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Abstract

We consider an abstract pair-interaction model in quantum field theory with a

coupling constant λ ∈ R and analyze the Hamiltonian H(λ) of the model. In the

massive case, there exist constants λc < 0 and λc,0 < λc such that, for each λ ∈
(λc,0, λc) ∪ (λc,∞), H(λ) is diagonalized by a proper Bogoliubov transformation, so

that the spectrum of H(λ) is explicitly identified, where the spectrum of H(λ) for

λ > λc is different from that for λ ∈ (λc,0, λc). As for the case λ < λc,0, we show that

H(λ) is unbounded from above and below. In the massless case, λc coincides with λc,0.
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1 Introduction

This thesis is based on the joint work [6]. We consider an abstract pair-interaction model

in quantum field theory. The Hamiltonian of the model is of the form

H(λ) := dΓb(T ) +
λ

2
Φs(g)

2

acting in the boson Fock space Fb(H ) over a Hilbert space H (see Subsection 2.1), where

T is a self-adjoint operator on H , dΓb(T ) is the second quantization operator of T , Φs(g) is

the Segal field operator with test vector g in H (see Subsection 2.1) and λ ∈ R is a coupling

constant. A model of this type is called a ϕ2-model.

There have been many studies on massive or massless ϕ2-models in concrete forms or

abstract forms (see, e.g., [4, 8, 9, 11, 12, 16]). In [11] and [16], the (essential) self-adjointness

of the Hamiltonian of a ϕ2-model is proved in the case where λ > 0 or |λ| is sufficiently small.

In [11], the existence of a ground state of a ϕ2-model also is shown in the case where the

quantum field under consideration is massive and λ > 0.

It is a well known that Hamiltonians with linear and/or quadratic interactions in quantum

fields may be analyzed by the method of Bogoliubov transformations (see, e.g., [1, 2, 3, 4, 7, 8,

10, 12]). A typical Bogoliubov transformation is constructed from bounded linear operators

U, V and a conjugation operator J on H satisfying the following equations:
U∗U − V ∗V = I,

U∗
JV − V ∗

J U = 0,

UU∗ − VJV
∗
J = I,

UV ∗ − VJU
∗
J = 0,

(1.1)

where AJ := JAJ and A∗ is the adjoint of a densely defined linear operator A. It is well

known that there is a unitary operator U on Fb(H ) which implements the Bogoliubov
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transformation in question if and only if V is Hilbert-Schmidt [7, 13, 14, 15]. Moreover,

it is shown that, under the condition that V is Hilbert-Schmidt and suitable additional

conditions, the Hamiltonian under consideration is unitarily equivalent via U to a second

quantization operator up to a constant addition. For example, the Pauli-Fierz model with

dipole approximation, which can be regarded as a kind of ϕ2-model, is analyzed by this

method in [10].

Recently, a general quadratic form Hamiltonian with a coupling constant λ ∈ R has

been analyzed in [12] and it is shown that, in the case of a massive quantum field, under

suitable conditions, the Hamiltonian is diagonalized by a Bogoliubov transformation. In

[8], the sufficient condition formulated in [12] to obtain the result just mentioned has been

extended. The spectrum of the standard pair-interaction model in physics, which is a concrete

realization of the abstract pair-interaction model, is formally known [9] in the case where

λ > λc,0 and λ ̸= λc for the constants λc and λc,0 which satisfy λc,0 < λc. The paper [4] gives

a rigorous proof for that in the framework of the boson Fock space theory over H = L2(Rd)

for any d ∈ N and λ > λc.

One of the motivations for the present work is to extend the theory developed in [4]

with H = L2(Rd) to the theory with H being an abstract Hilbert space including the case

where λ < λc. It is a well known fact (see [9]) that the spectral properties of the standard

pair-interaction model may depend on whether λ > λc or λ < λc. Hence it is important

to clarify this aspect mathematically. Therefore we analyze our model also for the region

λ < λc. We show that, in the massive case with λ ∈ (λc,0, λc) also, the method of Bogoliubov

transformations can be applied to prove that the Hamiltonian H(λ) is unitarily equivalent to

a second quantization operator up to a constant addition. Then we see that the spectrum of

H(λ) for λ ∈ (λc,0, λc) is different from that for λ > λc. In the massless case, λc,0 coincides

with λ0.

The main results of the present paper include the following (1)–(3) (see Theorem 2.8

for more details): (1) Identification of the spectra of H(λ) for λ > λc. (2) Identification

of the spectra of H(λ) for λc,0 < λ < λc it is only in the massive case; in the massless

case, λc,0 = λc). In this case, bound states different from the ground state appear. (3)

Unboundedness of H(λ) from above and below for λ < λc,0.

The outline of this paper is as follows. In Section 2, we define our model and recall a

fundamental fact in a general theory of Bogoliubov transformations. We prove the (essential)

self-adjointness of H(λ) (Theorem 2.3). Then we state the main theorem of this paper

(Theorem 3.6). In Section 3, we construct the operators U and V which are used to define

the Bogoliubov transformation we need. In Section 4, we show that U and V satisfy (1.1)

and V is Hilbert-Schmidt. In Section 5, we prove Theorem 2.8 (1) and calculate the ground
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state energy of H(λ) in the case λ > λc. In Section 6, we prove Theorem 2.8 (2). In Section

7, we prove Theorem 2.8 (3). In Section 8, we consider a slightly generalized Hamiltonian

which is of the form H(η, λ) := H(λ)+ηΦS(f) for η ∈ R and f ∈ H . Applying the methods

and results in the preceding sections, we analyze H(η, λ) and identify the spectra of it. In

Appendix, we state some basic facts in the theory of boson Fock space.

2 Preliminaries

2.1 The abstract boson Fock Space

Let H be a Hilbert space over the complex field C with the inner product ⟨·, ·⟩H . The

inner product is linear in the second variable and anti-linear in the first one. The symbol

∥ · ∥H denotes the norm associated with it. We omit H in ⟨·, ·⟩H and ∥ · ∥H , respectively if

there is no danger of confusion. For each non-negative integer n = 0, 1, 2, . . . , ⊗n
s H denotes

the n-fold symmetric tensor product Hilbert space of H with convention ⊗0
sH := C. Then

Fb(H ) := ⊕∞
n=0 ⊗n

s H

is called the boson Fock space over H . For a dense subspace D in H , ⊗̂n
s D denotes the

algebraic n-fold symmetric tensor product of D with ⊗̂0
sH := C. Then

Fb,fin(D) := ⊕̂∞
n=0⊗̂

n
s D

is a dense subspace of Fb(H ), where ⊕̂∞
n=0Dn stands for the algebraic direct sum of subspace

Dn ⊂ ⊗n
s H , n = 0, 1, 2, . . .. The finite particle vector subspace

Fb,0(H ) :=

{
ψ = {ψ(n)}∞n=0 ∈ Fb(H )

∣∣∣∣∣ ψ(n) ∈ ⊗n
s H , n ≥ 0, there is an integer n0 ∈ N

such that ψ(n) = 0, for all n ≥ n0

}

satisfies Fb,fin(D) ⊂ Fb,0(H ) ⊂ Fb(H ), in particular, it is dense in Fb(H ). For a linear

operator T on a Hilbert space, the domain of T will be denoted by D(T ).

For a densely defined closable operator T on H , let T
(n)
b be the densely defined closed

operator on ⊗n
s H defined by

T
(n)
b :=


n∑

j=1

I ⊗ · · · ⊗ I ⊗
j−th︷︸︸︷
T ⊗I ⊗ · · · ⊗ I ↾ ⊗̂n

sD(T ), n ≥ 1,

0, n = 0,
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where I denotes the identity operator on H , A denotes the closure of a closable operator A

and A ↾ M denotes the restriction of a linear operator A on a subspace M. The operator

dΓb(T ) := ⊕∞
n=0T

(n)
b

is called the second quantization operator of T . If T is self-adjoint or non-negative, then so

is dΓb(T ). For each f ∈ H , there exists a unique densely defined closed operator A(f) on

Fb(H ) such that its adjoint A(f)∗ is given as follows:

D(A(f)∗) :=

{
ψ = {ψ(n)}∞n=0 ∈ Fb(H )

∣∣∣∣∣
∞∑
n=1

n
∥∥Sn

(
f ⊗ ψ(n−1)

)∥∥2 <∞

}
,

(A(f)∗ψ)(n) =
√
nSn(f ⊗ ψ(n−1)), n ∈ N, (A(f)∗ψ)(0) = 0 for ψ ∈ D(A(f)∗),

where Sn is the symmetrization operator on the n-fold tensor product ⊗nH of H . The

operator A(f) (resp. A(f)∗) is called the annihilation (resp. creation) operator with test

vector f . We have

Fb,0(H ) ⊂ D(A(f)) ∩D(A(f)∗)

for all f ∈ H and A(f) and A(f)∗ leave Fb,0(H ) invariant. Moreover, they satisfy the

following commutation relations:

[A(f), A(g)∗] = ⟨f, g⟩ , [A(f), A(g)] = 0, [A(f)∗, A(g)∗] = 0, for all f, g ∈ H (2.1)

on Fb,0(H ), where [A,B] := AB−BA is the commutator of linear operators A and B. The

relation (2.1) is called the canonical commutation relations (CCR) over H . The symmetric

operator

Φs(f) :=
1√
2
(A(f) + A(f)∗), f ∈ H

is called the Segal field operator with test vector f . We write its closure by the same symbol.

2.2 Bogoliubov Transformation

In this subsection, we define a Bogoliubov transformation and recall an important theorem

about it. For a conjugation J on H (i.e., J is an anti-linear operator on H satisfying

∥Jf∥ = ∥f∥ for all f ∈ H and J2 = I) and a linear operator A on H , we define

AJ := JAJ.

Definition 2.1. Let U and V be bounded linear operators on H and J be a conjugation on

H . For each f ∈ H , let a linear operator B(f) on Fb(H ) be given by

B(f) := A(Uf) + A(JV f)∗.

Then the correspondence (A(·), A(·)∗) 7→ (B(·), B(·)∗) is called a Bogoliubov transformation.
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By Fb,0(H ) ⊂ D(B(f)), the adjoint B(f)∗ exists and the equation B(f)∗ = A(Uf)∗ +

A(JV f) holds on Fb,0(H ) for each f ∈ H . If the equations

U∗U − V ∗V = I, U∗
JV − V ∗

J U = 0

hold, then the Bogoliubov transformation preserves CCR, i.e., it holds that

[B(f), B(g)∗] = ⟨f, g⟩ , [B(f), B(g)] = 0, [B(f)∗, B(g)∗] = 0, for all f, g ∈ H ,

on Fb,0(H ). The following theorem is well known (see [14, 15]):

Theorem 2.2. Let H be separable and the operators U and V satisfy (1.1). Then there

exists a unitary operator U on Fb(H ) such that

UB(f)U−1 = A(f), f ∈ H

if and only if V is Hilbert-Schmidt.

2.3 Hamiltonians

For a self-adjoint operator T on H , constants λ, η ∈ R which are called coupling con-

stants, and vectors f, g ∈ H , we define Hamiltonians H(λ) and H(η, λ) by

H(λ) := dΓb(T ) +
λ

2
Φs(g)

2, H(η, λ) := H(λ) + ηΦs(f).

If g = 0, then H(λ) and H(η, λ) are well-known operators. Thus, we always assume that

g ̸= 0 in the present paper. If g ∈ D(T−1/2), let the constant be defined by

λc,0 := −∥T−1/2g∥−2.

Theorem 2.3. Suppose that T is an injective, non-negative, self-adjoint operator on H .

Let f ∈ D(T−1/2) and g ∈ D(T−1/2) ∩D(T ). Then the following (1)-(3) hold:

(1) Let

λT (g) := ∥T−1/2g∥−1(∥T−1/2g∥+ ∥T 1/2g∥)−1 (2.2)

and |λ| < λT (g). Then H(η, λ) is self-adjoint with D(H(η, λ)) = D(dΓb(T )) and

essentially self-adjoint on any core of dΓb(T ) for all η ∈ R. Moreover, H(η, λ) is

bounded from below.

(2) Let |λ| ≥ λT (g) and f ∈ D(T 1/2). Then H(η, λ) is essentially self-adjoint on any core

of dΓb(T ) for all η ∈ R. Moreover, if λ ≥ λT (g), then H(η, λ) is self-adjoint.
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(3) Let f ∈ D(T 1/2). Then H(λc,0) is bounded from below. Moreover, if λ > λc,0, then

H(η, λ) is also bounded from below for all η ∈ R and D(dΓb(T )
1/2) = D((H(η, λ) +

M)1/2) for all constant M ≥ 0 satisfying H(η, λ) +M ≥ 0.

Proof. (1) For any λ ∈ R, by using (2.1), (10.1), (10.2) and [5, Theorem 5.18.], there are

constants a, b ≥ 0 such that for all ψ ∈ D(dΓb(T )),∥∥∥∥λ2Φs(g)
2ψ

∥∥∥∥ ≤ |λ|
4

(a∥dΓb(T )ψ∥+ b∥ψ∥) .

In particular, we can choose a and b which satisfy a|λ|/4 < 1 if |λ| < λT (g). We remark

that, to obtain the factor λT (g), we need to deform terms ∥A(g)∗2ψ∥2, ∥A(g)∗A(g)ψ∥2

and ∥A(g)2ψ∥2 coming from ∥Φs(g)
2ψ∥2 (ψ ∈ Fb,0(H )) to ∥A(g)A(g)∗ψ∥2+ a marginal

term respectively. Thus, for |λ| < λT (g), by the Kato-Rellich theorem, H(λ) is self-

adjoint. It is well known that Φs(f) is infinitesimally small with respect to dΓb(T ).

Hence, by the Kato-Rellich theorem, for |λ| < λT (g), H(η, λ) is self-adjoint.

(2) Firstly, we show that, for any f ∈ D(T 1/2) and η, λ ∈ R, H(η, λ) is essentially self-

adjoint on any core of dΓb(T ). By (10.1), (10.2) and [5, Theorem 5.18.], we can see that

there exists a > 0 such that ∥H(η, λ)ψ∥ ≤ a∥(dΓb(T ) + I)ψ∥ for all ψ ∈ D(dΓb(T )).

Let f ∈ D(T ). Then by (2.1) and (10.3), for any ψ ∈ Fb,fin(D(T )), we have

⟨H(η, λ)ψ, (dΓb(T ) + I)ψ⟩ − ⟨(dΓb(T ) + I)ψ,H(η, λ)ψ⟩

=
λ√
2
(⟨Φs(g)ψ,A(Tg)ψ⟩ − ⟨A(Tg)ψ,Φs(g)ψ⟩) +

η√
2
(⟨ψ,A(Tf)ψ⟩ − ⟨A(Tf)ψ, ψ⟩).

Thus, by (10.1) and (10.2), we obtain

| ⟨H(η, λ)ψ, (dΓb(T ) + I)ψ⟩ − ⟨(dΓb(T ) + I)ψ,H(η, λ)ψ⟩ | ≤ C∥(dΓb(T ) + I)1/2ψ∥2,
(2.3)

where C :=
{
|λ|∥T 1/2g∥(∥g∥+ 2∥T−1/2g∥) +

√
2|η|∥T 1/2f∥

}
. By a limiting argument,

using the fact that Fb,fin(D(T )) is a core of dΓb(T ) and dΓb(T )-boundedness of Φs(g)
2,

we can show that for f ∈ D(T 1/2) and ψ ∈ D(dΓb(T )), (2.3) holds. Thus, by the Nelson

commutator theorem, for all η, λ ∈ R, H(η, λ) is essentially self-adjoint and H(η, λ) is

essentially self-adjoint on any core of dΓb(T ). The equation H(η, λ) ↾ D = H(η, λ) ↾ D

holds for any core D of dΓb(T ). Hence H(η, λ) is essentially self-adjoint on any core of

dΓb(T ) for all η, λ ∈ R. Next we show that, if λ > ∥T−1/2g∥−1(∥T−1/2g∥+ ∥T 1/2g∥)−1,

then H(η, λ) is self-adjoint. We can show that, for λ > 0 and any 0 < ε < 1, there is a

constant cε > 0 such that

(1− ε)∥dΓb(T )ψ∥2 +
∥∥∥∥λ2Φs(g)

2ψ

∥∥∥∥2 ≤ ∥H(η, λ)ψ∥2 + cε∥ψ∥2, ψ ∈ D(dΓb(T )).
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Hence H(η, λ) is closed. In particular, it is self-adjoint.

(3) From the fact that Φs(f) is infinitesimally small with respect to dΓb(T ), for any ε >

0, εdΓb(T ) + ηΦs(f) is bounded from below. By (10.1), for any ε > 0 and ψ ∈
D(dΓb(T )

1/2),

| ⟨ψ,A(f)ψ⟩ | ≤ ∥T−1/2f∥
(
ε∥dΓb(T )

1/2ψ∥2 + 1

4ε
∥ψ∥2

)
.

Hence if the assertion follows for η = 0, then so is for all η. Thus we show that the

assertion follows for η = 0. If λ > 0, then clearly H(λ) ≥ 0. Let λ < 0. By (10.1) and

(10.2), for any ψ ∈ D(dΓb(T )
1/2), it follows that

∥Φs(g)ψ∥2 ≤ 2∥T−1/2g∥2∥dΓb(T )
1/2ψ∥2 + ∥g∥2∥ψ∥2.

Thus for any ψ ∈ D(dΓb(T )),

⟨ψ,H(λ)ψ⟩ = ∥dΓb(T )
1/2ψ∥2 + λ

2
∥Φs(g)ψ∥2

≥ (1 + λ∥T−1/2g∥2)∥dΓb(T )
1/2ψ∥2 + λ

2
∥g∥2∥ψ∥2. (2.4)

Hence H(λ) is bounded from below if λ ≥ λc,0.

Let λ ≥ λc,0 and M ≥ 0 be a constant satisfying H(λ) + M ≥ 0. Then for any

ψ ∈ D(dΓb(T )) = D(H(λ)),

∥(H(λ) +M)1/2ψ∥2 ≤ (1 + |λ|∥T−1/2g∥2)∥dΓb(T )
1/2ψ∥2 +

(
|λ|
2
∥g∥2 +M

)
∥ψ∥2.

(2.5)

By the fact that D(dΓb(T )) is a core of dΓb(T )
1/2, we have D(dΓb(T )

1/2) ⊂ D((H(λ)+

M)1/2) and (2.5) holds on D(dΓb(T )
1/2).

In the case λ > 0, the fact that Φs(g)
2 is non-negative implies that ∥H(λ)1/2ψ∥ ≥

∥dΓb(T )
1/2ψ∥ holds for any ψ ∈ D(dΓb(T )). In the case 0 > λ > λc,0,

∥dΓb(T )
1/2ψ∥2 ≤ 1

1 + λ∥T−1/2g∥2

{
∥(H(λ) +M)1/2ψ∥2 −

(
λ

2
∥g∥2 +M

)
∥ψ∥2

}
holds for any ψ ∈ D(dΓb(T )) by (2.4). Hence for λ > λc,0 there is a constant a, b ≥ 0

such that for any ψ ∈ D(dΓb(T )),

∥dΓb(T )
1/2ψ∥ ≤ a∥(H(λ) +M)1/2ψ∥+ b∥ψ∥. (2.6)

By a functional calculus, D(dΓb(T )) is a core of (H(λ) +M)1/2. This fact and (2.6)

imply that D((H(λ) +M)1/2) ⊂ D(dΓb(T )
1/2) and (2.6) holds on D((H(λ) +M)1/2).
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Remark 2.4. By [3, Lemma 13-15], if H is separable, then Theorem 2.3 takes the following

forms:

Let H be separable, T be a non-negative, injective self-adjoint operator, f ∈ D(T−1/2) and

g ∈ D(T−1/2) ∩D(T 1/2). Then the following (1)-(3) hold:

(1) Let λ > λc,0. Then H(η, λ) is self-adjoint with D(H(η, λ)) = D(dΓb(T )) and essentially

self-adjoint on any core of dΓb(T ) for all η ∈ R. Moreover, H(η, λ) is bounded from

below.

(2) Let λ ≤ λc,0 and f ∈ D(T 1/2). Then H(η, λ) is essentially self-adjoint on any core of

dΓb(T ) for all η ∈ R. In particular, if η = 0 and λ = λc,0, then H(λc,0) = H(0, λc,0) is

bounded from below.

(3) Let λ > λc,0. Then D(dΓb(T )
1/2) = D((H(η, λ) + M)1/2) for all constant M ≥ 0

satisfying H(η, λ) +M ≥ 0.

3 The Main Theorem

3.1 Assumptions

To prove our main theorem stated later (Theorem 3.6), we need some assumptions. For

a closed operator A, σ(A) denotes the spectrum of A. If A is self-adjoint, then σac(A) (resp.

σp(A), σsc(A)) denotes the absolutely continuous (resp. point, singular continuous) spectrum

of A. For a self-adjoint operator A which is bounded from below,

E0(A) := inf σ(A)

is called the lowest energy of A. In particular, it is called the ground state energy of A if

E0(A) ∈ σp(A). In this case, an eigenvector of A with eigenvalue E0(A) is called a ground

state of A. The ground state is said to be unique if dim Ker(A − E0(A)) = 1. For linear

operators A and B, the symbol A ⊂ B means that D(A) ⊂ D(B) and Af = Bf for all

f ∈ D(A), i.e., B is an extension of A.

Definition 3.1. Let T be a self-adjoint operator on H and {E(B) | B ∈ B1} be the spectral

measure associated with T on the Borel field B1 on R. The operator T is called purely abso-

lutely continuous if, for each f ∈ H , the measure ∥E(·)f∥2 on B1 is absolutely continuous

with respect to the one-dimensional Lebesgue measure.

9



Definition 3.2. For a purely absolutely continuous self-adjoint operator T and vectors f, g ∈
H , ψg,f denotes the Radon-Nikodym derivative of the finite complex Borel measure ⟨g, E(·)f⟩
on B1. In particular, we set ψg := ψg,g.

Assumption 3.3. (1) The operator T is a non-negative, purely absolutely continuous self-

adjoint operator.

(2) The fixed vector g ∈ H satisfies g ∈ D(T̂−1/2)∩D(T 1/2) and Jg = g, where T̂ := T−E0,

E0 := E0(T ) and J is a conjugation on H satisfying JD(T ) ⊂ D(T ) and JTψ = TJψ

for any ψ ∈ D(T ) ( i.e., JT ⊂ TJ),

(3) supE0<x x
±1ψg(x) <∞ and ψg(x) > 0 for all x ∈ (E0,∞),

(4) ψg ∈ C([E0,∞)) ∩ C1((E0,∞)) and limx↓E0 x
−1ψ′

g(x) = 0 = limx→∞ x−1ψ′
g(x).

Remark 3.4. The operator T is injective since it is a purely absolutely continuous self-

adjoint operator. Since T has no eigenvector, the inverse of T̂ exists. Assumption 3.3 (2)

implies that TJ = T . In general, for a self-adjoint operator A and a conjugation J , we can

choose a vector f ∈ D(A) satisfying Jf = f if AJ = A. Thus the vector g in Assumption 3.3

(2) exists. By Assumption 3.3 (3), one can easily show that supx∈σ(T ) ψg(x) < ∞ and, for

each f ∈ H , the functions ψg,f and ψT±1/2g,f are in L2(R) and the maps : f 7→ ψg,f , ψT±1/2g,f

are bounded. Actually, for any h ∈ H and B ∈ B1, the following inequality holds

| ⟨E(B)h, f⟩ |2 ≤ ∥E(B)h∥2∥E(B)f∥2

by Schwarz’s inequality. Thus we obtain |ψh,f (µ)|2 ≤ ψh(µ)ψf (µ) for almost all µ ∈ R with

respect to the Lebesgue measure. Hence, by Assumption 3.3 (3), we have the boundedness of

the mappings. Moreover, we see that for any F ∈ L2(R), g ∈ D(F (T )), where F (T ) denotes

the operator defined by F (T ) :=
∫
R F (µ)dE(µ). In particular, g is in D(ψg,f (T )) for any

f ∈ H .

Lemma 3.5. Let T be a self-adjoint operator such that JT ⊂ TJ . Then

(1) E(B)J = E(B), for all B ∈ B1.

(2) Let F be a Borel measurable function on R. Then F (T )J = F ∗(T ), where F ∗ is complex

conjugation of F .

Proof. These are proved by using the spectral theorem.
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3.2 The Main Theorem

In this subsection, we state the main theorem of the present paper. Let λc be a constant

defined by

λc := −
(∫

[E0,∞)

µ

µ2 − E2
0

d∥E(µ)g∥2
)−1

< 0.

Then, by a functional calculus, we obtain λc,0 ≤ λc, and λc,0 = λc if and only if E0 = 0.

Theorem 3.6. Let H be separable. Then the following (1)-(3) hold:

(1) Let T and g satisfy Assumption 3.3. If λ > λc, then there are a unitary operator U on

Fb(H ) and a constant Eg ∈ R such that

UH(λ)U−1 = dΓb(T ) + Eg. (3.1)

In particular, U−1Ω0 is the unique ground state of H(λ), where Ω0 := (1, 0, 0, . . .) ∈
Fb(H ) is the Fock vacuum, and

σ(H(λ)) = {Eg} ∪ [E0 + Eg,∞), (3.2)

σac(H(λ)) = [E0 + Eg,∞), σp(H(λ)) = {Eg}, σsc(H(λ)) = ∅. (3.3)

(2) Let T and g satisfy Assumption 3.3 and E0 > 0. If λc,0 < λ < λc, then there exist a

unitary operator V on Fb(H ), an injective non-negative self-adjoint operator ξ on H

and a constant Eb ≥ 0 such that ξ has a ground state and

VH(λ)V−1 = dΓb(ξ) + Eg − Eb.

In particular, V−1Ω0 is the unique ground state of H(λ), and

σ(H(λ)) = ∪∞
n=0{nβ + Eg − Eb} ∪ [E0 + Eg − Eb,∞),

σac(H(λ)) = [E0 + Eg − Eb,∞),

σp(H(λ)) = ∪∞
n=0{nβ + Eg − Eb}, σsc(H(λ)) = ∅,

where β > 0 is the discrete ground state energy of ξ.

(3) Let T be a non-negative, injective self-adjoint operator. If g ∈ D(T−1/2) and λ < λc,0,

then H(λ) is unbounded from above and below.

Example 3.7. A concrete realization of the abstract model is given as follows (see [9, Chapter

12]):

H ↔ L2(Rd), T ↔ ω, g ↔ ρ̂√
ω
,
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where ω is the multiplication operator associated with the function ω(k) :=
√

|k|2 +m2, k ∈
Rd for a fixed m ≥ 0 and ρ̂ is the Fourier transform of a function ρ ∈ L2(Rd) satisfying

ρ̂/
√
ω ∈ L2(Rd). Assume that ρ̂ is rotation invariant, i.e., there exists a function v on [0,∞)

such that ρ̂(k) = v(|k|) for all k ∈ Rd. Then we have ψg(s) = |Sd−1| ω−1
1 (s)d−2 |v(ω−1

1 (s))|2

for s > m, where |Sd−1| is the surface area of the (d − 1)-dimensional unite sphere with

convention |S0| = 2π and ω1(r) =
√
r2 +m2, r ≥ 0. Set ψg(m) := 0. Hence, with J being the

complex conjugation, the following conditions (2)’-(4)’ imply that the present model satisfies

Assumption 3.3:

(2)’ ρ̂(k)∗ = ρ̂(k) and

ρ̂ ∈ L2(Rd),

∫
Rd

|ρ̂(k)|2

|k|2
dk <∞.

(3)’ ρ̂ is rotation invariant. supk∈Rd ω(k)±1/2|k|(d−2)/2|ρ̂(k)| <∞. ρ̂(k) > 0, for all k ̸= 0.

(4)’ v ∈ C1([0,∞)) and

lim
|k|→0

|k|d−4ρ̂(k){(d− 2)ρ̂(k) + 2|k|v′(|k|)} = 0,

lim
|k|→∞

|k|d−4ρ̂(k){(d− 2)ρ̂(k) + 2|k|v′(|k|)} = 0.

We can show that ψg is right continuous at m by
∫
Rd |ρ̂(k)|2|k|−2dk <∞ and v ∈ C1([0,∞)).

Thus, ψg ∈ C([m,∞)). For example, one can easily check that the function

ρ̂(k) := exp

(
− 1

|k|2
− |k|2

)
, k ∈ Rd\{0}, ρ̂(0) := 0

satisfies the above conditions (2)’-(4)’.

4 Definitions and properties of some functions and op-

erators

In this section, we introduce some functions and operators. We assume that H is sepa-

rable and Assumption 3.3 from this section to Section 6.

4.1 Functions D and D±

Lemma 4.1. Let D : C\(0,∞) → C be the function

D(z) := 1 + λ

∫
[E0,∞)

µ

µ2 − E2
0 − z

d∥E(µ)g∥2, z ∈ C\(0,∞).
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Then D is well-defined and analytic in C\[0,∞). Moreover, the following hold :

(1) For all λ > λc, D(z) has no zeros in C\[0,∞).

(2) For all λ < λc, D(z) has a unique simple zero in the negative real axis (−∞, 0).

Proof. If Imz ̸= 0 (resp. Rez < 0), then for any n ∈ N,∫
[E0,∞)

∣∣∣∣ µ

(µ2 − E2
0 − z)n

∣∣∣∣ d∥E(µ)g∥2 ≤ c−n∥T 1/2g∥2 <∞,

where c is |Imz| (resp. |Rez|). If z = 0, then∫
[E0,∞)

µ

µ2 − E2
0

d∥E(µ)g∥2 ≤ ∥T̂−1/2g∥2 <∞.

Thus, by using the Lebesgue dominated convergence theorem, D is well-defined and analytic

in C\[0,∞).

(1) If λ = 0, then D(z) = 1 for all z ∈ C\(0,∞), so it has no zeros. Let λ ̸= 0 and

z = x+ iy ∈ C\(0,∞). Then we see that

Im D(z) = yλ

∫
[E0,∞)

µ

(µ2 − E2
0 − x)2 + y2

d∥E(µ)g∥2.

Thus Im D(z) = 0 is equivalent to y = 0. Therefore D(z) = 0 if and only if D(x) = 0.

Let y = 0. In the case λ > 0, one has D(x) > 0 for all x ∈ (−∞, 0]. Thus D has no

zeros. Next, we consider the case λ < 0. We have for x < 0,

D′(x) = λ

∫
[E0,∞)

µ

(µ2 − E2
0 − x)2

d∥E(µ)g∥2 < 0.

Thus D is monotone decreasing in (−∞, 0). If λ > λc, then D(0) > 0. Hence D has

no zeros.

(2) Let λ < λc. We can see that

D(0) = 1 + λ

∫
[E0,∞)

µ

µ2 − E2
0

d∥E(µ)g∥2 = 1− λ

λc
< 0.

By the Lebesgue dominated convergence theorem, D(x) → 1 as x → −∞. Since D is

monotone decreasing in (−∞, 0), D has a unique simple zero in (−∞, 0).
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Let

ϕg(x) := ψg(
√
x)χ[E2

0 ,∞)(x), x ∈ R,

where χB is the characteristic function of B ∈ B1.

Lemma 4.2. The following hold :

(1) The function ϕg satisfies ϕg ∈ C1(R) ∩ L1(R) ∩ L2(R) and supx∈R |ϕ′
g(x)| <∞.

(2) Let

A(1)
ε (x) :=

x

π(x2 + ε2)
, A(2)

ε (x) :=
ε

π(x2 + ε2)
, x ∈ R, ε > 0

be the conjugate poisson kernel and the poisson kernel respectively and f ∗ h denote the

convolution of functions f and h. Let

(Hεf)(s) :=
1

π

∫
|x−s|≥ε

f(x)

s− x
dx, (Hf)(s) := lim

ε↓0
(Hεf)(s), s ∈ R, ε > 0,

where Hf is called the Hilbert transform of f . Then for all x ∈ R,

lim
ε↓0

(
A(1)

ε ∗ ϕg

)
(x) = (Hϕg)(x), lim

ε↓0

(
A(2)

ε ∗ ϕg

)
(x) = ϕg(x),

hold uniformly in x.

Proof. For any h > 0, by Assumption 3.3 (1), (4) and the mean value theorem, there exists

θ ∈ (E0 + h/2, E0 + h) such that∫ E0+h

E0+h/2

ψg(µ)

µ− E0

dµ =
h

2

ψg(θ)

θ − E0

.

This fact and θ < E0 + h imply that

∥E([E0, E0 + h])T̂−1/2g∥2 =
∫
[E0,E0+h]

ψg(µ)

µ− E0

dµ >
ψg(θ)

2
. (4.1)

By taking the limit h ↓ 0 and Assumption 3.3 (1), the left hand side of (4.1) tends to zero.

Thus we obtain limh→E0+0 ψg(h) = 0. This fact and ψg ∈ C([E0,∞)) imply that ψg(E0) = 0.

Since ψg is the Radon-Nikodym derivative of ∥E(·)g∥2 and E0 ≤ T , we have ψg(x) = 0 for

x < E0. Thus ϕg ∈ C(R). By the differentiability of ψg, we obtain ϕ′
g(x) = ψ′

g(
√
x)/(2

√
x)

for x > E2
0 and ϕ′

g(x) = 0 for x < E2
0 . Thus, ϕ

′
g is continuous on (−∞, E2

0) ∪ (E2
0 ,∞). Since

ϕ′
g(x) = 0 for x < E2

0 and limh→0+0(E0+h)
−1ψg(E0+h) = 0, we have limh→0 ϕ

′
g(E

2
0 +h) = 0.

By this fact and the l’Hôpital theorem, we obtain limh→0+0(ϕg(E
2
0 +h)−ϕg(E

2
0))/h = 0. We
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have limh→0−0(ϕg(E
2
0 +h)−ϕg(E

2
0))/h = 0 since ϕg(x) = 0 for x < E2

0 . Thus ϕg is continuous

at E2
0 . Hence ϕg ∈ C1(R). By the fact that ψ′

g(x) = 0 for x < E0 and Assumption 3.3 (4)

imply that ϕg ∈ C1(R) and ϕ′
g(E

2
0) = 0. By Assumption 3.3 (2) and a change of variable, we

have ϕg ∈ L1(R). We obtain ϕg ∈ L2(R) by Assumption 3.3 (3) and a change of variable. The

inequality supx∈R |ϕ′
g(x)| <∞ is given by Assumption 3.3 (4). The assertion (1) holds. Next

we consider the assertion (2). By (1), in particular, ϕg is bounded and uniformly continuous.

Thus it is easy to see that A
(2)
ε ∗ ϕg converges uniformly to ϕg. Moreover, by (1), Hölder’s

inequality, the mean value theorem and a similar estimate to the proof of [17, Theorem 92.],

we can show that (A
(1)
ε ∗ ϕg)(x) − (Hεϕg)(x) tends to 0 uniformly in x as ε ↓ 0. Hence the

assertion (2) holds.

Detailed studies of the Hilbert transform are given in [17].

Lemma 4.3. For all s ≥ 0, D±(s) := limε↓0D(s± iε) are uniformly convergent and contin-

uous in s ≥ 0 with

D±(s) = 1− λπ

2
(Hϕg)(E

2
0 + s)± i

λπ

2
ψg

(√
E2

0 + s

)
, s ≥ 0. (4.2)

Proof. For any s ≥ 0 and ε > 0, we have by a change of variable

D(s± iε) = 1− λπ

2

(
A(1)

ε ∗ ϕg

)
(E2

0 + s)± i
λπ

2

(
A(2)

ε ∗ ϕg

)
(E2

0 + s).

Thus, by Lemma 4.2, D± converge uniformly in s ≥ 0 and (4.2) holds. The continuity of D±

is due to the uniform convergence.

Remark 4.4. For all µ ∈ [E0,∞), we have

iπλψg(µ) = D+(µ
2 − E2

0)−D−(µ
2 − E2

0). (4.3)

Lemma 4.5. Let λ ̸= λc, then δ := infs≥0 |D±(s)| > 0.

Proof. If λ = 0, then clearly D±(s) = 1 > 0 for all s ∈ [0,∞). Let λ ̸= 0, λc. Then

D±(0) = D(0) ̸= 0. Hence, by the continuity of D±, D± has no zeros near s = 0. For any

ε > 0 and s > E2
0 + 1, we have

(Hεϕg)(s) = I
(ε)
1 (s) +

4∑
j=2

Ij(s),

I
(ε)
1 (s) =

∫ 1

ε

ϕg(s− x)− ϕg(s+ x)

x
dx, I2(s) =

∫ s−1

E2
0

ϕg(x)

s− x
dx,

I3(s) =

∫ 2s

s+1

ϕg(x)

s− x
dx, I4(s) =

∫ ∞

2s

ϕg(x)

s− x
dx.

15



Then, by the Lebesgue dominated convergence theorem, each Ij(s), j = 2, 3, 4 tends to zero

as s→ ∞. By the mean value theorem and the property that ϕ′
g(x) → 0 as x→ ∞, we have

lims→∞ limε↓0 I
(ε)
1 (s) = 0. Hence we can see that (Hϕg)(s) → 0 as s → ∞. This fact implies

that infs0≤sReD±(s) > 0 for a sufficiently large number s0 > 0. In addition, ImD±(s) are

positive for any closed interval included in (0,∞) by Assumption 3.3 (3) and the continuity

of ψg. Hence we can see that infs≥0 |D±(s)| > 0.

Remark 4.6. By Lemmas 4.3 and 4.5, we can see that there are constants c, d, ε0 > 0 with

0 < c < d such that

c ≤
∣∣∣∣D(s± iε)

D±(s)

∣∣∣∣ ≤ d (4.4)

for all s ≥ 0, 0 < ε < ε0.

4.2 Operators R±

Through this subsection, we assume λ ̸= λc.

Lemma 4.7. One can define bounded operators R± on H as follows:

R±f := −λ lim
ε↓0

∫
[E0,∞)

Rµ′2±iε(T
2)T 1/2g

D±(µ′2 − E2
0)

d
⟨
T 1/2g, E(µ′)f

⟩
, f ∈ H ,

where Rz(A) := (A − z)−1 is the resolvent of a linear operator A at z ∈ ρ(A) (the resolvent

set of a linear operator A).

Proof. For a fixed ε > 0 and any f ∈ H ,∫
[E0,∞)

∥∥∥∥Rµ′2±iε(T
2)T 1/2g

D±(µ′2 − E2
0)

∥∥∥∥ d∥E(µ′)f∥2 ≤ ∥f∥2∥T 1/2g∥
δε

<∞

by Lemma 4.5 and a property of a resolvent. Thus we can define linear operators R
(ε)
± on H

by

R
(ε)
± f := −λ

∫
[E0,∞)

Rµ′2±iε(T
2)T 1/2g

D±(µ′2 − E2
0)

d
⟨
T 1/2g, E(µ′)f

⟩
in the sense of Bochner integral with the polarization identity. For any h, f ∈ H ,⟨

h,R
(ε)
± f
⟩

=− λ

∫
[E0,∞)

⟨
h,Rµ′2±iε(T

2)T 1/2g
⟩

D±(µ′2 − E2
0)

d
⟨
T 1/2g, E(µ′)f

⟩
=− λ

∫
[E0,∞)

∫
[E0,∞)

µ1/2

(µ2 − µ′2 ∓ iε)D±(µ′2 − E2
0)
d ⟨h,E(µ)g⟩ d

⟨
T 1/2g, E(µ′)f

⟩
,
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where we have used a functional calculus. By change of variables in the Lebesgue-Stieltjes

integration, a functional calculus and Fubini’s theorem, we have⟨
h,R

(ε)
± f
⟩
=
λπ

2

∫
[E0,∞)

−
(
A(1)

ε ∗ ϕ±
g,f

)
(µ2)µ1/2 ∓ i

(
A(2)

ε ∗ ϕ±
g,f

)
(µ2)µ1/2d ⟨h,E(µ)g⟩ ,

where ϕ±
g,f (x) = ψg,f (

√
x)x−1/4D±(x − E2

0)
−1χ[E2

0 ,∞)(x), x ∈ R. We have ϕ±
g,f ∈ L2(R) by

Remark 3.4, and the function
(
A

(j)
ε ∗ ϕ±

g,f

)
(µ2)µ1/2 (µ ∈ R) is in L2(R) for each j = 1, 2.

Thus, by a change of variable, we have∥∥∥∥R(ε)
± f −

(
−πλ

2
(Hϕ±

g,f )(T
2)T 1/2g ∓ 1

2
A±f

)∥∥∥∥2
≤
(
λπ

2

)2

cg

∫
[E2

0 ,∞)

∣∣(A(1)
ε ∗ ϕ±

g,f )(x)− (Hϕ±
g,f )(x)

∣∣2 dx
+

(
λπ

2

)2

cg

∫
[E2

0 ,∞)

∣∣(A(2)
ε ∗ ϕ±

g,f )(x)− ϕ±
g,f (x)

∣∣2 dx,
where cg := supx∈[E0,∞) ψg(x) and the linear operators

A±f := iπλψg,f (T )D±(T
2 − E2

0)
−1g, f ∈ H

are well-defined (see Remark 3.4 and Lemma 4.5). Hence, by ϕ±
g,f ∈ L2(R), we have

R
(ε)
± f → −(πλ/2)(Hϕ±

g,f )(T
2)T 1/2g ∓ (1/2)A±f as ε ↓ 0.

Moreover, by change of variables, the isometricity of Hilbert transform and Remark 3.4,

we can show that the inequalities∥∥(Hϕ±
g,f )(T

2)T 1/2g
∥∥ ≤ cg

δ
∥f∥, ∥A±f∥ ≤ π|λ|cg

δ
∥f∥

hold for all f ∈ H . Hence R± are bounded.

By the definition of the adjoint operator, R∗
± := (R±)

∗ are given as follows: for f ∈ H ,

R
(ε)∗
± f = λ

∫
[E0,∞)

Rµ′2±iε(T
2)D∓(T

2 − E2
0)

−1T 1/2g d
⟨
T 1/2g, E(µ′)f

⟩
, (4.5)

R∗
±f = lim

ε↓0
R

(ε)∗
± f.

For a densely defined linear operator A on a Hilbert space, A♯ denotes A or A∗.

Lemma 4.8. The ranges of R♯
± are included in D(T−1) ∩ D(T ) and R♯

± map D(T ) into

D(T 2).
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Proof. For any f, h ∈ H , we have

⟨h,R±f⟩ =
λπ

2

∫
[E0,∞)

−
(
Hϕ±

g,f

)
(µ2)µ1/2 ∓ i

ψg,f (µ)

D±(µ2 − E2
0)
d ⟨h,E(µ)g⟩ . (4.6)

By a change of variable, we have

(Hϕ±
g,f )(µ

2) =
(
Hψ±

T−1/2g,f

)
(µ) +

(
Hψ±

T−1/2g,f

)
(−µ), µ ∈ R, (4.7)

where ψ±
h,f (x) := ψh,f (x)D±(x

2 − E0)
−1χ[E0,∞)(x), x ∈ R for h, f ∈ H . Thus we see by

Assumption 3.3 (3) and a functional calculus that Ran(R±) ⊂ D(T−1). The equation

µ
(
Hϕ±

g,f

)
(µ2) =

(
Hψ±

T 1/2g,f

)
(µ)−

(
Hψ±

T 1/2g,f

)
(−µ), µ ∈ R, (4.8)

(4.6), Assumption 3.3 (3) and operational calculus imply that Ran(R±) ⊂ D(T ). For any

f ∈ D(T ) and µ ∈ R,

µ2
(
Hϕ±

g,f

)
(µ2) =

(
Hψ±

T 1/2g,Tf

)
(µ) +

(
Hψ±

T 1/2g,Tf

)
(−µ) + 2

π

∫
[E0,∞)

ψ±
T 1/2g,f

(x) dx.

Hence R±f ∈ D(T 2) and the following equation holds for any h ∈ H ,

⟨
h, T 2R±f

⟩
=
λπ

2

∫
[E0,∞)

−
{(

Hψ±
T 1/2g,Tf

)
(µ) +

(
Hψ±

T 1/2g,Tf

)
(−µ) + 2c

π

}
µ1/2d ⟨h,E(µ)g⟩

∓ i
λπ

2

∫
[E0,∞)

ψ±
T 1/2g,Tf

(µ)µ1/2 d ⟨h,E(µ)g⟩ ,

where c :=
∫
R ψ

±
T 1/2g,f

(x)dx. In quite the same manner as in the case of R±, we can prove

the statement for R∗
±.

Lemma 4.9. The operator equations (R±)J = R∓ hold.

Proof. This follows from Assumption 3.3 (1) and Lemma 3.5.

Lemma 4.10. The operator equation R− = R+γ + A− holds, where

γ := D+(T
2 − E2

0)D−(T
2 − E2

0)
−1

is a bounded operator.

Proof. The first resolvent formula gives that, for any µ′, µ′′ ∈ R, ε > 0,

Rµ′2−iε(T
2)−Rµ′2+iε(T

2) = −2iεRµ′2−iε(T
2)Rµ′2+iε(T

2).
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Then, for any f ∈ H ,

R
(ε)
− f =− λ

∫
[E0,∞)

Rµ′2+iε(T
2)T 1/2g

D−(µ′2 − E2
0)

d
⟨
T 1/2g, E(µ′)f

⟩
+ 2iλε

∫
[E0,∞)

Rµ′2+iε(T
2)Rµ′2−iε(T

2)T 1/2g

D−(µ′2 − E2
0)

d
⟨
T 1/2g, E(µ′)f

⟩
.

Thus, by a change of variable, we have for any h ∈ H⟨
h,R

(ε)
− f
⟩
=
⟨
h,R

(ε)
+ γf

⟩
+ 2iλ

∫
[E0,∞)

∫
[E0,∞)

d ⟨h,E(µ)g⟩ d
⟨
T 1/2g, E(µ′)f

⟩
× µ1/2ε

{(µ2 − µ′2)2 + ε2}D−(µ′2 − E2
0)

=
⟨
h,R

(ε)
+ γf

⟩
+ iπλ

∫
[E0,∞)

(
A(2)

ε ∗ ϕ−
g,f

)
(µ2)µ1/2d ⟨h,E(µ)g⟩ .

By a property of the Poisson kernel, the function
(
A

(2)
ε ∗ ϕ−

g,f

)
(µ2)µ1/2 (µ ∈ R) converges

to ψg,f (µ)/D−(µ
2 − E2

0) as ε→ +0 in the sense of L2(R). Hence the continuity of the inner

product with L2(R) implies that

⟨h,R−f⟩ = ⟨h,R+γf⟩+ iπλ

∫
[E0,∞)

ψg,f (µ)

D−(µ2 − E2
0)
d ⟨h,E(µ)g⟩

= ⟨h,R+γf⟩+ ⟨h,A−f⟩ .

Since f and h are arbitrary, one obtains the conclusion.

By the definitions of A±, we have

(A−)
∗ = −A+.

Lemma 4.11. For any Borel measurable function F on R, A±F (T ) ⊂ F (T )A±.

Proof. For any f ∈ D(F (T )), an operational calculus implies that ψg,F (T )f = Fψg,f ∈ L2(R).
This fact imply that ψg,f (T )g ∈ D(F (T )) and F (T )ψg,f (T )g = ψg,F (T )f (T )g. Hence A±f ∈
D(F (T )) and F (T )A±f = A±F (T )f by Lemma 4.5.

Lemma 4.12. The following operator equations hold:

A−R
∗
± = (γ − I)R∗

±, A−(A−)
∗ = −A− − (A−)

∗.
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Proof. By applying Lemma 4.11 to the case F = χB, one can easily see that A±E(B) =

E(B)A± hold for any B ∈ B1. For any f, h ∈ H , we have⟨
(A−)

∗h,R
(ε)∗
± f

⟩
=

∫
[E0,∞)

∫
[E0,∞)

iπλ2µ1/2ψg(µ)

(µ2 − µ′2 ∓ iε)D∓(µ2 − E2
0)D−(µ2 − E2

0)
d ⟨h,E(µ)g⟩ d

⟨
T 1/2g, E(µ′)f

⟩
.

Then, since γ and E(B) commute on H for any B ∈ B1, (4.3) gives⟨
(A−)

∗h,R
(ε)∗
± f

⟩
= λ

∫
[E0,∞)

∫
[E0,∞)

µ1/2

(µ2 − µ′2 ∓ iε)D∓(µ2 − E2
0)
d ⟨h,E(µ)(γ − 1)g⟩ d

⟨
T 1/2g, E(µ′)f

⟩
=
⟨
h, (γ − 1)R

(ε)∗
± f

⟩
.

Thus, by a limiting argument, we obtain A−R
∗
± = (γ − 1)R∗

±. Moreover, (4.3) and the

equation (A−)
∗ = −A+ imply that

⟨h,A−(A−)
∗f⟩ = −(iπλ)2

∫
[E0,∞)

ψg,f (µ)ψg(µ)

D+(µ2 − E2
0)D−(µ2 − E2

0)
d ⟨h,E(µ)g⟩

= −iπλ
∫
[E0,∞)

(D+(µ
2 − E2

0)−D−(µ
2 − E2

0))ψg,f (µ)

D+(µ2 − E2
0)D−(µ2 − E2

0)
d ⟨h,E(µ)g⟩

= −⟨h, (A−)
∗f + A−f⟩ .

Hence the equation A−(A−)
∗ = −A− − (A−)

∗ holds.

4.3 Operators Ω±

In this subsection we consider the bounded operators

Ω± := I +R±.

Let x0 < 0 be the zero of D(z) given in Lemma 4.1 (2) and

Ub :=

√
λ

D′(x0)
RE2

0+x0
(T 2)T 1/2g, P := ⟨Ub, ·⟩Ub.

Then, by functional calculus, we see that ∥Ub∥ = 1, Ub ∈ D(T−1) ∩D(T 2) and

TUb =
√
λ/D′(x0)T

−1/2g + (E2
0 + x0)T

−1Ub.

Hence P is a projection operator.
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Lemma 4.13. Let λ ̸= λc. Then the following equations hold:

Ω∗
±Ω± = I, (4.9)

Ω±Ω
∗
± = I − θ(λc − λ)P, (4.10)

where θ is the Heaviside function:

θ(t) =

{
1 if t > 0,

0 if t < 0.

Remark 4.14. Lemma 4.13 implies that Ω± are unitary operators if λ > λc and partial

isometries with their final subspace Ran(I − P ) if λ < λc.

Proof. (1) We first prove (4.9).

It is sufficient to prove that R∗
±R± = −(R± +R∗

±) hold. For any f, h ∈ H and ε > 0,⟨
R

(ε)
± h,R

(ε)
± f
⟩
= λ2

∫
[E0,∞)

∫
[E0,∞)

d
⟨
h,E(µ′)T 1/2g

⟩
d
⟨
T 1/2g, E(µ′′)f

⟩
×
⟨
Rµ′2±iε(T

2)T 1/2g

D±(µ′2 − E2
0)

,
Rµ′′2±iε(T

2)T 1/2g

D±(µ′′2 − E2
0)

⟩
.

By the definition of the function D, we have

λ
⟨
T 1/2g,Rz(T

2)T 1/2g
⟩
= D(z − E2

0)− 1, z ∈ C\(E2
0 ,∞).

By this formula and the resolvent identity, we obtain⟨
R

(ε)
± h,R

(ε)
± f
⟩
= λ

∫
[E0,∞)

∫
[E0,∞)

d
⟨
h,E(µ′)T 1/2g

⟩
d
⟨
T 1/2g, E(µ′′)f

⟩
× D(µ′2 − E2

0 ∓ iε)−D(µ′′2 − E2
0 ± iε)

(µ′2 − µ′′2 ∓ 2iε)D∓(µ′2 − E2
0)D±(µ′′2 − E2

0)
.

= −
⟨
E

(ε)
± h,R

(2ε)
± f

⟩
−
⟨
R

(2ε)
± h,E

(ε)
± f
⟩
,

where the operators E
(ε)
± on H are given as follows:

E
(ε)
± := D(T 2 − E2

0 ± iε)D±(T
2 − E2

0)
−1.

The inequality (4.4) implies that E
(ε)
± are bounded for all 0 < ε < ε0. Thus, by the

Lebesgue dominated convergence theorem, we have s- limε↓0E
(ε)
± = I. Hence we obtain

R∗
±R± = −(R± +R∗

±).
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(2) We next prove (4.10) for λ ̸= λc.

It is sufficient to prove that R±R
∗
± = −(R±+R

∗
±)−θ(λc−λ)P holds. For any f, h ∈ H

and a fixed ε > 0, (4.5) implies⟨
R

(ε)∗
± h,R

(ε)∗
± f

⟩
= λ2

∫
[E0,∞)

∫
[E0,∞)

d
⟨
h,E(µ)T 1/2g

⟩
d
⟨
T 1/2g, E(µ′)f

⟩
×
⟨
Rµ2±iε(T

2)D∓(T
2 − E2

0)
−1T 1/2g,Rµ′2±iε(T

2)D∓(T
2 − E2

0)
−1T 1/2g

⟩
.

Then, by operational calculus, we see that⟨
R

(ε)∗
± h,R

(ε)∗
± f

⟩
= λ2

∫
[E0,∞)

∫
[E0,∞)

∫
[E0,∞)

d
⟨
h,E(µ)T 1/2g

⟩
d
⟨
T 1/2g, E(µ′)f

⟩
d∥E(µ′′)g∥2

× µ′′

(µ′′2 − µ2 ± iε)(µ′′2 − µ′2 ∓ iε)D±(µ′′2 − E2
0)D∓(µ′′2 − E2

0)

= λ

∫
[E0,∞)

∫
[E0,∞)

1

µ2 − µ′2 ∓ 2iε
J±
ε (µ, µ

′)d
⟨
h,E(µ)T 1/2g

⟩
d
⟨
T 1/2g, E(µ′)f

⟩
, (4.11)

where, for any µ, µ′ ∈ [E0,∞),

J±
ε (µ, µ

′)

=

∫
[E0,∞)

λµ′′

D±(µ′′2 − E2
0)D∓(µ′′2 − E2

0)

(
1

µ′′2 − µ2 ± iε
− 1

µ′′2 − µ′2 ∓ iε

)
d∥E(µ′′)g∥2.

Then, by a change of variable and (4.3), one can show that

J±
ε (µ, µ

′) = lim
R→∞

1

2πi
I±ε,R(µ, µ

′),

where, for R > 0,

I±ε,R(µ, µ
′) :=

∫ R

0

(
1

D+(s)
− 1

D−(s)

)
Gε,±

µ,µ′(s)ds

and

Gε,±
µ,µ′(z) :=

1

z − µ′2 + E2
0 ∓ iε

− 1

z − µ2 + E2
0 ± iε

, z ∈ C.

For 0 < η < ε and R > 0, let Ci (i = 1, 2, 3) be the curve given as follows:

C1 : θ1(t) = R− t− iη, t : 0 → R,

C2 : θ2(t) = ηe−it, t : π/2 → (3π)/2,

C3 : θ3(t) = t+ iη, t : 0 → R.
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Then, for C = C1+C2+C3, we have by the Lebesgue dominated convergence theorem,

I±ε,R(µ, µ
′) = lim

η↓0

∫
C

1

D(z)
Gε,±

µ,µ′(z)dz.

We take R such that R > max{µ2 − E2
0 , µ

′2 − E2
0} and define a curve C4 : θ4(t) =√

η2 +R2e−it, t : ts → tf , for ts := arctan(η/R) and tf = 2π − ts. We consider two

cases separately.

(i) The case λ > λc. In this case, the function Gε,±
µ,µ′(z)/D(z), z ∈ C\(0,∞) has two

simple poles at z = µ2 − E2
0 ∓ iε and z = µ′2 − E2

0 ± iε. Then, by the residue

theorem, we have∫
C

1

D(z)
Gε,±

µ,µ′(z)dz = 2πi

(
1

D(µ′2 − E2
0 ± iε)

− 1

D(µ2 − E2
0 ∓ iε)

)
−
∫
C4

1

D(z)
Gε,±

µ,µ′(z)dz.

Thus, as η tends to 0, we have

I±ε,R(µ, µ
′) = 2πi

(
1

D(µ′2 − E2
0 ± iε)

− 1

D(µ2 − E2
0 ∓ iε)

)
− lim

η↓0

∫
C4

1

D(z)
Gε,±

µ,µ′(z)dz.

The definition of line integral implies∫
C4

1

D(z)
Gε,±

µ,µ′(z)dz = −i
∫ 2π−ts

ts

Gε,±
µ,µ′(

√
η2 +R2e−it)

√
η2 +R2e−it

D(
√
η2 +R2e−it)

dt.

By the triangle inequality, for any t ∈ [ts, tf ],

|Gε,±
µ,µ′(

√
η2 +R2e−it)| ≤ |µ2 − µ′2 ± 2iε|

(R− |µ2 − E2
0 ± iε|)(R− |µ′2 − E2

0 ∓ iε|)
.

On the other hand, by Lemma 4.5, (4.4) and the Lebesgue dominated convergence

theorem, there are constants R̃ > 0 and c0 > 0 such that |D(z)| ≥ c0 for all

|z| ≥ R̃. Thus we have

I±ε,R(µ, µ
′) = 2πi

(
1

D(µ′2 − E2
0 ± iε)

− 1

D(µ2 − E2
0 ∓ iε)

)
+O(R−1) (R → ∞),

where O(·) stands for the well known Landau symbol. Therefore we have

J±
ε (µ, µ

′) =
1

D(µ′2 − E2
0 ± iε)

− 1

D(µ2 − E2
0 ∓ iε)
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for each µ, µ′ ∈ [E0,∞). Thus, by (4.11), we have⟨
R

(ε)∗
± h,R

(ε)∗
± f

⟩
= −

⟨(
R

(2ε)
±

)∗
h,
(
E

(ε)
±

)−1

f

⟩
−
⟨(

E
(ε)
±

)−1

h,
(
R

(2ε)
±

)∗
f

⟩
.

As in the proof in (1), we obtain s- limε↓0

(
E

(ε)
±

)−1

= I. Therefore we obtain

lim
ε↓0

⟨
R

(ε)∗
± h,R

(ε)∗
± f

⟩
= −

⟨
R∗

±h, f
⟩
−
⟨
h,R∗

±f
⟩
.

Thus we obtain the desired result.

(ii) The case λ < λc. In this case, Gε,±
µ,µ′(z)/D(z) has a simple pole at z = x0 in addition

to z = µ2 − E2
0 ∓ iε and z = µ′2 − E2

0 ± iε. The residue R0 of Gε,±
µ,µ′(z)/D(z) at

z = x0 is give by

R0 =
1

D′(x0)

µ′2 − µ2 ± 2iε

(x0 − µ′2 + E2
0 ∓ iε)(x0 − µ2 + E2

0 ± iε)
.

Thus we have

J±
ε (µ, µ

′) =
1

D(µ′2 − E2
0 ± iε)

− 1

D(µ2 − E2
0 ∓ iε)

+R0

and also

λ

µ2 − µ′2 ∓ 2iε
R0 = − λ

D′(x0)

1

(µ′2 − E2
0 − x0 ± iε)(µ2 − E2

0 − x0 ∓ iε)
.

This implies that

λ lim
ε↓0

∫
[E0,∞)

∫
[E0,∞)

1

µ2 − µ′2 ∓ 2iε
R0 d

⟨
h,E(µ)T 1/2g

⟩
d
⟨
T 1/2g, E(µ′)f

⟩
=− ⟨h, Ub⟩ ⟨Ub, f⟩ = −⟨h, Pf⟩ .

Thus we obtain the desired result.

4.4 Operators U and V

In this subsection, we investigate the operators U and V defined as follows:

U :=
1

2
(T−1/2Ω+T

1/2 + T 1/2Ω+T
−1/2), V :=

1

2
(T−1/2Ω+T

1/2 − T 1/2Ω+T
−1/2),

which are used to construct a Bogoliubov transformation. Then, by Lemma 4.8, we can see

that D(U) = D(V ) = D(T−1/2) ∩D(T 1/2).
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Lemma 4.15. The operators U and V are bounded.

Proof. By (4.6) and Lemma 4.8 we have⟨
h, T−1/2R±T

1/2f
⟩
=
λπ

2

∫
[E0,∞)

−
(
Hϕ±

T 1/2g,f

)
(µ2)∓ i

ψg,f (µ)

D±(µ2 − E2
0)
d ⟨h,E(µ)g⟩ , (4.12)

⟨
h, T 1/2R±T

−1/2f
⟩
=
λπ

2

∫
[E0,∞)

−
(
Hϕ±

T−1/2g,f

)
(µ2)µ∓ i

ψg,f (µ)

D±(µ2 − E2
0)
d ⟨h,E(µ)g⟩ .

(4.13)

By Assumption 3.3 (3), (4.7), (4.8) and a property of Hilbert transform, we can show that

∥T−1/2R±T
1/2f∥, ∥T 1/2R±T

−1/2f∥ ≤ |λ|π(Cg + cg)

2δ
∥f∥,

where Cg := (supE0<x x
−1ψg(x))

1/2(supE0<x xψg(x))
1/2. Hence the operators T−1/2R±T

1/2

and T 1/2R±T
−1/2 are bounded.

In the same way as in the proof of Lemma 4.15, we see that T−1/2R∗
±T

1/2 and T 1/2R∗
±T

−1/2

are bounded on each domain D(T 1/2) and D(T−1/2). In what follows, we write the closed

extensions of U and V by the same symbol respectively. Then

U∗ =
1

2
(T−1/2Ω∗

+T
1/2 + T 1/2Ω∗

+T
−1/2).

Lemma 4.16. The operators U ♯ and V ♯ leave D(T−1/2) (resp. D(T 1/2), D(T )) invariant.

Proof. By applying Lemma 4.8 and using the equation

U ♯ = I +
1

2

(
T−1/2R♯

+T
1/2 + T 1/2R♯

+T
−1/2

)
,

one can easily see that the assertion for U ♯ is true. The proof for V ♯ is similar.

Lemma 4.17. Let F (x) = x±1/2, x±1, a.e. x ∈ (0,∞). Then

Ω+F (T )Ω
∗
+ = (Ω+)JF (T )(Ω

∗
+)J on D(F (T )). (4.14)

Proof. By Lemma 4.8, the domain of each side of (4.14) includes D(F (T )). By Lemmas 4.11

and 4.12, we have

(Ω+)JF (T )(Ω
∗
+)J = R+F (T )R

∗
+ +R+{(A−)

∗ + I}F (T )γ + F (T )γ∗(A− + I)R∗
+

+ F (T ){A−(A−)
∗ + A− + (A−)

∗ + I}
= R+F (T )R

∗
+ +R+F (T ) + F (T )R∗

+ + F (T )

= Ω+F (T )Ω
∗
+.
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5 Commutation relations

In this section, we prove that the pair (U, V ) satisfies the condition (1.1), V is Hilbert-

Schmidt and

B(f) := A(Uf) + A(JV f)∗, f ∈ H

satisfies some commutation relations with H(λ). We denote the closure of B(f) by the same

symbol. By Lemma 4.16, we have D(dΓb(T )
1/2) ⊂ D(B(f))∩D(B(f)∗) for all f ∈ D(T−1/2).

Theorem 5.1. The following commutation relations hold:

(1) For any f ∈ D(T ) and ψ ∈ Fb,fin(D(T )),

[H(λ), B(f)]ψ = −B(Tf)ψ. (5.1)

(2) For any f ∈ D(T−1/2) ∩D(T ) and ψ, ϕ ∈ D(dΓb(T )),

⟨H(λ)ϕ,B(f)ψ⟩ − ⟨B(f)∗ϕ,H(λ)ψ⟩ = −⟨ϕ,B(Tf)ψ⟩ . (5.2)

(3) For any f ∈ D(T−1/2) ∩D(T ), B(f) maps D(dΓb(T )
3/2) into D(dΓb(T )) and for any

ψ ∈ D(dΓb(T )
3/2),

[H(λ), B(f)]ψ = −B(Tf)ψ. (5.3)

The both sides of (5.1),(5.2) and (5.3) have meaning by Lemma 4.16. To prove this

theorem, we prove the following lemma:

Lemma 5.2. For any f ∈ D(T ), the following equations hold:

[U, T ]f = (V T + TV )f =
λ

2

⟨
D−(T

2 − E2
0)

−1g, f
⟩
g, (5.4)

(V ∗J − U∗)g = −D−(T
2 − E2

0)
−1g. (5.5)

Proof. For any f, h ∈ D(T−1/2) ∩D(T 3/2), we obtain

⟨h, [U, T ]f⟩ = 1

2

(⟨
T 1/2R∗

+T
−1/2h, Tf

⟩
−
⟨
Th, T 1/2R+T

−1/2f
⟩)
.

Then, for each ε > 0, we have⟨
T 1/2R

(ε)∗
± T−1/2h, Tf

⟩
−
⟨
Th, T 1/2R

(ε)
± T−1/2f

⟩
= λ

∫
[E0,∞)

∫
[E0,∞)

µ′2 − µ2

(µ′2 − µ2 ± iε)D±(µ′2 − E2
0)
d ⟨h,E(µ)g⟩ d ⟨g, E(µ′)f⟩

= λ

∫
[E0,∞)

∫
[E0,∞)

1

D±(µ′2 − E2
0)
d ⟨h,E(µ)g⟩ d ⟨E(µ′)g, f⟩ ∓ iε

⟨
T−1/2h,R

(ε)
± T−1/2f

⟩
.
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Taking the limit ε ↓ 0, we have⟨
T 1/2R∗

±T
−1/2h, Tf

⟩
−
⟨
Th, T 1/2R±T

−1/2f
⟩
=
⟨
h, λ

⟨
D∓(T

2 − E2
0)

−1g, f
⟩
g
⟩
.

Thus we have

⟨h, [U, T ]f⟩ = λ

2

⟨
h,
⟨
D−(T

2 − E2
0)

−1g, f
⟩
g
⟩
.

Since D(T−1/2) ∩ D(T 3/2) is a core of T , the equation (5.4) holds for f ∈ D(T ). To prove

(5.5), we note that

(V ∗J − U∗)g =
1

2
(T 1/2Ω∗

+T
−1/2J − T−1/2Ω∗

+T
1/2J − T 1/2Ω∗

+T
−1/2 − T−1/2Ω∗

+T
1/2)g

= −T−1/2Ω∗
+T

1/2g,

where we have used Jg = g. Thus, for any f ∈ H , we obtain

⟨f, (V ∗J − U∗)g⟩

=− ⟨f, g⟩ − λ lim
ε↓0

∫
[E0,∞)

⟨
f,Rµ′2+iε(T

2)D−(T
2 − E2

0)
−1g
⟩
d∥E(µ′)T 1/2g∥2

=− ⟨f, g⟩+ λ lim
ε↓0

∫
[E0,∞)

∫
[E0,∞)

µ′

µ′2 − µ2 + iε
d∥E(µ′)g∥2 1

D−(µ2 − E2
0)

⟨f, E(µ)g⟩

=− ⟨f, g⟩+
∫
[E0,∞)

D−(µ
2 − E2

0)− 1

D−(µ2 − E2
0)

d ⟨f, E(µ)g⟩

=−
⟨
f,D−(T

2 − E2
0)

−1g
⟩
.

Hence (5.5) holds.

Proof of Theorem 5.1.

(1) By Lemma 4.16, for any f ∈ D(T ), B(f) leaves Fb,fin(D(T )) invariant and H(λ) maps

Fb,fin(D(T )) into Fb,fin(H ) ⊂ D(B(f)). Thus, by using (2.1) and (10.3), we have for

any ψ ∈ Fb,fin(D(T )),

[H(λ), B(f)]ψ =

{
−A(TUf) + A(TJV f)∗ − λ√

2
⟨f, (V ∗J − U∗)g⟩Φs(g)

}
ψ.

Hence by Lemma 5.2, (5.1) holds.

(2) By Lemma 4.16 and fundamental properties of the annihilation operators and creation

operators, we can see that, for any f ∈ D(T−1/2), D(dΓb(T )
1/2) ⊂ D(B(f)). For

any ψ, ϕ ∈ D(dΓb(T )), there are sequences ψn, ϕn ∈ Fb,fin(D(T )), n ∈ N such that
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ψn → ψ, ϕn → ϕ, dΓb(T )ψn → dΓb(T )ψ, dΓb(T )ϕn → dΓb(T )ϕ as n → ∞, since

Fb,fin(D(T )) is a core of dΓb(T ). By (1), we have

⟨H(λ)ϕn, B(f)ψk⟩ − ⟨B(f)∗ϕn, H(λ)ψk⟩ = −⟨ϕn, B(Tf)ψk⟩

for all n, k ∈ N and f ∈ D(T−1/2) ∩ D(T ). By the inequalities (10.1) and (10.2)

and the dΓb(T )-boundedness of Φs(g)
2, we obtain that {B(f)ψn}∞n=1, {B(f)ϕn}∞n=1,

{Φs(g)
2ψn}∞n=1, {Φs(g)

2ϕn}∞n=1 and {B(Tf)ψn}∞n=1 converge. Hence we obtain (5.2).

(3) By Lemma 4.16 and fundamental properties of the annihilation operators and creation

operators, we see that, for any f ∈ D(T−1/2) ∩ D(T ), B(f) maps D(dΓb(T )
3/2) into

D(dΓb(T )). Therefore, by (5.2) and the density of D(dΓb(T )), we have (5.3). □

5.1 Relations between U and V

Lemma 5.3. Let λ ̸= λc. Then the following equations hold:
U∗U − V ∗V = I,

U∗
JV − V ∗

J U = 0,

UU∗ − VJV
∗
J = I − θ(λc − λ)Q+,

UV ∗ − VJU
∗
J = θ(λc − λ)Q−,

(5.6)

where

Q± :=
1

2

(⟨
T 1/2Ub, ·

⟩
T−1/2Ub ±

⟨
T−1/2Ub, ·

⟩
T 1/2Ub

)
are bounded operators on H .

Proof. It is sufficient to prove (5.6) on D(T−1/2) ∩D(T 1/2). Using (4.9), one can show that

the first equation in (4.9) holds. We have

U∗
JV − V ∗

J U =
1

2
(−T 1/2(Ω∗

+)JΩ+T
−1/2 + T−1/2(Ω∗

+)JΩ+T
1/2).

Multiplying the equation by (Ω+)J from the left, and using Lemma 4.17, we obtain

(Ω+)J(U
∗
JV − V ∗

J U) = (Ω+)J(−T 1/2(Ω∗
+)JΩ+T

−1/2 + T−1/2(Ω∗
+)JΩ+T

1/2)

= Ω+(−T 1/2Ω∗
+Ω+T

−1/2 + T−1/2Ω∗
+Ω+T

1/2) = 0.
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By (4.9), this implies that U∗
JV − V ∗

J U = 0. By Lemma 3.5 and Lemma 4.17, we have

VJV
∗
J =

1

4
{T−1/2(Ω+TΩ

∗
+)JT

−1/2 − T−1/2(Ω+Ω
∗
+)JT

1/2

− T 1/2(Ω+Ω
∗
+)JT

−1/2 + T 1/2(Ω+T
−1Ω∗

+)JT
1/2}

=
1

4
(T−1/2Ω+TΩ

∗
+T

−1/2 − T−1/2Ω+Ω
∗
+T

1/2

− T 1/2Ω+Ω
∗
+T

−1/2 + T 1/2Ω+T
−1Ω∗

+T
1/2)

= V V ∗.

Hence, by direct calculations and (4.10), one obtains UU∗−VJV ∗
J = I−θ(λc−λ)Q+. Similarly

one can prove the last equation in (5.6) (note that PJ = P ).

5.2 Hilbert-Schmidtness of V

In this subsection, we show that V is Hilbert-Schmidt. Then we can use Theorem 2.2 in

the case of λ > λc.

Lemma 5.4. The operator V is Hilbert-Schmidt.

Proof. On D(T−1/2) ∩D(T 1/2), V ∗V is calculated as follows:

V ∗V =
1

4
(T−1/2R+T

1/2 + T 1/2R∗
+T

−1/2 + T 1/2[R∗
+, T

−1]R+T
1/2

+ T 1/2R+T
−1/2 + T−1/2R∗

+T
1/2 + T−1/2[R∗

+, T ]R+T
−1/2

+ T 1/2R∗
+R+T

−1/2 + T−1/2R∗
+R+T

1/2)

=
1

4
(T 1/2[R∗

+, T
−1]R+T

1/2 + T−1/2[R∗
+, T ]R+T

−1/2),

where we have used the formula R∗
+R+ = −(R+ + R∗

+) in the proof of Lemma 4.13 and

Lemma 4.8. Thus, for any f ∈ D(T−1/2) ∩D(T 1/2) and ε > 0, we have⟨
f, (T 1/2[R

(ε)∗
+ , T−1]R

(ε)
+ T 1/2 + T−1/2[R

(ε)∗
+ , T ]R

(ε)
+ T−1/2)f

⟩
=

∫
[E0,∞)

∫
[E0,∞)

λµ′

(µ′2 − µ2 + iε)D+(µ′2 − E2
0)
d
⟨
[T−1, R

(ε)
+ ]T 1/2f, E(µ)T 1/2g

⟩
d ⟨E(µ′)g, f⟩

+

∫
[E0,∞)

∫
[E0,∞)

λµ

(µ′2 − µ2 + iε)D+(µ′2 − E2
0)
d
⟨
[T,R

(ε)
+ ]T−1/2f, E(µ)T−1/2g

⟩
d ⟨E(µ′)g, f⟩ .

Then, for any B ∈ B1, we can see⟨
[T−1, R

(ε)
+ ]T 1/2f, E(B)T 1/2g

⟩
= λ

∫
B

∫
[E0,∞)

µ′′ − µ

(µ′′2 − µ2 − iε)D−(µ′′2 − E2
0)
d ⟨f, E(µ′′)g⟩ d∥E(µ)g∥2. (5.7)
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Similarly, we obtain⟨
[T,R

(ε)
+ ]T−1/2f, E(B)T−1/2g

⟩
= λ

∫
B

∫
[E0,∞)

µ− µ′′

(µ′′2 − µ2 − iε)D−(µ′′2 − E2
0)
d ⟨f, E(µ′′)g⟩ d∥E(µ)g∥2.

Thus, by the formula of a change of variable in Lebesgue-Stieltjes integration and Fubini’s

theorem, we have⟨
f, (T 1/2[R

(ε)∗
+ , T−1]R

(ε)
+ T 1/2 + T−1/2[R

(ε)∗
+ , T ]R

(ε)
+ T−1/2)f

⟩
= λ2

∫
[E0,∞)

∫
[E0,∞)

∫
[E0,∞)

d∥E(µ)g∥2d ⟨f, E(µ′′)g⟩ d ⟨E(µ′)g, f⟩

× (µ− µ′)(µ− µ′′)

(µ′2 − µ2 + iε)(µ′′2 − µ2 − iε)D+(µ′2 − E2
0)D−(µ′′2 − E2

0)
.

Then it is easy to see that for any µ, µ′, µ′′ ∈ [E0,∞),

lim
ε↓0

(µ− µ′)(µ− µ′′)

(µ′2 − µ2 + iε)(µ′′2 − µ2 − iε)D+(µ′2 − E2
0)D−(µ′′2 − E2

0)

=
1

(µ′ + µ)(µ′′ + µ)D+(µ′2 − E2
0)D−(µ′′2 − E2

0)
.

For any ε > 0 and µ, µ′, µ′′ ∈ [E0,∞), we have, by Lemma 4.5 and the arithmetic-geometric

mean inequality,∣∣∣∣ (µ− µ′)(µ− µ′′)

(µ′2 − µ2 + iε)(µ′′2 − µ2 − iε)D+(µ′2 − E2
0)D−(µ′′2 − E2

0)

∣∣∣∣ ≤ 1

4δ2µ
√
µ′µ′′ .

On the other side, for any α, β ∈ C, we see∫
[E0,∞)

∫
[E0,∞)

∫
[E0,∞)

1

µ
√
µ′µ′′d∥E(µ)g∥

2d∥E(µ′′)(f + αg)∥2d∥E(µ′)(f + βg)∥2

= ∥T−1/2g∥2∥T−1/4(f + αg)∥2∥T−1/4(f + βg)∥2 <∞.

Thus, by the Lebesgue dominated convergence theorem, we have

lim
ε↓0

∫
[E0,∞)

∫
[E0,∞)

∫
[E0,∞)

d∥E(µ)g∥2d∥E(µ′′)(f + αg)∥2d∥E(µ′)(f + βg)∥2

× (µ− µ′)(µ− µ′′)

(µ′2 − µ2 + iε)(µ′′2 − µ2 − iε)D+(µ′2 − E2
0)D−(µ′′2 − E2

0)

=

∫
[E0,∞)

∫
[E0,∞)

∫
[E0,∞)

d∥E(µ)g∥2d∥E(µ′′)(f + αg)∥2d∥E(µ′)(f + βg)∥2

× 1

(µ′ + µ)(µ′′ + µ)D+(µ′2 − E2
0)D−(µ′′2 − E2

0)
.
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In particular, for each α, β = ±1,±i, the polarization identity and Fubini’s theorem give

⟨f, V ∗V f⟩ = λ2

4

∫
[E0,∞)

∣∣⟨f,R−µ(T )D−(T
2 − E2

0)
−1g
⟩∣∣2 d∥E(µ)g∥2.

Let {en}∞n=1 ⊂ D(T−1/2)∩D(T 1/2) be a CONS of H . The termwise integration implies that

∞∑
n=1

⟨en, V ∗V en⟩ =
λ2

4

∫
[E0,∞)

∥R−µ(T )D−(T
2 − E2

0)
−1g∥2d∥E(µ)g∥2

=
λ2

4

∫
[E0,∞)

∫
[E0,∞)

1

(µ′ + µ)2|D−(µ′2 − E2
0)|2

d∥E(µ′)g∥2d∥E(µ)g∥2 (5.8)

≤ λ2

16δ2

∫
[E0,∞)

∫
[E0,∞)

1

µ′µ
d∥E(µ′)g∥2d∥E(µ)g∥2 <∞,

where we have used the arithmetic-geometric mean inequality and Lemma 4.5. Hence V is

Hilbert-Schmidt.

Lemma 5.5. If λ > λc, then there is a unitary operator U on Fb(H ) such that for all

f ∈ H ,

UB(f)U−1 = A(f).

Proof. By Lemma 5.3 and Lemma 5.4, we can apply Theorem 2.2.

6 Analysis in the case λ > λc

In this section we prove Theorem 3.6 (1). Before starting the proof, we need to know a

property of the Hamiltonian H(λ).

6.1 Time evolution

Theorem 6.1 (Time evolution). If λ > λc,0, then for all f ∈ D(T−1/2), ψ ∈ D(dΓb(T )
1/2)

and t ∈ R,

eitH(λ)B(f)e−itH(λ)ψ = B(eitTf)ψ, (6.1)

eitH(λ)B(f)∗e−itH(λ)ψ = B(eitTf)∗ψ. (6.2)

Proof. It is sufficient to prove (6.1), because (6.2) follows from taking the adjoint of (6.1).

We define a function v : R → C by v(t) :=
⟨
ϕ, eitH(λ)B(e−itTf)e−itH(λ)ψ

⟩
, t ∈ R for any

f ∈ D(T−1/2) ∩ D(T ) and ψ, ϕ ∈ D(dΓb(T )). Then v is well-defined by an operational
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calculus and Theorem 2.3. The function v is differentiable and, by Theorem 5.1 (2), we have

for any t ∈ R,

d

dt
v(t) =i

⟨
H(λ)e−itH(λ)ϕ,B(e−itTf)e−itH(λ)ψ

⟩
− i
⟨
B(e−itTf)∗e−itH(λ)ϕ,H(λ)e−itH(λ)ψ

⟩
+ i
⟨
e−itH(λ)ϕ,B(Te−itTf)e−itH(λ)ψ

⟩
=0.

Hence v(t) = v(0) for all t ∈ R. Hence the equation⟨
ϕ, eitH(λ)B(e−itTf)e−itH(λ)ψ

⟩
= ⟨ϕ,B(f)ψ⟩

holds for all t ∈ R. By replacing f with eitTf , one has for all ψ ∈ D(dΓb(T )),

eitH(λ)B(f)e−itH(λ)ψ = B(eitTf)ψ.

SinceD(dΓb(T )) is a core of (H(λ)+M)1/2 andD(H(λ)+M)1/2 = D(dΓb(T )
1/2) by Theorem

2.3 (3), we obtain (6.1) for f ∈ D(T−1/2) ∩ D(T ) and ψ ∈ D(dΓb(T )
1/2). Finally we

extend (6.1) for all f ∈ D(T−1/2). Let f ∈ D(T−1/2) and ψ ∈ D(dΓb(T )
1/2). Then we

set fn := E((−∞, n])f for each n ∈ N. Then fn ∈ D(T−1/2) ∩D(T ) for all n ∈ N and one

can easily show that fn → f, T−1/2fn → T−1/2f as n → ∞ by using a functional calculus

and the Lebesgue dominated convergence theorem. Thus we have Ufn → Uf, JV fn → JV f

as n → ∞ by the boundedness of U and V . By using the linearity of the Hilbert transform

and that of the map f 7→ ψg,f , (4.12), (4.13) and (4.7), we can show that T−1/2Ufn →
T−1/2Uf, T−1/2JV fn → T−1/2JV f as n → ∞. Therefore we obtain B(fn)ϕ → B(f)ϕ and

B(eitTfn)ϕ → B(eitTf)ϕ as n → ∞ for any ϕ ∈ D(dΓb(T )
1/2) by [3, Lemma 4-28]. By the

preceding result, we have for any n ∈ N,

B(fn)e
−itH(λ)ψ = e−itH(λ)B(eitTfn)ψ.

The equation D(dΓb(T )
1/2) = D((H(λ) +M)1/2) in Theorem 2.3 (3) implies that

e−itH(λ)D(dΓb(T )
1/2) = D(dΓb(T )

1/2).

Hence, by taking the limit n→ ∞, we obtain (6.1) for f ∈ D(T−1/2), ψ ∈ D(dΓb(T )
1/2).

6.2 Proof of Theorem 3.6 (1)

In this subsection, we assume that λ > λc.

Lemma 6.2. Let Ω := U−1Ω0, where U is the unitary operator in Lemma 5.5. Then there

is an eigenvalue Eg of H(λ) and Ω is the corresponding eigenvector: H(λ)Ω = EgΩ.

32



Proof. In general, by [3, Proposition 4-4] for a dense subspace D ⊂ H , if ψ ∈ ∩f∈DD(A(f))

satisfies A(f)ψ = 0 for all f ∈ D , then there is a constant α ∈ C such that ψ = αΩ0. Thus,

by Lemma 5.5, if B(f)ϕ = 0 for all f ∈ D(T−1/2), there is a constant α ∈ C such that

ϕ = αΩ. For any f ∈ D(T−1/2) and t ∈ R,

B(f)e−itH(λ)Ω = e−itH(λ)B(eitTf)Ω = 0

by Lemma 5.5 and Theorem 6.1. Thus, for each t ∈ R, there is a constant α(t) ∈ C such

that e−itH(λ)Ω = α(t)Ω. Then we have |α(t)| = 1, α(t + s) = α(t)α(s) for all t, s ∈ R,
since {e−itH(λ)}t∈R is a strongly continuous one-parameter unitary group. Thus there exists

a constant Eg ∈ R such that α(t) = e−itEg , t ∈ R. The differentiation of the equation

e−itH(λ)Ω = e−itEgΩ in t implies that Ω ∈ D(H(λ)) and Ω ∈ Ker(H(λ)− Eg).

Proof of Theorem 3.6 (1).

The subspace U := L ({B(f1)
∗ · · ·B(fn)

∗Ω,Ω | fj ∈ D(T−1/2), j = 1, . . . , n, n ∈ N}) is dense
in Fb(H ) by the fact that U = U−1Fb,fin(D(T−1/2)), where L (D) denotes the subspace

algebraically spanned by the vectors in a subset D of a Hilbert space. By Lemma 6.1 and

Lemma 10.3, for any t ∈ R and fj ∈ D(T−1/2), j = 1, . . . , n, we have

eitH(λ)B(f1)
∗ · · ·B(fn)

∗Ω =B(eitTf1)
∗ · · ·B(eitTfn)

∗eitH(λ)Ω

=B(eitTf1)
∗ · · ·B(eitTfn)

∗eitEgΩ

=eitEgU−1eitdΓb(T )A(f1)
∗ · · ·A(fn)∗Ω0

=U−1eit(dΓb(T )+Eg)UB(f1)
∗ · · ·B(fn)

∗Ω.

By this equation and a limiting argument, we obtain UeitH(λ)U−1 = eit(dΓb(T )+Eg). By the

unitary covariance of functional calculus, we have

UeitH(λ)U−1 = eitUH(λ)U−1

, t ∈ R.

Hence (3.1) holds. The equation (3.1) and the well-known spectral properties of dΓb(T )

imply that Eg is the ground state energy of H(λ) and Ω is the unique ground state of H(λ).

□

Lemma 6.3. The ground state energy Eg is given as follows:

Eg =
λ

4
∥g∥2 − Tr(T 1/2V ∗V T 1/2), (6.3)

Tr(T 1/2V ∗V T 1/2) =
λ2

4

∫
[E0,∞)

∫
[E0,∞)

µ

(µ+ µ′)2|D−(µ2 − E2
0)|2

d∥E(µ)g∥2d∥E(µ′)g∥2. (6.4)
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Proof. The operator U leaves D(dΓb(T )) invariant by Theorem 3.6 (1). In particular, UΩ0 ∈
D(dΓb(T )

1/2). Thus, by Lemma 10.4, the isometricity of U and the definition of B(·), we
have ⟨Ω0, (H(λ)− Eg)Ω0⟩ = Tr(T 1/2V ∗V T 1/2). By the definition of H(λ) and (2.1), we have

⟨Ω0, H(λ)Ω0⟩ = λ∥g∥2/4. Hence (6.3) holds. The formula (6.4) can be proved in the same

way as (5.8).

7 Analysis in the case λc,0 < λ < λc

In Section 5, we proved Theorem 3.6 (1). But the proof is valid only for the case λ > λc.

Therefore it is necessary to find another pair of operators U and V if one wants to use a

Bogoliubov transformation for the spectral analysis of H(λ) in the case λ ≤ λc. In this

section we assume that T and g satisfy Assumption 3.3, E0 > 0 and λc,0 < λ < λc. Under

these conditions, we can define the operators ξ,X, Y and T± as follows:

ξ := Ω+TΩ
∗
+ + βP,

X := UΩ∗
+ + T+P, Y := V Ω∗

+ + T−P,

T± :=
1

2
(β1/2T−1/2 ± β−1/2T 1/2),

where β := (E2
0 + x0)

1/2.

Remark 7.1. The definition of x0 implies that

E2
0 + x0


> 0, if λc,0 < λ < λc,

= 0, if λ = λc,0,

< 0, if λ < λc,0.

Thus, in the case λc,0 < λ < λc, we see that the inequality 0 < β < E0 holds. Let

C(f) := A(Xf) + A(JY f)∗, f ∈ H .

Then C(f) is a densely defined closable operator. We denotes its closure by the same symbol.

7.1 Properties of X, Y and ξ

In this subsection, we study the operators X,Y and ξ. Firstly, we consider ξ. Let

T̃ := Ω+TΩ
∗
+.

Lemma 7.2. The operator T̃ is a self-adjoint operator with D(T̃ ) = D(T ).
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Proof. By Lemma 4.8 we see that D(T̃ ) = D(T ). Hence T̃ is symmetric. For any ϕ ∈
D((T̃ )∗) and ψ ∈ D(T ) = D(T̃ ), we have

⟨
Ω∗

+(T̃ )
∗ϕ, ψ

⟩
=
⟨
Ω∗

+ϕ, Tψ
⟩
. This implies that

Ω∗
+ϕ ∈ D(T ). Hence T̃ is self-adjoint.

Lemma 7.3. The spectra of T̃ are as follows:

σ(T̃ ) = {0} ∪ σ(T ), σac(T̃ ) = σ(T ), σp(T̃ ) = {0}, σsc(T̃ ) = ∅.

Proof. We define a family of projection operators {EP (B) | B ∈ B1} on H as follows:

EP (B) = 0 if 0 /∈ B and EP (B) = P if 0 ∈ B for each B ∈ B1. By the definition

of the spectral measure, we can see that {ET̃ (B) := Ω+E(B)Ω∗
+ + EP (B)| B ∈ B1} is a

spectral measure. Using a functional calculus, we see that ET̃ (·) is the spectral measure

of T̃ . The absolutely continuous part (resp. singular part) of T̃ is T̃ ↾ Ran(I − P ) (resp.

T̃ ↾ Ran(P )) since T is absolutely continuous and Ω± are partial isometries. Thus we see

σ(T̃ ) = {0} ∪ σac(T̃ ), σp(T̃ ) = {0}, σsc(T̃ ) = ∅.
We next show that σac(T̃ ) = σ(T ). For any µ ∈ σ(T ), there is a sequence ψn ∈ D(T ), n ∈

N such that ∥ψn∥ = 1 for all n ∈ N and limn→∞ ∥(T − µ)ψn∥ = 0. For each n ∈ N, there
is a ϕn ∈ Ran(I − P ) such that ψn = Ω∗

+ϕn. Then ∥ϕn∥ = ∥Ω+ψn∥ = ∥ψn∥ = 1 and

∥(T̃ −µ)ϕn∥ = ∥(T −µ)ψn∥ → 0 as n→ ∞. Thus we have µ ∈ σ(T̃ ↾ Ran(I −P )) = σac(T̃ ).

For any µ ∈ σac(T̃ ), there is a sequence ηn ∈ D(T̃ ) ∩ Ran(I − P ) such that ∥ηn∥ = 1 and

limn→∞ ∥(T̃ − µ)ηn∥ = 0. Then we easily see that Ω∗
+ηn ∈ D(T ) for all n ∈ N. The equation

Ω+Ω
∗
+ηn = ηn implies that ∥Ω∗

+ηn∥ = 1 for all n ∈ N and

∥(T − µ)Ω∗
+ηn∥ = ∥(T̃ − µ)ηn∥ → 0, n→ ∞.

Thus µ ∈ σ(T ). Hence σac(T̃ ) = σ(T ).

Lemma 7.4. The operator ξ is an injective, non-negative self-adjoint operator with D(ξ) =

D(T ) and we have the following equations:

σ(ξ) = {β} ∪ σ(T ), σac(ξ) = σ(T ), σp(ξ) = {β}, σsc(ξ) = ∅. (7.1)

In particular, β is the ground state energy of ξ, which is an isolated eigenvalue of ξ, and Ub

is the unique ground state of ξ.

Proof. By Lemma 7.3 and the spectral property of direct sum of self-adjoint operators, we

have the equation (7.1). Thus β is an isolated ground state energy by Remark 7.1. By

Ω∗
+Ub = 0, Ub is a ground state of ξ. Assume that f ∈ Ker(ξ − β) satisfies (I − P )f ̸= 0.

Then Ω∗
+f ̸= 0 by Lemma 4.13. This implies that TΩ∗

+f = βΩ∗
+f , but this contradicts

Assumption 3.3 (1). Hence (I − P )f = 0 and this implies that the ground state of ξ is

unique.
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Lemma 7.5. The operators ξ±1/2 are given by

ξ1/2 =Ω+T
1/2Ω∗

+ + β1/2P, (7.2)

ξ−1/2 =Ω+T
−1/2Ω∗

+ + β−1/2P (7.3)

with D(ξ±1/2) = D(T±1/2).

Proof. We can show in the same way as in the proof of Lemma 7.4 that the right hand

side of (7.2) is non-negative, self-adjoint operator with its domain D(T 1/2). We have ξ ⊂
(Ω+T

1/2Ω∗
+ + β1/2P )2. Since a self-adjoint operator has no non-trivial symmetric extension,

(7.2) holds. In the same way as in the proof of (7.2), we can show that the right hand

side of (7.3) is a self-adjoint operator. We have D(Ω+T
−1/2Ω∗

+ + β−1/2P ) ⊂ Ran(ξ1/2) and

ξ1/2(Ω+T
−1/2Ω∗

+ + β−1/2P ) = I on D(Ω+T
−1/2Ω∗

+). Hence Ω+T
−1/2Ω∗

+ + β−1/2P ⊂ ξ−1/2.

Thus the equation (7.3) holds.

Next, we study X and Y .

Lemma 7.6. The operators X♯ and Y ♯ leave D(T−1/2) (resp. D(T 1/2), D(T )) invariant.

Proof. The assertion follows from Lemma 4.8, Lemma 4.16, Lemma 7.5 and the definitions

of X and Y .

Lemma 7.7. The following equations hold:
X∗X − Y ∗Y = I,

X∗
JY − Y ∗

JX = 0,

XX∗ − YJY
∗
J = I,

XY ∗ − YJX
∗
J = 0.

(7.4)

Proof. The operator P (resp. T±) satisfies PJ = P (resp. (T±)J = T±). By (4.10), we

have Ω∗
+Ub = 0. Hence we obtain (U∗ ± V ∗)T±1/2Ub = 0 and (U∗T± − V ∗T∓)Ub = 0. The

equations T+T+ − T−T− = I and T+T− − T−T+ = 0 hold on D(T−1) ∩D(T ). By (5.6) and

direct calculations, we have X∗X − Y ∗Y = I and X∗
JY − Y ∗

JX = 0. By similar calculations,

we have XX∗−YJY
∗
J = I and XY ∗−YJX

∗
J = 0 on D(T−1/2)∩D(T 1/2). Then, by a limiting

argument, we obtain (7.4).

Lemma 7.8. The operator Y is Hilbert-Schmidt.

Proof. We can easily show that the assertion follows from Lemma 5.4, Lemma 7.6 and the

choice a CONS {en}∞n=0 ⊂ D(T−1/2) ∩D(T 1/2) with e0 = Ub.

Lemma 7.9. There is a unitary operator V on Fb(H ) such that for all f ∈ H ,

VC(f)V−1 = A(f).

Proof. By Theorem 2.2, (7.4) and Lemma 7.8, we can prove this assertion.
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7.2 Commutation relations

Theorem 7.10. The following commutation relations hold:

(1) For any f ∈ D(T ) and ψ ∈ Fb,fin(D(T )),

[H(λ), C(f)]ψ = −C(ξf)ψ.

(2) For any f ∈ D(T−1/2) ∩D(T ) and ψ, ϕ ∈ D(dΓb(T )),

⟨H(λ)ϕ,C(f)ψ⟩ − ⟨C(f)∗ϕ,H(λ)ψ⟩ = −⟨ϕ,C(ξf)ψ⟩ .

(3) For any f ∈ D(T−1/2) ∩D(T ), C(f) maps D(dΓb(T )
3/2) into D(dΓb(T )) and for any

ψ ∈ D(dΓb(T )
3/2),

[H(λ), C(f)]ψ = −C(ξf)ψ.

Theorem 7.10 follows, in the same manner as in the proof of Theorem 5.1, from Lemma

4.16, Lemma 7.5 and the next lemma:

Lemma 7.11. For any f ∈ D(T ) the following equations hold:

−TXf +
λ

2
⟨(Y ∗J −X∗)g, f⟩ g =−Xξf, (7.5)

TJY f +
λ

2
⟨f, (Y ∗J −X∗)g⟩ g =− JY ξf. (7.6)

Remark 7.12. By Lemma 4.16 and the definition of ξ, the both sides of (7.5) and (7.6) have

meaning.

Proof. Let a :=
√
λ/D′(x0). Then we can see by the definition of x0 and (5.5),

(Y ∗J −X∗)g = −Ω+D−(T
2 − E2

0)
−1g +

β−1/2a

λ
Ub.

We have

TT±Ub =
1

2
(β1/2T 1/2Ub ± β−1/2T 3/2Ub)

=
1

2
(β1/2T 1/2Ub ± β3/2T−1/2Ub ± β−1/2ag). (7.7)

Thus, for any f ∈ D(T ), we have

− TXf +
λ

2
⟨(Y ∗J −X∗)g, f⟩ g

=− TUΩ∗
+f − λ

2

⟨
D−(T

2 − E2
0)

−1g,Ω∗
+f
⟩
g − TT+Pf +

β−1/2a

2
⟨Ub, f⟩ g.
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Then, by (5.4) and (7.7), we have

−TXf +
λ

2
⟨(Y ∗J −X∗)g, f⟩ g =− UTΩ∗

+f − β ⟨Ub, f⟩T+Ub

=−X(Ω+TΩ
∗
+ + βP )f.

Thus we obtain (7.5). Similarly one can prove (7.6).

7.3 Proof of Theorem 3.6 (2)

Theorem 7.13. For all f ∈ D(T−1/2), ψ ∈ D(dΓb(T )
1/2) and t ∈ R,

eitH(λ)C(f)e−itH(λ)ψ =C(eitξf)ψ,

eitH(λ)C(f)∗e−itH(λ)ψ =C(eitξf)∗ψ.

Proof. These are proved in the same way as in the proof of Theorem 6.1 by Theorem 7.10.

Lemma 7.14. Let Ω := V−1Ω0 where V is the unitary operator in Lemma 7.9. Then:

(1) There is an eigenvalue Ẽg of H(λ) and Ω is an eigenvector of H(λ) with the eigenvalue

Ẽg.

(2) The following equation holds:

VH(λ)V−1 = dΓb(ξ) + Ẽg.

(3) The constant Ẽg is given as follows:

Ẽg = Eg − β∥T−Ub∥2. (7.8)

Proof. The assertions (1) and (2) can be proved in the same way as in the proof of Theorem

3.6 (1).

(3) We have

Ẽg =
λ

4
∥g∥2 − Tr(ξ1/2Y ∗Y ξ1/2)

in the same way as in the proof of Lemma 6.2. Then, by Lemma 7.5, we have

ξ1/2Y ∗Y ξ1/2 = Ω+T
1/2V ∗V T 1/2Ω∗

+ + Ω+T
1/2V ∗β1/2T−P + β1/2PT−V T

1/2Ω∗
+ + βPT−T−P.

We choose a CONS {en}∞n=0 ⊂ D(T ) satisfying e0 = Ub. Then it is easy to see that {Ω∗
+en}∞n=1

is a CONS of H by Lemma 4.13. Hence we have

Tr(ξ1/2Y ∗Y ξ1/2) =
∞∑
n=1

⟨
en,Ω+T

1/2V ∗V T 1/2Ω∗
+en
⟩
+ β∥T−Ub∥2

=Tr(T 1/2V ∗V T 1/2) + β∥T−Ub∥2.

Thus we obtain (7.8).
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In particular, H(λ) have eigenvectors as follows:

ϕn := V−1A(Ub)
∗nΩ0, H(λ)ϕn = (nβ + Ẽg)ϕn , n ∈ N ∪ {0}.

Hence the spectral properties of H(λ) as stated in Theorem 3.6 (2) follow.

8 Analysis in the case λ < λc,0

In this section, we show that H(λ) is unbounded from above and below.

Theorem 8.1. Let g ∈ D(T−1/2). Then H(λ) is unbounded above for any λ ∈ R. If λ < λc,0,

then H(λ) is unbounded below.

Proof. For any f ∈ D(T )\{0}, we set ψn := anA(f)
∗nΩ0, an ∈ C\{0}, n ∈ N ∪ {0}. Then

we have the following equations:

dΓb(T )ψn = n
an
an−1

A(Tf)∗ψn−1, A(g)ψn = n ⟨g, f⟩ an
an−1

ψn−1,

∥ψn∥2 = |an|2n!∥f∥2n, ∥A(g)∗ψn∥2 = ∥g∥2∥ψn∥2 + ∥A(g)ψn∥2,

where ψ−1 := 0. Then we have

⟨ψn, H(λ)ψn⟩ = ∥ψn∥2
(
λ

4
∥g∥2 + n

2∥T 1/2f∥2 + λ| ⟨g, f⟩ |2

2∥f∥2

)
.

We take f such that ⟨g, f⟩ = 0. Then we have ⟨ψn, H(λ)ψn⟩ /∥ψn∥2 → ∞ as n→ ∞ for any

λ ∈ R. Thus H(λ) is unbounded above for any λ ∈ R.
Let ϕN :=

∑N
n=0 ψn, N = 0, 1, 2, . . .. Then we have ∥ϕN∥2 =

∑N
n=0 ∥ψn∥2 and

⟨ϕN , H(λ)ϕN⟩ =
N∑

n=2

∥ψn∥2
(
λ∥g∥2

4
+ n

2∥T 1/2f∥2 + λ| ⟨g, f⟩ |2

2∥f∥2
+
λ

2
Re
an−2

∗

an∗
⟨g, f⟩2

∥f∥4

)

+ ∥ψ1∥2
(
λ∥g∥2

4
+

∥T 1/2f∥2

∥f∥2
+
λ| ⟨g, f⟩ |2

2∥f∥2

)
+
λ∥ψ0∥2∥g∥2

4
.

Let a0 := 1, an := n−3/4n!−1/2, n ∈ N and, for any 0 < δ, 0 < ε < 1,

f = fδ :=
T−1E((δ,∞))g

∥T−1E((δ,∞))g∥
,

cλ(ε, δ) := ∥T 1/2fδ∥2
{
1 +

λ

2
(2− ε)∥T−1/2E((δ,∞))g∥2

}
.
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Then
∑∞

n=0 ∥ψn∥2 converges and, for any N ∈ N,

⟨ϕN , H(λ)ϕN⟩ =
N∑

n=2

∥ψn∥2ncλ(ε, δ) +
λ

2

N∑
n=2

∥ψn∥2
(
an−2

an
− n(1− ε)

)
⟨g, fδ⟩2 + CN , (8.1)

where

CN :=
λ∥g∥2

4

N∑
n=0

∥ψn∥2 + ∥ψ1∥2
(
∥T 1/2fδ∥2 +

λ

2
⟨g, fδ⟩2

)
.

For all 0 < δ, 0 < ε < 1, we have

− 2

∥T−1/2E((δ,∞))g∥2(2− ε)
< λc,0. (8.2)

The left hand side of (8.2) tends to λc,0 as ε, δ ↓ 0. Since λ < λc,0, we can take a pair (ε, δ)

satisfying cλ(ε, δ) < 0. We fix such a pair. There is a n0 ∈ N such that an−2/an−n(1−ε) > 0

for all n ≥ n0. Hence we can see that ⟨ϕN , H(λ)ϕN⟩ /∥ϕN∥2 tends to −∞ as N → ∞, because

the first term of the right hand side of (8.1) tends to −∞ as N → ∞.

9 Generalization of the ϕ2-model

In this section we consider H(η, λ) defined in Subsection 2.3.

Assumption 9.1. We need the following assumptions:

(1) f ∈ D(T 1/2) and g ∈ D(T−1/2) ∩D(T 1/2),

(2) f ∈ D(T−1) and Re ⟨T−1f, g⟩ = 0,

(3) f, g ∈ D(T−1) and Re ⟨T−1f, g⟩ ̸= 0.

We can prove a slight generalization of Theorem 3.6.

Theorem 9.2. Let H be separable. Then the following (1)-(5) hold:

(1) Suppose that Assumption 3.3 and, Assumption 9.1 (2) or (3) hold. Let λ > λc. Then

there is a unitary operator U on Fb(H ) such that for all η ∈ R,

UH(η, λ)U−1 = dΓb(T ) + Eg + Ef,g,

where the constant Ef,g ∈ R is defined by

Ef,g = −η
2

2
∥T−1/2f∥2 + (Re ⟨T−1f, g⟩)2η2λ

2(1 + λ∥T−1/2g∥2)
.
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(2) Suppose that Assumption 3.3 and, Assumption 9.1 (2) or (3) hold. Let E0 > 0 and

λc,0 < λ < λc. Then there are a unitary operator V on Fb(H ) and a non-negative,

injective self-adjoint operator ξ on H such that, for all η ∈ R,

VH(η, λ)V−1 = dΓb(ξ) + Eg − Eb + Ef,g.

(3) Let T be a non-negative, injective self-adjoint operator and suppose that f and g satisfy

Assumption 9.1 (1) and (2). Then there is a unitary operator W on Fb(H ) such that,

for all η ∈ R,

WH(η, λc,0)W−1 = H(λc,0)−
η2

2
∥T−1/2f∥2.

(4) Let T be a non-negative, injective self-adjoint operator and suppose that f and g satisfy

Assumption 9.1 (1) and (3). Then, for all η ∈ R\{0},

σ(H(η, λc,0)) = R, σp(H(η, λc,0)) = ∅.

(5) Let T be a non-negative, injective self-adjoint operator and suppose that f and g satisfy

Assumption 9.1 (1). Moreover, suppose that Assumption 9.1 (2) or (3) holds. Let

λ < λc,0. Then, for all η ∈ R, H(η, λ) is unbounded from above and below.

Theorem 9.2 is immediately proved by the following lemma and Theorem 3.6.

Lemma 9.3. Let T be a non-negative, injective self-adjoint operator, f ∈ D(T−1) and g ∈
D(T−1/2) ∩D(T ).

(1) Let Re ⟨T−1f, g⟩ = 0. Then there is a unitary operator U1 on Fb(H ) such that for all

η, λ ∈ R,

U1H(η, λ)U−1
1 = H(λ)− η2

2
∥T−1/2f∥2. (9.1)

(2) Let Re ⟨T−1f, g⟩ ̸= 0 and g ∈ D(T−1).

(i) If λ ̸= λc,0, then there is a unitary operator U2 on Fb(H ) such that for all η ∈ R,

U2H(η, λ)U−1
2 = H(λ) + Ef,g.

(ii) If λ = λc,0, then for all η ∈ R\{0},

σ(H(η, λc,0)) = R, σp(H(η, λc,0)) = ∅. (9.2)
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Proof. Let U1 := e−iΦs(iηT−1f) for any η ∈ R. Then, by direct calculations, we obtain

U1H(η, λ)U−1
1 = H(λ)− η2

2
∥T−1/2f∥2 − ληκΦs(g) +

λ

2
η2κ2 (9.3)

on Fb,fin(D(T )) for all η, λ ∈ R, where κ := Re⟨T−1f, g⟩. In the case of (1), we have (9.1)

by κ = 0 and a limiting argument. Next, we prove (2). We assume that g ∈ D(T−1)

and Re⟨T−1f, g⟩ ̸= 0. Let V1 := eiΦs(iαT−1g) for any α ∈ R and define a unitary operator

U2 := V1U1. Then it follows that

U2H(η, λ)U−1
2 =H(λ) +

(
α + λα∥T−1/2g∥2 − ληκ

)
Φs(g)

− η2

2
∥T−1/2f∥2 + λ

2
η2κ2 +

α

2
∥T−1/2g∥2

(
α + λα∥T−1/2g∥2 − 2ληκ

)
on Fb,fin(D(T )) in the same way as (9.3). For λ ̸= λc,0, let α = ληκ(1 + λ∥T−1/2g∥2)−1.

Then we obtain

U2H(η, λ)U−1
2 = H(λ)− η2

2
∥T−1/2f∥2 + λη2κ2

2(1 + λ∥T−1/2g∥2)
(9.4)

by a limiting argument. If λ = λc,0, then, for all η, α ∈ R, we have

U2H(η, λc,0)U−1
2 = Hg(−κηλc,0, λc,0)−

η2

2
∥T−1/2f∥2 + λc,0η

2κ2

2
+ κηα

in the same way as (9.4), where Hg(ν, λc,0) := H(λc,0)+νΦs(g) for all ν ∈ R.We can see that

σ(Hg(ν, λc,0)) = R and σp(Hg(ν, λc,0)) = ∅ for all ν ∈ R\{0}, because V1Hg(ν, λc,0)V−1
1 =

Hg(ν, λc,0) + να∥T−1/2g∥2 and α ∈ R is arbitrary. Hence we have (9.2).

Remark 9.4. If H is separable, then the condition g ∈ D(T−1/2)∩D(T ) in the above lemma

is weakened to the condition g ∈ D(T−1/2) ∩D(T 1/2).

10 Appendix

In this section, we recall some known facts in the Fock space theory. Let T be a non-

negative, injective self-adjoint operator on H .

Lemma 10.1. [5, Theorem 5.16.]

Let f ∈ D(T−1/2) and ψ ∈ D(dΓb(T )
1/2). Then ψ ∈ D(A(f)) ∩D(A(f)∗) and the following

inequalities hold:

∥A(f)ψ∥ ≤∥T−1/2f∥∥dΓb(T )
1/2ψ∥, (10.1)

∥A(f)∗ψ∥2 ≤∥T−1/2f∥2∥dΓb(T )
1/2ψ∥2 + ∥f∥2∥ψ∥2. (10.2)
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Lemma 10.2. [5, Proposition 5.10.] For any f ∈ D(T ), the following commutation relations

hold on Fb,fin(D(T )):

[dΓb(T ), A(f)] = −A(Tf), [dΓb(T ), A(f)
∗] = A(Tf)∗. (10.3)

Lemma 10.3. [5, Lemma 5.21.] For any t ∈ R and f ∈ H , the following equations hold:

eitdΓb(T )A(f)♯e−itdΓb(T ) = A(eitTf)♯.

Lemma 10.4. [5, Theorem 5.21.] Assume that H be separable. Let {en}∞n=1 ⊂ D(T 1/2) be

a CONS of H . Then, for any ψ ∈ D(dΓb(T )
1/2),

∑∞
n=1 ∥A(T 1/2en)ψ∥2 converges and the

following equation holds:

∞∑
n=1

∥A(T 1/2en)ψ∥2 = ∥dΓb(T )
1/2ψ∥2.
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[12] Nam P. T., Napiórkowski M. and Solovej J. P., Diagonalization of bosonic quadratic

Hamiltonians by Bogoliubov transformations, J. Func. Anal, 270 (2016), 4340-4368.

[13] Reed M. and Simon B., Methods of Modern Mathematical Physics I: Functional Anal-

ysis, Academic Press, New York, 1979.

[14] Ruijsenaars S. N. M., On Bogoliubov transformations. II. The general case, Ann. Phys.

116 (1978), 105-134.

[15] Shale D., Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962),

149-167.

[16] Teranishi N., Self-adjointness of the generalized spin-boson Hamiltonian with a quadratic

boson interaction, Hokkaido Math. J. 44, no. 3 (2015), 409-423.

[17] Titchmarsh E. C., Introduction to the Theory of Fourier Integrals, Oxford U.P., Amen

House, London, 1937.

44


