits bank
erosion influence the solution for bar instability by increasing the wavelength

3



of the bars, while increasing the aspect ratio and the bank slopes causes the
maximum growth rates of perturbation to be amplified. Since the theoretical
result can provide a rough estimate of the actual values of bar wavelength,
a comparison of the theoretical and experimental results is performed. It
is revealed that the observed wavelength is twice as large as the calculated
wavelength values. The predicted results from the analysis generally under-
estimate the results of the experiment. It is possible that in the scheme of
linear stability analysis, the instability process first selects the wavenumber
and then enhances the growth rates of the bars; hence, bar formation in the
stability analysis is slow.
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Chapter 1

Introduction

Depending upon the fluid flow and sediment transport conditions, a variety of
structures can develop on the riverbed whenever perturbations are induced.
These include ripples, dunes, antidunes, and alternate bars. While the first
three types of bedform provide a significant resistance to the flow by the
river bed, control the river depth, and are periodically formed [1], alternate
bars can exist together with dunes and are often formed as isolated features.
These megascale bedforms arise upon the order of the channel width.

Alternate bars can cause river banks to erode; the river banks themselves
contribute to the deformation of the channel planform through bank erosion.
In this context, alternate bars allow for the onset of meandering. Meander-
ing is considered to be a process of exchange of sediments from the caving
banks to the depositing bars, and from the consequent local overloading and
deposition of the heavier sediments as they move along the bed [2]. Fully-
developed meandering requires a considerable balance between erosion and
deposition from the banks [1].

Meandering in which originally straight river channels tend to become
winding river channels over time has been studied as one of the most inter-
esting processes among river evolution phenomena. Kinoshita [3] suggests
that the formation of alternating sandbars triggers meandering from analy-
sis of a great number of aerial photographs of meandering rivers. Fig. 1.1
shows the conceptual diagram of such a process. The formation of alternat-
ing sandbars causes a water impact at the downstream edge of the sandbar
(a). At the point of the water impact, bank erosion occurs (b), leading to
the development of meandering (c).

Meanwhile, many theoretical studies have been done on the development
of meandering and the formation of fluvial bars. If a small sinusoidal distur-
bance is imposed to the planar shape of river channels, the curvature of the
river channel causes a deviation of the flow towards the outer bank, erosion
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talweg

(a) (b) (c)

Figure 1.1: Conceptual diagram of meandering induced by fluvial bars.The
formation of alternating sandbars causes a water impact at the downstream
edge of the sandbar (a). At the point of the water impact, bank erosion
occurs (b), leading to the development of meandering (c).

on the outer bank and accumulation on the inner bank occur, and mean-
dering makes further development under some conditions. Theoretically, the
initial development of bars can be explained in the context of linear stability
analysis. In linear stability analysis, the temporal growth rate, migration
speed, wavelength and spatial damping factor can be obtained. Although
the values of the amplitude cannot be obtained, linear stability analysis still
provides information on the temporal and spatial change of the amplitude [4].
A few studies employing linear stability analysis have also been conducted
in order to obtain the characteristics of river meanders. Ikeda, Parker, Sawai
[5] provided a first theoretical explanation on the mechanism of meander-
ing as a shear instability on both banks in terms of linear stability analysis.
Afterwards, the influence of interaction and resonance with fluvial bars has
been taken into account from the condition satisfying the continuity of sed-
iment [6], and the influence of secondary flow due to meandering has been
included into the linear stability analysis [7]. According to these theories,
the development of meandering and the formation of sand bars interact with
each other. Meanwhile, in other studies, stability analysis techniques were
restricted to erodible beds and fixed banks [8], such as the works of Callander
[9] and Colombini et al. [10] where the latter both considered the linear and
the weakly non- linear theories. Recently, however, the lateral migration of
the channel has been included in order to model erodible banks. Incorpo-
rating the channel migration is important in order to better understand the
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role of bank erosion in the lateral channel shift that can influence meander-
ing. In one study, Shimada et al. [11] performed linear stability analysis on
a straight channel with erodible river banks and found that bars will have
longer wavelengths than the ones produced by previous bar theories. It was
also found that Froude number significantly affects bar wavelength. In an-
other study, Iwasaki et al. [12] performed both linear stability analysis and
numerical simulation and focused on how the modeling of secondary flow af-
fects free bar morphodynamics for straight open channels. Lastly, Uddin et
al. [13] also employed linear stability analysis to study the stability of bars
by employing the process-based bank erosion model by Parker et al. [14].
However, their results show that the perturbation is unstable everywhere in
the instability diagram.

While meandering is caused by the bank instability due to the curvature
of the planar geometry of a river channel, however, the formation of sand
bars is caused by the bed instability between flow and the riverbed. It fol-
lows that they are basically different instability. If all meandering is to be
explained by the bank instability, how should we understand the development
of meandering originated from the sand bars that Kinoshita [3] observed?

In this study, we perform linear stability analysis of meandering induced
by the formation of sandbars on the riverbed with the use of a new bank
erosion model on the basis of the idea that meandering is not always caused
by the bank instability, and that meandering is sometimes triggered by the
formation of fluvial sand bars. The study also aims to determine the influence
of varying the aspect ratio, Shields number, Froude number, bed friction
coefficient and bank slopes to the instability of bars by evaluating their effect
on bar wavelength and maximum growth rate of perturbation. Furthermore,
the effect of bank erosion is clarified by varying a parameter that retards
bank erosion.

Alternate bar studies can help provide relevant information on their hy-
draulic characteristics, such as the conditions to which they form, geometri-
cal properties, migration velocities [15] that can aid in river restoration mea-
sures. These measures may include providing vegetation, increasing cohesion
to control bank erosion, and any other means of river bank stabilization. The
relevance of this study is realized by providing a representative wavelength
that is thought to provide a crude estimate of bar wavelengths observed in
nature, and to provide a range of aspect ratios that may predict the growth
of bars for a given set of flow and sediment parameters to be utilized in an
experimental set-up.
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Chapter 2

Formulation

2.1 Flow and bed evolution

In this study, we perform linear stability analysis of fluvial bars in a channel
with its banks subject to erosion as shown in Fig. 2.1. At the linear level,
the lateral length scales of bars and bank erosion can be assumed to be on
the same order. Flow in such a situation can be described by the shallow
water equations and the continuity equation written in the form

Ũ
∂Ũ

∂x̃
+ Ṽ

∂Ũ

∂ỹ
= −g

(
∂H̃

∂x̃
+
∂Z̃

∂x̃

)
− T̃bx

ρH̃
(2.1)

Ũ
∂Ṽ

∂x̃
+ Ṽ

∂Ṽ

∂ỹ
= −g

(
∂H̃

∂ỹ
+
∂Z̃

∂ỹ

)
− T̃by

ρH̃
(2.2)

∂ŨH̃

∂x̃
+
∂Ṽ H̃

∂ỹ
= 0 (2.3)

where x̃ and ỹ are the streamwise and lateral coordinates respectively, Ũ
and Ṽ are the x̃ and ỹ components of the velocity respectively, H̃ and Z̃
are the flow depth and the bed elevation respectively, T̃bx and T̃by are the
x̃ and ỹ components of the bed shear stress respectively, ρ is the density of
water (= 1, 000 kg/m3), and ˜ denotes dimensional variables, and are later
removed to denote non-dimensional equivalents. The x̃ and ỹ components of
the bed shear stress T̃bx and T̃by are written, respectively, in the form(

T̃bx, T̃by
)

= T̃b
(
Ũ , Ṽ

) (
Ũ2 + Ṽ 2

)−1/2
(2.4)

where T̃b is the total bed shear stress, written in the form

T̃b = ρCf
(
Ũ2 + Ṽ 2

)
(2.5)
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Figure 2.1: Conceptual diagram of the channel and coordinates.

where Cf is the bed friction coefficient, which is known to be a weak function
of the flow depth relative to the equivalent roughness height, but is assumed
to be a constant for simplicity.

The time variation of the bed elevation can be described by

(1− λp)
∂Z̃

∂t̃
+ ∇̃ · Q̃s = 0 (2.6)

where λp is porosity, ∇̃ = (∂/∂x̃, ∂/∂ỹ), and Q̃s is the sediment transport
vector, and is expressed with the use of the angle between the direction of
the sediment transport and the x̃ axis, φ, such that

Q̃s =
(
Q̃s,x, Q̃s,y

)
= Q̃s (cosφ, sinφ) (2.7)

where t̃ is time, and Q̃s is the total sediment transport rate per unit width.
Parker et al. [18] have found that Bagnold’s hypothesis is not valid when

the the bed has a slope in the lateral direction, and proposed a sediment
transport formula applicable to the case with arbitrary bed slopes based on
the balance of the forces acting on particles on the bed. The formula pro-
posed by Parker et al. written in a vectorial form, which cannot describe the
sediment transport rate in an explicit manner, is inconvenient for analytical
purposes. We employ the following linearized equation assuming that the
bed slope is sufficiently small:

Q̃s = K (θ − θc)
(
θ1/2 − 0.7θ1/2c

)
(2.8a)

sinφ =
Ṽ√

Ũ2 + Ṽ 2
− r

θ1/2
∂Z̃

∂ỹ
(2.8b)
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Here K is an empirical constant (= 7.67), and θ is the non-dimensional bed
shear stress and is defined with the use of the dimensional bed shear stress
by

θ =
T̃b

ρRsgd̃s
(2.9)

where Rs is the submerged specific gravity (= 1.65), g is the gravity accel-
eration (= 9.8 m/s2), and d̃s is the sediment diameter. In addition, θc is the
non-dimensional critical bed shear stress and is assumed to be a constant of
0.047, and r is an empirical constant between 0.3 and 0.5. Parker et al.’s
formula reduces to the same form as the existing formula when the bed slope
is sufficiently small.

2.2 Base state

The base state for linear stability analysis is the normal flow condition, in
which the streamwise velocity Ũ and the flow depth H̃ are constant in time
and space, the lateral velocity Ṽ vanishes, and the bed elevation Z̃ does not
change from the original bed elevation with a constant slope in the streamwise
direction. When the streamwise bed slope is denoted by S, the bed elevation
Z̃ can be written in the form

Z̃n = Z̃0 − Sx̃ (2.10)

where the subscript n denotes variables in the normal flow condition, and
Z̃0 is the bed elevation when x̃ = 0. With the use of (2.4), (2.5) and (2.10),
(2.1) reduces to

gS − Cf Ũ
2
n

H̃n

= 0 (2.11)

The continuity equation (2.3) can be easily integrated to be

ŨnH̃n = Q̃ (2.12)

where Q̃ is the flow discharge per unit width. Solving (2.11) and (2.12), we
obtain

Ũn =

(
gQ̃S

Cf

)1/3

, H̃n =

(
CfQ̃

2

gS

)1/3

(2.13)

2.3 Normalization

We introduce the normalization written in the form

(x̃, ỹ) = B̃(x, y), (Ũ , Ṽ ) = Ũn(U, V ), (2.14a, b)
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(H̃, Z̃) = H̃n(H,Z), (T̃bx, T̃by) = ρŨ2
n (Tbx, Tby) (2.14c, d)

Q̃s =
√
Rsgd̃s

1/2

Qs, t̃ =
(1− λp)H̃nB̃√

Rsgd̃3s

t (2.14e, f)

where B̃ is the half width of the channel. With the use of the above normal-
ization, the flow equations (2.1)–(2.3) are normalized to be

U
∂U

∂x
+ V

∂U

∂y
= −F−2

(
∂H

∂x
+
∂Z

∂x

)
− βTbx

H
(2.15)

U
∂V

∂x
+ V

∂V

∂y
= −F−2

(
∂H

∂y
+
∂Z

∂y

)
− βTby

H
(2.16)

∂UH

∂x
+
∂V H

∂y
= 0 (2.17)

where F and β are the Froude number and the aspect ratio, respectively,
defined by

F =
Ũn√
gH̃n

(2.18)

β =
B̃

H̃n

(2.19)

The non-dimensional bed shear stress vector is

(Tbx, Tby) = Tb (U, V )
(
U2 + V 2

)−1/2
(2.20)

Tb = Cf
(
U2 + V 2

)
(2.21)

The equation describing the time variation of the bed elevation can be
normalized in the form

∂Z

∂t
+∇ ·Qs = 0 (2.22)

where ∇ = (∂/∂x, ∂/∂y), and

Qs = (Qs,x, Qs,y) = Qs (cosφ, sinφ) (2.23)

Qs = K (θ − θc)
(
θ1/2 − 0.7θ1/2c

)
(2.24a)

sinφ =
V√

U2 + V 2
− r

βθ1/2
∂Z

∂y
(2.24b)
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Figure 2.2: Conceptual model of bank erosion.

2.4 Bank erosion model

Modifying and improving the bank erosion models proposed by Ikeda [5] and
Hasegawa [17], Parker et al. [14] have proposed the following model.

With the use of the coordinates attached to the center line of a channel,
the sediment continuity equation can be written in the form

(1− λp)
(
1 + C̃ñ

) ∂Z̃
∂t̃

= −∂Q̃s,s

∂s̃
− ∂

∂ñ

[(
1 + C̃ñ

)
Q̃s,n

]
(2.25)

where s̃ and ñ are the coordinates tangential and normal to the center line
of the channel respectively, Q̃s,s and Q̃s,n are the s̃ and ñ components of the
sediment transport rate respectively, and C̃ is the curvature of the center
line. The above equation holds in the bed region, and the equation in the
eroding bank and depositing bank regions can be written with the subscripts
e and d respectively in the form

(1− λp)
(
1 + C̃ñ

) ∂Z̃e
∂t̃

= −∂Q̃se,s

∂s̃
− ∂

∂ñ

[(
1 + C̃ñ

)
Q̃se,n

]
(2.26)

(1− λp)
(
1 + C̃ñ

) ∂Z̃d
∂t̃

= −∂Q̃sd,s

∂s̃
− ∂

∂ñ

[(
1 + C̃ñ

)
Q̃sd,n

]
(2.27)

Integrating (2.26) over the whole eroding bank region, we obtain the
equation of the form

(1− λp)
∫ ñee

ñe

(
1 + C̃ñ

) ∂Z̃e
∂t̃

dñ = −
∫ ñee

ñe

∂Q̃se,s

∂s̃
dñ−

∫ ñee

ñe

∂

∂ñ

[(
1 + C̃ñ

)
Q̃se,n

]
dñ

(2.28)
where ñe is the ñ coordinate at the junction between the bed and eroding
bank regions, and ñee is the ñ coordinate of the outer bound of the eroding
bank region. Note that both ñe and ñee are functions of time, and therefore,
the eroding bank region always ranges between ñ = ñe and ñee. Assuming
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the lateral bed slope in the eroding bank region is a constant Se, the bed
elevation Z̃e can be written in the form

Z̃e
(
s̃, ñ, t̃

)
= Z̃

(
s̃, ñe(t), t̃

)
+ Se (ñ− ñe) (2.29)

Taking the time derivative of the above equation, we obtain

∂Z̃e
∂t̃

=
∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñe

+
∂Z̃

∂ñ

∣∣∣∣∣
ñ=ñe

∂ñe
∂t̃
− Se

∂ñe
∂t̃

=
∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñe

+
∂Z̃

∂ñ

∣∣∣∣∣
ñ=ñe

˙̃ne − Se ˙̃ne

=
∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñe

− (Se + Stbe) ˙̃ne (2.30)

where

Stbe = − ∂Z̃

∂ñ

∣∣∣∣∣
ñ=ñe

(2.31)

The physical implication of the above equation is illustrated in Fig. 2.3. As
shown in this figure, the relation between the time variation of the location
of the eroding bank ˙̃ne and the time variation of the bed elevation where
ñ = ñe is

−∂Z̃e
∂t̃

∆t̃ =
(
Se ˙̃ne∆t̃−

∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñe

∆t̃
)

+ Stbe ˙̃ne∆t̃

= − ∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñe

∆t̃+ (Se + Stbe) ˙̃ne∆t̃ (2.32)

This is equivalent to (2.30).
Substituting (2.30), we obtain the left hand side of (2.28) in the form

(1− λp)
∫ ñee

ñe

(
1 + C̃ñ

) ∂Z̃e
∂t̃

dñ = (1− λp) B̃e

(
1 + C̃ ¯̃ne

) [ ∂Z̃
∂t̃

∣∣∣∣∣
ñ=ñe

− (Se + Stbe) ˙̃ne

]
(2.33)

The first term of the right hand side of (2.28) becomes

−
∫ ñee

ñe

∂Q̃se,s

∂s̃
dñ = − ∂

∂s̃

∫ ñ=ñee

ñ=ñe

Q̃se,sdñ+
∂ñee
∂s̃

Q̃se,s

∣∣∣
ñ=ñee

− ∂ñe
∂s̃

Q̃se,s

∣∣∣
ñ=ñe

(2.34)
The sediment transport in the streamwise direction at the outer bound of
the eroding bank region Q̃se,s|ñ=ñee should vanish, and therefore, the above
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Figure 2.3: Physical implication of (2.30).

equation reduces to

−
∫ ñee

ñe

∂Q̃se,s

∂s̃
dñ = − ∂

∂s̃

∫ ñ=ñee

ñ=ñe

Q̃se,sdñ−
∂ñe
∂s̃

Q̃se,s

∣∣∣
ñ=ñe

(2.35)

The second term of the right hand side of (2.29) becomes

−
∫ ñee

ñe

∂

∂ñ

[(
1 + C̃ñ

)
Q̃se,n

]
dñ = −

(
1 + C̃ñee

)
Q̃se,n

∣∣∣
ñ=ñee

+
(
1 + C̃ñe

)
Q̃se,n

∣∣∣
ñ=ñe

(2.36)
The sediment transport through the outer bound of the eroding bank region
Q̃se,n|ñ=ñee should vanish, and therefore, the above equation reduces to

−
∫ ñee

ñe

∂

∂ñ

[(
1 + C̃ñ

)
Q̃se,n

]
dñ =

(
1 + C̃ñe

)
Q̃se,n

∣∣∣
ñ=ñe

(2.37)

Combining (2.33), (2.35) and (2.37), we obtain the following equation:

(1− λp) B̃e

(
1 + C̃ ¯̃ne

) [ ∂Z̃
∂t̃

∣∣∣∣∣
ñ=ñe

− (Se + Stbe) ˙̃ne

]
= − ∂

∂s̃

∫ ñ=ñee

ñ=ñe

Q̃se,sdñ−
∂ñe
∂s̃

Q̃se,s

∣∣∣
ñ=ñe

+
(
1 + C̃ñe

)
Q̃se,n

∣∣∣
ñ=ñe

(2.38)

Solving the above equation for ˙̃ne, we obtain

∂ñe
∂t̃

=
1

Se + Stbe

 ∂
∂s̃

∫ ñee
ñe

Q̃se,sdñ+
(
1 + C̃ñe

)
Q̃fe,j

(1− λp)B̃e(1 + C̃ ˜̄ne)
+
∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñe

 (2.39)

where Qfe,j is the sediment transport rate in the direction normal to the
bank line n = ne from the eroding bank to bed regions, written in the form(

1 + C̃ñe
)
Q̃fe,j =

∂ñe
∂s̃

Q̃se,s

∣∣∣
ñ=ñe

−
(
1 + C̃ñe

)
Q̃se,n

∣∣∣
ñ=ñe

(2.40)

19



The bed elevation in the depositing bank region Z̃d is

Z̃d = Z̃(s̃, ñd(t̃), t̃)− Sd(ñ− ñd) (2.41)

Therefore, the time variation of the bed elevation in the depositing bank
region is

∂Z̃d
∂t̃

=
∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñd

+
∂Z̃

∂ñ

∣∣∣∣∣
ñ=ñd

˙̃nd + Sd ˙̃nd

=
∂Z̃

∂t̃

∣∣∣∣∣
ñ=ñd

+ (Sd − Stbd) ˙̃nd (2.42)

where Sd is the lateral slope in the depositing bank region, and Stbd is the
lateral bed slope where ñ = ñd in the bed region, defined by

Stbd = − ∂Z̃

∂ñ

∣∣∣∣∣
ñ=ñd

(2.43)

Integrating (2.27) from ñee to ñe, we obtain

(1− λp)
∫ ñd

ñdd

(
1 + C̃ñ

)
dñ

 ∂Z̃
∂t̃

∣∣∣∣∣
ñ=ñd

+ (Sd − Stbd) ˙̃nd


= −

∫ ñd

ñdd

∂Q̃sd,s

∂s̃
dñ−

∫ ñd

ñdd

∂

∂ñ

[(
1 + C̃ñ

)
Q̃sd,n

]
dñ

= − ∂

∂s̃

∫ ñd

ñdd

Qsd,sdñ+
(
1 + C̃ñd

)
Q̃fd,j (2.44)

where Q̃fd,j is the sediment transport rate in the direction normal to the line
of the depositing bank from the bed to depositing bank regions, written in
the form(

1 + C̃ñd
)
Q̃fd,j =

∂ñd
∂s̃

Q̃sd,s

∣∣∣
ñ=ñd

−
(
1 + C̃ñd

)
Q̃sd,n

∣∣∣
ñ=ñd

(2.45)

Solving (2.44) for ˙̃nd, we obtain

∂ñd
∂t̃

= − 1

Sd − Stbd

 ∂Z̃
∂t̃

∣∣∣∣∣
ñ=ñd

+
∂
∂s̃

∫ ñd
ñdd

Q̃sd,s dñ− (1 + C̃ñd)Q̃fd,j

(1− λp)B̃d(1 + C̃ ˜̄nd)

 (2.46)

where ˜̄nd is (ñd + ñdd)/2, and B̃d is the width of the depositing bank region.
In (2.39) and (2.46), while the sediment transport in the ñ direction

causes bank erosion directly, the s̃ derivative of the sediment transport in the
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Figure 2.4: Right bank evolutions. (a) Apparent bank erosion due to bed
aggradation, (b) apparent bank deposition due to bed degradation, (c) bank
deposition due to sediment transport, and (d) bank erosion due to sediment
transport.

s̃ direction causes bank erosion. In the linear stability analysis performed in
this study, the variation of the sediment transport rate in the s̃ direction is
expected not to be so large, and therefore, it should not make a significant
contribution to bank erosion. Thus, we ignore the terms ∂

(∫ ñee
ñe

Q̃se,sdñ
)
/∂s̃

and ∂
(∫ ñdd
ñd

Q̃sd,sdñ
)
/∂s̃ in (2.39) and (2.46). In addition, the bed slope

in the ñ direction in the eroding and depositing bank regions Se and Sd
respectively are much larger than the bed slope in the ñ direction at the
junction points in the bed region Stbe and Stbd. Ignoring Stbe and Stbd, and
normalizing (2.39) and (2.46), we obtain the following equations:

∂ne
∂t

=
1

βSe

[
(1 + Cne)Qfe,j

Be(1 + Cn̄e)
+
∂Z

∂t

∣∣∣∣
n=ne

]
=

1 + Cne
1 + Cn̄e

Qfe,j +
1

βSe

∂Z

∂t

∣∣∣∣
n=ne

(2.47)
∂nd
∂t

=
1

βSd

[
(1 + Cnd)Qfd,j

Bd(1 + Cn̄d)
− ∂Z

∂t

∣∣∣∣
n=nd

]
=

1 + Cnd
1 + Cn̄d

Qfd,j −
1

βSd

∂Z

∂t

∣∣∣∣
n=nd

(2.48)
where we assume β = B̃/H̃n, Se = H̃n/B̃e, Sd = H̃n/B̃d and Be = B̃e/B̃, and
therefore, βSeBe = B̃/H̃n · H̃n/B̃e · B̃e/B̃ = 1, and βSdBd = B̃/H̃n · H̃n/B̃d ·
B̃d/B̃ = 1. These relations have been used to simplify the above equations.

We apply the above equations to the right and left banks. Note that the
ỹ axis is directed from right to left as shown in Fig. 2.2, which is opposite
to the ñ axis cosidered in this section. The time variation of the right bank
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location R is described in the form

∂R

∂t
= −1 + CR

1 + CR̄
QsR,j −

1

βSR

∂Z

∂t

∣∣∣∣
y=R

(2.49)

where SR is the lateral slope of the right bank, QsR,j is the sediment transport
rate from the right bank to bed regions, BR is the width of the right bank,
and R̄ is R +BR/2.

Let us see the physical implication of the above equation by considering
a simple example in detail. The conceptual diagram of right bank evolutions
is shown in Fig. 2.4, in which the channel cross-section around the right
bank at some time t is drawn by the solid line while that at t+ ∆t is drawn
by the dashed line. In order to clarify the role of bed elevation changes at
the junction point between the right bank and bed regions, we assume that
the sediment transport vanishes (QsR,j = 0) as illustrated in Fig. 2.4(a) and
(b). When the bed elevation at the junction point increases (Ż(R) > 0),
it appears that the position of the right bank moves to the right (negative
direction, Ṙ < 0). When the bed elevation at the junction point decreases
(Ż(R) < 0) however, it appears that the position of the right bank moves
to the left (positive direction, Ṙ > 0). As such, R increases with decreasing
Z(R) while R decreases with increasing Z(R). This can be properly described
by (2.49).

The role of the lateral sediment transport can be clarified in Fig. 2.4(c)
and (d), in which the bed elevation at the right bank line is assumed not
to change (Ż(R) = 0). As illustrated in Fig. 2.4(c), the right bank ad-
vances (Ṙ > 0) when QsR,j is directed from the left to the right (QsR,j < 0).
Meanwhile, the right bank retreats (Ṙ < 0) when QsR,j is directed from the
right to the left (QsR,j > 0) as shown in (d). Positive and negative QsR,j

correspond to negative and positive Ṙ. This can be also described by (2.49).
The time evolution of the location of the left bank L is described in the

form
∂L

∂t
= −1 + CL

1 + CL̄
QsL,j +

1

βSL

∂Z

∂t

∣∣∣∣
y=L

(2.50)

where SL is the lateral slope in the left bank region, QsL,j is the sediment
transport rate from the bed to left bank regions, BL is the width of the
left bank, and L̄ is L + BL/2. The roles of the bed elevation change at
the junction point and the sediment transport through the junction point
are demonstrated in Fig. 2.5. In (a) and (b), the sediment transport rate
is assumed to vanish. Then, the bed aggradation (Ż(L) > 0) results in
the apparent bank retreat (L̇ > 0) as shown in Fig. 2.5(a), and the bed
degradation (Ż(L) < 0) results in the apparent bank advance (L̇ < 0) as
shown in Fig. 2.5(b). In (c) and (d), the bed elevation at the junction
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Figure 2.5: Left bank evolutions. (a) Apparent bank erosion due to bed
aggradation, (b) apparent bank deposition due to bed degradation, (c) bank
deposition due to sediment transport, and (d) bank erosion due to sediment
transport.

point is assumed not to change. In that case, the left bank retreats (L̇ > 0)
when the sediment transport is directed from the left bank to bed regions
(QsL,j < 0) while the left bank advances (L̇ < 0) when the sediment transport
is directed from the right to the left (QsL,j > 0). These processes can be
properly described by (2.50) as well.

The sediment transport rate from the right bank to bed regions QsR,j,
and from the bed to left bank regions QsL,j, are assumed to be described by
an equation of the form similar to (2.23) and (2.24). In order to apply to the
bank regions, we modify (2.23) and (2.24) into the form

QsR,j = εK(θ − θn)
(
θ1/2 − 0.7θ1/2n

)( V

U2 + V 2
+

r

βθ1/2
SR

)∣∣∣∣
y=R

(2.51)

QsL,j = εK(θ − θn)
(
θ1/2 − 0.7θ1/2n

)( V

U2 + V 2
− r

βθ1/2
SL

)∣∣∣∣
y=L

(2.52)

where the non-dimensional bed shear stress in the base state normal flow
condition θn is used in place of the non-dimensional critical bed shear stress
θc. We employ a crude assumption that the channel is in a critical state so
that the sediment transport takes place in the bank regions if the bed shear
stress is even slightly larger than that in the base state.

In addition, the sediment transport does not cease even if the bed shear
stress is less than the critical shear stress, and changes direction of the sed-
iment transport. Let us ignore the lateral velocity V because it vanishes in
the bank region as described later. When θ > θn, QsR,j and QsL,j are pos-
itive and negative, respectively, resulting in bank erosion in the both cases.
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When 0.49θn < θ < θn however, QsR,j and QsL,j are negative and positive,
respectively, resulting in bank deposition in the both cases. Though (2.51)
and (2.52) cannot describe the bank deposition, we extend the scope of these
equations and apply them to the case of deposition.

Furthermore, ε is a parameter describing the effect of some protection
for erosion such as slump block and vegetation. Parker et al. [14] concluded
that, if bank erosion on a bank proceeds too fast, deposition on the other
bank cannot catch up with the erosion. Then, the channel widening does
not stop, and a constant width cannot be maintained. In order to keep a
constant channel width, bank erosion should be sufficiently slowed down by
some protection such as slump blocks and vegetation. Parker et al. employ
a coefficient taking a value between 0 and 1 to introduce the effect of slump
blocks composed of fine cohesive material covering the surface of flood plains.
The coefficient ε is also assumed to take a relatively small value herein.

2.5 Boundary conditions

Assuming that the locations of the banks are functions of time, we denote
the y coordinates of the right and left banks by R and L, respectively. Flow
cannot penetrate the both banks, so that normal component of the flow must
vanish. That is, we have the relations of the form

U · eNR = 0 at y = R (2.53)

U · eNL = 0 at y = L (2.54)

Note that the quasi-steady approximation has been used as in the case of
the shallow water equations. In the above equation, U is the velocity vector
(= (U, V )). In addition, eNL and eNR are the unit vector normal to the left
and right banks respectively, written in the form

eNL =
(−∂L/∂x, 1)√
1 + (∂L/∂x)2

, eNR =
(−∂R/∂x, 1)√
1 + (∂R/∂x)2

(2.55a, b)

While, when the banks are immobile, the sediment transport rate through
the banks should vanish, when the banks move due to erosion and deposition,
it does not vanish. The boundary conditions at the right and left banks,
respectively, read

Qs(R) · eNR = QsR,j (2.56)

Qs(L) · eNL = QsL,j (2.57)
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Chapter 3

Linear stability analysis

3.1 Asymptotic expansions

All the variables are expanded into the base state and the perturbation im-
posed on the base state. Assuming that the perturbation is a sinusoidal form,
which has the amplitude A, the wavelength k, and the complex angular fre-
quency ω, we introduce the following asymptotic expansions:

(U, V,H, Z,R, L) = (1, 0, 1,−βSx,−1, 1)+A (U1, V1, H1, Z1, R1, L1) ei(kx−ωt)+c.c.
(3.1)

Here c.c. denotes the complex conjugate of the preceding terms, and Z̃0/H̃n is
assumed to vanish without losing generality. In the linear stability analysis,
the very beginning of the growth process of small perturbation is studied,
and therefore, the amplitude of the perturbation A is assumed to be infinites-
imally small. Substituting the above equations into (2.15)–(2.17), and (2.22),
and linearizing with respect to the small parameter A, we obtain equations
on each order of A. At O(A), we obtain

a1U1 + a2H1 + a3Z1 = 0 (3.2)

a4V1 + a5
dH1

dy
+ a5

dZ1

dy
= 0 (3.3)

a6U1 +
dV1
dy

+ a6H1 = 0 (3.4)

−iωZ1 + a7U1 + a8
dV1
dy

+ a9
d2Z1

dy2
= 0 (3.5)

where

a1 = ik+2βCf , a2 = ikF−2−βCf , a3 = ikF−2, a4 = ik+βCf (3.6a–d)
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a5 = F−2, a6 = ik, a7 = ikKθ1/2n

[
3θn − θ1/2c

(
1.4θ1/2n + θ1/2c

)]
(3.6e–g)

a8 = K (θn − θc)
(
θ1/2n − 0.7θ1/2c

)
, a9 = −K (θn − θc)

(
θ1/2n − 0.7θ1/2c

) r

βθ
1/2
n

(3.6h, i)
where θn is the Shields number defined by

θn =
Cf Ũ

2
n

Rsgd̃s
(3.7)

The boundary conditions (2.53) and (2.54) reduce to

U · eNR|y=R = −U(R)
∂R

∂x
+V (R) = A [−ikR1 + V1(−1)] exp [i(kx− ωt)]+c.c. = 0

(3.8)

U · eNL|y=L = −U(L)
∂L

∂x
+V (L) = A [−ikL1 + V1(1)] exp [i(kx− ωt)]+c.c. = 0

(3.9)
From the above equations, we obtain the following boundary conditions at
O(A):

ikR1 − V1(−1) + c.c. = 0 (3.10)

ikL1 − V1(1) + c.c. = 0 (3.11)

The boundary conditions for the continuity of the sediment transport
rate at the junction between the bank and bed regions can be reduced to the
following. The left hand sides of (2.56) and (2.57) are, respectively

Qs · eNR|y=R = −Qs,x(R)
∂R

∂x
+Qs,y(R)

= AQs0

−ikR1 + V1(−1)− r

βθ
1/2
n

dZ1

dy

∣∣∣∣∣
y=−1

 ei(kx−ωt) + c.c.(3.12)

Qs · eNL|y=L = −Qs,x(L)
∂L

∂x
+Qs,y(L)

= AQs0

−ikL1 + V1(1)− r

βθ
1/2
n

dZ1

dy

∣∣∣∣∣
y=1

 ei(kx−ωt) + c.c.(3.13)

where Qs0 = K(θn − θc)(θ1/2n − 0.7θ1/2c ). Meanwhile, the sediment transport
rates in the right and left bank regions adjacent to the junction points QsR,j

and QsL,j are, respectively, expanded into

QsR,j = Aε
0.6KθnrSR

β
U1(−1)ei(kx−ωt) + c.c. (3.14)

26



QsL,j = −Aε0.6KθnrSL
β

U1(1)ei(kx−ωt) + c.c. (3.15)

Note that the lateral sediment transport in the right and left bank regions
have positive and negative quantities, respectively, as long as U1 is positive,
as seen in the above equations. The sediment transport rate at the junction
points should be continous, such that

Qs0

[
−ikR1 + V1 (−1)− r

βθ
1/2
n

dZ1

dy

∣∣∣∣
y=−1

]
− ε0.6KθnrSR

β
U1 (−1) + c.c. = 0

(3.16a)

Qs0

[
−ikL1 + V1 (1)− r

βθ
1/2
n

dZ1

dy

∣∣∣∣
y=1

]
+ε

0.6KθnrSL
β

U1 (1)+c.c. = 0 (3.16b)

With the use of (3.10) and (3.11), the above two relations reduce to

−Qs0r

βθ
1/2
n

dZ1

dy

∣∣∣∣
y=−1

− ε0.6KθnrSR
β

U1 (−1) + c.c. = 0 (3.17a)

−Qs0r

βθ
1/2
n

dZ1

dy

∣∣∣∣
y=1

+ ε
0.6KθnrSL

β
U1 (1) + c.c. = 0 (3.17b)

Because the channel center line is R + L, the curvature of the channel
center line C is written in the form

C =

∂2 (R + L)

∂x21 +

(
∂ (R + L)

∂x

)2
3/2

= −Ak2(R1 +L1)exp [i(kx− ωt)]+c.c. (3.18)

Because the curvature C is on the order of A as shown above, and QsR,j and
QsL,j are also on the order of A as shown in (3.14) and (3.15) respectively,
the effect of the curvature does not appear in the bank erosion model at the
linear level. Expanding the bank erosion model (2.49)–(2.52) with the use of
A, we obtain the following relations:

−iωR1 + ε
0.6KθnrSR

β
U1(−1)− iω

βSR
Z1(−1) + c.c. = 0 (3.19)

−iωL1 − ε
0.6KθnrSL

β
U1(1) +

iω

βSL
Z1(1) + c.c. = 0 (3.20)

Combining (3.10), (3.11), (3.19), and (3.20), we can eliminate R1 and L1,
and obtain the following relations:

−ω
k
V1(−1)− iω

βSR
Z1(−1) + ε

0.6KθnrSR
β

U1(−1) + c.c. = 0 (3.21)

−ω
k
V1(1) +

iω

βSL
Z1(1)− ε0.6KθnrSL

β
U1(1) + c.c. = 0 (3.22)
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3.2 Solution

The problem to be solved is the differential system composed of the four
differential equations (3.2)–(3.5), and the four boundary conditions (3.16),
(3.17), (3.21), and (3.22). The differential system includes the second deriva-
tive of Z1, and the first derivative of V1 and H1, and therefore, can be solved
with the four boundary conditions.

Recasting the equations, we have

a1U1(y) + a2H1(y) + a3Z1(y) = 0 (3.2)

a4V1(y) + a5
dH1

dy
+ a5

dZ1

dy
= 0 (3.3)

a6U1(y) +
dV1
dy

+ a6H1(y) = 0 (3.4)

−iωZ1 + a7U1(y) + a8
dV1
dy

+ a9
d2Z1

dy2
= 0 (3.5)

−Qs0r

βθ
1/2
n

dZ1

dy

∣∣∣∣
y=−1

− ε0.6KθnrSR
β

U1 (−1) + c.c. = 0 (3.16)

−Qs0r

βθ
1/2
n

dZ1

dy

∣∣∣∣
y=1

+ ε
0.6KθnrSL

β
U1 (1) + c.c. = 0 (3.17)

−ω
k
V1(−1)− iω

βSR
Z1(−1) + ε

0.6KθnrSR
β

U1(−1) + c.c. = 0 (3.21)

−ω
k
V1(1) +

iω

βSL
Z1(1)− ε0.6KθnrSL

β
U1(1) + c.c. = 0 (3.22)

In addition, we recast (3.10) and (3.11) to clarify the relation between bed
geometry and bank geometry. They are

ikR1 − V1(−1) + c.c. = 0 (3.10)

ikL1 − V1(1) + c.c. = 0 (3.11)

The differential equations (3.2)–(3.5) are linear differential equations with
constant coefficients, and therefore, the solutions can be written in the expo-
nential form in general. In this particular case, the solutions are expected to
be periodic in the lateral direction. Thus, the exponents should be complex
numbers. This means that the solutions can be expressed by sinusoidal func-
tions. From the form of differential system, we find that V1 is out of phase
with the others by π. With this in mind, we find that the following two cases
are possible.

28



1. Case of both banks being in phase

(U1, H1, Z1) = (u, h, z) sinαy + c.c., V1 = v cosαy + c.c. (3.23a)

In this case V1 is symmetrical with respect to the x axis, so that it is
found that R1 = L1 from (3.10) and (3.11).

2. Case of both banks being out of phase

(U1, H1, Z1) = (u, h, z) cosαy + c.c., V1 = v sinαy + c.c. (3.23b)

In this case, V1 is symmetrical with respect to the origin, so that R1 =
−L1. Therefore, the both banks are out of phase.

Let us think the case of the both banks being in phase.
Substituting (3.23a) into (3.2)–(3.5), we obtain the equations of the form

a1u+ a2h+ a3z = 0 (3.24)

a4v + a5αh+ a5αz = 0 (3.25)

a6u− αv + a6h = 0 (3.26)

a7u− a8αv +
(
−a9α2 − iω

)
z = 0 (3.27)

Eqs. (3.24)–(3.26) can be rewritten in the following matrix form:

L(α) · u = r(α)z (3.28a)

where

L(α) =

 a1 0 a2
0 a4 a5α
a6 −α a6

 (3.28b)

r(α) =

 −a3−a5α
0

 , u =

 u
v
h

 (3.28c, d)

Solving (3.28) for u, we obtain the following solutions: u
v
h

 =

 fu(α)
fv(α)
fh(α)

 z (3.29a)

where

 fu(α)
fv(α)
fh(α)

 = L−1(α) · r(α) =



(a2 − a3)a5α2 − a3a4a6
(a1 − a2)a4a6 + a1a5α2

(a2 − a1 − a3)a5a6α
(a1 − a2)a4a6 + a1a5α2

−a1a5α2 + a3a4a6
(a1 − a2)a4a6 + a1a5α2


29



=



iβCf (k
2 − α2)− k3

k3(F 2 − 1)− kα2 − iβCf [(4F 2 − 1)k2 − 2α2]− 3kβ2C2
fF

2

kα(ik + 3βCf )

k3(F 2 − 1)− kα2 − iβCf [(4F 2 − 1)k2 − 2α2]− 3kβ2C2
fF

2

k(k2 + α2)− iβCf (k
2 + 2α2)

k3(F 2 − 1)− kα2 − iβCf [(4F 2 − 1)k2 − 2α2]− 3kβ2C2
fF

2


(3.29b)

Note that fu(α) and fh(α) are even functions of α while fv(α) is an odd
function of α. Thus, we have U1, V1, H1 and Z1 in the form U1

H1

Z1

 =

 fu(α)
fh(α)

1

 z sinαy + c.c. (3.30a)

V1 = fv(α) z cosαy + c.c. (3.30b)

Substituting (3.30) into (3.27), we obtain

a7fu(α)z sinαy − αa7fv(α)z sinαy +
(
−α2a9 − iω

)
z sinαy = 0 (3.31)

The above equation reduces to

Aα4 + Bα2 + C = 0 (3.32a)

where
A = a1a5a9, (3.32b)

B = iωa1a5− (a2− a3)a5a7− (a1− a2 + a3)a5a6a8 + (a1− a2)a4a6a9, (3.32c)

C = iω(a1 − a2)a4a6 + a3a4a6a7 (3.32d)

Eqn. (3.32) is the fourth order algebraic equation, which has the four solu-
tions. Solving (3.32) for α, we obtain

α = ±αa,±αb (3.33a)

where

αa =

√
−B +

√
B2 − 4AC

2A
, αb =

√
−B −

√
B2 − 4AC

2A
, (3.33b, c)

With the use of αa and αb, the solutions can be written in the form of the
linear combination of linearly independent solutions, such that

U1 = fu(αa) z
+
1,a sinαay + fu(−αa) z−1,a sin(−αay)

+ fu(αb) z
+
1,b sinαby + fu(−αb) z−1,b sin(−αby) + c.c. (3.34a)
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V1 = fv(αa) z
+
1,a cosαay + fv(−αa) z−1,a cos(−αay)

+ fv(αb) z
+
1,b cosαby + fv(−αb) z−1,b cos(−αby) + c.c. (3.34b)

H1 = fh(αa)z
+
1,a sinαay + fh(−αa)z−1,a sin(−αay)

+ fh(αb) z
+
1,b sinαby + fh(−αb) z−1,b sin(−αby) + c.c. (3.34c)

Z1 = z+1,a sinαay+ z−1,a sin(−αay) + z+1,b sinαby+ z−1,b sin(−αby) + c.c. (3.34d)

where z+1,i and z−1,i (i = a, b) are the coefficients corresponding to α1,i and
−α1,i (i = a, b), respectively. From (3.29), we find that the denominators
of fu(α), fv(α) and fh(α), and the numerator of fu(α) and fh(α) are all
functions of α squared while only the numerator of fv(α) is proportional to
α. Therefore, we have the relation

fu(−α) = fu(α), fv(−α) = −fv(α), fh(−α) = fh(α) (3.35)

With the above relations in mind, we find that the solutions of (3.2)–(3.5)
can be written in the form

U1 = fu(αa) z1,a sinαay + fu(αb) z1,b sinαby + c.c. (3.36a)

V1 = fv(αa) z1,a cosαay + fv(αb) z1,b cosαby + c.c. (3.36b)

H1 = fv(αa) z1,a sinαay + fh(αb) z1,b sinαby + c.c. (3.36b)

Z1 = z1,a sinαay + z1,b sinαby + c.c. (3.36b)

where z1,i = z+1,i − z−1,i (i = a, b). The above solutions have to satisfy the
boundary conditions from (3.16) to (3.22). Substituting (3.35), (3.16) and
(3.17) reduce to the following single equation:

rQs0

βθ
1/2
n

(αaz1,a cosαa − αbz1,b cosαb)

−ε0.6KθnrSB
β

[fu(αa) z1,a sinαa + fu(αb) z1,b sinαb] + c.c. (3.37)

where the lateral slopes of both banks are assumed to be identical, and
denoted by SB. This practice is followed hereafter. Similarly, (3.21) and
(3.22) reduce to

−ω
k

[fv(αa) z1,a cosαa + fv(αb) z1,b cosαb] +
iω

βSB
(z1,a sinαa + z1,b sinαb)

− ε0.6KθnrSB
β

[fu(αa) z1,a sinαa + fu(αb) z1,b sinαb] + c.c. = 0

(3.38)
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The above two equations can be rewritten in the following matrix form:[
l11 l12
l21 l22

] [
z1,a
z1,b

]
= 0 (3.39a)

where

l11 = − rQs0

βθ
1/2
n

αa cosαa + ε
0.6KθnrSB

β
fu(αa) sinαa, (3.39b)

l12 = −ω
k
fv(αa) cosαa +

(
iω

βSB
− ε0.6KθnrSB

β
fu(αa)

)
sinαa, (3.39c)

l21 = − rQs0

βθ
1/2
n

αb cosαb + ε
0.6KθnrSB

β
fu(αb) sinαb, (3.39d)

l22 = −ω
k
fv(αb) cosαb +

(
iω

βSB
− ε0.6KθnrSB

β
fu(αb)

)
sinαb, (3.39f)

The solvability condition for (3.39) is the following:

|lij| = l11l22 − l12l21 = 0 (3.40)

The above equation includes ω, k, β and other parameters. Solving (3.39),
we can obtain ω as a function of k, β and other parameters. However, (3.39)
is not easy to solve. We employ an approximate method. Assuming that ε
is small, we solve the problem with the use of the expansions of ε, hereafter.
The small parameter ε is a coefficient reflecting the bank protection from
erosion. When ε is unity, there is no bank protection while, when ε vanishes,
there is no bank erosion at all. Therefore, when ε vanishes, the problem is
expected to reduce to the bar instability problem without bank erosion.

3.2.1 ε expansion

As described earlier, in order to keep the total channel width constant, ε
should be rather small. With this in mind, we introduce the expansions with
the use of the small parameter ε. All the variables are expanded in the form

(U1, V1, H1, Z1) = (U10, V10, H10, Z10) + ε (U11, V11, H11, Z11) (3.41)

Correspondingly, the complex angular frequency ω is also expanded in the
form

ω = ω0 + εω1 (3.42)
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The case of both banks being in phase

Substituting (3.41) and (3.42) into (3.2)–(3.5), (3.16), (3.17), (3.21), and
(3.22), we obtain the following results at each order of ε.

At O(1)

At O(1), we have
a1U10 + a2H10 + a3Z10 = 0 (3.43)

a4V10 + a5
dH10

dy
+ a5

dZ10

dy
= 0 (3.44)

a6U10 +
dV10
dy

+ a6H10 = 0 (3.45)

−iω0Z10 + a7U10 + a8
dV10
dy

+ a9
d2Z10

dy2
= 0 (3.46)

The boundary conditions supplementing the above differential system are

dZ10

dy

∣∣∣∣
y=−1

+ c.c. = 0 (3.47)

dZ10

dy

∣∣∣∣
y=1

+ c.c. = 0 (3.48)

V10(−1) +
ik

βSB
Z10(−1) + c.c. = 0 (3.49)

V10(1)− ik

βSB
Z10(1) + c.c. = 0 (3.50)

As already described, the solutions have the form

U10 = fu(αa) z10,a sinαay + fu(αb) z10,b sinαby + c.c. (3.51)

V10 = fv(αa) z10,a cosαay + fv(αb) z10,b cosαby + c.c. (3.52)

H10 = fh(αa) z10,a sinαay + fh(αb) z10,b sinαby + c.c. (3.53)

Z10 = z10,a sinαay + z10,b sinαby + c.c. (3.54)

Assuming that z10,i and αi (i = a, b) to be real, we find Z10 real, and therefore,
we find from (3.47) and (3.48) that the following condition has to be satisfied:

αaz10,a cosαa + αbz10,b cosαb = 0 (3.55)

33



In addition, we find from (3.49) and (3.50) that the real part of V10(±1) has
to vanish. Therefore, the following condition should be satisfied:

Re[V10(±1)] = Re[fv(αa)]z10,a cosαa + Re[fv(αb)]z10,b cosαb = 0 (3.56)

The above conditions are satisfied if either of αa or αb is (m + 1/2)π (m =
0, 1, 2, 3 · · ·), and the coefficient of the other α vanishes. We assume that
αa = (m+ 1/2)π (m = 0, 1, 2, 3 · · ·). That is

αa,m =
(
m+

1

2

)
π (m = 0, 1, 2, 3 · · ·) and z10,b,m = 0 (3.57)

where αa,m = (m+ 1/2)π, and z10,b,m is the coefficient corresponding to αb,m,
which can be obtained from the following relation:

α10,b,m =

√
−B
A
− α2

10,a,m (3.58)

where A is given by (3.32b), and B is (3.32c) with ω replaced by ω0. The
solutions are, then, written in the form

U10 = fu (αa,m) z10,a,m sinαa,my (3.59a)

V10 = fv (αa,m) z10,a,m cosαa,my (3.59b)

H10 = fh (αa,m) z10,a,m sinαa,my (3.59c)

Z10 = z10,a,m sinαa,my (3.59d)

where z10,a,m is the coefficient corresponding to αa,m.
Substituting (3.59) into (3.46), we have

−iω0 + a7fu (αa,m) + a8αa,mfv (αa,m) + a9α
2
a,m = 0 (3.60)

Denoting ω0 corresponding to αa,m by ω0,m, we obtain

ω0,m = −i
[
a7fu (αa,m) + a8αa,mfv (αa,m) + a9α

2
a,m

]
(3.61)

At O(ε)

At O(ε), we have
a1U11 + a2H11 + a3Z11 = 0 (3.62)

a4V11 + a5
dH11

dy
+ a5

dZ11

dy
= 0 (3.63)
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a6U11 +
dV11
dy

+ a6H11 = 0 (3.64)

−iω0Z11 + a7U11 + a8
dV11
dy

+ a9
d2Z11

dy2
= iω1Z10 (3.65)

It is found that the the above equations have the same form as (3.43)–(3.46)
except for the right hand side of (3.65), which includes the solution of (3.43)–
(3.46). That is, the homogeneous parts of (3.62)–(3.65) are identical to those
of (3.43)–(3.46), (3.64) has an inhomogeneous term including the solution of
(3.43)–(3.46). In such a case, the solutions of (3.62)–(3.65) consist of two
parts: homogeneous solutions satisfying the homogeneous equations (3.62)–
(3.65) with dropping the right hand side of (3.65), and inhomogeneous so-
lutions satisfying the whole equations. Because the inhomogeneous term of
(3.65) has the form of sinαa,my, the inhomogeneous solutions should have
the form of y cosαa,my and y sinαa,my. The general solutions, then, take the
form

U11 = u
(h)
11,a,m sinαa,my + u

(h)
11,b,m sinαb,my + u

(i)
11,a,my cosαa,my (3.66)

V11 = v
(h)
11,a,m cosαa,my + v

(h)
11,b,m cosαb,my + v

(i)
11,a,my sinαa,my (3.67)

H11 = h
(h)
11,a,m sinαa,my + h

(h)
11,b,m sinαb,my + h

(i)
11,my cosαa,my (3.68)

Z11 = z
(h)
11,a,m sinαa,my + z

(h)
11,b,m sinαb,my + z

(i)
11,a,my cosαa,my (3.69)

Substituting the above solutions into (3.62)–(3.64), we obtain

a1u
(h)
11,a,m sinαa,my + a1u

(h)
11,b,m sinαb,my + a1u

(i)
11,a,my cosαa,my

+ a2h
(h)
11,a,m sinαa,my + a2h

(h)
11,b,m sinαb,my + a2h

(i)
11,a,my cosαa,my

+ a3z
(h)
11,a,m sinαa,my + a3z

(h)
11,b,m sinαb,my + a3z

(i)
11,a,my cosαa,my = 0

(3.70)

a4v
(h)
11,a,m cosαa,my + a4v

(h)
11,b,m cosαb,my + a4v

(i)
11,a,my sinαa,my

+ a5αa,mh
(h)
11,a,m cosαa,my + a5αb,mh

(h)
11,b,m cosαb,my

+a5h
(i)
11,a,m cosαa,my − a5αa,mh(i)11,a,my sinαa,my

+ a5αa,mz
(h)
11,a,m cosαa,my + a5αb,mz

(h)
11,b,m cosαb,my

+a5z
(i)
11,a,m cosαa,my − a5αa,mz(i)11,a,my sinαa,my = 0

(3.71)
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a6u
(h)
11,a,m sinαa,my + a6u

(h)
11,b,m sinαb,my + a6u

(i)
11,a,my cosαa,my

− αa,mv
(h)
11,a,m sinαa,my − αb,mv(i)11,b,m sinαb,my

+v
(i)
11,a,m sinαa,my + αa,mv, 11, a,m(i)y cosαa,my

+ a6h
(h)
11,a,m sinαa,my + a6h

(h)
11,b,m sinαb,my + a6h

(i)
11,a,my cosαa,my = 0

(3.72)

Collecting terms including sinαa,my and cosαa,my in the above equations,
we obtain

a1u
(h)
11,a,m + a2h

(h)
11,a,m = −a3z(h)11,a,m (3.73)

a4v
(h)
11,a,m + a5αa,mh

(h)
11,a,m = −a5αa,mz(h)11,a,m

−a5αa,m
(
h
(i)
11,a,m + z

(i)
11,a,m

)
(3.74)

a6u
(h)
11,a,m + αa,mv

(h)
11,a,m + a6h

(h)
11,a,m = −αmv(i)11,a,m (3.75)

Collecting terms including sinαb,my and cosαb,my in the above equations, we
obtain

a1u
(h)
11,b,m + a2h

(h)
11,b,m = −a3z(h)11,b,m (3.76)

a4v
(h)
11,b,m + a5αb,mh

(h)
11,b,m = −a5αb,mz(h)11,b,m (3.77)

a6u
(h)
11,b,m + αb,mv

(h)
11,b,m + a6h

(h)
11,b,m = 0 (3.78)

Collecting terms including y sinαmy and y cosαmy in (3.70)–(3.72), we obtain

a1u
(i)
11,a,m + a2h

(i)
11,a,m = −a3z(i)11,a,m (3.79)

a4v
(i)
11,a,m + a5αa,mh

(i)
11,a,m = −a5αa,mz(i)11,a,m (3.80)

a6u
(i)
11,a,m + αa,mv

(i)
11,a,m + a6h

(i)
11,a,m = 0 (3.81)

Eqs. (3.73)–(3.75) can be written in the following matrix form:

L(αa,m) ·


u
(h)
11,a,m

v
(h)
11,a,m

h
(h)
11,a,m

 = r(αa,m)z
(h)
11,a,m +


0

−a5(h(i)11,a,m + z
(i)
11,a,m)

−αmv(i)11,a,m

 (3.82)

Eqs. (3.76)–(3.78) can be written in the following matrix form:

L(αb,m) ·


u
(h)
11,b,m

v
(h)
11,b,m

h
(h)
11,b,m

 = r(αb,m)z
(h)
11,b,m (3.83)
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Eqs. (3.79)–(3.81) can be written in the form

L(αa,m) ·


u
(i)
11,a,m

v
(i)
11,a,m

h
(i)
11,a,m

 = r(αm)z
(i)
11,a,m (3.84)

The solution of (3.82) is
u
(h)
11,a,m

v
(h)
11,a,m

h
(h)
11,a,m

 =

 fu(αa,m)
fv(αa,m)
fh(αa,m)

 z(h)11,a,m +

 gu(αa,m)
gv(αa,m)
gh(αa,m)

 z(i)11,a,m (3.85)

where  gu(αa,m)
gv(αa,m)
gh(αa,m)

 = L−1(αa,m)

 0
−a5 (fh(αa,m) + 1)
−αmfv(αa,m)

 (3.86)

The solution of (3.83) takes the form
u
(h)
11,b,m

v
(h)
11,b,m

h
(h)
11,b,m

 =

 fu(αb,m)
fv(αb,m)
fh(αb,m)

 z(h)11,b,m (3.87)

The solution of (3.84) takes the form
u
(i)
11,a,m

v
(i)
11,a,m

h
(i)
11,a,m

 =

 fu(αa,m)
fv(αa,m)
fh(αa,m)

 z(i)11,a,m (3.88)

The solutions of (3.66)–(3.69) can be written in the form

U11 = [fu(αa,m) z
(h)
11,a,m + gu(αa,m) z

(i)
11,a,m] sinαa,my

+ fu(αb,m) z
(h)
11,b,m sinαb,my + fu(αa,m) z

(i)
11,a,my cosαa,my

(3.89)

V11 = [fv(αa,m) z
(h)
11,a,m + gv(αa,m) z

(i)
11,a,m] cosαa,my

+ fv(αb,m) z
(h)
11,b,m cosαb,my + fv(αa,m) z

(i)
11,a,my sinαa,my

(3.90)

H11 = [fh(αa,m) z
(h)
11,a,m + gh(αa,m) z

(i)
11,a,m] sinαa,my

+ fh(αb,m) z
(h)
11,b,m sinαb,my + fh(αa,m) z

(i)
11,a,my cosαa,my

(3.91)
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Z11 = z
(h)
11,a,m sinαa,my + z

(h)
11,b,m sinαb,my + z

(i)
11,a,my cosαa,my (3.92)

The coefficient z
(h)
11,a,m, z

(h)
11,b,m and z

(i)
11,a,m are determined by the following

boundary condition at O(ε):

−Qs0r

βθ
1/2
n

dZ11

dy

∣∣∣∣∣
y=−1

− 0.6KθnrSB
β

U10(−1) + c.c. = 0 (3.93)

−Qs0r

βθ
1/2
n

dZ11

dy

∣∣∣∣∣
y=1

+
0.6KθnrSB

β
U10(1) + c.c. = 0 (3.94)

−ω1

[
V10(−1)

k
+ i

Z10(−1)

βSB

]
−ω0

[
V11(−1)

k
+ i

Z11(−1)

βSB

]
+

0.6KθnrSB
β

U10(−1)+c.c. = 0

(3.95)

−ω1

[
V10(1)

k
− i

Z10(1)

βSB

]
+ω0

[
V11(1)

k
− i

Z11(1)

βSB

]
−0.6KθnrSB

β
U10(1)+c.c. = 0

(3.96)
Substituting (3.89)–(3.91) into (3.93) and (3.94), we obtain the same equation
of the form

−Qs0r

βθ
1/2
n

(
αa,mz

(h)
11,a,m cosαa,m + αb,mz

(h)
11,b,m cosαb,m + z

(i)
11,a,m cosαa,m − αa,mz(i)11,a,m sinαa,m

)
+

0.6KθnrSB
β

fu(αa,m)z10,a,m sinαa,m + c.c. = 0

(3.97)

Because cosαa,m = 0, and sinαa,m = 1 when m is even, and sinαa,m = −1
when m is odd, the above equation is reduced to

Qs0r

βθ
1/2
n

(
αb,mz

(h)
11,b,m cosαb,m − αa,mz(i)11,a,m

)
−0.6KθnrSB

β
fu(αa,m) z10,m+c.c. = 0

when m = even (3.98a)

Qs0r

βθ
1/2
n

(
αb,mz

(h)
11,b,m cosαb,m + αa,mz

(i)
11,a,m

)
+

0.6KθnrSB
β

fu(αa,m) z10,m+c.c. = 0

when m = odd (3.98b)

From (3.95) and (3.96), we obtain

ω1

(
1

k
fv(αa,m) z10,a,m cosαa,m −

i

βSB
z10,a,m sinαa,m

)
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+ ω0

[
1

k

(
fv(αa,m) z

(h)
11,a,m cosαa,m + gv(αa,m) z

(i)
11,a,m cosαa,m + fv(αb,m) z

(h)
11,b,m cosαb,m

+ fv(αa,m) z
(i)
11,a,m sinαa,m

)
− i

βSB

(
z
(h)
11,a,m sinαa,m + z

(h)
11,b,m sinαb,m + z

(i)
11,a,m cosαa,m

)]
+

0.6KθnrSB
β

fu(αa,m) z10,a,m sinαa,m + c.c. = 0 (3.99)

Again, because cosαa,m = 0, and sinαa,m = 1 when m is even, and sinαa,m =
−1 when m is odd, the above equation is reduced to

ω0

k

(
fv(αb,m) z

(h)
11,b,m cosαb,m + fv(αa,m) z

(i)
11,a,m

)

+
0.6KθnrSB

β
fu(αa,m) z10,a,m + c.c. = 0 when m = even

(3.100a)
ω0

k

(
fv(αb,m) z

(h)
11,b,m cosαb,m − fv(αa,m) z

(i)
11,a,m

)

− 0.6KθnrSB
β

fu(αa,m) z10,a,m + c.c. = 0 when m = odd

(3.100b)
From (3.98a) and (3.100a), we obtain

Qs0r

βθ
1/2
n

αb,m cosαb,m −Qs0r

βθ
1/2
n

αa,m

ω0

k
fv(αb,m) cosαb,m

ω0

k
fv(αa,m)


 z

(h)
11,b,m

z
(i)
11,a,m

 =


0.6KθnrSB

β
fu(αa,m)

−0.6KθnrSB
β

fu(αa,m)

 z10,a,m
when m = even (3.101)

From (3.98a) and (3.100a), we obtain
Qs0r

βθ
1/2
n

αb,m cosαb,m
Qs0r

βθ
1/2
n

αa,m

ω0

k
fv(αb,m) cosαb,m −ω0

k
fv(αa,m)


 z

(h)
11,b,m

z
(i)
11,a,m

 =


−0.6KθnrSB

β
fu(αa,m)

0.6KθnrSB
β

 z10,a,m
when m = even (3.102)

Solving the above equations, we obtain z
(h)
11,b,m, z

(i)
11,a,m as linear functions of

z10,a,m.
The above solution is substituted into (3.96) to provide the perturbed

angular frequency ω1.
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3.3 Numerical solution

We solve the problem by a numerical scheme called the spectral collocation
method with the use of the Chebyshev expansion. We do not use ε expansion
in this section. We start with the equations (3.2)–(3.5) and (3.16)–(3.22).
With the use of the Chebyshev polynomials, the variables can be expanded
in the form

U1(y) =
N∑
i=0

ciTi(y) (3.103)

V1(y) =
N∑
i=0

cN+1+iTi(y) (3.104)

H1(y) =
N∑
i=0

c2(N+1)+iTi(y) (3.105)

Z1(y) =
N∑
i=0

c3(N+1)+iTi(y) (3.106)

where N is the total number of terms of the Chebyshev polynomials, Ti is
the i-th term of the Chebyshev polynomials. By numbering the coefficient ci
in the manner described above, we can use only one kind of coefficient.

Substituting the above equations into (3.2)–(3.5), we obtain

a1
N∑
i=0

ciTi(y) + a2
N∑
i=0

c2(N+1)+iTi(y) + a3
N∑
i=0

c3(N+1)+iTi(y) = 0 (3.107)

a4
N∑
i=0

cN+1+iTi(y) + a5
N∑
i=0

c2(N+1)+iT
′
i (y) + a5

N∑
i=0

c3(N+1)+iT
′
i (y) = 0 (3.108)

a6
N∑
i=0

ciTi(y) +
N∑
i=0

cN+1+iT
′
i (y) + a6

N∑
i=0

c2(N+1)+iTi(y) (3.109)

−iω
N∑
i=0

c3(N+1)+iTi(y)+a7
N∑
i=0

ciTi(y)+a8
N∑
i=0

cN+1+iT
′
i (y)+a9

N∑
i=0

c3(N+1)+iT
′′
i (y) = 0

(3.110)
The boundary conditions (3.16)–(3.22) are reduced to

−Qs0r

βθ
1/2
n

N∑
i=0

c3(N+1)+iT
′
i (−1)− ε0.6KθnrSR

β

N∑
i=0

ciTi(−1) = 0 (3.111)

−Qs0r

βθ
1/2
n

N∑
i=0

c3(N+1)+iT
′
i (1) + ε

0.6KθnrSR
β

N∑
i=0

ciTi(1) = 0 (3.112)
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−ω
k

N∑
i=0

cN+1+iTi(−1)− iω

βSR

N∑
i=0

c3(N+1)+iTi(−1)+ε
0.6KθnrSR

β

N∑
i=0

ciTi(−1) = 0

(3.113)

−ω
k

N∑
i=0

cN+1+iTi(1) +
iω

βSL

N∑
i=0

c3(N+1)+iTi(1)− ε0.6KθnrSL
β

N∑
i=0

ciTi(1) = 0

(3.114)
In the spectral collocation method, the governing equations (3.107)–(3.110)

are evaulated at the following Gauss-Lobatto points:

yi = cos
iπ

N
(3.115)

When i changes from 0 to N , yi is found to change from 1 to −1. We obtain
4× (N + 1) equations from (3.107)–(3.110) in the form

a1
∑N
i=0 ciTi(y0) + a2

∑N
i=0 c2(N+1)+iTi(y0) + a3

∑N
i=0 c3(N+1)+iTi(y0) = 0

a1
∑N
i=0 ciTi(y1) + a2

∑N
i=0 c2(N+1)+iTi(y1) + a3

∑N
i=0 c3(N+1)+iTi(y1) = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

a1
∑N
i=0 ciTi(yN) + a2

∑N
i=0 c2(N+1)+iTi(yN) + a3

∑N
i=0 c3(N+1)+iTi(yN) = 0

a4
∑N
i=0 cN+1+iTi(y0) + a5

∑N
i=0 c2(N+1)+iT

′
i (y0) + a5

∑N
i=0 c3(N+1)+iT

′
i (y0) = 0

a4
∑N
i=0 cN+1+iTi(y1) + a5

∑N
i=0 c2(N+1)+iT

′
i (y1) + a5

∑N
i=0 c3(N+1)+iT

′
i (y1) = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

a4
∑N
i=0 cN+1+iTi(yN) + a5

∑N
i=0 c2(N+1)+iT

′
i (yN) + a5

∑N
i=0 c3(N+1)+iT

′
i (yN) = 0

a6
∑N
i=0 ciTi(y0) +

∑N
i=0 cN+1+iT

′
i (y0) + a6

∑N
i=0 c2(N+1)+iTi(y0)

a6
∑N
i=0 ciTi(y1) +

∑N
i=0 cN+1+iT

′
i (y1) + a6

∑N
i=0 c2(N+1)+iTi(y1)

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

a6
∑N
i=0 ciTi(yN) +

∑N
i=0 cN+1+iT

′
i (yN) + a6

∑N
i=0 c2(N+1)+iTi(yN)

−iω
∑N
i=0 c3(N+1)+iTi(y0) + · · ·+ a9

∑N
i=0 c3(N+1)+iT

′′
i (y0) = 0

−iω
∑N
i=0 c3(N+1)+iTi(y1) + · · ·+ a9

∑N
i=0 c3(N+1)+iT

′′
i (y1) = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

−iω
∑N
i=0 c3(N+1)+iTi(yN) + · · ·+ a9

∑N
i=0 c3(N+1)+iT

′′
i (yN) = 0

(3.116)
Among the above equations, some of the equations evaluated at y = y0(y = 1)
and y = yN(y = −1) are replaced with the boundary conditions. Considering
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the order of differentiation with respect to y of each equation, we drop the
first equation of the momentum equation in the y direction, the last equation
of the continuity equation, and the first and the last equations of the Exner
equation, and use the boundary conditions instead. The 4×(N+1) equations
are then

− Qs0r

βθ
1/2
n

∑N
i=0 c3(N+1)+iT

′
i (−1)− ε0.6KθnrSR

β

∑N
i=0 ciTi(−1) = 0

− Qs0r

βθ
1/2
n

∑N
i=0 c3(N+1)+iT

′
i (1) + ε0.6KθnrSR

β

∑N
i=0 ciTi(1) = 0

−ω
k

∑N
i=0 cN+1+iTi(−1)− iω

βSR

∑N
i=0 c3(N+1)+iTi(−1) + ε0.6KθnrSR

β

∑N
i=0 ciTi(−1) = 0

−ω
k

∑N
i=0 cN+1+iTi(1) + iω

βSL

∑N
i=0 c3(N+1)+iTi(1)− ε0.6KθnrSL

β

∑N
i=0 ciTi(1) = 0

a1
∑N
i=0 ciTi(y0) + a2

∑N
i=0 c2(N+1)+iTi(y0) + a3

∑N
i=0 c3(N+1)+iTi(y0) = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

a1
∑N
i=0 ciTi(yN) + a2

∑N
i=0 c2(N+1)+iTi(yN) + a3

∑N
i=0 c3(N+1)+iTi(yN) = 0

a4
∑N
i=0 cN+1+iTi(y1) + a5

∑N
i=0 c2(N+1)+iT

′
i (y1) + a5

∑N
i=0 c3(N+1)+iT

′
i (y1) = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

a4
∑N
i=0 cN+1+iTi(yN) + a5

∑N
i=0 c2(N+1)+iT

′
i (yN) + a5

∑N
i=0 c3(N+1)+iT

′
i (yN) = 0

a6
∑N
i=0 ciTi(y0) +

∑N
i=0 cN+1+iT

′
i (y0) + a6

∑N
i=0 c2(N+1)+iTi(y0)

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

a6
∑N
i=0 ciTi(yN−1) +

∑N
i=0 cN+1+iT

′
i (yN−1) + a6

∑N
i=0 c2(N+1)+iTi(yN−1)

−iω
∑N
i=0 c3(N+1)+iTi(y1) + · · ·+ a9

∑N
i=0 c3(N+1)+iT

′′
i (y1) = 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

−iω
∑N
i=0 c3(N+1)+iTi(yN−1) + · · ·+ a9

∑N
i=0 c3(N+1)+iT

′′
i (yN−1) = 0

(3.117)
The above equations can be rewritten in the following matrix form:

L · c = 0 (3.118)

42



where

L =



−ε0.6KθnrSR

β
T0(−1) −ε0.6KθnrSR

β
T1(−1) · · · − Qs0r

βθ
1/2
n

TN(−1)

ε0.6KθnrSR

β
T0(1) −ε0.6KθnrSR

β
T1(1) · · · − Qs0r

βθ
1/2
n

TN(1)

ε0.6KθnrSR

β
T0(−1) −ε0.6KθnrSR

β
T1(−1) · · · − iω

βSR
TN(−1)

ε0.6KθnrSR

β
T0(1) −ε0.6KθnrSR

β
T1(1) · · · − iω

βSR
TN(1)

a1T0(y0) a1T1(y0) · · · a3TN(y0)
· · · · · ·
· · · · · ·

a1T0(yN) a1T1(yN) · · · a3TN(yN)
0 0 · · · a5T

′
N(y1)

· · · · · ·
· · · · · ·
0 0 · · · a5T

′
N(yN)

a6T0(y0) a6T1(y0) · · · 0
· · · · · ·
· · · · · ·

a6T0(yN−1) a6T1(yN−1) · · · 0
a7T0(y1) a7T1(y1) · · · −iωTN−1(y1) + a9T

′′
N−1(y1)

· · · · · ·
· · · · · ·

a7T0(yN−1) a7T1(yN−1) · · · −iωTN−1(yN−1) + a9T
′′
N−1(yN−1)


(3.119)

c =



c0
c1
·
·
cN
cN+1

·
·

c2N+1

c2(N+1)

·
·

c3N+2

c3(N+1)

·
·

c4N+3



(3.120)
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In order for (3.118) to have non-trivial solution, the following condition has
to be satisfied:

|L| = 0 (3.121)

Because L includes k, ω, β and other parameters such as the Froude number
F , the Shields number θn, the bed Friction coefficient Cf , and the bank slopes
SR and SL. We obtain the following relation:

ω = f(k, β;F, θn, Cf , SR, SL) (3.122)
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Chapter 4

Results and discussion

4.1 Analytical results

The analytical model accounts for the variability of the parameters to inves-
tigate the effect on both cases of pure bar instability and bar instability with
bank erosion. The results obtained from linear stability analysis are pre-
sented herein. In the first subsection, the growth rates of perturbation Im[ω]
are plotted in the dimensionless wavenumber - aspect ratio plane, or the k-β
plane. In the second subsection, the values of Im[ω] are plotted against k,
while in the last subsection, the spatial distribution of the unknown variables
H1, U1, V1, Z1 and phase diagrams are presented. The flow and sediment
parameters used in the theoretical analysis are as follows: K=7.6, r=0.5,
F=0.5, Cf=0.010, θn=0.06, θc=0.05, SR=SL=1.0, and ε=1.0.

4.1.1 Instability diagrams in the k - β plane

In Fig. 4.1 - Fig. 4.10, the dashed contours represent growth rates of per-
turbation or Im[ω] for pure bar instability, while the solid contours represent
growth rates for bar instability with bank erosion. The contour for zero
growth rate, or the neutral curve, refers to the case where the perturbation
neither grows nor decays (e.g.Im[ω]=0). It is the curve that delineates the
stable region (e.g.Im[ω]<0) and the unstable region (e.g.Im[ω]>0). In the
stable region, the base state that is initiated as the flat bed is stable; on the
other hand, in the unstable region, the pertubation grows, and it can be con-
sidered that in this region, bars initially develop. Fig. 4.1 - Fig. 4.4 report
the variability of Froude number, with the bed friction coefficient Cf=0.01.
It is observed that as the Froude number is increased from 0.2 to 1.2, the
unstable region shifts to a range of smaller wavenumbers. The same obser-
vation can be derived for Fig. 4.8 - Fig. 4.10, since the Froude number is
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varied as well, but Cf is taken at 0.005. On the other hand, when the Shields
number θn is increased from 0.06 to 0.10 as shown in Fig. 4.5 - Fig. 4.7,
the critical aspect ratio increases from approximately 6.0 to approximately
9.0. The critical aspect ratio βcr is the minimum value of the range of as-
pect ratios beyond which bars initially develop. As such, the threshold value
of the aspect ratio increases with respect to an increase of Shields number.
Furthermore, as the Shields number increases, the growth rate contours of
bar instability with bank erosion coincides with that of pure bar instability.
This indicates that the effect of bank erosion is significant at θn=0.06, and
as it is maximized, the effect of bank erosion becomes less relevant. A look
at Eq. (2.51) and Eq. (2.52) may provide the explanation. We assume that
bank erosion occurs in both banks, such that QsRj is positive and QsLj is
negative. Taking the right bank as an example, when θn increases, the terms
(θ-θn)(θ1/2-0.7θ1/2n ) decrease, such that the lateral sediment transport rate
exchanged from the bank region to the bed region QsRj is minimized. Hence,
the amount of sediment supplied from the bank to the bed is reduced for as
long as θn is increased.

4.1.2 Plot of Im[ω] vls k: Variation of ε

When ε=0, bank erosion vanishes; when the value is 1, the banks are erodible
such that there is no protection that inhibits bank erosion, either in the form
of slump blocks or the presence of vegetation. As shown in Fig. 4.11, the
value of ε is varied to clarify the effect of bank erosion. It is revealed that the
unstable region shifts to a range of smaller wavenumbers when ε increases
from 0 to 1. This indicates that when bank erosion is incorporated into the
analysis, the wavelength of the bars are longer than when there is no bank
erosion.

In linear theory, there exists a maximum growth rate of perturbation
Im[ωmax] that corresponds to the dominant wavenumber. The dominant
wavenumber, or kdom, when converted into the wavelength as found in Eq.
(4.1), is thought to be the representative wavelength from the theoretical
analysis that serves as an estimate of the wavelength that is observed in the
experiment [23]. The influence of the variability of ε on Im[ωmax] and the shift
of wavenumbers are examined in Fig. 4.12 - Fig. 4.19. The horizontal axis
denotes k, while the vertical axis denotes Im[ω]. It is generally observed for
the aforementioned figures that the maximum growth rates of perturbation
tend to decrease considerably as ε increases; on the contrary, for Fig. 4.12
and Fig. 4.18, the trend of the values of Im[ωmax] indicate otherwise. In
addition, for Fig. 4.12 - Fig. 4.19, the contours shift to a range of smaller
wavenumbers, which is opposite to Fig. 4.18. Meanwhile, for Fig. 4.20
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- Fig. 4.23, the aspect ratio is varied with values β=10, 20, 30 and 40
for θn=0.08. It is shown that the maximum growth rates of perturbation
are amplified with respect to an increase in aspect ratio. This confirms
the influence of the aspect ratio as one of the governing parameters of bar
instability; at high aspect ratios, bars are more likely to form, and multiple
bars may exist. However, multiple bars are beyond the scope of this study. It
is also worth mentioning that as β approaches 40, the contours for ε=0, 0.3,
0.7 and 1.0 overlap. Furthermore, as the aspect ratio increases, the contours
shift to a range of larger wavenumbers, or smaller wavelength values. It is
thought that at high aspect ratios, the effect of ε is significantly reduced. It
is possible that when the width of the channel is relatively wide, the sidewall
effects, such as the slumping of a portion of the bank to the bank toe or the
presence of vegetation, are minimal.

4.1.3 Phase diagrams and spatial distribution of H1, U1, V1, Z1

In order to show how the perturbation progresses downstream, the spatial dis-
tribution diagrams illustrated in density plots of the variables H1, U1, V1, Z1

at β=10 are shown in Fig. 4.26 - Fig. 4.29. The horizontal axis denotes
the units of length in the streamwise direction, the lateral coordinate denotes
length in the channel cross-section, in which y=1 denotes the left bank and
y=-1 denotes the right bank. The vertical axis directed perpendicular and
out of the figure are the numerical values of the variables. It is noted that
the sinusoidal functions of both U1 and Z1 are in-phase, and both variables
are out-of-phase with H1. The variable V1 is parabolic. The perturbation
progresses downstream in a periodic manner. Furthermore, the phases are
shown in Fig. 4.24 - Fig. 4.25. It is found that for a given β=10, U1 and Z1

are in-phase, while V1 and H1 are also in phase with each other. The same
relation can be observed for β=20. Finally, the phases of the variables R1

and L1 coincide, indicating that the banks are in-phase with each other.

4.2 Comparison of theoretical results with ex-

perimental results

The validation of the theoretical results from linear stability analysis is per-
formed through a comparison of the theoretical bar wavelength values with
experimental values obtained from studies of alternate bars. In addition, the
computed maximum growth rates are obtained from the stability analysis
following the flow and sediment characteristics employed in the experimen-
tal set-up. If the maximum growth rate is positive, bars are theoretically
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formed; it is then verified into the experimental set-up if bars have indeed
formed.

For the case of non-erodible banks, the results of Watanabe et al.[22] for
steady flow conditions and of Lanzoni [23] for free bars are used. For the case
of both erodible and non-erodible banks, the values are approximated from
the work of Carrasco-Milian and Vionnet [8]. It is again worth mentioning
here that theoretical results are based on the case with no bank erosion, and
with bank erosion but no slump blocks (i.e. ε = 1), since the experiments
used sand. While the number of runs and experimental conditions for the
experimental studies are not sufficient to provide reliable comparison of the
theoretical results, only the general trend is considered herein.

The predicted wavelength is computed as

λc =
2πB̃n

kdom
(4.1)

where λc is the computed wavelength, B̃n is the half-channel width at nor-
mal flow condition, and kdom is the dominant wavenumber corresponding to
maximum growth rate of perturbation from linear stability analysis.

Fig. 4.30 reports the the predicted values of bar wavelength plotted
against the values of the observed wavelength. The theoretical values pre-
dicted by the analysis for [22] fall within 1.4m - 1.6m, and their obtained
experimental values range within 2.0m - 3.4m. On the other hand, the the-
oretical values range from 5.5m - 6.7m, while the experimental values fall
within 11.6m - 6m for [23]. It is revealed that the experimental values are
twice as large as the calculated values of bar wavelength. However, for the
case of [23], the agreement is relatively good as long as the experimental
values fall within around 6m - 8m; at observed values higher than this range,
the calculated values tend to underestimate the observed values of bar wave-
length.

Meanwhile, as reflected on the results for [22], it is worth noting data
points in Fig. 4.30 where the observed wavelength is zero but the theoretical
results record otherwise. Such is the case where no bars formed during the
experimental runs. As shown in Table 4.1, no bars formed for runs S-5 to
S-6. Yet, basing from the theoretical analysis, all of the six experimental
conditions yielded an unstable condition. This means that using the flow
and sediment parameters of the study, bars theoretically form in all of the
experimental set-up, which is not the case for the experiment of [22], who
noticed that alternate bars formed only when the flow depth is less than
2.5cm.

On the contrary, there is good agreement between the theoretical results
with the experimental results of [23]. The maximum growth rates are posi-
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tive, found in Table 4.3. In this case, based on the hydraulic conditions used
in the experiment, the base state is unstable and allows for bars to initially
form. As for the experiment, all of the 11 conditions were able to detect
the growth of bars. It is possible that the favorable trend exhibited by the
theoretical results when compared to the results of [23] is attributed to the
high values of the aspect ratio, where the channel width is relatively wider
than that of [22]. In addition to the aspect ratio, the Froude number and the
bed friction coefficient are among the parameters that influence the growth
rate, and hence the initial formation of bars.

Instability diagrams in the k-β plane provide a rough estimate of which
range of aspect ratios will provide the region where bars initially develop,
and the range of wavenumbers as well, under a given set of flow and sedi-
ment parameters. Hence, the results in an instability diagram may serve as
guide for an experimental set-up. According to [5], the predicted meander
wavelength is thought to provide a crude estimate of wavelengths observed
in flume studies and field conditions. However, inerodible banks do not allow
for meandering to develop; hence, for meandering to progress, banks must
erode as well.Herein, the role of bank erosion to the formation of alternate
bars is investigated. The results of the experiment of Carrasco-Milian and
Vionnet [8] are used, particularly the values observed at the initial time of
the experiment, or when the bars are starting to develop. It is to be noted,
however, that data are approximated and do not reflect the actual values
themselves.

The flow and sediment parameters are tabulated in Table4.2. The ob-
served wavelength values for both cases of erodible and non-erodible banks
are plotted with respect to the aspect ratio, as shown in Fig. 4.31. Wave-
length values for non-erodible banks range from 0.6m - 3.7m, while the values
of erodible banks range from 0.4m - 2.55m. Apparently, the results for the
case of non-erodible banks are slightly larger than the case of erodible banks.
However, this observation could not provide explanation for how bank ero-
sion affects bar formation. Furthermore, as shown in Fig. 4.32 and Fig.
4.33, the theoretical analysis predicts the base state of the experiment to be
stable, for the case of erodible and non-erodible banks. The experimental re-
sults lie within the stable region, in which bars do not develop. The unstable
region starts to initially develop at a critical aspect ratio βcr = 6.4, whereas
the experiment uses β = 5.7. This elaborates the role of the aspect ratio as
a governing parameter for bars to initially develop. Hence, the theoretical
results do not agree well with the experimental results.

According to Lanzoni [23], most theoretical results and flume studies
usually are only valid for high values of aspect ratio, since the assumption is
that the channel is relatively wide, or that the banks are not very steep. If
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the banks are too steep, the sidewall effects may affect the flow in the central
bed region. Such is the case of [8], where the bank slopes are both equal to
60 degrees. It is also worth noting that as found on Table 4.1 and 4.2, the
Froude number F for both experiments is approximately equal to 0.7, which
is quite high. For flume studies where the channel width ranges from 20 -
50cm and flow depth ranges from 1cm - 4cm, F usually ranges from 0.6 -0.7
[23]. On the contrary, for field data, the range is usually 0.2 - 0.3. Hence, it
may also be interesting to consider bar wavelength values observed in field
conditions.
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Figure 4.1: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.010,
F = 0.5, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.2: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.010,
F = 0.2, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.3: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.010,
F = 0.8, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.4: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.010,
F = 1.2, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.5: K = 7.6, r = 0.5, SB = 1, θn = 0.08, θc = 0.05, Cf = 0.010,
F = 0.5, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.6: K = 7.6, r = 0.5, SB = 1, θn = 0.10, θc = 0.05, Cf = 0.010,
F = 0.5, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.7: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.010,
F = 0.5, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.8: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.005,
F = 0.5, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.9: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.005,
F = 0.2, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.10: K = 7.6, r = 0.5, SB = 1, θn = 0.06, θc = 0.05, Cf = 0.005,
F = 0.8, ε = 1, Dashed contours: pure bar instability, Solid contours: bar
instability with bank erosion.
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Figure 4.11: K=7.6, r=0.5, SB=1, θn=0.06, θc=0.05, Cf=0.010, F=0.5,
Thin solid contour: pure bar instability, from outside to inside: ε=0, 0.3,
0.7, 1, only neutral curves are shown.
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Figure 4.12: Plot for Cf=0.005, β=10
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Figure 4.13: Plot for Cf=0.005, β=20
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Figure 4.14: Plot for F=0.2, β=10
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Figure 4.15: Plot for F=0.2, β=20
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Figure 4.16: Plot for SB=0.5, β=10
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Figure 4.17: Plot for SB=0.5, β=20
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Figure 4.18: Plot for θn=0.1, β=10

Bar instability

ϵ=0

ϵ=0.3

ϵ=0.7

ϵ=1.0

0.5 1.0 1.5 2.0 2.5 3.0
k

0.01

0.02

0.03

0.04

0.05

Figure 4.19: Plot for θn=0.1, β=20
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Figure 4.20: Plot for θn=0.08, β=10
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Figure 4.21: Plot for θn=0.08, β=20
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Figure 4.22: Plot for θn=0.08, β=30
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Figure 4.23: Plot for θn=0.08, β=40
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Figure 4.24: Plot for Z1. β = 10.
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Figure 4.25: Plot for Z1. β = 20.

Figure 4.26: Plot for H1. β = 10.

Figure 4.27: Plot for U1. β = 10.

Figure 4.28: Plot for V1. β = 10.
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Figure 4.29: Plot for Z1. β = 10.
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Figure 4.30: Test of our analysis with experimental data, where λ is the
observed bar wavelength and λc in the x-axis is the calculated bar wavelength.
Units in meters.

Figure 4.31: Approximated values of bar wavelength in meters, observed by
Carrasco-Milian and Vionnet.
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Figure 4.32: Plot of Carrasco-Milian and Vionnet’s results in the instability
diagram with bank erosion.
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Figure 4.33: Plot of Carrasco-Milian and Vionnet’s results in the instability
diagram without bank erosion.
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Chapter 5

Conclusion

The study was able to perform linear stability analysis of the initial develop-
ment of bars employing the shallow water equations, Exner equation, bedload
transport models and a process-based bank erosion model. The analytical
model accounts for the variability of the parameters such as the aspect ratio,
Froude number, bed friction coefficient and bank slopes to investigate the
influence to the instability of bars. It is found that bars are more likely to
develop at low aspect ratios when the bed friction coefficient is increased.
The study also reveals that the unstable region tends to shift to a range of
smaller wavenumbers when the Froude number is maximized. Furthermore,
the maximum growth rates of perturbation are amplified when the aspect
ratio is increased; the same trend is exhibited by the growth rates when the
bank slopes are increased.

In order to clarify the effect of bank erosion, the analytical model consid-
ered a parameter ε that inhibits bank erosion, such as slump block armouring
coefficient or the presence of vegetation. It is revealed from the analysis that
the theoretical wavelength of bars tend to become longer when ε is maxi-
mized. A similar observation can be obtained when the Shields number θn
is varied, such that at θn = 0.06, bank erosion is significant and at higher
values, bank erosion is less relevant. It is possible that the net amount of
sediment supplied from the banks undergoing erosion is reduced with respect
to a decrease in either ε or θn.

Meanwhile, the flow and sediment parameters of the study of Carrasco-
Milian and Vionnet were used to generate instability diagrams and the wavenum-
bers computed from the experiment were plotted. It is observed that the
experimental data lie within the stable region where bars are not suppose
to grow. The data does not exhibit a good agreement with the theoretical
results. It is suggested that the aspect ratio be increased, such that the
channel width is widened, in order to yield comparable results from stability
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analysis.
Lastly, the study was also able to calculate values of the representative

wavelength that were derived from the dominant wavenumbers correspond-
ing to the maximum growth rates of perturbation. The flow and sediment
parameters from the experimental studies of Watanabe et al. and Lanzoni for
non-erodible banks were selected to obtain the representative or calculated
wavelength, and were then compared with the experimental results. It is re-
vealed that the calculated wavelength generally underestimates the observed
wavelength, or the observed wavelength is twice as large as the calculated
wavelength. It is possible that in the scheme of linear stability analysis, the
instability process first selects the wavenumber and then enhances the growth
rates of the bars; hence, bar formation in the stability analysis is slow.
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