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1 Introduction

One of the most controversial issues in the Bardeen-Cooper-Schrieffer (BCS) theory[1].

which is remarkably successful in describing weak-coupling superconductors, may be the

superposition over the number of condensed particles in their variational ground-state

wave function.

This is apparently incompatible with particle-number conservation, which manifestly

holds in any closed system, as noted by Schrieffer from the beginning[2] and emphasized

by Peierls[3] and Leggett.[4]

On the other hand, the superposition was used by Anderson[5] in the context of Bose-

Einstein condensation to discuss emergence of a well-defined macroscopic phase, called

spontaneously broken gauge symmetry,[6, 7] as the key ingredient for superfluidity and

the Josephson effect.

Thus, particle-number fluctuations seem indispensable for bringing macroscopic coher-

ence to the system, which were originally traced by Anderson to the exchange of particles

between subsystems.[5]

However, question may be raised regarding this identification because there are definitely

no fluctuations in the total particle number in any closed system.[4, 7]

∆N = 0 ⇒ ∆Φ → ∞?

If we consider that the fluctuations of particle number ∆N is absolutely zero, does that

lead to an infinite fluctuation in the superconducting phase? Are the fluctuations real or

a mere artifact in the mathematical treatment of superconductivity? If the former is the

case, where do they originate from? How can we define a macroscopic wave function with

a well-defined phase in isolated superconductors? We aim to answer these questions by

improving the BCS wave function with a fixed particle number.

Weak-coupling superconductors have been described theoretically within the mean-field

framework. The corresponding ground-state with N fermions has been identified as the

anti-symmetrized product of N/2 Cooper-pairs with no superposition,

|ΦBCS
N

⟩
= A

−1/2
N exp(π̂†

cp
)
N/2|0

⟩
.

[4, 8, 9] which may thereby have no well-defined phase.[5]

Now, we will see what happens to this wave function when we incorporate many-body

correlations beyond the mean-field treatment, which is given by

|ΦCorr.
N

⟩
= B−1/2

N exp(π̂†
4)|ΦBCS

N

⟩
.

Our physical motivation lies in the following observation: the pair condensation energy

in the weak-coupling region is exponentially small, ∼ exp(−1/g) with g > 0 a dimen-

sionless coupling constant, whereas the correlations energy is proportional to g2 and also

negative for any type of interactions, as seen by the second-order perturbation in terms of

3



the interaction. In other words, the correlations lower the ground-state energy relatively

far more than Cooper-pair condensation for g ≪ 1.

This fact implies that, formally speaking, Cooper-pair condensation should be studied

only after the correlations effects have been incorporated.

We incorporate the correlation effects to show explicitly that the correlations produce

finite non-condensed particles in the ground-state, which work as a particle reservoir for

the condensate to naturally yield the superposition, in exactly the same way as in the

case of interacting Bose-Einstein condensates.[10]

Thus, the superposition is a real physical entity that exists in any isolated supercon-

ductor or superfluid. Note in this context that the superposition and coherence have so

far been discussed mostly in terms of condensed particles alone.[5, 7, 11, 12]

This thesis is organized as follows;

We will discuss the improved ground-wave function with many-body correlations.

Section 2 presents formulation.

Section 3 gives numerical results.

Section 4 presents concluding remarks.

We also present details that deriving the formalism from Appendix.

Appendix A describes the mathematical properties of the inner-product of the BCS

ground-state wave function as Qn. The general expression and the asymptotic expression

of Qn plays an important role in evaluating the ground-state energy.

Appendix B provides a new method of using the asymptotic expression of Qn, deriv-

ing the current canonical BCS formula, which is more mathematical treatable than the

method emphasized by [4].

Appendix C points out the approximations we adopted in the process of deriving the

formalism, and explain some difficulties it encountered.

Appendix D describes the process of deriving the quasi-particle operator γ̂ and its

inverse transformation.

Appendix E derives the equations to minimize the variational ground-state energy in-

cluding the π̂4 correlations in detail.

Appendix F describes how to perform triple sums over wave vectors efficiently in nu-

merical calculations.

Finally, in Appendix G, we present a possible formulation which enables us to evaluate

the ground-state energy with relatively small number of total particles, and points out

the numerical difficulty it may face.
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2 Particle-Number Fluctuations in Isolated Superconductors

2.1 Model

We consider a system with N identical fermions (N ≫1, N:even) with mass m and spin

±1
2
. The Hamiltonian is given by

Ĥ
BCS

≡ Ĥ0 + Ĥ
int
. (2.1)

The kinetic energy Ĥ0 and the interaction energy Ĥ
int

is given by

Ĥ0 ≡
Fin.∑
kα

ε
k
ĉ†kαĉkα, Ĥ

int
≡ 1

2V

Fin.∑
kk′q

∑
αα′

Uq ĉ
†
k+qαĉ

†
k′−qαĉk′α′ ĉkα, (2.2)

where ε
k
and Uq are given explicitly by

ε
k
=

ℏ2k2

2m
, Uq =

∫
U(r)e−iqrd3r. (2.3)

Basically, all summations in this thesis are performed over a finite number of particles,

which we denote as ”Fin”.

Creation and annihilation operators satisfy the anti-communication relations of fermions:

{ĉkα, ĉ†k′α′} = δkk′δαα′ , {ĉkα, ĉk′α′} = 0, (2.4)

with α =↑, ↓ for α = 1
2
,−1

2
, respectively.

This expression of BCS Hamiltonian is obtained through an expansion (see Appendix

B.1) of basis functions satisfying:

Ψ̂(ξ) =
∑
q

ĉ(q)φq(ξ), (2.5)

where Ψ̂(ξ) is the field operator and ĉ(q) is the one-particle annihilation operator.

The expansion constant φq(ξ) denotes particle wave function, where q denotes momen-

tum and spin {k, α}.

2.2 Number-Fixed BCS wave function

We consider a homogenous system in a box of volume V with periodic boundary condi-

tions and anticipate condensation with s-wave pairing for this model. We introduce the

pair operator π̂†
cp

by

π̂†
cp
≡ 1

2

Fin.∑
kα

ϕ
k
ĉ†kαĉ

†
k−α, (2.6)

where ϕ
k
is the Fourier coefficient describes bound-state wave function, which describes

a single Cooper pair.
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The Number-fixed BCS wave function is given by the pair creation operator π̂†
cp
,

|ΦBCS
N

⟩
= A

−1/2
N/2 (π̂†

cp
)N/2|0

⟩
, (2.7)

where AN/2 is the normalization constant defined by the inner product of the ket vector

π̂†
cp
|0
⟩
as follows;

AN/2 ≡
⟨
0|(π̂cp)

N/2(π̂†
cp
)N/2|0

⟩
(N/2)!2

. (2.8)

The vacuum state defined by the annihilation operator satisfies

ĉkα|0
⟩
= 0. (2.9)

Eq.(2.7) can be treated as the N-paticle projection of the grand canonical BCS wave

function

|Φ
⟩
= An

∞∑
n=0

(π̂†
cp
)n

n!
|0
⟩

= Anexp
(
π̂†

cp

)
|0
⟩
. (2.10)

where An is the normalization constant.

The exponential form of the wave function, Eq.(2.10), which represents an extension of

the homogenous variational wave function emphasized by J.R. Schrieffer. The physical

meaning of this wave function denotes linear combination of states with different particle

number.

2.3 Number-conserving operators

Following the number-conserving BCS wave function, we introduce the number-conserving

creation-annihilation operators as follows;

First, we introduce the creation and annihilation operators (β̂†
kα, β̂kα) by

β̂†
kα|ΦBCS

N

⟩
= |ΦBCS

N+2

⟩
, β̂kα|ΦBCS

N

⟩
= |ΦBCS

N−2

⟩
. (2.11)

The physical meaning of these operators is interpreted as increasing (decreasing) the

number of Cooper pairs by one.

These operators is expressible by Cooper pair creation and annihilation operators (π̂†
cp
, π̂

cp
)

as

β̂† ≡

√
QN/2

QN/2+1

π̂†
cp

N/2 + 1
. (2.12)

These operators follows Eq.(2.11) that

(β̂kα)
ν(β̂†

kα)
ν |ΦBCS

N

⟩
= |ΦBCS

N

⟩
, (β̂†

kα)
ν(β̂kα)

ν |ΦBCS
N

⟩
=

|ΦBCS
N

⟩
: ν ≤ N/2

0 : ν > N/2
∀ν,N ∈ Z+.

(2.13)
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so that

(β̂kα)
ν(β̂†

kα)
ν = 1̂, (2.14)

and

(β̂†
kα)

ν(β̂kα)
ν ≃ 1̂. (2.15)

The approximation in Eq.(2.15) becomes practically exact whenever the particle number

condition ν ≤ N/2 is satisfied.

Then, we introduce the number-conserving Bogoliubov operator

γ̂kα ≡ ukĉkα − (−1)
1
2
−αvkĉ

†
−k−αβ̂, (2.16)

which satisfies

γ̂kα|ΦBCS
N

⟩
= 0. (2.17)

The functional uk and vk is denoted as

uk ≡
1√

1 + |ϕk|2
, vk ≡

ϕk√
1 + |ϕk|2

, (2.18)

satisfying

|uk|2 + |vk|2 = 1. (2.19)

The inverse of Eq.(2.20) can be derived as

ĉkα = ukγ̂kα + (−1)
1
2
−αvkγ̂

†
−k−αβ̂. (2.20)

(See Appendix D).

We may use the number-conserving Bogoliubov operator γ̂kα to characterize ket vector

denoted by the BCS wave function |ΦBCS
N

⟩
as the ”vacuum of quasiparticles”, which we

used the same mathematical structure in Eq.(2.9).

Eq.(2.17) indicates that the Bogoliubov quasi-particles are absent from the mean-field

BCS ground-state given by Eq.(2.7).

It is obvious that the number-conserving Bogoliubov operators also obeys the anti-

symmetric commutation relation of fermions

{γ̂kα, γ̂†
k′α′} = δkk′δαα′ , {γ̂kα, γ̂k′α′} = 0. (2.21)

(See Appendix D). We use the number-conserving Bogoliubov operator to create a dy-

namic particle changing process among cooper pairs and non-condensate particles in the

following sections.
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2.4 Improved wave function with correlations

We incorporate many-body correlations into the BCS wave function of Eq.(2.7). With

this modification to the BCS ground-state, we investigate the possibility that some of

quasi-particle state become occupied owing to many-body correlations.

Before we introduce our improved variational wave function, let us define the number-

conserving correlations operator π̂†
4 by

π̂†
4 ≡

1

4!

∑
κ1

∑
κ2

∑
κ3

∑
κ4

wκ1κ2κ3κ4 γ̂
†
κ1
γ̂†
κ2
γ̂†
κ3
γ̂†
κ4
β̂2, (2.22)

where κj ≡ {kj, αj}4j=1 denotes momentum and spin. The variational parameter wκ1κ2κ3κ4

is anti-symmetric with respect to any permutation of κ1κ2κ3κ4 by definition

P̂wκ1κ2κ3κ4 = (−1)Pwκ1κ2κ3κ4 . (2.23)

This number-conserving correlations operator describes the physical process that two

Cooper pairs broken up into four quasi-particles.

Our improved variational wave function is given in terms of the BCS wave function

Eq.(2.7) and the number-conserving correlations operator π̂†
4 (2.22) by

|ΦCorr.
N

⟩
= B−1/2

N exp(π̂†
4)|ΦBCS

N

⟩
, (2.24)

where the quantity B−1/2
N denotes the normalization constant

BN ≡
⟨
ΦBCS

N |exp(π̂4)exp(π̂
†
4)|ΦBCS

N

⟩
(2.25)

= exp
( 1
4!

∑
κ1

∑
κ2

∑
κ3

∑
κ4

|wκ1κ2κ3κ4|2 +O(|w|4)
)
. (2.26)

This improved variational wave function has finite occupations of quasi-particles when

wκ1κ2κ3κ4 ̸= 0 is realized. The exponent in Eq.(2.26) is expressible as Fig.1 in terms

of connected Feynman diagrams. the first term denotes the lowest-order contribution.

However, we ignored higher order terms of the normalization constant BN in the weak-

coupling region.

It will turn out below that Eq.(2.17), Eq.(2.22) and Eq.(2.26) suffice to perform an

evaluation of the ground-state energy up to the first order in the correlations parameter

wκ1κ2κ3κ4 , which is beyond the framework of the mean-field theory.
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Figure 1: (Color online) Diagrammatic expansion of LnBN up to the second order in π4. An open (filled)

circle with four outgoing (incoming) arrows denotes π̂†
4(π4). The weight below each figure denotes the

number of combinations to realize the connection.

2.5 Expression for the ground-state energy

We now evaluate the expectation of BCS Hamiltonian with the improved variation wave

function of Eq.(2.24) follows

ε
Corr.

≡
⟨
ΦCorr.

N |Ĥ
BCS

|ΦCorr.
N

⟩
. (2.27)

This ground-state energy can be performed exactly in the same way as that for the

interacting Bose-Einstein condensates.

The inverse of the number-conserving Bogoliubov quasi-particle operator (2.20) follows

ĉkα = ukγ̂kα + (−1)
1
2
−αvkγ̂

†
−k−αβ̂. (2.28)

With the inverse transformation (γ̂†
kα, γ̂kα) → (ĉ†kα, ĉkα), the evaluation of ε

Corr.
can be

performed subsequently.

Particularly, with Eq.(2.28), the interaction energy Ĥ
int

can be performed as⟨
ΦCorr.

N |Ĥint|ΦCorr.
N

⟩
=

1

2V

Fin.∑
kk′q

∑
αα′

Uq

⟨
ΦCorr.

N |
[
uk+qγ̂

†
k+q,α] + (−1)

1
2
−αv∗k+qγ̂−k−q,−αβ̂

†]
×
[
uk′−qγ̂

†
k′−q,α′ ] + (−1)

1
2
−α′

v∗k′−qγ̂−k′+q,−α′ β̂†]
×
[
uk′ γ̂k′α′ + (−1)

1
2
−αvk′ γ̂†

−k′−α′ β̂
]
×
[
ukγ̂kα + (−1)

1
2
−αvkγ̂

†
−k−αβ̂

]
|ΦCorr.

N

⟩
. (2.29)
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With careful calculation of Eq.(2.29), we obtain the following terms as⟨
ΦCorr.

N |Ĥint|ΦCorr.
N

⟩
=

1

2V

Fin.∑
kk′q

Uq

∑
αα′

uk+quk′−quk′uk

⟨
ΦCorr.

N |γ̂†
k+q,αγ̂

†
k′−q,α′ γ̂k′α′ γ̂kα|ΦCorr.

N

⟩
+

1

2V

Fin.∑
kk′q

Uq

∑
αα′

vk+qvk′−qvk′vk
⟨
ΦCorr.

N |γ̂−k−q,−αγ̂−k′+q,−α′ γ̂†
−k′−α′ γ̂

†
−k−α|ΦCorr.

N

⟩
+

1

2V

Fin.∑
kk′q

Uq

∑
αα′

vk+quk′−quk′vk
⟨
ΦCorr.

N |γ̂−k−q,−αγ̂
†
k′−q,α′ γ̂k′α′ γ̂†

−k−α|ΦCorr.
N

⟩
+

1

2V

Fin.∑
kk′q

Uq

∑
αα′

uk+qvk′−qvk′uk

⟨
ΦCorr.

N |γ̂†
k+q,αγ̂−k′+q,α′ γ̂†

−k′−α′ γ̂kα|ΦCorr.
N

⟩
+

1

2V

Fin.∑
kk′q

Uq

∑
αα′

vk+quk′−qvk′uk(−1)1−α−α′⟨
ΦCorr.

N |γ̂−k−q,−αγ̂
†
k′−q,−α′ γ̂

†
−k′−α′ γ̂kα|ΦCorr.

N

⟩
+

1

2V

Fin.∑
kk′q

Uq

∑
αα′

uk+qvk′−quk′vk(−1)1−α−α′⟨
ΦCorr.

N |γ̂†
k+q,αγ̂−k′+q,−α′ γ̂k′α′ γ̂†

−k−α|ΦCorr.
N

⟩
+

1

2V

Fin.∑
kk′q

Uq

∑
αα′

uk+quk′−qvk′vk(−1)1−α−α′⟨
ΦCorr.

N |γ̂†
k+q,αγ̂

†
k′−q,α′ γ̂

†
−k′−α′ γ̂

†
−k−α(β̂)

2|ΦCorr.
N

⟩
(2.30a)

+
1

2V

Fin.∑
kk′q

Uq

∑
αα′

vk+qvk′−quk′uk(−1)1−α−α′⟨
ΦCorr.

N |(β̂†)2γ̂−k−q,−αγ̂−k′+q,−α′ γ̂k′α′ γ̂kα|ΦCorr.
N

⟩
.

(2.30b)

Firstly, compared with the mean-field BCS theory is the finite average, a new pair of

ingredient which includes its conjugate, emerged from the evaluation of ε
Corr.

, precisely

the terms colored red in the evaluation of Ĥint, i.e.(2.30a) and (2.30b), which can be

performed as ⟨
ΦCorr.

N |γ̂†
κ1
γ̂†
κ2
γ̂†
κ3
γ̂†
κ4
β̂2|ΦCorr.

N

⟩
=

δLnBN

δwκ1κ2κ3κ4

≈ w∗
κ1κ2κ3κ4

, (2.31)

where we used Eq.(2.26) in the second approximation.

We also notice the following calculation

γ̂κ|ΦCorr.
N

⟩
= B−1/2

N {γ̂κ, exp(π̂†
4)}|ΦBCS

N

⟩
= {γ̂κ, (π̂†

4)}|ΦCorr.
N

⟩
=

1

3!

∑
κ2κ3κ4

wκκ2κ3κ4 γ̂
†
κ2
γ̂†
κ3
γ̂†
κ4
|ΦCorr.

N

⟩
. (2.32)

holds. Moreover, we define another finite average ηk, which denotes a important quantity
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as

ηk ≡
⟨
ΦCorr.

N |γ̂†
kαγ̂kα|ΦCorr.

N

⟩
≃ 1

3!

∑
κ2κ3κ4

|wκκ2κ3κ4 |2. (2.33)

We assume that both variational parameter ϕk and wκ1κ2κ3κ4 are real number through the

calculation.

It is convinent to introduce two basic expectations with the improved variational wave

function |ΦCorr.
N

⟩
n̄

k
≡
⟨
ΦCorr.

N |ĉ†kαĉkα|ΦCorr.
N

⟩
= v2k + (u2

k − v2k)ηk, (2.34)

F̄
k
≡
⟨
ΦCorr.

N |β̂†ĉ−k−αĉkα|ΦCorr.
N

⟩
= ukvk(1− 2ηk). (2.35)

Using Eq.(2.31), Eq.(2.33), Eq.(2.34) and Eq.(2.35), we obtain an expression of the

ground-state energy estimated with improved variational wave function |ΦCorr.
N

⟩
(see Ap-

pendix E) in the weak-coupling region as

ε
Corr.

≡
⟨
ΦCorr.

N |Ĥ
BCS

|ΦCorr.
N

⟩
= 2

∑
k

ε
k
n̄k +

1

V

∑
kk′

(2U0 − U|k−k′|)n̄kn̄k′ +
1

V

∑
kk′

U|k−k′|F̄kF̄
∗
k′ +

∑
k

ζk, (2.36)

where the last term ζk,

ζk ≡ 1

V

∑
k1k2k3k4

δk1+k2+k3+k4,0U|k1+k3|uk1uk2vk3vk4 ×
∑
αα′

(−1)1−α−α′
wk1αk2α′k4−α′k3−α.

(2.37)

denotes the correlations energy.

The first term denotes the kinetic energy, the second term denotes the Hartree-Fock

energy, the third term denotes the pair-condensation energy.

Moreover, we should recognize that the characteristic function ” n̄
k
” and ”F̄

k
”, as

shown in Eq.(2.34) and Eq.(2.35), also influenced by many-body correlations numerically,

which eventually influenced the kinetic energy, the Hartree-Fock energy and the pair-

condensation energy.

Setting wκκ2κ3κ4 to zero, we can reproduces the BCS expression for the ground-state

energy including the Hartree-Fock contribution.
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2.6 Minimization of the ground-state energy

Let us minimize the ground-state energy for a fixed total particle number N.

First we incorporate the constraint condition

N = 2
Fin.∑
k

n̄k, (2.38)

in terms of Eq.(2.34) by the method of Lagrange multipliers. We introduce the energy

functional

ε̄ ≡ ε+ µ
Fin.∑
k

(N − 2n̄k), (2.39)

with µ denoting the Lagrange multiplier.

Then, we set the energy functional ε̄ with respect to the variational parameters

(µ, ϕk, wκ1κ2κ3κ4) simultaneously

δε̄

δϕk

= 0, (2.40)

δε̄

δwκ1κ2κ3κ4

= 0. (2.41)

The resultant expression of the variation with respect to µ yields the constraint condition

Eq.(2.38), the resultant expression of the variation with respect to ϕk yields

ϕk =
−ξk + Ek

∆∗
k

, Ek ≡
√
ξ2k + |∆k|2. (2.42)

which Eq.(2.18) acquires the standard BCS expression

uk =

√
1

2

(
1 +

ξk
Ek

)
, vk =

√
1

2

(
1− ξk

Ek

)
. (2.43)

However, many-body correlations are incorporated into the single particle energy ξk and

gap energy ∆k as

ξk = ξ
(0)
k + ξ

(1)
k , (2.44)

∆k = ∆
(0)
k +∆

(1)
k , (2.45)

where we define

ξ
(0)
k ≡ εk − µ+

1

V

Fin.∑
k′

(2U0 − U|k−k′|)n̄k′ , (2.46a)

∆
(0)
k ≡ − 1

V

Fin.∑
k′

U|k−k′|F̄
∗
k′ , (2.46b)

12



ξ
(1)
k ≡ (1− 2ηk)

−1 1

V 2

∑
k2k3k4

δk+k2+k3+k4,0

E
(0)
k + E

(0)
k2

+ E
(0)
k3

+ E
(0)
k4

× U|k+k2|{U|k+k2|(v
2
k2

− u2
k2
)(uk3vk4 + vk3uk4)

2

− U|k+k3|(vk2vk3 − uk2uk3)(uk2vk4 + vk2uk4)(uk3vk4 + vk3uk4)}, (2.47a)

∆
(1)
k ≡ (1− 2ηk)

−1 2

V 2

∑
k2k3k4

δk+k2+k3+k4,0

E
(0)
k + E

(0)
k2

+ E
(0)
k3

+ E
(0)
k4

× U|k+k2|{U|k+k2|uk2vk2(uk3vk4 + vk3uk4)
2

− U|k+k3|uk2vk3(uk2vk4 + vk2uk4)(uk3vk4 + vk3uk4)}, (2.47b)

where E
(0)
k is defined as

E
(0)
k ≡ (u2

k − v2k)ξ
(0)
k + 2ukvk∆

(0)
k , (2.48)

in terms of ξ
(0)
k and ∆

(0)
k .

The Eqs.(2.46) follows the same mathematical structure as the mean-field BCS theory,

and Eqs.(2.47) denotes the correlations energy with respect to the single-particle energy

and the gap energy.

The solution of Eq.(2.41), variation with respect to wκ1κ2κ3κ4 can be calculated explicitly

as

wκ1κ2κ3κ4 = − δk1+k2+k3+k4,0

E
(0)
k1

+ E
(0)
k2

+ E
(0)
k3

+ E
(0)
k4

1

V

[
δα1,−α2δα3,−α4(−1)1−α1−α3

×U|k1+k3|(uk1vk2 + vk1uk2)(uk3vk4 + vk3uk4) + (two terms)
]
, (2.49)

where the two terms obtain from the first term in the square brackets by the two cyclic

permutations of (2,3,4) (see Appendix E).

Since we assume spin-singlet during the calculation, the variational parameter wκ1κ2κ3κ4

reduces to four dimensional anti-symmetric tensor, which is only relates to the momentum

space.

We now summarize our self-consistent equations. Eq.(2.33), Eq.(2.34), Eq.(2.35), Eq.(2.43),

Eq.(2.44), Eq.(2.45) and Eq.(2.48), combined with Eq.(2.38), form the closed non-linear

equations, which can be used to evaluate the ground-state energy of s-wave Cooper pair

condensation for any given potential U(r).

Moreover, the corresponding normal state energy can be obtained by replacing (uk, vk)

with the step function θ(x)

(uk, vk) → (θ(k − kF), θ(kF − k)), (2.50)

which eventually gives us the normal state distribution functional

n0
k ≡ θ(kF − k), (2.51a)

nn
k = (1− ηnk)θ(kF − k) + ηnkθ(k − kF). (2.51b)

13



The Eq.(2.51a) denotes the normal state functional of non-interacting expression, and

Eq.(2.51b) denotes denotes the normal state functional with correlations, where kF is

the Fermi wave number, which exhibits a discontinuity. It should be noted that, in the

limit of Eqs.(2.51) and ηk → 0 reduces the normal ground-state energy evaluated by the

second-order perturbation expansion.

2.7 Superposition over the number of Cooper pairs

In the preceding sections, we discussed the correlations operator π̂†
4 decreases the Cooper

pairs into quasi-particles by two. We then realize that the improved wave function |ΦCorr.
N

⟩
is made up of superpositions over different number of Cooper pairs.

The superposition can be quantified as follows;

First, the normalization constant BN of |ΦCorr.
N

⟩
can be expanded by (π̂4, π̂

†
4) as

BN = exp
( ∞∑

l=1

J4l
)
, (2.52)

where J4l is defined as

J4l ≡
⟨
ΦBCS

N |(exp(π̂4))
lexp(π̂†

4)
l|ΦBCS

N

⟩
(l!)2

, λ ∈ Z+. (2.53)

We may neglect terms of l ≥ 2, only incorporate the l = 1 contribution as justified in the

weak-coupling region. According to Eq.(2.26), quantity J4l can be expressed as

J4 ≡
1

2

∑
k

ηk, (2.54)

where we used Eq.(2.33).

We thereby estimate the overlap |
⟨
N
2
− 2n|ΦCorr.

N

⟩
|2, which denotes the resultant proba-

bility of having Cooper pairs in the fixed system by Poisson distribution

P(N
2
−2n) =

Jn
4 e

−J4

n!
. (2.55)

We note that P(N
2
−2n) approaches a Gaussian distribution in the thermodynamic limit as

seen that J4 is proportional to total particle number N.
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3 Numerical Calculation

3.1 Model potential

We consider a model with attractive potential

U(r) =
ℏ2a0
2mr30

e−r/r0 , (3.1)

with parameters (a0, r0), where a0 < 0 and r0 > 0.

This potential can be expanded in plane waves as

U(k) =
4πℏ2a0

m(1 + r20k
2)
. (3.2)

It is also convenient to express the potential U(|k1 − k2|) as

U(k) = U(|k1 − k2|) =
∞∑
l=0

Ul(k1, k2)
l∑

m=−l

4πYlm(k1)Y
∗
lm(k2), (3.3)

where Ylm and Y ∗
lm are spherical harmonics function.

Then, we set the expansion coefficient in Eq.(3.3) for l = 0, then we get

U0(k, k
′) =

4πℏ2

m

a0

(1 + r20k
2 + r20k

′2)2 − 4r40k
2k′2

. (3.4)

There are several reasons that we finally choose such potential model like Eq.(3.2) with

a finite range, instead of the contact attractive model, which is frequently used in the

literatures[4].

The contact attractive model can only have an equivalent, however artificial mathemat-

ical approximation towards momentum integral range around Fermi’s surface. Compared

to the contact attractive model, the exponential type model can have a un-artificial in-

tegral range corresponds to a certain combination of the potential parameter (a0, r0), in

accordance with the solution of gap equation. It naturally make our calculation free from

the ultraviolet divergences inherent.

Also, such artificial mathematical approximation of the momentum space in the contact

attractive model does not contain any information about many-body correlations, pre-

cisely does not contain the variational parameter wκ1κ2κ3κ4 . It is essential to test whether

our improved variational wave function |ΦCorr.
N

⟩
actually decreases the ground-state energy

compare to the current BCS wave function |ΦBCS
N

⟩
, which is directly caused by many-body

correlations rather than other artificial reasons.
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3.2 Numerical procedures

For example, setting the potential parameter (a0, r0) = (−0.12k−1
F
, 0.1k−1

F
) yields a

weak-coupling transition temperature Tc ≈ 1.16 × 10−4ε0
F
/k

B
, where ε0

F
is the non-

interacting Fermi energy and k
B
is the Boltzmann constant.

In order to make the evaluation of correlations energy more tractable with high accuracy

numerically, we have chosen

(a0, r0) = (−0.19k−1
F
, 0.1k−1

F
), (3.5)

which yields a weak-coupling transition temperature Tc ≈ 2.0×10−2ε0
F
/k

B
. The sums over

(κ2κ3κ4) in Eq.(2.44) can be expressed into vectors of triple radial and double angular

integrals, which simplifies in Appendix(F). The radial integrals were performed on the

interval of 0 ≤ k ≤ kcut , where the integer upper limit kcut ≈ 50k
F
.

We express the momentum k = k
F
(1 + sinh(x)3), and discretizing variable x at interval

equally, so that can accumulate integration points around the Fermi’s surface k
F
. It turned

out that the quantity Ek0 defined in Eq.(2.48) can be negative, which cause instability

when evaluating quintuple sum. This numerical problem was eventually moved by re-

placing Ek0 to the absolute value |ξnk |, where |ξnk | denotes the normal state single-particle

energy follows the replacement of distribution functions in Eq.(2.51b). This numerical

procedure corresponds to choosing the parameter wκ1κ2κ3κ4 slightly away from extremal

value for numerical stability at the expense of increasing the variational ground-state

energy. Our numerical calculation was performed by setting the natural unit

ℏ = kB = kF = 2m = 1. (3.6)

We have confirmed convergence of the solution of self-consistent equations within ≈ 1%

error in the pair condensation energy by choosing 130 points for each radial integral and

20 points for each angular integral.
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3.3 Numerical results

Let us present the numerical results for (a0, r0) = (−0.19k−1
F
, 0.1k−1

F
) self-consistently.

Fig. 2 plots the gap energy ∆k/ε
0
F
as a function of momentum k/kF. The red line denotes

the gap energy ∆k = ∆
(0)
k +∆

(1)
k , which includes π̂4 correlations. The blue line denotes the

gap energy ∆BCS
k /ε0

F
by the mean-field BCS theory without π̂4 correlations. We observe

that the correlations reduce gap energy from the mean-field value, and also produce a

small dip around Fermi’s surface k = kF.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  10  20  30  40  50

DeltakBCS
DeltakPAI4

k ×kF

∆BCS
k

∆k

×ε0
F

Figure 2: Energy gap ∆k in unit of ε0
F
as a function of momentum k in comparison with ∆BCS

k without

π̂4 correlations

Table 1 summarizes the normal-state energy and pair condensation energy of both the-

ories. We choose non-interaction kinetic energy ε0 ≡ 2
∑

k εkθ(kF− k) as unit to evaluate

the normal-state energy and pair condensation energy. As expected, the correlation en-

ergy is seen to be much larger in magnitude than pair condensation energy due to π̂4

correlations.
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表 1: Normal-state energy and pair condensation energy in unit of non–interaction kinetic energy ε0 for

parameters (a0, r0) = (−0.19k−1
F

, 0.1k−1
F

).

(εn − ε0)/ε0 (ε − εn)/ε0

Mean-field BCS theory −6.877× 10−2 −7.81× 10−4

Theory with π̂4 correlations −1.033× 10−1 −5.06× 10−4

It should be noted that the mean-field condensation energy is in excellent still agreement

with the BCS prediction

Econd. = 2N(εF)

∫ ∞

0

(
ξk − Ek +

(∆BCS
kF

)2

Ek

)
dξk

= −1

2
N(εF)(∆

BCS
kF

)2

= −7.81× 10−4ε0, (3.7)

which is given in terms of the energy gap ∆BCS
kF

= 0.0354ε0F at the Fermi level and the

density of states N(εF) = mkFV/2π
2ℏ2.

The quantity η
k
is essential to characterizes the π̂4 correlations. In the normal state, it

describes the deviation of Eq.(2.51b) from the non-interacting expression Eq.(2.51a), and

the reultant reduction of the discontinuty of k = kF from 1.
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Fig. 3 plots η
k
in the pair condensed state in comparison with normal state. The latter

exhibits a discontinuity ∆ηn

k
= 3.48 × 10−3 of at k = kF, which is blurred in η

k
due to

condensation.

 0
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 0.004

 0.005
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 0.007

 0  0.5  1  1.5  2  2.5  3

Normal state
Superconductive state

ηk

k ×kF

⌘n

k

⌘
k

Figure 3: Plots of superconducting η
k
(blue line) as a function of in the pair condensed state in comparison

with ηn
k
(red line) of normal state.

This finite quantity η
k
also produce a superposition over the number of Cooper pairs in

the condensate which is expressible as Eq.(2.55) in the weak-coupling region.

Fig. 4 and Fig. 5 show the Poisson distribution of number of Cooper pairs for a total

particle number from a relatively small number N = 1000 to larger number N = 20000.

We observed that the distribution shifts to the right as total particle number increasing.

Especially the redline of Fig. 3 which denotes the total particle number N = 20000

already has the appearance of a complete Gaussian.
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Figure 4: (Redline) Plots of probability P(N
2 −2n) of having Cooper pairs in the ket |ΦCorr.

N

⟩
for the total

particle number N=20000.
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Figure 5: Plots of probability P(N
2 −2n) of having Cooper pairs in the ket |ΦCorr.

N

⟩
for a certain total particle

number N. We observe that the distribution shifts to the right as total particle number increasing.
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4 Summary and Conclusion

The present research has clarified the correlations naturally produce a superposition

over number of Cooper pairs in the ground-state wave function. This superposition,

which is given by Eq.(2.55) and shown in Fig.4, enables us define the ”anomalous” average

unambiguously as Eq.(2.35) within the number-conserving formalism, in contrast to the

mean-field BCS theory, where the average becomes finite only between states with different

particle numbers as
⟨
ΦBCS

N−2|ĉ−k−αĉkα|ΦBCS
N

⟩
.[4] Indeed, the destruction of a single Cooper

pair in our improved wave function |ΦCorr.
N

⟩
is accompanied by the creation of a pair of

non-condensed particles.

Moreover, the gauge transformation {ϕk, wκ1κ2κ3κ4}
g(∀χ∈R)→ {ϕke

2iχ, wκ1κ2κ3κ4 , e
4iχ} in

Eq.(2.7) and Eq.(2.24) changes Eq.(2.35) as Fk → Fke
2iχ without affecting the ground-

state energy. Thus F (r1 − r2) ≡
∑

k Fke
ik(r1−r2) has the property of a macroscopic wave

function with a well-defined phase. It follows from Eq.(2.24) that the superposition is

realized and sustained energetically by the exchange of quasi-particles between states

with different numbers of Cooper pairs, similarly to the way that two weakly coupled

superconductors is realized and mediated by the exchange process between them.[4, 5]

Thus the correlations are identified as being responsible for the emergence of macroscopic

coherence in isolated superconductors. The present study also makes it clear that fluctu-

ations in the number of condensed particles ∆Ncond., instead of those in the total particle

number as discussed frequently, are responsible for the appearance of a macroscopic well-

defined phase, in accordance with the concept of coherence in optics,[18] and also the

gauge invariance.

Thus, the present theory supports the mean-field description of superconductivity using

grand-canonical ensemble[1, 8, 9, 15] in the thermodynamic limit. For systems with a

small number of particles or with low dimensions, on the other hand, the fluctuations

∆Ncond. are expected to have substantial effects on the physical properties and realization

of coherence. However, the present theory cannot be applied directly to finite systems

because of the mathematical approximation introduced around Eq.(2.11) (see Appendix

C), which becomes valid for N ≫ 1. We are planing to report some progress in removing

the approximations in the future research (see Appendix G).
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Appendix

A Mathematical Preparation for Deviating the Formalism

A.1 General expression of Qn

First, we introduce the pair operator π̂† as

π̂† ≡
∑
q1q2

ϕq1q2 ĉ
†
q1
ĉ†q2 , (A.1)

where {qi}i=1,2 ≡ {ki, αi}i=1,2 denotes momentum and spin, and ϕq1q2 is assumed to have

the symmetry ϕq1q2 = σϕq1q2 , with σ = ±1 denotes statistical properties for bosons and

fermions respectively.

Let us define the canonical commutation relation for bosons (σ = +1) and fermions

(σ = −1) as

[Â, B̂]σ=+1 ≡ [Â, B̂] ≡ ÂB̂ − B̂Â, (A.2a)

[Â, B̂]σ=−1 ≡ {Â, B̂} ≡ ÂB̂ + B̂Â. (A.2b)

It is straightforward to prove that the pair operator and its Hermitian conjugate operator

satisfies the following canonical commutation relations (A.2):

{ĉq, π̂†} =
∑
q1

ϕqq1 ĉ
†
q1
, (A.3a)

{π̂ , π̂†} =
1

2
Trϕϕ† + σ

∑
q1q′1

ĉ†q1
(
ϕϕ†)

q1q′1
ĉq′1 . (A.3b)

It is also convenient to express the commutation relation {π̂ , (π̂†)n} as follows;

{π̂ , (π̂†)n}
={π̂ , (π̂†)}(π̂†)n−1 + π̂{π̂ , (π̂†)}(π̂†)n−1...+ (π̂)n−2{π̂ , (π̂†)}(π̂†)n−1 + (π̂)n−1{π̂ , (π̂†)}(π̂†)n−1

=
n

2
(π̂†)n−1Trϕϕ† + σ

n(n− 1)

2
(π̂†)n−2

∑
q1q2

(
ϕϕ†ϕ

)
q1q2

ĉ†q1 ĉ
†
q2
+ σn(π̂†)n−1

∑
q1q′1

ĉ†q1
(
ϕϕ†)

q1q′1
ĉq′1

(A.4)

With these preparation, we define the following quantities:

Qn ≡
⟨
0|(π̂)n(π̂†)n|0

⟩
(n!)2

, (A.5a)

Pn ≡
⟨
0|(π̂)n−1ĉq1 ĉq2(π̂

†)n|0
⟩

(n!)2
, (A.5b)

In ≡ σn−1

2
Tr(ϕϕ†)n. (A.5c)
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It is easy to prove the following equation

Pn(q1, q2) =
1

n

δQn

δϕ∗
q2q1

= σPn(q2, q1). (A.6)

holds. Then, we obtain the recurrence formula for Qn and Pn by using Eq.(A.4) and the

definition of vacuum ĉq|0
⟩
= 0 as

Qn =

⟨
0|(π̂)n−1{π̂, (π̂†)n}|0

⟩
(n!)2

= ... =
1

n
(Qn−1I1 +

n− 1

2
Trϕϕ†ϕP †

n−1), (A.7a)

Pn =

⟨
0|(π̂)n−1{ĉq1 ĉq2 , (π̂†)n}|0

⟩
(n!)2

= ... =
σ

n

(
Qn−1ϕ+ (n− 1)ϕP †

n−1ϕ
)
q1q2

. (A.7b)

We give examples to calculate the first few terms of Eq.(A.7) as

n = 0, Q0 = 1, P 0 = 0;

n = 1, Q1 = I1, P 1 = σϕ;

n = 2, Q2 =
1

2
(Q1I1 +

1

2
Trϕϕ†ϕϕ†)

=
Q1I1 + I2

2
,

P 2 =
σ

2

(
Q1ϕ+ ϕP †

1ϕ
)
;

n = 3, Q3 =
1

3

(
Q2I1 +

2

2

σ

2
Trϕϕ†ϕ(Q1ϕ

† + σϕ†ϕϕ†)
)

=
Q2I1 +Q1I1 + I3

3
,

P 3 =
σ

3

(
Q2ϕ+ 2

σ

2
ϕ(Q1ϕ

† + σϕ†ϕϕ†)ϕ
)

=
σ

3

(
Q2ϕ+ σQ1ϕϕ

†ϕ+ σ2ϕϕ†ϕϕ†ϕ
)
;

n = 4, Q4 =
1

4

(
Q3I1 +

3

2
Trϕϕ†ϕ

(σ
3
Q†

2ϕ
† + 2

σ

2
ϕ†(Q1ϕ+ ϕσϕ†ϕ

)
ϕ†)

=
1

4

(
Q3I1 +

3

3
(Q2I2 +Q1I3 + I4)

)
=

Q3I1 +Q2I2 +Q1I3 +Q0I4
4

,

P 4 =
σ

4

(
Q3ϕ+ 3ϕ

(σ
3
(Q2ϕ+ σQ1ϕϕ

†ϕ+ σ2ϕϕ†ϕϕ†ϕ)
)
ϕ
)

=
σ

4

(
Q3ϕ+ σQ2ϕϕ

†ϕ+ σ2Q1ϕϕ
†ϕϕ†ϕ+ σ3Q0ϕϕ

†ϕϕ†ϕϕ†ϕ
)
;

n = 4, Q4 =
Q4I1 +Q3I2 +Q2I3 +Q1I4 +Q0I5

5
,

P 5 = ...;
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From these results, we suggest that Pn and Qn may be expressed generally as

Qn =
1

n

n∑
l=1

Qn−lIl, (A.8a)

P n =
1

n

n∑
l=1

Qn−lϕ(ϕ
†ϕ)l−1σl. (A.8b)

These two expression can be proved by induction as follows; First, it is obviously that

the expressions holds for n = 1. Then we suppose that they are vaild for n ≤ m− 1, we

obtain that for n = m,

Qm =
1

m

[
Qm−1I1 +

m−1∑
l=1

Qm−1−l
σl

2
Tr(ϕϕ†)l+1

]
=

1

m

[
Qm−1I1 +

m−1∑
l=1

Qm−1−lIl+1

]
=

1

m

m∑
l=1

Qm−lIl, (A.9a)

Pm =
σ

m

[
Qm−1ϕ+

m−1∑
l=1

Qm−1−lϕ(ϕ
†ϕ)lσl

]
=

σ

m

[
Qm−1ϕσ +

m−1∑
l=2

Qm−1ϕ(ϕ
†ϕ)l−1σl

]
=

1

m

m∑
l=1

Qm−lϕ(ϕ
†ϕ)l−1σl. (A.9b)

Moreover, we set q → {k, α} which denotes the relations between Eqs.(A.9) can be

expressed as

Qn(k) =
1

n

n∑
l=1

Qn−l

∑
k

|ϕk|2l(−1)l−1,

= −
∑
k

ϕk
∗Pn(k), (A.10a)

Pn(k) =
1

n

n∑
l=1

Qn−lϕk|ϕk|2(l−1)(−1)l. (A.10b)

with

Il = (−1)n−1
∑
k

|ϕk|2l.
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An alternative expression of Qn is expressible as follows;

Qn =
∑

ν1,ν2,...,νn

W (ν1, ν2, ..., νn)I
ν1
1 Iν22 . . . Iνnn

=
∑

ν1,ν2,...,νn

δν1+2ν2,...,+nνn,n

n∏
l=1

(Il/l)
νl

νl!
, (A.11)

where the weight W (ν1, ν2, ..., νn) is obtained as

W (ν1, ν2, ..., νn) =
δν1+2ν2,...,+nνn,n

(n!)2
[ n!

ν1(1!)ν1ν2(2!)ν2 . . . νn(n!)νn

]2
× ν1!ν2! . . . νn!(1!0!)

ν1(2!1!)ν2 . . . (n!(n− 1)!)νn

=
δν1+2ν2,...,+nνn,n

ν1!ν2! . . . νn!1ν12ν2 . . . nνn
. (A.12)

The factor of square bracket denotes the number of combinations to distribute n persons

into (ν1, ν2, ..., νn) rooms, where νl denotes the number of rooms with l beds. Factor νl!

denotes the number of combinations for connecting νl pairs of operators (π̂
l, (π̂†)l). Factor

(l!(l − 1)!) denotes the number of possible connections within each (π̂l, (π̂†)l) pair.

A.2 Asymptotic expression of Qn

The generating function of Qn can be constructed as follows;

Q(θ) ≡
∞∑
n=0

Qne
inθ

= exp
[σ
2

∞∑
l=0

(σeiθ)l
Tr(ϕϕ†)l

l

]
= exp

[
− σ

2
Tr(1− σeiθϕϕ†)l

]
. (A.13)

The inverse transform of Qn → Q(θ) is given by

Qn =

∫ π

−π

dθ

2π
e−inθQ(θ). (A.14)

The differential of Logorthm Qθ with respect to (ϕq1q2 , ϕ
∗
q1q2

) yields

δLnQ(θ)

ϕq1q2

=
[
ϕ†(1− σeiθϕϕ†)−1/2

]
q1q2

,
δLnQ(θ)

ϕ∗
q1q2

=
[
(1− σeiθϕϕ†)−1/2ϕ

]
q1q2

. (A.15a)

Using the generating function Q(θ), we derive an asymptotic expression of Qn which

holds for n ∈ Z+. We have assumed homogeneous system with spin-singlet pairing. We

set qi → {ki, αi}, then according to Eq.(A.13) and Eq.(A.14), the Qn is expressible as

Qn =

∫ π

−π

dθ

2π
e−inθexp

[∑
k

Ln(1 + eiθ|ϕk|2)
]
,

=

∫ π

−π

dθ

2π
efn(θ), (A.16)
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where we define

fn(θ) ≡ −inθ +
∑
k

Ln(1 + eiθ|ϕk|2). (A.17)

For future purpose, we calculate the first two derivatives with respect to θ as

f
′

n(θ) = −i
(
− n+

∑
k

eiθ|ϕk|2

1 + eiθ|ϕk|2
)
, (A.18a)

f
′′

n (θ) = (−i)2
∑
k

eiθ|ϕk|2

1 + eiθ|ϕk|2
. (A.18b)

We suppose that f
′

(N/2)(θ) = 0 satisfies at θ = 0

f
′

(N/2)(θ) = 0 ↔ −i
(
−N/2 +

∑
k

|ϕk|2

1 + |ϕk|2
)
= 0,

↔ N − 2
∑
k

|ϕk|2

1 + |ϕk|2
= 0. (A.19)

This mathematical suggestion corresponds to the constrain condition, in which the total

particle number is fixed. The expansion of f(N/2)(θ) at θ = 0 can be expressed as

f(N/2)(θ) = f(N/2)(0) +
1

2!
f

′

(N/2)(0)θ
2 +O(θn)

=
∑
k

Ln(1 + |ϕk|2)−
∑
k

|ϕk|2

1 + |ϕk|2
θ2

2
+O(θn). (A.20)

We substitute this Taylor expression into Qn (A.16), and performing the integration over

θ asymptotically, we obtain that

Qn =

∫ π

−π

dθ

2π
efn(θ)

≈efN/2(0)

∫ ∞

−∞

dθ

2π
e

1
2!
f
′′
N/2

(0)θ2

= exp
[∑

k

Ln(1 + |ϕk|2)
][
2π
∑
k

|ϕk|2

1 + |ϕk|2
]−1/2

. (A.21)

Thus the logarithm of QN/2 is given by

LnQN/2 =
∑
k

Ln(1 + |ϕk|2)−
1

2
Ln
[
2π
∑
k

|ϕk|2

1 + |ϕk|2
]

≈
∑
k

Ln(1 + |ϕk|2), (A.22)

where we neglect the second term of order LnN in comparison with the first term with

order N in the last approximate equality.

This asymptotic expression of Qn (A.22) enables us deriving the canonical BCS formu-

lation mathematical properly (see Appendix B) compared to other methods, which are

frequently emphasized.[2, 3, 4]
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B Mathematical Reconstruction of Canonical BCS Formalism

B.1 Deviation of the BCS Hamiltonian

We consider a system of N (even) identical particles (N ≫ 1), with mass m and spin

±1/2 (σ = −1) described by Hamiltonian

Ĥ ≡
∫

dξΨ̂†(ξ)
[ℏ2k2

2m
+ U(r)

]
Ψ(ξ) +

1

2

∫
dξ1

∫
dξ2Ψ̂

†(ξ1)Ψ̂
†(ξ2)U(|r1 − r2|)Ψ̂(ξ1)Ψ̂(ξ2).

(B.1)

Here (Ψ†(ξ),Ψ(ξ)) are field operators obeying the Fermion communication relations.

The field operator can be expressed as a linear combination of one-particle creation-

annihilation operator form, with coefficients given by basis functions φq(ξ) ≡
⟨
ξ|q
⟩
as

Ψ̂(ξ) =
∑
q

ĉ(q)φq(ξ). (B.2)

The basis functions φq(ξ) ≡
⟨
ξ|q
⟩
, satisfying∑

q

⟨
q|q′⟩

= δqq′ ,
∑
q

|q
⟩⟨
q| = 1. (B.3)

which forms a complete orthonormal system.

Hence the Hamiltonian (B.1) is expressible into the form given by

Ĥ ≡
∑
q′q

Kq′q ĉ
†
q′
ĉq +

1

2V

∑
q1q2 q

′
1q

′
2

Uq1q2;q
′
1q

′
2
ĉ†
q
′
1

ĉ†
q
′
2

ĉq2 ĉq1 , (B.4)

where Kq′q and Uq1q2;q
′
1q

′
2
are given by

Kq′q ≡
∫

dξϕ̂†
q′
(ξ)
[ p2
2m

+ U(r)
]
ϕq(ξ), (B.5a)

Uq1q2;q
′
1q

′
2
≡ 1

2

∫
dξ1

∫
dξ2U(|r1 − r2|)ϕ̂∗

q
′
1
(r1)ϕ̂

∗
q
′
2
(r2)ϕ̂q2(r1)ϕ̂q1(r2). (B.5b)

We denote qi → {ki, αi} for momentum and spin, then we have the form of BCS

Hamiltonian mentioned in section(2.1) as

Ĥ ≡
Fin.∑
kα

ε
k
ĉ†kαĉk−α +

1

2V

Fin.∑
kk′q

∑
αα′

Uq ĉ
†
k+qαĉ

†
k′−qαĉk′α′ ĉkα,

where

ε
k
=

ℏ2k2

2m
, and Uq =

∫
U(r)e−iqrd3r.
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B.2 Homogeneous system

We replace q by k, α in Eq.(B.5), and consider the system in a box of volume V with

periodic boundary conditions. Thus, the basic matrix elements are given by

Kq′q → Kk1α1,k2α2 = δk1k2δα1α2εk1
, ε

k1
,=

ℏ2k2
1

2m
(B.6a)

Uq1q2;q
′
1q

′
2
→ Uk1α1,k2α2;k

′
1α

′
1,k

′
2α

′
2
=

1

V
δk′

1+k
′
2;k1+k2

δα′
1α1

δα′
2α2

U(|k′

1 − k1|). (B.6b)

We assume the pair wave function for spin-singlet pairing is expressible as

ϕk1α1,k2α2 = δk1,−k2δα2,−α1(−1)α1−1/2ϕk1 (B.7)

= (δα1↑δα2↓ − δα2↑δα1↓)δk1,−k2ϕk1 , (B.8)

with the assumption of ϕ−k = ϕk .

Thus the matrix representation for the spin degrees of freedom is given by

ϕk1k2 ≡
(
ϕk1α1,k2α2

)
= δk1,−k2

(
0 ϕk1

−ϕk1 0

)
= δk1,−k2ϕk1iσ2, (B.9)

where σ2 is the second Pauli matrix.

Thus, the Cooper-pair annihilation operator Eq.(2.6) is expressible as

π̂†
cp
=

1

2

Fin.∑
k

ϕ
k

(
ĉ†k↑ĉ

†
−k↓ − ĉ†k↓ĉ

†
−k↑
)
=

1

2

Fin.∑
k

ϕ
k
ĉ†k↑ĉ

†
−k↓ +

1

2

Fin.∑
k

ϕ
k
ĉ†−k↑ĉ

†
k↓ =

Fin.∑
k

ϕ
k
ĉ†k↑ĉ

†
−k↓.

(B.10)

Now, we calculate basic expectations with the BCS ground wave function |ΦBCS
N

⟩
as

ε
BCS

≡
⟨
ΦBCS

N |Ĥ
BCS

|ΦBCS
N

⟩
=
⟨
ΦBCS

N |Ĥ0 + Ĥ
int
|ΦBCS

N

⟩
. (B.11)

First, the kinetic energy can be transformed as

⟨
ΦBCS

N |Ĥ0|ΦBCS
N

⟩
≡

Fin.∑
kα

ε
k

⟨
ΦBCS

N |ĉ†kαĉkα|ΦBCS
N

⟩
=Q−1

N/2

Fin.∑
kα

ε
k

⟨
0|π̂N/2

(
ĉ†k↑ĉ

†
−k↓ − ĉ†k↓ĉ

†
−k↑
)
(π̂†)(N/2−1)|0

⟩[
(N/2)!

]2 N

2
ϕk

=Q−1
N/2

Fin.∑
kα

ε
k

⟨
0|π̂N/2

(
ĉ†k↑ĉ

†
−k↓ + ĉ†−k↑ĉ

†
k↓
)
(π̂†)(N/2−1)|0

⟩[
(N/2)!

]2 N

2
ϕk

=Q−1
N/2

Fin.∑
kα

ε
k
ϕk

δQN/2

δϕk

=
Fin.∑
kα

ε
k
ϕk

δLnQN/2

δϕk

. (B.12)
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where we also used the assumption of ϕ−k = ϕk . Next, we evaluate the interaction energy

as follows;⟨
ΦBCS

N |Ĥ
int
|ΦBCS

N

⟩
≡ 1

2V

Fin.∑
kk′q

∑
αα′

Uq

⟨
ΦBCS

N |ĉ†k+qαĉ
†
k′−qα′ ĉk′α′ ĉkα|ΦBCS

N

⟩
=

1

2V

Fin.∑
kk′q

∑
αα′

U0

⟨
ΦBCS

N |ĉ†kαĉ
†
k′α′ ĉk′α′ ĉkα|ΦBCS

N

⟩
+

1

2V

Fin.∑
kk′q

∑
αα′

Uq

⟨
ΦBCS

N |ĉ†k+qαĉ
†
kαĉk+qαĉkα|ΦBCS

N

⟩
+

1

2V

Fin.∑
kk′q

∑
αα′

Uq

⟨
ΦBCS

N |ĉ†k+qαĉ
†
−k−qα′ ĉ−kα′ ĉkα|ΦBCS

N

⟩
=

1

2V

Fin.∑
kk′q

∑
αα′

U0

⟨
ΦBCS

N |ĉ†kαĉ
†
k′α′ ĉk′α′ ĉkα|ΦBCS

N

⟩
− 1

2V

Fin.∑
kk′q

∑
αα′

U|k−k′|
⟨
ΦBCS

N |ĉ†k′αĉ
†
kα′ ĉkα′ ĉk′α|ΦBCS

N

⟩
+

1

2V

Fin.∑
kk′q

∑
αα′

U|k−k′|
⟨
ΦBCS

N |ĉ†k′αĉ
†
k′α′ ĉkα′ ĉkα|ΦBCS

N

⟩
≈ 1

2V

Fin.∑
kk′q

∑
αα′

(−1)α−
1
2 (−1)α

′− 1
2U0

⟨
ΦBCS

N |ĉ†kαĉ
†
−k−αĉk′α′ ĉ−k′−α′ |ΦBCS

N−2

⟩
ϕkϕk′

Q
1/2
(N/2)−1

Q
1/2
N/2

− 1

2V

Fin.∑
kk′q

∑
αα′

(−1)2(α−
1
2
)U|k−k′|

⟨
ΦBCS

N |ĉ†kαĉ
†
−k−α′ ĉk′αĉ−k′−α|ΦBCS

N−2

⟩
ϕkϕk′

Q
1/2
(N/2)−1

Q
1/2
N/2

+
1

2V

Fin.∑
kk′q

∑
αα′

δα′,−αU|k−k′|
⟨
ΦBCS

N |ĉ†k′αĉ
†
−k′α′ ĉ−kα′ ĉkα|ΦBCS

N

⟩
= Q−1

N/2

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
ϕkϕk′

22
δ2QN/2

δϕkϕk′
+Q−1

N/2

1

V

Fin.∑
kk′

U|k−k′|
1

22
δ2Q(N/2)+1

δϕk′ϕk

(B.13)

= Q−1
N/2

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
ϕk′

2

δ

ϕk′

(
QN/2

ϕk

2

δLnQN/2

δϕk

)
+Q−1

N/2

1

V

Fin.∑
kk′

U|k−k′|
1

2

δ

ϕ∗
k′

(
Q(N/2)+1

1

2

δLnQ(N/2)+1

δϕk

)
=

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
[(ϕk′

2

δLnQN/2

δϕk′

)(ϕk

2

δLnQN/2

δϕk

)
+
ϕk′

2

δ

δϕk′

(ϕk

2

δLnQN/2

δϕk

)]
+
Q(N/2)+1

QN/2

1

V

Fin.∑
kk′

U|k−k′|
[(1
2

δLnQ(N/2)+1

δϕ∗
k′

)(1
2

δLnQ(N/2)+1

δϕk

)
+
1

2

δ

δϕ∗
k′

(1
2

δLnQ(N/2)+1

δϕk

)]
≈ 1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
[(ϕk′

2

δLnQN/2

δϕk′

)(ϕk

2

δLnQN/2

δϕk

)]
+
Q(N/2)+1

QN/2

1

V

Fin.∑
kk′

U|k−k′|
[(1
2

δLnQ(N/2)+1

δϕ∗
k′

)(1
2

δLnQ(N/2)+1

δϕk

)]
. (B.14)

Where, we neglect two-fold differential of ϕk in the last equality, since these terms are
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proportional to δkk′ , which are negligible in the thermodynamic limit.

Thus, with Eq.(B.12) and Eq.(B.13), we obtain an estimation of the ground-state energy

with |ΦBCS
N

⟩
as

ε
BCS

≡
⟨
ΦBCS

N |Ĥ
BCS

|ΦBCS
N

⟩
≃

Fin.∑
kα

ε
k
ϕk

δLnQN/2

δϕk

+
1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
[(ϕk′

2

δLnQN/2

δϕk′

)(ϕk

2

δLnQN/2

δϕk

)]
+
Q(N/2)+1

QN/2

1

V

Fin.∑
kk′

U|k−k′|
[(1
2

δLnQ(N/2)+1

δϕ∗
k′

)(1
2

δLnQ(N/2)+1

δϕk

)]
. (B.15)

B.3 Minimization of the ground-state energy

We have discussed the asymptotic expression of Qn (A.22) as

LnQN/2≈
∑
k

Ln(1 + ϕ2
k),

thus, we can rewrite the ground-state energy Eq.(B.15) using the logarithm of Qn as

ε
BCS

≡
⟨
ΦBCS

N |Ĥ
BCS

|ΦBCS
N

⟩
≃2

Fin.∑
k

ε
k

|ϕk|2

1 + |ϕk|2
+

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
|ϕk′|2

1 + |ϕk′ |2
|ϕk|2

1 + |ϕk|2

+
Q(N/2)+1

QN/2

1

V

Fin.∑
kk′

U|k−k′|
ϕk′

1 + |ϕk′|2
ϕ∗
k

1 + |ϕk|2

≈2
Fin.∑
k

ε
k

|ϕk|2

1 + |ϕk|2
+

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
|ϕk′|2

1 + |ϕk′ |2
|ϕk|2

1 + |ϕk|2

+
1

V

Fin.∑
kk′

U|k−k′|
ϕk′

1 + |ϕk′ |2
ϕ∗
k

1 + |ϕk|2

=2
Fin.∑
k

ε
k
n̄k +

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)n̄kn̄k′ +
1

V

Fin.∑
kk′

U|k−k′|F̄kF̄
∗
k′ , (B.16)

with

n̄k ≡ |ϕk|2

1 + |ϕk|2
(
= ϕk

δLnQN/2

δϕk

)
, F̄k ≡ 1

1 + |ϕk|2
(
=

δLnQN/2

δϕk

)
,

where QN/2 is denoted as

QN/2 =

⟨
0|(π̂cp)

N/2(π̂†
cp
)N/2|0

⟩
(N/2)!

.

Let us define the following quantity ε̄ under the constraint condition of total particle

number conservation N = 2
∑

Fin.

k n̄k as

ε̄ ≡ ε
BCS

+ µ
Fin.∑
k

(N − 2n̄k), (B.17)
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where µ is the Lagrange multiplier. Then we minimize ε̄ with respect to (µ, ϕk) as

2
[
εk − µ+

1

V

Fin.∑
k′

(2U0 − U|k−k′|)n̄k′
]
ϕk −

1

V

Fin.∑
k′

U|k−k′|F̄
∗
k′ϕ2

k +
1

V

Fin.∑
k′

U|k−k′|F̄k′ = 0.

(B.18)

This equation can be written concisely by introducing the following quantities as

ξk ≡εk − µ+
1

V

Fin.∑
k′

(2U0 − U|k−k′|)n̄k′ , (B.19)

∆k ≡− 1

V

Fin.∑
k′

U|k−k′|F̄
∗
k′ , (B.20)

where ξk denotes the single particle energy, and ∆k denotes the gap energy.

Thus Eq.(B.18) becomes

∆∗
k|ϕk|2 + 2ξkϕk −∆k = 0, (B.21)

and it can be easily solved formally by imposing ϕk → 0 for k → ∞ as

ϕk =
−ξk + Ek

∆∗
k

, Ek ≡
√
ξ2k + |∆k|2, (B.22)

With this expression, we can transform the quantities n̄k and F̄k as

n̄k =
Ek − ξk

Ek

, F̄k =
∆k

2Ek

. (B.23)

C Approximation in the Current Formulation

Several approximations are necessary for deriving the current BCS formalism.

1) First approximation was performed in the process of deriving the quasi-particle op-

erators (β̂kα, β̂
†
kα). Let us operate ĉq on the ket vector |ΦN

⟩
≡ Q

−1/2
N/2 (π̂†)N/2|0

⟩
, and

transform the resulting expression as

ĉq|ΦN

⟩
=

Q
−1/2
N/2

(N/2)!
{ĉq, (π̂†)N/2}|0

⟩
=

Q
−1/2
N/2

(N/2− 1)!

∑
q1

ϕqq1 ĉ
†
q1
(π̂†)(N/2)−1|0

⟩
=

√
QN/2−1

QN/2

∑
q1

ϕqq1 ĉ
†
q1
|ΦN−2

⟩
. (C.1)

This Equation can be written as(
ĉq −

√
QN/2−1

QN/2

∑
q1

ϕqq1 ĉ
†
q1
β̂

)
|ΦN

⟩
= 0. (C.2)
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As we mentioned in Section(2.3), the explicit expression of (β̂kα, β̂
†
kα) is given by

β̂†
kα|ΦN

⟩
= |ΦN+2

⟩
, β̂kα|ΦN

⟩
= |ΦN−2

⟩
, β̂† ≡

√
QN/2

QN/2+1

π̂†

N/2 + 1
.

We multiply Eq.(C.2) by uqq′ ≡ (1 − σϕϕ†)
−1/2
qq′ and subsequently sum it over q. Then

the resulting equation is expressible as

∑
q′

(
uqq′ ĉq −

√
QN/2−1

QN/2

vqq′ ĉ
†
q′ β̂

)
|ΦN

⟩
= 0. (C.3)

Here we introduce the approximation QN/2−1/QN/2≈1, which holds in thermodynamic

limit as N → ∞. If so, we can express Eq.(C.3) as

γ̂q|ΦN

⟩
= 0, (C.4)

with the definition of γ̂q as

γ̂q ≡
∑
q′

(
uqq′ ĉq − vqq′ ĉ

†
q′ β̂

)
. (C.5)

We set q → {k, α}, then we obtain Eq.(2.20).

Similar approximation also performed in Eq.(B.16), where we evaluate the ground-state

energy by using the approximation of QN/2+1/QN/2≈1 as for N → ∞.

2) As we mentioned in Appendix B.2, another approximation was performed in deriving

the interaction energy as Eq.(B.13)⟨
ΦBCS

N |Ĥ
int
|ΦBCS

N

⟩
=

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
[(ϕk′

2

δLnQN/2

δϕk′

)(ϕk

2

δLnQN/2

δϕk

)
+
ϕk′

2

δ

ϕk′

(ϕk

2

δLnQN/2

δϕk

)]
+

Q(N/2)+1

QN/2

1

V

Fin.∑
kk′

U|k−k′|
[(1
2

δLnQ(N/2)+1

δϕ∗
k′

)(1
2

δLnQ(N/2)+1

δϕk

)
+
1

2

δ

ϕ∗
k′

(1
2

δLnQ(N/2)+1

δϕk

)]
≈ 1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
[(ϕk′

2

δLnQN/2

δϕk′

)(ϕk

2

δLnQN/2

δϕk

)]
+

Q(N/2)+1

QN/2

1

V

Fin.∑
kk′

U|k−k′|
[(1
2

δLnQ(N/2)+1

δϕ∗
k′

)(1
2

δLnQ(N/2)+1

δϕk

)]
. (C.6)

We suggest that the red terms are negligible in the thermodynamic limit since they are

proportional to the delta function.
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3) Finally, we also expressed the quantity Qn asymptotically Eq.(A.22) in Appendix

A.2 as

LnQN/2 =
∑
k

Ln(1 + |ϕk|2)−
1

2
Ln
[
2π
∑
k

|ϕk|2

1 + |ϕk|2
]

≈
∑
k

Ln(1 + |ϕk|2).

We neglect the second term of order LnN in comparison with the first term with order

N.

We aim to remove these mathematical approximation mentioned, and develop new set

of formula to evaluate the ground-state energy more properly from a relatively small

number of particles to the thermodynamic limit, as for the particle-number-fixed model

(see Appendix G).

D Quasi-particle Operator and its Inverse Operator

We derived the quasi-particle operator in Appendix C. Here we introduce the method

of deriving the inverse of quasi-particle operators (γ̂kαγ̂
†
kα).

The operator of Eq.(C.5) is now given by

γ̂k↑ = ukĉk↑ − vkĉ
†
−k↓β̂, (D.1a)

γ̂k↓ = ukĉk↓ − vkĉ
†
−k↑β̂. (D.1b)

Note that α =↑, ↓ does denote the eigenstate of ŝz but is only used here to distinguish

the two quasi-particle operators conveniently. In Section 2, we have rewritten Eqs.(D.1)

into Eq.(2.20) as γ̂kα ≡ ukĉkα − (−1)
1
2
−αvkĉ

†
−k−αβ̂.

Using Eq.(2.12), we can show that

{ĉkα, β̂†}|ΦN

⟩
=

√
QN/2/QN/2+1

N/2 + 1
{ĉkα, π̂†}|ΦN

⟩
≈ 0, (D.2)

holds in the thermodynamic limit. Hence, we set

{ĉkα, β̂†} = {ĉ†kα, β̂} = 0. (D.3)

Hence Eq.(D.1b) with k → −k and its Hermitian conjugate can be approximated as

γ̂−k↓ = ukĉ−k↓ + vkβ̂ĉ
†
k↑, (D.4a)

γ̂†
−k↓ = v∗kĉk↑β̂

† + ukĉ
†
−k↓. (D.4b)

We multiply the operator (D.4b) by β̂ from the right side, then we obtain

γ̂†
−k↓β̂ = v∗kĉk↑ + ukĉ

†
−k↓β̂. (D.5)
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Then Eq.(D.1a) and Eq.(D.5) can be written as(
γ̂†
k↑

γ̂†
−k↓β̂

)
=

(
uk −vk

v∗k uk

)(
ĉk↑

ĉ†−k↓β̂

)
. (D.6)

The inverse of Eq.(D.6) is given by(
ĉk↑

ĉ†−k↓β̂

)
=

(
uk vk

−v∗k −v∗k

)(
γ̂†
k↑

γ̂†
−k↓β̂

)
. (D.7)

The second row is given explicitly by

ĉ†−k↓ = −v∗kγ̂k↑β̂
† + ukγ̂

†
−k↓, (D.8)

from which we obtain

ĉ−k↓ = −vkγ̂
†
k↑β̂ + ukγ̂−k↓. (D.9)

Thus, the expression of Eq.(D.8) and Eq.(D.9) can be written together as

ĉkα = ukγ̂kα + (−1)
1
2
−αvkγ̂

†
−k−αβ̂. (D.10)

It is also straightforward to prove the anti-symmetric commutation relation of the quasi-

particle operator as follows;

{γ̂kα, γ̂†
k′α′}

={ukĉkα − (−1)
1
2
−αvkĉ

†
−k−αβ̂, ukĉ

†
k′α′ − (−1)

1
2
−α′

v∗k′ ĉ−k′−α′ β̂†}
=ukuk′{ĉkα, ĉ†k′α′}+ (−1)1−α−α′

vkv
∗
k′{ĉ†−k−α, ĉ−k′−α′}

=δkk′δαα′(|uk|2 + |vk|2)
=δkk′δαα′ , (D.11)

{γ̂kα, γ̂k′α′}

={ukĉkα − (−1)
1
2
−αvkĉ

†
−k−αβ̂, uk′ ĉk′α′ − (−1)

1
2
−α′

vk′ ĉ†−k′−α′ β̂}

=− (−1)
1
2
−α′

ukvk′{ĉkα, ĉ†−k′−α′}β̂ − (−1)
1
2
−αvkuk′{ĉ†−k−α, ĉk′α′}β̂

=δk,−k′δα,−α′(−1)
3
2
−αukvk[(−1)2α + 1]

=0. (D.12)
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E Extremal Conditions of π̂4 Correlation Theory

The variation of Eq.(2.39) can be calculated concisely with chain rule.

Let us introduce following quantities in terms of the explicit dependences of ε̄.

ξ
(0)
k ≡ 1

2

δε̄

n̄k

= εk − µ+
1

V

Fin.∑
k′

(2U0 − U|k−k′|)n̄k′ , (E.1)

∆
(0)
k ≡ −1

2

δε̄

F̄k

= − 1

V

Fin.∑
k′

U|k−k′|F̄
∗
k′ , (E.2)

δε̄

uk

=
2

V

∑
k2k3k4

δk+k2+k3+k4,0U|k+k3|uk2vk3vk4 ×
∑
αα′

(−1)1−α−α′
wkαk2α′k4−α′k3−α, (E.3)

δε̄

vk
=

2

V

∑
k2k3k4

δk+k2+k3+k4,0U|k+k3|vk2uk3uk4 ×
∑
αα′

(−1)1+α+α′
wkαk2α′k4−α′k3−α. (E.4)

Subsequently, we use of Eq.(2.34) and Eq.(2.35) to differentiate (n̄kα, F̄kα, uk, vk) with

respect to ϕk and wkαk2α2k3α3k4α4 .

First, the differentiation with respect to ϕk can be performed as

δn̄kα

δϕk

=
2ϕk

(1 + |ϕk|2)2
(
1− 2

3!

∑
κ2κ3κ4

w2
kαk2α2k3α3k4α4

)
= 2ϕku

4
k(1− 2ηk), (E.5)

δF̄kα

δϕk

=
1− |ϕk|2

(1 + |ϕk|2)2
(
1− 2

3!

∑
κ2κ3κ4

w2
kαk2α2k3α3k4α4

)
= (1− ϕ2

k)u
4
k(1− 2ηk), (E.6)

δuk

δϕk

= − ϕk/uk

(1 + |ϕk|2)2

= −u2
kvk, (E.7)

δuk

δϕk

= − 1/uk

(1 + |ϕk|2)2

= v3k. (E.8)

Next, we consider the stationary condition of Equation with respect to wkαk2α2k3α3k4α4 .

The basic differentiation of (n̄k, F̄k, ζk) can be performed as follows;

δn̄k

δwk1αk2α2k3α3k4α4

=
4∑

j=1

δkjk(u
2
kj
− v2kj)wk1αk2α2k3α3k4α4 , (E.9)

δF̄k

δwk1αk2α2k3α3k4α4

= −2
4∑

j=1

δkjk(ukjvkj)wk1αk2α2k3α3k4α4 , (E.10)
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δζk
δwk1αk2α2k3α3k4α4

=δ
( 1
V

∑
k1k2k3k4

δk1+k2+k3+k4,0U|k1+k3|uk1uk2vk3vk4

×
∑
αα′

(−1)1−α−α′
wk1αk2α′k4−α′k3−α

)
/δ
(
wk1αk2α2k3α3k4α4

)
=

2

V
δk1+k2+k3+k4,0

×
[
δα1,−α2δα3,−α4(−1)1−α1−α3 × U|k1+k2|(uk1vk2 + vk1uk2)(uk3vk4 + vk3uk4)

+δα1,−α3δα4,−α2(−1)1−α1−α4 × U|k1+k3|(uk1vk3 + vk1uk3)(uk2vk4 + vk2uk4)

+δα1,−α4δα2,−α3(−1)1−α1−α2 × U|k1+k4|(uk1vk4 + vk1uk4)(uk2vk3 + vk2uk3)
]
. (E.11)

In deriving the differentiation of ζk with respect to wkαk2α2k3α3k4α4 , we used the iden-

tities (−1)α−α′
δα,−α′ = −δα,−α′ and (−1)α+α′

= (−1)−α−α′
for α, α′ = ±1

2
.

Then, we can transform δε̄/δϕk = 0 the extremal condition into

∆
(0)∗
k |ϕk|2 + 2ξ

(0)
k ϕk −∆

(0)
k + χk = 0, (E.12)

with the expression of χk as

χk ≡ (1− 2ηk)
−1 1

V

∑
k2k3k4

U|k+k3|δk1+k2+k3+k4,0U|k1+k3|

×uk2uk3uk4

uk

(ϕk2 − ϕkϕk3ϕk4)
∑
αα′

(−1)1−α−α′
wk1αk2α′k3−α′k4−α, (E.13)

where we used (−1)α+α′
= (−1)−α−α′

for α, α′ = ±1
2
.

Also, using Equations from Eq.(E.1) to Eq.(E.4), and Equations from Eq.(E.9) to

Eq.(E.11), the extremal condition of δε̄/δwκ1κ2κ3κ4 = 0 can be performed as

2
4∑

j=1

[
(u2

kj
− v2kj)ξ

(0)
kj

+ 2ukjvkj∆
(0)
kj

]
wk1αk2α2k3α3k4α4 +

2

V
δk1+k2+k3+k4,0

×
[
δα1,−α2δα3,−α4(−1)1−α1−α3 × U|k1+k2|(uk1vk2 + vk1uk2)(uk3vk4 + vk3uk4)

+δα1,−α3δα4,−α2(−1)1−α1−α4 × U|k1+k3|(uk1vk3 + vk1uk3)(uk2vk4 + vk2uk4)

+δα1,−α4δα2,−α3(−1)1−α1−α2 × U|k1+k4|(uk1vk4 + vk1uk4)(uk2vk3 + vk2uk3)
]
= 0. (E.14)

Thus, the equation can be easily solved as

wκ1κ2κ3κ4 =− δk1+k2+k3+k4,0

E
(0)
k1

+ E
(0)
k2

+ E
(0)
k3

+ E
(0)
k4

1

V

×
[
δα1,−α2δα3,−α4(−1)1−α1−α3 × U|k1+k2|(uk1vk2 + vk1uk2)(uk3vk4 + vk3uk4)

+δα1,−α3δα4,−α2(−1)1−α1−α4 × U|k1+k3|(uk1vk3 + vk1uk3)(uk2vk4 + vk2uk4)

+δα1,−α4δα2,−α3(−1)1−α1−α2 × U|k1+k4|(uk1vk4 + vk1uk4)(uk2vk3 + vk2uk3)
]
.
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Let us substitute Eq.(E.15) into Eq.(E.13). We use the identities∑
αα′

(−1)2−2αδα,−α′ =
∑
αα′

(−1)2−α−α′
δαα′ = −2,

∑
αα′

(−1)2−2α−2α′
δαα′ = 4. (E.15)

and exchange variables such as k2 ↔ k4 several times. Therefore, we figure out that

Eq.(E.13) can be divided into two parts, which are proportional to ϕk and (ϕ2
k − 1)

respectively as

χk = 2ξ
(1)
k ϕk + (ϕ2

k − 1)∆
(1)
k , (E.16)

where ξ
(1)
k and ∆

(1)
k denote correlation parts of Eq.(2.44) and Eq.(2.45) respectively, which

are proportional to V −2.

We substitute Eq.(E.16) into Eq.(E.12), obtain the equation for ϕk as

∆∗
k|ϕk|2 + 2ξkϕk −∆k = 0, (E.17)

in terms of ξk = ξ
(0)
k +ξ

(1)
k and ∆k = ∆

(0)
k +∆

(1)
k respectively. The solution of this Equation

satisfies ϕk → 0 for k → ∞ is given by

ϕk =
−ξk + Ek

∆∗
k

, Ek ≡
√
ξ2k + |∆k|2.

which exactly the same structure as the mean-field BCS theory.
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In what follows, we present an elaborate derivation of the expectation of the interaction

energy H
int
.

For simplicity, we consider the first term on the right hand side of Eq.(2.30),

1

2V

Fin.∑
kk′q

Uq

∑
αα′

uk+quk′−quk′uk

⟨
ΦCorr.

N |γ̂†
k+q,αγ̂

†
k′−q,α′ γ̂k′α′ γ̂kα|ΦCorr.

N

⟩
=

1

2V

∑
q

Uq

∑
k1α1...k4α4

∑
k′
1α

′
1...k

′
4α

′
4

uk1+quk
′
1−quk

′
1
uk1

wk1α1k2αk3α3k4α4

3!

wk1α1k2αk3α3k4α4

3!

×
⟨
ΦCorr.

N |γ̂†
κ1
γ̂†
κ2
γ̂†
κ3
γ̂†
κ4
γ̂†
κ1
γ̂†
κ2
γ̂†
κ3
γ̂†
κ4
|ΦCorr.

N

⟩
. (E.18)

We assume that wk1α1k2αk3α3k4α4 is proportional to δk1+k2+k3+k4,0, then we obtain

=
1

2V

∑
q

Uq

∑
k1α1...k4α4

∑
k′
1α

′
1...k

′
4α

′
4

uk1+quk
′
1−quk

′
1
uk1

|wk1α1k2αk3α3k4α4|2

3!

|wk1α1k2αk3α3k4α4|2

3!

×
(
δq,0 − δk1+q,k′1

δα1,α′
1

)
, (E.19)

which gives

=
1

2V

∑
q

Uq

∑
k1α1...k4α4

∑
k′
1α

′
1...k

′
4α

′
4

uk1+quk
′
1−quk

′
1
uk1

|wk1α1k2αk3α3k4α4|2

3!

|wk1α1k2αk3α3k4α4|2

3!
.

(E.20)

Others terms besides the last two terms in Eq.(2.30), are derivable using the same

proceedure.

Furthermore, we show how we obtain the expectation of the new emerged terms,

Eq.(2.30a) and Eq.(2.30b) as follows;

1

2V

Fin.∑
kk′q

Uq

∑
αα′

uk+quk′−qvk′vk(−1)1−α−α′⟨
ΦCorr.

N |γ̂†
k+q,αγ̂

†
k′−q,α′ γ̂

†
−k′−α′ γ̂

†
−k−α(β̂)

2|ΦCorr.
N

⟩
+

1

2V

Fin.∑
kk′q

Uq

∑
αα′

vk+qvk′−quk′uk(−1)1−α−α′⟨
ΦCorr.

N |(β̂†)2γ̂−k−q,−αγ̂−k′+q,−α′ γ̂k′α′ γ̂kα|ΦCorr.
N

⟩
=

1

2V

∑
k1k2k3k4

∑
αα′

U|k1+k3|δk1+k2+k3+k4,0

×
[
uk1uk2vk3vk4

⟨
ΦCorr.

N |(β̂†)2γ̂k1,αγ̂k2,α′ γ̂k4,−α′ γ̂k3,−α|ΦCorr.
N

⟩
+ v∗k1

v∗k2
uk3uk4

⟨
ΦCorr.

N |(β̂†)2γ̂k1,−αγ̂k2,−α′ γ̂k4,α′ γ̂k3,α|ΦCorr.
N

⟩]
,

which finally becomes

=
1

2V

∑
k1k2k3k4

∑
αα′

U|k1+k3|δk1+k2+k3+k4,0

×
[
uk1uk2vk3vk4wk1αk2α′k4−α′k3−α + v∗k1

v∗k2
uk3uk4wk1−αk2−α′k4α′k3α

]
.
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Therefore, using the mathematical properties of the anti-symmetric tensor

P̂wκ1κ2κ3κ4 = (−1)Pwκ1κ2κ3κ4 , (E.21)

we can rewrite the correlation energy into a more compact form, for which we denote the

functional ζk, for algebraic convenience as follows;

ζk ≡ 1

V

∑
k1k2k3k4

δk1+k2+k3+k4,0U|k1+k3|uk1uk2vk3vk4 ×
∑
αα′

(−1)1−α−α′
wk1αk2α′k4−α′k3−α.

(E.22)
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F Expression of Sums Over (κ2κ3κ4)

We now introduce the way to evaluate the triple sums efficiently

f(k) ≡ 1

V 2

∑
k2k3k4

U|k+k2|U|k+k3|δk1+k2+k3+k4,0 × g(k, k2, k3, k4). (F.1)

First, we choose k along the z-axis and express k2 in the polar coordinates. The vector

k+ k2 is given by

k+ k2 = (k2sinθ2cosθ2, k2sinθ2sinθ2, k + k2cosθ2)

= (k12sinθ12cosθ12, k12sinθ12sinθ12, k12cosθ12), (F.2)

where we define k12 and θ12 as follows;

k12 ≡ |k1 + k2|=
√

k2 + k2
2 + 2kk2cosθ2, (F.3)

θ12 ≡ tan−1 k2sinθ2
k + k2cosθ2

. (F.4)

The vector k+ k2 can be also written in terms of the orthogonal matrix as

k1 + k2 = R12

 0

0

k12

 , (F.5)

where the orthogonal matrix R12 is expressible as

R12 ≡

cosθ12cosθ2 −sinθ2 sinθ12cosθ2

cosθ12sinθ2 cosθ2 sinθ12sinθ2

sinθ12 0 cosθ12

 . (F.6)

We can also express k3 in terms of the matrix R12 by

k3 = R12

k3sinθ̄3cosϕ̄3

k3sinθ̄3sinϕ̄3

k3cosθ̄3

 , (F.7)

where (θ̄3, ϕ̄3) are polar angles in the coordinate system when k + k2 lies along the

z-axis.

This representation enables us to write (k1 + k2) · k3 and |k1 + k3| concisely as

(k1 + k2) · k3 = k12k3cosθ̄3, (F.8)

k13 ≡ |k1 + k3|=
√

k2 + k23 + 2kk3(−sinθ12sinθ̄3cosϕ̄3 + cosθ12cosθ̄3). (F.9)
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Thereby, we can perform the triple sums as follows;

f(k) ≡ 1

V 2

∑
k2k3k4

U|k+k2|U|k+k3|δk1+k2+k3+k4,0 × g(k, k2, k3, k4)

=
1

(2π)6

∫ ∞

0

dk2k
2
2

∫ π

0

dθ2sinθ2

∫ 2π

0

dϕ2

∫ ∞

0

dk3k
2
3

∫ π

0

dθ̄3sinθ̄3

∫ 2π

0

dϕ̄3Uk12Uk13

× g(k, k2, k3,
√

k2
12 + k2

3 + 2kk2k12k3cosθ̄3). (F.10)

Integration over ϕ2 can be easily performed from lower-limit 0 to upper-limit 2π. Sub-

sequently, we make a variable exchange as follows;

θ̄3 → k4 ≡
√

k2
12 + k2

3 + 2kk2k12k3cosθ̄3, (F.11)

dθ̄3 → dk4 = −k13k2
k4

sinθ3dθ̄3. (F.12)

Then we can express Eq.(F.10) as

f(k) =
1

(2π)5

∫ ∞

0

dk2k2

∫ ∞

0

dk3k3

∫ π

0

dθ2
k2sinθ2
k12

Uk12

∫ k12+k3

|k12−k3|
dk4k4g(k, k2, k3k4)

∫ 2π

0

dϕ̄3Uk13 .

(F.13)

Further, we exchange the order of integrations over θ2 and k4 by noting that

|k12 − k3| ≤ k4 ≤ k12 + k3

⇒ |k3 − k4| ≤ k12 ≤ k3 + k4

⇒ (k4 − k3)
2 − k2 − k2

2

2kk2
≤ cosθ2 ≤

(k4 + k3)
2 − k2 − k2

2

2kk2
. (F.14)

(F.15)

The last to inequalities are satisfied when the domain

(k4 − k3)
2 − k2 − k2

2

2kk2
≤ 1,

(k4 + k3)
2 − k2 − k2

2

2kk2
≥ −1, (F.16)

are simultaneously met.

Thus, we can transform the upper and lower limit of k4 as

k4i ≤ k4 ≤ k4f , (F.17)

where k4i and k4f are written as

k4i ≡ max(0, k2 − k− k3, |k− k3| − k2), (F.18)

k4f ≡ min(k + k2 + k3, kmax). (F.19)

In addition, Eq.(F.16) is expressible in terms of two angles as

θ2i ≤ θ2 ≤ θ2f , (F.20)
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where the definition of (θ2i, θ2f) is denoted as

cosθ2i ≡ min
(
1,

(k4 + k3)
2 − k2 − k22

2kk2

)
,

cosθ2f ≡ max
(
− 1,

(k4 − k3)
2 − k2 − k22

2kk2

)
. (F.21)

With transformation of variables mentioned, we can transform Eq.(F.13) into

f(k) =
1

(2π)5

∫ ∞

0

dk2k2

∫ ∞

0

dk3k3

∫ k4f

k4i

dk4k4f(k, k2, k3, k4)

∫ θ2f

θ2i

dθ2sinθ2
k2
k12

Uk12

∫ 2π

0

dϕ̄3Uk13 .

(F.22)

The momentum k12 is defined by Eq.(F.3), and the momentum k13 is defined by Eq.(F.9),

in terms of θ12 and θ̄3 which defined by Eq.(F.4) and

θ̄3 ≡ cos−1k
2
4 − k212 − k23
2k12k3

, (F.23)

respectively.

42



G A Potential Formula for Evaluating the Ground-state Energy

of Particle-Number Conserved System with Minimal Math-

ematical Approximation

As we mentioned in the Conclusion, we aim to construct a formulation removed the

mathematical approximation we talked in Appendix C, which still inside the framework

of the mean-field theory.

G.1 Formulation

First, we introduce the BCS Hamiltonian with exactly the same structure as we used

in the preceding chapters

Ĥ ≡
∑
kα

ε
k
ĉ†kαĉk−α +

1

2V

∑
kk′q

∑
αα′

Uq ĉ
†
k+qαĉ

†
k′−qαĉk′α′ ĉkα, (G.1)

where

ε
k
=

ℏ2k2

2m
, and Uq =

∫
U(r)e−iqrd3r.

We choose the BCS wave function

|ΦBCS
N

⟩
= A

−1/2
N/2 (π̂†

cp
)N/2|0

⟩
.

to evaluate the ground-state energy.

Moreover, as we mentioned in the preceding sections, we set q → {k, α}, the relations

between Eqs.(A.9) can be expressed as

Qn(k) =
1

n

n∑
l=1

Qn−l

∑
k

|ϕk|2l(−1)l−1,

= −
∑
k

ϕk
∗Pn(k) (G.2a)

Pn(k) =
1

n

n∑
l=1

Qn−lϕk|ϕk|2(l−1)(−1)l. (G.2b)

with

Il = (−1)n−1
∑
k

|ϕk|2l.
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G.2 Evaluation of the ground-state energy

In Appendix B.2, the kinetic energy can be also written as⟨
ΦBCS

N |Ĥ0|ΦBCS
N

⟩
≡
∑
kα

ε
k

⟨
ΦBCS

N |ĉ†kαĉkα|ΦBCS
N

⟩
=Q−1

N/2

∑
k

ε
k
ϕk

δQN/2

δϕk

=
∑
k

ε
k
ϕk

δLnQN/2

δϕk

. (G.3)

Here, we choose the second equality in (G.3) for convenience.

Next, we evaluate the interaction energy as follows;⟨
ΦBCS

N |Ĥ
int
|ΦBCS

N

⟩
≡ 1

2V

Fin.∑
kk′q

∑
αα′

Uq

⟨
ΦBCS

N |ĉ†k+qαĉ
†
k′−qα′ ĉk′α′ ĉkα|ΦBCS

N

⟩
=

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
[(ϕk′

2

δLnQN/2

δϕk′

)(ϕk

2

δLnQN/2

δϕk

)
+
ϕk′

2

δ

δϕk′

(ϕk

2

δLnQN/2

δϕk

)]
+
Q(N/2)+1

QN/2

1

V

Fin.∑
kk′

U|k−k′|
[(1
2

δLnQ(N/2)+1

δϕ∗
k′

)(1
2

δLnQ(N/2)+1

δϕk

)
+
1

2

δ

δϕ∗
k′

(1
2

δLnQ(N/2)+1

δϕk

)]
.

For convenience, we focus on Eq.(B.13), two steps backwards of Eq.(B.15), which includes

the neglected terms as follows;⟨
ΦBCS

N |Ĥ
int
|ΦBCS

N

⟩
= Q−1

N/2

1

V

Fin.∑
kk′

(2U0 − U|k−k′|)
ϕkϕk′

22
δ2QN/2

δϕkϕk′
+Q−1

N/2

1

V

Fin.∑
kk′

U|k−k′|
1

22
δ2Q(N/2)+1

δϕ∗
k′ϕk

. (G.4)

Then, we can rewrite the ground-state energy functional based on Eq.(G.3) and Eq.(G.4)

as

ε ≡
⟨
ΦBCS

N |Ĥ|ΦBCS
N

⟩
=Q−1

N/2{
Fin.∑
kα

ε
k
ϕk

δQN/2

δϕk

+
1

4V

[ Fin.∑
kk′

(2U0 − U|k−k′|)ϕkϕk′
δ2QN/2

δϕkϕk′
+

Fin.∑
kk′

U|k−k′|
δ2Q(N/2)+1

δϕ∗
k′ϕk

]
}.

Therefore, the energy functional ε is expressible in terms of the differential of ϕk, i.e.

ε{ϕk, ϕ
∗
k} = ε{L

(
δQN/2

δϕk

)
,L

(
δ2QN/2

δϕkϕk′

)
,L

(
δ2Q(N/2)+1

δϕ∗
k′ϕk

)
}. (G.5)

where the notation L denotes the summation to the differential of Qn with respect to

(ϕk, ϕk′) in the energy functional.

Now, it is clear to calculate the differential terms respectively.
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First, it is straightforward to calculate the differential of the quantity Qn with respect

to ϕk as

δQN/2(k)

δϕk

=

[
δ
( 1
n

n∑
l=1

Qn−l

∑
k

|ϕk|2l(−1)l−1
)
/δϕk

]
n=N/2

,

= 2ϕ∗
k

N/2∑
l=1

QN/2−l|ϕk|2(l−1)(−1)l−1. (G.6)

Next, note that the differential of the interaction energy can be expressed as the second-

order differential of the quantity Qn with respect to ϕk, it is convenient to denote and

calculate the second-order differential L

(
δ2QN/2

δϕkϕk′

)
,L

(
δ2Q(N/2)+1

δϕ∗
k′ϕk

)
as

L

(
δ2QN/2

δϕkϕk′

)
≡
∑
kk′

fk,k′
δ2QN/2

δϕkϕk′
, (G.7a)

L

(
δ2Q(N/2)+1

δϕ∗
k′ϕk

)
≡
∑
kk′

gk,k′
δ2Q(N/2)+1

δϕ∗
kϕk′

. (G.7b)

where we define the quantities fk,k′ and gk,k′ as

fk,k′ ≡ (2U0 − U|k−k′|)ϕkϕk′ , (G.8a)

gk,k′ ≡ U|k−k′|. (G.8b)
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Let us calculate Eq.(G.7a) using Eq.(G.6) .

Eq.(G.7a) =
∑
kk′

fk,k′
δ2QN/2

δϕkϕk′

=
∑
kk′

fk,k′
δ

δϕk′

(
2ϕ∗

k

N/2∑
l=1

QN/2−l|ϕk|2(l−1)(−1)l−1

)

= 2
∑
kk′

fk,k′

(
δϕ∗

k

δϕk′

) N/2∑
l=1

QN/2−l|ϕk|2(l−1)(−1)l−1

+ 2
∑
kk′

fk,k′ϕ∗
k

N/2∑
l=1

(
δQN/2−l

δϕk′

)
|ϕk|2(l−1)(−1)l−1

+ 2
∑
kk′

fk,k′ϕ∗
k

N/2∑
l=1

QN/2−l

(
δ|ϕk|2(l−1)

δϕk′

)
(−1)l−1

= 2
∑
kk′

[
(fk,k|k=k′) + (fk,−k|k=−k′)

] N/2∑
l=1

QN/2−l|ϕk|2(l−1)(−1)l−1

+ 4
∑
kk′

fk,k′ϕ∗
k

N/2∑
l=1

(
ϕ∗
k′

N/2−l∑
m=1

QN/2−l−m|ϕk′|2(m−1)(−1)m−1

)
|ϕk|2(l−1)(−1)l−1

+ 2
∑
k

[
(fk,k|k=k′) + (fk,−k|k=−k′)

]
ϕ∗
k

N/2∑
l=1

(
QN/2−l2(l − 1)|ϕk|2(l−2)ϕ∗

k

)
(−1)l−1

= 2
∑
kk′

[
(fk,k|k=k′) + (fk,−k|k=−k′)

] N/2∑
l=1

QN/2−l|ϕk|2(l−1)(−1)l−1

+ 4
∑
kk′

fk,k′ϕ∗
kϕ

∗
k′

N/2∑
l=1

N/2−l∑
m=1

QN/2−l−m|ϕk′|2(m−1)|ϕk|2(l−1)(−1)l+m

+ 2
∑
k

[
(fk,k|k=k′) + (fk,−k|k=−k′)

]
ϕ∗
kϕ

∗
k

N/2∑
l=1

QN/2−l|ϕk|2(l−2)2(l − 1)(−1)l−1. (G.9)
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Similarly, Eq.(G.7b) can be also calculated as follows;

Eq.(G.7b) =
∑
kk′

gk,k′
δ2Q(N/2)+1

δϕ∗
kϕk′

=
∑
kk′

gk,k′
δ

δϕ∗
k′

(
2ϕ∗

k

(N/2)+1∑
l=1

Q(N/2)+1−l|ϕk|2(l−1)(−1)l−1

)

= 2
∑
kk′

gk,k′

(
δϕ∗

k

δϕ∗
k′

) (N/2)+1∑
l=1

Q(N/2)+1−l|ϕk|2(l−1)(−1)l−1

+ 2
∑
kk′

gk,k′ϕ∗
k

(N/2)+1∑
l=1

(
δQ(N/2)+1−l

δϕ∗
k′

)
|ϕk|2(l−1)(−1)l−1

+ 2
∑
kk′

gk,k′ϕ∗
k

(N/2)+1∑
l=1

Q(N/2)+1−l

(
δ|ϕk|2(l−1)

δϕ∗
k′

)
(−1)l−1

= 2
∑
kk′

[
(gk,k|k=k′) + (gk,−k|k=−k′)

] (N/2)+1∑
l=1

Q(N/2)+1−l|ϕk|2(l−1)(−1)l−1

+ 4
∑
kk′

gk,k′ϕ∗
kϕk′

(N/2)+1∑
l=1

(N/2)+1−l∑
m=1

Q(N/2)+1−l−m|ϕk′|2(m−1)|ϕk|2(l−1)(−1)l+m

+ 2
∑
k

[
(gk,k|k=k′) + (gk,−k|k=−k′)

]
ϕkϕ

∗
k

(N/2)+1∑
l=1

Q(N/2)+1−l|ϕk|2(l−2)2(l − 1)(−1)l.

(G.10)

First, we decompose the second term of Eq.(G.10) into two terms, for l = 1 and 2 ≤ l ≤
N/2 respectively. Then we combine the first and the third term of Eq.(G.10), we obtain

that

Eq.(G.10)

= 4
∑
kk′

gk,k′ϕ∗
kϕk′

N/2∑
l=1

(N/2)−l∑
m=1

Q(N/2)−l−m|ϕk′ |2(m−1)|ϕk|2l(−1)l+m+1

+ 4
∑
kk′

gk,k′ϕ∗
kϕk′

N/2∑
m=1

Q(N/2)−m|ϕk′ |2(m−1)(−1)m+1

+ 2
∑
k

[
(gk,k|k=k′) + (gk,−k|k=−k′)

]
ϕkϕ

∗
k

(N/2)+1∑
l=1

Q(N/2)+1−l|ϕk|2(l−2)(2l − 1)(−1)l.

(G.11)

Finally, we also decompose the last term of Eq.(G.11) into two terms, for l = 1 and

2 ≤ l ≤ N/2 respectively, and reset the index of the summation l → l + 1 for algebraic
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convenience. Therefore, the last term of Eq.(G.11) is expressible as

= 2
∑
k

[
(gk,k|k=k′) + (gk,−k|k=−k′)

]
QN/2

+ 2
∑
k

[
(gk,k|k=k′) + (gk,−k|k=−k′)

]
ϕkϕ

∗
k

N/2∑
l=1

Q(N/2)−l|ϕk|2(l−1)(2l + 1)(−1)l. (G.12)

We substitute Eq.(G.7a) for fk,k′ , Eq.(G.7b) for gk,k′ , and we rewrite the ground-state

energy using Eq.(G.3), Eq.(G.9), Eq.(G.10) and Eq.(G.13) as follows;

ε ≡
⟨
ΦBCS

N |Ĥ|ΦBCS
N

⟩
=Q−1

N/2

∑
kα

ε
k
ϕk

δQN/2

δϕk

+
Q−1

N/2

4V

[∑
kk′

(2U0 − U|k−k′|)ϕkϕk′
δ2QN/2

δϕkϕk′
+
∑
kk′

U|k−k′|
δ2Q(N/2)+1

δϕ∗
k′ϕk

]

=2Q−1
N/2

∑
k

ε
k
ϕk

(
2ϕ∗

k

N/2∑
l=1

QN/2−l|ϕk|2(l−1)(−1)l−1

)
(G.13a)

+Q−1
N/2

1

V

∑
kk′

(3U0 − U2k)ϕkϕk′

N/2∑
l=1

QN/2−l|ϕk|2(l−1)(−1)l−1 (G.13b)

+Q−1
N/2

1

V

∑
kk′

(2U0 − U|k−k′|)ϕ
∗
kϕ

∗
k′

N/2∑
l=1

N/2−l∑
m=1

QN/2−l−m|ϕk′ |2(m−1)|ϕk|2(l−1)(−1)l+m

(G.13c)

+Q−1
N/2

1

V

∑
k

(3U0 − U2k)ϕ
∗
kϕ

∗
k

N/2∑
l=1

QN/2−l|ϕk|2(l−2)(l − 1)(−1)l−1 (G.13d)

+Q−1
N/2

1

V

∑
kk′

U|k−k′|ϕ
∗
kϕk′

N/2∑
l=1

(N/2)−l∑
m=1

Q(N/2)−l−m|ϕk′ |2(m−1)|ϕk|2l(−1)l+m+1 (G.13e)

+Q−1
N/2

1

V

∑
kk′

U|k−k′|ϕ
∗
kϕk′

N/2∑
m=1

Q(N/2)−m|ϕk′|2(m−1)(−1)m+1 (G.13f)

+Q−1
N/2

1

2V

∑
k

(U0 + U2k)QN/2 (G.13g)

+Q−1
N/2

1

2V

∑
k

(U0 + U2k)ϕkϕ
∗
k

N/2∑
l=1

Q(N/2)−l|ϕk|2(l−1)(2l + 1)(−1)l. (G.13h)

Compared with the current canonical BCS ground-state energy, several new terms, the

Hartree-Fock potential with (3U0 − U2k), and the pair potential with (U0 + U2k), emerge

from the second-order differential of Q(N/2) with respect to (ϕk, ϕk′).

Using Eq.(G.6) and the same way we derived the ground-state energy Eq.(G.13), it is

straightforward to derive the differential of the ground-state energy ε with respect to the
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variational parameter ϕk according to the variational principle,

δEq.(G.13)

δϕk

= 0. (G.14)

Compared with the current canonical BCS formula, which is valid in the thermodynamic

limit, this method may cause our formula become quite complex eventually. However, this

potential formula can be solved numerically using cumulation method for the total particle

number N . Our numerical procedure is based on the following concept. Once we set a

total particle number N , we obtain a specified variational condition for that total particle

number. We substitute the total particle number to the variational condition Eq.(G.14)

from N=1 to a relatively large number in a sequential order, with which we can solve

Eq.(G.14) and therefore evaluate the ground-state energy cumulatively.

Theoretically Eq.(G.14) offers a possible solution to evaluate the ground-state energy

with any total number of particles, which from a relative small number (N = 1, 2, 3 . . . )

to a large total number of particles (N ≈ 104). Moreover, the current formulation which

was frequently mentioned in [1, 2, 4, 8], only hold in the thermodynamic limit. We can

also check if the ground-state energy agree with the current canonical BCS formulation

in the thermodynamic limit.

However, to solve Eq.(G.14), we need specific a program for every total particle number,

which is theoretically possible but takes a large amount of time. Thus, we are searching

for a formulation, otherwise a more elegant algorithm, which is simple and elegant enough

both on the mathematical structure and numerical procedures, which still needs further

research.
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