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Abstract

We consider an abstract pair-interaction model in quantum field theory with a
coupling constant A € R and analyze the Hamiltonian H()) of the model. In the
massive case, there exist constants A < 0 and Acp < Ac such that, for each A\ €
(Ac,0, Ac) U (A¢, 00), H(A) is diagonalized by a proper Bogoliubov transformation, so
that the spectrum of H(A) is explicitly identified, where the spectrum of H(\) for
A > ) is different from that for A € (A¢p, Ac). As for the case A < Ac o, we show that

H () is unbounded from above and below. In the massless case, A. coincides with A¢ .
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1 Introduction

This thesis is based on the joint work [6]. We consider an abstract pair-interaction model
in quantum field theory. The Hamiltonian of the model is of the form

H(\) := dDy(T) + %@8(9)2

acting in the boson Fock space () over a Hilbert space 5 (see Subsection 2.1), where
T is a self-adjoint operator on ¢, dI'y(T") is the second quantization operator of T', ®4(g) is
the Segal field operator with test vector g in J# (see Subsection 2.1) and A € R is a coupling
constant. A model of this type is called a ¢?-model.

There have been many studies on massive or massless ¢*-models in concrete forms or
abstract forms (see, e.g., [4, 8,9, 11, 12, 16]). In [11] and [16], the (essential) self-adjointness
of the Hamiltonian of a ¢?>-model is proved in the case where A > 0 or || is sufficiently small.
In [11], the existence of a ground state of a ¢*model also is shown in the case where the
quantum field under consideration is massive and A > 0.

It is a well known that Hamiltonians with linear and /or quadratic interactions in quantum
fields may be analyzed by the method of Bogoliubov transformations (see, e.g., [1, 2, 3,4, 7, 8,
10, 12]). A typical Bogoliubov transformation is constructed from bounded linear operators

U,V and a conjugation operator J on JZ satisfying the following equations:

UsU—V*V =1,
UV — ViU =0,
UUr -V, Vi =1,
UV* —V,U; =0,

(1.1)

where A; := JAJ and A* is the adjoint of a densely defined linear operator A. It is well

known that there is a unitary operator U on .%,(##) which implements the Bogoliubov
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transformation in question if and only if V' is Hilbert-Schmidt [7, 13, 14, 15]. Moreover,
it is shown that, under the condition that V is Hilbert-Schmidt and suitable additional
conditions, the Hamiltonian under consideration is unitarily equivalent via U to a second
quantization operator up to a constant addition. For example, the Pauli-Fierz model with
dipole approximation, which can be regarded as a kind of ¢?-model, is analyzed by this
method in [10].

Recently, a general quadratic form Hamiltonian with a coupling constant A € R has
been analyzed in [12] and it is shown that, in the case of a massive quantum field, under
suitable conditions, the Hamiltonian is diagonalized by a Bogoliubov transformation. In
[8], the sufficient condition formulated in [12] to obtain the result just mentioned has been
extended. The spectrum of the standard pair-interaction model in physics, which is a concrete
realization of the abstract pair-interaction model, is formally known [9] in the case where
A > Ao and A # A, for the constants A\, and .o which satisfy A.o < Ac. The paper [4] gives
a rigorous proof for that in the framework of the boson Fock space theory over 7 = L?*(R¢)
for any d € N and A > A..

One of the motivations for the present work is to extend the theory developed in [4]
with 27 = L*(R?) to the theory with .7 being an abstract Hilbert space including the case
where A < A.. It is a well known fact (see [9]) that the spectral properties of the standard
pair-interaction model may depend on whether A > A. or A < A.. Hence it is important
to clarify this aspect mathematically. Therefore we analyze our model also for the region
A < Ac. We show that, in the massive case with A € (Ac o, Ac) also, the method of Bogoliubov
transformations can be applied to prove that the Hamiltonian H () is unitarily equivalent to
a second quantization operator up to a constant addition. Then we see that the spectrum of
H(\) for A € (Aco, Ac) is different from that for A > A.. In the massless case, A.o coincides
with Ag.

The main results of the present paper include the following (1)-(3) (see Theorem 2.8
for more details): (1) Identification of the spectra of H(\) for A > A.. (2) Identification
of the spectra of H(\) for A\cyp < A < A it is only in the massive case; in the massless
case, A\co = Ac). In this case, bound states different from the ground state appear. (3)
Unboundedness of H () from above and below for A < .

The outline of this paper is as follows. In Section 2, we define our model and recall a
fundamental fact in a general theory of Bogoliubov transformations. We prove the (essential)
self-adjointness of H(A) (Theorem 2.3). Then we state the main theorem of this paper
(Theorem 3.6). In Section 3, we construct the operators U and V' which are used to define
the Bogoliubov transformation we need. In Section 4, we show that U and V satisfy (1.1)

and V is Hilbert-Schmidt. In Section 5, we prove Theorem 2.8 (1) and calculate the ground



state energy of H(\) in the case A > A.. In Section 6, we prove Theorem 2.8 (2). In Section
7, we prove Theorem 2.8 (3). In Section 8, we consider a slightly generalized Hamiltonian
which is of the form H(n, A) := H(A)+n®s(f) for n € R and f € 5. Applying the methods
and results in the preceding sections, we analyze H(n, A\) and identify the spectra of it. In

Appendix, we state some basic facts in the theory of boson Fock space.

2 Preliminaries

2.1 The abstract boson Fock Space

Let S be a Hilbert space over the complex field C with the inner product (:,-) . The
inner product is linear in the second variable and anti-linear in the first one. The symbol
| - |l denotes the norm associated with it. We omit J¢ in (-,-) ,, and | - ||, respectively if
there is no danger of confusion. For each non-negative integer n = 0,1,2,..., ®I5¢ denotes

the n-fold symmetric tensor product Hilbert space of 5 with convention ®2.# := C. Then
Fo(H) = Byl QL H

is called the boson Fock space over .7#. For a dense subspace Z in 57, ®Z.@ denotes the
algebraic n-fold symmetric tensor product of  with ®g% := C. Then

Foin(D) = e g &L D

is a dense subspace of .%,(##), where &, , %, stands for the algebraic direct sum of subspace
D, C R, =0,1,2,.... The finite particle vector subspace

) € @, n > 0,there is an integer ny € N
Fool ) = = (9} € ) | ¥ s =
bo(#) {l/f W b(F) such that 1™ =0, for all n > ng
satisfies Fp, n(2) C P o(H) C F,(H), in particular, it is dense in F, (). For a linear
operator T" on a Hilbert space, the domain of 7" will be denoted by D(T).
For a densely defined closable operator 1" on 7, let T én) be the densely defined closed

operator on ®L .7 defined by

j—th
n

n /./\ R
™ — Y 1@ T @I®---1[&/D(T), n>1,
Jj=1

0, n =0,



where I denotes the identity operator on J#, A denotes the closure of a closable operator A

and A [ M denotes the restriction of a linear operator A on a subspace M. The operator
dry(7) = &5 1"

is called the second quantization operator of 1. If T' is self-adjoint or non-negative, then so
is dI', (7). For each f € S, there exists a unique densely defined closed operator A(f) on
F(H) such that its adjoint A(f)* is given as follows:

D(A(f)*) == {w = (W), € Z () | S n||S. (Fo v V)| < oo} ,

(A() )™ = VaS,(f @™ V), neN, (A(f))? =0 for v € DA(f)"),

where S, is the symmetrization operator on the n-fold tensor product ®".7¢ of 7. The
operator A(f) (resp. A(f)*) is called the annihilation (resp. creation) operator with test
vector f. We have
Fb0(H) C D(A(f)) N D(A(f)")

for all f € 2 and A(f) and A(f)* leave F,o(4) invariant. Moreover, they satisfy the
following commutation relations:

[A(F), Alg)"] = (f9),  [A(f), Alg)] =0, [A(f)", A(9)] =0, forall f,ge22 (2.1)
on (), where [A, B] := AB — BA is the commutator of linear operators A and B. The

relation (2.1) is called the canonical commutation relations (CCR) over . The symmetric

operator

Bo(f) = %(A(f) LAY, fet

is called the Segal field operator with test vector f. We write its closure by the same symbol.

2.2 Bogoliubov Transformation

In this subsection, we define a Bogoliubov transformation and recall an important theorem
about it. For a conjugation J on . (i.e., J is an anti-linear operator on . satisfying
|Jf]l = || f|| for all f € 5 and J? = I) and a linear operator A on #, we define

AJ =JAJ.

Definition 2.1. Let U and V' be bounded linear operators on € and J be a conjugation on
H. For each f € H, let a linear operator B(f) on F,(F) be given by

B(f) = AWUf) + AJV ).
Then the correspondence (A(+), A(:)*) — (B(:), B(-)*) is called a Bogoliubov transformation.
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By %, 0() C D(B(f)), the adjoint B(f)* exists and the equation B(f)* = A(Uf)* +
A(JV f) holds on %y, o(7) for each f € . If the equations

uv-vv=I UV-V;U=0
hold, then the Bogoliubov transformation preserves CCR, i.e., it holds that

[B(f), B(9)] = {f,9),B(f), B(9)] = 0,[B(f)", B(9)"] = 0, for all f,g € 7,
on F,o(F). The following theorem is well known (see [14, 15]):

Theorem 2.2. Let 7 be separable and the operators U and V' satisfy (1.1). Then there
exists a unitary operator U on P, () such that

UB(/U ' = A(f), fer

if and only if V' 1s Hilbert-Schmidt.

2.3 Hamiltonians

For a self-adjoint operator T on ¢, constants A\, € R which are called coupling con-
stants, and vectors f, g € 7, we define Hamiltonians H(\) and H(n, A) by

H() = d0(T) + 20,(0)%, H(n,A) = HO\) + ()

If g =0, then H(\) and H(n, \) are well-known operators. Thus, we always assume that
g # 0 in the present paper. If g € D(T~%/2), let the constant be defined by

Aeo = —[T~2g] 72
Theorem 2.3. Suppose that T is an injective, non-negative, self-adjoint operator on F€.
Let f € D(T~Y?) and g € D(T~Y?) N D(T). Then the following (1)-(3) hold:
(1) Let
Ar(g) = T 2g|7H(IT~ gl + |29l (2.2)

and |A| < Ar(g). Then H(n,\) is self-adjoint with D(H(n,\)) = D(dI'y(T)) and
essentially self-adjoint on any core of dUy(T) for all n € R. Moreover, H(n,\) is

bounded from below.

(2) Let A > Ar(g) and f € D(T"?). Then H(n,\) is essentially self-adjoint on any core
of AT (T') for all n € R. Moreover, if X > Ar(g), then H(n, \) is self-adjoint.
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(3)

Let f € D(TY?). Then H()\p) is bounded from below. Moreover, if X > Ao, then
H(n, \) is also bounded from below for all n € R and D(AT',(T)Y?) = D((H(n, \) +
M)Y2) for all constant M > 0 satisfying H(n, \) + M > 0.

Proof. (1) For any A € R, by using (2.1), (10.1), (10.2) and [5, Theorem 5.18.], there are

constants a,b > 0 such that for all ¢y € D(dI', (7)),
A
50000

A
< B ataru ot + o).

In particular, we can choose a and b which satisfy a|\|/4 < 1if |A| < Ar(g). We remark
that, to obtain the factor Ar(g), we need to deform terms ||A(g)**¥|?, ||A(g)*A(g)|]?
and [|A(g)*¢||* coming from [|®s(g)*¢)||* (1 € Fi0(H)) to [[A(9)A(g)*¥|*+ a marginal
term respectively. Thus, for |A\| < Ar(g), by the Kato-Rellich theorem, H(A) is self-
adjoint. It is well known that ®4(f) is infinitesimally small with respect to dI'y (7).
Hence, by the Kato-Rellich theorem, for |A| < Ar(g), H(n, A) is self-adjoint.

Firstly, we show that, for any f € D(T"/?) and n, A € R, H(n, \) is essentially self-
adjoint on any core of dI'y(7"). By (10.1), (10.2) and [5, Theorem 5.18.], we can see that
there exists a > 0 such that ||H(n, \)¢|| < al|/(dTw(T) + I)v|| for all ¢» € D(dI'y(T)).
Let f € D(T'). Then by (2.1) and (10.3), for any ¢ € F, 4,(D(T)), we have

(H (. A, (ATu(T) + D)) = (dLw(T) + Do, H (., A
=25 (@.l0), AT9)V) = (ATq)0. D)) + (0 ATL0) = (AT ),

Thus, by (10.1) and (10.2), we obtain

| (H (0, A\, (T (T) + D)ep) — ((ATo(T) + D)o, H(n, M) | < C|[(dTw(T) + 1)/,
(2.3)

where C := {|M||T"gl|(lgll + 21T~ 2g]l) + V2l |T*2f||}. By a limiting argument,
using the fact that %, 5,(D(T)) is a core of dI',(T') and dI',(T')-boundedness of ®4(g)?,
we can show that for f € D(T%?) and ¢ € D(dT',(T)), (2.3) holds. Thus, by the Nelson
commutator theorem, for all n,\ € R, H(n, \) is essentially self-adjoint and m is
essentially self-adjoint on any core of dI',(7"). The equation H(n,A) | 2 = H(n,\) | 2
holds for any core & of dI',(T'). Hence H(n, ) is essentially self-adjoint on any core of
dTy(T) for all n, A € R. Next we show that, if A > |T~2g|| " (| T~2g|| + | T*/?¢||) ",

then H(n, A) is self-adjoint. We can show that, for A > 0 and any 0 < € < 1, there is a

constant ¢, > 0 such that
2

A
(L= Tl + 50002 < NI + e, v € DrT)




Hence H(n, A) is closed. In particular, it is self-adjoint.

From the fact that ®,(f) is infinitesimally small with respect to dI',(T"), for any € >
0, edI'v(T") + n®s(f) is bounded from below. By (10.1), for any ¢ > 0 and ¢ €
D(dTu(T)?),

(0 A < 1727 (lAnm) ol + ol

Hence if the assertion follows for n = 0, then so is for all . Thus we show that the
assertion follows for n = 0. If A > 0, then clearly H(\) > 0. Let A < 0. By (10.1) and
(10.2), for any 1 € D(dI',(T)/?), it follows that

1@s(g)el® < 2T 2g 1?1 dTs(T) 201 + llgl? ][I,
Thus for any ¢ € D(AI',(T)),

A
(0, HA) = [[d0u(T) 2] + S| @s(9) 9]
A
> (L+ AT gl [Te(T) 201 + S gl ). (2.4)

Hence H(\) is bounded from below if A > A .
Let A > Ao and M > 0 be a constant satisfying H(A) + M > 0. Then for any
¥ € D(AI'y(T)) = D(H(A)),

T + A6 < 1+ W20l () 2o + (ol + 0r) 1w,
(2.5)

By the fact that D(dI',(T)) is a core of dI'y(1)*/2, we have D(dI',(T)"/?) ¢ D((H(\)+
M)'/?) and (2.5) holds on D(dL,(T)"?).

In the case A > 0, the fact that ®.(g)? is non-negative implies that ||[H(\)Y/2] >
|dT, (T)24|| holds for any ¢ € D(dI'y(T)). In the case 0 > A > A,

1T (T)2)* <

o)
= 1—|—)\HT1/29”2{”(H<>‘>+M)12¢||2 (2|lgl|2+M ]2

holds for any ¢ € D(dI',(T")) by (2.4). Hence for A > A there is a constant a,b > 0
such that for any ¢ € D(dI',(T)),

Ty (T) 20l < all(HN) + M)2¢| + o] l. (2.6)

By a functional calculus, D(dI',(T)) is a core of (H(A) + M)Y2. This fact and (2.6)
imply that D((H()\) + M)'?) c D(dT',(T)"?) and (2.6) holds on D((H(X\) + M)'/?).
O



Remark 2.4. By [3, Lemma 13-15], if 57 is separable, then Theorem 2.3 takes the following
forms:

Let % be separable, T' be a non-negative, injective self-adjoint operator, f € D(T~'/?) and
g € D(T~Y?) N D(T"?). Then the following (1)-(3) hold:

(1) Let A > Aco. Then H(n, A) is self-adjoint with D(H (n,\)) = D(dI',(7")) and essentially
self-adjoint on any core of dI',(7) for all n € R. Moreover, H(n,\) is bounded from

below.

(2) Let A < Ao and f € D(TY?). Then H(n, )) is essentially self-adjoint on any core of
dI'y(T) for all n € R. In particular, if n = 0 and A = A, then H(A.o) = H(0, Acp) is

bounded from below.

(3) Let A > Ao. Then D(dl'y(T)Y?) = D((H(n,\) + M)'?) for all constant M > 0
satisfying H(n, ) + M > 0.

3 The Main Theorem

3.1 Assumptions

To prove our main theorem stated later (Theorem 3.6), we need some assumptions. For
a closed operator A, o(A) denotes the spectrum of A. If A is self-adjoint, then o,.(A) (resp.
0p(A), 05 (A)) denotes the absolutely continuous (resp. point, singular continuous) spectrum

of A. For a self-adjoint operator A which is bounded from below,
Eo(A) :==info(A)

is called the lowest energy of A. In particular, it is called the ground state energy of A if
Eyo(A) € 0,(A). In this case, an eigenvector of A with eigenvalue Ey(A) is called a ground
state of A. The ground state is said to be unique if dim Ker(A — Ey(A)) = 1. For linear
operators A and B, the symbol A C B means that D(A) C D(B) and Af = Bf for all
f € D(A), i.e., B is an extension of A.

Definition 3.1. Let T be a self-adjoint operator on 7 and {E(B) | B € B} be the spectral
measure associated with T on the Borel field Bt on R. The operator T is called purely abso-
lutely continuous if, for each f € S, the measure |E(-)f||* on B! is absolutely continuous

with respect to the one-dimensional Lebesque measure.



Definition 3.2. For a purely absolutely continuous self-adjoint operator T' and vectors f, g €
FC, Yy denotes the Radon-Nikodym derivative of the finite complex Borel measure (g, E(-) f)

on BY. In particular, we set 1, =1, ,.

Assumption 3.3. (1) The operator T is a non-negative, purely absolutely continuous self-

adjoint operator.

(2) The fized vector g € H satisfies g € D(T~V2)ND(TY?) and Jg = g, where T := T—E,,
Ey := Eo(T) and J is a conjugation on F satisfying JD(T) C D(T) and JTv = T Jy
for any v € D(T) (i.e., JT CTJ),

(3) supp, <, 25 '1hy(x) < 00 and Yy(x) > 0 for all x € (Ey, 00),
(4) ¥y € C([Eo, 00)) N CH((Ep,00)) and limgyg, 27"} (x) = 0 = lim,_,o0 271/ ().

Remark 3.4. The operator T is injective since it is a purely absolutely continuous self-
adjoint operator. Since T has no eigenvector, the inverse of T exists. Assumption 3.3 (2)
implies that Ty = T. In general, for a self-adjoint operator A and a conjugation J, we can
choose a vector f € D(A) satistying Jf = f if A; = A. Thus the vector g in Assumption 3.3
(2) exists. By Assumption 3.3 (3), one can easily show that sup,c, ) ¥y(r) < oo and, for
each f € J, the functions ¢, y and ¥ps1/2, , are in L*(R) and the maps : f — 1, , Yrs1y2g
are bounded. Actually, for any h € 5 and B € B!, the following inequality holds

[{(E(B)h, f) [ < |EB)AI*|EB) I

by Schwarz’s inequality. Thus we obtain |¢y, r(p)|? < ¥n(p)(p) for almost all p € R with
respect to the Lebesgue measure. Hence, by Assumption 3.3 (3), we have the boundedness of
the mappings. Moreover, we see that for any F' € L*(R), g € D(F(T)), where F(T) denotes
the operator defined by F(T) := [, F(u)dE(p). In particular, g is in D(iy ¢(T)) for any
fes.

Lemma 3.5. Let T be a self-adjoint operator such that JT' C T J. Then
(1) E(B); = E(B), for all B € B..

(2) Let F be a Borel measurable function on R. Then F(T); = F*(T), where F* is complex

conjugation of F.

Proof. These are proved by using the spectral theorem. O]
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3.2 The Main Theorem

In this subsection, we state the main theorem of the present paper. Let A. be a constant

defined by
-1
H 2
)\C::—</ dE,ug) < 0.
ot AEwl

Then, by a functional calculus, we obtain A, < A, and A.p = A if and only if Ey = 0.

Theorem 3.6. Let 5 be separable. Then the following (1)-(3) hold:

(1) Let T and g satisfy Assumption 3.3. If X\ > A., then there are a unitary operator U on
F(H) and a constant E, € R such that

UH(\)U™ = dT,(T) + E,. (3.1)

In particular, U™1Qq is the unique ground state of H(X), where Qo := (1,0,0,...) €
Fu(F) is the Fock vacuum, and

o(H(N) ={Eg} U[Ey + Eg, 0), (3.2)

oac(H(A)) = [Eo + By, 00), 0p(H(A)) = {Eg}, ou(H(A)) =0 (3.3)

(2) Let T and g satisfy Assumption 3.3 and Ey > 0. If Aeo < A < A, then there ezist a
unitary operator V on (), an injective non-negative self-adjoint operator & on

and a constant Fy, > 0 such that & has a ground state and
VH\)V™! =dly, (&) + B, — E,.
In particular, V71 is the unique ground state of H(\), and
o(H(N) =Uylo{np + E; — Ev} U[Ey + E; — Ey, 00),

Tac(H(A)) = [Eo + Eg — By, 20),
op(H(A) = Uplo{nf + Ey — Ev}, 0we(H(N)) =0,

where B > 0 is the discrete ground state energy of €.

(3) Let T be a non-negative, injective self-adjoint operator. If g € D(T~Y?) and X\ < A,

then H(X) is unbounded from above and below.

Example 3.7. A concrete realization of the abstract model is given as follows (see [9, Chapter
12]):
H+ LP(RY, T+ w, g



where w is the multiplication operator associated with the function w(k) := \/m k€
R? for a fixed m > 0 and p is the Fourier transform of a function p € L?(RY) satisfying
p/v/w € L*(R?). Assume that p is rotation invariant, i.e., there exists a function v on [0, 00)
such that p(k) = v(|k|) for all k € R Then we have v,(s) =[S wi(s)2 |v(wy ' (s))[?
for s > m, where |S?!| is the surface area of the (d — 1)-dimensional unite sphere with
convention |S°| = 27 and wy (r) = v/r2 + m2,r > 0. Set 1, (m) := 0. Hence, with J being the
complex conjugation, the following conditions (2)’-(4)’ imply that the present model satisfies

Assumption 3.3:

(2) p(k)" = p(k) and

A 2
re K[>

(3)" p is rotation invariant. supycgs w(k)=2|k|@2/2|5(k)| < co. p(k) > 0, for all k # 0.
(4) v e C'([0,00)) and

dm B p(k){(d — 2)p(k) + 2|k[v'([k])} = 0,

tim [k p(R) {(d — 2)p(k) + 20k} (K]} = 0.

|k|—o00

We can show that 1), is right continuous at m by [, [p(k)[*|k|?dk < co and v € C'*([0, o0)).
Thus, 1, € C([m,00)). For example, one can easily check that the function

H(k) = exp (—ﬁ - |k|2), ke R0}, p(0) =0

satisfies the above conditions (2)’-(4)’.

4 Definitions and properties of some functions and op-

erators

In this section, we introduce some functions and operators. We assume that 77 is sepa-

rable and Assumption 3.3 from this section to Section 6.

4.1 Functions D and D

Lemma 4.1. Let D : C\(0,00) — C be the function

H 2
Dz:—1+)\/ ———d||E(n)gl|*, =z € C\(0,00).
( ) (o 00) 12 — Eg—z H ( ) H \( )

12



Then D is well-defined and analytic in C\[0,00). Moreover, the following hold :

(1)
(2)

For all A > \., D(z) has no zeros in C\[0, c0).

For all A < A\., D(z) has a unique simple zero in the negative real azxis (—o0,0).

Proof. If Imz # 0 (resp. Rez < 0), then for any n € N,

d|E(n)gl* < cIT?g]* < 0,

[l
[Eo,00) (12 — B — 2)"

where ¢ is [Imz| (resp. |Rez|). If z =0, then

H 2 fH—-1/2 112
s E(gl” < IT77g|” < oo,
/[Eo,oo) :u2 - g

Thus, by using the Lebesgue dominated convergence theorem, D is well-defined and analytic
in C\[0, c0).

(1)

If A\ =0, then D(z) = 1 for all z € C\(0,00), so it has no zeros. Let A\ # 0 and
z=ux+1iy € C\(0,00). Then we see that

o 2
i D)= | AIE ()
() [Eo,00) (MQ—Eg—x)2_|_y2 ” ( ) ”

Thus Im D(z) = 0 is equivalent to y = 0. Therefore D(z) = 0 if and only if D(z) = 0.
Let y = 0. In the case A > 0, one has D(z) > 0 for all x € (—00,0]. Thus D has no

zeros. Next, we consider the case A < 0. We have for x < 0,

Pl = /\/ s d||E(u)g]* < 0.
( ) [Bo,00) (MZ _ Eg —ZE)2 || (:u)gH

Thus D is monotone decreasing in (—o0,0). If A > A., then D(0) > 0. Hence D has

Nno zeros.

Let A < A.. We can see that

H 2 A
D0:1+)\/ d|E(pn)g||*=1—— <0.
(0) ooy 1 — BB IE()g N

By the Lebesgue dominated convergence theorem, D(x) — 1 as # — —oo. Since D is

monotone decreasing in (—oo,0), D has a unique simple zero in (—o0, 0).

13



Let
Og(7) = Yy (VT)X(B2,00) (7), 7 ER,

where yp is the characteristic function of B € B'.

Lemma 4.2. The following hold :
(1) The function ¢4 satisfies ¢5 € CH(R) N L' (R) N L*(R) and sup,ep |¢, ()| < oo.
(2) Let

A — _r A®) — &£ ceR >0
€ (J)) 7_‘_(1,2_*_62)7 € <ZL‘) 7_‘_(3:2_1_62)’ x 9 €

be the conjugate poisson kernel and the poisson kernel respectively and f = h denote the

convolution of functions f and h. Let

(H-f)(s) = l/ . Mdm, (Hf)(s) = 12%1(H€f)(s), sER, >0,

™ S—X

where H f is called the Hilbert transform of f. Then for all x € R,

lim (AL 0,) () = (Hog)(x).  Lim (A x 6y) (v) = ¢y (x).

el0

hold uniformly in x.

Proof. For any h > 0, by Assumption 3.3 (1), (4) and the mean value theorem, there exists
0 € (Ey+ h/2, Ey+ h) such that

/EOHL Yy (1) dy = E Yy(6)
Fo+h/2 b — Eo 2

This fact and 0 < Ey + h imply that

|E([Eo, Eo + h))T~/2g||* = / Pol) g, s Vo)

(4.1)
[Eo,Eo+h] 1 — Ey 2

By taking the limit 4 | 0 and Assumption 3.3 (1), the left hand side of (4.1) tends to zero.
Thus we obtain limy,_, g, 10 ¢g(h) = 0. This fact and 1, € C([Ep, 00)) imply that ¢,(Ep) = 0.
Since 1), is the Radon-Nikodym derivative of |E(-)g||* and Ey < T, we have ¢,(z) = 0 for
r < Fy. Thus ¢, € C(R). By the differentiability of v,, we obtain ¢ (z) = 1y, (v/7)/(2y/)
for x > E§ and ¢ (z) = 0 for < Ej. Thus, ¢} is continuous on (—oo, E§) U (Ef, 00). Since
¢, (x) = 0 for x < E§ and limy_,010(Eo +h) by (Eo +h) = 0, we have limy, o ¢, (E§ +h) = 0.
By this fact and the 'Hopital theorem, we obtain limy,_,040(¢,(Es +h) — ¢g(EZ))/h = 0. We

14



have limy, oo (¢4 (E2 +h) — ¢, (E2))/h = 0 since ¢,(z) = 0 for x < E3. Thus ¢, is continuous
at Ej. Hence ¢, € C'(R). By the fact that 1/ (z) = 0 for x < Ey and Assumption 3.3 (4)
imply that ¢, € C*(R) and ¢, (E§) = 0. By Assumption 3.3 (2) and a change of variable, we
have ¢, € L'(R). We obtain ¢, € L*(R) by Assumption 3.3 (3) and a change of variable. The
inequality sup,cg |#; ()| < oo is given by Assumption 3.3 (4). The assertion (1) holds. Next
we consider the assertion (2). By (1), in particular, ¢, is bounded and uniformly continuous.
Thus it is easy to see that AD & ¢, converges uniformly to ¢,. Moreover, by (1), Hélder’s
inequality, the mean value theorem and a similar estimate to the proof of [17, Theorem 92.],
we can show that (AL « ¢g)(x) — (H:¢,)(x) tends to 0 uniformly in x as ¢ | 0. Hence the
assertion (2) holds. O

Detailed studies of the Hilbert transform are given in [17].

Lemma 4.3. For all s > 0, Dy(s) := lim. o D(s £ ic) are uniformly convergent and contin-

uous i s > 0 with

D()—l—)\Q—W(H¢g)(E2—|—s) z‘A—;%(,/EgH), s> 0. (4.2)

Proof. For any s > 0 and € > 0, we have by a change of variable

D(s:l:ia)zl—/\;(Aél)*gbg) (ES + s) :I:z— (AP % ¢,) (B3 + 5).

Thus, by Lemma 4.2, Dy converge uniformly in s > 0 and (4.2) holds. The continuity of D

is due to the uniform convergence. O]

Remark 4.4. For all p € [Ey, 00), we have
imAy () = D (i — E2) — D_ (s — ED) (43)
Lemma 4.5. Let A\ # A, then ¢ := inf 5o |Di(s)| > 0.

Proof. If X = 0, then clearly Di(s) = 1 > 0 for all s € [0,00). Let A\ # 0,A.. Then

D.(0) = D(0) # 0. Hence, by the continuity of D., Dy has no zeros near s = 0. For any
e>0and s> E?+ 1, we have

(Hedo)(s) = 117 (5) + 3 1j(s),

>S):/€1 %(s—:c)j_; ‘bg(‘”m)dg;, [2(8):/8—1%_(0@)@

ES S —XT
2s [e's]
ng(*r) dl‘ [4(8) — ¢g(x) dl'

Y
s+41 85— X 2¢ S—

I3(s) =

15



Then, by the Lebesgue dominated convergence theorem, each I;(s), j = 2, 3,4 tends to zero
as § — o0. By the mean value theorem and the property that <Z>’g(q:) — 0 as x — 00, we have
limg_, o0 lim, g Il(e)(s) = 0. Hence we can see that (H¢,)(s) — 0 as s — oo. This fact implies
that inf, <; ReDi(s) > 0 for a sufficiently large number s > 0. In addition, ImD, (s) are
positive for any closed interval included in (0, 00) by Assumption 3.3 (3) and the continuity
of 1,. Hence we can see that inf,>o Dy (s)| > 0. O

Remark 4.6. By Lemmas 4.3 and 4.5, we can see that there are constants c,d,cq > 0 with

0 < ¢ < d such that
D(s +ig)

ROBIE d (4.4)

=
forall s > 0,0 < e < g.
4.2 Operators R

Through this subsection, we assume A # ..

Lemma 4.7. One can define bounded operators Ry on € as follows:

e (T2 TV
Raf = —Alim Byesie(T7)

g 1/2 /
dT"""g, E(W)f), fe€H,
0 Jigyooy Dx(p? — Ef) < )

where R,(A) := (A — 2)7! is the resolvent of a linear operator A at z € p(A) (the resolvent

set of a linear operator A).
Proof. For a fixed ¢ > 0 and any f € 52,

/ H Ry (T*)TY?g
[E07OO)

112 T1/2g
AT 117 [

Oe

‘dIIE(u/)fHQ <

by Lemma 4.5 and a property of a resolvent. Thus we can define linear operators R(f) on

by

Dy (p? — Ef)
in the sense of Bochner integral with the polarization identity. For any h, f € ¢,

(101

_ )\/ (h, Ry2y;(TH)T"?g)
Booe)  Dx(p? — EF)

Ry (T?)TY?
Rgi)f = / N2:|:Z ( ) gd<T1/2g,E(ﬂl)f>
[EO’OO)

d(T"?9, E(')[)

1/2
H 1/2 /
(Fo,00) J [Fo,c0) (M2 — 1 F ig) D (' — E) (h, E(u)g) d () f)
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where we have used a functional calculus. By change of variables in the Lebesgue-Stieltjes

integration, a functional calculus and Fubini’s theorem, we have
e AT :
(nBOF) =3 [ (A w08 (0 %1 (A2 w2) G20 (0 Bl
0,00

where gb;Ef(x) = Y, 1 (vV/T)z V4D (2 — E3) ' X(g2,00) (), 2 € R. We have gb;f € L*(R) by
Remark 3.4, and the function (Aéj) * qﬁ;'ff) (u?)p'’? (u € R) is in L3(R) for each j = 1,2.
Thus, by a change of variable, we have

< (A—”) [ 1 i) - (ot o
~ 9 q 152 00) € g.f g.f

A 2 )
" (7> “ /[Ez o0) ’<A§2) i gbif)(x) N ;t,f(@‘ dz,

where ¢, := SUD,¢(g, o) ¥g() and the linear operators

2

A
ROf ~ (-t NTT g % A1 )

Ay f i=im by s (T)Dy(T* — E3) g, f € H
are well-defined (see Remark 3.4 and Lemma 4.5). Hence, by gb; ;€ L?*(R), we have
RY f — —(x)/2)(HOE ) (T T F (1/2)Asf as e 0.

Moreover, by change of variables, the isometricity of Hilbert transform and Remark 3.4,
we can show that the inequalities

c 7| A|e
[ )T < 2171, 1Ar] < T3 )
hold for all f € . Hence R. are bounded. ]

By the definition of the adjoint operator, R := (Ry)* are given as follows: for f € JZ,
RE"f = /[ Rusie(T) DT = E3)\TV2g d(TV2g EGO)f),  (45)
FEo,00
* . (8)*
R, f= 181%1 Ry f.
For a densely defined linear operator A on a Hilbert space, A* denotes A or A*.

Lemma 4.8. The ranges of R'. are included in D(T~") N D(T) and R%, map D(T) into
D(T?).
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Proof. For any f,h € 7, we have

Ry =5 [ (o) Gy i a0 E ) (46)

By a change of variable, we have
(HOE ) (1) = (HOE oy ) () + (HOE oy ) (—0), nER (4.7)

where ¥, ;(z) = tp(2)Di(2® — Eo) 'Xigo0)(2), 7 € R for h, f € . Thus we see by
Assumption 3.3 (3) and a functional calculus that Ran(R+) C D(T'). The equation

p (HOE ) (1) = (H ) () = (HOE s, ) (~10), pE R (48)

(4.6), Assumption 3.3 (3) and operational calculus imply that Ran(R+) C D(T). For any
fe€D(T) and u € R,

2
02 (H6E) (07) = (B 1) ) + (HOE sy ,) (- mw+;/gwm¢¢u%Juﬂdm

Hence R.f € D(T?) and the following equation holds for any h € 7,

A 2
<meﬁ=§[;)'Km%%”ym @%wﬂgem+fLNMWEwm
A
Fig [ ' 0B,

where ¢ := fR T1/2g f(a:)da:. In quite the same manner as in the case of Ry, we can prove
the statement for RY. O

Lemma 4.9. The operator equations (Ry); = Rx hold.
Proof. This follows from Assumption 3.3 (1) and Lemma 3.5. O
Lemma 4.10. The operator equation R_ = R,y + A_ holds, where
5= D1 = E)D_(1* - E})
1s a bounded operator.
Proof. The first resolvent formula gives that, for any ¢/, u” € R, e > 0,

K (T%) = Runyie(T?) = —2ie Ry ic(T?) Ry (T7).

w?2—ie w2 —ie

18



Then, for any f € 2,

€ Ry T? T1/2.g /
R“fz—A/[ | weie(T) d(T"g, E()f)
FEo,00

D_(u"? — Ef)
_ Ryoyie(TPR oo (T T g
+22>\€/ e e d{(TY?q, E())f).
[Eo,00) D_(pw? — Ej) < 1)

Thus, by a change of variable, we have for any h € ¢

<h, R(f)f> - <h, Rﬂf)yf> 4 2i) /[E

M2
{(1? = p?)? +etD_(u? — EF)

= (h By f ) +imA / (AD % ¢y ) (4*)u2d (h, E(p1)g)

[Eo,00)

| /[E )d<h, E(u)g) d{T" g, E(W')f)

0,00

X

By a property of the Poisson kernel, the function (A@ * ¢, f) (p?)p'’? (u € R) converges
to 1, (u)/D_(u* — EZ) as € — +0 in the sense of L*(R). Hence the continuity of the inner
product with L*(R) implies that

. Vg1 (1)
(B f) = (b Rorf) i [, Bg)
* [Eo,00) D_(p* — Eg)
Since f and h are arbitrary, one obtains the conclusion. O

By the definitions of A, we have

Lemma 4.11. For any Borel measurable function F on R, ALF(T) C F(T)A4.

Proof. For any f € D(F(T)), an operational calculus implies that v, )y = Fioy 5 € L*(R).
This fact imply that ¢, ¢(T)g € D(F(T)) and F(T)g t(T)g = g rer)f(T)g. Hence ALf €
D(F(T)) and F(T)A+f = ALF(T)f by Lemma 4.5. O

Lemma 4.12. The following operator equations hold:

AR =(y—DRL, A_(A) =—-A_— (A
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Proof. By applying Lemma 4.11 to the case F' = yp, one can easily see that ALF(B) =
FE(B)AL hold for any B € B'. For any f,h € 5, we have

((Ayn R" )

i N2 2, ()
= d(h, E(p)g) d{T?q, E(i)f) .
/EO . /E PP FRD (- B —ED)" AT BG))

Then, since v and E(B) commute on 7 for any B € B!, (4.3) gives
((A-h RE")

#1/2 _ 1/2 I
- /\/Eo 00) /Eooo (1 —M’QEF@'S)D:F(MQ—Eg)d<h’E(/“‘>(7 1)g) d{T"?g, E(u') f)

Thus, by a limiting argument, we obtain A_R{ = (y — 1)RL. Moreover, (4.3) and the

equation (A_)* = —A, imply that

(h AL(AL)'f) = —(imA)? /[Ew) B d I B

. (Dy(p? — E§) — D_(p* — E§))tbg,5(11)
— —im\
" /[Eo o) Dy (u? — E§)D_(p? — E)

=—(h, (A ) f+Af).

Hence the equation A_(A_)*=—-A_ — (A_)* holds. O

d{h, E(p)g)

4.3 Operators ().

In this subsection we consider the bounded operators
Qi =1 —+ Ri-
Let xy < 0 be the zero of D(z) given in Lemma 4.1 (2) and

A

Uy =] ——
b D' (o)

RE8+930 (TQ)T1/297 P = <Ub) > Up.

Then, by functional calculus, we see that ||Uy| = 1,0, € D(T1) N D(T?) and
TU, = /A/D'(x0)T~2g + (E2 + 20)T ' U,

Hence P is a projection operator.
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Lemma 4.13. Let A # \.. Then the following equations hold:
Ly =1, (4.9)
QL =1—-0\.— NP, (4.10)

where 0 is the Heaviside function:

o(t) =

1 i t>0,
0 if t<O.

Remark 4.14. Lemma 4.13 implies that Q4 are unitary operators if A > A. and partial
isometries with their final subspace Ran(I — P) if A < A.

Proof. (1) We first prove (4.9).
It is sufficient to prove that R} Ry = —(Ry+ + R%) hold. For any f,h € 7 and € > 0,
(Ron )= [ [ a(n BT ) a (1, B )
FEo,00 FEo,0c0

Ryusic(TY)TY2g Ry (T*)TH?g
De(p? = E§) © D(u” — Ef)

By the definition of the function D, we have
AN(T"2g, R(T*)T?g) = D(2 — E) — 1, z € C\ (£, 00).

By this formula and the resolvent identity, we obtain

(ROnROr)=x [ [ a(n BT 2g) d (T, B )
[E07OO) [E07OO)
D(p* — E¢ Fie) — D(W"* — EZ +ie)
(17 — W F 2ie) D (W — B§) D (10 — B§)
= — (B0 RE 1)~ (REEL ),

where the operators E§: ) on S are given as follows:

EY := D(T? — E2 +ie)Dy(T? — E2)™".

The inequality (4.4) implies that ng ) are bounded for all 0 < ¢ < &. Thus, by the

Lebesgue dominated convergence theorem, we have s-lim, Eﬁ: )

R'R. = —(Rs + R%).

= J. Hence we obtain
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(2)  We next prove (4.10) for A\ # A..
It is sufficient to prove that Ry R} = —(RL+R%)—60(A.— )P holds. For any f, h € ¢
and a fixed € > 0, (4.5) implies

(RE"h BO" 1)
[Eg,00) J [Eg,00)
X (Rypaie(T?) D (T? — E3)7'TY2g, Ryesie(T?) D£(T* — E2)7'T?g) .
Then, by operational calculus, we see that

(RO"n, RE"f)

_x /[E | /[E | /[E A0 BT ) (T2, B0 ) | B g
0,00 0,00 0,00

"

1%
//2 2:]:25)(#//2 LL :leg)Dj:(/uLm—Eg)D ( 2 E2)
(]:t Y /d h7E T1/2 d T1/2 7E ! 9 41].
/Eooo /Eooo M’2:F215 (o f)d Chy E(u)T'2g) d(T"2g, E(W) f), (4.11)

where, for any p, i’ € [Ep, 00),

JE (1)

Al 1 1
= — d||E(1/"gl]?.
/[Eopo) Dy (u"? — E2)D+(u'? — E3) ( "2 — 2 tie p”?—u?F is) IEW )9l

Then, by a change of variable and (4.3), one can show that

1
T (s ) = M oI (1),

where, for R > 0,

ity = [ (i~ o) Gt

1 1
G€7:t/ = — 3 E (C.
e By = By o B

For 0 <n<eand R >0, let C; (i =1,2,3) be the curve given as follows:

and

0191(15):R—t—z77, tIO%R,
Co i Oy(t) =ne ™, t:m/2 — (3m)/2,
Cs: 05(t) =t +in, t:0— R.
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Then, for C' = C} + Cy+ (3, we have by the Lebesgue dominated convergence theorem,

z)dz.

L, 1) =l | D

We take R such that R > max{u® — E2, p/* — Eg} and define a curve Cy : 04(t) =
V2 + Rt ity — ty, for t, = arctan(n/R) and t; = 27 — t;. We consider two
cases separately.

(i) The case A > A.. In this case, the function Gi’j,(z)/D(z),z € C\(0,00) has two
simple poles at z = u? — E2 Fic and z = p/?> — E? 4+ ie. Then, by the residue

theorem, we have

1 1
Go(z)dz = 2 —
/D y m(D(/ﬂ—E?iie) D(;ﬂ—E@qtia))

1 e,+
Cy D(Z)G (=)=

Thus, as n tends to 0, we have

1 1
]’i N _— 271 —
s 1) = 2mi <D( g zg) D2 — E2 T ie))

i 2)dz.
5?3/ D(=

The definition of line integral implies

1 Gsi< )d /27r ts Gfi /77 T R2e zt) /?72+R26—zt
’ z=—1
c, D(z) HH " D(\/n? + R2e~t)

By the triangle inequality, for any t € [ts, t/],

2 2 .
|Gs,il< /772 + Rgefit” < |,U - ,u/ + 226|
ot = .

(R — |p* — E§ iel)(R — |pu? — E§ F ie])’
On the other hand, by Lemma 4.5, (4.4) and the Lebesgue dominated convergence

theorem, there are constants R > 0 and ¢, > 0 such that |[D(z)| > ¢, for all
|z| > R. Thus we have

dt.

I, i) = 2mi ! - !
SR D(u? — EZ +ig)  D(u2? — EZ Fie)

) +O(R™) (R — o0),

where O(+) stands for the well known Landau symbol. Therefore we have

1 1
D(w? — Ej i) D(i? — B} F ie)

JE (1) =
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for each u, p' € [Ey,00). Thus, by (4.11), we have

(e 0°5) =~ ( (B 0 (5) 1) = (5 () ),

-1
As in the proof in (1), we obtain s-lim, <E§f )) = I. Therefore we obtain

lim <R§f>*h, R§f>*f> = —(Rih, f) — (h, RLf).

Thus we obtain the desired result.
(ii)) The case A < A.. In this case, ij,(z)/D(z) has a simple pole at z = x( in addition
to 2 = pu? — E Fie and 2z = p? — E? £+ ie. The residue Ry of Gi’j(z)/D(z) at

z = x¢ is give by

Ro = 1 M’Q—./ﬂi%s _
D'(xg) (g — w2 + E3 Fic)(xwg — p? + EZ + ie)
Thus we have
) = g oG EEe
and also
A A 1

AN - S .
p2 — % F 2 " D'(xg) (u? — EE — xo £ ic)(u? — EE — xo Fic)
This implies that

1
)\lim/ / ——— Ry d{(h, E T1/29 d T1/29,E " f
10 J 1By ,00) J[Bo,00) H2 — 1P TF 2iE 0 < (1) > < (1) >

= — (h,Up) (Us, f) = — (h, Pf).

Thus we obtain the desired result.

4.4 Operators U and V

In this subsection, we investigate the operators U and V' defined as follows:

1 1
U= i(T*/Z‘mTl/2 + T2, T3V = §(T*1/2Q+T1/2 —TY2Q, T3,

which are used to construct a Bogoliubov transformation. Then, by Lemma 4.8, we can see
that D(U) = D(V) = D(T~Y2)n D(T/?).
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Lemma 4.15. The operators U and V' are bounded.
Proof. By (4.6) and Lemma 4.8 we have

-1/ 2py _ AT _ W)

(h,T7'PR.TV2f) = 5 /[EO’OO) (Hqﬁ#lmg’f) (1) Fi = ED) d{h,E(u)g), (4.12)
/ Syzpy AT _ + - Yer()

(W TPRLTTEf) = = /[Ew) (H¢T_1/gg,f) (M2)M:|:2Di(u2 — 7y 4 Elwg)

(4.13)

By Assumption 3.3 (3), (4.7), (4.8) and a property of Hilbert transform, we can show that
Al (C,
TR e g TR ) < TCa el g
where Cy 1= (supp, ., * "1y(x))"?(suppg,, 210y(x))"/%. Hence the operators T~ '/2R T"/?
and TY2R,.T~Y? are bounded. O

In the same way as in the proof of Lemma 4.15, we see that T—Y/2 R\ T/? and T2 Ry, T~/
are bounded on each domain D(T%/?) and D(T~'/?). In what follows, we write the closed

extensions of U and V' by the same symbol respectively. Then

* 1 * * —
Ut = ST + TRQT 1),

Lemma 4.16. The operators Ut and V* leave D(T~/?) (resp. D(T'?), D(T)) invariant.

Proof. By applying Lemma 4.8 and using the equation

U =1+ % (T-l/?RﬂTl/2 + Tl/?RiT—l/z) :
one can easily see that the assertion for U* is true. The proof for V* is similar. O]
Lemma 4.17. Let F(z) = 2%/2, 2% a.e. v € (0,00). Then
QT = (Q4),F(T) (), on DF(T)). (4.14)

Proof. By Lemma 4.8, the domain of each side of (4.14) includes D(F(T')). By Lemmas 4.11
and 4.12, we have

(), F(T)(Q1) s = R F(DR + Ry{(AL)" + IF(T)y + F(T)y*(A- + R},
+ F(T){A_(A_)"+ A_+ (A_)" + 1}
= R F(T)R: + R, F(T) + F(T)R% + F(T)
= O, F(T).
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5 Commutation relations

In this section, we prove that the pair (U, V') satisfies the condition (1.1), V' is Hilbert-
Schmidt and
B(f) = AUf) + AV ), [ €

satisfies some commutation relations with H (). We denote the closure of B(f) by the same
symbol. By Lemma 4.16, we have D(dT,(T)Y2) € D(B(f))ND(B(f)*) for all f € D(T~'/2).

Theorem 5.1. The following commutation relations hold:
(1) For any f € D(T) and 1 € P, (D(T)),
[H(A), B(f)]Y = =B(T'f)v. (5.1)
(2) For any f € D(T~Y?)N D(T) and v, ¢ € D(dI'y(T)),
(H(AN)¢, B(f)v) — (B(f)'¢, HN)¢) = — (&, B(T'f)v) - (5.2)

(3) For any f € D(T~Y?)n D(T), B(f) maps D(AT(T)%?) into D(AL'y(T)) and for any
¥ e DAL (T)%?),
[H(A), B(f)lY = =B(T'f)v. (5.3)

The both sides of (5.1),(5.2) and (5.3) have meaning by Lemma 4.16. To prove this

theorem, we prove the following lemma:

Lemma 5.2. For any f € D(T), the following equations hold:
A _
U.T1f = (VT +TV)f = 2 (D_(1° ~ E3)7'9. /) o, (5.4)
(V*J—-U*"g=-D_(T?> - E3)'g. (5.5)
Proof. For any f,h € D(T~'/?) N D(T?/?), we obtain
1 . _
(h, [U,TIf) = 5 (TY*RT 20, TF) — (Th, T*R.T'f)) .

Then, for each € > 0, we have

(TR T2, ) ~ (Th, TV2ROT V)

W2 — g2
:A/ / | d (h, E(w)g) d (g, EGY) f
(Fo,00) J [Fo,00) (WP — p? £ ig) D (p? — EF) . Elp)gy d g, EGE) )

1
[Ep,00) J [Eg,00) ‘D:IZ(,U//Q — E(Z)) < ( ) > < ( ) > < T >
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Taking the limit € | 0, we have
(T'PRITPh,Tf) — (Th,T"?RyT'V2f) = (h, A (D2(T* — E3) "9, f) g) -
Thus we have )

Since D(T~2) N D(T3/?) is a core of T, the equation (5.4) holds for f € D(T). To prove
(5.5), we note that

1
(V*J _ U*)g _ 5(Tvl/QQj_Tv—lﬂJ . T_1/2Qj_Tl/2J . Tl/zQiT_lﬂ . T_l/QQiTl/Q)g

— —T71/2QiT1/2g,
where we have used Jg = ¢g. Thus, for any f € S, we obtain

(f,(V*J = U")g)

—{f,9) — Alim (F, Ryurie(T*)D_(T? — E3)~"g) d| E(u)T" g

[Eo,00)

—{fg +)\1&}E)1/Eooo /Eooo 2 _M —i—ZEdHE(Ml)ng (f, E(n)g)
— E2) -
—(f,9) + /[EW) D—(,U gy <f E(1)g)
=—(f,D_(T* = E3)"'g).

Hence (5.5) holds. O

Proof of Theorem 5.1.

(1) By Lemma 4.16, for any f € D(T), B(f) leaves %y, 4n(D(T)) invariant and H(\) maps
Frn(D(T)) into Py, () C D(B(f)). Thus, by using (2.1) and (10.3), we have for

any 1 € Fpaa(D(T)),

[H(N), B(f)]Y = {—A(TUf) +A(TJIV ) = - (f;(V*J = U")g) <I>s(9)} .

V2

Hence by Lemma 5.2, (5.1) holds.

(2) By Lemma 4.16 and fundamental properties of the annihilation operators and creation
operators, we can see that, for any f € D(T~Y?), D(dI',(T)"?) c D(B(f)). For
any 1, ¢ € D(dI'y(T)), there are sequences ¥, ¢, € Fpan(D(T)),n € N such that
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5.1

U = 0,60 = 6, AT (TN, — dTy(T),dDy(T)g, — dUy(T)p as n — oo, since
Fran(D(T)) is a core of dI',(T"). By (1), we have

(H(A)n, B(f)¥r) = (B(f) ¢n, HAN) k) = = {¢n, BT f)1r)

for all n,k € N and f € D(T~Y/?) N D(T). By the inequalities (10.1) and (10.2)
and the dI',(T)-boundedness of ®4(g)?, we obtain that {B(f)vn}5,, {B(f)dn},
{D:(9)%Vn 1oy, {Ps(9)*dn 52, and {B(T f),}52, converge. Hence we obtain (5.2).

n=1

By Lemma 4.16 and fundamental properties of the annihilation operators and creation
operators, we see that, for any f € D(T~/?) N D(T), B(f) maps D(dl',(T)%?) into
D(dI',(T')). Therefore, by (5.2) and the density of D(dI',(7T)), we have (5.3). O

Relations between U and V

Lemma 5.3. Let X\ # A\.. Then the following equations hold:

where

UU - VvV =1,
UV — ViU =0,

UU* —V,V; =T1—0(\—\Q.,
UV* — VU5 =60\ — NQ_,

Qs 1= 5 (T2Uy, ) TP, £ (T20, ) T0)

are bounded operators on F€ .

Proof. 1t is sufficient to prove (5.6) on D(T~Y/2) N D(T"/?). Using (4.9), one can show that
the first equation in (4.9) holds. We have

* * 1 * — — *
U;vV=Vv;U= 5(—T1/2(Q+)JQ+T V2 o200 0, Y.

Multiplying the equation by (€, ); from the left, and using Lemma 4.17, we obtain

() (U3V = VFU) = () (=TY2(Q1) s T2 + T7V2(Q), 0. TY?)
_ Q+(_T1/2Q*+Q+Tfl/2 + T71/2Q19+T1/2> —0.
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By (4.9), this implies that UjV — V;U = 0. By Lemma 3.5 and Lemma 4.17, we have
V, Vi = }L{Tl/%mmj)ﬁl/? —T7V2(Q,0%),TY?
—TY2(Q,00), T2+ TVA(Q, 771 ) , T2}
= }L(T—l/ﬂmij—W —T7V2Q QT2
_ T1/2§2+QiT*1/2 + T1/2Q+T*1§2*+T1/2)
= VvV

Hence, by direct calculations and (4.10), one obtains UU*—V,;V; = I —0(A.—\)Q. Similarly
one can prove the last equation in (5.6) (note that Py = P). O

5.2 Hilbert-Schmidtness of V/

In this subsection, we show that V' is Hilbert-Schmidt. Then we can use Theorem 2.2 in
the case of A > A..

Lemma 5.4. The operator V' is Hilbert-Schmidt.
Proof. On D(T~'/?) N D(T'/?), V*V is calculated as follows:

1
VYV = Z(T_1/2R+T1/2+T1/2R1T_1/2+T1/2[R17T_1]R+T1/2

+TYVPRyTV2 4 TVPRYTY? + T7V2RY TIR, T

+TYV2RLR. TV + TR R, TV?)

1
= (TR, TR T2 4+ T PR, TR T2,

where we have used the formula R{ R, = —(R; + R}) in the proof of Lemma 4.13 and
Lemma 4.8. Thus, for any f € D(T~/?) N D(T"/?) and € > 0, we have

(£ PR T ROTY + TR TIRET/2) £ )

M -1 ple)
- : d([T~", ROITY? f E(u)T?g) d(E(i)g,
Lo e gy RO BT ) d (i, )

At (&)—1/2 1 ,
+/ / : d ([T, RO1T2f, E()T?g) d(E()g, f)
[Bo00) J Bo,00) (W2 — 112 +i€) Doy (1 — ) <[ +] (1) > (E(1)g, f)

Then, for any B € B!, we can see

<[T_l, REE)]Tl/Qf, E(B)T1/29>
= 'u// M 7 9
B A/]_cg/[Eo,oo) (W' — p2 —ie)D_ (" — Eg)d (f, E(u")g) d|[E(w)gll™. (5.7)
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Similarly, we obtain

(I, R 1 B(BYT 12

[ — ,U// 2
= /\// : d F " dIlE .
5 i ooy (W2 — 2 —i2)D_ (W — E2) (f,E(1")g) d| E(u)g]|

Thus, by the formula of a change of variable in Lebesgue-Stieltjes integration and Fubini’s

theorem, we have

_ /E /EOOO) /Eooo)d”E )gll2d (£, E(")g) d (E()g, f)

(b — ) — ")
S WP T ie) (' — 1 — ie) Dy (i — B)D_(1? — BY)’

Then it is easy to see that for any p, ', 1" € [Ey, ),

lim (b — ) — p")
el (p? — p? +ig)(u"? — p? — ie) Do (W? — E§)D_ ("™ — Ef)
1
(W )+ p) Dy (2 — E§)D_ (" — E3)

For any ¢ > 0 and p, i/, u” € [Ep, 00), we have, by Lemma 4.5 and the arithmetic-geometric

mean inequality,

(= 1) — ") <
(W2 — p? +ie) (" — p? —ie) Dy (p? — E§)D_(p"* — E§) | — 402 u/p/'p”
On the other side, for any «, 8 € C, we see

1
d|E 2d|E(u” 20\ By 2
/[EO’OO) /[Eo,o@ /[EO’OO)# e | E(w)gl2d||E(")(f + ag)||Pd||E(W)(f + B9)|
— |22 T~ Y4(f + ag)IPITY4(f + Bg)||* < oo.

Thus, by the Lebesgue dominated convergence theorem, we have

lim / / / AEWg P B (f + ag)PAIEGL) (S + 891
Eg,00 Ey,00) J[Ep,00)

el0
« (1= ') — ")
(i = +ie) (W = i = ie) D (W — E§)D_ (" — E3)
o P I O L e O S PRl
1
W W+ 1D — B)D_(w? — EZ)’
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In particular, for each «, f = £1, £, the polarization identity and Fubini’s theorem give

A2 2 2
dvVn =7 [ RD B )l Bl

Let {e,}22, € D(T~?)N D(T"?) be a CONS of #. The termwise integration implies that

2

x ) A .
> e ViVe) =2 /[E |R_(T)D_(T? - E3) gld|| E(u)g?
n=1 0,00

dIEW)gI*dIEmgl®  (5-8)

)
T o 1
Boc) J[Bos) (1 + )?[ D (1 = EG)[?
< —d||E(w)g||"d||E q||* < oo,
N W

where we have used the arithmetic-geometric mean inequality and Lemma 4.5. Hence V is
Hilbert-Schmidt. O

Lemma 5.5. If A > A, then there is a unitary operator U on () such that for all
fern,

Proof. By Lemma 5.3 and Lemma 5.4, we can apply Theorem 2.2. O]

6 Analysis in the case A > \.

In this section we prove Theorem 3.6 (1). Before starting the proof, we need to know a
property of the Hamiltonian H(\).

6.1 Time evolution

Theorem 6.1 (Time evolution). If X > A.q, then for all f € D(T~'/?), ¢p € D(d,(T)Y?)
andt € R,

eitH(A)B(f>€_itH(>\)w _ B(GitTf)¢, (61)
eitH(/\)B(f)*efitH(/\)w - B(eitTf)*w_ (6.2)

Proof. 1t is sufficient to prove (6.1), because (6.2) follows from taking the adjoint of (6.1).
We define a function v : R = C by v(t) := (¢, ™ N B(e™T fle=HNy) 't € R for any
f e DTV N D(T) and ¥,¢ € D(de(T)). Then v is well-defined by an operational
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calculus and Theorem 2.3. The function v is differentiable and, by Theorem 5.1 (2), we have
for any t € R,

%U(t) =1 <H()\)e*itH(>\)¢’ B(efitTf)efitH(A)w> 3 <B(efitTf)*efitH(z\)¢’ H()\)efitH(A)¢>
+4 <e_itH(>‘)gZ5, B(Te—itTf>e_itH(>\)¢>

=0.
Hence v(t) = v(0) for all ¢t € R. Hence the equation
(¢, VB e Ny = (¢, B(f)¥)
holds for all ¢ € R. By replacing f with €T f, one has for all » € D(d[',(T)),
GO B( e~ TNy, — B(HT f)y.

Since D(dI',(T')) is a core of (H(\)+M)Y? and D(H(X\)+M)Y? = D(dI'y(T)"?) by Theorem
2.3 (3), we obtain (6.1) for f € D(T~Y?) N D(T) and ¥ € D(dI',(T)Y?). Finally we
extend (6.1) for all f € D(T~Y2). Let f € D(T~"?) and ¢ € D(dI',(T)"/?). Then we
set f, :== E((—o0,n])f for each n € N. Then f, € D(T~*?)n D(T) for all n € N and one
can easily show that f, — f, T-Y2f, — T-Y2f as n — oo by using a functional calculus
and the Lebesgue dominated convergence theorem. Thus we have U f,, = Uf, JV f, = JV f
as n — oo by the boundedness of U and V. By using the linearity of the Hilbert transform
and that of the map f +— ¢, ;, (4.12), (4.13) and (4.7), we can show that TY2Uf, —
T-\2Uf, T2V f,, = T~Y2JV f as n — oo. Therefore we obtain B(f,)¢ — B(f)$ and
B f,)¢ — B(e'T f)¢ as n — oo for any ¢ € D(d',(T)Y?) by [3, Lemma 4-28]. By the

preceding result, we have for any n € N,
B(f,)e H0 = OB £, ),

The equation D(dI',(T)Y2) = D((H(\) + M)'?) in Theorem 2.3 (3) implies that
e HHN DAY (T)Y?) = DAL (T)Y?).

Hence, by taking the limit n — oo, we obtain (6.1) for f € D(T~Y2) ¢ € D(dI',(T)V?). O

6.2 Proof of Theorem 3.6 (1)

In this subsection, we assume that A > A..

Lemma 6.2. Let Q := U1y, where U is the unitary operator in Lemma 5.5. Then there
is an eigenvalue Ey of H(X\) and € is the corresponding eigenvector: H ()2 = E,€Q.
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Proof. In general, by [3, Proposition 4-4] for a dense subspace ¥ C J€, if ) € Nyea D(A(f))
satisfies A(f)y = 0 for all f € 2, then there is a constant « € C such that ) = af)y. Thus,
by Lemma 5.5, if B(f)¢ = 0 for all f € D(T~/?), there is a constant a € C such that
¢ = af). For any f € D(T7Y?) and t € R,

B(f)e—itH()\)Q _ 6—itH()\)B(6itTf)Q =0

by Lemma 5.5 and Theorem 6.1. Thus, for each ¢ € R, there is a constant a(t) € C such
that e "#NQ = a(t)Q. Then we have |a(t)] = 1,a(t + s5) = a(t)a(s) for all t,s € R,
since {e *HM},p is a strongly continuous one-parameter unitary group. Thus there exists
a constant F, € R such that a(t) = e st € R. The differentiation of the equation
e tHNQ = 75 in ¢ implies that Q € D(H (X)) and Q € Ker(H(\) — E,). O
Proof of Theorem 3.6 (1).
The subspace U := L({B(f1)* -+  B(f,)*Q, Q| f; € D(T~Y?),j =1,...,n, n € N}) is dense
in %,() by the fact that U = U~2%,4,(D(TY/?)), where £(Z) denotes the subspace

algebraically spanned by the vectors in a subset Z of a Hilbert space. By Lemma 6.1 and
Lemma 10.3, for any ¢t € R and f; € D(T~Y?),j =1,...,n, we have

eitH()‘)B<f1)* B :B(eitTfl)* . B(eitTfn>*eitH(>\)Q
=BT [ - B f) e
=BT A(f) - A(F,)"
=U Lo MAEDYB(f,)* - - - B(f,)*

By this equation and a limiting argument, we obtain UeZMNU~1 = #dw(1)+F:) -~ By the

unitary covariance of functional calculus, we have
UeitH()\)U—l _ eitUH(A)U*I’ teR.

Hence (3.1) holds. The equation (3.1) and the well-known spectral properties of dI'y(7T)
imply that E, is the ground state energy of H(\) and € is the unique ground state of H(\).

O
Lemma 6.3. The ground state energy Ey is given as follows:
A2 1/27%7,701/2
B, = gl = T VeV T, (6.3)

A2 U
Te(TY2V*VTY?) = _/ / d||E(w)g||*d|| E(1)g|? (6.4
( ) 4 [Eo,00) J [Ep,00) (M_F/*L/)Q‘D*(:uQ_E[%)’Q H ( ) H H ( ) H ( )
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Proof. The operator U leaves D(dI',(7")) invariant by Theorem 3.6 (1). In particular, UQq €
D(dl'y(T)'/?). Thus, by Lemma 10.4, the isometricity of U and the definition of B(-), we
have (Qo, (H(\) — E;)Q) = Tr(TY?V*VTY?). By the definition of H()\) and (2.1), we have
(Qo, H(N)Q) = Al|g|I?/4. Hence (6.3) holds. The formula (6.4) can be proved in the same
way as (5.8). O

7 Analysis in the case A\, < A < A,

In Section 5, we proved Theorem 3.6 (1). But the proof is valid only for the case A > A..
Therefore it is necessary to find another pair of operators U and V' if one wants to use a
Bogoliubov transformation for the spectral analysis of H(A) in the case A < A.. In this
section we assume that 7" and g satisfy Assumption 3.3, Ey > 0 and A\¢p < A < A.. Under

these conditions, we can define the operators £, X, Y and T, as follows:

¢ = QT + BP,

X :=UQY, +T,P, Y =V, +T_P,

1
T, = 5(51/2T_1/2 + 5_1/2T1/2),

where 3 := (E2 + )2
Remark 7.1. The definition of x¢ implies that

>0, if Ao <A<,
E2+x98 =0, if A= Ao,
<0, if A < Acp-

Thus, in the case Acg < A < A, we see that the inequality 0 < 8 < Ey holds. Let
C(f) = ACXS) + AUY f)', f € .

Then C(f) is a densely defined closable operator. We denotes its closure by the same symbol.

7.1 Properties of X,Y and ¢

In this subsection, we study the operators X,Y and £. Firstly, we consider £. Let
T:=Q, TV
Lemma 7.2. The operator T is a self-adjoint operator with D(T) = D(T).
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Proof. By Lemma 4.8 we see that D(T) = D(T). Hence T is symmetric. For any ¢ €
D((T)*) and ¢ € D(T) = D(T), we have <Qi(TN)*¢,1p> — (Q%¢,T¢). This implies that
O ¢ € D(T). Hence T is self-adjoint. O

Lemma 7.3. The spectra of T are as follows:
o(T) = {0} Uo(T),00(T) = o(T), 0(T) = {0}, 05c(T) = 0.

Proof. We define a family of projection operators {Ep(B) | B € B!} on  as follows:
Ep(B) = 0if 0 ¢ B and Ep(B) = P if 0 € B for each B € B'. By the definition
of the spectral measure, we can see that {Ex(B) := Q. E(B)Q% + Ep(B)] B € B'} is a
spectral measure. Using a functional calculus, we see that Es(-) is the spectral measure
of T. The absolutely continuous part (resp. singular part) of 7' is T | Ran(I — P) (resp.

T | Ran(P)) since T is absolutely continuous and 24 are partial isometries. Thus we see

o(T) = {0} U 0ae(T), 03 (T) = {0}, 05e(T) = 0

We next show that 0,.(7") = o(T). For any p € o(T'), there is a sequence ¢, € D(T),n €
N such that |[¢,|| = 1 for all n € N and lim,, o ||(T" — )|l = 0. For each n € N, there
is a ¢, € Ran(I — P) such that ¢, = Q% ¢,. Then ||¢,] = [|[Q1¥n] = ||¢n]| = 1 and
(T = 1) | = |(T — 12)tpn|| — 0 as n — oo. Thus we have p € o(T | Ran(I — P)) = 0ac(T).
For any p € 0,.(T), there is a sequence 7, € D(T) N Ran(I — P) such that ||n,|| = 1 and
limy, o0 [|(T — 1£)1a]| = 0. Then we easily see that Q*n, € D(T) for all n € N. The equation

Q. Q* n, = n, implies that ||Q%n,|| =1 for all n € N and

(T = @)l = (T = p)all = 0, 72— oo

Thus p € o(T). Hence 0,.(T) = o(T). O

Lemma 7.4. The operator £ is an injective, non-negative self-adjoint operator with D(§) =

D(T) and we have the following equations:
o(§) ={BrUa(I),0u(§) = (1), 05(§) = {8}, (&) = 0. (7.1)

In particular, 3 is the ground state energy of £, which is an isolated eigenvalue of &, and Uy,

18 the unique ground state of &.

Proof. By Lemma 7.3 and the spectral property of direct sum of self-adjoint operators, we
have the equation (7.1). Thus [ is an isolated ground state energy by Remark 7.1. By
U, =0, Uy, is a ground state of . Assume that f € Ker({ — ) satisfies (I — P)f # 0.
Then Q% f # 0 by Lemma 4.13. This implies that T f = Q7 f, but this contradicts
Assumption 3.3 (1). Hence (I — P)f = 0 and this implies that the ground state of ¢ is

unique. ]
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Lemma 7.5. The operators E5'/2 are given by
¢ =Q. 177 + 7P, (7.2)
V2=, TV + pTRP (7.3)
with D(§XY%) = D(T*'/?),
Proof. We can show in the same way as in the proof of Lemma 7.4 that the right hand
side of (7.2) is non-negative, self-adjoint operator with its domain D(T%/?). We have ¢ C
(Q+T1/QQj_ + Y2P)?%. Since a self-adjoint operator has no non-trivial symmetric extension,
(7.2) holds. In the same way as in the proof of (7.2), we can show that the right hand
side of (7.3) is a self-adjoint operator. We have D(Q,T1/2Q* + ~1/2P) C Ran(£/?) and
ER(QT 12 + 5712P) = T on D(Q,T712Q%). Hence Q,T712Q1 + g712P C ¢/
Thus the equation (7.3) holds. O

Next, we study X and Y.
Lemma 7.6. The operators X* and Y* leave D(T~/?) (resp. D(T"?), D(T)) invariant.

Proof. The assertion follows from Lemma 4.8, Lemma 4.16, Lemma 7.5 and the definitions
of X and Y. O
Lemma 7.7. The following equations hold:
XX =YY =1,
XY -Y;X =0,
XX*-Y;Y; =1
XY*-Y;X; =0.
Proof. The operator P (resp. T4) satisfies P; = P (resp. (T%); = T%). By (4.10), we
have Q% U, = 0. Hence we obtain (U* & V*)T*20,, = 0 and (U*Tx — V*T%)U;, = 0. The
equations T, 7, — T-T_ =1 and T,T- —T_T, = 0 hold on D(T~*) N D(T). By (5.6) and
direct calculations, we have X*X —Y*Y = I and X}Y — Y;X = 0. By similar calculations,
we have XX* —Y;Y; =T and XY*—Y; X% = 0 on D(T~Y2)n D(T*/?). Then, by a limiting

argument, we obtain (7.4). O

(7.4)

Lemma 7.8. The operator Y s Hilbert-Schmidt.

Proof. We can easily show that the assertion follows from Lemma 5.4, Lemma 7.6 and the
choice a CONS {e, }>2, C D(T~Y2) N D(T"?) with ey = Uy,. O

Lemma 7.9. There is a unitary operator V on F,(F) such that for all f € F,
VC(f)V! = A(f).

Proof. By Theorem 2.2, (7.4) and Lemma 7.8, we can prove this assertion. ]
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7.2 Commutation relations
Theorem 7.10. The following commutation relations hold:
(1) For any f € D(T) and ¢ € F,g(D(T)),
[H(A), C(N)] = =C(&f )¢
(2) For any f € D(T~Y2) N D(T) and ¢, ¢ € D(dTy(T)),
(HN¢, C(f)) = (C(f) o, HA) = — (6, C(E)¥) -

(3) For any f € D(T~Y2)n D(T), C(f) maps D(AT,(T)%?) into D(AU(T)) and for any
¥ € D(ATL(T)*?),
[H(A), C(f)ly = =C(Ef)
Theorem 7.10 follows, in the same manner as in the proof of Theorem 5.1, from Lemma
4.16, Lemma 7.5 and the next lemma:
Lemma 7.11. For any f € D(T) the following equations hold:

STXf 4 SV~ X%)g. f) g =~ XEF, (75

TJYf+%<f, (Y*J = X*)g) g = — JYES. (7.6)

Remark 7.12. By Lemma 4.16 and the definition of £, the both sides of (7.5) and (7.6) have

meaning.

Proof. Let a := \/A/D'(xy). Then we can see by the definition of zy and (5.5),
2 2\-1 Ba
(V'] = X*)g =~ D_(T” = B) g + =—Uh.
We have
1
TT.U, :§(ﬁ1/2T1/2Ub + 72T 20L)
1
:5(61/2T1/2Ub + 327120, + B 2ay). (7.7)
Thus, for any f € D(T), we have
A * k
—TXf+ 5 (YT =XYg. f)g
* A 2 21 B~
= —TUQLf = 5 (D(T* = B) 0,0, f) g — TT P + " (i f) g
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Then, by (5.4) and (7.7), we have
A
STX[ 4+ ST = X)g, fg =~ UTSLf = (U, )T, 0
= — X(Q, T + BP)f.

Thus we obtain (7.5). Similarly one can prove (7.6). O

7.3 Proof of Theorem 3.6 (2)
Theorem 7.13. For all f € D(T~%/?),4 € D(d[',(T)"/?) and t € R,
eMNC(fle ™M Ny =C(e™ [y,
N O (F) et Ny =0 (e f)*4).
Proof. These are proved in the same way as in the proof of Theorem 6.1 by Theorem 7.10. [
Lemma 7.14. Let Q := V~1Qq where V is the unitary operator in Lemma 7.9. Then:
(1) There is an eigenvalue Ey of H(X) and Q is an eigenvector of H(\) with the eigenvalue

E,.
(2) The following equation holds:

VHA)V ™! =dly(€) + E,.

(3) The constant Ey is given as follows:

E, = E,— BI|IT_Uy|. (7.8)
Proof. The assertions (1) and (2) can be proved in the same way as in the proof of Theorem
3.6 (1).
(3) We have

~ A .
Eg = llgll* = Tr(€ 2y ye!?)
in the same way as in the proof of Lemma 6.2. Then, by Lemma 7.5, we have
SRV = Q TVAVVTVRQ 4+ Q TRV BYAT P 4 Y2 PT_VTV?Q! + BPT T P.
We choose a CONS {e,, }22, C D(T') satisfying ey = Uy,. Then it is easy to see that {0 e, }52,
is a CONS of 7 by Lemma 4.13. Hence we have

Tr(E Y Y E?) = (en, QTPV VTP Qe ) + B T_U?

n=1

=Tr(TY2V*VTY?) + BI|T_Uy .
Thus we obtain (7.8). O
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In particular, H(\) have eigenvectors as follows:
¢ = VAU ™, HN)bn = (0B + E,)p, ,n € NU{0}.

Hence the spectral properties of H(\) as stated in Theorem 3.6 (2) follow.

8 Analysis in the case A < A\

In this section, we show that H(\) is unbounded from above and below.

Theorem 8.1. Let g € D(T~Y2). Then H()) is unbounded above for any A € R. If A < A,
then H(X) is unbounded below.

Proof. For any f € D(T)\{0}, we set 1, := a, A(f)"Qo, a, € C\{0}, n € NU{0}. Then
we have the following equations:

ATy(T)oy = nA(T]) s, Alglbn =g, 1) e,
1nll* = lan*nl{l£1*", 1A nll® = g1l + 1 A(g) eI,

where ¢_; := 0. Then we have

2| T2 f11* + Al {g, f) I2)
2|71 ‘

We take f such that (g, f) = 0. Then we have (¢, H(A)y,) /||¥nl|* = 0o as n — oo for any
A € R. Thus H()) is unbounded above for any A € R.
Let ¢ =30 ¥n, N =10,1,2,.... Then we have |[¢n|? = 320, [|1hn]|> and

A
(o H ) = Il (o2 4

+ —Re

N A 2 2 T1/2 24 2 A " 7 2
<¢N,H()\)¢N)—ZH%H2( HZII 2TV + M g, £) | (g f>>
n=2

27T 2R I
 (gl? | T A|<g,f>|2> Alol2lgl?
*”‘”1”( e g )t o1

Let ag:=1, a, :=n"3*nI""2 n e Nand, forany 0 <9, 0 < e < 1,

. T7'B((6,00))g
1= = 7B (G, co)ll

er(e.0) = T2l {14 52 = T 26,00l |
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Then > 7 ||1n||* converges and, for any N € N,

(o, H annr\?ncwa Zuwnu? (%2 —a(1-9) (0. + Cw. (81

where

Mgl 5- A
= AL S 4 ol (42 +5 1)
n=0

For all 0 < 6,0 < e < 1, we have

2
IT2E((6,00))9]2(2 — ¢)

< )\c,0~ (82)

The left hand side of (8.2) tends to Ao as €,0 | 0. Since A < A, we can take a pair (e, )
satisfying ¢, (g,d) < 0. We fix such a pair. There is a ny € N such that a,,_o/a, —n(1—¢) >0
for all n > ny. Hence we can see that (¢, H(N)on) /||on||* tends to —oo as N — oo, because
the first term of the right hand side of (8.1) tends to —oco as N — oo. O

9 Generalization of the ¢?-model

In this section we consider H(n, A) defined in Subsection 2.3.
Assumption 9.1. We need the following assumptions:
(1) f € D(TY?) and g € D(T~Y?) N D(T'?),
(2) feD(T™) and Re (T~ f,g9) =0,
(3) f.g € D(T™) and Re(T"'f, g) # 0.

We can prove a slight generalization of Theorem 3.6.
Theorem 9.2. Let 5 be separable. Then the following (1)-(5) hold:

(1) Suppose that Assumption 3.3 and, Assumption 9.1 (2) or (3) hold. Let X\ > \.. Then
there is a unitary operator U on F,(F) such that for alln € R,

UH(n, \)U ' =dI',(T) + E, + E;,,

where the constant Es g, € R is defined by

2 —1 2,2
12 42 (Re(T~"f,9))*n°A
Bra=—7% I+ 2(1+ N[T-12g|2)
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(2) Suppose that Assumption 3.3 and, Assumption 9.1 (2) or (3) hold. Let Ey > 0 and
Ao < A < Ae. Then there are a unitary operator V on F, () and a non-negative,
injective self-adjoint operator & on F such that, for alln € R,

VH(n,\)\V™' =dl'y(€) + Ey — By, + Ey.

(3) Let T be a non-negative, injective self-adjoint operator and suppose that f and g satisfy
Assumption 9.1 (1) and (2). Then there is a unitary operator W on %, () such that,
for alln € R,

- - 2
WH(n, Aeo) W™ = H(Aco) — | 77|

(4) Let T be a non-negative, injective self-adjoint operator and suppose that f and g satisfy
Assumption 9.1 (1) and (3). Then, for all n € R\{0},

O—(HO?’ )\C’O)) = R’ OP(HO% )\C,O)) = @

(5) Let T be a non-negative, injective self-adjoint operator and suppose that f and g satisfy
Assumption 9.1 (1). Moreover, suppose that Assumption 9.1 (2) or (3) holds. Let

A < Aeo- Then, for alln € R, H(n,\) is unbounded from above and below.
Theorem 9.2 is immediately proved by the following lemma and Theorem 3.6.

Lemma 9.3. Let T be a non-negative, injective self-adjoint operator, f € D(T') and g €
D(T=Y%) N D(T).

(1) Let Re (T 'f,g) = 0. Then there is a unitary operator Uy on F,(H) such that for all
n, A €R,

UG U7 = A - DA o.)
(2) Let Re(T'f,g) #0 and g € D(T™).
(1) If X # Ao, then there is a unitary operator Uy on %, () such that for alln € R,
Uy H(n, Uy = HQ\) + By,
(ii) If X = Acg, then for all n € R\{0},

o(H(n,Aep)) =R, op(H (1, Acp)) = 0. (9-2)
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Proof. Let Uy := e~ 'f) for any n € R. Then, by direct calculations, we obtain
2
A
ULH(p UL = HQ\) = T 7722 = dwady(g) + Sn's” (9.3)

on F,an(D(T)) for all n, A € R, where x := Re(T~'f,g). In the case of (1), we have (9.1)
by k = 0 and a limiting argument. Next, we prove (2). We assume that g € D(T1)
and Re(T'f,g) # 0. Let V; := ¢®(eT7'9) for any o € R and define a unitary operator
U, := V,U;. Then it follows that

UpH(n, VU, =H(A) + (o + Aa|[T2]12 = dpre ) 4 (g)
n? —1/2 7112 Aoy, o —1/2 |12 —1/2 1|2
= AT Y2 FIE + S + SIT 21 (o -+ Aal| T 2g]2 = 2oupn)

on F,aa(D(T)) in the same way as (9.3). For A # Ao, let a = Apr(1 + \|T~2g||?)~L.
Then we obtain

A K2
201+ AIT=2g]*)

2
_ - fr] _
U H(p, MUz = HO) — L7172 + (94)

by a limiting argument. If A = ., then, for all ,a € R, we have

H(n \. UL UR —1/2 ¢)|2 Ao’ K®
UaH (1, Ae)Us ™ = Hyg(—KnAc0, Aco) — §HT fII7+ 9 + Kno

in the same way as (9.4), where Hy(v, \co) := H(Aco) +vPs(g) for all v € R. We can see that
o(Hy(v,Acp)) = R and o,(H,(v, Acp)) = 0 for all v € R\{0}, because V,H,(v, \o)V;' =
H,(v,A\co) + va|T~2g||? and o € R is arbitrary. Hence we have (9.2). O

Remark 9.4. If 77 is separable, then the condition g € D(T~Y2)ND(T) in the above lemma
is weakened to the condition g € D(T~Y?) N D(TY?).

10 Appendix
In this section, we recall some known facts in the Fock space theory. Let T" be a non-

negative, injective self-adjoint operator on J7.

Lemma 10.1. [5, Theorem 5.16.]
Let f € D(T~'?) and +p € D(dAT,(T)Y?). Then v € D(A(f)) N D(A(f)*) and the following
mequalities hold:
IACH @I <INT=2FIllars(T) 2], (10.1)
IACH 1> <IT=2 P10 (T) 29001 + (L IP 1)1 (10.2)
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Lemma 10.2. [5, Proposition 5.10.] For any f € D(T), the following commutation relations
hold on F, sn(D(T)):

[l (T), A(f)] = —A(Tf), [dIn(T), A(f)"] = A(Tf)". (10.3)
Lemma 10.3. [5, Lemma 5.21.] For anyt € R and f € 5, the following equations hold:
eitde(T)A(]c)ﬁefitde(T) — A(GitTf)ﬁ.

Lemma 10.4. [5, Theorem 5.21.] Assume that F be separable. Let {e,}22, C D(T"?) be
a CONS of . Then, for any ¢ € D(ATW(T)Y?), Y00 |A(TY2e,)0||* converges and the

following equation holds:

D AT e ) |? = [|d0y(T) 2017,
n=1
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