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Preface

Statistical mechanics is a branch of mathematical physics developed in 19 century. The
purpose of this theory is to extract macroscopic features from microscopic system of a
numerous number of interacting particles. It is completely impossible to solve all Newto-
nian equations of motion for each particle. Probability theory and statistics play a great
role in statistical mechanics to deal with such a large number of degrees of freedom.

As a result of cooperation of those interacting particles, intriguing phenomena like
phase transitions and critical phenomena occur. For example, the Ising model (on the
d-dimensional Euclidean lattice) is a statistical-mechanical model of ferromagnets and
exhibits a phase transition in d ≥ 2 . While the spontaneous magnetization is zero in
the high temperature phase, it is strictly positive in the low temperature phase. This
means that there is a non-trivial temperature, called the critical temperature, around
which a physical property on the system drastically changes. Other observables also
show singular behavior around or at the critical temperature and those phenomena are
called critical behavior. We believe that critical behavior is identified by the so-called
critical exponent and this exponent depends only on the dimension and the symmetry
of the system. Moreover, we believe that the universality classes of physical systems
are classified by those universal exponents. Therefore, the main important objects to be
investigated are about the existence of phase transitions and the critical behavior or the
critical exponents.

As explained above, we have to consider extremely large number of interacting particles
which cannot be treated just by independent random variables. Many mathematicians
and physicists have been making efforts to overcome this difficulty. One of the ways is a
stochastic-geometrical analysis based on the random walk theory. Although an interacting
system does not have the independence like a random walk, we can predict approximate
behaviors of the interacting system and have some ideas from the random walk analysis
in terms of a stochastic-geometrical language (the Ising model is defined in terms of spin
language, but has various stochastic-geometrical representations). Many important results
have been proven in such a way. However, it is still far way from the fully understanding
of interacting systems mathematically-rigorously.

In this thesis, we consider the four models; the classical Ising model, self-avoiding walk
(SAW), percolation and the quantum Ising model. In Chapter 1, we will give a conceptual
background of critical behavior. In Chapter 2, we will introduce the classical Ising model
along with the historical accumulation of knowledge and the recent developments. We
prove the quantitative estimate on the unknown critical exponent of the Ising model. This
work is based on the preprint [48]. In Chapter 3, we will introduce SAW and percolation
and show the results on the lace expansion analysis for the body-centered cubic lattice.
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This work is based on the paper [49]. In Chapter 4, we will introduce the quantum Ising
model, especially focusing on the graphical representations of it. By using the Suzuki-
Trotter transformation and a graphical representation based on the classical Ising model,
we will analyze the susceptibility of the quantum Ising model. This is an ongoing work
with Kamijima and Sakai and based on the preprint [50].
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Chapter 1

Introduction

1.1 Background

1.1.1 Critical behavior

Cooperation of infinitely many particles results in various intriguing and challenging prob-
lems. One of those is to understand phase transitions and critical behavior of statistical-
mechanical models, such as percolation and the ferromagnetic Ising model. For percola-
tion, for example, it exhibits a phase transition when the bond-occupation parameter p
crosses its critical value pc. If p is far below pc, each cluster of occupied vertices is so small
that we may use standard probabilistic techniques for i.i.d. random variables to predict
what happens in the subcritical phase. If p is far above pc, on the other hand, vacant
vertices can only form tiny islands and most of the other vertices are connected to form
a single gigantic cluster. However, when p is close to pc, the cluster of connected vertices
from the origin may be extremely large but porous in a nontrivial way, and therefore naive
perturbation methods fail.

A similar phenomenon occurs for self-avoiding walk (SAW), a century-old statistical-
mechanical model for linear polymers. Consider a locally finite, amenable and transitive
graph as space. A standard example is the d-dimensional integer lattice Zd. The main
observable to be investigated is the SAW two-point function, which is the following gen-
erating function with fugacity p ≥ 0:

Gp(x) = ∑
ω∶o→x

p∣ω∣
∣ω∣

∏
j=1

D(ωj − ωj−1) ∏
0≤s<t≤∣ω∣

(1 − λδωs,ωt), (1.1.1)

where the sum is over the nearest-neighbor paths ω on the concerned lattice from the
origin o to x, ∣ω∣ is the number of steps along ω, and D is the 1-step distribution of simple
random walk (RW): D(x) = (2d)−1δ∣x∣,1 on Zd. The parameter λ ∈ [0,1] is the intensity of
self-avoidance; the model with λ = 1 is called strictly SAW, while the one with λ ∈ (0,1)
is called weakly SAW. The two-point function with λ = 0 is equivalent to the RW Green
function Sp(x) ≡ ∑∞

n=0 p
nD∗n(x), where D∗n is the n-fold convolution of D. The critical

point (= the radius of convergence) for RW is p = 1. For SAW, because of subadditivity,
there is a critical point pc ≥ 1 such that the susceptibility χp ≡ ∑xGp(x) is finite if and
only if p < pc and diverges as p ↑ pc (see, e.g., [71]).
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The way χp diverges is intriguing, as it shows power-law behavior as (pc − p)−γ with
the critical exponent γ. It is considered to be universal in the sense that the value of
γ depends only on d and is insensitive to λ ∈ (0,1] and the detail lattice structure. For
example, the value of γ for strictly SAW on Z2 is believed to be 43

32 and equal to that for
weakly SAW on the 2-dimensional triangular lattice. This is not the case for the critical
point pc, as its value may vary depending on λ ∈ (0,1] and the detail lattice structure.
Other statistical-mechanical models, such as percolation, Ising model and the quantum
Ising model, which exhibit divergence of the susceptibility, are also characterized by the
critical exponent γ, and many physicists as well as mathematicians have been trying hard
to identify the value of γ and classify the models into different universality classes since
last century.

1.1.2 The mean-field theory

Because of the nonlocal self-avoidance constraint ∏0≤s<t≤∣ω∣(1 − λδωs,ωt) in (1.1.1), SAW
does not enjoy the Markovian property, which holds only when λ = 0. If there is a way to
average out the self-avoidance effect and absorb it into the fugacity p, then Gp(x) may be
approximated by the RW Green function Sµ(x) with a mean-field fugacity µ = µ(Zd, λ, p),
and therefore χp may be approximated by ∑x Sµ(x) = (1 − µ)−1. Presumably, µ(pc) = 1.
If µ is left-differentiable at pc, then this implies χp ≍ (pc − p)−1 (i.e., χp is bounded above
and below by positive multiples of (pc − p)−1) as p ↑ pc. In this respect, the mean-field
value for the critical exponent γ is 1.

However, realizing the above idea is highly nontrivial. As a first step, one may want
to use perturbation theory from the mean-field model (i.e., λ = 0). The expansion of the
self-avoidance constraint in powers of λ > 0 yields

∏
0≤s<t≤∣ω∣

(1 − λδωs,ωt) = ∑
Γ∈G[0,∣ω∣]

(−λ)∣Γ∣ ∏
{s,t}∈Γ

δωs,ωt , (1.1.2)

where Γ, which is called a graph, is a set of pairs of indices on [0, ∣ω∣] ≡ {0,1, . . . , ∣ω∣},
G[0, ∣ω∣] is a set of such graphs, and ∣Γ∣ is the cardinality of Γ. The trivial contribution
from Γ ≡ ∅ is the unperturbed solution Sp(x), which is already bad because its radius of
convergence is 1, while pc ≥ 1. The first correction term proportional to λ is

−λ ∑
ω∶o→x

p∣ω∣
∣ω∣

∏
j=1

D(ωj − ωj−1) ∑
0≤s<t≤∣ω∣

δωs,ωt = −λ(Sp(o) − 1)S∗2
p (x). (1.1.3)

The higher-order correction terms are more involved, but the radius of convergence of each
term is always p = 1. What is worse, the alternating series of those terms is absolutely
convergent only when p is close to zero, because the sum over Γ ∈ G[0, ∣ω∣] is potentially
huge as long as λ > 0. As a result, this naive expansion cannot be applied near pc in order
to justify the mean-field behavior.
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1.1.3 The infrared bound

Instead of deriving the exact solution for χp, one may seek bounds on χp or its derivative.
Indeed, it is not so difficult to show that [71]

χ2
p

1 + λp2
cG

∗2
pc
(o)

≤
d(pχp)

dp
≤ χ2

p. (1.1.4)

The second inequality implies that χp is always bounded below by (1−p/pc)−1. Moreover,
the first inequality implies that χp is also bounded above by a multiple of (1 − p/pc)−1,
hence γ = 1, if

G∗2
pc
(o) = lim

p↑pc
∫
Td
Ĝp(k)2 ddk

(2π)d
< ∞, (1.1.5)

where Ĝp(k) is the Fourier transform of the SAW two-point function and Td ≡ [−π,π]d is
the d-dimensional torus of side length 2π in the Fourier space. It is a sufficient condition
for the mean-field behavior for χp and is called the bubble condition, named after the shape
of the diagram consisting of two line segments. Whether or not the bubble condition holds
depends on the behavior of Ĝp(k) in the infrared regime (i.e., around k = 0).

For the Ising model, we can show a similar differential inequality for the susceptibility
of the Ising model. The critical bubble G∗2

pc
(o) also appears in the denominator in the

lower bound.
For percolation, we can also show a similar differential inequalities, but in the denomi-

nator in the lower bound, G∗3
pc
(o) appears instead of G∗2

pc
(o). Thus, the cubic integrability

of Ĝp(k) (we can prove the non-negativity of Ĝp(k), see (3.2.49) below) is the so-called
the triangle condition [8] which is a sufficient condition for γ and other critical exponents
to take on their mean-field values. Again, whether or not the triangle condition holds
depends on the infrared behavior of Ĝp(k).

Usually, there is no a priori bounds on Ĝp(k). However, for some spin models with a
strong symmetry condition called reflection-positivity (e.g., the ferromagnetic Ising model
with symmetric nearest-neighbor couplings satisfies this condition), the two-point function
enjoys the following infrared bound [37]:

Theorem 1.1.1. For any d > 2, there is a constant K < ∞ such that

∥(1 − D̂)Ĝp∥∞ ≡ sup
k∈Td

(1 − D̂(k))∣Ĝp(k)∣ ≤K uniformly in p close to pc. (1.1.6)

If D is a symmetric, non-degenerate and finite-range distribution with variance σ2,
then 1 − D̂(k) ∼ σ2

2d ∣k∣2 as ∣k∣ → 0. Suppose that the infrared bound holds for SAW, the
Ising model and percolation. Then

G∗2
pc
(o) ≤ ∫

Td
( K

1 − D̂(k)
)

2
ddk

(2π)d
≍ ∫

Td

ddk

∣k∣4
(SAW and the Ising model), (1.1.7)

G∗3
pc
(o) ≤ ∫

Td
( K

1 − D̂(k)
)

3
ddk

(2π)d
≍ ∫

Td

ddk

∣k∣6
(percolation), (1.1.8)
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which imply that the bubble condition holds in all dimensions d > 4 and the triangle
condition holds in all dimensions d > 6.

On the other hand, there is some evidence (from hyperscaling inequalities, numerical
simulations, conformal field theory and so on) to suggest that the critical exponents (if
they exist) can not take on their mean-field values simultaneously if d < 4 for SAW and
Ising model, and d < 6 for percolation. In this respect, the (upper) critical dimension dc

is said to be 4 for SAW and the Ising model, and 6 for percolation.
To complete the mean-field picture in high dimensions, it thus remains to show that

the infrared bound (1.1.6) holds for all dimensions d > dc. Here, the lace expansion comes
into play. We will present the work on the lace expansion in Chapter 3.

We have mentioned only the classical models so far. There are the following results
about the quantum Ising model. In particular, Björnberg [16] established an infrared
bound for the Schwinger function, which is one of the main quantities for the space-
time Ising model, assuming reflection-positivity. He also derived a similar differential
inequality for the susceptibility with the critical bubble. As a consequence, he showed
that the critical exponent γ for the susceptibility takes the mean-field value 1 by using
the infrared bound to show the finiteness of the critical bubble and solving the differential
inequality. It should be noted here that he analyzed the critical behavior when varying
the ratio between the parameters of the coupling constant and of the quantum effect with
fixed parameter p, which corresponds to the inverse temperature β. However, we are
also interested in the critical behavior when varying the inverse temperature with fixed
parameter of the quantum effect. In Chapter 4, we will consider more the quantum effect
on the critical temperature and/or the critical exponents.

1.1.4 Other critical exponents

As explained in the above subsection, the bubble and triangle conditions are sufficient
conditions for γ to take its mean-field value. However, there are other critical exponents
which could not be identified by those conditions.

The first one is the critical exponent η called the anomalous dimension for the critical
two-point function, defined as Gpc(x) ≍ ∣x∣2−d−η for ∣x∣ ↑ ∞. In 2003, Hara, van der Hofstad
and Slade [52] showed that the anomalous dimension η = 0 for SAW on the the spread-out
lattice Z̄d>dc=4

L and percolation on Z̄d>dc=6
L , which means that the critical two-point function

of SAW and percolation asymptotically behaves like ∣x∣2−d for the sufficiently large spread-
out parameter L (they also showed the same results for lattice trees and lattice animals
on Z̄d>dc=8

L ). In 2008, Hara showed the same results for the nearest-neighbor SAW on
Zd≥5(=dc+1) and percolation on Zd≥19(>dc+1=7). In 2007, Sakai showed the same result for
the critical two-point function of the nearest-neighbor Ising model in sufficiently high
dimensions and on the the spread-out lattice Z̄d>dc=4

L for the sufficiently large L [80]. If
η = 0, then the bubble condition (1.1.5) or the triangle condition hold in d > 4 or d > 6,
respectively. Therefore, the results for the anomalous dimension in high dimensions are
quite powerful.

The second critical exponent which could not be identified by the bubble and triangle
conditions is the 1-arm exponent ρ. For the precise definition of the 1-arm exponent, see
Section 2.3. For percolation, it is showed that ρ takes on the mean-field value 2, first by
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Sakai [78] in d > 7 assuming that η = 0 and another condition, and then by Kozma and
Nachmias [67] in d > 6 only assuming η = 0. For the Ising model, it is showed that ρ
has the mean-field bound 1 in d > 4 assuming η = 0 in [48]. We will present this work
in Chapter 2. We believe that the opposite inequality ρ ≥ 1 holds in d > 4 for the Ising
model. In a similar manner to [78], we strongly expect ρ ≥ 1 in d > 4 as a conditional
result. We will have a discussion about the lower bound for the Ising 1-arm exponent ρ
in Section 2.4.

1.2 The main results

As explained in the previous section, there are some open problems.

1. Does the 1-arm exponent of the Ising model take mean-field value 1 in high dimen-
sions? Is it possible to give optimal bounds for it?

2. Does the infrared bound hold for the nearest-neighbor percolation and Ising model in
all dimensions d > 6 and d > 4, respectively without assuming reflection-positivity?

3. Do critical exponents change depending on the quantum effect?

For those questions, we obtain the following results.

Theorem 1.2.1 (Mean-field bound for the 1-arm exponent). For the ferromagnetic Ising
model on Zd, d > 4, defined by a translation-invariant, Zd-symmetric and finite-range
spin-spin coupling satisfying η = 0,

lim inf
r→∞

r1+ε⟨σo⟩+r = ∞ (1.2.1)

whenever ε > 0. Consequently, the critical exponent ρ satisfies ρ ≤ 1.

Theorem 1.2.2 (Infrared bound). For SAW on the d-dimensional body-centered cubic
lattice Ld≥6 and percolation on Ld≥9, there exists a model-dependent constant K ∈ (0,∞)
such that

∥(1 − D̂)Ĝp∥∞ ≤K uniformly in p ∈ [1, pc), (1.2.2)

which implies the mean-field behavior, e.g., γ = 1.

In the theorem below, the critical inverse temperature βc appears and corresponds to
pc in the above subsection. See Chapter 4 in more detail.

Theorem 1.2.3 (The critical behavior of the Ising susceptibility with quantum effect).
Let the spin-spin coupling be non-negative and summable. For the ferromagnetic Ising
model with the sufficiently small quantum effect δ ≥ 0, sufficiently small the space-time
bubble diagram B and for 0 < β < βc(δ), the following holds.

(a) We have the lower bound for the susceptibility,

χ(β, δ) ≥ C1

βc − β
. (1.2.3)

where 0 < C1 < ∞ is a constant. Thus, if the critical exponent γ exists, then γ ≤ 1.

13



(b) We have the upper bound for the susceptibility,

χ(β, δ) ≤ C2

βc − β
, (1.2.4)

where 0 < C2 < ∞ is a constant. Thus, if the critical exponent γ exists, then γ ≥ 1.

1.3 Organization

1. In Chapter 2, we will present the work based on the paper [48]. In Section 2.1 and
2.2, we will introduce the classical Ising model along with the historical accumulation
of knowledge and the recent developments. In Section 2.3, we will introduce the 1-
arm exponent ρ and prove that ρ has the mean-field bound 1 in d > 4 assuming
the anomalous dimension η = 0, especially comparing with the 1-arm exponent of
percolation. In Section 2.4, we will mention the lower bound for ρ also comparing
with the percolation case.

2. In Chapter 3, we will present the work based on the preprint [49]. In Section 3.1, we
will give a short history about the lace expansion. In Section 3.2, we will introduce
the definition of the body-centered cubic (BCC) lattice and SAW and percolation
on BCC lattice, and show the main result on the infrared bound based on the lace
expansion analysis for the BCC lattice. In Section 3.3, we will give a full detail of
lace-expansion analysis for self-avoiding walk.

3. In Chapter 4, we will present the ongoing work based on the preprint [50]. In Sec-
tion 4.1, we will give a short summary for the quantum Ising model, especially focus-
ing on the graphical representation. In Section 4.2, we will introduce the definition
of the quantum Ising model and the key ingredients, Suauki-Trotter transformation
and the random-current representation, to analyze the some physical quantities.
In Section 4.3, we will identify the critical exponent for the susceptibility in high
dimensions by deriving the two differential inequalities.

14



Chapter 2

The mean-field behavior for the
Ising model

2.1 The general setting and background for the Ising

model

In 1920, Lenz first invented a statistical-mechanical model for ferromagnets, which is
nowadays known s the Ising model named after his student Ising, who began to work on
it. We consider the d-dimensional Euclidean lattice Zd. The model consists of magnetic
atoms on a finite subset Λ ⊂ Zd. Each magnetic atom has a spin which can be in either
upward or downward state. Mathematically, each site x ∈ Λ is associated to a spin variable
σx which takes values either +1 (for the upward state) or −1 (for the downward state).

For each spin configuration σ = {σx}x∈Λ, we define the Hamiltonian H h⃗
Λ, which is the total

energy for the spin configuration,

H h⃗
Λ(σ) = − ∑

{u,v}⊂Λ

Ju,vσuσv − ∑
v∈Λ

hvσv, (2.1.1)

where {Ju,v}u,v∈Zd is a collection of coupling constants and h⃗ = {hv}v∈Zd is a collection of
external magnetic fields. If we assume that Ju,v ≥ 0, then a spin tends to align with spins

of its neighbors to keep H h⃗
Λ(σ) smaller. This is why the system is called ferromagnetic.

We introduce the Gibbs measure µT ;Λ for a spin configuration σ, which is the proba-
bility that σ is realized as a spin configuration,

µT ;Λ(σ) = e
−Hh⃗

Λ(σ)/T

Z h⃗
T ;Λ

, (2.1.2)

where T > 0 is the temperature and the partition function Z h⃗
T ;Λ is the normalization

constant, defined by

Z h⃗
T ;Λ = ∑

σ∈{±1}Λ

e−H
h⃗
Λ(σ)/T . (2.1.3)
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We define the thermal expectation of a function f on spin configurations by

⟨f⟩h⃗T ;Λ = ∑
σ∈{±1}Λ

f(σ) e
−Hh⃗

Λ(σ)/T

Z h⃗
T ;Λ

. (2.1.4)

Now, we have prepared to define physical quantities to analyze phase transitions and
critical behaviors. The following three are the basic physical quantities; the magnetization,
the truncated two-point function and the susceptibility, respectively,

m(T, h⃗) = lim
Λ→Zd

⟨σo⟩h⃗T ;Λ, (2.1.5)

GT (x, y) = lim
h↓0

lim
Λ↑Zd

(⟨σoσx⟩h⃗≡hT ;Λ − ⟨σo⟩h⃗≡hT ;Λ⟨σo⟩h⃗≡hT ;Λ), (2.1.6)

χ(T ) = ∑
x∈Zd

GT (o, x). (2.1.7)

And the spontaneous magnetization ms(T ) is also important quantity, defined by

ms(T ) = lim
h↓0

m(T, h⃗ ≡ h). (2.1.8)

From now on, we suppose that coupling constant Ju,v ≥ 0 is a translation-invariant, Zd-
symmetric and finite-range (i.e., the support of J is finite), and h⃗ ≡ h ≥ 0. The existence
of those limits are guaranteed by Griffiths’ inequalities [41], [42] [43] and [39] (see also
Proposition 4.2.3 in this thesis).

It is well known that if the system is finite then limh↓0⟨σo⟩h⃗T ;Λ = 0 for any 0 < T < ∞,
which means that there is no phase transition. Moreover, other physical quantities are
infinitely differentiable with respect to T and h, thus have no singular point. In order
to catch phase transitions and critical behaviors, we should take the infinite-volume limit
although we do not know whether it can show singular behaviors at first.

In 1925, Ising [47] proved that the 1-dimensional Ising model does not show phase
transition, i.e., ms(T ) = 0 for any 0 < T < ∞. In 1936, Peierls [75] implied that the
spontaneous magnetization of the Ising model with d ≥ 2 is positive at sufficiently low
temperature (it was not mathematically rigorous at that time, but nowadays his method
is called the Peierls contour argument and used for showing the existence of phase transi-
tion). Since then, many mathematician and physicists have become enthusiastic and been
studying it.

In 1944, Onsager [74] solved the free-energy density of the Ising model with d = 2 and
h ≡ 0 and showed the existence of phase transition. In 1952, Lee and Yang [69] showed
that if h ≠ 0 then the Ising model has no phase transition at any T > 0, which means that
we only need to consider the case h = 0 for critical phenomena.

There are some characterizations for the critical temperature Tc. We can use the
physical quantities above as the order parameters. For example, we can characterize the
critical temperature Tc by the spontaneous magnetization,

Tc = sup{T > 0 ∶ms(T ) > 0}. (2.1.9)
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Since GT just becomes the two-point function for T > Tc, the monotonicity of the χ(T )
holds thanks to Griffiths’ inequality. Thus we can use the susceptibility as another char-
acterization for the critical temperature,

T̃c = inf{T > 0 ∶ χ(T ) < ∞}. (2.1.10)

It is not obvious whether Tc = T̃c. In fact, for another spin model, Tc ≠ T̃c (e.g., Berezinskii-
Kosterlitz-Thouless transition). However in 1987, Aizenman, Barsky and Fernández [3]
showed that Tc = T̃c for the Ising model.

Once the model shows phase transitions, we are next interested in the behavior of
order parameters around or at Tc, which is called critical behaviors. We believe that
there exist power exponents β, η (anomalous dimension), γ, γ′ such that

ms(T ) ≍
T ↑Tc

(Tc − T )β, GTc(x, y) ≍
∣x−y∣↑∞

∣x − y∣2−d−η, χ(T )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

≍
T ↓Tc

(T − Tc)−γ

≍
T ↑Tc

(Tc − T )−γ′ .
(2.1.11)

For d = 2, Onsager’s exact solution [74] , Yang, Wu et al. [89] implies that β = 1/8, η =
1/4 and γ = 7/4. For d = 3, although there are some numerical results and approximate
values, there are no rigorous result. For d > 4, we believe that the critical exponents take
on the mean-field values, β = 1/2, η = 0 and γ = 1. Thus, d = 4 is threshold dimension
and called the upper critical dimension, denoted by dc. In 1982 and 1986, Aizenman
[1] showed that γ = 1 and Aizenman and Fernández [5] showed that β = 1/2 under the
bubble condition (see (1.1.5)). In 1976, Fröhlich, Simon and Spencer [37] showed that if
the spin model satisfies reflection-positivity, then the infrared bound holds. This infrared
bound and the Parseval’s identity imply that the bubble condition holds. However, we
believe that we do not need to assume reflection-positivity in order to show the mean-field
behaviors (or the bubble condition), e.g., the next-nearest-neighbor model does not satisfy
reflection-positivity. Note that the bubble condition does not imply that the anomalous
dimension η = 0. Conversely if η = 0, the bubble condition holds. In 2007, Sakai [79]
invented the lace expansion for the Ising model and showed that η = 0 under the suitable
condition for coupling constants for d > 4. This means that the bubble condition holds
for a quite large class of coupling constants without assuming reflection-positivity.

About the critical exponent γ′, we also believe that γ = γ′ by the symmetry. In the low
temperature phase, the spontaneous magnetization is not 0. Thus, we have to treat the
truncated two-point function in the definition of GT . Recently, Duminil-Copin et al. [29]
showed the exponential decay for the truncated two-point function GT for T < Tc and
d ≥ 3. For d = 2, the exponential decay is also known by Onsager’s exact solution. For
T > Tc, the exponential decay is also proved in [3]. Therefore, the truncated two-point
function decays exponentially fast for all but the critical temperature Tc in any dimensions
d ≥ 2. This result also shows the finiteness of the susceptibility. However, identifying the
speed of divergence as T goes to Tc from below, which the critical exponent γ′ represents,
is still an open problem.

There is another unknown critical exponent, which is called the 1-arm exponent ρ,
defined by

⟨σo⟩+r ≍
r↑∞

r−ρ, (2.1.12)
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where ⟨σo⟩+r is the 1-spin expectation at the center of a ball of radius r surrounded by
plus spins. The bubble condition also does not identify the value of ρ. In Section 2.3, we
will present the work on the 1-arm exponent.

2.2 Other topics for the Ising model

1. Critical behaviors for d = dc = 4. In the upper critical dimension dc = 4, we believe
that some order parameters have logarithmic correction. For example, we believe
that for d = dc = 4 the susceptibility diverges like,

χ(T ) ≍
T ↓Tc

(T − Tc)−1∣ log(T − Tc)∣1/3. (2.2.1)

The logarithmic correction appears via the logarithmic divergence of the bubble
diagram for d = 4. This prediction is highly expected by the renormalization group
method. In fact, for the n-component ∣φ∣4 model, this asymptotic behavior holds by
the mathematically rigorous renormalization group method, which Bauerschmidt,
Brydges, and Slade have recently developed [9, 10], inspired by the original Wilson’s
idea. Their method can be applied to the n-component ∣φ∣4 model and weakly self-
avoiding walk via a functional integral representation with boson and fermion fields.
The Ising model can be rewritten by a functional integral with boson fields with the
potential (or the Boltzmann weight) V (ϕ),

V (ϕ) = 1

2
ϕ2 − log cosh(T −1/2ϕ + h) +Constant, (2.2.2)

where ϕ ∈ R [36, 11]. This transformation, known as the sine-Gordon transfor-
mation, allows us to translate the discrete Ising-spin σ on ±1 into the continuous
unbounded boson-spin ϕ on R. The shape of this function of ϕ looks like the 1-
component ∣φ∣4 model. However, The control of the error terms arising from the
renormalisation group maps has not been dealt properly yet.

2. The infinite-volume Gibbs measure. There is another way to characterize phase
transition (or the critical temperature). We have already defined the Gibbs measure
µT ;Λ on a finite set Λ ⊂ Zd and the thermal expectation, and then we take the infinite-
volume limit of physical quantities to catch phase transition or critical behavior.
How about the Gibbs measure after taking the infinite-volume limit? We have
not introduced the boundary conditions so far, but physical quantities have the
boundary effect. If there is no spin on the outside of a finite set Λ, we say the
boundary is free. This corresponds to just (2.1.1). If the outside of Λ is occupied
by plus or minus spins, we say the boundary is plus or minus, respectively. To
define the plus or minus boundary, we put the extra term into the Hamiltonian
(2.1.1); ±∑u∈Λ,v∈Λc Ju,vσu for plus or minus boundary. If we regard Λ as a torus,
we say the boundary is periodic. For a general boundary condition ω, we denote
the Gibbs measure with boundary condition ω by µωT ;Λ. We take an increasing
sequence {Λn}∞n=1 to Zd. If the weak limit of µωT ;Λn

as n ↑ ∞ exists, we call the
limit the infinite-volume Gibbs measure µωT (i.e., for any local function f of a spin
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configuration, µωT (f) ∶= limn↑∞ µωT ;Λn
(f)). We denote by G(T ) the closed convex full

of a family of the infinite-volume Gibbs measures. If the number of measures in
G(T ) is 1 (i.e., ∣G(T )∣ = 1) for any temperature T > 0, we say there is no phase
transition (uniqueness of the infinite-volume Gibbs measure holds). If ∣G(T )∣ > 1
for some small T , we say phase transition occurs. We can also define the critical
temperature T

′

c by

T
′

c = sup{T > 0 ∶ ∣G(T )∣ > 1}. (2.2.3)

It is well-known that for the ferromagnetic Ising model with h ≥ 0, the uniqueness
of the infinite-volume Gibbs measure and the analyticity of the free-energy density
are equivalent. Thus, T

′

c = Tc. Moreover, by FKG-inequality, we have

µ−T (f) ≤ µωT (f) ≤ µ+T (f) (2.2.4)

for any non-decreasing function f . Thus, the uniqueness of the infinite-volume Gibbs
measure is equivalent to that µ−T (f) = µ+T (f). In the other topics of the Ising model
below in this section, we use a ward phase transition in this sense.

3. Phase transition on tree graphs. The Ising model on trees, for example on the Cayley
tree or the Bethe lattice, has been rigorously studied since the 1970’s [66, 76]. The
Cayley tree or the Bethe lattice, denoted by Γd = (G,E), where G is a vertex set
and E is a edge set, is an infinite (d + 1)-regular tree. This graph is non-amenable,

i.e., inf{ ∣∂K∣
∣K∣ ∶ K ⊂ V, ∣K ∣ < ∞} ≠ 0, where ∂K is an inner boundary of K. By Lee-

Yang, there is no phase transition with homogeneous magnetic fields on Zd, which
is an amenable graph. However, due to the non-amenability for the Cayley tree
or the Bethe lattice, the phase transition can occur even when there is a non-zero
homogeneous external magnetic field, cf. [65]. Preston [76] showed the following
result:

Theorem 2.2.1 ([76]). For the ferromagnetic Ising model on the Cayley tree or the
Bethe lattice with coupling constants Jx,y ≡ J > 0 and with external magnetic fields
hx ≡ h > 0, there exists a critical temperature Tc = Tc(d) > 0 and hc = hc(T, d) such

that,

⎧⎪⎪⎨⎪⎪⎩

(i) there is no phase transition if T ≥ Tc(d) or ∣h∣ > hc(T, d),
(ii) there is a phase transition otherwise.

As a recent work, there is a result for the critical-field Ising model on the Cayley
tree under the influence of inhomogeneous external magnetic fields, for which we
refer to the discussion in [15].

4. Inhomogeneous external magnetic fields. As mentioned above, we know that there is
no phase transition for the nearest-neighbor Ising model with non-zero homogeneous
external magnetic fields by Lee and Yang. However, for an inhomogeneous external
magnetic field, the situation is different. Bissacot and Cioletti showed the following
results [14]:

Theorem 2.2.2 ([14]). Let d ≥ 2. If the external magnetic field h⃗ = {hv}v∈Zd is
summable, i.e., ∑v∈Zd ∣hv ∣ < ∞, then there is a phase transition.
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Theorem 2.2.3 ([14]). Let d ≥ 1. If the external magnetic field h⃗ = {hv}v∈Zd satisfies
lim infv∈Zd hv > 0, then there is no phase transition (the uniqueness of the infinite-
volume Gibbs measure holds).

Especially, if the fields behave like the power decay, i.e.,

hv =
⎧⎪⎪⎨⎪⎪⎩

h∗, if v = 0,
h∗

∣v∣γ , if v ≠ 0,
(2.2.5)

where h∗ > 0 and γ > 0 (this is not the critical exponent for the susceptibility),
by Theorem 2.2.2 above, there is a phase transition for γ > d. However, there are
stronger results by Bissacot et al. [13], and Cioletti and Vila [20]:

Theorem 2.2.4 ([13] and [20]). Let d ≥ 2. For the ferromagnetic nearest-neighbor
Ising model,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) there is no phase transition if 0 < γ < 1,

(ii) there is a phase transition if γ > 1,

(iii) there is a phase transition if γ = 1 and h∗ ≪ 1.

(2.2.6)

The second case claims that even for the non-summable case 1 < γ ≤ d, phase
transition occurs. For the case γ = 1, the regime for large h∗ > 0 is still an open
problem. If the model shows phase transition, we are naturally interested in its
critical behavior or the critical exponents for order parameters. However, there is
almost no result in such a research direction. Presence of inhomogeneous external
magnetic fields seems to deprive the system of translation-invariance and make the
analysis much harder.

5. The long-range Ising model (the Dyson model). We consider the d-dimensional Ising
model without the external magnetic fields and with long-range coupling constants
{Ju,v}u,v∈Zd defined by

Ju,v =
⎧⎪⎪⎨⎪⎪⎩

J, if ∣u − v∣ = 1,
1

∣u−v∣α , if ∣u − v∣ ≠ 1,
(2.2.7)

where J > 0 and α > d (the condition for α is for the total energy of the system
not to diverge; the so-called regularity condition). For d = 1, it is well known that
if α > 2, there is no phase transition since the free-energy density is analytic in the
thermodynamic parameters for any finite temperature. In 1969, Dyson showed the
existence of a phase transition for 1 < α < 2 [31] and then in 1982, Fröhlich and
Spencer showed the existence of a phase transition for α = 2 [38].

On the other hand, for d ≥ 2 with the nearest-neighbor coupling and without the ex-
ternal magnetic fields, there is a phase transition. Thus, by the Griffiths’ inequality,
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there is a phase transition for any α > d. What happens if we put the inhomoge-
neous external magnetic field like (2.2.5)? By heuristic argument by Imry and Ma,
we conjecture that there is a phase transition for the following two cases:

⎧⎪⎪⎨⎪⎪⎩

(i) α > d + 1 and γ > 1,

(ii) d < α < d + 1 and γ > α − d .
(2.2.8)

Since if α > d+ 1 then the energy of long-range interaction between a finite box and
the outside of the box is smaller than the order of the surface of the box. Thus, the
system is like the nearest neighbor case. Therefore, the item (i) is consistent with
the case (ii) in Theorem 2.2.4. The item (ii) means that it is possible to impose
the external magnetic fields a little bit more since α − d < 1, due to the long-range
effect, compared with the nearest-neighbor case. The existence of phase transition
is shown by using the Peierls contour argument, but due to the long-range effect,
the construction of the contour is not easy compared with the nearest-neighbor case.
Moreover, we need to control the interaction between two contours due to also the
long-range effect. To show the above conjecture by using Pirogov-Sinai contour is
an ongoing project with Bissacot, Endo and Affonso.

There are a series of results about critical behavior for long-range models by Chen
and Sakai [22, 23, 24, 25, 26]. In particular, they analyzed the critical two-point
function for self-avoiding walk, percolation and the Ising model on Zd and proved
its asymptotic behavior in high dimensions in [25, 26]. The models have the 1-step
distribution D(x) ≍ ∣x∣−d−α with α > 0 and the upper-critical dimension dc = 2(α∧2)
for self-avoiding walk and the Ising model, and dc = 3(α ∧ 3) for percolation, where
s ∧ t = min{s, t}. For the Ising model, there are the following relationships between
(T, Jo,x) = (p,D(x)) such that p = ∑x∈Zd tanh(Jo,x/T ) and pD(x) = tanh(Jo,x/T ).
The statements are the following:

Theorem 2.2.5 ([25]). Let α ≠ 2 and d > dc. For sufficiently spread-out models of
self-avoiding walk, percolation and the Ising model, the following holds.

Gpc(x) ≍
∣x∣↑∞

∣x∣α∧2−d. (2.2.9)

Theorem 2.2.6 ([26]). Let α = 2 and d > dc. For sufficiently spread-out models of
self-avoiding walk, percolation and the Ising model, the following holds.

Gpc(x) ≍
∣x∣↑∞

∣x∣2−d
log ∣x∣

. (2.2.10)

The prefactor of the dominant term of Gpc(x) has more concrete form in the state-
ment in the papers [25] and [26]. The proofs are based on the lace expansion
analysis.
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2.3 Upper bound on the 1-arm exponent ρ in high

dimensions

2.3.1 The setting for the mean-field bound on ρ

First, we introduce the special setting of the Ising model for proving the mean-field bound
on the 1-arm exponent. It seems to be slightly unusual setting due to the technical reason
for the proof of the main result. We consider the Ising model on VR, which is the d-
dimensional ball of radius R > 0:

VR = {v ∈ Zd ∶ ∣v∣ ≤ R}. (2.3.1)

It is convenient to use the Euclidean distance ∣ ⋅ ∣ here, but the results hold for any norm
on the lattice Zd. Let ∂Vr (r < R) be the boundary of Vr:

∂Vr = {v ∈ VR ∖ Vr ∶ ∃u ∈ Vr such that Ju,v > 0}. (2.3.2)

The Hamiltonian for a spin configuration σ ≡ {σv}v∈VR ∈ {±1}VR is defined as

Hh
r,R(σ) = − ∑

{u,v}⊂VR
Ju,vσuσv − h ∑

v∈∂Vr
σv, (2.3.3)

where Ju,v ≥ 0 is a translation-invariant, Zd-symmetric and finite-range coupling, and h is
the strength of the external magnetic field. We note that it is crucial to impose the external
magnetic field only on ∂Vr. Due to this slightly unusual setup, we will eventually be able
to derive an essential correlation inequality that differs from the one for percolation.

The thermal expectation of a function f on spin configurations at the critical temper-
ature Tc is given by

⟨f⟩hr,R = 1

2∣VR∣ ∑
σ∈{±1}VR

f(σ) e
−Hh

r,R(σ)/Tc

Zh
r,R

, Zh
r,R = 1

2∣VR∣ ∑
σ∈{±1}VR

e−H
h
r,R(σ)/Tc . (2.3.4)

The major quantities to be investigated are the 1-spin and 2-spin expectations. Since they
are increasing in h by Griffiths’ inequality [41], [42] [43] and [39] (see also Proposition 4.2.3
in this thesis), we simply denote their limits by

⟨σx⟩+r = lim
h↑∞

⟨σx⟩hr,R [x ∈ Vr ∪ ∂Vr], (2.3.5)

⟨σxσy⟩R = lim
h↓0

⟨σxσy⟩hr,R [x, y ∈ VR]. (2.3.6)

Since ⟨σxσy⟩R is also increasing in R by Griffiths’ inequality, we denote its limit by

⟨σxσy⟩ = lim
R↑∞

⟨σxσy⟩R. (2.3.7)

In the following statement (as well as later in the proofs) we use the notation f ≍ g to
mean that the ratio f/g is bounded away from zero and infinity (in the prescribed limit).
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One assumption that we shall make throughout is the mean-field decay for the critical
two-point function

⟨σoσx⟩ ≍ ∣x∣2−d as ∣x∣ ↑ ∞. (2.3.8)

A sharp asymptotic expression that implies (2.3.8) is proven by the lace expansion for a
fairly general class of J , whenever the support of J is sufficiently large [79]. We note that
reflection-positivity has not succeeded in providing the above two-sided x-space bound;
only one exception is the nearest-neighbor model, for which a one-sided x-space bound is
proven [85]. In dimensions d < 4, the exponent on the right-hand side may change. An
exact solution for d = 2 was identified by Wu et al. [89], which implies ⟨σoσx⟩ ≍ ∣x∣−1/4 as
∣x∣ ↑ ∞.

We consider the ferromagnetic Ising model at its critical temperature T = Tc, and
study the 1-spin expectation ⟨σo⟩+r at the center of a ball of radius r surrounded by plus
spins. The decreasing limit of ⟨σo⟩+r as r ↑ ∞ is the spontaneous magnetization. Recently,
Aizenman, Duminil-Copin and Sidoravicius [4] showed that, if the spin-spin coupling
satisfies a strong symmetry condition called reflection-positivity, then the spontaneous
magnetization is a continuous function of temperature in all dimensions d > 2, in particular
lim
r↑∞

⟨σo⟩+r = 0 at criticality. The present paper gives quantitative bounds on the rate of

convergence. The nearest-neighbor model is an example that satisfies reflection-positivity.
Also, its spontaneous magnetization on Z2 is known to be zero at criticality [90]. However,
in general, finite-range models do not satisfy reflection-positivity, and therefore we cannot
automatically justify continuity of the spontaneous magnetization for, e.g., the next-
nearest-neighbor model. Fortunately, by using the lace expansion [25, 79], we can avoid
assuming reflection-positivity to ensure η = 0 (as well as β = 1/2, γ = 1, δ = 3) and
lim
r↑∞

⟨σo⟩+r = 0 at criticality in dimensions d > 4 if the support of J is large enough.

In this section, we prove that it does not approach very fast whenever d > 4; in this
case we prove ⟨σo⟩+r ≥ r−1+o(1). The proof relies on the random-current representation,
which is a sophisticated version of the high-temperature expansion. It was initiated in
[44] to show the GHS inequality. Then, in 1980’s, Aizenman revived it to show that the
bubble condition (i.e., square-summability of the critical 2-spin expectation, see (1.1.5))
is a sufficient condition for the mean-field behavior [1, 3, 5] as we have already explained
in the in the previous chapter (around the subsection 1.1.3). It is also used in [4, 79, 81] to
obtain many useful results for the Ising and ϕ4 models. In combination with the second-
moment method, we prove a correlation inequality that involves ⟨σo⟩+r and free-boundary
2-spin expectations. Then, by using this correlation inequality, we derive the desired
result.

2.3.2 Mean-field bound on the 1-arm exponent ρ

We are investigating the 1-arm exponent for the Ising model at criticality, informally
described as ⟨σo⟩+r ≈ r−ρ as r ↑ ∞. In order to make the symbol ≈ precise, we give the
formal definition

ρ = − lim inf
r→∞

log⟨σo⟩+r
log r

. (2.3.9)
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A more conventional way of defining ρ is by letting ⟨σo⟩+r ≍ r−ρ as r ↑ ∞, which was used
to define the percolation 1-arm exponent [67, 78]. However, the latter definition does
not necessarily guarantee the existence of ρ. To avoid this existence issue, we adopt the
former definition (2.3.9).

The main result is the one-sided bound ρ ≤ 1 in the mean-field regime, i.e., when d > 4
and (2.3.8) holds. Folklore of statistical physics predicts that (2.3.9) is actually a limit.
The use of limit inferior is somewhat arbitrary (lim sup would be also possible), but this
choice gives the strongest result.

Theorem 2.3.1. For the ferromagnetic Ising model on Zd, d > 4, defined by a translation-
invariant, Zd-symmetric and finite-range spin-spin coupling satisfying (2.3.8),

lim inf
r→∞

r1+ε⟨σo⟩+r = ∞ (2.3.10)

whenever ε > 0. Consequently, the critical exponent ρ defined in (2.3.9) satisfies ρ ≤ 1.

Tasaki [88] derive the hyperscaling inequality as follows. This gives us an upper bound
for the 1-arm exponent.

Theorem 2.3.2. The critical exponents η and ρ satisfy

d − 2 + η ≥ 2ρ. (2.3.11)

Proof of Theorem 2.3.2. We impose the external magnetic field h > 0 on the boundary
at a distance ∣x∣/3 from the origin o and x. Then, by the Griffiths’ inequality, we obtain
⟨σoσx⟩ ≤ ⟨σoσx⟩h. Then by taking the limit as h ↑ ∞, ⟨σoσx⟩ ≤ ⟨σo⟩+∣x∣/3⟨σx⟩+∣x∣/3 = (⟨σo⟩+∣x∣/3)2

if for sufficiently large ∣x∣ (so that ∣x∣/3 is larger than the range of the spin-spin coupling).
At the last equality, we have used translation-invariance. By the definitions of the critical
exponents, we obtain the hyperscaling inequality.

In dimensions d > 4, this implies the hyperscaling inequality ρ ≤ (d − 2)/2, and the
bound in 2.3.1 improves on Tasaki’s result.

Remark 2.3.3. It is a challenge now to prove

lim sup
r→∞

r1−ε⟨σo⟩+r = 0 (2.3.12)

for any ε > 0, which implies readily (together with our theorem) that (2.3.9) is actually a
limit and ρ = 1.

Our proof of ρ ≤ 1 uses (2.3.8), which requires d > 4 (and the support of J to be large),
even though the result is believed to be true for all dimensions d ≥ 2. The aforementioned
correlation inequality ⟨σo⟩+∣x∣/3 ≥

√
⟨σoσx⟩ combined with the exact solution for d = 2 [89]

and numerical predictions for d = 3,4 supports this belief. This is why we call ρ ≤ 1 the
optimal mean-field bound.

Another key ingredient for the proof of ρ ≤ 1 is the random-current representation,
which provides a translation between spin correlations and percolation-like connectivity
events. Then, by applying the second-moment method to the connectivity events as
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explained below for percolation, we can derive a crucial correlation inequality (cf. (2.3.28))
that relates 1-spin and 2-spin expectations. To explain what the second-moment method
is and to compare the resulting correlation inequalities for the two models, we spend the
next subsection to explain the derivation of the mean-field bound on the percolation 1-arm
exponent, i.e., ρ ≤ 2 for d > 6.

2.3.3 Derivation of the mean-field bound for percolation

We consider the following bond percolation on Zd. Each bond {u, v} ⊂ Zd is either occu-
pied or vacant with probability pJu,v or 1−pJu,v, independently of the other bonds, where
p ≥ 0 is the percolation parameter. The two-point function Gp(x, y) is the probability
that x is connected to y by a path of occupied bonds (Gp(x,x) = 1 by convention), i.e.,

Gp(x, y) = Pp(x is connected to y). (2.3.13)

It is well-known that, for any d ≥ 2, there is a nontrivial critical point pc such that the
susceptibility ∑

x

Gp(o, x) is finite if and only if p < pc [8]. We define the 1-arm probability

θr, which is the probability that the center of the ball of radius r is connected to its surface
by a path of occupied bonds, i.e.,

θr = Pp(o is connected to ∂Vr). (2.3.14)

This probability also exhibits a phase transition at pc [2]: θ(p) ≡ lim
r↑∞

θr = 0 if p < pc and

θ(p) > 0 if p > pc. Although the continuity θ(pc) = 0 has not yet been proven in full
generality, it is shown by the lace expansion [35, 54] that, if d > 6 and the support of
J is sufficiently large, then θ(pc) = 0 and Gpc(o, x) ≍ ∣x∣2−d as ∣x∣ ↑ ∞. This Newtonian
behavior of Gpc is believed not to hold in lower dimensions (we are working on a research
in this direction and see the next chapter and [49]).

Fix p = pc and define the percolation 1-arm exponent ρ by letting θr ≍ r−ρ as r ↑ ∞. It
is known that the following inequality called the hyperscaling inequality holds in [88].

Theorem 2.3.4. The critical exponents η and ρ satisfy

d − 2 + η ≥ 2ρ. (2.3.15)

Since η = 0 for d > 6, the above inequality implies that ρ ≤ (d − 2)/2 for d > 6, which
gives us an upper bound for the 1-arm exponent.

Proof of Theorem 2.3.4 Since if the origin o is connected to x, then both sites are connected
to the boundary at a distance ∣x∣/3 from them. Thus, Gp(o, x) ≤ θ2

∣x∣/3 for sufficiently large

∣x∣ (so that ∣x∣/3 is larger than the range of the spin-spin coupling). By the definitions of
the critical exponents, we obtain the hyperscaling inequality.

In [78], we were able to improve this to the optimal mean-field bound ρ ≤ 2 for d > 6
by using the second-moment method.

Theorem 2.3.5. If d > 6, the support of J is sufficiently large and ρ exists, then ρ ≥ 2.
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Proof. Let Xr be the random number of vertices on ∂Vr that are connected to the origin
o. We note that Xr can be positive only when o is connected to ∂Vr. Then, by the
Schwarz inequality,

Ep[Xr]2 = Ep[Xr1{o is connected to ∂Vr}]
2

≤ Ep[1{o is connected to ∂Vr}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=θr

Ep[X2
r ], (2.3.16)

which implies θr ≥ Ep[Xr]2/Ep[X2
r ]. Notice that Ep[Xr] = ∑x∈∂Vr Gp(o, x). If o is con-

nected to x and y, then there exists a site u ∈ Zd such that o is connected to u, x is
connected to u and y is connected to u bond-disjointly, By the BK inequality, (this kind
of bound is called the tree-graph inequality [8]),

Ep[X2
r ] = ∑

x,y∈∂Vr
Pp(o is connected to x, y) ≤ ∑

u∈Zd
x,y∈∂Vr

Gp(o, u)Gp(u,x)Gp(u, y). (2.3.17)

As a result, we arrive at the correlation inequality

θr ≥
( ∑
x∈∂Vr

Gp(o, x))
2

∑
u∈Zd
x,y∈∂Vr

Gp(o, u)Gp(u,x)Gp(u, y)
. (2.3.18)

Using Gpc(x, y) ≍ ∣∣∣x − y∣∣∣2−d, where ∣∣∣ ⋅ ∣∣∣ = ∣ ⋅ ∣ ∨ 1 is to avoid singularity around zero, we
can show that the right-hand side of the above inequality is bounded from below by a
multiple of r−2, resulting in ρ ≤ 2 for d > 6. In fact, the numerator is of the order r2 since

∑
x∈∂Vr

Gpc(o, x) ≍ ∑
x∈∂Vr

∣x∣2−d ≍ rd−1r2−d = r. (2.3.19)

For bounding the denominator, we split the sum over z into two cases, u ∈ Vr/2 and u ∉ Vr/2.
For the first case,

∑
u∈Vr/2
x,y∈∂Vr

Gpc(o, u)Gpc(u,x)Gpc(u, y) ≤ C r2(2−d)+2(d−1) ∑
u∈Vr/2

∣∣∣u∣∣∣2−d ≤ C r4, (2.3.20)

where C > 0 is a constant which does not depend on r, and might change when we bound
above, but we use the same letter C. For the second case, by using the convolution bound
in Proposition 1.7 (i) in [52] at the second inequality,

∑
u∉Vr/2
x,y∈∂Vr

Gpc(o, u)Gpc(u,x)Gpc(u, y) ≤ C r2−d ∑
u∈Zd
x,y∈∂Vr

∣∣∣x − u∣∣∣2−d∣∣∣y − u∣∣∣2−d

≤ C r2−d ∑
x,y∈∂Vr

∣∣∣x − y∣∣∣4−d

≤ C r2−d+4−d+2(d−1) = C r4. (2.3.21)
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Therefore, the denominator is of order r4 and this complete the proof of Theorem 2.3.5.

In order to prove the opposite inequality ρ ≥ 2 for d > 6 to conclude the equality, Kozma
and Nachmias [67] use another correlation inequality that involves not only θr and Gp but
also the mean-field cluster-size distribution. The Ising cluster-size distribution under the
random-current representation is not available yet, and we are currently heading in that
direction. We will have a discussion on the lower bound of the Ising 1-arm in Section 2.4.

2.3.4 The random-current representation

A current configuration n ≡ {nb} is a set of nonnegative integers on bonds b ∈ BR ≡
{{u, v} ⊂ VR ∶ Ju,v > 0} or b ∈ Gr ≡ {{v, g} ∶ v ∈ ∂Vr}, where g is an imaginary ghost site.
Given a current configuration n, we define the source set ∂n as

∂n = {v ∈ VR ∪ {g} ∶ ∑
b∋v
nb is odd}, (2.3.22)

and the weight functions whr,R(n) and wR(n) as

whr,R(n) = ∏
b∈BR

(Jb/Tc)nb
nb!

∏
b′∈Gr

(h/Tc)nb′
nb′ !

, wR(n) = w0
r,R(n). (2.3.23)

Then, we obtain the following random current representation (cf. Figure 2.1):

Zh
r,R = ∑

∂n=∅
whr,R(n), ZR = ∑

∂n=∅
wR(n), (2.3.24)

and for x, y ∈ VR,

⟨σx⟩hr,R = ∑
∂n={x,g}

whr,R(n)
Zh
r,R

, ⟨σxσy⟩R = ∑
∂n={x}△{y}

wR(n)
ZR

. (2.3.25)

Given a current configuration n = {nb}, we say that x is n-connected to y, denoted x←→
n
y

if either x = y ∈ VR∪{g} or there is a path from x to y consisting of bonds b ∈ BR∪Gr with
nb > 0. For A ⊂ VR ∪ {g}, we also say that x is n-connected to y in A, denoted x←→

n
y in

A, if either x = y ∈ A or there is a path from x to y consisting of bonds b ⊂ A with nb > 0.
Given a subset A ⊂ VR, we define

WA(m) = ∏
b∈A

(Jb/Tc)mb
mb!

, ZA = ∑
∂m=∅

WA(m). (2.3.26)

The most important feature of the random-current representation is the so-called
source-switching lemma (e.g., [79, Lemma 2.3]). We state the version we use the most in
this paper as below. This is an immediate consequence from the source-switching lemma.
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⟨σo⟩hr,R = , ⟨σoσx⟩R = .

Figure 2.1: The random-current representation for ⟨σo⟩hr,R and ⟨σoσx⟩R. The bonds with
even current are all omitted. The vertex connected by dashed line segments is the ghost
site g.

Lemma 2.3.6 (Consequence from the source-switching lemma, [79]). For any subsets
A ⊂ VR and B ⊂ VR ∪ {g}, any x, y ∈ VR and any function f on current configurations,

∑
∂n=B
∂m=∅

whr,R(n)WA(m)1{x←→
n+m

y in A} f(n +m) = ∑
∂n=B△{x}△{y}
∂m={x}△{y}

whr,R(n)WA(m) f(n +m).

(2.3.27)

For a proof, we refer to [79, Lemma 2.3].

2.3.5 A new correlation inequality

The main technical vehicle in the proof of Theorem 2.3.1 is the following correlation
inequality that relates ⟨σo⟩+r to the sum of 2-spin expectations.

Proposition 2.3.7. For the ferromagnetic Ising model,

⟨σo⟩+r ≥
( ∑
x∈∂Vr

⟨σoσx⟩)
2

∑
x,y∈∂Vr

⟨σoσx⟩⟨σxσy⟩ + ∑
u∈Zd
x,y∈∂Vr

⟨σoσu⟩⟨σuσx⟩⟨σuσy⟩⟨σo⟩+dist(u,∂Vr)
. (2.3.28)

Compare this with the correlation inequality (2.3.18) for percolation. The extra factor
in the denominator of (2.3.28), ⟨σo⟩+dist(u,∂Vr), will eventually be the key to obtain the
optimal mean-field bound on the Ising 1-arm exponent.

Proof of Proposition 2.3.7. The proof is carried out in four steps.
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Step 1: The second-moment method. Let

Xr(n) = ∑
x∈∂Vr

1{o←→
n
x in VR}. (2.3.29)

Then, by the Schwarz inequality, we obtain

∑
∂n={o,g}
∂m=∅

whr,R(n)
Zh
r,R

wR(m)
ZR

Xr(n +m) ≤ ( ∑
∂n={o,g}

whr,R(n)
Zh
r,R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σo⟩hr,R

∑
∂m=∅

wR(m)
ZR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

)
1/2

× ( ∑
∂n={o,g}
∂m=∅

whr,R(n)
Zh
r,R

wR(m)
ZR

Xr(n +m)2)
1/2

.

(2.3.30)

By Lemma 2.3.6, we can rewrite the left-hand side as

∑
x∈∂Vr

∑
∂n={o,g}
∂m=∅

wR(n)
Zr,R

wR(m)
ZR

1{o←→
n+m

x in VR} = ∑
x∈∂Vr

∑
∂n={x,g}
∂m={o,x}

whr,R(n)
Zh
r,R

wR(m)
ZR

= ∑
x∈∂Vr

⟨σx⟩hr,R ⟨σoσx⟩R. (2.3.31)

As a result, we obtain

⟨σo⟩hr,R ≥
( ∑
x∈∂Vr

⟨σx⟩hr,R ⟨σoσx⟩R)
2

∑
∂n={o,g}
∂m=∅

whr,R(n)
Zh
r,R

wR(m)
ZR

Xr(n +m)2

. (2.3.32)

Step 2: Switching sources. Next, we investigate the denominator of the right-hand side
of (2.3.32), which equals

∑
x,y∈∂Vr

∑
∂n={o,g}
∂m=∅

whr,R(n)
Zh
r,R

wR(m)
ZR

1{o←→
n+m

x, y in VR}. (2.3.33)

The contribution from the summands x = y may be rewritten as in (2.3.31). Similarly, for
the case of x ≠ y, we use Lemma 2.3.6 to obtain

∑
x,y∈∂Vr
(x≠y)

∑
∂n={o,g}
∂m=∅

whr,R(n)
Zh
r,R

wR(m)
ZR

1{o←→
n+m

x, y in VR}

= ∑
x,y∈∂Vr
(x≠y)

∑
∂n={x,g}
∂m={o,x}

whr,R(n)
Zh
r,R

wR(m)
ZR

1{o←→
n+m

y in VR}. (2.3.34)
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For the event o←→
n+m

y in VR to occur under the source constraint ∂n = {x, g}, ∂m = {o, x},

either one of the following must be the case:

(i) {o←→
m
y}.

(ii) {o←→
m
y}c and ∃u ∈ Cm(o) ≡ {v ∈ VR ∶ o←→

m
v} that is (n +m′)-connected to y in

VR ∖ Cm(o), where m′ is the restriction of m on bonds b ⊂ VR ∖ Cm(o).

Case (i) is easy; by Lemma 2.3.6, the contribution to (2.3.34) is bounded as

∑
x,y∈∂Vr
(x≠y)

∑
∂n={x,g}

whr,R(n)
Zh
r,R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σx⟩hr,R≤1

∑
∂m={o,x}

wR(m)
ZR

1{o←→
m
y}

≤ ∑
x,y∈∂Vr
(x≠y)

∑
∂m={o,x}
∂l=∅

wR(m)
ZR

wR(l)
ZR

1{o←→
m+l

y}

= ∑
x,y∈∂Vr
(x≠y)

∑
∂m={x,y}

wR(m)
ZR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σxσy⟩R

∑
∂l={o,y}

wR(l)
ZR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σoσy⟩R

. (2.3.35)

Step 3: Conditioning on clusters. Case (ii) is a bit harder and needs extra care. Here

we use the conditioning-on-clusters argument. First, by conditioning on Cm(o), we can
rewrite the contribution to (2.3.34) from case (ii) as

∑
u∈VR
x,y∈∂Vr
(x≠y)

∑
A⊂VR

(o,u,x∈A)

∑
∂n={x,g}
∂m={o,x}

whr,R(n)
Zh
r,R

wR(m)
ZR

1{Cm(o) = A} 1{u←→
n+m′

y in VR ∖A}. (2.3.36)

Then, the sum over the current configurations in (2.3.36) can be rewritten as

∑
∂m={o,x}

WA(m)ZVR∖A
ZR

1{Cm(o) = A} ∑
∂n={x,g}
∂m′=∅

whr,R(n)
Zh
r,R

WVR∖A(m′)
ZVR∖A

1{u←→
n+m′

y in VR ∖A}.

(2.3.37)

Now, by using Lemma 2.3.6, the above expression is equal to

∑
∂m={o,x}

WA(m)ZVR∖A
ZR

1{Cm(o) = A} ∑
∂n={u,x,y,g}

whr,R(n)
Zh
r,R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σuσxσy⟩hr,R

∑
∂m′={u,y}

WVR∖A(m′)
ZVR∖A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σuσy⟩VR∖A

, (2.3.38)
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where ⟨σuσy⟩VR∖A is the 2-spin expectation on the vertex set VR ∖ A under the free-
boundary condition, and is bounded by ⟨σuσy⟩R due to monotonicity. As a result, we
obtain

(2.3.36) ≤ ∑
u∈VR
x,y∈∂Vr
(x≠y)

⟨σuσxσy⟩hr,R ⟨σuσy⟩R ∑
A⊂VR

(o,u,x∈A)

∑
∂m={o,x}

WA(m)ZVR∖A
ZR

1{Cm(o) = A}

= ∑
u∈VR
x,y∈∂Vr
(x≠y)

⟨σuσxσy⟩hr,R ⟨σuσy⟩R ∑
∂m={o,x}

wR(m)
ZR

1{o←→
m
u}

≤ ∑
u∈VR
x,y∈∂Vr
(x≠y)

⟨σuσxσy⟩hr,R ⟨σuσy⟩R ∑
∂m={o,x}
∂l=∅

wR(m)
ZR

wR(l)
ZR

1{o←→
m+l

u}

= ∑
u∈VR
x,y∈∂Vr
(x≠y)

⟨σuσxσy⟩hr,R ⟨σuσy⟩R ∑
∂m={u,x}

wR(m)
ZR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σuσx⟩R

∑
∂l={o,u}

wR(l)
ZR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨σoσu⟩R

, (2.3.39)

where, in the last line, we have used Lemma 2.3.6 again.

Step 4: Conclusion. Summarizing (2.3.32), (2.3.35) and (2.3.39), we arrive at

⟨σo⟩hr,R ≥
( ∑
x∈∂Vr

⟨σx⟩hr,R ⟨σoσx⟩R)
2

∑
x,y∈∂Vr

⟨σoσx⟩R ⟨σxσy⟩R + ∑
u∈VR
x,y∈∂Vr

⟨σoσu⟩R ⟨σuσx⟩R ⟨σuσy⟩R ⟨σuσxσy⟩hr,R
. (2.3.40)

Now we take h ↑ ∞ in both sides. In this limit, the spins on ∂Vr take on +1. Moreover,
by Griffiths’ inequality, we have limh↑∞⟨σuσxσy⟩hr,R = ⟨σu⟩∞r,R ≤ ⟨σo⟩+dist(u,∂Vr). Therefore,

⟨σo⟩+r ≥
( ∑
x∈∂Vr

⟨σoσx⟩R)
2

∑
x,y∈∂Vr

⟨σoσx⟩R ⟨σxσy⟩R + ∑
u∈VR
x,y∈∂Vr

⟨σoσu⟩R ⟨σuσx⟩R ⟨σuσy⟩R ⟨σo⟩+dist(u,∂Vr)
. (2.3.41)

Taking R ↑ ∞, we finally obtain (2.3.28).

2.3.6 Proof of Theorem 2.3.1

Proof of Theorem 2.3.1. We proceed indirectly and assume, by contradiction, that (2.3.10)
is false. Then there exists a monotone sequence (rk)k∈N diverging to ∞ such that

⟨σo⟩+rk ≤Kr
−(1+ε)
k (2.3.42)
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whenever k is large enough.
We are starting from Proposition 2.3.7. We estimate every term in the numerator and

the denominator of (2.3.28) using (2.3.8). Firstly, the numerator of (2.3.28) is of the order
r2 since

∑
x∈∂Vr

⟨σoσx⟩ ≍ ∑
x∈∂Vr

∣x∣2−d ≍ rd−1r2−d = r. (2.3.43)

Secondly, the first term in the denominator is of order r2 since

∑
x,y∈∂Vr

⟨σoσx⟩⟨σxσy⟩ ≍ ∑
x∈∂Vr

∣∣∣x∣∣∣2−d ∑
y∈∂Vr

∣∣∣x − y∣∣∣2−d ≍ rd−1r2−dr = r2, (2.3.44)

where we have used ∣∣∣ ⋅ ∣∣∣ = ∣ ⋅ ∣ ∨1 (cf. below (2.3.18)). The second term in the denominator
is the dominant one. To this end, we fix a sequence rk satisfying (2.3.42). We split the
sum over u into three cases: (i) ∣u∣ < rk/2, (ii) rk/2 ≤ ∣u∣ < 3rk/2, (iii) 3rk/2 ≤ ∣u∣, and show
that it is O(rk3) for any ε > 0.
Case (i):

∑
∣u∣<rk/2
x,y∈∂Vrk

∣∣∣u∣∣∣2−d∣∣∣u − x∣∣∣2−d∣∣∣u − y∣∣∣2−d∥∣rk − ∣u∣∥∣−(1+ε)

≍ r2(2−d)−(1+ε)
k ∑

x,y∈∂Vrk
∑

∣u∣<rk/2
∣∣∣u∣∣∣2−d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≍r2(d−1)+2
k

≍ r3−ε
k . (2.3.45)

Case (ii):

∑
rk/2≤∣u∣<3rk/2
x,y∈∂Vrk

∣u∣2−d∣∣∣u − x∣∣∣2−d∣∣∣u − y∣∣∣2−d∥∣rk − ∣u∣∥∣−(1+ε)

≍ r2−d
k ∑

rk/2≤∣u∣<3rk/2
∥∣rk − ∣u∣∥∣−(1+ε) ∑

x∈∂Vrk

∣∣∣u − x∣∣∣2−d ∑
y∈∂Vrk

∣∣∣u − y∣∣∣2−d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≍r2
k

≍ r4−d
k ∫

3rk/2

rk/2
∣∣∣rk − l∣∣∣−(1+ε)ld−1dl

≍ r3
k ∫

rk/2

0
∣∣∣l∣∣∣−(1+ε)dl ≍ rk3. (2.3.46)
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Case (iii): By the Schwarz inequality,

∑
∣u∣≥3rk/2
x,y∈∂Vrk

∣u∣2−d∣u − x∣2−d∣u − y∣2−d(∣u∣ − rk)−(1+ε)

≍ r2−d−(1+ε)
k ∑

x,y∈∂Vrk

√
∑

∣u∣≥3rk/2
∣u − x∣4−2d

√
∑

∣u∣≥3rk/2
∣u − y∣4−2d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≍r2(d−1)+4−d
k

≍ r3−ε
k . (2.3.47)

Plugging these estimates into the bound of Proposition 2.3.7 obtains

⟨σo⟩+rk ≥ C
rk2

rk2 + rk3
≍ r−1

k (2.3.48)

for any large k and for some C (independent of k), which contradicts (2.3.42), and (2.3.10)
follows.

The claim ρ ≤ 1 follows straightforwardly: Suppose ρ > 1+ ε for some ε > 0, then there
exists a sequence (rk)k∈N such that

log ⟨σo⟩+rk
log rk

< −1 − ε,

and this contradicts (2.3.10).

2.3.7 Further discussion

1. On trees. The absence of loops in the underlying graph makes it easier to analyze,
and a number of critical exponents are known to take on their mean-field values,
see [82, Section 4.2]. For the Ising model on a regular tree, it is shown [61] that

⟨σo⟩+r ≍ r−1/2 as r ↑ ∞, (2.3.49)

where, instead of the ball Vr, we are using the subtree of depth r from the root
(with the plus-boundary condition). This seems to hint on ρ = 1/2 on trees. The
discrepancy to the high-dimensional setting can be resolved by adjusting the notion
of distance in the tree, that is, one should rather work with the metric dist(o, x) ∶=√

depth(x) incorporating spatial effects when embedding the tree into the lattice Zd.
With this notion of distance, we get the mean-field value ρ = 1. The same situation
occurs for percolation, where we refer to [45, Chapter 10.1] for a discussion of this
issue.

2. Long-range models. In our result, we assumed that the spin-spin coupling J is finite-
range, that is, there is an M > 0 such that Jo,x = 0 whenever ∣x∣ > M . We believe
that ρ = 1 is true even for infinite-range couplings with sufficiently fast decaying
tails, although the boundary ∂Vr on which the external magnetic field is imposed
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under the current setting is no longer bounded. The situation may change when we
consider couplings with regularly-varying tails, and we focus now on the situation
when

Jo,x ≍ ∣x∣−d−α as ∣x∣ ↑ ∞, (2.3.50)

for some α > 0. In the earlier work [25], it shows that, under a suitable spread-out
condition, the critical 2-spin expectation scales as

⟨σoσx⟩ ≍ ∣x∣α∧2−d as ∣x∣ ↑ ∞, (2.3.51)

in contrast to (2.3.8). In particular, there is a crossover at α = 2 between a “finite-
range regime” and a “long-range regime”.

For the critical exponent ρ, it is tempting to believe that this crossover happens
for α = 4. The reason for this is again a comparable result for percolation: Hulshof
[63] proved that, if Gpc(o, x) ≍ ∣x∣α∧2−d as ∣x∣ ↑ ∞, then the critical 1-arm probability
scales as θr ≍ r−(α∧4)/2 as r ↑ ∞. In view of Hulshof’s result, it is plausible that,
for the long-range Ising model with couplings like in (2.3.50), it is the case that
ρ = (α ∧ 4)/4.

3. The (1-component) ϕ4 model. This spin model is considered to be in the same
universality class as Ising ferromagnets [1]. It can be constructed as an N ↑ ∞
limit of a properly coupled N ferromagnetic Ising systems [84], and therefore we
can apply the random-current representation for the Ising model. By virtue of
this representation, we can use the lace expansion to show that the critical 2-spin
expectation satisfies (2.3.8) for a large class of short-range models [81]. It is natural
to be interested in the critical 1-spin expectation similar to ⟨σo⟩+r for the Ising model.
However, since the ϕ4 spin is an unbounded variable, we cannot simply take h ↑ ∞
to define the 1-spin expectation under the “plus-boundary” condition. Once it is
defined appropriately, we believe that its 1-arm exponent also satisfies the mean-field
bound ρ ≤ 1 for d > 4.

2.4 Lower bound on the 1-arm exponent ρ in high

dimensions

In this section, we discuss the lower bound on the 1-arm exponent ρ > 0. For percolation,
Kozma and Nachmias [67] proved the opposite inequality ρ ≥ 2 for d > 6 in order to
conclude the equality. They use another correlation inequality that involves not only
θr and Gp but also the mean-field cluster-size distribution. However, we do not have the
information on the Ising cluster-size distribution under the random-current representation
so far, and if we could obtain it, to translate the method by Kozma and Nachmias into
the Ising language via the random-current representation seems to be pretty tough.

In the paper [78], Sakai also proved ρ ≥ 2 for d > 6 for percolation with some assump-
tions.
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1. (The lower bound for the critical restricted 2-point function; far from the boundary)

∑
x∈∂Vr/2

Ppc(o is connected to x, o is NOT connected to ∂Vr) ≥ c ∣∣∣x∣∣∣2, (2.4.1)

where c > 0 is a constant.

2. (The upper bound for the critical restricted 2-point function; close to the boundary)
If there exists a parameter κ ≥ 1 such that,

Ppc(o is connected to x, o is NOT connected to ∂Vr) ≤ c ∣∣∣x∣∣∣2−d−κ ∣∣∣r − ∣x∣∣∣∣κ, (2.4.2)

for r/2 ≤ ∣x∣ ≤ r.

The first assumption is used to show that ρ ≥ 2 for d > 7 and the second assumption is used
for the result to go down to d > 6. In fact, for the random walk, the second assumption
holds with κ = 1 at ∣x∣ = r. The κ ≥ 1 can be understood as a crossover parameter from
2 − d to 1 − d in high dimensions.

Quite recently, Chatterjee and Hanson showed the result which corresponds to the first
assumption in Theorem 2 in [21] for percolation. Moreover, by the result on the half-space
critical 2-point function in Theorem 1, we can immediately imply the second assumption
only at ∣x∣ = r with κ = 1. Their method seems to be based on the argument by Kozma
and Nachmias. Thus, to derive the lower bound for the percolation 1-arm needs almost
the same amount of efforts as to derive the behaviors for the restricted 2-point function.
However, we can separate the problem into two; one is to obtain the behaviors of the full
or restricted 2-point function and the other one is derive the mean-field value of the 1-
arm exponent in high dimensions. This means that if we assume the behaviors of the full
2-point function proved by the heavy lace expansion analysis and of the restricted 2-point
function proved by the heavy argument by Kozma and Nachmias (although the second
assumption has been partially proved when x is on the boundary), we can conclude that
ρ=2 for d > 6 for percolation.

We also believe that the same result by Chatterjee and Hanson for the Ising model.
Therefore, we are interested in whether we can imply that ρ ≥ 1 for d > 4 for the Ising model
by assuming the same conditions above. This is an ongoing project with Heydenreich and
Sakai. We are roughly doing the calculation for the Ising model via the random-current
representation, and we expect that ρ ≥ 1 for d > 4 with both assumptions (although we
can show that ρ ≥ 2 for d > 7 only with the first assumption for percolation, we need both
assumptions in order to conclude the result for the meaningful dimensions). To close this
chapter, we claim the following conjecture on the lower bound for the Ising 1-arm.

Conjecture 2.4.1. For the ferromagnetic Ising model on Zd, d > 4, defined by a translation-
invariant, Zd-symmetric and finite-range spin-spin coupling with the two assumptions be-
low, ρ ≥ 1 if the critical exponent ρ exists.

1. (The lower bound for the critical restricted 2-point function; far from the boundary)

∑
x∈∂Vr/2

⟨σoσx⟩Tc;Vr ≥ c ∣∣∣x∣∣∣2, (2.4.3)

where c > 0 is a constant.
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2. (The upper bound for the critical restricted 2-point function; close to the boundary)
If there exists a parameter κ ≥ 1 such that,

⟨σoσx⟩Tc;Vr ≤ c ∣∣∣x∣∣∣2−d−κ ∣∣∣r − ∣x∣∣∣∣κ, (2.4.4)

for r/2 ≤ ∣x∣ ≤ r.
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Chapter 3

The lace expansion analysis for the
nearest-neighbor models on the BCC
lattice

3.1 Background

3.1.1 The lace expansion

The lace expansion is one of the few mathematically rigorous methods to prove critical
behavior for various statistical-mechanical models in high dimensions. In 1985, Brydges
and Spencer [19] came up to a fascinating idea for weakly SAW. First, they looked at the
naive expansion (1.1.2). Next, from each Γ ∈ G[0, ∣ω∣], they isolated a connected graph
Γ0 ⊂ Γ of the origin. Then, they extracted a minimally connected graph L ⊂ Γ0 called
a lace, and resummed all the other edges in Γ ∖ L to partially restore the self-avoidance
constraint. This is what we nowadays call the algebraic lace expansion, named after the
shape of the aforesaid minimally connected graph. Since then, the algebraic lace expansion
has been successfully applied to other models, such as oriented percolation [73], lattice
trees and lattice animals [53].

Later in 1990s, Hara and Slade (e.g., [55]) came up to a more intuitively understandable
way of deriving the lace expansion. To distinguish it from the algebraic lace expansion, we
sometimes call it the inclusion-exclusion lace expansion. This opened up the possibility of
applying the lace expansion to a wider class of models, including (unoriented) percolation
[54], the contact process [82], the Ising model [79] and the (one-component) ϕ4 model
[81].

From now on, we simply call the latter the lace expansion. We will only show its
derivation for strictly SAW in Section 3.3.1.

The result of the lace expansion is formally explained by the following recursion equa-
tion similar to that for the RW Green function: for any p < pc, there are functions Ip and
Jp such that

Gp(x) = Ip(x) + (Jp ∗Gp)(x). (3.1.1)

If Ip and Jp satisfy certain regularity conditions, then it is natural to believe that the
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global behavior of Gp is also similar to that of the RW Green function and therefore the
infrared bound (1.1.6) holds.

However, since Ip and Jp are described by an alternating series of the lace-expansion
coefficients {π(n)

p }Nn=0, each of which involves complicated local interaction (n represents
the degree of complexity), it is certainly not true that the aforesaid regularity conditions
always hold. In fact, the regularity conditions require the critical bubble (D∗2∗G∗2

pc
)(o) for

SAW and the critical triangle (D∗2∗G∗3
pc
)(o) for percolation to be small, not to be merely

finite. This seemingly tautological statement (i.e., the critical bubble/triangle have to be
small in order to prove them to be finite) is taken care of by the so-called bootstrapping
argument, which will be explained in the later section.

During the course of the bootstrapping argument, we often assume that the number
of neighbors per vertex is sufficiently large. Since each vertex has 2d neighbors on Zd,
it means that d is assumed to be large. For SAW, Hara and Slade [55, 56] succeeded in
showing that d ≥ 5 is large enough to prove mean-field results. For percolation, however,
the situation is not as good as for SAW. The best results so far were obtained by Fitzner
and van der Hofstad [35], in which they proved mean-field results for d ≥ 11 by using
NoBLE, a perturbation method from non-backtracking random walk (= memory-2 SAW).

There is another way to increase the number of neighbors per vertex. Instead of taking
d large, we may enlarge the range L of neighbors. One such example is the spread-out
lattice Z̄dL, in which two distinct vertices x, y ∈ Zd satisfying ∥x − y∥∞ ≤ L are defined to
be neighbors, hence (2L + 1)d − 1 neighbors per vertex. By taking L sufficiently large, all
the models for which the lace expansion was obtained are proven to exhibit mean-field
behavior for all d above the predicted upper-critical dimensions [53, 54, 71, 73, 82, 79, 81].

3.1.2 The motivation for the lace expansion analysis on the BCC
lattice

Since we believe in universality, the mean-field results on the spread-out lattice Z̄dL, as
long as L < ∞, are believed to hold on Zd as well. This is proven to be true for SAW,
but not yet for percolation. We want to get rid of the artificial parameter L and come
up to a decent nearest-neighbor lattice, on which 7-dimensional percolation is proven to
exhibit the mean-field behavior. In an ongoing project with Lung-Chi Chen and Markus
Heydenreich [27], we analyze the lace expansion for percolation on a d-dimensional version
of the body-centered cubic (BCC) lattice, which has better features than the standard Zd,
as explained in the next section. Thanks to those features, enumeration of RW quantities
relevant to the lace-expansion analysis becomes extremely simple. Also, since those RW
quantities are much smaller1 than the Zd-counterparts, it is easy to get closer to the
predicted upper-critical dimension without introducing too much technical complexity.
One of the purposes of the survey [49] is to explain the current status of the BCC work
and reveal the potential problems to overcome for completion of the mean-field picture in
high dimensions.

1A d-dimensional version of the face-centered cubic (FCC) lattice has d2d−1 neighbors per vertex, more
neighbors than on the BCC lattice, and therefore the RW quantities should be much smaller on the FCC
lattice. However, since enumeration of those quantities on the FCC lattice is not so simple (in fact, it is
rather complicated!), we decided to use the more charming BCC lattice.
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Figure 3.1: The basic structure (in red) of the BCC lattice Ld for d = 2,3.

Another purpose of the survey [49] is to provide a relatively short, self-contained note
on the lace expansion for the nearest-neighbor models. Currently, the best references on
Zd are [55, 56] for SAW and [34, 35] for percolation. However, they are not necessarily
accessible to beginners, due to their length (36 + 93 pages for SAW and 79 + 92 pages
for percolation) and complexity. This is really unfortunate because, as mentioned earlier,
the lace expansion can provide a good playground for, e.g., graduate students who may
want to apply mathematical concepts and skills they learned to interesting and important
problems. Considering this situation, we will keep the material as simple as possible,
instead of making all-out efforts to go down to the predicted upper-critical dimensions.
That will be the final goal of [27].

The lace expansion is one of the few mathematically rigorous methods to prove critical
behavior for various statistical-mechanical models in high dimensions. It can show that
the two-point function for the concerned model, up to the critical point, is bounded by
the Green function for the underlying random walk in high dimensions.

3.2 The models and the main result

First, we provide precise definitions of the BCC lattice, self-avoiding walk and percolation.
Then, we show the main result and explain its proof assuming key propositions.

3.2.1 The body-centered cubic (BCC) lattice

The d-dimensional BCC lattice Ld is a graph that contains the origin o = (0, . . . ,0) and is
generated by the set of neighbors {x = (x1, . . . , xd) ∶ ∏d

j=1 ∣xj ∣ = 1}. It is equivalent to Zd
when d = 1 and 2 (modulo rotation by π/4) but is more crowded in higher dimensions in
the sense that the degree of each vertex is 2d on Ld, while it is 2d on Zd. We write x ∼ y
if x, y ∈ Ld are neighbors, i.e., ∏d

j=1 ∣xj − yj ∣ = 1. It is a natural extension of the standard
3-dimensional BCC structure (see Figure 3.1). The d-dimensional Brownian motion with
the identity covariance matrix can be constructed as the scaling limit of random walk
(RW) on Ld generated by the 1-step distribution

D(x) = 1

2d
1{x∼o} =

d

∏
j=1

1

2
δ∣xj ∣,1. (3.2.1)

39



Due to this factorization and Stirling’s formula2, we can obtain a rather sharp bound on
the 2n-step return probability for all n ∈ N, as

0 ≤ (πn)−d/2 −D∗2n(o) ≤ (1 − ed( 1
24n+1

− 1
6n

))(πn)−d/2 ≤ 2d

15n
(πn)−d/2. (3.2.2)

Using this, we can easily evaluate various RW quantities, such as the RW loop ε1, the
RW bubble ε2 and the RW triangle ε3, defined as

εj = (D∗2 ∗ S∗j1 )(o) =
∞
∑
n=1

D∗2n(o) ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 [j = 1],
(2n − 1) [j = 2],
(2n − 1)n [j = 3].

(3.2.3)

For example, if we split the sum into two at n = N , then the RW bubble ε2 in dimensions
d > 4 can be estimated as

0 ≤ ε2 −
N

∑
n=1

(2n − 1)D∗2n(o) ≤ 2π−d/2∫
∞

N
t1−d/2 dt = 4π−d/2

d − 4
N (4−d)/2. (3.2.4)

If we choose d = 5 and N = 100 and use a calculator to evaluate the sum over n ≤ N , then
we obtain ε2 ≤ 0.178465. Table 3.1 summarizes the bounds on those RW quantities in
different dimensions by choosing N = 500 (so that, by (3.2.2), we can show that the RW
triangle ε3 for d = 7 takes a value around the indicated number within 10−6).

Table 3.1: Upper bounds on the RW loop, bubble and triangle for 3 ≤ d ≤ 9.

d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
ε1 0.393216 0.118637 0.046826 0.020461 0.009406 0.004451 0.002144
ε2 ∞ ∞ 0.178332 0.044004 0.015302 0.006156 0.002678
ε3 ∞ ∞ ∞ ∞ 0.052689 0.012354 0.004148

3.2.2 Self-avoiding walk

As declared at the end of Section 3.1, we restrict our attention to strictly SAW, which we
simply call SAW from now on. Let Ω(x, y) be the set of self-avoiding paths on Ld from
x to y. By convention, Ω(x,x) is considered to be a singleton: a zero-step SAW at x.
Then, the SAW two-point function defined in the previous section can be simplified as

Gp(x) = ∑
ω∈Ω(o,x)

p∣ω∣
∣ω∣

∏
j=1

D(ωj − ωj−1), (3.2.5)

2The two-sided bound
1

12n + 1
≤ log

n!
√
2πn(n

e
)n

≤ 1

12n
holds for all n ∈ N [33, Section II.9].
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where the empty product is regarded as 1. Recall that the susceptibility and its critical
point are defined as

χp = ∑
x∈Ld

Gp(x), pc = sup{p ≥ 0 ∶ χp < ∞}. (3.2.6)

For more background and related results before 1993, we refer to the “green” book by
Madras and Slade [71]. For recent progress in various important problems, we refer to
the monograph by Bauerschmidt et al. [12].

3.2.3 Percolation

Here, we introduce bond percolation on Ld. Each bond {u, v} ⊂ Ld randomly takes either
one of the two states, occupied or vacant, independently of the other bonds. We define
the bond-occupation probability of a bond {u, v} as pD(v − u), where p ∈ [0,2d] is the
percolation parameter, which is equal to the expected number of occupied bonds per
vertex. Let Pp be the associated probability measure, and denote its expectation by Ep.

Next, we define the percolation two-point function. In order to do so, we first introduce
the notion of connectivity. We say that a self-avoiding path ω = (ω0, . . . , ω∣ω∣) ∈ Ω(x, y) is
occupied if either x = y or every bj(ω) ≡ {ωj−1, ωj} for j = 1, . . . , ∣ω∣ is occupied. We say
that x is connected to y, denoted by x ←→ y, if there is an occupied self-avoiding path
ω ∈ Ω(x, y). Then, we define the percolation two-point function as

Gp(x) = Pp(o←→ x) = Pp( ⋃
ω∈Ω(o,x)

{ω is occupied}). (3.2.7)

The susceptibility χp and its critical point pc are defined as in (3.2.6). Menshikov [72]
and Aizenman and Barsky [2] independently proved that pc is unique in the sense that it
can also be characterized by the emergence of an infinite cluster of the origin:

pc = inf {p ∈ [0,2d] ∶ Pp(o←→∞) > 0}. (3.2.8)

Recently, Duminil-Copin and Tassion [30] came up to a particularly simple proof of the
uniqueness. They also extended the idea to the Ising model and dramatically simplified
the proof of the uniqueness of the critical temperature, first proven by Aizenman, Barsky
and Fernández [3].

For more background and related results before 1999, we refer to the excellent book
by Grimmett [45]. The book by Bollobás and Riordan [18] also contains progress after
publication of Grimmett’s book.

3.2.4 The infrared bound on the BCC lattice

On the BCC lattice Ld, we can prove the following result without introducing too much
technical complexity.

Theorem 3.2.1 (Infrared bound). For SAW on Ld≥6 and percolation on Ld≥9, there exists
a model-dependent constant K ∈ (0,∞) such that

∥(1 − D̂)Ĝp∥∞ ≤K uniformly in p ∈ [1, pc), (3.2.9)

which implies the mean-field behavior, e.g., γ = 1.
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In the proof of a key proposition necessary for the above theorem, we will also show
that χ1 < ∞. This automatically implies the infrared bound for p ∈ [0,1), since

∥(1 − D̂)Ĝp∥∞ ≤ 2χ1 < ∞. (3.2.10)

The above result for SAW is not as sharp as the result in [55, 56], where Hara and
Slade proved the infrared bound on Zd≥5. If we simply follow their analysis with the same
amount of work, then we should be able to extend the above result to Ld≥5. However,
as is mentioned earlier, this is not our intention. We include the result for SAW as an
example, just to show how easy to prove the infrared bound in such low dimensions with
relatively small effort. Going down from 9 to 7 for percolation will require more serious
effort. This will be the pursuit of the joint work [27].

The proof of the above theorem is rather straightforward, assuming the following three
propositions. To state those propositions, we first define

g1(p) = p, g2(p) = ∥(1 − D̂)Ĝp∥∞. (3.2.11)

Obviously, what we want to do is to show that g2(p) is bounded uniformly in p ∈ [1, pc).
To define one more relevant function g3(p), we introduce the notation for a sort of second
derivative in the Fourier space, in a particular direction. For a function f̂ on Td and
k, l ∈ Td, we let

∆̂kf̂(l) =
f̂(l + k) + f̂(l − k)

2
− f̂(l). (3.2.12)

By simple trigonometric calculation, it is shown in [86, (5.17)] that the Fourier transform
of the RW Green function Ŝ1(k) ≡ (1 − D̂(k))−1, which is well-defined in a proper limit
when d > 2, obeys the inequality

∣∆̂kŜ1(l)∣

≤ Û(k, l) ≡ (1 − D̂(k))( Ŝ1(l + k) + Ŝ1(l − k)
2

Ŝ1(l) + 4Ŝ1(l + k)Ŝ1(l − k)). (3.2.13)

Finally, we define, by using this Û(k, l),

g3(p) = sup
k,l

1

Û(k, l)
×
⎧⎪⎪⎨⎪⎪⎩

∣∆̂kĜp(l)∣ [SAW],
∣∆̂k(Ĝp(l)pD̂(l))∣ [percolation],

(3.2.14)

where the supremum near k = 0 should be interpreted as the supremum over the limit
as ∣k∣ → 0. It will be clear that g3 is defined in slightly different ways between the two
models, due to the difference in the recursion equations obtained by the lace expansion.

For the self-consistency, we recall [86, Lemma 5.7] and its proof. We will also use this
lemma in the lace expansion analysis later.

Lemma 3.2.2. Let a function Â(k) = (1− â(k))−1, where â is the Fourier transform of a
symmetric function a(x) = a(−x) for all x ∈ Zd. Then for all k, l ∈ Td,

∣∆̂kÂ(l)∣ ≤ Â(l + k) + Â(l − k)
2

Â(l) ∣∆̂kâ(l)∣

+ Â(l + k)Â(l − k)Â(l)(−∆̂l ∣̂a∣(0))(−∆̂k ∣̂a∣(0)). (3.2.15)
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Proof. At first, we will show the following identity by simple computation,

∆̂kÂ(l) = Â(l + k) + Â(l − k)
2

Â(l) ∆̂kâ(l)

+ Â(l + k)Â(l − k)Â(l)(∑
x

a(x)(sin l ⋅ x)(sink ⋅ x))
2

. (3.2.16)

By the definition of a second derivative in the Fourier space (3.2.12),

∆̂kÂ(l)

= 1

2
Â(l + k)Â(l − k)Â(l)( 1

Â(l + k)Â(l)
+ 1

Â(l − k)Â(l)
− 2

1

Â(l + k)Â(l − k)
) (3.2.17)

Note that a is a symmetric function, â(l) = ∑x a(x) cosk ⋅ x. By the definition of Â(l),
the terms in the above parenthesis become

−2â(l) + â(l + k) + â(l − k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=2∆̂kâ(l)

−2â(l + k)â(l − k) + â(l − k)â(l) + â(l + k)â(l). (3.2.18)

By using the basic trigonometric identities cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β),

â(l + k)â(l − k) = (∑
x

a(x)(cos l ⋅ x)(cosk ⋅ x))
2

− (∑
x

a(x)(sin l ⋅ x)(sink ⋅ x))
2

, (3.2.19)

â(l + k) + â(l + k) = 2 ∑
x

a(x)(cos l ⋅ x)(cosk ⋅ x). (3.2.20)

Thus, the latter terms in (3.2.18) become

2 (â(l) −∑
x

a(x)(cos l ⋅ x)(cosk ⋅ x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−∆̂kâ(l)

(∑
x

a(x)(cos l ⋅ x)(cosk ⋅ x))

+ 2(∑
x

a(x)(sin l ⋅ x)(sink ⋅ x))
2

. (3.2.21)

Therefore,

∆̂kÂ(l) = Â(l + k)Â(l − k)Â(l) ∆̂kâ(l)(1 −∑
x

a(x)(cos l ⋅ x)(cosk ⋅ x))

+ Â(l + k)Â(l − k)Â(l)(∑
x

a(x)(sin l ⋅ x)(sink ⋅ x))
2

. (3.2.22)

Noting that the quantity in the parenthesis in the first term above becomes 1
2
((1 − â(l +

k)) + (1 − â(l − k))), we obtain the identity (3.2.16). The upper bound in (3.2.15) is
obtained by applying the Schwarz inequality to the sum in the identity (3.2.16) and using
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the basic inequality sin2 t = (1+ cos t)(1− cos t) ≤ 2(1− cos t). This completes the proof of
Lemma 3.2.2.

Now, we state the aforementioned three propositions and show that they indeed imply
Theorem 3.2.1.

Proposition 3.2.3 (Continuity). The functions {gi(p)}3
i=1 are continuous in p ∈ [1, pc).

Proposition 3.2.4 (Initial conditions). For SAW on Ld≥6 and percolation on Ld≥8, there
are model-dependent finite constants {Ki}3

i=1 such that gi(1) <Ki for i = 1,2,3.

Proposition 3.2.5 (Bootstrapping argument). For SAW on Ld≥6 and percolation on Ld≥9,
we fix p ∈ (1, pc) and assume gi(p) ≤ Ki, i = 1,2,3, where {Ki}3

i=1 are the same constants
as in Proposition 3.2.4. Then, the stronger inequalities gi(p) <Ki, i = 1,2,3, hold.

Here we prove the main result Theorem 3.2.1 and Proposition 3.2.3, whose proofs are
separated from the lace expansion analysis.

Proof of Theorem 3.2.1. Since g2(p) is continuous in p ∈ [1, pc), with the initial value
g2(1) < K2, and cannot be equal to K2 for p ∈ (1, pc ∧K1), we can say that the strict
inequality g2(p) < K2 holds for all p ∈ [1, pc ∧K1). Since the same argument applies to
g1(p), we can conclude pc ≤ K1, hence g2(p) < K2 for all p ∈ [1, pc) (see Figure 3.2). This
completes the proof of Theorem 3.2.1 assuming Propositions 3.2.3–3.2.5.

Proof of Proposition 3.2.3. First, we recall (3.2.11) and (3.2.14) for the bootstrapping
functions {gi(p)}3

i=1. Obviously, g1(p) ≡ p is continuous. To prove continuity of the other
two, we introduce

g̃2,k(p) = (1 − D̂(k))Ĝp(k), (3.2.23)

g̃3,k,l(p) =
1

Û(k, l)
×
⎧⎪⎪⎨⎪⎪⎩

∆̂kĜp(l) [SAW],
∆̂k(Ĝp(l)D̂(l)) [percolation],

(3.2.24)

and show that they are continuous in p ∈ [1, pc) for every k, l ∈ Td. However, since

g2(p) = sup
k∈Td

∣g̃2,k(p)∣, g3(p) = sup
k,l∈Td

∣g̃3,k,l(p)∣, (3.2.25)

and the supremum of continuous functions is not necessarily continuous, we must be a
bit more cautious here. The following elementary lemma provides a sufficient condition
for the supremum to be continuous.

Lemma 3.2.6 (Lemma 5.13 of [86], in our language). Fix p0 ∈ [1, pc) and let {f̂k(p)}k∈Td
be an equicontinuous family of functions in p ∈ [1, p0]. Suppose that supk∈Td f̂k(p) < ∞ for
every p ∈ [1, p0]. Then, supk∈Td f̂k(p) < ∞ is continuous in p ∈ [1, p0].

Therefore, in order to prove continuity of {gi(p)}i=2,3 in p ∈ [1, pc), we want to show
that {g̃2,k(p)}k∈Td and {g̃3,k,l(p)}k,l∈Td are equicontinuous families of functions in p ∈ [1, p0]
for each p0 ∈ [1, pc). To prove this, it then suffices to show that the following (i) and (ii)
hold.

(i) g̃2,k(p) and ∂pg̃2,k(p) are finite uniformly in k ∈ Td and p ∈ [1, p0].
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(ii) g̃3,k,l(p) and ∂pg̃3,k,l(p) are finite uniformly in k, l ∈ Td and p ∈ [1, p0].

To prove (i) is not so hard. By 0 ≤ 1 − D̂(k) ≤ 2, ∣Ĝp(k)∣ ≤ χp and the monotonicity of
χp in p, we obtain ∣g̃2,k(p)∣ ≤ 2χp0 < ∞ uniformly in k ∈ Td and p ∈ [1, p0]. Moreover, by
subadditivity for SAW, Russo’s formula and the BK inequality for percolation (see, e.g.,
[45]), and then using translation-invariance, we obtain

0 ≤ ∂pGp(x) ≤ (D ∗G∗2
p )(x), (3.2.26)

hence

∣∂pg̃2,k(p)∣ ≤ 2∑
x

(D ∗G∗2
p )(x) ≤ 2χ2

p0
< ∞, (3.2.27)

uniformly in k ∈ Td and p ∈ [1, p0], as required.
To prove (ii) needs extra care, especially near k = 0, because of the factor 1 − D̂(k) in

Û(k, l). Here, we prove (ii) only for SAW. See [49] for the proof for percolation.

Proof of (ii) for SAW. First, we use the following lemma in [34, Appendix A].

Lemma 3.2.7. Let J ∈ N and tj ∈ R for j = 1, . . . , J . Then

0 ≤ 1 − cos
J

∑
j=1

tj ≤ J
J

∑
j=1

(1 − cos tj). (3.2.28)

By using this telescopic inequality, we obtain

∣∆̂kĜp(l)∣ ≤ ∑
x

(1 − cosk ⋅ x)Gp(x)

= ∑
x

∑
ω∈Ω(o,x)

(1 − cos
∣ω∣

∑
i=1

k ⋅ (ωi − ωi−1))p∣ω∣
∣ω∣

∏
j=1

D(ωj − ωj−1)

≤ ∑
u,v,x

(1 − cosk ⋅ (v − u)) ∑
ω∈Ω(o,x)

∣ω∣
∣ω∣

∑
i=1

1{bi(ω)=(u,v)}p
∣ω∣

∣ω∣

∏
j=1

D(ωj − ωj−1). (3.2.29)

Ignoring the self-avoidance constraint between η ≡ (ω0, . . . , ωi−1) and ξ ≡ (ωi, . . . , ω∣ω∣) and

using translation-invariance, we can further bound ∣∆̂kĜp(l)∣ as

∣∆̂kĜp(l)∣ ≤ ∑
u,v,x

(1 − cosk ⋅ (v − u))pD(v − u) ∑
η∈Ω(o,u)
ξ∈Ω(v,x)

(∣η∣ + ∣ξ∣ + 1)

× p∣η∣
∣η∣

∏
i=1

D(ηi − ηi−1) p∣ξ∣
∣ξ∣

∏
j=1

D(ξj − ξj−1)

≤ 2p(1 − D̂(k))χp∑
x

∑
ω∈Ω(o,x)

(∣ω∣ + 1)p∣ω∣
∣ω∣

∏
j=1

D(ωj − ωj−1). (3.2.30)

However, by the identity ∣ω∣ + 1 = ∑y 1{y∈ω} for a self-avoiding path ω, subadditivity and
translation-invariance, the sum in the last line is bounded as

∑
x

∑
ω∈Ω(o,x)

(∣ω∣ + 1)p∣ω∣
∣ω∣

∏
j=1

D(ωj − ωj−1) ≤ ∑
x,y

Gp(y)Gp(x − y) = χ2
p. (3.2.31)
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As a result, we arrive at

∣∆̂kĜp(l)∣ ≤ 2p0(1 − D̂(k))χ3
p0
, (3.2.32)

which implies that g̃3,k,l(p) is finite uniformly in k, l ∈ Td and p ∈ [1, p0].
For the derivative ∂pg̃3,k,l(p) ≡ Û(k, l)−1∆̂k∂pĜp(l), we note that

∣∆̂k∂pĜp(l)∣
(3.2.26)
≤ ∑

x

(1 − cosk ⋅ x)(D ∗G∗2
p )(x)

(3.2.28)
≤ 3((1 − D̂(k))χ2

p + 2χp∑
v

(1 − cosk ⋅ v)Gp(v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∆̂kĜp(0)

)

(3.2.32)
≤ 3(1 − D̂(k))χ2

p0
(1 + 4p0χ

2
p0
). (3.2.33)

Therefore, ∂pg̃3,k,l(p) is also finite uniformly in k, l ∈ Td and p ∈ [1, p0].

To close this subsection, we recall the actual proof of Lemma 3.2.7 for completeness.

Proof of Lemma 3.2.7. First, we take the real part of the telescopic identity

1 − exp(i
J

∑
j=1

tj) =
J

∑
j=1

(1 − eitj) exp(i
j−1

∑
h=1

th), (3.2.34)

where the empty sum for j = 1 is regarded as zero. Then, we use the basic three inequalities

∣ sin
j−1

∑
h=1

th∣ ≤
j−1

∑
h=1

∣ sin th∣, ∣ sin tj ∣∣ sin th∣ ≤ (sin2 tj + sin2 th)/2,

sin2 tj = (1 + cos tj)(1 − cos tj) ≤ 2(1 − cos tj), (3.2.35)

to obtain

1 − cos(
J

∑
j=1

tj) −
J

∑
j=1

(1 − cos tj) = −
J

∑
j=1

(1 − cos tj)(1 − cos
j−1

∑
h=1

th)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

+
J

∑
j=1

(sin tj) sin
j−1

∑
h=1

th

≤
J

∑
j=1

j−1

∑
h=1

sin2 tj + sin2 th
2

≤ (J − 1)
J

∑
j=1

(1 − cos tj), (3.2.36)

which implies (3.2.28). This completes the proof of Lemma 3.2.7

3.2.5 Where and how to use the lace expansion

It remains to prove Propositions 3.2.4 and 3.2.5. To prove remaning two propositions, we
will use the following lace expansion.
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g2(p)

K2

0 1 pc K1 p

Figure 3.2: Depiction of the proof of Theorem 3.2.1 assuming Propositions 3.2.3–3.2.5.

Proposition 3.2.8 (Lace expansion). For any p < pc and N ∈ Z+ ≡ {0} ∪N, there exist
model-dependent nonnegative functions {π(n)

p }Nn=0 on Ld (π(0)
p ≡ 0 for SAW) such that, if

we define I (N)

p and J (N)

p as

I (N)

p (x) = δo,x +
⎧⎪⎪⎨⎪⎪⎩

0 [SAW],
∑N
n=0(−1)nπ(n)

p (x) [percolation],
(3.2.37)

J (N)

p (x) = pD(x) +
⎧⎪⎪⎨⎪⎪⎩

∑N
n=1(−1)nπ(n)

p (x) [SAW],
∑N
n=0(−1)n(π(n)

p ∗ pD)(x) [percolation],
(3.2.38)

then we obtain the recursion equation

Gp(x) = I (N)

p (x) + (J (N)

p ∗Gp)(x) + (−1)N+1R(N+1)
p (x), (3.2.39)

where the remainder R(N)

p obeys the bound

0 ≤ R(N)

p (x) ≤ (π(N)

p ∗Gp)(x). (3.2.40)

The derivation of the lace expansion is model-dependent and is explained for SAW in
the next section. See [49] for percolation for explanation.

Here, we briefly explain where and how to use the lace expansion to prove Proposi-
tions 3.2.4–3.2.5. The details will be given in later section.

Step 1. First, we evaluate {gi(p)}3
i=1 in terms of sums of π̂(n)

p (k) ≡ ∑x e
ik⋅xπ(n)

p (x).
(i) Let p ∈ [1, pc) and suppose ∑∞

n=0 π̂
(n)
p (0) is small enough to ensure that

lim
N→∞

π̂(N)

p (0) = 0, Îp(k) ≡ lim
N→∞

Î (N)

p (k) > 0 uniformly in p and k. (3.2.41)

The latter is always true for SAW since Îp(k) ≡ 1. The former implies that

0 ≤ ∑
x∈Ld

R(N)

p (x) ≤ π̂(N)

p (0)χp ÐÐÐ→
N→∞

0. (3.2.42)
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Let (n.b. π(0)
p ≡ 0 for SAW)

Π̂p(k) =
∞
∑
n=0

(−1)nπ̂(n)
p (k), Ĵp(k) = pD̂(k) +

⎧⎪⎪⎨⎪⎪⎩

Π̂p(k) [SAW],
Π̂p(k)pD̂(k) [percolation].

(3.2.43)

Then, by using (3.2.39), we obtain

χp ≡ Ĝp(0) = Îp(0) + Ĵp(0)χp =
Îp(0)

1 − Ĵp(0)
. (3.2.44)

Since χp ≥ 0 and Îp(0) > 0, we can conclude Ĵp(0) ≤ 1, which implies

g1(p) ≤
⎧⎪⎪⎨⎪⎪⎩

1 − Π̂p(0) [SAW],
(1 + Π̂p(0))−1 [percolation].

(3.2.45)

(ii) Next, by (3.2.39) and (3.2.44), we obtain

Ĝp(k) =
Îp(k)

1 − Ĵp(k)
=

Îp(k)
−∆̂kĴp(0) + Îp(0)/χp

, (3.2.46)

where we have used the symmetry Ĵp(k) = Ĵp(−k) to obtain −∆̂kĴp(0) = Ĵp(0) − Ĵp(k).
Suppose −∑∞

n=0 ∆̂kπ̂
(n)
p (0) ≡ ∑∞

n=0∑x(1 − cosk ⋅ x)π(n)
p (x) is smaller than 1 − D̂(k) in order

to ensure −∆̂kĴp(0) ≥ 0. Then, Ĝp(k) is bounded as3

0 ≤ Ĝp(k) ≤
Îp(k)

−∆̂kĴp(0)
. (3.2.49)

Since p ≥ 1, this implies

g2(p) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup
k

(1 +
−∆̂kΠ̂p(0)
1 − D̂(k)

)
−1

[SAW],

sup
k

(1 + 1

Îp(k)
−∆̂kΠ̂p(0)
1 − D̂(k)

)
−1

[percolation],
(3.2.50)

3For percolation, the non-negativity of Ĝp(k) is elementary and proven in [8, Lemma 3.3]. The actual

proof goes as follows. First, by translation-invariance, we can use any vertex y to rewrite Ĝp(k) as

Ĝp(k) = ∑
x

eik⋅xPp(o←→ x) = ∑
x

eik⋅xPp(y ←→ x + y) = Ep[∑
z

eik⋅(z−y)1{y←→z}]. (3.2.47)

Then, by using the identity 1 = ∑y 1{y∈C(o)}/∣C(o)∣, where C(o) is the set of vertices connected from o, we
can rewrite the rightmost expression as

Ep[
1

∣C(o)∣ ∑y∈C(o)
∑
z

eik⋅(z−y)1{y←→z}] = Ep[
1

∣C(o)∣ ∑
y,z∈C(o)

eik⋅(z−y)] = Ep[∣
1√

∣C(o)∣
∑

z∈C(o)
eik⋅z∣

2

] ≥ 0.

(3.2.48)
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where the supremum near k = 0 should be interpreted as the supremum over the limit as
∣k∣ → 0.

(iii) To evaluate g3(p), we want to use Lemma 3.2.2. To do so for percolation, we first
notice that, by using Îp(k)pD̂(k) = Ĵp(k) and (3.2.46), we obtain

Ĝp(k)pD̂(k) =
Ĵp(k)

1 − Ĵp(k)
= 1

1 − Ĵp(k)
− 1 ≡ Âp(k) − 1, (3.2.51)

hence ∆̂k(Ĝp(l)pD̂(l)) = ∆̂kÂp(l). As a result, g3(p) for both models can be written as

g3(p) = sup
k,l

∣∆̂kÂp(l)∣
Û(k, l)

. (3.2.52)

Then, noting Âp(k) = (−∆̂kĴp(0) + Îp(0)/χp)−1 ≥ 0, by Lemma 3.2.2 with a(x) = Jp(x),
we obtain

g3(p) ≤ sup
k,l

1 − D̂(k)
Û(k, l)

(
Âp(l + k) + Âp(l − k)

2
Âp(l)

∣∆̂kĴp(l)∣
1 − D̂(k)

+ 4Âp(l + k)Âp(l − k)
−∆̂l ∣̂Jp∣(0)
1 − Ĵp(l)

−∆̂k ∣̂Jp∣(0)
1 − D̂(k)

), (3.2.53)

where

∣̂Jp∣(k) = ∑
x∈Ld

eik⋅x∣Jp(x)∣. (3.2.54)

We can further bound ∣∆̂kĴp(l)∣ and −∆̂k ∣̂Jp∣(0) ≡ ∣̂Jp∣(0) − ∣̂Jp∣(k) ≥ 0 in terms of sums

of ∣∆̂kπ̂
(n)
p (0)∣. However, to simplify the exposition, we refrain from doing so for now and

postpone it to later section.
So far, we have assumed that ∑∞

n=0 π̂
(n)
p (0) and −∑∞

n=0 ∆̂kπ̂
(n)
p (0) are small enough to

carry out the above computations. Sufficient conditions to this assumption are

∞
∑
n=1

π̂(n)
p (0) < ∞, sup

k

∞
∑
n=1

−∆̂kπ̂
(n)
p (0)

1 − D̂(k)
< 1 (3.2.55)

for SAW, and

∞
∑
n=0

π̂(n)
p (0) + sup

k

∞
∑
n=0

−∆̂kπ̂
(n)
p (0)

1 − D̂(k)
< 1 (3.2.56)

for percolation. These conditions are to be verified eventually.

Step 2. As shown in (3.2.45), (3.2.50) and (3.2.53), the bootstrapping functions {gi(p)}3
i=1

are bounded in terms of sums of π̂(n)
p (0) and sums of ∣∆̂kπ̂

(n)
p (0)∣. In the second step, we

evaluate those lace-expansion coefficients in terms of smaller diagrams, such as

Lp = ∥(pD)∗2 ∗Gp∥∞, Bp = ∥(pD)∗2 ∗G∗2
p ∥∞, Tp = ∥(pD)∗2 ∗G∗3

p ∥∞. (3.2.57)
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For example, we can bound π̂(n)
p for n ≥ 2 as

0 ≤ π̂(n)
p (0) ≤

⎧⎪⎪⎨⎪⎪⎩

Bp(p∥D∥∞ +Lp)rn−2 [SAW],
(1 + 1

2Bp + Tp)2rρn−1 [percolation],
(3.2.58)

where

r = p∥D∥∞ +Lp +Bp, ρ = (1 + 1

2
Bp + Tp)(r + Tp) + Tp(2r + Tp) (3.2.59)

See Sections 3.3 for the proof of the above inequality and the bound on π̂(1)
p (0) for SAW.

See [49] for the proof of the above inequality and the bounds on π̂(0)
p (0) and π̂(1)

p (0) for
percolation. It will also be shown that the amplitude of ∣∆̂kπ̂

(n)
p (0)∣/(1−D̂(k)) is bounded

in a similar fashion, with the common ratio r for SAW and ρ for percolation. Therefore,
the assumptions made in Step 1 hold if Lp,Bp, Tp and other diagrams in the bounds are
small enough.

Step 3. In the final step, we investigate the aforesaid diagrams and prove that, by
choosing appropriate values for {Ki}3

i=1, those diagrams are indeed small enough for SAW
on Ld≥6 and for percolation on Ld≥9.

(i) For p = 1, we only need to use the trivial inequality G1(x) ≤ S1(x), x ∈ Ld, for both
models to obtain that, for d > 2 (as mentioned earlier, Ŝ1(k) ≡ (1−D̂(k))−1 is well-defined
in a proper limit when d > 2),

L1 ≤ ∥D∗2 ∗ S1∥∞ = ∫
Td

D̂(k)2

1 − D̂(k)
ddk

(2π)d
= (D∗2 ∗ S1)(o) ≡ ε1. (3.2.60)

Similarly, we obtain

B1 ≤ ε2, T1 ≤ ε3. (3.2.61)

Consulting with Table 3.1 in Section 3.2.1, we can see that, even in dc + 1 dimensions,
r and ρ in (3.2.59) are small enough for the bootstrapping functions {gi(p)}3

i=1 to be
convergent.

(ii) The strategy for p ∈ (1, pc) is different from that for p = 1, because there is no a
priori bound on Gp in terms of S1. Here, we use the assumptions gi(p) ≤ Ki, i = 1,2,3,
to evaluate the diagrams. For example,

Lp ≤ p2∫
Td
D̂(k)2∣Ĝp(k)∣

ddk

(2π)d
≤K2

1K2∫
Td

D̂(k)2

1 − D̂(k)
ddk

(2π)d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=ε1

. (3.2.62)

Similarly,

Bp ≤K2
1K

2
2ε2, Tp ≤K2

1K
3
2ε3. (3.2.63)

As a result, r and ρ in (3.2.59) become functions of {Ki}i=1,2. If we choose their values
appropriately, then we can derive the improved bound g1(p) < K1 for all d ≥ dc + 1. To
improve the bounds on {gi(p)}i=2,3, we also have to control K3. This is the worst enemy
that keeps us from going down to dc + 1 dimensions. In [27], we will make all-out efforts
to overcome this problem.
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3.2.6 Organization

In the rest of this chapter, we prove the above propositions in detail. We focus on the
lace expansion analysis for SAW and omit the full details for percolation. See [49].

In Section 3.3, we prove Propositions 3.2.4, 3.2.5, and 3.2.8 for SAW as follows. In
Section 3.3.1, we explain the derivation of the lace expansion (Proposition 3.2.8) for
SAW. In Section 3.3.2, we prove bounds on the lace-expansion coefficients in terms of
basic diagrams, as briefly explained in Step 2 in Section 3.2.5. In Section 3.3.4, we prove
bounds on those basic diagrams in terms of RW quantities, as explained in Step 3 in
Section 3.2.5. Applying them to the bounds on the bootstrapping functions {gi(p)}3

i=1

obtained in Step 1 in Section 3.2.5, we prove Propositions 3.2.4–3.2.5 on Ld≥6. Finally, in
Section 3.3.5, we provide further discussion to potentially improve our results.

3.3 Lace-expansion analysis for self-avoiding walk

In this section, we prove Propositions 3.2.4–3.2.8 for SAW. First, in Section 3.3.1, we
explain the derivation of the lace expansion, Proposition 3.2.8, for SAW. In Section 3.3.2,
we prove bounds on the lace-expansion coefficients in terms of basic diagrams, such as Lp
and Bp. Finally, in Section 3.3.4, we prove bounds on those basic diagrams in terms of RW
loops and RW bubbles and use them to prove Propositions 3.2.4–3.2.5 on Ld≥6. We close
this section by addressing potential elements for extending the result to 5 dimensions, in
Section 3.3.5.

3.3.1 Derivation of the lace expansion

Proposition 3.2.8 for SAW is restated as follows.

Proposition 3.3.1 (Lace expansion for SAW). For any p < pc and N ∈ N, there are
nonnegative functions {π(n)

p }Nn=1 on Ld such that, if we define Π(N)

p as

Π(N)

p (x) =
N

∑
n=1

(−1)nπ(n)
p (x), (3.3.1)

then we obtain the recursion equation

Gp(x) = δo,x + ((pD +Π(N)

p ) ∗Gp)(x) + (−1)N+1R(N+1)
p (x), (3.3.2)

where the remainder R(N)

p obeys the bound

0 ≤ R(N)

p (x) ≤ (π(N)

p ∗Gp)(x). (3.3.3)

Sketch proof of Proposition 3.3.1. First, we derive the first expansion, i.e., (3.3.2) for
N = 1. For notational convenience, we use

P (ω) = p∣ω∣
∣ω∣

∏
j=1

D(ωj − ωj−1). (3.3.4)
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Then, by splitting the sum in (3.2.5) into two depending on whether ∣ω∣ is zero or positive,
we obtain

Gp(x) = δo,x + ∑
ω∈Ω(o,x)
(∣ω∣≥1)

P (ω) = δo,x +∑
y

pD(y) ∑
ω∈Ω(y,x)

P (ω)1{o ∉ω}. (3.3.5)

This is depicted as

o x = δo,x + o x (3.3.6)

where the rectangle next to the origin represents that there is a bond from o to a neigh-
boring vertex y, which is summed over Ld and unlabeled in the picture, and the dashed
two-sided arrow represents mutual avoidance between o and SAWs from y to x, which
corresponds to the indicator 1{o ∉ω} in (3.3.5). Using the identity 1{o ∉ω} = 1 − 1{o ∈ω} due
to the inclusion-exclusion relation, we complete the first expansion as

Gp(x) = δo,x + o x − o x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡R(1)

p (x)

= δo,x + (pD ∗Gp)(x) −R(1)
p (x). (3.3.7)

Next, we expand the remainder R(1)
p (x) to complete the first expansion. Splitting each

SAW from y (summed over Ld and unlabeled in the picture) to x through o into two
SAWs, ω1 ∈ Ω(y, o) and ω2 ∈ Ω(o, x) (in red), we can rewrite R(1)

p (x) as

R(1)
p (x) = o x (3.3.8)

where the dashed two-sided arrow implies that the concatenation of ω1 and ω2 in this
order, denoted ω1 ○ ω2, is SAW. Using the identity 1{ω1○ω2 is SAW} = 1 − 1{ω1○ω2 is not SAW},
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we obtain

R(1)
p (x) = o x − o x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡R(2)

p (x)

= ∑
y

o=y
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≡π(1)
p (y)

Gp(x − y) −R(2)
p (x), (3.3.9)

where the precise definition of π(1)
p (x) is the following:

π(1)
p (x) = (pD ∗Gp)(o) δo,x. (3.3.10)

Since R(2)
p (x) is nonnegative, this also implies (3.3.3) for N = 1. This completes the first

expansion.
To show how to derive the higher-order expansion coefficients, we further demonstrate

the expansion of the remainder R(2)
p (x). Since ω1 ○ω2 is not SAW, there must be at least

one vertex other than o where ω2 hits ω1. Take the first such vertex, say, z ≠ o, which is
summed over Ld and unlabeled in the following picture, and split ω2 ∈ Ω(o, x) into two
SAWs, ω21 ∈ Ω(o, z) and ω22 ∈ Ω(z, x) (in blue), so that ω1 ∩ ω21 = {o, z}. Then, we can
rewrite R(2)

p (x) as

R(2)
p (x) = o x (3.3.11)

where the dashed two-sided arrow between the red ω21 and the blue ω22 implies that the
concatenation ω21○ ω22 is SAW. Using the identity 1{ω21○ω22 is SAW} = 1−1{ω21○ω22 is not SAW},
we obtain

R(2)
p (x) = o x − o x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡R(3)

p (x)
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= ∑
y

y

o

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
≡π(2)
p (y)

Gp(x − y) −R(3)
p (x), (3.3.12)

where the precise definition of π(2)
p (x) is the following:

π(2)
p (x) = (1 − δo,x) ∑

ω1,ω2,ω3∈Ω(o,x)
P (ω1)P (ω2)P (ω3)∏

i≠j
1{ωi∩ωj={o,x}}. (3.3.13)

Since R(3)
p (x) is nonnegative, this implies (3.3.3) for N = 2, as required.

By repeated application of inclusion-exclusion relations, we obtain the lace expansion
(3.3.2), with the lace-expansion coefficients depicted as

π(3)
p (x) =

o x

, π(4)
p (x) =

o

x

, π(5)
p (x) =

o x

, . . . (3.3.14)

where the slashed line segments represent SAWs with length ≥ 0, while the others rep-
resent SAWs with length ≥ 1. The unlabeled vertices are summed over Ld. Due to the
construction explained above, the red line segments avoid the black ones, the blue ones
avoid the red ones, the yellow ones avoid the blue ones, and so on. We complete the
sketch proof of Proposition 3.3.1.

3.3.2 Diagrammatic bounds on the expansion coefficients

As explained in Step 1 in Section 3.2.5, the bootstrapping functions {gi(p)}3
i=1 are bounded

in terms of sums of π̂(n)
p (0) and ∣∆̂kπ̂

(n)
p (0)∣. In this subsection, we prove bounds on those

quantities in terms of basic diagrams, such as Lp and Bp in (3.2.57), as briefly explained
in Step 2 in Section 3.2.5. Recall that

Lp = ∥(pD)∗2 ∗Gp∥∞, Bp = ∥(pD)∗2 ∗G∗2
p ∥∞, r = p∥D∥∞ +Lp +Bp. (3.3.15)

We also define

B′
p = ∥(pD)∗4 ∗G∗2

p ∥∞, Ŵp(k) = sup
x

(1 − cosk ⋅ x)Gp(x). (3.3.16)

Lemma 3.3.2 (Diagrammatic bounds on the expansion coefficients). The expansion co-
efficients π̂(n)

p (0) ≡ ∑x π
(n)
p (x) and ∣∆̂kπ̂

(n)
p (0)∣ ≡ ∑x(1 − cosk ⋅ x)π(n)

p (x), both nonnegative,
obey the following bounds:

π̂(n)
p (0) ≤

⎧⎪⎪⎨⎪⎪⎩

Lp [n = 1],
Bp(p∥D∥∞ +Lp)rn−2 [n ≥ 2],

(3.3.17)

∣∆̂kπ̂
(n)
p (0)∣ ≤

⎧⎪⎪⎨⎪⎪⎩

B2
pŴp(k)m2r2m−2 [n = 2m + 1],

B2
pŴp(k)m(m − 1)r2m−3 +BpŴp(k)mr2m−2 [n = 2m].

(3.3.18)

For ∣∆̂kπ̂
(2)
p (0)∣, in particular, the following bound also holds:

∣∆̂kπ̂
(2)
p (0)∣ ≤

3Bp

2d
p(1 − D̂(k)) +B′

pŴp(k). (3.3.19)
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Remark 3.3.3. As shown in (3.3.61) and (3.3.56) in the next subsection, ∥Ŵp/(1− D̂)∥∞
could be relatively large, compared to Lp,Bp and r. Therefore, if we want to have a good

bound on ∣∆̂kπ̂
(n)
p (0)∣/(1 − D̂(k)), we should have a small multiplicative factor to Ŵp(k).

By (3.3.18), that multiplicative factor is at most ⌊n2 ⌋2Bprn−2 for n ≥ 2 (it is zero for n = 1,
due to the definition of π(1)

p ) and the dominant contribution comes from the case of n = 2,
i.e., Bp. In (3.3.19), on the other hand, the multiplicative factor to Ŵp(k) is B′

p, which
is potentially much smaller than Bp. This can be seen by comparing the RW versions of
Bp and B′

p, which are the RW bubble ε2 and

ε′2 = (D∗4 ∗ S2
1)(o) =

∞
∑
n=2

(2n − 3)D∗2n(o). (3.3.20)

Table 3.2 summarizes the bounds on those RW bubbles that are evaluated as explained
in Section 3.2.1.

Table 3.2: Comparison of upper bounds on the RW bubbles for 4 ≤ d ≤ 9.

d = 4 d = 5 d = 6 d = 7 d = 8 d = 9
ε2 ∞ 0.178332 0.044004 0.015302 0.006156 0.002678
ε′2 ∞ 0.115931 0.018708 0.004302 0.001161 0.000344

The amount of extra work caused by the use of (3.3.19) instead of using only (3.3.18)
is quite small. However, this is the key to be able to go down to 6 dimensions. We will
get back to this point in Section 3.3.5.

Sketch proof of Lemma 3.3.2. In the following, we repeatedly use the trivial inequality

Gp(x)1{x≠o} ≤ (pD ∗Gp)(x). (3.3.21)

For example,

π̂(1)
p (0) = ∑

x≠o
pD(x)Gp(x) ≤ ((pD)∗2 ∗Gp)(o) ≤ Lp. (3.3.22)

For n ≥ 2, we first decompose π̂(n)
p (0) by using subadditivity and then repeatedly apply

(3.3.21) to obtain (3.3.17). For example,

π̂(2)
p (0) =

o

≤ (∑
x≠o

Gp(x)2)( sup
x≠o

Gp(x))

(3.3.21)
≤ ((pD)∗2 ∗G∗2

p )(o)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤Bp

( sup
x≠o

(pD ∗Gp)(x)), (3.3.23)
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and

π̂(5)
p (0) =

o

≤ (∑
x≠o

Gp(x)2)( sup
x≠o

∑
y≠x

Gp(y)Gp(x − y))
3

( sup
x≠o

Gp(x))

(3.3.21)
≤ Bp( sup

x
(pD ∗G∗2

p )(x))
3

( sup
x

(pD ∗Gp)(x)). (3.3.24)

In general, π̂(n)
p (0) for n ≥ 2 is bounded by the right-most expression with the power 3

replaced by n − 2. Notice that, by omitting the spatial variables, we have

pD ∗Gp = pD ∗ (δ + (1 − δ)Gp)
(3.3.21)
≤ pD + (pD)∗2 ∗Gp, (3.3.25)

where δ is the Kronecker delta, hence

sup
x

(pD ∗Gp)(x) ≤ p∥D∥∞ + ∥(pD)∗2 ∗Gp∥∞ = p∥D∥∞ +Lp. (3.3.26)

Similarly, we have

pD ∗G∗2
p = pD ∗Gp ∗ (δ + (1 − δ)Gp)

(3.3.21)
≤ pD ∗Gp + (pD)∗2 ∗G∗2

p

= pD ∗ (δ + (1 − δ)Gp) + (pD)∗2 ∗G∗2
p

(3.3.21)
≤ pD + (pD)∗2 ∗Gp + (pD)∗2 ∗G∗2

p , (3.3.27)

hence

sup
x

(pD ∗G∗2
p )(x) ≤ p∥D∥∞ + ∥(pD)∗2 ∗Gp∥∞ + ∥(pD)∗2 ∗G∗2

p ∥∞

= p∥D∥∞ +Lp +Bp ≡ r. (3.3.28)

This completes the proof of (3.3.17).
Next, we prove (3.3.18) for n = 2m+1. Since π(1)

p (x) is proportional to δo,x and therefore

∆̂kπ̂
(1)
p (0) ≡ 0, we can assume m ≥ 1. To bound ∣∆̂kπ̂

(2m+1)
p (0)∣ ≡ ∑x(1 − cosk ⋅ x)π(2m+1)

p (x)
for m ≥ 1, we first identify the diagram vertices along the lowest diagram path from o
to x, say, y1, . . . , ym−1, and then split x into {yj − yj−1}mj=1, where y0 = o and ym = x. For
example,

∣∆̂kπ̂
(5)
p (0)∣ = ∑

y1,y2

(1 − cos ∑
j=1,2

k ⋅ (yj − yj−1))
y0=o y2

y1

(3.3.29)
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Then, by using (3.2.28) and subadditivity, we obtain

∣∆̂kπ̂
(5)
p (0)∣ ≤ 2 ∑

y1,y2

((1 − cosk ⋅ y1) + (1 − cosk ⋅ (y2 − y1)))

× (Gp(y1)
o y2

y1

+ Gp(y2 − y1)
o y2

y1

)

≤ 2Ŵp(k)(
o

+
o

). (3.3.30)

Each remaining diagram is bounded, by following similar decomposition to (3.3.23)–
(3.3.24) and then using (3.3.28), by B2

pr
2, yielding the desired bound on ∣∆̂kπ̂

(5)
p (0)∣.

In general,

∣∆̂kπ̂
(2m+1)
p (0)∣ ≤mŴp(k) × (m diagrams, each bounded by B2

pr
2m−2)

≤ B2
pŴp(k)m2r2m−2, (3.3.31)

as required.
To prove (3.3.18) for n = 2m, we follow the same line as above for n = 2m + 1. To

bound ∣∆̂kπ̂
(2m)

p (0)∣ ≡ ∑x(1− cosk ⋅x)π(2m)

p (x), we first identify the diagram vertices along
the lowest diagram path from o to x, say, y1, . . . , ym−1, and then split x into {yj −yj−1}mj=1,
where y0 = o and ym = x. For example,

∣∆̂kπ̂
(4)
p (0)∣ = ∑

y1,y2

(1 − cos ∑
j=1,2

k ⋅ (yj − yj−1))
y0=o

y2

y1

(3.3.32)

Then, by using (3.2.28) and subadditivity, we obtain

∣∆̂kπ̂
(4)
p (0)∣ ≤ 2 ∑

y1,y2

((1 − cosk ⋅ y1) + (1 − cosk ⋅ (y2 − y1)))

× (Gp(y1)
o

y2

y1

+ Gp(y2 − y1)
o

y2

y1

)

≤ 2Ŵp(k)(
o

+
o

). (3.3.33)

Following similar decomposition to (3.3.23)–(3.3.24) and using (3.3.28), we can bound the
first diagram by B2

pr, while the second diagram is bounded by Bpr2, yielding the desired

bound on ∣∆̂kπ̂
(4)
p (0)∣. In general,

∣∆̂kπ̂
(2m)

p (0)∣ ≤mŴp(k) × (((m − 1) diagrams, each bounded by B2
pr

2m−3)

+ (1 diagram, bounded by Bpr
2m−2))

≤ B2
pŴp(k)m(m − 1)r2m−3 +BpŴp(k)mr2m−2, (3.3.34)
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as required.
To prove the bound (3.3.19) on ∣∆̂kπ̂

(2)
p (0)∣, we recall the definition (3.3.13) and divide

π(2)
p (x) into π(2),=1

p (x) and π(2),≥2
p (x), where

π(2),=1
p (x) = (1 − δo,x) ∑

ω1,ω2,ω3∈Ω(o,x)
(∃i∶∣ωi∣=1)

P (ω1)P (ω2)P (ω3)∏
i≠j

1{ωi∩ωj={o,x}}, (3.3.35)

π(2),≥2
p (x) = (1 − δo,x) ∑

ω1,ω2,ω3∈Ω(o,x)
(∀i∶∣ωi∣≥2)

P (ω1)P (ω2)P (ω3)∏
i≠j

1{ωi∩ωj={o,x}}. (3.3.36)

Then, by symmetry, the contribution from π(2),=1
p (x) is bounded as

∣∆̂kπ̂
(2),=1
p (0)∣ ≤ 3∑

x∼o
(1 − cosk ⋅ x)pD(x)( ∑

ω∈Ω(o,x)
P (ω)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤(pD∗Gp)(x)

)
2

≤ 3( sup
x∼o

(pD ∗Gp)(x)2)p∑
x

(1 − cosk ⋅ x)D(x)

= 3( 1

2d
∑
x∼o

(pD ∗Gp)(x)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤Bp

)p(1 − D̂(k)), (3.3.37)

while the contribution from π(2),≥2
p (x) is easily bounded as

∣∆̂kπ̂
(2),≥2
p (0)∣ ≤ ∑

x

(1 − cosk ⋅ x)( ∑
ω∈Ω(o,x)
(∣ω∣≥2)

P (ω))
3

≤ ∑
x

((pD)∗2 ∗Gp)(x)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤B′

p

( sup
x

(1 − cosk ⋅ x)Gp(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Ŵp(k)

), (3.3.38)

This completes the proof of Lemma 3.3.2.

3.3.3 Diagrammatic bounds on the bootstrapping functions

Let

Π̂odd
p (k) =

∞
∑
m=0

π̂(2m+1)
p (k), Π̂even

p (k) =
∞
∑
m=1

π̂(2m)

p (k). (3.3.39)

Suppose that r ≡ p∥D∥∞ + Lp +Bp < 1. Then, by Lemma 3.3.2, we obtain the following
bounds on the above infinite series.

58



Lemma 3.3.4. Suppose that r < 1. Then, we have

0 ≤ Π̂odd
p (0) ≤ Lp +Bp(p∥D∥∞ +Lp)

r

1 − r2
, (3.3.40)

0 ≤ Π̂even
p (0) ≤ Bp(p∥D∥∞ +Lp)

1

1 − r2
, (3.3.41)

sup
k

∣∆̂kΠ̂odd
p (0)∣

1 − D̂(k)
≤
B2
p(1 + r2)
(1 − r2)3

∥
Ŵp

1 − D̂
∥
∞
, (3.3.42)

sup
k

∣∆̂kΠ̂even
p (0)∣

1 − D̂(k)
≤

3Bp

2d
p + (B′

p +B2
p

2r

(1 − r2)3
+Bp

r2(2 − r2)
(1 − r2)2

)∥
Ŵp

1 − D̂
∥
∞
. (3.3.43)

Proof. Non-negativity for (3.3.40) and (3.3.41) is trivial because each π̂(n)
p (k) is non-

negative. By using Lemma 3.3.2, we calculate geometric series, for example,

Π̂odd
p (0) ≤ Lp +Bp(p∥D∥∞ +Lp)

∞
∑
m=0

r2m−1 = Lp +Bp(p∥D∥∞ +Lp)
r

1 − r2
. (3.3.44)

We can obtain (3.3.41) in the same way. For (3.3.42) and (3.3.43), we take the supremum
of Ŵp(k)/1 − D̂(k) over k ∈ Ld. Then, we calculate geometric series again, for example,

sup
k

∣∆̂kΠ̂odd
p (0)∣

1 − D̂(k)
≤ B2

p ( sup
k

Ŵp(k)
1 − D̂(k)

)
∞
∑
m=0

m2r2m−2 =
B2
p(1 + r2)
(1 − r2)3

∥
Ŵp

1 − D̂
∥
∞
. (3.3.45)

We can obtain (3.3.43) in the same way. This completes the proof of Lemma 3.3.4.

Applying these bounds to (3.2.45), (3.2.50) and (3.2.53), we obtain the following
bounds on the bootstrapping functions {gi(p)}3

i=1.

Lemma 3.3.5. Suppose r < 1 and that Lp,Bp,B′
p, ∥Ŵp/(1 − D̂)∥∞ are so small that the

two inequalities in (3.2.55) hold. Then, we have

g1(p) ≤ 1 +Lp +
Bp(p∥D∥∞ +Lp)r

1 − r2
, (3.3.46)

g2(p) ≤ (1 −
B2
p(1 + r2)
(1 − r2)3

∥
Ŵp

1 − D̂
∥
∞
)
−1

, (3.3.47)

g3(p) ≤ max{g2(p),1}3

×
⎛
⎝
(1 +

3Bp

2d
)p + (B′

p +
B2
p

(1 − r2)(1 − r)2
+
Bpr2(2 − r2)
(1 − r2)2

)∥
Ŵp

1 − D̂
∥
∞

⎞
⎠

2

. (3.3.48)

Proof. The bounds on g1(p) and g2(p) are easy; since Π̂p(0) = Π̂even
p (0) − Π̂odd

p (0) and

−∆̂kΠ̂p(0) = ∣∆̂kΠ̂even
p (0)∣ − ∣∆̂kΠ̂odd

p (0)∣, we obtain

g1(p)
(3.2.45)
≤ 1 + Π̂odd

p (0)
(3.3.40)
≤ 1 +Lp +

Bp(p∥D∥∞ +Lp)r
1 − r2

, (3.3.49)

g2(p)
(3.2.50)
≤ sup

k
(1 −

∣∆̂kΠ̂odd
p (0)∣

1 − D̂(k)
)
−1

(3.3.42)
≤ (1 −

B2
p(1 + r2)
(1 − r2)3

∥
Ŵp

1 − D̂
∥
∞
)
−1

. (3.3.50)
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For g3(p), since Ĝp(k) = Âp(k) ≡ 1/(1 − Ĵp(k)) for SAW and ∣Ĝp(k)∣ ≤ g2(p)Ŝ1(k) ≡
g2(p)/(1 − D̂(k)), we obtain

g3(p)
(3.2.53)
≤ sup

k,l

1 − D̂(k)
Û(k, l)

( Ŝ1(l + k) + Ŝ1(l − k)
2

Ŝ1(l)g2(p)2 ∣∆̂kĴp(l)∣
1 − D̂(k)

+ 4Ŝ1(l + k)Ŝ1(l − k)g2(p)3−∆̂l ∣̂Jp∣(0)
1 − D̂(l)

−∆̂k ∣̂Jp∣(0)
1 − D̂(k)

)

(3.2.13)
≤ max{g2(p),1}3 max{ sup

k,l

∣∆̂kĴp(l)∣
1 − D̂(k)

, ( sup
k

−∆̂k ∣̂Jp∣(0)
1 − D̂(k)

)
2

}. (3.3.51)

Since Jp = pD +Πp for SAW, we have

∣∆̂kĴp(l)∣
1 − D̂(k)

= 1

1 − D̂(k)
∣∑
x

(1 − cosk ⋅ x)eil⋅x(pD(x) +Πp(x))∣

≤ 1

1 − D̂(k)
∑
x

(1 − cosk ⋅ x)(pD(x) +Πodd
p (x) +Πeven

p (x))

≤ p +
∣∆̂kΠ̂even

p (0)∣
1 − D̂(k)

+
∣∆̂kΠ̂odd

p (0)∣
1 − D̂(k)

, (3.3.52)

which is larger than 1, since p ≥ 1. It is easy to check that −∆̂k ∣̂Jp∣(0)/(1 − D̂(k)) obeys
the same bound. Therefore, by using (3.3.42)–(3.3.43), we obtain

g3(p) ≤ max{g2(p),1}3(p + sup
k

∣∆̂kΠ̂even
p (0)∣

1 − D̂(k)
+ sup

k

∣∆̂kΠ̂odd
p (0)∣

1 − D̂(k)
)

2

≤ max{g2(p),1}3

×
⎛
⎝
(1 +

3Bp

2d
)p + (B′

p +
B2
p

(1 − r2)(1 − r)2
+
Bpr2(2 − r2)
(1 − r2)2

)∥
Ŵp

1 − D̂
∥
∞

⎞
⎠

2

, (3.3.53)

as required.

Remark 3.3.6. If we do not use B′
p, then g3(p) is bounded as

g3(p) ≤ max{g2(p),1}3
⎛
⎝
p + (

B2
p

(1 − r2)(1 − r)2
+

Bp

(1 − r2)2
)∥

Ŵp

1 − D̂
∥
∞

⎞
⎠

2

, (3.3.54)

which works in dimensions d ≥ 7, but does not work in 6 dimension.

3.3.4 Bounds on diagrams in terms of random-walk quantities

In this subsection, we evaluate the diagrams for p ∈ [1, pc) and complete the proof of
Propositions 3.2.4–3.2.5.

First, we evaluate the diagrams for p ∈ (1, pc) under the bootstrapping assumptions.
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Lemma 3.3.7. Let d ≥ 5 and p ∈ (1, pc) and suppose that gi(p) ≤ Ki, i = 1,2,3, for some
constants {Ki}3

i=1. Then, we have

Lp ≤K2
1K2ε1, Bp ≤K2

1K
2
2ε2, B′

p ≤K4
1K

2
2ε

′
2, (3.3.55)

∥
Ŵp

1 − D̂
∥
∞
≤ 5K3(1 + 2ε1 + ε2). (3.3.56)

Proof. The first two inequalities in (3.3.55) have already been explained in (3.2.62)–
(3.2.63). Similarly, by using gi(p) ≤Ki, i = 1,2, we have

B′
p ≤ p4∫

Td
D̂(k)4Ĝp(k)2 ddk

(2π)d
≤K4

1K
2
2 ∫

Td

D̂(k)4

(1 − D̂(k))2

ddk

(2π)d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(D∗4∗S∗2
1 )(o)

=K4
1K

2
2ε

′
2. (3.3.57)

For (3.3.56), we use g3(p) ≤K3 to obtain

0 ≤ (1 − cosk ⋅ x)Gp(x) = ∫
Td

( − ∆̂kĜp(l))eil⋅x
ddl

(2π)d
≤K3∫

Td
Û(k, l) ddl

(2π)d
, (3.3.58)

uniformly in x and k. Then, by (3.2.13) and using the Schwarz inequality, the right-hand
side is further bounded by

5K3(1 − D̂(k))∫
Td
Ŝ1(l)2 ddl

(2π)d
= 5K3(1 − D̂(k))S∗2

1 (o). (3.3.59)

Since S∗2
1 (o) = ∑∞

n=0(2n+ 1)D∗2n(o) = 1+ 2ε1 + ε2 (see (3.2.3)), this completes the proof of
Lemma 3.3.7.

Next, we evaluate the diagrams at p = 1 by using the trivial inequality G1(x) ≤ S1(x).
Here, we do not need the bootstrapping assumptions.

Lemma 3.3.8. Let d ≥ 5 and p = 1. Then, we have

L1 ≤ ε1, B1 ≤ ε2, B′
1 ≤ ε′2, (3.3.60)

∥ Ŵ1

1 − D̂
∥
∞
≤ 5(1 + 2ε1 + ε2). (3.3.61)

Proof. The first two inequalities in (3.3.60) have already been explained in (3.2.60)–
(3.2.61). Similarly, by the trivial inequality G1(x) ≤ S1(x), we have

B′
1 ≤ ∥D∗4 ∗ S∗2

1 ∥∞ = ∫
Td

D̂(k)4

(1 − D̂(k))2

ddk

(2π)d
= ε′2. (3.3.62)
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Also, by following the same line as (3.3.58)–(3.3.59), we obtain

(1 − cosk ⋅ x)Gp(x) ≤ (1 − cosk ⋅ x)S1(x) = ∫
Td

( − ∆̂kŜ1(l))eil⋅x
ddl

(2π)d

≤ ∫
Td
Û(k, l) ddl

(2π)d

≤ 5(1 − D̂(k))(1 + 2ε1 + ε2). (3.3.63)

This completes the proof of (3.3.61).

Proof of Proposition 3.2.4. Since ε1 and ε2 are finite for d ≥ 5 (see Table 3.1 in Sec-

tion 3.2.1) and decreasing in d (because D∗2n(o) ≡ ((2n
n
)2−2n)d on Ld is decreasing in d),

we have

r = ∥D∥∞ +L1 +B1

(3.3.60)
≤ 2−d + ε1 + ε2 ≤

⎧⎪⎪⎨⎪⎪⎩

0.257 [d = 5],
0.081 [d ≥ 6].

(3.3.64)

In addition, by (3.3.40)–(3.3.43) and Lemma 3.3.8 (see also Table 3.2 in Section 3.3.2),
we have

∞
∑
n=1

π̂(n)

1 (0) ≤
⎧⎪⎪⎨⎪⎪⎩

0.066 [d = 5],
0.023 [d ≥ 6],

sup
k

∞
∑
n=1

−∆̂kπ̂
(n)

1 (0)
1 − D̂(k)

≤
⎧⎪⎪⎨⎪⎪⎩

1.331 [d = 5],
0.120 [d ≥ 6],

(3.3.65)

which imply that the inequalities in (3.2.55) hold for all d ≥ 6 (but not for d = 5). Then,
by Lemma 3.3.5, we obtain

g1(1) ≤ 1 + ε1 +
ε2(2−d + ε1)r

1 − r2
≤ 1.021, (3.3.66)

g2(1) ≤ (1 − 5(1 + 2ε1 + ε2)
ε2

2(1 + r2)
(1 − r2)3

)
−1

≤ 1.012, (3.3.67)

g3(1) ≤ (1.011)3
⎛
⎝

1 + 3ε2

2d
+ 5(1 + 2ε1 + ε2)(ε′2 +

ε2
2

(1 − r2)(1 − r)2
+ ε2r2(2 − r2)

(1 − r2)2
)
⎞
⎠

2

≤ 1.301. (3.3.68)

Proposition 3.2.4 holds as long as K1 > 1.021, K2 > 1.012 and K3 > 1.301.

Proof of Proposition 3.2.5. Let

K1 =K2 = 1.03, K3 = 1.79, (3.3.69)

so that Proposition 3.2.4 holds for d ≥ 6. Using Table 3.1 in Section 3.2.1, we have

r
(3.3.55)
≤ K12−d +K2

1K2ε1 +K2
1K

2
2ε2 ≤ 0.088. (3.3.70)
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In addition, by (3.3.40)–(3.3.43) and Lemma 3.3.7 (see also Table 3.2 in Section 3.3.2),
we have

∞
∑
n=1

π̂(n)
p (0) ≤ 0.025, sup

k

∞
∑
n=1

−∆̂kπ̂
(n)
p (0)

1 − D̂(k)
≤ 0.257, (3.3.71)

which imply that the inequalities in (3.2.55) hold. Then, similarly to (3.3.66)–(3.3.68),
we obtain

g1(p) ≤ 1 +K2
1K2ε1 +

K2
1K

2
2ε2(K12−d +K2

1K2ε1)r
1 − r2

≤ 1.023 <K1, (3.3.72)

g2(p) ≤ (1 − 5K3(1 + 2ε1 + ε2)
K4

1K
4
2ε

2
2(1 + r2)

(1 − r2)3
)
−1

≤ 1.026 <K2, (3.3.73)

g3(p) ≤ (1.025)3
⎛
⎝
(1 + 3K2

1K
2
2ε2

2d
)K1 + 5K3(1 + 2ε1 + ε2)

× (K4
1K

2
2ε

′
2 +

K4
1K

4
2ε

2
2

(1 − r2)(1 − r)2
+ K

2
1K

2
2ε2r2(2 − r2)
(1 − r2)2

)
⎞
⎠

2

≤ 1.789 <K3. (3.3.74)

This completes the proof of Proposition 3.2.5.

3.3.5 Further discussion

We have been able to prove convergence of the lace expansion for SAW on Ld≥6 in full
detail, in such a small number of pages, rather easily. This is due to the simple structure
of the BCC lattice Ld and the choice of the bootstrapping functions {gi(p)}3

i=1 (and thanks
to the extra effort explained in the remark after Lemma 3.3.2). Of course, if we follow
the same analysis as Hara and Slade [55, 56], we should be able to extend the result
to 5 dimensions. But, then, the amount of work and the level of technicality would be
almost the same, and it would not make the survey paper [49] attractive or accessible to
beginners. Instead of following the analysis of [55, 56], we keep the material as simple
as possible and just summarize elements by which we could improve our analysis. Those
elements are the following.

1. Apparently, the largest contribution comes from ∣∆̂kπ̂
(2)
p (0)∣. To improve its bound,

we introduced an extra diagram, i.e., B′
p ≡ ∥(pD)∗4 ∗G∗2

p ∥∞. As a result, we were
able to improve the applicable range from d ≥ 7 to d ≥ 6. It is natural to guess that
the introduction of longer bubbles, like B(n)

p ≡ ∥(pD)∗2n ∗G∗2
p ∥∞, could result in the

desired applicable range d ≥ 5. Indeed, its RW counterpart (D∗2n ∗ S∗2
1 )(o) gets

smaller as n increases. However, since B(n)
p has the exponentially growing factor

p2n, there must be an optimal n∗ ∈ N at which B(n)
p attains its minimum. So far,

our naive computation failed to achieve convergence of the lace expansion in Ld≥5

by merely introducing B(n)
p up to n = 3.
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2. The reason why we introduced B′
p is because the current bound on ∥Ŵp/(1 − D̂)∥∞

in (3.3.61) and (3.3.56) is not small. In particular, the relatively large factor 5 in
(3.3.61) and (3.3.56) is due to the use of the Schwarz inequality, as explained in the
proof of Lemma 3.2.7. Therefore, if we could achieve a better bound on (3.2.16)
instead of (3.2.15), hopefully without using the Schwarz inequality, it would be of
great help.

3. In (3.3.46)–(3.3.47), we discarded the contributions from Π̂even
p (0) and ∣∆̂kΠ̂even

p (0)∣.
By Lemma 3.3.2, we can speculate Π̂even

p (0) ≤ Π̂odd
p (0) and ∣∆̂kΠ̂even

p (0)∣ ≥ ∣∆̂kΠ̂odd
p (0)∣.

This means that, if we include their effect into computation, then g1(p) could be
much closer to 1 (see (3.2.45)) and g2(p) could be even smaller than 1 (see (3.2.50)),
and as a result, we could achieve the desired applicable limit d ≥ 5. However, to
make use of those even terms, we must also control lower bounds on g1(p) and g2(p),
and to do so, we need nontrivial lower bounds on the lace-expansion coefficients.
Heading towards this direction would significantly increase the amount of work and
technical details, as in [55, 56], which is against our motivation of the survey paper
[49].

4. We evaluated Ĝp(k) by Ŝ1(k) ≡ (1 − D̂(k))−1 uniformly in k ∈ Td, i.e., in both
infrared and ultraviolet regimes. However, doing so in the ultraviolet regime (i.e.,
bounding Gp(x) by S1(x) for small x) is not efficient, and as a result, it requires
d to be relatively large. To overcome this problem, we may want to incorporate
the idea of ultraviolet regularization, first introduced in [8] for percolation. This
approach has never been investigated in the previous lace-expansion work, but it
could provide a natural way to analyze in dimensions close to dc.

64



Chapter 4

The mean-field behavior for the
quantum Ising model

4.1 Background for the quantum Ising model

In Section 2, we investigated phase transition and critical behavior for the classical Ising
model. However, if we want to understand the real magnetic phenomena, we must take
account of the quantum effect (and the Coulomb force) by means of quantum mechanics.
We skip many physical motivation for the definition of the quantum Ising model since
those are not issues we would like to address in this thesis. Although there are lots of
quantum mechanical models (e.g., the quantum Heisenberg model [40]), we only focus on
the d-dimensional transverse filed quantum Ising model.

Our main interest is to investigate the quantum effect to phase transition or critical
behavior. Since there must be a difference from the classical system, we are interested
in where and how the quantum effect shows up (e.g., on the critical temperature and
the critical exponents?). As explained in Chapter 1, one of the ways to identify the
critical exponents is to derive the differential inequalities. The differential inequalities
of the classical Ising model are derived by using the graphical representation called the
random-current representation as introduced in Chapter 2.

There are two well-known graphical representations for the quantum Ising model. In
[7] and [46], the random-current representation (and also the Fortuin-Kasteleyn represen-
tation) for the quantum Ising model were introduced. A key property for the random-
current representation is the so-called switching lemma, see Lemma 2.3.6. However there
was no switching lemma for the quantum setting in [7] and [46]. In [28], Crawford and Ioffe
invented the switching lemma and derived the differential inequalities for the spontaneous
magnetization.

In [17], Björnberg and Grimmett introduced the random-parity representation which
is very similar to the random-current representation for the classical Ising model. This
representation also possesses the switching lemma. They considered the space-time Ising
model first and made the random-parity representation for that model. The physical
quantities for the quantum Ising model can be the special case of ones for the space-
time Ising model. Thus, they can show the results for the quantum Ising model as by-
products of the space-time Ising model. In [16], Björnberg established an infrared bound
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by assuming reflection-positivity and showed the mean-field behavior for the susceptibility
by deriving the differential inequalities and using its infrared bound to show the finiteness
of the bubble-diagram. He showed that the bubble-diagram is finite either β < ∞ and
d > 4 or β = ∞ and d > 3, where β > 0 is the inverse temperature, which means that the
upper critical dimension are different between positive temperature and zero temperature.

Both representations are defined on the continuous time line and obtained based on
Poisson point processes. The reason why we consider the continuous time line comes
from the definition of the space-time Ising model for the random-parity representation,
and the Lie-Trotter formula for the random-current representation for the quantum Ising
model. Thus, the representations are quite similar but somehow different from the classical
random-current representation on a discrete lattice.

In [17], [16] and [28], they consider the following Hamiltonian,

Ĥλ,h,δ(σ̂) = −λ ∑
x,y∈Λ

σ̂
(3)
x σ̂

(3)
y − h∑

x∈Λ
σ̂
(3)
x − δ∑

x∈Λ
σ̂
(1)
x , (4.1.1)

with the parameter of coupling constants λ > 0, the intensity of the external magnetic field
h > 0 and the quantum effect δ ≥ 0 (see the next section for the precise definitions). They
are interested in the critical behavior with varying the ratio between the parameters λ and
δ for fixed temperature β > 0. However, we are also interested in critical behavior when
varying the temperature. We would like to investigate the critical temperature with fixing
the quantum effect δ ≥ 0. From the point of view of the classical models, the estimate of
the critical temperature in dimensions above the upper critical dimension can be obtained
by the lace expansion analysis [62]. Thus, our final goal is to invent the lace expansion for
the quantum Ising model and to analyze the behavior of the critical temperature, which
would be the first application of the lace expansion for the quantum mechanical models.
This is an ongoing project with Kamijima and Sakai.

Before considering the lace expansion of the quantum Ising model, it is important to
check the mean-field behaviors for some order parameters with varying the temperature.
There is a well-known result by Suzuki and Trotter [87], which tells us that we can regard
the d-dimensional quantum Ising model as the (d + 1)-dimensional classical one with ad-
justing the coupling constants. Thus, we can use the random-current representation of the
classical Ising model. We will introduce the detailed setting in the next section and prove
the mean-field behavior of the susceptibility by using the Suzuki-Trotter transformation
in the analogical strategy of [2, 3, 6].

4.2 Setting and preliminaries

4.2.1 Definition of the quantum Ising model

We consider the quantum Ising model on a finite set Λ ⊂ Zd. We define the Pauli spin-1/2
matrices as, for any x ∈ Λ,

σ̂
(1)
x = (0 1

1 0
) , σ̂

(3)
x = (1 0

0 −1
) , (4.2.1)
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(although there is one more matrix σ̂
(2)
x , it does not feature in the definition of the quantum

Ising model) and also the Hamiltonian of the quantum Ising model as

Ĥh,δ(σ̂) = − ∑
x,y∈Λ

Jx,yσ̂
(3)
x σ̂

(3)
y − h∑

x∈Λ
σ̂
(3)
x − δ∑

x∈Λ
σ̂
(1)
x , (4.2.2)

where {Jx,y} is a collection of translation-invariant and summable coupling constants
between two Pauli-spins, h > 0 is the intensity of the external magnetic filed, and δ ≥ 0 is
a parameter for the intensity of the transverse-field which represents the quantum effect.
We define the correlation function of an operator Â on the Hilbert space H = ⊗x∈Λ C2 as

⟨Â⟩β,h,δ;Λ = 1

Zβ,h,δ;Λ
Tr[Âe−βĤh,δ(σ̂)], (4.2.3)

where Zβ,h,δ;Λ is the partition function defined by Tr[e−βĤh,δ(σ̂)] and β > 0 is a parameter
for the inverse temperature.

We define the free-energy density on a finite set Λ and the infinite-volume limit of it
by

fβ,h,δ;Λ = − 1

β

1

∣Λ∣
logZβ,h,δ;Λ, fβ,h,δ = lim

Λ↑Zd
fβ,h,δ;Λ, (4.2.4)

where ∣Λ∣ is the cardinality of a finite set Λ. The basic quantity is the magnetization
defined by

m(β,h, δ) = − ∂

∂h
fβ,h,δ. (4.2.5)

We also define the spontaneous magnetization by

ms(β, δ) = lim
h↓0

m(β,h, δ). (4.2.6)

The main quantity we will investigate is the susceptibility χ(β, δ) defined by

χ(β, δ) = lim
h↓0

∂

∂h
m(β,h, δ) = − lim

h↓0

∂2

∂h2
fβ,h,δ. (4.2.7)

We have defined some physical quantities based on the classical statistical mechanics.
To analyze those quantities with the quantum effect δ ≥ 0, we might think that whether
we can still use the same strategy as the classical one. The Suzuki-Trotter transformation
as below enables us to do that.

4.2.2 The Suzuki-Trotter transformation

The Suzuki-Trotter (ST) transformation [87] is a well-know result for the quantum Ising
model. By using the ST transformation, we can regard the quantum Ising model on Zd
as the the classical Ising model on Zd × (N ∪ {0}) with ferromagnetic coupling constants
between two classical spins on Zd × (N ∪ {0}). Let [l] = {0,1, . . . , l − 1} be a torus with
circumference l.
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Proposition 4.2.1 (The Suzuki-Trotter transformation[87]).

Zβ,h,δ;Λ = lim
l↑∞

(1

2
sinh

2βδ

l
)
l∣Λ∣

2

∑
σ={σx,t}x∈Λ,t∈[l]

e−H
ST(σ), (4.2.8)

where HST(σ) for σ ∈ {±1}Λ×[l] is defined by

HST(σ) = − ∑
x,y∈Λ

∑
t∈[l]

βJx,y
l

σx,tσy,t − ∑
x∈Λ

∑
t∈[l]

βh

l
σx,t − ∑

x∈Λ
∑
t∈[l]

Kβ,δ,lσx,tσx,t+1, (4.2.9)

and

Kβ,δ,l =
1

2
log coth

βδ

l
. (4.2.10)

Moreover,

⟨σ̂(3)
o ⟩β,h,δ;Λ = lim

l↑∞
⟪σo,0⟫β,h,δ;Λ,l ∶= lim

l↑∞

∑
σ

σo,0e
−HST(σ)

∑
σ

e−H
ST(σ)

. (4.2.11)

⟨σ̂(3)
o σ̂

(3)
x ⟩β,h,δ;Λ = lim

l↑∞
⟪σo,0σx,0⟫β,h,δ;Λ,l ∶= lim

l↑∞

∑
σ

σo,0σx,0e
−HST(σ)

∑
σ

e−H
ST(σ)

. (4.2.12)

Proof of Proposition 4.2.1. We first show the identity for Zβ,h,δ;Λ in (4.2.8). We introduce
the following notation for simplicity,

Ĥc
h,δ(σ̂) = − ∑

x,y∈Λ
Jx,yσ̂

(3)
x σ̂

(3)
y − h∑

x∈Λ
σ̂
(3)
x , Ĥq

h,δ(σ̂) = −δ∑
x∈Λ

σ̂
(1)
x , (4.2.13)

so that

Ĥh,δ(σ̂) = Ĥc
h,δ(σ̂) + Ĥ

q
h,δ(σ̂). (4.2.14)

By using the Lie-Trotter product formula,

Zβ,h,δ;Λ = lim
l↑∞

Tr[(e−
β
l
Ĥc
h,δ(σ̂)e−

β
l
Ĥq
h,δ

(σ̂))l]

= lim
l↑∞
∑
Ψ0

⟨Ψ0 ∣ (e−
β
l
Ĥc
h,δ(σ̂)e−

β
l
Ĥq
h,δ

(σ̂))l ∣Ψ0⟩ , (4.2.15)

where ⟨⋅ ∣ and ∣ ⋅⟩ are bra and ket vectors, respectively, and ⟨⋅ ∣ ⋅⟩ is an inner product
on H = ⊗x∈Λ C2. We choose Ψ as an orthonormal basis on H, defined by ⊗x∈Λψσx,0
for σx,0 ∈ {±1}, and ψ+1 = t(1,0) and ψ−1 = t(0,−1), respectively. Note that ψ±1 are the

eigenvector of σ̂
(3)
x corresponding to eigenvalues ±1, respectively. Next, we use the identity
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∑Ψj ∣Ψj⟩ ⟨Ψj ∣ = I for j = 1, . . . , l − 1, where I is an identity operator. Then, the sum at the
right-hand side in (4.2.15) becomes

∑
Ψ0,...,Ψl−1

⟨Ψ0∣ e−
β
l
Ĥc
h,δ(σ̂)e−

β
l
Ĥq
h,δ

(σ̂) ∣Ψ1⟩ ⟨Ψ1∣ e−
β
l
Ĥc
h,δ(σ̂)e−

β
l
Ĥq
h,δ

(σ̂) ∣Ψ2⟩ ⟨Ψ2∣⋯

⋯ ∣Ψl−1⟩ ⟨Ψl−1∣ e−
β
l
Ĥc
h,δ(σ̂)e−

β
l
Ĥq
h,δ

(σ̂) ∣Ψ0⟩ . (4.2.16)

Noting that Ψ0 is a family of eigenvectors of σ̂
(3)
x , the first factor in the above sum equals

⟨Ψ0∣ e−
β
l
Ĥc
h,δ(σ̂)e−

β
l
Ĥq
h,δ

(σ̂) ∣Ψ1⟩

= exp( − ∑
x,y∈Λ

∑
t∈[l]

βJx,y
l

σx,tσy,t − ∑
x∈Λ

∑
t∈[l]

βh

l
σx,t) ⟨Ψ0∣ e−

β
l
Ĥq
h,δ

(σ̂) ∣Ψ1⟩ . (4.2.17)

The second factor in (4.2.17) becomes

∏
x∈Λ

⟨Ψ0∣ e
βδ
l
σ̂
(1)
x ∣Ψ1⟩ = ∏

x∈Λ
( ∑
k∶even

(βδl )k

k!
δσx,0,σx,1 + ∑

k∶odd

(βδl )k

k!
δσx,0,−σx,1)

= ∏
x∈Λ

( cosh
βδ

l
δσx,0,σx,1 + sinh

βδ

l
δσx,0,−σx,1)

= ∏
x∈Λ

e
βδ
l + σx,0σx,1e−

βδ
l

2
. (4.2.18)

Then we can find a = (1
2 sinh 2βδ

l )
1/2

and b = 1
2 log coth βδ

l such that,

e
βδ
l + σx,0σx,1e−

βδ
l

2
= aebσx,0σx,1 . (4.2.19)

The other factors in (4.2.16) are calculated in the same way and then we obtain (4.2.8).
For the ST transformation for correlation functions of a single spin in (4.2.11), the slight

difference is just replacing the first factor in (4.2.16) by ⟨Ψ0∣ σ̂(3)
o e−

β
l
Ĥch,δ(σ̂)e−

β
l
Ĥq
h,δ

(σ̂) ∣Ψ1⟩.
Thus, we just have σo,0 in front of the exponential term in (4.2.17). To obtain the ST
transformation for correlation functions of two spins in (4.2.12) can be treated in the same
way. This completes the proof of Proposition 4.2.1.

4.2.3 The random-current representation, the source-switching
lemma and the correlation inequalities

We introduce the random-current representation in the current setting. A current config-
uration n ≡ {nb} is a set of nonnegative integers on bonds b ∈ BΛ,l ≡ {{X,Y } ⊂ Λ × [l] ∶
Ju,v > 0} or B ∈ GΛ,l ≡ {{X,g} ∶ X ∈ Λ × [l]}, where g is an imaginary ghost site. Given a
current configuration n, we define the source set ∂n as

∂n = {V ∈ Λ × [l] ∪ {g} ∶ ∑
b∋V

nb is odd}, (4.2.20)
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and the weight functions w(n) as

w(n) = ∏
b∈BΛ,l

(J̃b)nb
nb!

∏
b′∈GΛ,l

(βh/l)nb′
nb′ !

, (4.2.21)

where

J̃b =
⎧⎪⎪⎨⎪⎪⎩

βJx,y
l if b = {(x, t), (y, t)},

Kβ,δ,l if b = {(x, t), (x, t + 1)}.
(4.2.22)

For any subset A ⊂ Λ × [l], we define σA ∶= ∏X∈A σX . We omit the dependance of
the parameters for abbreviation, e.g., ⟪σA⟫ = ⟪σA⟫β,δ;Λ,l. Then, we obtain the following
random current representation.

For any subsets A,B ⊂ Λ × [l] such that ∣A∣ is odd and ∣B∣ is even,

∑
σ

e−H
ST(σ) = 2l∣Λ∣ ∑

∂n=∅
w(n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Z̃

, ⟪σA⟫ = ∑
∂n=A∪{g}

w(n)
Z̃

, ⟪σB⟫ = ∑
∂n=B

w(n)
Z̃

. (4.2.23)

Given a current configuration n = {nb}, we say that X is n-connected to Y , denoted
X←→

n
Y if either X = Y ∈ Λ× [l] ∪ {g} or there is a path from X to Y consisting of bonds

b ∈ BΛ,l ∪GΛ,l with nb > 0.
The most important feature of the random-current representation is the so-called

source-switching lemma (e.g., [79, Lemma 2.3]). We state the version we use in this
section. This is an immediate consequence from the source-switching lemma (but we just
call this lemma the source-switching lemma).

Lemma 4.2.2 (Consequence from the source-switching lemma, [79]). For any subset
A ⊂ Λ × [l] ∪ {g}, any X,Y ∈ Λ × [l] and any function f on current configurations,

∑
∂n=A
∂m=∅

w(n)w(m)1{X←→
n+m

Y } f(n +m) = ∑
∂n=A△{X}△{Y }
∂m={X}△{Y }

w(n)w(m) f(n +m). (4.2.24)

For a proof, we refer to [79, Lemma 2.3].

Next, we list up the some correlation inequalities related to this thesis. We just
abbreviate the dependance of Λ and l in correlation functions in order to simplify their
notations, e.g., ⟪σA⟫β,δ = ⟪σA⟫β,δ;Λ,l.

Proposition 4.2.3 (The Griffiths 1st inequality [41],[42],[43]). For any subset A ⊂ Λ×[l],

⟪σA⟫ ≥ 0. (4.2.25)

Proof. By using the random-current representation in (4.2.23), we can immediately show
the non-negativity of the correlation function since the weight function w(n) is non-
negative.
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Proposition 4.2.4 (The Griffiths 2nd inequality [41],[42],[43]). For any subset A,B ⊂
Λ × [l],

⟪σA;σB⟫ ≥ 0, (4.2.26)

where ⟪f ; g⟫ ∶= ⟪fg⟫ − ⟪f⟫⟪g⟫ called a truncated correlation function.

Proof. We give a sketch proof only for the caseA = {X,Y } andB = {Z,W} forX,Y,Z,W ∈
Λ × [l]. By using the random-current representation in (4.2.23) and the source-switching
lemma (4.2.24),

⟪σXσY ;σZσW⟫ = ∑
∂n={X}△{Y }△{Z}△{W}

∂m=∅

w(n)w(m)
Z̃2

(1 − 1[Z←→
n+m

W ]))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

. (4.2.27)

Thus, the desired inequality holds by the non-negativity of the weight function.

Proposition 4.2.5 (Lebowitz’ inequality [68]). For X,Y,Z,W ∈ Λ × [l],

⟪σXσY ;σZσW⟫ ≤ ⟪σXσZ⟫⟪σY σW⟫ + ⟪σXσW⟫⟪σY σZ⟫. (4.2.28)

For a proof, we refer to [68]. See also the proof of Lemma 4.3.2 in the next section.

Proposition 4.2.6 (The Griffiths-Hurst-Sherman inequality [44]). For X,Y,Z ∈ Λ × [l],

⟪σXσY σZ⟫ − ⟪σX⟫⟪σY σZ⟫ − ⟪σY ⟫⟪σXσZ⟫
− ⟪σZ⟫⟪σXσY ⟫ + 2⟪σX⟫⟪σY ⟫⟪σZ⟫ ≥ 0. (4.2.29)

For a proof, we refer to [44].

Proposition 4.2.7 (The Aizenman-Graham inequlatiy [6]). For X,Y,Z,W ∈ Λ × [l],

⟪σXσY ;σZσW⟫ ≥ ⟪σXσZ⟫⟪σY σW⟫ + ⟪σXσW⟫⟪σY σZ⟫
− ∑
U,V ∈Λ×[l]

tanh J̃U,V ⟪σXσY ;σUσV ⟫⟪σZσV ⟫⟪σWσV ⟫

−⟪σXσY ⟫⟪σXσZ⟫⟪σXσW⟫ − ⟪σXσY ⟫⟪σY σZ⟫⟪σY σW⟫. (4.2.30)

For a proof, we refer to [6] and [58].

4.2.4 The magnetization and the susceptibility

First, we rewrite the definition of the magnetization m(β,h, δ) as follows.

Proposition 4.2.8. For any β,h > 0 and δ ≥ 0,

m(β,h, δ) = lim
Λ↑Zd

1

∣Λ∣ ∑x∈Λ
⟨σ̂(3)

x ⟩β,h,δ;Λ. (4.2.31)
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Proof. First, we need to assure that we can change the order between the derivative with
respect to h and the limit of Λ. By the ST transformation for the partition function
in Proposition 4.2.1, we can regard the partition function as one of the classical and
ferromagnetic Ising model. By using the continuity of a logarithmic function and noting
that the constant factor in front of the sum over spin configurations σ in (4.2.8) does
not depend on h, the second derivative of fβ,h,δ;Λ with respect to h is non-positive by the
Griffiths 2nd inequality in Proposition 4.2.4. Thus, the function fβ,h,δ;Λ is convex with
respect to h. Therefore, we can assure the change of the order between h and Λ and then,

m(β,h, δ) = − lim
Λ↑Zd

∂

∂h
fβ,h,δ;Λ = lim

Λ↑Zd

1

β

1

∣Λ∣

∂
∂hZβ,h,δ;Λ

Zβ,h,δ;Λ
. (4.2.32)

The derivative with respect to h in the numerator in the left-hand side above is

∂

∂h
Zβ,h,δ;Λ = Tr[ ∂

∂h
e−βĤh,δ] = Tr[

∞
∑
n=0

βn

n!

∂

∂h
(−Ĥh,δ)n]

= Tr[
∞
∑
n=1

βn

n!

n

∑
k=1

(−Ĥh,δ)k−1 ∂

∂h
(−Ĥh,δ)(−Ĥh,δ)n−k]

=
∞
∑
n=1

βn

n!

n

∑
k=1

Tr[∑
x∈Λ

σ̂
(3)
x (−Ĥh,δ)n−1]

= β∑
x∈Λ

Tr[σ̂(3)
x e−βĤh,δ], (4.2.33)

where, in the fourth equality, we have used the fact that the trace is invariant under cyclic
permutations. Thus, the magnetization (4.2.32) is equal to

lim
Λ↑Zd

1

∣Λ∣ ∑x∈Λ
1

Zβ,h,δ;Λ
Tr[σ̂(3)

x e−βĤh,δ] = lim
Λ↑Zd

1

∣Λ∣ ∑x∈Λ
⟨σ̂(3)

x ⟩β,h,δ;Λ. (4.2.34)

Remark 4.2.9. If we choose Λ as a torus, by its periodicity

m(β,h, δ) = lim
Λ↑Zd

1

∣Λ∣ ∑x∈Λ
⟨σ̂(3)

x ⟩β,h,δ;Λ = lim
Λ↑Zd

⟨σ̂(3)
o ⟩β,h,δ;Λ. (4.2.35)

From now on, we assume that Λ is a torus as mentioned in the above remark. In
principle, we define the following quantities related to the susceptibility χ(β, δ);

χPΛ,l(β, δ) ∶= β∑
x∈Λ

1

l
∑
t∈[l]

⟪σo,0σx,t⟫β,δ;Λ,l, χP (β, δ) ∶= lim
Λ↑Zd

lim
l↑∞

χPΛ,l(β, δ), (4.2.36)

where the superscript P means that the both domains of the space and time are periodic.
Now we are prepared to define the critical temperature βc = βc(δ) and and the critical

exponent γ for the periodic susceptibility χP (β, δ) as,

βc(δ) = inf{β > 0 ∶ χP (β, δ) = ∞}, χP (β, δ) ≍
β↑βc

(βc − β)−γ, (4.2.37)
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where f ≍ g means that f is bounded above and below by g with some constants in
the prescribed limit. If we know the monotonicity of χP (β, δ) with respect to β, then
βc(δ) = sup{β > 0 ∶ χP (β, δ) < ∞}. Unfortunately, we have only proved the monotonicity
for sufficiently small δ ≥ 0.

Although it seems to be weird to define such a periodic susceptibility, the reason comes
from the technical reason about the change of order among some limits, and the analogy of
the classical Ising model. In fact, we can obtain the equality between the susceptibilities
χ(β, δ) and χP (β, δ) in the high temperature phase β < βc as follows.

Proposition 4.2.10. For any β < βc and δ ≥ 0,

χ(β, δ) = χP (β, δ). (4.2.38)

Proof. By Proposition 4.2.8 and Remark 4.2.9, we obtain

χ(β, δ) = lim
h↓0

∂

∂h
lim
Λ↑Zd

⟨σ̂(3)
o ⟩β,h,δ;Λ. (4.2.39)

Here, we use the ST transformation for ⟨σ̂(3)
o ⟩β,h,δ;Λ,

∂

∂h
lim
Λ↑Zd

lim
l↑∞

⟪σo,0⟫β,h,δ;Λ,l. (4.2.40)

Note that the function ⟪σo,0⟫β,h,δ;Λ,l is a classical and ferromagnetic single spin expecta-
tion. We would like to change the order between the derivative with respect to h and the
limits of Λ and l. If we take the derivative of ⟪σo,0⟫β,h,δ;Λ,l with respect to h at first,

∂

∂h
⟪σo,0⟫β,h,δ;Λ,l = ∑

x∈Λ
∑
t∈[l]

β

l
⟪σo,0;σx,t⟫β,h,δ;Λ,l. (4.2.41)

By the trivial inequality ⟪σo,0;σx,t⟫β,h,δ;Λ,l ≤ 1, the right-hand side in (4.2.41) is uniformly
bounded above in h and l. Thus, we can assure the change of order between h and l.
Since the function ⟪σo,0⟫β,h,δ;Λ,l is convex with respect to h by the GHS inequality in
Proposition 4.2.6, we can also assure the change of order between h and Λ. Therefore, we
obtain

χ(β, δ) = β lim
h↓0

lim
Λ↑Zd

lim
l↑∞

∑
x∈Λ

1

l
∑
t∈[l]

⟪σo,0;σx,t⟫β,h,δ;Λ,l. (4.2.42)

Moreover, we would like to change the order between the limits of h and of Λ and l.
Again by the GHS inequality in Proposition 4.2.6, the truncated two-point function is a
monotonically decreasing function with respect to h. Therefore, the right-hand side in
(4.2.42) is bounded above by

β lim
h↓0

lim
Λ↑Zd

lim
l↑∞

∑
x∈Λ

1

l
∑
t∈[l]

⟪σo,0;σx,t⟫β,h,δ;Λ,l ≤ β lim
Λ↑Zd

lim
l↑∞

∑
x∈Λ

1

l
∑
t∈[l]

⟪σo,0σx,t⟫β,δ;Λ,l, (4.2.43)

uniformly in h since the right-hand side is finite for β < βc (note that h = 0 in the right-
hand side and there is no truncation since the single spin expectation is 0 due to the
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periodicity). The truncated two-point function with h > 0 has the exponential decay,
which implies that the left-hand side in (4.2.43) is bounded above uniformly in Λ and l.
Therefore, we can assure the change of order between those limits and finally obtain the
equality for χ(β, δ) in (4.2.38) as required.

Therefore, it suffices to consider χP (β, δ) instead of χ(β, δ) in the high temperature
phase β < βc. In the next section, we will derive the differential inequalities for χP (β, δ),
which are much easier to deal with compared to χ(β, δ).

Remark 4.2.11. We focus on the high temperature phase. In the low temperature phase,
the right-hand side in (4.2.43) is not finite anymore. Thus, we cannot use χP (β, δ) as an
expression for χ(β, δ). For the classical Ising model, we have the decent expression for the
susceptibility such as the sum of truncated two-point function under the plus-boundary
condition with no magnetic field for all temperature. However, for the quantum Ising
model, we do not have the same expression since we lose some good properties like the
commutativity for spin operators, the right continuity of the correlation function with
respect to h and the boundary-independence of the infinite-volume limit (by the ST
transformation, we must choose the periodic boundary for the time line axis [l]).

Before closing this subsection, we give an expected result for the spontaneous magne-
tization ms(β, δ) as follows.

Proposition 4.2.12. For any β < βc and δ ≥ 0,

ms(β, δ) = 0. (4.2.44)

Proof. By Remark 4.2.9 and the SK transformation for the single spin expectation, the
spontaneous magnetization ms(β, δ) becomes

0 ≤ms(β, δ) = lim
h↓0

lim
Λ↑Zd

⟨σ̂(3)
o ⟩β,h,δ;Λ = lim

h↓0
lim
Λ↑Zd

lim
l↑∞

⟪σo,0⟫β,h,δ;Λ,l (4.2.45)

By using the trivial equality ⟪σo,0⟫β,δ;Λ,l = 0 due to the periodicity (note that h = 0), the
right-hand side in (4.2.45) becomes

lim
h↓0

lim
Λ↑Zd

lim
l↑∞ ∫

h

0

d

dh′
⟪σo,0⟫β,h′,δ;Λ,ldh

′ = β lim
h↓0

lim
Λ↑Zd

lim
l↑∞

∑
x∈Λ

1

l
∑
t∈[l]

∫
h

0
⟪σo,0σx,t⟫β,h′,δ;Λ,ldh

′

≤ β lim
h↓0

h lim
Λ↑Zd

lim
l↑∞

∑
x∈Λ

1

l
∑
t∈[l]

⟪σo,0σx,t⟫β,δ;Λ,l

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=χP (β,δ)

, (4.2.46)

where we have used the GHS inequality in Proposition 4.2.6 at the above inequality.
Therefore, ms(β, δ) = 0 since χP (β, δ) < ∞ for β < βc. This completes the proof.

4.3 Mean-field behavior of the susceptibility

As explained in the above section, we would like to identify the value of γ in high dimen-
sions. Would the value be the same as the classical value 1 or affected by quantum effect
δ ? The answer lies in the next subsection.
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4.3.1 The main results

We define the following quantity, which is called the space-time bubble diagram.

BΛ,l ∶= ∑
x∈Λ,t∈[l]

1

l
⟪σo,0σx,t⟫2

β,δ;Λ,l, B = lim
Λ↑Zd

lim
l↑∞

BΛ,l. (4.3.1)

In the following theorem, we assume that the limit B of the space-time bubble diagram
BΛ,l as Λ ↑ ∞ and l ↑ ∞ is bounded and sufficiently small. See Remark 4.3.3.

Theorem 4.3.1. Let the spin-spin coupling be non-negative and summable. For the fer-
romagnetic Ising model with the sufficiently small quantum effect δ ≥ 0, sufficiently small
the space-time bubble diagram B and for 0 < β < βc(δ), the following holds.

(a) We have the lower bound for the susceptibility,

χ(β, δ) ≥ C1

βc − β
. (4.3.2)

where 0 < C1 < ∞ is a constant. Thus, if the critical exponent γ exists, then γ ≤ 1.

(b) We have the upper bound for the susceptibility,

χ(β, δ) ≤ C2

βc − β
, (4.3.3)

where 0 < C2 < ∞ is a constant. Thus, if the critical exponent γ exists, then γ ≥ 1.

In the following two subsections, we will prove each item in the above theorem.

4.3.2 Proof of the item (a) in Theorem 4.3.1.

We abbreviate the dependance of the parameters in correlation functions in order to
simplify their notations, e.g., ⟪σo,0σx,t⟫ = ⟪σo,0σx,t⟫β,δ;Λ,l. Although our results hold for
summable coupling constants, from now on, we only consider the nearest-neighbor cou-
pling constants (i.e., Jx,y = 1 if ∣x − y∣ = 1 and Jx,y = 0 otherwise) for simplicity.

Proof of the item (a) in Theorem 4.3.1. Taking the derivative of the two-point function
⟪σo,0σx,t⟫ with respect to β,

∂

∂β
⟪σo,0σx,t⟫

= ∑
u,v∈Λ

∑
s∈[l]

Ju,v
l

⟪σo,0σx,t;σu,sσv,s⟫ + ∑
u∈Λ

∑
s∈[l]

∂Kβ,δ,l

∂β
⟪σo,0σx,t;σu,sσu,s+1⟫. (4.3.4)

Thus, we have the following expression for the derivative of the susceptibility,

∂

∂β
(
χPΛ,l(β, δ)

β
)

= ∑
x∈Λ,
u,v∈Λ

∑
t,s∈[l]

Ju,v
l2

⟪σo,0σx,t;σu,sσv,s⟫ + ∑
x,u∈Λ

∑
t,s∈[l]

1

l

∂Kβ,δ,l

∂β
⟪σo,0σx,t;σu,sσu,s+1⟫. (4.3.5)
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Remembering the definition of Kβ,δ,l in Proposition 4.2.1,

∂Kβ,δ,l

∂β
= ∂

∂β

1

2
log coth

βδ

l
= − δ

l sinh 2βδ
l

. (4.3.6)

Thus, together with the Griffiths 2nd inequality in Proposition 4.2.4, the second term
is non-positive. To ignore the second term gives us the upper bound for the derivative
∂
∂β⟪σo,0σx,t⟫. For the first term, we can use Lebowitz’ inequality in Proposition 4.2.5 as
below,

⟪σo,0σx,t;σu,sσv,s⟫ ≤ ⟪σo,0σu,s⟫⟪σx,tσv,s⟫ + ⟪σo,0σv,s⟫⟪σx,tσu,s⟫. (4.3.7)

Thus,

∂

∂β
(
χPΛ,l(β, δ)

β
) ≤ ∑

x∈Λ
u,v∈Λ

1

l2
∑
s,t∈[l]

(Ju,v⟪σo,0σu,s⟫⟪σx,tσv,s⟫ + Ju,v⟪σo,0σv,s⟫⟪σx,tσu,s⟫)

= ∑
u,v∈Λ

1

l
∑
s∈[l]

Ju,v(⟪σo,0σu,s⟫∑
x∈Λ

1

l
∑
t∈[l]

⟪σx,tσv,s⟫ + ⟪σo,0σv,s⟫∑
x∈Λ

1

l
∑
t∈[l]

⟪σx,tσu,s⟫)

= 2(
χPΛ,l(β, δ)

β
)(∑

u∈Λ

1

l
∑
s∈[l]

⟪σo,0σu,s⟫∑
v∈Λ

Ju,v) = 4d(
χPΛ,l(β, δ)

β
)

2

, (4.3.8)

where we have used the non-positivity of the second term in (4.3.5) and Lebowitz’ in-
equality at the inequality, and translation-invariance at the second equality. Therefore,
we obtain the following differential inequality,

∂

∂β
(
χPΛ,l(β, δ)

β
)
−1

≥ −4d. (4.3.9)

By integrating (4.3.9) from β1 to β2 (β1 < βc < β2),

(
χPΛ,l(β2, δ)

β2

)
−1

− (
χPΛ,l(β1, δ)

β1

)
−1

≥ −4d(β2 − β1). (4.3.10)

After taking the limits as Λ ↑ Zd and l ↑ ∞, we have χP (β2, δ) = ∞ by the definition of the
critical temperature βc and the monotonicity with respect to β. We can only show the
monotonicity for sufficiently small δ by (4.3.35) in the proof of the item (b) in Theorem
4.3.1 in the next subsection. Thus, (4.3.10) gives us

β1

χP (β1, δ)
≤ 4d(β2 − β1). (4.3.11)

Since the above inequality holds for any β1(< βc) and β2 (> βc) and also the equality
(4.2.38), then we finally obtain for any β < βc and δ > 0,

χ(β, δ) ≥ β

4d (βc − β)
. (4.3.12)

76



4.3.3 Proof of the item (b) in Theorem 4.3.1.

Proof of the item (b) in Theorem 4.3.1. Now, we need to obtain the lower bound for the
derivative ∂

∂β⟪σo,0σx,t⟫ in (4.3.4). To do that, we use the Aizenman-Graham (AG) inequ-
latiy in Proposition 4.2.7 for the first term in (4.3.4) as follows;

⟪σo,0σx,t;σu,sσv,s⟫ ≥ ⟪σo,0σu,s⟫⟪σx,tσv,s⟫ + ⟪σo,0σv,s⟫⟪σx,tσu,s⟫
− tanh J̃X,Y ∑

X,Y ∈Λ×[l]
⟪σo,0σx,t;σXσY ⟫⟪σu,sσY ⟫⟪σv,sσY ⟫

−⟪σo,0σx,t⟫⟪σo,0σu,s⟫⟪σo,0σv,s⟫ − ⟪σo,0σx,t⟫⟪σx,tσu,s⟫⟪σx,tσv,s⟫. (4.3.13)

Remember that

J̃X,Y =
⎧⎪⎪⎨⎪⎪⎩

βJx,y
l if X = (x, t), Y = (y, t),

Kβ,δ,l if X = (x, t), Y = (x, t + 1).
(4.3.14)

We say that (X,Y ) is a spatial bond for the first case and a temporal bond for the latter
case. By using the AG inequality, we have the lower bound consisting of six terms for the
derivative of the susceptibility in (4.3.5). We define those six terms by,

M1 = ∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σu,s⟫⟪σx,tσv,s⟫, (4.3.15)

M2 = ∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σv,s⟫⟪σx,tσu,s⟫, (4.3.16)

M3 = − ∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

tanh J̃X,Y ∑
X,Y ∈Λ×[l]

⟪σo,0σx,t;σXσY ⟫⟪σu,sσY ⟫⟪σv,sσY ⟫, (4.3.17)

M4 = − ∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σx,t⟫⟪σo,0σu,s⟫⟪σo,0σv,s⟫, (4.3.18)

M5 = − ∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σx,t⟫⟪σx,tσu,s⟫⟪σx,tσv,s⟫, (4.3.19)

M6 = ∑
x,u∈Λ

∑
t,s∈[l]

∂Kβ,δ,l

∂β
⟪σo,0σx,t;σu,sσu,s+1⟫, (4.3.20)

such that

∂

∂β
(
χPΛ,l(β, δ)

β
) ≥

6

∑
j=1

Mj. (4.3.21)

Note that M6 has already showed up in (4.3.5).
By following the same computation in (4.3.8),

M1 +M2 = 4d(
χPΛ,l(β, δ)

β
)

2

. (4.3.22)
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Next, we evaluate M4.

M4 = − ∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σx,t⟫⟪σo,0σu,s⟫⟪σo,0σv,s⟫

= − ∑
x∈Λ,t∈[l]

1

l
⟪σo,0σx,t⟫

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=χP

Λ,l
(β,δ)/β

∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σu,s⟫⟪σo,0σv,s⟫. (4.3.23)

By using the Schwarz inequality for the second sum, M4 is bounded below by

M4 ≥ −
χPΛ,l(β, δ)

β
( ∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σu,s⟫2)
1/2

( ∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σo,0σv,s⟫2)
1/2

= −2dBΛ,l

χPΛ,l(β, δ)
β

. (4.3.24)

Since the contribution from M5 is the same by the symmetry,

M4 +M5 ≥ −4dBΛ,l

χPΛ,l(β, δ)
β

. (4.3.25)

We give more careful consideration to M3. We split the sum into two cases; either
(X,Y ) is a spatial bond or (X,Y ) is a temporal bond. The contribution from the spatial
case is

− ∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

∑
w,z∈Λ
s′∈[l]

tanh
Jw,z
l

⟪σo,0σx,t;σw,s′σz,s′⟫⟪σu,sσz,s′⟫⟪σv,sσz,s′⟫

≥ − ∑
x∈Λ,t∈[l]

1

l
∑
w,z∈Λ
s′∈[l]

Jw,z
l

⟪σo,0σx,t;σw,s′σz,s′⟫ ∑
u,v∈Λ
s∈[l]

Ju,v
l

⟪σu,sσz,s′⟫⟪σv,sσz,s′⟫

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2dBΛ,l

, (4.3.26)

where we have used that tanhx ≤ x. By the identity (4.3.5) for ∂
∂β

(χ
P
Λ,l(β,δ)
β

), (4.3.26) is
bounded below by

−2dβBΛ,l
∂

∂β
(
χPΛ,l(β, δ)

β
) + 2dβBΛ,l ∑

x∈Λ,t∈[l]

1

l
∑

u∈Λ,s∈[l]

∂Kβ,δ,l

∂β
⟪σo,0σx,t;σu,sσu,s+1⟫

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=M6

. (4.3.27)

Therefore, together with M6, the contribution from the spatial case and M6 is

−2dβBΛ,l
∂

∂β
(
χPΛ,l(β, δ)

β
) + (2dβBΛ,l + 1)M6. (4.3.28)
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Next, we need to deal with the truncated four-point function in M6. To obtain the lower
bound, we need to bound it above since

∂Kβ,δ,l
∂β is non-positive. Although we naively would

like to use Lebowitz’ inequality in Proposition 4.2.5, we need to extract the extra factor
1
l . To do that, we use the following lemma. The proof will be given at the end of this
subsection.

Lemma 4.3.2. For any finite subset Λ ⊂ Zd and l ∈ Z+,

⟪σo,0σx,t;σu,sσu,s+1⟫β,δ;Λ,l ≤
4βδ

l
(⟪σo,0σu,s⟫β,δ;Λ,l⟪σx,tσu,s+1⟫β,δ;Λ,l
+ ⟪σo,0σu,s+1⟫β,δ;Λ,l⟪σx,tσu,s⟫β,δ;Λ,l). (4.3.29)

By using this lemma, the second term in (4.3.28) is bounded below by

−(2dβBΛ,l + 1) 4βδ2

l sinh 2βδ
l

∑
x∈Λ,t∈[l]

1

l
∑

u∈Λ,s∈[l]

1

l
(⟪σo,0σu,s⟫β,δ;Λ,l⟪σx,tσu,s+1⟫β,δ;Λ,l

+ ⟪σo,0σu,s+1⟫β,δ;Λ,l⟪σx,tσu,s⟫β,δ;Λ,l). (4.3.30)

By using translation-invariance, this becomes

−(2dβBΛ,l + 1) 8βδ2

l sinh 2βδ
l

(
χPΛ,l(β, δ)

β
)

2

≥ −4δ(2dβBΛ,l + 1)(
χPΛ,l(β, δ)

β
)

2

, (4.3.31)

where we have used that sinhx ≥ x.
Now, we go back to the estimate for the temporal case in M3. Noting that tanhKβ,δ,l =

1−tanh βδ
l

1+tanh βδ
l

, the contribution from the temporal case is

−
1 − tanh βδ

l

1 + tanh βδ
l

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

∑
x∈Λ,t∈[l]

1

l
∑
u,v∈Λ
s∈[l]

Ju,v
l

∑
w∈Λ,s′∈[l]

⟪σo,0σx,t;σw,s′σw,s′+1⟫⟪σu,sσw,s′+1⟫⟪σv,sσw,s′+1⟫

≥ − ∑
x∈Λ,t∈[l]

1

l
∑

w∈Λ,s′∈[l]
⟪σo,0σx,t;σw,s′σw,s′+1⟫ ∑

u,v∈Λ
s∈[l]

Ju,v
l

⟪σu,sσw,s′+1⟫⟪σv,sσw,s′+1⟫

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤2dBΛ,l

. (4.3.32)

Here, we also use the Lemma 4.3.2 for the second sum on the right-hand side above. Then
this is bounded below by

− 8dβδBΛ,l ∑
x∈Λ,t∈[l]

1

l
∑

w∈Λ,s′∈[l]

1

l
(⟪σo,0σu,s⟫⟪σx,tσu,s+1⟫ + ⟪σo,0σu,s+1⟫⟪σx,tσu,s⟫)

≥ −16dβδBΛ,l(
χPΛ,l(β, δ)

β
)

2

. (4.3.33)

Thus, together (4.3.31) and (4.3.33),

M3 +M6 ≥ −2dβBΛ,l
∂

∂β
(
χPΛ,l(β, δ)

β
) − 4δ(5dβδBΛ,l + 1)(

χPΛ,l(β, δ)
β

)
2

. (4.3.34)
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Therefore, we finally obtain the differential inequality by (4.3.22), (4.3.25) and (4.3.34),

∂

∂β
(
χPΛ,l(β, δ)

β
) ≥

4 (d − (5dβBΛ,l + 1)δ)(χ
P
Λ,l(β,δ)
β )

2

− 4dBΛ,l(
χPΛ,l(β,δ)

β )

1 + 2dβBΛ,l

. (4.3.35)

By solving this differential inequality and taking the limit of Λ and l going to infinity,
with the assumption that BΛ,l is bounded and δ ≥ 0 is sufficiently small (we choose
0 ≤ δ < d

5dβBΛ,l+1 so that the first term in the numerator above can be positive), then we

can conclude the desired upper bound for the susceptibility χ(β, δ).

Remark 4.3.3. In the item in Theorem 4.3.1, we assume the boundedness of the space-
time bubble diagram BΛ,l. It is well-known that for the classical ferromagnetic Ising model
if the system satisfies reflection-positivity, then the infrared bound holds, which implies
the boundedness of the bubble diagram.

To close this subsection, we provide the proof of Lemma 4.3.2 below.

Proof of Lemma 4.3.2. By using the random-current representation (4.2.23) and the source
switching lemma (4.2.24),

⟪σo,0σx,t;σu,sσu,s+1⟫β,δ;Λ,l = ∑
∂n={(o,0),(x,t),
(u,s),(u,s+1)}

∂m=∅

w(n)w(m)
Z̃2

(1 − 1[(o,0)←→
n+m

(x, t)])

≤ ∑
∂n={(o,0),(x,t),
(u,s),(u,s+1)}

∂m=∅

w(n)w(m)
Z̃2

1[n(u,s),(u,s+1) =m(u,s),(u,s+1) = 0]

× (1[(o,0)←→
n+m

(u, s)] + 1[(o,0)←→
n+m

(u, s + 1)]), (4.3.36)

where we have used that if (o,0) and (x, t) are not connected, then by the source constraint
(o,0) should be connected to either (u, s) or (u, s + 1), and also the currents n(u,s),(u,s+1)

and m(u,s),(u,s+1) should be 0. We can insert 1 = ( coshKβ,δ,l
coshKβ,δ,l

)2
as the currents on the

bond (u, s), (u, s+ 1). This does not change the source constraint since cosine hyperbolic
function has the even currents. Thus, the right-hand side in (4.3.36) becomes

(coshKβ,δ,l)−2 ∑
∂n={(o,0),(x,t),
(u,s),(u,s+1)}

∂m=∅

w(n)w(m)
Z̃2

(1[(o,0)←→
n+m

(u, s)] + 1[(o,0)←→
n+m

(u, s + 1)])

= (coshKβ,δ,l)−2
⎛
⎝ ∑
∂n={(x,t),(u,s+1)}
∂m={(o,0),(u,s)}

w(n)w(m)
Z̃2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟪σo,0σu,s⟫⟪σx,tσu,s+1⟫

+ ∑
∂n={(x,t),(u,s)}

∂m={(o,0),(u,s+1)}

w(n)w(m)
Z̃2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟪σo,0σu,s+1⟫⟪σx,tσu,s⟫

⎞
⎠
, (4.3.37)

where we have also used the source-switching lemma (4.2.24).
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Remembering that Kβ,δ,l = 1
2 log coth βδ

l ,

(coshKβ,δ,l)−2 = 4

(eKβ,δ,l + e−Kβ,δ,l)2
≤ 4e−2Kβ,δ,l = 4 tanh

βδ

l
≤ 4βδ

l
. (4.3.38)

Therefore, we obtain the desired bound.

4.3.4 Further discussion

1. We have the space-time bubble diagram BΛ,l in the lower bound for the derivative
of the susceptibility and assume its boundedness. As explained in Remark 4.3.3, the
infrared bound implies the boundedness of the bubble diagram in high dimensions.
If the system satisfies reflection-positivity, then the infrared bound holds for the
classical ferromagnetic Ising model. Since we now consider the nearest-neighbor
coupling constant for a spatial bond by the definition of the model and for a temporal
bond by the ST transformation, the reflection-positivity holds. Thus, it would be
possible that we show Gaussian domination and obtain the suitable infrared bound
for the Fourier transform of the two-point function ⟪σo,0σx,t⟫β,δ;Λ,l. By using its
infrared bound, we should be able to show the boundedness of the space-time bubble
diagram in high dimensions.

2. In the main theorem, we assume the smallness of δ and B for the monotonicity of
χP (β, δ) with respect to β to hold. However, we have not succeeded in showing the
monotonicity for any δ > 0. By physical intuition, we believe that the two-point
function ⟪σo,0σx,t⟫β,δ;Λ,l is monotonic with respect to β with fixed δ. By taking
the derivative and observing the random-current representations for two terms in
(4.3.4) more carefully, we expect to show the non-negativity of its derivative. If the
monotonicity holds for any δ ≥ 0, the item (a) in Theorem 4.3.1 holds for any δ ≥ 0
without assuming the smallness of B.

3. As explained in Section 4.1, our final goal is to investigate the critical temperature
of the quantum Ising model to observe the quantum effect on the classical system.
We have shown that the critical exponent for the quantum susceptibility takes on
the same mean-field value as the classical one. Although we cannot rule out the
possibility that other critical exponents take on different values from the classical
system, we are next interested in the quantum effect on the critical temperature.
Since, contrary to the critical exponent, the critical temperature differs depending
on the concerned models, we expect that the critical temperature of the quantum
system is different from the classical system. One of the ways to estimate the
critical temperature in high dimensions is the lace expansion analysis. Sakai [79]
invented the lace expansion for the classical Ising model in 2007 by using the random-
current representation. Applying the ST transformation and the random-current
representation should enable us to do the lace expansion analysis for the quantum
Ising model in a similar manner of [79].
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