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Abstract

Recent discoveries and insights depended on some experimental results have

already deeply impacted our understanding. Although the standard model

in particle physics is consistent with almost all the experimental results

obtained so far, there also exist unsolvable problems, even in the cosmology.

It suggests that our standard model should be extended, beyond from the

electroweak scale to higher energy scale. It is the time that we have to solve

these serious problems facing now using all the knowledge we have gained

until now.

In this thesis, we have studied these relational extended models by consid-

ering the following two approaches. First, we concentrate on the inflation

models as a high energy physics in the early universe. So far, there are found

many kinds of slow-roll inflation models, in this thesis, we pursue mainly

inflation related to axion. Typically, the axions are particularly attractive

inflation candidates because they have shift symmetry to all orders in per-

turbation theories. Motivated above a key ingredient, we have studied an

axion inflation model recently proposed within the framework of type IIB

superstring theory, where we pay particular attention to a sub-Planckian

axion decay constant. Further, we study a general class of small-field axion

inflations which are the mixture of polynomial and sinusoidal functions sug-

gested by the natural and axion monodromy inflations. In such a case, the

axion decay constants, leading to the successful axion inflations are severely

constrained in order not to spoil the Big-Bang nucleosynthesis and overpro-

duce the isocurvature perturbation originating from the QCD axion. We, in

turn, find that the cosmological favorable axion decay constants are typical

of order the grand unification scale or the string scale which is consistent

with the prediction of closed string axions. Our axion potential can lead



to the small field inflation with a small tensor-to-scalar ratio, and a typical

reheating temperature can be as low as GeV.

Second, we have concentrated on about the cosmology in the viewpoint of

supersymmetry phenomenology. After we briefly review a few variations on

the basic picture of the minimal supersymmetric standard model (MSSM)

and its application to the cosmology, we consider domain walls in the Z3

symmetric Next-to-MSSM. The spontaneous Z3 discrete symmetry breaking

produces domain walls, and the stable domain walls are problematic. Thus,

we assume the Z3 symmetry is slightly, but explicitly broken and the domain

walls decay. Such a decay causes a large late-time entropy production.

We study its cosmological implications on unwanted relics such as moduli,

gravitino, lightest supersymmetric particle (LSP) and axion. Moreover, we

also propose an Affleck-Dine leptogenesis model with right-handed neutrino

as a minimal extension of MSSM, which is based on LHu direction, and

we have pointed out that sufficient amounts of baryon asymmetry can be

generated in our model.

Through this thesis, we hope that our scenario would clearly contribute to

our understanding of the feature of the universe.
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1

Introduction -Our landscape-

The “cosmolog” is one of the most active research topics in modern physics, which

many physicists have studied vigorously since especially the ancient time. The law of

cosmology is deeper and more fundamental questions, and it is quite important in order

to understand; what particles are, what interactions among them are, and what some

unknown phenomena detected current experiments are, relating to the high energy

physics beyond the standard model in the particle physics, discussed in this thesis. We

think that the goal of cosmology is to explain the present state of the universe within

the basis of physical law, which we hope that it would clearly elucidate these mysterious

features of the universe. In this sense, the inflation and supersymmetry are assumed

to be attractive candidates, and we have tried to describe the universe by our original

approach depending on these established theories.

Here, let us mention about the particle physics so far briefly. By developing the

technology of experiments dramatically, our understanding is summarized in the stan-

dard model of particle physics. It is described by the quantum field theory with the

gauge group; SU(3)c×SU(2)L×U(1)Y , and almost all people persist that the standard

model is an effective theory constructed by more fundamental theory in high energy

physics. The standard model or such effective theory explains almost all experimental

results observed until now. It is remarkable that these observables are consistent with

the standard model, however, there are also a few phenomena that cannot be explained

by our understandings; neutrino mass, dark matter candidate, baryon asymmetry of

the universe, mechanisms of inflation and its inflation candidate, and also theoretical

problems, like domain wall problems, the gauge hierarchy problem and fine tunings on

1



1. INTRODUCTION -OUR LANDSCAPE-

them, and so on. In order to explain these issues, naively, we assume that the standard

model has to be extended beyond the electroweak scale.

From the viewpoint of the potentiality of the particle physics, one naively supposes

the gauge couplings are close to or unified each other at a high energy scale, which

means that there exist some unified models beyond the standard model. In spite of

the success in the standard model, there are also problems as mentioned above. In

this sense, the supersymmetry becomes a key ingredient to solve such problems and to

propose new perspectives. This is advantageous for supersymmetry.

The supersymmetry is a symmetry to transform between bosonic state and fermionic

state each other, and it is symmetry which extends the Poincare symmetry of space-

time 1. Especially motivated us by a dark matter candidate, which dominate the

current energy density of the universe, and unwanted relics problems, like kind of grav-

itino, moduli, and monopole, supersymmetry solves them both phenomenologically and

theoretically. As for the cosmology, it has also a possibility to solve the mysteries con-

sequently. As discussed in chapter 4, we will revisit relations between supersymmetry

and cosmology, and propose our original approach to solve them.

On the other hand, related to the cosmology, there is a successful scenario to ex-

plain our universe; the Big-Bang scenario. The standard Big-Bang cosmology scenario

has strong observational shreds of evidence. However, the cosmological problems still

remain, the standard model also cannot explain these problems. One of the topics of

this thesis is about inflation. Advantages of this approach are that it provides testable

predictions for the cosmological observables. The primordial gravitational wave is also

one of the main desirable observations especially. Inflation solves the problems of the

Big-Bang theory; flatness problem, horizon problem, and unwanted relics to realize

successful nucleosynthesis, and so on. Further, it generates a seed of the primordial

density perturbation observed today, growing the large-scale structure of our universe.

This mechanism is caused by the potential of the scalar field, so-called inflation.

In the standard model, it has only the Higgs field as a scalar field, however, the pure

standard model Higgs cannot reproduce suitable prediction for current observables.

Although there are many possibilities to describe the inflation so far, at the present

we cannot determine which model is true, unfortunately. In chapter 2, we will revisit

about the inflation, and we propose some possibilities of inflation models, the small field

1The details, what is the supersymmetry, are discussed in chapter 4. We will review there.
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axion inflation scenarios in chapter 4, in which models were recently derived within the

framework of type IIB superstring theory (1).

Going back to the previous topic, the Big-Bang theory suggests that the universe

would shrink and dense at one point by going back our time. This prediction is the

key ingredient. The universe at a such very early stage, every matter is decomposed

to elementary particles due to high energy interaction particle physics, therefore the

cosmology is related to low energy theory, the standard model seriously. In this sense,

it is quite useful to discuss for extended models of UV theory (or theory in the Planck

scale) beyond our understanding, further, for future study. Moreover, we all want

to know nature in a unified framework of particle physics. Then again, motivated

the above interests, we have tried to describe the universe by our original approach

comprehensively, and we hope that our scenarios would clearly elucidate mysteries

feature of the universe.

In this thesis, we aim to investigate and understand the cosmological problems

which are suggested by experiments, especially in the viewpoint of the supersymmetry

(and string theory), and to propose our insights on my current approach toward these

problems. Actually, we will find that our models could explain the above problems

naturally.

This thesis consists of two parts, organizing as follows: The first part is composed

of the inflation. In chapter 2, we review on the set up of slow-roll inflation depended

on a scalar field dynamics, and summarize cosmological perturbation and current ob-

servable. Then the next chapter 3, we propose our small field axion inflation scenarios,

in which models were recently derived within the framework of type IIB superstring

theory (1). This chapter is based on our works (d, e), and there are some new contents

beyond Refs.(d, e) which is based on Ref.(f) with considering the moduli stabiliza-

tion there. The second part is considered on about cosmology in the viewpoints of

supersymmetry phenomenology. In chapter 4, we provide a fundamental introduction

of supersymmetry including topics are motivated for the supersymmetry, the Higgs

scalar potential constructed from a supersymmetric Lagrangian, and some extension of

the minimal framework, the minimal supersymmetric standard model (MSSM) for the

next-to MSSM (NMSSM) and Affleck-Dine mechanism which is one of the baryogenesis

scenarios. These are preparations of our studies on chapter 5 and chapter 6. Then, in

chapter 5, we consider domain walls in the Z3 symmetric NMSSM based on our works

3



1. INTRODUCTION -OUR LANDSCAPE-

(c), where domain walls due to the spontaneous Z3 discrete symmetry are characterized,

and we study its cosmological implications on unwanted relics. In chapter 6, we pro-

pose a model of Affleck-Dine mechanism for the leptogenesis with a right-handed Dirac

neutrino. In this model, the baryon number can be explained, and we will show that

several phenomenological consequences of our scenario give some interesting bounds on

supersymmetric parameter space. Finally, chapter 7 is devoted to the summary in this

thesis and to remark on our future works. At the rest of this thesis, in Appendix A, we

manifest the conventions and notations of supersymmetry in our study, in Appendix B,

we show the review of a moduli stabilization depended on (g), and, in Appendix C, we

add the preparation of the Affleck-Dine mechanics.

4
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INFLATION
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2

A brief review of inflation

2.1 Overview

Einstein proposed the General Relativity in 1915 (2), which made it possible to discuss

the structure of space-time and the evolution of the universe in terms of physical law.

The general solution of Einstein’s equations is very complicated. Meanwhile, in 1992

Friedmann found the special cosmological solution of Einstein field equation (2), which

is isotropic and even homogeneous. After that, in 1946 Hubble suggested that our

universe is expanding by his observations in the redshift of galaxies (2), as Einstein

theory predicts. Such theoretical predictions are now supported by powerful evidence,

CMB. If the expansion of the universe is not isotropic, the expansion anisotropy would

mean a temperature anisotropy in the CMB. Likewise, inhomogeneity in the density

of the universe would lead to temperature anisotropy. Today there is a simple and

remarkably successful picture; Big-Bang.

In standard Big-Bang cosmology, our universe is described that the state of the

universe experiences the radiation and matter dominated era. At an early stage of

the universe, everything is decomposed into elementary particles due to high energy

interactions. These events predict the existence of expansion of the universe. The

standard big-bang cosmology scenario has strong observational pieces of evidence and

we believe that our universe started out from a hot and dense state. However, the

cosmological problems still remain; why is the space flat, and why are the causality

regions restricted to be small? These new problems are so-called flatness and horizon

problem, respectively.

7



2. A BRIEF REVIEW OF INFLATION

Even if the universe is an apparent feasible explanation of such problems, there

is another puzzle for the standard cosmology, unwanted relics. Within the context of

unified theories, e.g. string theory and supersymmetry, there are a variety of stable

and heavy particles which should have been produced in the early universe. According

to the viewpoint of particle physics, the breaking of symmetry also leads to the pro-

duction of many unwanted relics such as cosmic string and topological defects. If these

particles exist in the early stage of the universe, these massive relics could dominant

in the universe, which contradicts with observation. The standard cosmology has no

mechanism to avoid the universe of relics which are overproduced in the early universe.

In order to overcome new fundamental problems, it is required to consider an epoch

of accelerated expansion in the early universe, i.e., inflation. An original inflation was

proposed by Guth (3) and Sato (4) independently in 1981 (2), which is now called old

inflation. The basic ideas of inflation are that the universe experienced accelerating

expansion when the vacuum energy dominates component of the energy density of the

universe. The definition of the inflation is given as

ä > 0, (2.1)

which a, dynamical variable, is the scale factor. In the case for example on Robertson-

Walker metric, the dynamics of the expanding universe only appeared implicitly in the

time dependence of the scale factor a(t). The old inflation has a serious problem that

the universe becomes inhomogeneous by the bubble collision due to the first order phase

transition to the true vacuum after inflation ends. In 1982, Linde (5), and Albrecht and

Steinhardt (6) proposed the revised version of old inflation (2), which is now termed

as new inflation. New inflation corresponds to the slow roll inflation with the second

order phase transition to true vacua.

The inflation scenario does not only provide an elegant way to solve the flatness

problem, horizon problem and dilute unwanted relics but also generates density per-

turbation as an origin for large-scale structure in the universe. By freezing inflation

which provides quantum fluctuations of the field during the inflation by accelerating

expansion, the scales of fluctuations leave the Hubble radius. After inflation, the scales

cross Hubble radius again. Therefore the perturbations originated inflation can be the

origin of large-scale structure in the universe. Recent observation of the Planck detas

(7, 8, 9) show the strong evidnces for inflation.

8



2.2 Slow-roll inflation as scalar field dynamics

So far, we do not mention the concrete form of the scalar potentials, V (ϕ). Originat-

ing from the scenario proposed by Linde (5), and Albrecht and Steinhardt (6) in 1982,

many kinds of inflationary models have been constructed in these thirty years. We now

have varieties inflation models: Higgs, chaotic, power-law, hybrid, natural, F-term and

D-term based on supersymmetry, and so on. In contrast, we are more interested in

’axion inflation’ and mechanisms itself of axion potential based on the string theory,

and some special classes of the models. Also, we would like to discuss phenomenologies

after inflation, reheating temperature and dark matter abundance. For complimentary,

information on the axion inflation in string theory framework and beyond our previous

works, see our some recent articles (d, e) and the references therein.

In this chapter, we review the cosmic inflation briefly. First, we see a slow-roll

inflation model and its dynamics using a scalar field. The perturbation theory and

observables are shown in section 2.2 and section 2.3. After we show probing the infla-

tion in section 2.4, then we will introduce the specific inflation models with axion in

section 2.5, which relate to our main study in chapter 3.

2.2 Slow-roll inflation as scalar field dynamics

Here, we review aspects of inflation using the most simple potential driven slow-roll

inflation model. In the last section, we did not specify the physical origin of the infla-

tionary background. Inflationary expansion requires somewhat unconventional matter

contents. The spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

universe supported by a perfect fluid (which mean the homogeneous isotropic back-

ground metric) is given as 1

ds2 = −dt2 + a2(t)dσ2, dσ2 =
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2). (2.2)

The dynamics of a(t) is calculated from the Einstein equation ,which is given by

Rµν −
1

2
gµν + Λgµν = 8πGTµν , (2.3)

1Since it becomes quite small during the inflation, throughout this thesis, we ignore the spatial

curvature K of the universe. Actually the achievement of small curvature |Ωk| < 0.005 Ref.(8) (see

also latest Planck data ref.(9)) is one of the motivation if the inflation scenario.

9



2. A BRIEF REVIEW OF INFLATION

where Λ is the cosmological constant and Tµν = diag.(−ρ, p, p, p) is the energy-

momentum tensor for all components in the universe. From the assumption of homo-

geneity and isotropicity, Tµν has only diagonal components at zeroth order of pertur-

bation. ρ is the energy density and p is corresponding to a pressure of the fluid. In a

spatially flat FLRW universe supported by a perfect fluid, the components of (00), and

(11) (components of (22) and (33) also derive the same equation (11)) of the Einstein

equation eq.(2.3) lead to the so-called Freedman equations,(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
, 3H2 + 2Ḣ = −8πGp− Λ, (2.4)

which we could obtain with a simple calculation. Further, combining the above equa-

tions, we find
ä

a
= −4πG

3
(ρ+ 3p)− Λ

3
, (2.5)

dependently. Here, the Hubble parameter H is defined as

H ≡ 1

a

da

dt
. (2.6)

If the accelerated expansion universe had been induced by the cosmological constant

Λ, the above equations can be easily solved and we can obtain the solution as a(t) ∝
exp

(√
Λ/3t

)
.

The scalar field is the important ingredients in particle physics theories. Let us

consider one of the easiest models of the slow-roll inflation in the Einstein frame; use

a canonically normalized single scalar field, inflaton ϕ, minimally coupled to gravity

(5, 6),

S =

∫
d4x

√
−g
[
Mpl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (2.7)

where g is the determinant of the metric, R is the Ricci scalar curvature, and V (ϕ) is

the inflaton potential that we have allowed for an arbitrary potential form. See also

AppendixA. The equation of motion, Klein-Gordon equation for the inflaton ϕ

ϕ̈+ 3Hϕ̇+ V ′ = 0, (2.8)

where the prime denotes derivative with respect to the inflaton ϕ, V ′ ≡ ∂ϕV , and

H is the Hubble paramter defined in eq.(2.6) before. If we assume that the inflaton

was a constant, or equivalently inflaton potential V (ϕ) were constant, naively we could

10



2.2 Slow-roll inflation as scalar field dynamics

easily reproduce the exponential expansion which is derived as in the case of the cos-

mological constant. Therefore, we impose the following two conditions in the slow-roll

approximation in order to derive the inflation,

1

2
ϕ̇2 ≪ V (ϕ), ϕ̈≪ 3Hϕ̇. (2.9)

The first condition means that the kinetic term is efficiently smaller than the potential

height, and the second one that the acceleration term in the equation of motion can

be neglected. We call this slow-roll condition. Inflation, therefore, occurs when these

slow-roll conditions are satisfied.

In this model, The energy momentum tensor Tµν is given by

Tµν = gµαgνβ∂αϕ∂βϕ+ gµν
(
−1

2
gαβ∂αϕ∂βϕ− V (ϕ)

)
. (2.10)

Here, we assume the perfect fluid and homogeneousity and isotropicity on FLRW uni-

verse, it gives us ∂iϕ = 0. Thus, neglecting spatial derivatives, the energy density and

pressure density of inflaton are defined respectivity as

ρ =
1

2
ϕ̇2 + V (ϕ), p =

1

2
ϕ̇2 − V (ϕ). (2.11)

Under the slow-roll conditions, the first terms are neglected: ρ ≃ V , p ≃ −V . Substi-

tuting eq.(2.11) for eq.(2.4), we get

3MpH
2 =

1

2
ϕ̇2 + V (ϕ). (2.12)

Here, we take Λ = 0. An almost flat potential of the inflaton acts as the role of

cosmological constant depending on its height (also its tilt). Note that if we put ϕ̇ = 0

in accordance with slow-roll conditions, we can realize the cosmological constant when

V = Λ/8πG.

Again, during inflation, we assume that the inflaton ϕ and its potential V (ϕ) satisfy

following reduced equations,

3Hϕ̇ = −V ′, 3MpH
2 = V (ϕ). (2.13)

We will see that these equations play an importnat role to discribe not only the classical

dynamics of inflaton but also the quantum dynamics of it.

11



2. A BRIEF REVIEW OF INFLATION

2.3 Cosmological perturbaion and obserbables

Although, the dependence of density perturbation derived from the inflation theory

is universal, its absolute amplitude has a dependence on models. Here, we consider

two-point function of curvature perturbation, which is given as

⟨R(k)R(k′)⟩ = δ(k+ k′)PR(k) (2.14)

where PR(k) is power specrtrum of R(k). Naively, the amplitude of the scalar pertur-

bation is directly connected to the temperature perturbation, CMB. When we sum up

PR(k) with the wevenumber k mode, the expectation value of ⟨R2⟩ = (1/2π2)
∫
dk k2PR(k)

is given as ⟨R2⟩ =
∫
d ln kPR(k). We often call PR(k) power spectrum, which is defined

as

PR(k) =
k3

2π2
PR(k). (2.15)

Futher, we define the amplitude at the horizon crossing time As as

As ≡ PR(k)|k=aH . (2.16)

Since generally PR(k) has a dependence of the wavenumber k, we define the spectral

index of curvature perturbation,

ns − 1 ≡ d lnPR(k)

d ln k

∣∣∣∣
k=aH

. (2.17)

If the infation is derived from the cosmological constant, it is known that the demen-

sionless power spectrum of CMB becomes Harrison-Zel’dovich spectrum (10, 11), which

is scale invariant, ns = 1.

The metric has the tensor modes 1 for perturbations which can be observed as the

polarization of the gravitational waves. Simirally, as in the case of scalar perturbation,

we define the amplitude of the power spectrum at the horizon crossing time as

Ph(k)|k=aH =
2H2

π2M2
pl

∣∣∣∣∣
k=aH

. (2.18)

Combining the eqs.(2.15), (2.18), we obtain the tensor-to-scalar ratio r,

r ≡ PR(k)

Ph(k)

∣∣∣∣
k=aH

. (2.19)

1There are also the vector modes. However, since it decays rapidly, we do not consider seriously.
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2.3 Cosmological perturbaion and obserbables

If the inflation is derived by the cosmological constant, the tensor-to-scalar ratio be-

comes also zero.

If the inflation was occurred by inflaton depending on the slow-roll condition eq.(2.9),

a gap of Harrison-Zel’dovich spectrum is decided by a degree of slow-roll. Here, we de-

fine the so-called slow-roll parameters

ϵ ≡
M2

p

2

(
V ′

V

)2

, η ≡M2
p

V ′′

V
, ξ ≡M4

p

V ′V ′′′

V 2
, (2.20)

which we can easily verify that the above slow-roll approximation is valid when

ϵ≪ 1, |η| ≪ 1, (2.21)

whereas the inflation will end when ϵ and η grow of order unity.

In order to quantify whether inflationary expansion sufficiently keeps a long time,

usually the e-fording number N is used,

N ≡ ln
af
ai

=

∫ tend

t
dtH ≃ 1

Mp

∫ ϕ

tend

V

V ′dϕ ≃
∫ ϕ

tend

1√
2ϵ
dϕ, (2.22)

where subscripts i and f denote the quantities at the beginning and the end of the

inflation, respectively, and we used the slow-roll condition eq.(2.9). This value we

observe today should be in the range 40 ≤ N ≤ 60 typically, which is depending on the

details of the models 1.

As we mentioned, quantum fluctuation of the inflation is approximately (but, not

exactly) scale invariant. It is expanded by inflation and becomes the origin of density

perturbations. The power spectra of scalar and tensor perturbation are parameterized

as

Ps(k) = As

(
k

k∗

)ns−1+ 1
2

dns
d ln k

ln k
k∗

+···
, (2.23)

Pt(k) = At

(
k

k∗

)nt+
1
2

dnt
d ln k

ln k
k∗

+···
, (2.24)

where As, t are the amplitude at the horizon crossing time, αs, t ≡ dns, t/d ln k are the

runnings of the spectral index, and index ∗ denotes the pivot scale implicitly 2. Using

1Also, it depends on which reheating model we take.
2In the WMAP analysis the pivot scale was chosen to be k∗ = 0.002 Mpc−1, while for Planck

k∗ = 0.05 Mpc−1(12).
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2. A BRIEF REVIEW OF INFLATION

the slow-roll paremeters, eq.(2.20), they are given by 1

As =
V

24π2M4
p ϵ

, At =
2V

3π2M4
p

, (2.25)

ns − 1 = −6ϵ+ 2η , nt = −2ϵ, (2.26)

dns
ln k

= 16ϵη − 24ϵ2 − ξ2 ,
dnt
ln k

= 4ϵη − 8ϵ2. (2.27)

Especially, the tensor-to-scalar ratio of the amplitude of the power spectrum is given

as

r = 16ϵ. (2.28)

Finally, let us mention about the Lyth bound, which we quite use in our works (d, e).

Substituting field equations, eq.(2.13) into r = 16ϵ, we can relate the tensor-to-scalar

ratio r to the evolution of the inflaton field,

r = 8

(
1

Mp

dϕ

dN

)2

, where
dN

dt
≡ H. (2.29)

Integrating eq.(2.29) from the time N∗ when modes that are observable at the horizon

crossing time, until the end of the inflation at (approximately) Nend ≡ 0, we get

∆ϕ

Mp
=

∫ N∗

0
dN

√
r(N)

8
≃ O(1)×

( r

0.01

)1/2
. (2.30)

Here, we combined with the observational constraints on ns − 1 and r described next

section, and we assume that N∗ ≃ 50 – 60 in the second approximation. We strongly

caution against viewing ∆ϕ = Mp as an absolute dividing line. Like such a case of

chaotic inflation, when ∆ϕ > Mp, we call them ’large-field inflation’, while for ’small-

field inflation’ when ∆ϕ < Mp, or r ≳ 0.01. In particular, although gravity itself

becomes strongly coupled around the scale Mp, parametrically controlled ultraviolet

completion of gravity generally involves additional scales Λ < Mp. For examples, the

string scale and the Kaluza-Klein scale are typically well below the Planck scale. Field

excursion that is large compared to those scales connected to the super-Planckian scale,

but we are not interested and do not treat in the thesis 2.

1Of cause, we can second order Taylor expand around the k∗, but the contributions are expected

to be tiny. Thus, we will ignore them in the follwing calculations.
2If you want details, See Ref.(12).
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2.4 Probing the inflations

2.4 Probing the inflations

The Planck collaboration has tested for primordial scalar and tensor fluctuations from

standard assumptions for some initial conditions (7, 8, 9). These observations are in

agreement with the predictions of inflation both qualitatively and quantitatively. In

this section, we summarize their data briefly 1.

We have shown that the slow-roll inflation predicts a deviation from the scale invari-

ance background, which has been detected at high significance by Planck collaborations.

At scond order in the slow-roll expansion, the inflations predict a small correction to

the spectrum,

Ps(k) = As

(
k

k∗

)ns−1+ 1
2

dns
d ln k

(
ln k

k∗

)
. (2.31)

According to the Plank 2015 data (8), the amplitude of the curvature perturbation and

spectral index are proposed as

As = 2.198+0.076
−0.085 × 10−9 (68%CL, Planck, TT+ lowP), (2.32)

ns = 0.9655± 0.0062 (68%CL, Planck, TT+ lowP), (2.33)

with the pivot scale k0 = 0.05Mpc−1. The data is not yet precise enough to detect the

expected running of the spectrum αs ∼ (ns − 1)2.

Measuring αs would test the consistency of the slow-roll expansion. However, since

its running is second order in the slow-roll, we can naively expect it to be small.

Actuarry, current bounds on αs are small,

αs ≡
dns
d ln k

= −0.0084± 0.0082 (68%CL, Planck, TT+ lowP), (2.34)

which the central value for the running has decreased in magnitude with respect to the

Planck 2013 (7). We hope that future galaxy surveys may allow such a measurement

(13) 2. Any detection of a larger level of running would be a challenge for slow-roll

inflations.

1Recently, latest data from Planck is proposed, see Ref.(9). However, Since our studies do not

consider its latest data, in this section we just summarize only their findings on Planck 2013 (7), and

Planck 2015 (8).
2See also Ref.(14).
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2. A BRIEF REVIEW OF INFLATION

Also, tensor modes are constrained by the Planck analysis. They give an upper

limit on the tensor-to-scalar ratio (8),

r < 0.103 (95%CL, Planck, TT+ lowP), (2.35)

with the pivot scale k0 = 0.05Mpc−1.

Most important observables in order to classify the slow-roll inflation models are

the spectral index of curvature perturbation, ns and tensor-to-scalar ratio, r. Planck

collabrators have plotted 68 % and 95 % CL regions for ns and r at k0 = 0.002Mpc−1

compared to the theoretical predictions of selected inflationary models (8) (See Fig-

ure 2.1). We can find generally, slow-roll parameters, ϵ and η, are not zero, and as

mentioned above, these parameters depend on the concrete potential form of inflation

models. This fact suggests that we are able to select concrete inflationary models by

observing the gap of the scale invariance. In the following subsection, we can find that

realizing the slow-roll conditions eq.(2.9) in a theory of inflation is a non-trivial task.

2.5 Specific inflation models with axion

The slow-roll models favor a nearly-flat scalar potential as mentioned above. So far,

there are found many kinds of slow-roll inflation models, in this thesis, we pursue mainly

inflation driven by ‘axion’. Following models introduced in this section are useful to

embed various kinds of inflationary models, especially for our models introduced in the

next chapter.

Note that here we will not provide a comprehensive slow-roll inflation model, but

instead, we give a few brief examples of the most important classes of slow-roll models,

and give these observational predictions.

2.5.1 Inflation with axions in string thery

In 1977, Pecci and Quinn have proposed the light scalar field, called an axion, as the

solution to the strong CP problem (15). In QCD, there is a CP violated phase related

with topological strucuture of QCD generically,

L = LQCD +
θ

32π2
GµνG̃

µν , (2.36)
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Figure 2.1: - Marginalized joint 68 % and 95 % CL regions for ns and r at

k0 = 0.002Mpc−1 from Planck compared to the theoretical predictions of selected

inflationary models. Note that the marginalized joint 68 % and 95 % CL regions

have been obtained by assuming dns/d ln k = 0. See Ref.(8) in detail.
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2. A BRIEF REVIEW OF INFLATION

where G and G̃ are the field strength of gluons and its dual form, respectively. Depend-

ing on the effective action of meson and baryons, the no-observations of the electric

dipole moment of neutron and Hg (16, 17) show that the experimental bound of θ should

be smaller than 10−10. Although the θ is an arbitrary parameter, this fact suggests that

θ in eq.(2.36) has to be zero for some reason. This problem is the strong CP problem.

As the solution to this problem, Pecci-Quinn introduced the global symmetry, called

as PQ symmetry U(1)PQ. Under the PQ symmetry, axion, a as a Pseudo-Numbu-

Goldstone boson which has shift symmetry of the form a → a + const. (while, other

fields do not transform under the PQ symmetry), will appear through the following

coupling,

L =
1

2
(∂µa)

2 +
1

fa
(∂µa) J

µ +
1

32π2
a

fa
GµνG̃

µν + (U(1)PQ inv. terms), (2.37)

where fa is the scale of PQ symmetry breaking, and Jµ is axial currents of quarks.

When axion, a develops the vacuum expectation value, then, the θ can be absorbed

into a by field redefinition, and CP on the QCD is preserved.

The ’QCD’ axion is the original and most famous examples of axion. However, some

authors, or especially we mention the word ’axion’ for also string axion in this thesis.

In contraction to QCD axion, the axions defined in the string theory are different and

do not need to couple to QCD, generally, arise in the string compactifications from the

integration of p-form gauge potentials over p-cycle of compact space (12). Typically,

these axions are particularly attractive inflation candidates because they have shift

symmetries to all orders in perturbation theories. As we can see easily, such shift

symmetry is a key ingredient, and in the following, we discuss the rich phenomenology

of the axion inflations.

2.5.2 Naturarl inflation and its application

In the following sections, we just give a summary of the main ingredients of the natural

inflation model with axion and critically discuss their shortcomings.

In order to achieve the flat potential for successful inflation, shift symmetry ϕ →
ϕ+const. can forbid the sort of corrections. We refer to a field possessing this symmetry

as an ’axion’. The first model of axion inflation was proposed for a long time ago and

named natural inflation (18) (see its review Ref.(19)), and so far several other models

have been proposed.
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2.5 Specific inflation models with axion

At perturbative level, an axion has a flat potential, but this is broken down by

nonperturbative effect to a discrete symmetry ϕ → ϕ+ 2nπf , leading to the following

potential form 1,

V (ϕ) = Λ4

[
1− cos

(
ϕ

2nπf

)]
(2.38)

where f is the axion decay constant, and Λ is some non-perturbatively generated scale,

namely proportional to e−1/g for some gauge coupling g. For the successful inflation, or

for enough e-folding number, this model is compatible with phenomenology only for f ≫
Mp. However, Figure 2.1 shows how much natural inflation inconsistent with the Planck

results 2. Naively speaking, the simplest implementation of axion inflation (namely,

natural inflation (18)) results that ns is too small if the theoretical bound f < Mp is

respected. One scale that plays an important role in some axion models is the axion

decay constant f as defined above which can be thought of as determining the strength

of the least irrelevant shift symmetric coupling. The predictions for axion inflation

are under theoretical control for naively f < Mp. The upper bound comes from the

fact that we assume all known controlled string theory constructions are characterized.

Since, the axion periodicity is lifted, allowing for superPlanckian displacements, we

suppose that the UV corrections to the potential should still be constrained by some

underlying symmetry. In general, it is hard to realize such an axion decay constant

beyond the Planck scale in the 4D effective theory, since the scale of axion decay

constant is connected to the volume of an internal manifold and the cut-off scale of

higher-dimensional theories.

In order to avoid these conflicts, many ideas are proposed. One is to break the

shift symmetry in a controlled way, either explicitly or spontaneously. Another one

is to invoke some additional dynamics that arise from the coupling to other fields (in

particular, gauge fields), and one possibility is to use non-local operators that arise in

extra-dimensional contexts, and so on.

In addition to the above ideas, there is one simple solution that uses more than

one axion, instead of breaking the shift symmetry. In such a case, a super-Planckian

excursion of the inflaton can be achieved 3. The first implementation of this idea

1Note that ϕ here and in the rest of this review, we assumed has always a canonical kinetic term.
2Also, it is disfavored by the Planck 2018 (9).
3We can think several approaches to realize the natural inflation with ‘subPlnankian’ axion decay

constant to overcome such a problem. We consider such the approach in the next section.

19



2. A BRIEF REVIEW OF INFLATION

was given in (20) where it was assumed that two axions are present and they interact

through some non-perturbative potential (19)

V (ϕ1, ϕ2) = Λ4
1

[
1− cos

(
ϕ1
f1

+
ϕ2
g1

)]
+ Λ4

2

[
1− cos

(
ϕ1
f2

+
ϕ2
g2

)]
(2.39)

where f1, 2 and g1, 2 are different axion decay constants. For simplicity, if we assume

Λ4
2 ≫ Λ4

1, there appears a heavy and light linear combination of axions. After integrat-

ing out the heavy axion, the effective potential for light axion becomes

V (ϕlight) = Λ4
2

[
1− cos

(
ϕlight
f

)]
, (2.40)

with

f =
√
g21 + g22

(
f1f2
g1g2

)(
f2
g2

− f1
g1

)−1

. (2.41)

Allowing some tuning of g1 and g2, one can make f arbitrarily large, hence achieving

an effective superPlanckian axion decay constant and the phenomenological predictions

of natural inflation.

Let us focus on other popular axion inflation, the axion monodromy inflation, which

is naively combined chaotic inflation 1 and natural inflation. In the string theory, the

axion shift symmetry is broken by the D-brane, and then, the inflation potential has

a structure of monodromy. The axion monodromy inflation is characterized by the

additional following potential,

V (ϕ) = µ4−pϕp, (2.42)

where µ is some energy scale, and p is the model dependent fractional number (See

Ref. (12) and references therein). Instead of the model of multi axion inflation, we

do not need the superPlankian axion decay constant. The first realization of this idea

involved D-branes moving around a Nilmanifold in type IIA string theory, produced a

potential ϕ2/3 (19). A different construction using model-dependent axions in type IIB

was proposed in (21) and further studied in Refs. (22, 23, 24).

1One of the simplest large field inflation models which we would not mention here.
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Small field axion inflations

In this chapter, we consider and summarize the small field axion inflation scenarios,

in which models were recently derived within the framework of type IIB superstring

theory (1). This chapter is based on our works (d, e), and there are some new contents

beyond Refs.(d, e) which is discussed in Ref.(f).

3.1 Introduction

In order to construct the inflationary favorable axion potential, the axion decay constant

is required to be large enough to obtain the flat direction in the axion potential, in

particular, the super-Plankian decay constant for the natural inflation (18). However,

in the string theory, the decay constant of a closed-strung axion is typically around the

string scale or grand unified scale 1016 GeV (25, 26, 27). When the axion decay constant

is of order the Planck scale, the axion inflation generically predicts O(1) tensor-to-scalar

ratio r as can be seen in the Lyth bound (28), which argues that the tensor-to-scalar

ratior us closely related to the inflation field range, ∆ϕ, during the inflation. Under the

assumption that the valuation of r is negligible over the period ∆ϕ, the approximate

relation is obtained as (28)

∆ϕ

MP
≃ O(1)×

( r

0.01

)1/2
. (3.1)

This relation indicates that if ∆ϕ < Mp, r ≤ 0.01 are obtained, and we call this class

of inflation model the small field inflation throughout this paper. Although the large
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3. SMALL FIELD AXION INFLATIONS

field axion inflations (r ≥ 0.01) consistent with the recent Plank data (7, 8) 1, the weak

gravity conjecture (29) suggests that the higher-order instanton effects give a sizable

effect for the axion potential with a super-Planckian axion decay constant, and these

would generally violate the slow-roll axion inflation.

As mentioned above, some axion inflation models in the string theory discussed in

the literature typically involve the super-Plankian inflation amplitudes and potentially

large tenser-to-scalar ratio r is featured for the Lyth bound. On the contrary, in our

work, we study the small-field axion inflation where the field excursion of the axion

inflation is small compared with Plank scale Mp (see, e.g. Refs. (30, 31, 31, 32)). The

tenser-to-scalar ratio can be consequently small and, in our string axion models with a

sub-Plankian axion decay constant, the reheating temperature can be as low as GeV,

on the contrary, a notable requirement for the successful natural inflation model is

super-Plankian axion decay constant, i.e. f ∼ 5Mp
2. For the illustrative purpose, we

study in details the concrete axion inflation model which was recently derived within the

framework of type IIB superstring theory (1). It is the extension of the work (33) to the

compactification with generic fluxes, and the inflation potential consists of the mixture

of polynomial function and sinusoidal function of the axion (see also Refs. (34, 35)).

Related to the work (d), we conjectured that, in a certain class of small-field inflation

derived from type IIB superstring theory (1) 3, the tensor-to-scalar ratio r correlates

with the axion decay constant f as follows (d),

r ∼ 10−6f2q, (3.2)

where the fractional number q depends on the model. In the example of refs.(1, d),

we obtain q = 2. This behavior originates from sinusoidal functions in the axion

inflation potential. The above relation could also predict the magnitude of the inflation

potential and the inflaton mass by f . In general, certain theory leads to the axion

potential with one or more sinusoidal terms induced by several nonperturbative terms.

Thus, it is important to extend the previous analysis to other axion inflation scenarios.

In our work, we further study such dependence of the axion decay constant for not

only cosmological observables but also the reheating temperature and dark matter

1The Planck 2018 results have been reported. See Ref.(9).
2Here and hereafter, Mp denotes the reduced Plank scale Mp = 2.4× 1018 GeV.
3The model in Ref.(1) can lead to both small-field and large-field inflations.
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3.2 Small field axion inflation with sub-Planckian decay constant

abundance for the general class of small-field axion inflations, which are the mixture

of polynomial and sinusoidal functions suggested in the axion monodromy inflation

(36, 37, 38) and general form of sinusoidal functions suggested in the natural and

multi-natural inflations (18, 30, 39, 40) 1.

3.2 Small field axion inflation with sub-Planckian decay

constant

We, in this section 3.2, present the axion inflation model based on type IIB superstring

theory (1). In particular, we consider the inflation model with a sub-Planckian axion

decay constant which can lead to a small tensor-to-scalar ratio r. We give the quanti-

tative discussions for our axion inflation scenarios in terms of the slow-roll parameters.

The rest of this section is organized as follows. In section 3.2.2, we study the

inflation dynamics for our axion inflation scenarios with a sub-Planckian decay constant

and demonstrate that the axion inflation energy scale can be quite low compared to the

conventional axion inflation scenarios with a super-Plankin axion decay constant. In

section 3.2.3, we study the reheating temperature in our model and discuss the thermal

history after the inflation ends.

3.2.1 Axion inflation potential in type IIB string theory

Recently, within the framework of type IIB superstring theory, the following form of

the axion potential was derived (1),

V (ϕ) = Λ1ϕ
2 + Λ2ϕ sin

(
ϕ

f

)
+ Λ3

(
1− cos

(
ϕ

f

))
, (3.3)

where Λ1,2,3 are constant, and f is the axion decay constant. We consider the flux

compactification of type IIB superstring theory. We can, in general, stabilize all of the

complex structure moduli and the dilaton by choosing proper 3-form fluxes (42, 43).

We here choose the 3-form fluxes such that only one of the complex structure moduli,

Φ, does not appear in the tree-level superpotential, while the other complex structure

1The scalar potential including modular functions in superstring theory can effectively lead to such

a multi-natural inflation (41)

23



3. SMALL FIELD AXION INFLATIONS

moduli, as well as the dilaton, are stabilized by the 3-form fluxes 1. However, the

geometrical corrections induce the superpotential,

W = w0 + (c+ c′Φ)e−Φ/f , (3.4)

where ω0, c, c
′ are constants determined by fluxes and vacuum expectation values of

other moduli. The Kähler potential of Φ also receives the correction,

∆K =
(
k + k′Re(Φ)

)
cos(Im(Φ)/f)e−Re(Φ)/f , (3.5)

in addition to the tree-level Kähler potential K = − ln i
∫
M
Ω∧ Ω̄ with the holomorphic

three-form Ω of the CY manifold M, where k and k′ are constants determined by fluxes

and other moduli vacuum expectation values. We assume that the real part of Φ, Re(Φ),

is heavy, and integrating out Re(Φ) leads to the above scalar potential eq.(3.3) for the

axion ϕ = Im(Φ). Such a situation is realized by the scenario where Φ is stabilized at

the minimum satisfying ∂ΦK = 0 where K is the ϕ-independent Kähler potential given

at the tree-level 2.

We further assume that the Kähler moduli T i (i = 1, 2, · · · , h1,1) with the hodge

number h1,1 are stabilized at the minimum realized by the LARGE Volume Scenario

(LVS) (50) where the Kähler potential is described by K = −2 ln(V + ∆V) with the

volume of “Swiss-Cheese” CY manifold V and loop-correction ∆V, whereas the super-

potential is the sum of contributions from the flux-induced superpotential Wflux and

non-perturbatively generated superpotential, Wnon ≃
∑

iAie
−aiT

i
with the constants

Ai and ai. Although the energy density of scalar potential changes during and after

the inflation, the superpotential can be regarded as the constant in the inflationary era,

i.e., W ≃ w0 where w0 involves both Wflux and Wnon. This is because the first term in

the superpotential eq.(3.4) can be taken parametrically larger than the second term in

eq.(3.4) which induces the inflaton potential. It is then possible that the stabilization

of Kähler moduli is achieved at the scale above the inflation scale through the LVS

mechanism, since the mass scale of lightest Kähler modulus (volume modulus) w0

V3/2 can

be larger than the Hubble scale for the mild volume of CY manifold V ∼ 102 in string

1We also assume that all of the Kähler moduli are stabilized by non-perturbative effects (44) and

a proper uplifting scenario is available such as Refs.(45, 46, 47, 48).
2Recently, the authors of Ref.(49) pointed out that the light complex structure moduli appear in

the explicit Calabi-Yau (CY) manifolds.
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3.2 Small field axion inflation with sub-Planckian decay constant

units. As discussed in Refs.(1, 33), the back reaction from the Kähler moduli are also

suppressed, since the energy scale of scalar potential determined by the LVS is larger

than that of inflaton potential.

Note that the superpotential, as well as the Kähler potential, includes the linear

term, exponential term, and their products. This is the origin of the mixture between

polynomial functions and sinusoidal functions in the scalar potential. See, for details,

Ref.(1). The natural scale for the decay constant would be of order f ∼ 1/2π, even

though one can expect a wide range depending on the vacuum expectation values of

the real parts of moduli corresponding to the sizes of cycles. For concreteness, in the

following discussions, we mainly consider the range

0.01 ≤ f ≤ 1.0. (3.6)

Note that we focus on a small axion decay constant which does not exceed the Planck

scale, while a large axion decay constant has usually been explored in the previous

literature on the axion inflation scenarios (1). The magnitudes and ratios of Λ1,2,3

can vary depending on the flux magnitudes and vacuum expectation values of moduli

(1), and we here treat Λ1,2,3 as free parameters to make our discussions as general as

possible.

This potential consists of a mixture of polynomial functions and sinusoidal functions.

It reduces to the simple ϕ2 chaotic inflation when Λ2 = Λ3 = 0, which is in a tight

tension with the observations due to a large r (7, 8). For the non-vanishing Λ2 and

Λ3, the potential consists of many bumps and plateaus, as shown in Figure 3.1 and

Figure 3.2, as well as several local minima. The form of the potential eq.(3.3) heavily

depends on the oscillation parameter f which determines the width size of the flat

plateau region. A small f leads to a high-frequency potential with a small interval

between each plateau, and our main focus is on a smaller value of f making each flat

plateau close to each other. The potential is shown in Figure 3.1 and Figure 3.2 for

f = 0.1 and f = 0.01, where, for concreteness, we chose Λ2/Λ3 = 1,Λ1/Λ3 = 7.3 for

f = 0.1 and Λ2/Λ3 = 1,Λ1/Λ3 = 97 for f = 0.01. The inflation can occur on a flat

plateau and we, in the following, study the inflation dynamics for our axion inflation

scenarios with a sub-Planckian inflaton field excursion.
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3.´ 10-16

VHΦL

Figure 3.1: - The axion inflation potential with a sub-Planck axion decay con-

stant f = 0.1 for the small field axion inflation (the field excursion ∆ϕ < 1 during

the inflation).
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Figure 3.2: - The axion inflation potential with a sub-Planck axion decay con-

stant f = 0.01 for the small field axion inflation.
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3.2 Small field axion inflation with sub-Planckian decay constant

3.2.2 Small field axion inflation

The inflation can occur when an axion inflaton field slowly rolls over a flat plateau

region in our axion potential. We shall demonstrate that the small field inflation can

be realized for a small axion decay constant f when enough number of e-folds are

induced for a sufficiently flat potential 1. The first derivative of the potential is written

by

Vϕ =

(
2Λ1 +

Λ2

f
cos

(
ϕ

f

))
ϕ+

(
Λ2 +

Λ3

f

)
sin

(
ϕ

f

)
. (3.7)

For our potential to become flat enough for a sufficient number of e-folds, we require

(Vϕ)
2 ≪ V 2, which is satisfied for ϕ ∼ 1 and f ≪ 1 (as well as cos(ϕ/f), sin(ϕ/f) ∼

O(1)) when

Λ1f ∼ Λ2 ∼ Λ3, (3.8)

with proper signs of cos(ϕ/f) and sin(ϕ/f). Another condition Vϕϕ ≪ V can also be

satisfied in the same parameter region. The consequent small inflaton field variation

results in a small tensor-to-scalar ratio r as estimated in the following.

For the inflaton variation ∆ϕ around |Vϕ| ≈ 0 and |Vϕϕ| ≈ 0, the second derivative

can be estimated as

Vϕϕ ∼ Vϕϕϕ∆ϕ ∼
(
−Λ3

f3
sin

(
ϕ

f

)
− Λ2

f3
cos

(
ϕ

f

))
∆ϕ. (3.9)

Note, for a small f , the terms with f−3 can be dominant in the third derivative Vϕϕϕ.

For V ∼ Λ1ϕ
2 ∼ Λ3/f , with the relation (3.8) and ϕ = O(1), we estimate

η ∼ ∆ϕ

f2
. (3.10)

Demanding η ≪ 1 results in ∆ϕ ≪ f2, which leads to r ≪ 0.01 × f4 from Eq. (3.1).

Explicitly, we can write

r ∼ 10−6 × f4 ×
( η

0.01

)2
. (3.11)

In addition, we can estimate η ∼ 10−2 because r = 16ϵ≪ 0.01 and 2η ≈ ns−1 ≈ −0.03.

With this approximation, we estimate r ∼ 10−6 × f4 and tensor-to-scalar ratio r can

be suppressed greatly as f becomes small.

1For small f and ϕ (f ≲ 1 and ϕ ∼ 1 which we assume in the following discussions unless stated

otherwise), we require, for our potential to become flat for enough number of e-folds.
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Figure 3.3: - ϕ(0) = 1.0 for f = 0.1, Λ1/Λ3 = 7.3, Λ2/Λ3 = 1.
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Figure 3.4: - ϕ(0) = 0.6 for f = 0.01, Λ1/Λ3 = 97, Λ2/Λ3 = 1.
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3.2 Small field axion inflation with sub-Planckian decay constant

Figure 3.3, 3.4 shows examples of inflaton trajectories. For the illustrative purpose,

the initial values of the inflaton field are chosen such that a big enough e-folding number

is realized at the second and tenth plateaus, respectively, for f = 0.1 and 0.01. The

inflaton rolls down through lower plateaus to finally reach the global minimum ϕ = 0.

The e-folding numbers, which are obtained from the other plateaus, are negligible for

these examples as we can see in inflaton trajectories, Fig. 3.3, 3.4. We concentrate on

such parameter regions for concreteness where the total number of e-folds originates

from a single plateau in the following discussions. We then aim to illustrate the char-

acteristic features of our small field axion inflation scenarios which can be applied for

a wider range of the parameters.

For f = 0.1, Fig. 3.5 shows how the inflaton field evolves as a function of the number

of e-folds (counted from the end of inflation), and Fig. 3.6 shows the corresponding

tensor-to-scalar ratio r and ns. In Fig. 3.5,3.6, we consider the scenario where a

sufficient number of e-folds are induced while the inflaton axion rolls over the second

lowest plateau in the potential shown in Fig. 3.1. As reference values indicate the

energy scale of inflation, the Hubble parameter and the potential energy at N = 55

in this example are Hinf(N = 55) = 2.2 × 10−9 and V
1/4
inf (N = 55) = 6.1 × 10−5.

The inflation on another plateau also can lead to a similar result, so that it can induce

enough number of e-folds from a single plateau with a small tensor-to-scalar ratio.

The same story applies for a smaller f = 0.01 as shown in Fig. 3.7, 3.8 (the scenario

where a sufficient number of e-folds are induced on the tenth lowest plateau in Fig. 3.2)

corresponding to V
1/4
inf (N = 55) = 4.0× 10−6 and Hinf(N = 55) = 9.0× 10−12.

For completeness, we also show the potential for f = 1.0 in Fig.3.9 and the evolution

of ϕ along with (ns, r) in Fig.3.10, 3.11 which corresponds to V
1/4
inf (N = 55) = 9.0×10−4

and Hinf(N = 55) = 4.7 × 10−7. The inflaton field excursion during the inflation is

sub-Planckian ∆ϕ < 1 (we hence call it the small field inflation), even though the

amplitude itself can be larger than the Planck scale.

The above numerical analysis demonstrates that our axion potential with a sub-

Planckian axion decay constant as well as f = 1 can lead to the inflation with a sub-

Planckian inflaton field excursion. One notable feature compared with the conventional

axion inflation scenarios with the Planckian f and inflaton amplitude is a small tensor

to scalar ratio r ≪ 1. As discussed by Eq. (3.11), r is suppressed as the fourth power of

f . A rough estimation Eq. (3.11) fits with our numerical results by taking η ∼ 10−2 as
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Figure 3.5: - The inflaton amplitude as a function of the number of e-folds ϕ(N)

for f = 0.1, Λ1/Λ3 = 4.9 and Λ2/Λ3 = 0.25 (corresponding to V
1/4
inf (N = 55) =

6.1× 10−5).
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Figure 3.6: - The inflaton amplitude as a function of the number of e-folds (ns,

r) for N = [50, 60] for f = 0.1, Λ1/Λ3 = 4.9 and Λ2/Λ3 = 0.25 (corresponding to

V
1/4
inf (N = 55) = 6.1× 10−5).
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3.2 Small field axion inflation with sub-Planckian decay constant
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Figure 3.7: - The inflaton amplitude as a function of the number of e-folds ϕ(N)

for f = 0.01, Λ1/Λ3 = 97 and Λ2/Λ3 = 1 (corresponding to V
1/4
inf (N = 55) =

4.0× 10−6).
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Figure 3.8: - The inflaton amplitude as a function of the number of e-folds (ns,

r) for N = [50, 60] for f = 0.01, Λ1/Λ3 = 97 and Λ2/Λ3 = 1 (corresponding to

V
1/4
inf (N = 55) = 4.0× 10−6).
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Figure 3.9: - The axion inflation potential with f = 1.0 for the small field

inflation (the field excursion ∆ϕ < 1 during the inflation).
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Figure 3.10: - The inflaton amplitude as a function of the number of e-folds

ϕ(N) for f = 1.0, Λ1/Λ3 = 1.0 and Λ2/Λ3 = 1.9 (corresponding to V
1/4
inf (N =

55) = 9.0× 10−4).
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3.2 Small field axion inflation with sub-Planckian decay constant
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Figure 3.11: - The inflaton amplitude as a function of (ns, r) for N = [50, 60]

for f = 1.0, Λ1/Λ3 = 1.0 and Λ2/Λ3 = 1.9 (corresponding to V
1/4
inf (N = 55) =

9.0× 10−4).

mentioned above, and we estimate the typical parameter values of our axion inflation

scenarios as

r ∼ 10−6×f4, V
1/4
inf ∼ 5×10−4×f, Hinf ∼ 10−7×f2, Λ3 ∼ 6×10−14×f5,

(3.12)

because of Vinf ∼ Λ3/f . The energy scale of our axion inflation scenarios can be

quite low compared with the conventional axion inflation with the Planckian decay

constant, and we expect the consequent low reheating temperature as discussed in the

next section.

Before concluding this section focusing a small f , let us briefly discuss the scenarios

for a larger f ≳ 1 commonly discussed in the literature for comparison. For a Planckian

value of the axion decay constant, the large field inflation can be induced. The typical

potentials are shown in Fig.3.12, 3.13 for f = 1 and f = 3 respectively. Compared with

our axion potential with a sub-Planckian f , the tensor-to-scalar ratio r, along with the

other parameters, can become large. For instance, with f = 3.0 for concreteness, the

first term Λ1ϕ
2 can become dominant in both the potential (3.3) and the first derivative

Vϕ when ϕ≫ 1 and Λ1 ∼ Λ2 ∼ Λ3. The tensor-to-scalar-ratio ratio r can be estimated
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Figure 3.12: - The axion inflation potential with a large axion decay constant

for the large field inflation for f = 1.0
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Figure 3.13: - The axion inflation potential with a large axion decay constant

for the large field inflation for f = 3.0
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3.2 Small field axion inflation with sub-Planckian decay constant

as r ∼ 10/ϕ2, e.g. r ∼ 0.1 for ϕ ∼ 10. The representative examples for a Planckian

f are given, for illustration, in Fig.3.12, 3.13 and Table 3.1 showing the observables

including the inflaton potential energy scale Vinf at the horizon exit N = 55.

N ns r V
1/4
inf Λ1/Λ3 Λ2/Λ3

f = 1 55 0.95 0.13 8.0× 10−3 5.0 1.0

f = 3 55 0.97 0.011 4.3× 10−3 1.0 4.9

Table 3.1: The typical parameters for f = 1, 3 for the large field inflation.

3.2.3 Phenomenology after inflation

We now discuss the phenomenology after the inflation including the reheating temper-

ature and the dark matter abundance in our small field axion scenarios. The inflaton

field is the axionic part of the complex structure modulus, and, in type IIB superstring

theory, the complex structure moduli appear in one-loop corrections on gauge kinetic

functions (51, 52). The modulus thus couples with the gauge bosons through one-loop

effects,

− 1

4g2a
F a
µνF

aµν − 1

4

∆(Φ)

16π2
F a
µνF

aµν , (3.13)

where a = 1, 2, 3 correspond to the gauge groups of the standard model, U(1)Y , SU(2)

and SU(3), respectively, and ∆(Φ) is a function of Φ. Through these couplings, the

inflation decays into the gauge bosons g(a), and its decay width is estimated as (1)

Γϕ =
3∑

a=1

Γ(ϕ→ g(a) + g(a))

=
3∑

a=1

Na
G

128π

(
∂ϕ(∆(Φ))g2a

16π2d

)2 m3
ϕ

M2
p

(3.14)

≃ 5.8× 10−5c2
( mϕ

1013GeV

)3
GeV,

where
∑3

a=1N
a
G = 12, d = O(

√
KΦΦ̄) = O(1), g2a ≃ 0.53, and for concreteness, we

assumed the form ∆(Φ) = cΦ. When such a decay into the gauge bosons is the

dominant decay channel, the reheating temperature can be estimated as

Treh =

(
π2g∗
90

)−1/4√
ΓϕMp ≃ 6.4× 106c

( mϕ

1013 GeV

)3/2
GeV, (3.15)
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where the effective degrees of freedom g∗ = 106.75. Table 3.2 lists the reheating temper-

ature along with the inflaton mass for the concrete examples of f = 3.0, 1.0, 0.1, 0.01

illustrated in the last section. A smaller f corresponds to a smaller inflation energy

scale, which hence leads to a smaller Treh. The order of magnitude for the inflaton mass

can be estimated as follows. For f ≪ 1 with the relation (3.8), the dominant term of

second derivatives, Vϕϕ, at ϕ = 0 is evaluated by Vϕϕ ∼ Λ3/f
2, i.e. m2

ϕ ∼ Λ3/f
2. Then,

using Eq. (3.12), we can estimate the inflaton mass by

m2
ϕ ∼ 5× 10−14 × f3. (3.16)

f m2
ϕ Treh

3.0 1.0× 10−11 4.3 PeV

1.0 1.9× 10−13 220 TeV

0.1 1.2× 10−16 860 GeV

0.01 3.4× 10−20 1.9 GeV

Table 3.2: Typical reheating temperature for the cases f = 3.0, 1.0, 0.1, 0.01

with c = 1.

The complex structure moduli may appear in Yukawa couplings and higher dimen-

sional couplings of matter fields within the framework of type IIB superstring theory

(see for concrete computations, e.g. Ref.(53, 54)). The inflaton hence can also de-

cay into the matter fields, and, when such a decay channel dominates, the reheating

temperature can be estimated as (1)

Treh ≃ 8.8× 107(∂ΦYijk)
( mϕ

1013GeV

)3/2
GeV, (3.17)

where ∂ΦYijk denotes the first derivative of moduli-dependent Yukawa couplings Yijk.

Treh estimated assuming the dominant decay via the Yukawa couplings is hence com-

parable or smaller than that estimated assuming the dominant decay into the gauge

bosons.

Our models hence lead to the low reheating temperature (as low as GeV). Such a

low reheating temperature has important effects on the thermal history following the

inflation. Dark matter relic abundance, for instance, could be affected significantly.

For example, if the reheating temperature is smaller than the freeze-out temperature
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3.2 Small field axion inflation with sub-Planckian decay constant

of dark matter, Treh < Tf , the dark matter yield can be estimated by considering the

non-thermal abundance from the inflaton decay

ndm
s

≃ ninf
s

Brdm ≃ ρ

mϕs
≃ 3Treh

4mϕ
Brdm ≃ 1.5× 10−12

( c
10

)( mϕ

108 GeV

)1/2(Brdm
10−4

)
,

(3.18)

where ndm(ninf) is the number density of dark matter (inflaton), s is the entropy density

of the Universe, and Brdm is the inflaton decay branching ratio to dark matter. The

current dark matter abundance reads

Ωdmh
2 ≃ mdm

ndm
s

s0
ρcr

≃ 0.04
( c
10

)( mdm

100GeV

)( mϕ

108 GeV

)1/2(Brdm
10−4

)
, (3.19)

where h denotes the dimensionless Hubble parameter and the ratio of critical density

to the current entropy densities of the Universe is given by ρcr/s0 ≃ 3.6h2 × 10−9.

Our low energy scale axion inflation scenarios hence can be distinguished from the

conventional large field axion inflation scenarios with a high reheating temperature

Treh > Tf where the dark matter abundance can be estimated as the thermal relic

abundance 1. Another notable feature in our axion inflation scenarios with a small

decay constant is the suppressed thermal production of the unwanted relics such as the

gravitinos due to the low reheating temperature (55, 56). In general, supersymmetric

models have the gravitino problem, and the low-energy effective field theory derived

from superstring theory has the moduli problem. The non-thermally produced grav-

itinos from the moduli decay could be still a problem, and a light moduli, which does

not contribute to supersymmetry breaking, can help in diluting the relic abundance of

unwanted particles (57). The baryogenesis at a low temperature can also be a concern,

and the low-energy scale Affleck-Dine mechanism can be a possibility in our scenarios

to realize the desired baryon asymmetry of the Universe (58, 59).

In addition to the inflaton axion we have been discussing so far, there can be other

axion fields sourcing the isocurvature perturbations which give the tight bounds on

the inflation parameters. For example, the isocurvature perturbations due to the QCD

axion requires

Hinf < 0.87× 107GeV

(
fa

1011GeV

)0.408

, (3.20)

1We assume that standard model sector is sequestered from supersymmetry breaking sector and

then the lightest supersymmetric particle becomes a good candidate of dark matter under the assump-

tion of R-parity.
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where fa is the QCD axion decay constant (different from f), to be consistent with the

present observations (7). Such low scale inflation can be realized in our model with

a sub-Planckian decay constant f . For instance, the models with f = 0.1 and 0.01

can lead to Hinf ∼ 109 GeV and 107 GeV, respectively, while the model with f = 1.0

leads to Hinf ∼ 1012 GeV. It would be interesting to increase fa, although there is an

upper bound fa ≲ 1012 to avoid the over-abundant axion while its precise upper bounds

depend on the model details such as the initial displacement angles and the possible

entropy dilution (57, 60, c).

We so far limited our discussions to the case f ≳ 0.01 as expected in the framework

of type IIB superstring theory (1). We could in principle study an even lower f ,

and compute the reheating temperature with Eqs.(3.16) and (3.15). However, lower

f depending on c can lead to the reheating temperature of order MeV or below, and

f ∼ O(0.01) would be the lower parameter range of our interest for the successful

Big-Bang nucleosynthesis (BBN).

3.2.4 Short summary: discussion

In this section, we have studied the axion inflation model proposed recently within

the framework of type IIB superstring theory with a particular emphasis on the sub-

Planckian axion decay constant, 0.01 ≲ f ≲ 1.0. The axion potential with such a

sub-Planckian decay constant possesses many flat plateaus and the small field inflation

can be realized with a sufficient number of e-folds.

A notable feature of our scenario with a small decay constant f is the low inflation

energy scale Vinf ∝ f4 (Eq. (3.12)). The implications of the consequent low reheating

temperature in our string axion inflation scenarios were discussed including the dark

matter abundance, gravitino/moduli problem and the isocurvature fluctuations of the

QCD axion. More detailed studies would be of great interest where we combine concrete

mechanism for the moduli stabilization/uplifting, fix the mass scale of light moduli,

choose a candidate for dark matter, and embed the QCD axion in superstring theory.

We leave such detailed studies through the concrete models and their generalization for

our future work.

We have studied one concrete potential which is derived from superstring theory.

The shift symmetry of axion is violated by quantum effects inducing the axion potential.

Such an axion potential consists of the mixture of polynomial functions and sinusoidal
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3.3 Constraints on small field axion inflation

functions with the periodicity ϕ ∼ ϕ+ 2π/f , represented as V (ϕm, cos(ϕ/f), sin(ϕ/f))

1. For a small decay constant f ≪ 1, such a potential can have many bumps and

plateaus with the size of the flat regime f/(2π), and the small field inflation can be

realized on one of the plateaus.

We expect our concrete examples discussed in our paper can capture the generic

features for a wider class of axion inflation consisting of the sinusoidal and polynomial

terms with a sub-Planckian axion decay constant. For instance, let us assume that

the sinusoidal parts are dominant in some derivatives of the potential. We then would

find V (n+1) ∼ V (n)/f with n ≥ n0 for a certain value n0, where V
(n) denotes the n-th

derivative (V (n+1) ∼ V (n)/f can well happen for a higher derivative of the potential

including the sinusoidal terms because a polynomial term vanishes at a sufficiently large

n). Analogous to Eq. (3.10), we can then make a similar Ansatz, η ∼ ∆ϕf−p. Here, p

would depend on the form of the potential, e.g. n0, while p = 2 in our model presented

in this paper. This would lead to r ∼ 10−6×f2p when the tensor-to-scalar ratio is small

r < O(10−2) and we can estimate 2η ≈ ns − 1 ≈ 0.03. In such a model analogous to

ours discussed in this paper, the inflation energy scale and Hubble parameter could have

the power law dependence on f and hence become rapidly small as f becomes small.

As a consequence, the reheating temperature would become smaller too, although its

precise value depends on the detailed reheating processes such as couplings between

the inflaton and light modes. We would also be able to put the tight lower bound on f

from the BBN so that Treh > O(1) MeV. Confirming such a generalization of our study

is shown in the next section, and we plan to present the analysis extending our studies

here for a wider class of axion inflation models which can be explicitly derived from

superstring theory.

3.3 Constraints on small field axion inflation

Based on the discussion in the last section 3.2.4, here we study the general class of

small-field axion inflations which are the mixture of polynomial and sinusoidal functions

suggested by the natural and axion monodromy inflations.

1The similar but different forms including sinusoidal functions could be derived from another setup

different from our choice in superstring theory.
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3. SMALL FIELD AXION INFLATIONS

Again, we consider we consider the axion inflations with the decay constant below

the Planck scale or string scale, which are favorable from the aspects of weak gravity

conjecture. The flat direction required in the inflation can be realized by choosing

the proper parameters in the axion potential. Since the obtained inflaton potential is

categorized into the class of small-field axion inflation, it predicts the small amount of

gravitational wave and low inflation scale in comparison with the prediction of large-

field axion inflation. Such low-scale inflation is also influential to the isocurvature

perturbation originating from the QCD axion. When all the dark matter is dominated

by the QCD axion, the current Planck result constrains the Hubble scale during the

inflation Hinf (7),

Hinf < 0.87× 107GeV

(
fQCD

1011GeV

)0.408

, (3.21)

where fQCD is the decay constant of QCD axion 1. It is then possible to avoid the

isocurvature constraint by the low-scale inflation, although the upper bound of fQCD

depends on the initial misalignment angle of axion and dilution mechanism after the

inflation (57, 60, c).

In the last section, we conjectured that, in a certain class of small-field axion in-

flation derived from type IIB superstring theory (1) 2, the tensor-to-scalar ratio r

correlates with the axion decay constant f as follows (d):

r ∼ 10−6f2q,

where the fractional number q depends on the model. In the example of Refs. (1, d), we

obtain q = 2. This behavior originates from sinusoidal functions in the axion inflation

potential. The above relation could also predict the magnitude of the inflation potential

and the inflaton mass by the axion decay constant, f . In general, superstring theory

leads to the axion potential with one or more sinusoidal terms induced by several non-

perturbative terms. Thus, it is important to extend the previous analysis to other axion

inflation scenarios. In this section, we further study such dependence of axion decay

1Such a low-scale inflation is also favorable from the view point of fine-tuning problem in the

electroweak sector, realized by the relaxion scenario. To dynamically obtain the electroweak vacuum

expectation value of the Higgs boson, the relaxion mechanism requires that the Hubble scale during

the inflation should be smaller than the QCD scale for the original relaxion model or dynamical scale

for the extend relaxion model. However, such mechanisms are beyond the scope of current work, and

we do not discuss hereafter.
2The model in Ref. (1) can lead to both small-field and larg-field inflations.
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3.3 Constraints on small field axion inflation

constant for not only cosmological observables but also the reheating temperature and

dark matter abundance for the general class of small-field axion inflations, which are

the mixture of polynomial and sinusoidal functions suggested in the axion monodromy

inflation (36, 37, 38) and general form of sinusoidal functions suggested in the natural

and multi-natural inflations (18, 30, 39, 40) 1. We constrain the axion decay constant

realizing the small-field axion inflations by the isocurvature perturbation originating

from the QCD axion, successful Big-Bang nucleosynthesis (BBN) and dark matter

abundance, As will be shown, it is quite interesting that the allowed range of axion

decay constant corresponds to the typical decay constant region realized in superstring

theory, when our axion is the closed string axion (25, 26, 27).

In the remaining of following subsections, we first discuss the conditions leading

to the general class of small-field axion inflations and analytical form of cosmological

observables as a function of the decay constant in section 3.3.1, 3.3.2, in which we

consider the small-field axion inflations with an emphasis on the multi-natural inflation

in section 3.3.1 and axion monodromy inflation with sinusoidal function in section

3.3.2. In section 3.3.3, we derive the constraints for the axion decay constants from the

reheating process and dark matter abundance.

3.3.1 Multi-natural inflation

We derive the constraints for the parameters in the axion potentials leading to the

successful small-field axion inflation. First of all, we proceed to study the extended

natural inflation so-called multi-natural inflation (30, 40), in which the general form of

inflaton potential is given by

V (ϕ) =
M∑

m=1

Am cos

(
ϕ

fm
+ θm

)
+ V0. (3.22)

Here, ϕ is canonically normalized axion with the decay constants fm withm = 1, 2, · · · ,M ,

θm denotes the phase of sinusoidal functions, Am are the real positive constants, and V0

is the real constant to achieve the tiny cosmological constant. M depends on the num-

ber of hidden gauge sectors which non-perturbatively generate the potential of axion

inflaton.

1The scalar potential including modular functions in superstring theory can effectively lead to such

a multi-natural inflation (41).
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3. SMALL FIELD AXION INFLATIONS

Let us demonstrate the small-field axion inflation by the small axion decay constants

fm with m = 1, 2, · · · ,M , where sufficiently a large number of e-foldings is achieved

under the flat direction in the axion potential. To achieve such a situation, the first

derivative of potential in Eq. (3.22)

Vϕ = −
M∑

m=1

Am

fm
sin

(
ϕ

fm
+ θm

)
, (3.23)

is required to be smaller than its potential during the inflation, i.e., |Vϕ| ≪ |V |. It can
be realized with the region satisfying

sin(ϕ/fm + θm) ∼ cos(ϕ/fm + θm) ∼ O(1), (3.24)

with these proper signs and the correlated parameters in the scalar potential,

Am

fm
∼ An

fn
, (3.25)

for any m,n = 1, 2, · · · ,M .

Since the slow-roll inflation is realized under |Vϕ| ≃ 0 and |Vϕϕ| ≃ 0 during the

inflation, the second derivative of the potential can be estimated by employing the

inflaton variation ∆ϕ,

Vϕϕ ∼ Vϕϕϕ ∆ϕ ∼

(
−

M∑
m=1

Am

f3m
sin

(
ϕ

fm
+ θm

))
∆ϕ. (3.26)

Here, we assume that all f−3
m can be dominated in the third derivative Vϕϕϕ. With the

help of Eqs. (3.24) and (3.25), the slow-roll parameter is obtained as

η ∼
∑M

m=1
Am
f3
m∑M

n=1An

∆ϕ ∼

(∑
m

1
f2
m∑

n fn

)
∆ϕ, (3.27)

where V ∼
∑

mAm is employed. Since we concentrate on the parameter space leading

to the small-field inflation, the slow-roll parameter ϵ is expected to be much smaller

than unity. It is confirmed later by checking the value of the tensor-to-scalar ratio

r = 16ϵ. Thus, slow-roll parameter |η| is chosen as 10−2 to reproduce the observed

spectral index ns ≃ 0.96 reported by Planck.

By fixing |η| ≃ 10−2, the tensor-to-scalar ratio is estimated by using the Lyth bound

Eq. (3.1),

r ∼ 10−2 × (∆ϕ)2 ∼ 10−6 ×

(∑
m

1
f2
m∑

n fn

)−2

×
( η

0.01

)2
. (3.28)
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3.3 Constraints on small field axion inflation

Furthermore, we can estimate the energy scale of scalar potential during the inflation

Vinf as functions of axion decay constants from Eqs. (3.28),

V
1/4
inf ∼ 4× 10−4 ×

(∑
m fm∑
n

1

f2n

)1/2

, (3.29)

and consequently the Hubble parameter Hinf = (Vinf/3)
1/2 becomes

Hinf ∼ 10−7 ×

(∑
m fm∑
n

1
f2
n

)
. (3.30)

Finally, we estimate the inflaton mass m2
ϕ as a function of the decay constant. For

small fm, the dominant term of second derivatives, Vϕϕ, at ϕ = 0 is evaluated by using

Eq. (3.24), Vϕϕ ∼
∑

m
Am
f2
m

and hereafter the inflaton mass is estimated as

m2
ϕ = Vϕϕ ∼

∑
m

Am

f2m
∼
∑

m
Am
f2
m∑

nAn
Vinf ∼

(∑
m

1
fm∑

n fn

)
Vinf

∼ 3× 10−14

(∑
m

1
fm∑

n fn

)( ∑
n fn∑
m

1
f2
m

)2

. (3.31)

Let us summarize the result for two non-vanishing sinusoidal functions in Eq. (3.22).

For f1 ∼ f2 ∼ f ≪ 1, the obtained physical quantities have the following decay constant

dependence

r ∼ 10−6 × f6 , V
1/4
inf ∼ 4× 10−4 × f3/2,

Hinf ∼ 10−7 × f3 , m2
ϕ ∼ 3× 10−14 × f4. (3.32)

For another case f1 ≫ f2, they are written as

r ∼ 10−6 × (f1f
2
2 )

2 , V
1/4
inf ∼ 4× 10−4 × (f1f

2
2 )

1/2,

Hinf ∼ 10−7 × (f1f
2
2 ) , m2

ϕ ∼ 3× 10−14 × (f1f
3
2 ). (3.33)

Following this line of thoughts, we show the numerical analysis for specific axion

potentials. For the illustrative purpose, we consider the axion potential with two sinu-

soidal functions 1,

V (ϕ) = A1

(
1− cos

(
ϕ

f1

))
+A2

(
1− cos

(
ϕ

f2

))
, (3.34)

1For details of bumpy natural inflation with the same scalar potential, see, Ref. (34).
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3. SMALL FIELD AXION INFLATIONS

which is achieved under θ1 = θ2 = −π and V0 ≃ A1+A2 in Eq. (3.22). For an illustrating

example, we set the decay constants, f1 = 0.1 and f2 = 0.01 1. Figures 3.14, 3.15 show

the inflaton potential and the trajectory of inflaton as a function of cosmic time t, where

the parameters are set as A1/A2 = 22.474579785926 and A2 = 6.47×10−25. By solving

the equation of motion for the inflaton field, we numerically obtain the cosmological

observables as shown in Tab. 3.3. It is found that the analytical forms of physical

quantities derived in Eqs. (3.28)-(3.31)

r ∼ 10−6 ×

(
f1 + f2
1
f2
1
+ 1

f2
2

)2

∼ 10−6 × (f1f
2
2 )

2 ∼ 10−16,

V
1/4
inf ∼ 4× 10−4 ×

(
f1 + f2
1
f2
1
+ 1

f2
2

)1/2

∼ 4× 10−4 × (f1f
2
2 )

1/2 ∼ 10−6,

Hinf ∼ 10−7 ×

(
f1 + f2
1
f2
1
+ 1

f2
2

)
∼ 10−7 × (f1f

2
2 ) ∼ 10−12,

m2
ϕ ∼ 3× 10−14 ×

(
1

f1
+

1

f2

)(
f1 + f2
1
f2
1
+ 1

f2
2

)2

∼ 3× 10−14 × 1

f2
(f1f

2
2 )

2 ∼ 3× 10−22,

(3.35)

are consistent with our obtained numerical results in Tab. 3.3.

Tab. 3.3 also shows the numerical results of the running, dns/d ln k, which are large

and negative (34). These values can be estimated roughly as follows. The slow-roll

parameter, ξ, can be written

ξ =
VϕVϕϕϕ
V 2

=
(r
8

)1/2 Vϕϕϕ
V

. (3.36)

Then, using Eq. (3.28) and

Vϕϕϕ
V

∼

(∑
m

1
f2
m∑

n fn

)
, (3.37)

we can estimate ξ = O(10−3) for η ∼ 0.01, and this value of ξ is independent of decay

constants. In this model, the running is obtained as dns/d ln k ≈ −2ξ and other terms

1In particular, in the case where the axion decay constants are degenerate f1 = f2 = f , the flat

potential which induces sufficiently large number of e-folding cannot be realized even if we tune the

parameters A1,2. This is because the shape of potential is not affected by the parameters A1,2 for the

case of degenerate decay constants. In this regard, we focus on the distinct axion decay constant

44



3.3 Constraints on small field axion inflation
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Figure 3.14: - The inflaton potential is drawn by setting the parameters as

A1/A2 = 22.474579785926 and A2 = 6.47× 10−25.
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Figure 3.15: - The trajectory of inflaton as a function of cosmic time t for the

initial value of inflaton, ϕini = 0.04508690783.
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3. SMALL FIELD AXION INFLATIONS

N ns r m2
ϕ Hinf V

1/4
inf

dns
d ln k

60.0 0.9665 6.85× 10−17 7.92× 10−21 8.62× 10−13 1.22× 10−6 2.52× 10−3

50.0 0.9665 1.61× 10−16 1.86× 10−20 1.32× 10−12 1.51× 10−6 1.65× 10−3

Table 3.3: The cosmological observables such as spectral index ns, tensor-to-scalar

ratio r, Hubble scale Hinf , scalar potential V
1/4
inf at the pivot scale and the inflaton

mass m2
ϕ at the vacuum. The parameters are set as A1/A2 = 22.474579785926

and A2 = 6.47× 10−25 for the e-folding number N = 60, whereas those are set as

A1/A2 = 22.474579787160 and A2 = 6.47×10−25 for the e-folding number N = 50,

respectively. The initial value of inflaton field is also set as ϕini = 0.04508690783

in both cases.

are sub-dominant. Thus, it is found that dns/d ln k = O(10−3). Similarly, the running

of running is obtained as d2ns/d ln k
2 ≈ 2ηξ in this model and other terms are sub-

dominant. Then, it is found that d2ns/d ln k
2 = O(10−5), which is independent of decay

constants.

Similarly, the potential (3.34) with other values of f1 and f2 leads to results consis-

tent with Eq. (3.33).

3.3.2 Axion monodromy inflation with sinusoidal functions

We next discuss the axion monodromy inflation with sinusoidal functions in which the

general form of the axion potential is yielded by

V (ϕ) = A1ϕ
p +

∑M
i=2Ai cos

(
ϕ
fi
+ θi

)
+ V0. (3.38)

Here, ϕ is canonically normalized axion with the decay constants fi, θi denotes the phase

of sinusoidal functions, Ai are the real positive constants, and V0 is the real constant to

achieve the tiny cosmological constant. p can be taken as fractional numbers or positive

integers such as p = 1 (21), p = 2/3 (36), p = 2 (61, 62) and p = 4/3, 3 (63) and M

depends on the number of hidden gauge sectors which non-perturbatively generate the

potential of axion inflaton.

We proceed to demonstrate the small-field axion inflation by the small axion decay

constants fi in the same way as in the previous section. To obtain the sufficiently large
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3.3 Constraints on small field axion inflation

number of e-folding, the first derivative of potential in Eq.(3.38)

Vϕ = A1pϕ
p−1 −

∑
i

Ai

fi
sin

(
ϕ

fi
+ θi

)
, (3.39)

is required to be smaller than the potential energy, that is, |Vϕ| ≪ |V |. It can be

realized with the region satisfying

ϕ ∼ O(1),

sin(ϕ/fi + θi) ∼ cos(ϕ/fi + θi) ∼ O(1), (3.40)

with proper signs of sin(ϕ/fi+ θi) and cos(ϕ/fi+ θi), and the correlated parameters in

the scalar potential,

A1p ∼
Ai

fi
∼ Aj

fj
, (3.41)

for any i, j = 2, 3, · · · ,M .

Since the slow-roll inflation is realized under |Vϕ| ≃ 0 and |Vϕϕ| ≃ 0 during the

inflation, the second derivative of the potential can be estimated by employing the

inflaton variation ∆ϕ,

Vϕϕ ∼ Vϕϕϕ∆ϕ ∼

(
−
∑
i

Ai

f3i
sin

(
ϕ

fi
+ θi

))
∆ϕ, (3.42)

for small fi. Here, we assume that all f−3
i in the third derivative Vϕϕϕ dominate the

second derivative Vϕϕ. With the helps of Eqs. (3.40) and (3.41), the slow-roll parameter

η is obtained as

η ∼

∑
i
Ai

f3
i

A1
∆ϕ ∼ p

(∑
i

1

f2i

)
∆ϕ, (3.43)

where the scalar potential during the inflation is approximately given by Vinf ∼ A1

due to the conditions (3.40) and (3.41). Since we concentrate on the parameter space

leading to the small-field inflation, the slow-roll parameter ϵ is expected to be much

smaller than unity. It is confirmed later by checking the value of the tensor-to-scalar

ratio r = 16ϵ. Thus, the slow-roll parameter |η| is chosen as 10−2 to reproduce the

observed spectral index ns ≃ 0.96 reported by Planck.

By fixing |η| ≃ 10−2, tensor-to-scalar ratio is estimated by using the Lyth bound Eq.(3.1),

r ∼ 10−2 × (∆ϕ)2 ∼ 10−6 × 1

p2

(∑
i

1

f2i

)−2

×
( η

0.01

)2
, (3.44)
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from which the power of decay constants f in r becomes small in comparison with that

in the multi-natural inflation.

Furthermore, we can estimate the energy scale of scalar potential during the inflation

Vinf as functions of axion decay constants from Eq (3.44),

V
1/4
inf ∼ 4× 10−4 × p−1/2

(∑
i

1

f2i

)−1/2

, (3.45)

and consequently the Hubble parameter Hinf = (Vinf/3)
1/2 becomes

Hinf ∼ 10−7 × p−1

(∑
i

1

f2i

)−1

. (3.46)

Finally, we estimate the inflaton mass m2
ϕ as a function of the decay constant. For

small fi, the dominant term of second derivative, Vϕϕ, at ϕ = 0 is evaluated by using

Eq. (3.24), Vϕϕ ∼
∑

i
Ai

f2
i
and hereafter the inflaton mass is estimated as

m2
ϕ = Vϕϕ ∼

∑
i

Ai

f2i
∼

∑
i
Ai

f2
i

A1
Vinf ∼ p

(∑
i

1

fi

)
Vinf

∼ 3× 10−14 × p−1

(∑
i

1

fi

)(∑
i

1

f2i

)−2

. (3.47)

3.3.3 Reheating temperature and dark matter abundance

In this section, we discuss the reheating process after the inflation dynamics. From now

on, we assume that the inflaton axion discussed in the previous section couples to the

gauge bosons in the standard model through tree or one-loop corrected gauge kinetic

functions. In type IIB superstring theory on toroidal background, it is known that the

Kähler axion corresponding to the Kalb-Ramond field couples to the gauge boson at the

tree-level, whereas the axion associated with the complex structure modulus appears

in the gauge kinetic function at the one-loop level (51, 52). In both cases, the inflaton

decays into the gauge bosons g(a) with a = 1, 2, 3 corresponding to the gauge groups

of the standard model, U(1)Y , SU(2)L, SU(3)C and its decay width is estimated in the

instantaneous decay approximation,

Γϕ =
3∑

a=1

Γ(ϕ→ 2g(a))

≃ 5.8× 10−5c2
( mϕ

1013 GeV

)3
GeV, (3.48)
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3.3 Constraints on small field axion inflation

where c becomes 16π2 and unity for the Kähler moduli and complex structure mod-

uli. When such a decay into the gauge bosons is the dominant process, the reheating

temperature is yielded as

Tref =

(
π2g∗
90

)−1/4√
ΓϕMPl

≃ 6.4× 106c
( mϕ

1013 GeV

)3/2
GeV, (3.49)

with the effective degrees of freedom g∗ = 106.75 1.

From the results in section 3.3.2, the reheating temperate is yielded by the axion

decay constants,

Tref ≃ 5.4× 104c

(∑M
m=1

1
fm∑M

n=1 fn

)3/4( ∑M
n=1 fn∑M
m=1

1
f2
m

)3/2

GeV, (3.50)

which is illustrated in Fig. 3.16, 3.17 as functions of two axion decay constants for the

simplified multi-natural inflation in Eq. (3.34). We now take into account the constraint

from the isocurvature perturbation originating from the QCD axion by Eq. (3.21) with

fQCD = 1012GeV and Eq. (3.30) with m = 1, 2, which corresponds to the blue shaded

region in Fig. 3.16, 3.17. Here and in the following analysis, we employ the maximal

value of the QCD axion decay constant constrained by the upper bound of dark matter

abundance, although it depends on the initial misalignment angle of axion and dilution

mechanism after the inflation (57, 60, c). As can be seen in Fig. 3.16, 3.17, the smallest

axion decay constant is bounded as 2×1015GeV ≲ f ≲ 1017GeV for Kähler axion and

1016GeV ≲ f ≲ 1017GeV for axion of complex structure modulus, where the lower

bounds are put by Treh ≳ O(5) MeV in order not to spoil the successful BBN, whereas

the upper bounds are set by the constraint from the isocurvature perturbation of QCD

axion with fQCD = 1012GeV.

Similarly, the reheating temperate for the axion monodromy inflation with sinu-

soidal functions in section 3.3.2 is also dominated by the axion decay constants,

Tref ≃ 5.4× 104c p−3/4
(∑M

i=2
1
fi

)3/4 (∑M
i=2

1
f2
i

)−3/2
GeV, (3.51)

1In addition to the above case, we also consider the case where the decays of inflaton occur instan-

taneously and the conversion of vacuum energy is perfectly efficient, ρϕ ≃ 3H2
iniM

2
p = π2

30
g∗T

4
reh. This

situation gives rise to the maximum reheating temperature (or equivalently, Treh ≃ 0.41× V
1/4
ini GeV)

Tmax ≃ 2.6× 1013
(

Hini
109 GeV

)1/2

GeV.
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Figure 3.16: - The reheating temperature Treh as functions of two decay con-

stants f1,2 for the case of axion of Kähler moduli. The solid, dashed, dot-dashed

and dotted curves represent the reheating temperature, Treh = 1, 10, 102, 103MeV,

respectively.
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Figure 3.17: - The reheating temperature Treh as functions of two decay

constants f1,2 for the case of axion of complex structure modulus. The solid,

dashed, dot-dashed and dotted curves represent the reheating temperature, Treh =

1, 10, 102, 103MeV, respectively. In above two panels, the blue shaded region is

excluded by the isocurvature perturbation originating from the QCD axion.
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which is illustrated in Fig. 3.18 as functions of axion decay constant f = f2 (M = 2) and

the power of polynomial p for the simplified axion monodromy inflation with sinusoidal

functions in Eq. (3.38). In Fig. 3.18, 3.19 and in what follows, p is considered as the

continuous parameter for simplicity, although it is a fractional number derived in a

detailed string setup. In a similar fashion as in the multi-natural inflation, the blue

shaded region in Fig. 3.18, 3.19 is excluded by the isocurvature perturbation originating

from the QCD axion which is estimated by employing Eq. (3.21) with fQCD = 1012GeV

and Eq. (3.46) with f = f2. In order not to spoil the successful BBN and overproduce

the isocurvature perturbation due to the QCD axion, Fig. 3.18, 3.19 gives the bounds

2×1014GeV ≲ f ≲ 5×1016GeV for Kähler axion and 2×1015GeV ≲ f ≲ 5×1016GeV

for axion of complex structure modulus, respectively. Note that, the smaller fQCD gives

the tight upper bound on f from the isocurvature perturbation of QCD axion. As

a result, these regions correspond to the typical decay constant for the closed string

axions (25, 26, 27). That is surprisingly interesting. Although we focus on the simplified

axion potentials in Eqs. (3.34) and 3.38), such severe constraints for the axion decay

constant are also applied to the general form of axion potential. Indeed, the larger

axion decay constants lead to the large Hubble scale given in Eqs. (3.30) and (3.46).
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Figure 3.18: - The reheating temperature Treh as functions of the decay con-

stant f and the power of polynomial term p for the case of axion of Kähler mod-

uli. The solid, dashed and dot-dashed curves represent the reheating temperature,

Treh = 1, 10, 102, 103MeV, respectively. The blue shaded region is excluded by the

isocurvature perturbation originating from the QCD axion.
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Figure 3.19: - The reheating temperature Treh as functions of the decay constant

f and the power of polynomial term p for the case of axion of complex structure

modulus.

From these considerations, the low-scale axion decay constants realizing the suc-

cessful small-field axion inflations generically predict the low reheating temperature.

It implies that the freeze-out temperature of dark matter would be smaller than the

reheating temperature, and consequently the dark matter yield is determined by the

non-thermal process from the inflaton decay

ndm
s

≃ 3Treh
4mϕ

Brdm ≃ 4.8× 10−7cBrdm

( mϕ

1013 GeV

)1/2
, (3.52)

where ndm is the number density of dark matter, s is the entropy density of the Universe

and Brdm is the branching ratio from the inflaton to dark matter. The relic abundance

of dark matter is then given in terms of the ratio of critical density to the current

entropy density of the Universe ρcr/s0 ≃ 3.6h2 × 10−9,

Ωdmh
2 ≃ mdm

ndm
s

s0
ρcr

≃ 1.3c
( mdm

100GeV

)(Brdm
10−4

)( mϕ

1013 GeV

)1/2
, (3.53)

with h being the dimensionless Hubble parameter.

From now on, we for simplicity assume that the current dark matter abundance is

mainly consisted of QCD axion compared with another cold dark matter. In Figs. 3.20

and 3.21, we plot the dark matter abundance for the simplified multi-natural inflation
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3.4 Kähler moduli inflation

in Eq. (3.34),

Ωdmh
2 ≃ 0.27c

( mdm

100GeV

)(Brdm
10−4

)(∑2
m=1

1
fm∑2

n=1 fn

)1/4( ∑2
n=1 fn∑2
m=1

1
f2
m

)1/2

, (3.54)

and for the simplified axion monodromy inflation with sinusoidal functions in Eq. (3.38),

Ωdmh
2 ≃ 0.27c

( mdm

100GeV

)(Brdm
10−4

)
2−1/4f3/4 (3.55)

respectively. The relic dark matter abundance should be less than Ωdmh
2 ≃ 0.12

reported by Planck in order not to overclose our Universe (8). Although these pre-

dictions depend on the branching ratio Brdm and dark matter mass, Ωdmh
2 < 0.12

in Figs. 3.20 and 3.21 is achieved in both inflation models. For example, in simpli-

fied multi-natural inflation in Eq. (3.34), Ωdmh
2 < 0.12 can be realized under e.g.,

Brdm < O(10−3) and mdm ≃ 100GeV with f1,2 ≃ 2 × 10−2MPl for the Kähler axion

and Brdm < O(10−1) and mdm ≃ 100GeV with f1,2 ≃ 4 × 10−2MPl for the axion

of complex structure modulus, whereas in axion monodromy inflation with sinusoidal

functions in Eq. (3.38), Ωdmh
2 < 0.12 can be realized under e.g., Brdm < O(10−3)

and mdm ≃ 100GeV with f ≃ 10−2MPl for the Kähler axion and Brdm < O(10−1)

and mdm ≃ 100GeV with f ≃ 10−2MPl for the axion of complex structure modulus.

However, the low-scale inflation requires enough amount of baryon asymmetry to re-

produce the current baryon asymmetry of our Universe. To explain the relic baryon

asymmetry, we could combine our inflation models with the baryogenesis scenario, e.g.,

the Affleck-Dine mechanism (64, 65). It would be studied in future work.

3.4 Kähler moduli inflation

In the paper (f), We propose a new type of moduli stabilization scenario where the su-

persymmetric and supersymmetry-breaking minima are degenerate at the leading level,

and the inclusion of the loop-corrections originating from the matter fields resolves this

degeneracy of vacua. Before showing the calculations, let us introduce the motivation

of moduli inflation, which we consider in this chapter briefly.

Superstring theory predicts six-dimensional (6D) compact space in addition to four-

dimensional (4D) space-time. The size and shape of the 6D compact space are deter-

mined by moduli. Thus, moduli are a characteristic feature in superstring theory on
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Figure 3.20: - The dark matter abundance Ωdmh
2 = 0.1 as functions of two

decay constants f1,2 for the case of axion of Kähler moduli. The black solid,

dashed and dotdashed curves are drawn by setting mdmBrdm = 10−1, 0.2, 1GeV,

respectively, whereas the red solid, dashed and dotdashed curves are drawn by

setting mdmBrdm = 8, 15, 25GeV, respectively.
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Figure 3.21: - The dark matter abundance Ωdmh
2 = 0.1 as functions of two

decay constants f1,2 for the case of axion of complex structure modulus. The blue

shaded region is excluded by the isocurvature perturbation originating from the

QCD axion with fQCD = 1012GeV.
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3.4 Kähler moduli inflation

compact space. Indeed, moduli fields play important roles in superstring theory and

its 4D low-energy effective field theory, in particular in particle phenomenology and

cosmology (See for reviews, e.g. Refs. (52, 66)). Studies on physics relevant to moduli

would provide a remnant of superstring theory on compact space.

In the phenomenological point of views, the thermal history of the Universe highly

depends on the dynamics of moduli fields as well as axion fields, which are the imaginary

parts of moduli fields. Futher, from the theoretical point of view, these moduli fields are

originating from the vector and tensor fields in low-energy effective action of superstring

theory as well as the higher-dimensional supergravity. The stabilization of moduli field

is one of the most important issues to realize a consistent low-energy effective action of

superstring theory.

So far, there are several mechanisms to stabilize the moduli, in particular closed

string moduli fields, e.g. the Kachru-Kallosh-Linde-Trivedi (KKLT) scenario (44) and

the LARGE volume scenario (50) (See e.g. Ref. (66) and references therein). In the

paper (f), we propose a new type of moduli stabilization scenario by using the string-

derived N = 1 four-dimensional supergravity action. We find that the supersymmetric

and SUSY-breaking vacua are degenerate at the tree-level and they are independent of

the F -term of certain moduli field. The loop effects originating from the matter fields

generate the moduli potential and resolve this degeneracy of vacua.

The moduli potential is prohibited by the higher-dimensional gauge and Lorentz

symmetries at the perturbative level. On the other hand, the non-trivial background

fields and non-perturbative effects generate the moduli potential. Then, one can sta-

bilize the moduli fields. The vacuum structure of moduli potential is of particular

importance. For example, the flat direction of the moduli potential can drive the cos-

mological inflation 1 and the lifetime of our Universe depends on the (meta)stability of

the vacuum.

In this respect, we sutdy the Kähler moduli inflation within the framework of the

type IIB superstring theory with stabilizing the modulis, which are the mixture of

polynomial and logarithmic functions. Here, we consider some cases that the minimum

of the moduli potentials becomes zero, which of course derives successful cosmological

inflation. An interesting point is that without up-lifting terms, we can stabilize the

vacuum and control the minimum of the potentials with appropriate tunings.

1See for the detail of moduli inflations as well as axion inflations, e.g., Ref. (12).
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3. SMALL FIELD AXION INFLATIONS

3.4.1 Kähler moduli as an inflaton potential

Now in this section, we derive inflaton potential of Kähler moduli taking into account

for supersymmetric and SUSY-breaking minima.

By use of the flux-induced superpotential, the F-term scalar potential is calculated

as 1

VF = eK
[ ∑
I,J=S,Um

KIJ̄DIWDJ̄W̄ +
(
KTiT̄jKTiKT̄j

− 3
)
|W |2

]

= eK
[ ∑
I,J=S,Um

KIJ̄DIWDJ̄W̄

]
, (3.56)

where −3|W |2 is canceled by the no-scale structure of Kähler moduli,∑
i,j

KTiT̄jKTiKT̄j
− 3 = 0. (3.57)

Note that the above no-scale structure is valid only at the tree-level.

Then, the dilaton and complex structure moduli are stabilized at the minimum,

DSW = 0, DUmW = 0, (3.58)

which lead to the Minkowski minimum VF = 0. When W ̸= 0, the supersymmetry is

broken by the F -term of Kähler moduli. In contrast to the complex structure modulus

case 2, we now assume that all the complex structure moduli and dilaton are stabilized

by the flux-induced superpotential. Although the F -terms of S and U vanish at this

Minkowski minimum, the F -terms of Kähler moduli are non-vanishing in general

F Ti = −eK/2
∑
j

KTiT̄jDT̄j
W̄ = −eK/2

∑
j

KTiT̄jKT̄j
W̄ , (3.59)

when W ̸= 0.

For simplicity, we study the model with the overall Kähler modulus with the CY

volume V = (T + T̄ )3/2. Then, the F -term of the Kähler modulus is simplified as

F T ≃ eK(S,U)/2 T + T̄

(T + T̄ )3/2
W̄ = eK(S,U)/2 W̄

(T + T̄ )1/2
. (3.60)

1In the paper (f), we consider two illustrative supergravity models where the moduli fields corre-

spond to the complex strucuture modulus and Kähler moduli within the framework of the type IIB

superstring theory. In both scenario, these details are summarized in Appendix B.
2Again, see Ref. (f)

56



3.4 Kähler moduli inflation

Thus, supersymmetric and SUSY-breaking minima are also degenerate in a way similar

to the complex structure modulus case, since the scalar potential is independent of T

and F T . However, the supersymmetric vacuum corresponds to Re(T ) → ∞, that is,

the decompactification limit.

When the leading α′-corrections are involved, the Kähler potential of the Kähler

modulus is corrected as (67)

K = −2 ln

(
V+

ξ

2

)
, (3.61)

where ξ = −χ(CY )ζ(3)

2(2π)3g
3/2
s

with χ and gs being the Euler characteristic of CY and string

coupling. These α′-corrections break the no-scale structure, and the scalar potential is

generated as

VF ≃ eK(S,U) 3ξ
4V3 |W |2. (3.62)

The sign of ξ depends on the number of complex structure moduli and Kähler moduli.

When the number of Kähler moduli is smaller than that of complex structure moduli,

ξ is positive. In the case of single Kähler modulus, the F -term potential reduces to

VF ≃ eK(S,U) 3ξ

4(T + T̄ )9/2
|W |2 = 3ξ

4(T + T̄ )7/2
|F T |2. (3.63)

Along the same step outlined in section 3.3 of Ref. (f) 1, we take into account the

loop-corrections originating from the supersymmetric particles whose soft terms are

dominated by the F -term of the Kähler modulus. It is remarkable that the loop cor-

rections give rise to the stabilization of Re(T ) (unlike the case of the complex structure

modulus). Then, by assuming that the typical gaugino and supersymmetric scalar

fields mainly contribute to the loop-effects, the total scalar potential becomes 1, the

1See Appendix B.

57



3. SMALL FIELD AXION INFLATIONS

total scalar potential becomes

V ≃ 3ξ

4(T + T̄ )7/2
|F T |2 + 1

64π2

[
a1

(
c2 −

(
|F T |
T + T̄

)2
)2

ln

(
c2 −

(
|F T |
T + T̄

)2
)

−a2
(

|F T |
T + T̄

)4

ln

(
a3

(
|F T |
T + T̄

)2
)]

=
3ξ

4(T + T̄ )3/2
(F̂ T )2 +

1

64π2

[
a1

(
c2 −

(
F̂ T
)2)2

ln

(
c2 −

(
F̂ T
)2)

−a2
(
F̂ T
)4

ln

(
a3

(
F̂ T
)2)]

=
3ξ

4eK(S,U)/2W
(F̂ T )3 +

1

64π2

[
a1

(
c2 −

(
F̂ T
)2)2

ln

(
c2 −

(
F̂ T
)2)

−a2
(
F̂ T
)4

ln

(
a3

(
F̂ T
)2)]

, (3.64)

where F̂ T ≡ |F T |/(T + T̄ ). Here, we employ the same notation of section 3.3 and W

is chosen as a real constant, for simplicity.

By setting the illustrative parameters:

a1 = 10, a2 = 3, a3 = 8, c = 1.1, ξ = 1, eK(S,U)/2W ≃ 60.42, (3.65)

the scalar potential is drawn as in Figure 3.22 1.

Since those complex structure moduli and dilaton fields have been stabilized at

the SUSY-breaking minimum, their masses are typically greater than or equal to the

gravitino mass eK(S,U)/2W/V ≃ 6.9 × 10−1 in our numerical example. Interestingly,

the tuning of eK(S,U)/2W allows us to consider the tiny cosmological constant. In the

above scenario, Re(T ) can be stabilized at a fine value, but its imaginary part, i.e. the

axion, remains massless.

So far, we have studied the model with the overall Kähler modulus. However, we

can discuss the model with many Kähler moduli fields Ti. Even in such a model, the

tree-level scalar potential is flat along all of the Kähler moduli directions because of the

no-scale structure (3.57). Also, the tree-level potential is independent of F -terms of Ti,

1As a result, the degeneracy of vacua is resolved by the loop-corrections. The vanishing |FT | ∝
(T + T̄ )−1/2 corresponds to the unphysical domain Re(T ) → ∞. Thus, the SUSY-breaking vacuum

is selected. Indeed, the above illustrative parameters give rise to the high-scale SUSY-breaking min-

imum, where the vacuum expectation value of Re(T ), Re(T ) ≃ 9.9, resides in a reliable range of the

supergravity approximation.
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3.4 Kähler moduli inflation

Figure 3.22: - The scalar potential as a function of F̂ T by setting the parameters

as in Eq. (3.65).

and these F Ti themselves depend only on Re(Ti), but not Im(Ti). In such multi-moduli

models, gaugino masses and soft scalar masses would be written by

Ma =M0 +
∑
i

kifF
Ti , m2

i = m2
0 −

∑
i

kim|F Ti |2. (3.66)

Using these, we obtain the one-loop potential ∆V (Ti+ T̄i). Then, one can stabilize F Ti

and Re(Ti) in a similar way. However, all the axionic parts of Ti remain massless at

this stage.

3.4.2 Analysis and results

Let us begin with our discussions by the setup of our potential. By the existence

of flux-induced superpotential, all the complex structure moduli and dilaton field are

stabilized. After the stabilization of complex structure moduli, the total scalar potential

with the α′-correction becomes

V ≃ 3ξ

4eK(S,U)/2W
(F̂ T )3 +

1

64π2

[
a1

(
c2 −

(
F̂ T
)2)2

ln

(
c2 −

(
F̂ T
)2)

−a2
(
F̂ T
)4

ln

(
a3

(
F̂ T
)2)]

, (3.67)

with

F̂ ≡ |F T |
(T + T̄ )

, (3.68)
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as shown in eq.(3.64). In the case of single Kähler modulus with the Kähler potential

K = −3 ln
(
T + T̄

)
, the modulus kinetic term is given by

L = KT T̄∂
µT∂µT̄

= − 3

(T + T̄ )2
∂µT∂µT̄

= −1

2

[
∂µσ̂∂µσ̂

]
− 3

4σ2

[
∂µτ̂ ∂µτ̂

]
, (3.69)

where T = 1/
√
2(σ + iτ) and the real part of Kähler modulus is now canonically

normalized as

σ̂ =

√
2

3
lnσ. (3.70)

Thus, the F-term of the Kähler modulus is given by

F̂ ≡ |F T |
(T + T̄ )

≃ eK(S,U)/2W̄

(T + T̄ )3/2
=

eK(S,U)/2W̄(√
2e

√
2
3
σ̂
)3/2

. (3.71)

In our model, σ̂ in eq.(3.71) is identified with the inflaton.

We now discuss the inflation dynamics in our scenario, and let us introduce the

following re-parameterization for convenience

c ≡ c1, eK(S,U)/2W ≡ c2. (3.72)

Futher for simplicity, we take ξ = 1. In what follows we will search the parameter

sets (a1, a2, a3, c1, c2), and investigate whether the inflation could succussesfuly occur.

Then, the scalar potential is now given by eqs.(3.67), (3.72) and (3.71).

In order to achieve successful inflation and the observed values of the vacuum energy

density, first we fix the parameter c2. We choose reasonable parameters, then the typical

form of the scalar potential is given, shown in Fig. 3.23. One can find that the slow roll

conditions are satisfied in some parameter regions. Here, we propose the reasonable

sample values of the parameters in Table 3.4, focusing on a theoretical consistency with

the original framework in this section 3.4.1.

In the case that there are some uplifting terms V0 in the original potential eq.(3.67),

we also consider the successful inflation scenarios. For instance, the case for V0 is

constant, the results are given in Table 3.5.

60



3.4 Kähler moduli inflation
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Figure 3.23: - A canonically normalized potential which is given by eqs.(3.67),

(3.72) and (3.71), while the original one is already shown in Figure. 3.22. We put

the parameters as (a1 = 1, a2 = 1, a3 = 1, c1 = 1.01, c2 = 250).

r ns αs

[5.21× 10−4, 5.37× 10−4] [0.9611, 0.9674] [−1.01× 10−5, −5.93× 10−6]

Table 3.4: The parameter sets (a1 = 0.459, a2 = 0.459, a3 = 1, c1 = 1 + 10−8,

c2 = 0.379) and inflationary predictions. The left and right values correspond to

N = 50 and N = 60, respectively, and Pξ = 2.20× 10−9 for N = 55.

In another case, one can assume the D-term up-lifting term

V0 =
a4

(T + T̄ )ρ
, (3.73)

where a4 is a free parameter, and ρ is the modular wight. Also, in this case, we found

that inflation occurs successfully. We exhibit the results in Table 3.6. In our analysis,

we show only ρ = 3 case, while we have to check other cases. So far, we found for

ρ = 2, the inflation could not occur due to the difficulty of realizing a flat potential.

Here, we just show reasonable parameter sets (a1, a2, a3(, a4), c1, c2), and investi-

gated whether the inflation could succussfully occur. As a result, so far, in any case,

we can find suitable parameters which do not conflict with observable data.

In such the scenario discussed this section, the string axiverse scenario may highly

depend on details. Such an analysis is beyond our scope of this section. Therefore, the

detail discussion of moduli phenomenology will be left for future work.
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r ns αs

[5.37× 10−4, 3.74× 10−4] [0.9604, 0.9669] [−1.06× 10−5, −6.18× 10−6]

Table 3.5: The parameter sets (a1 = 1.45, a2 = 1.45, a3 = 1, c1 = 1, c2 =

0.00675, V0 = 1.45× 10−11) and inflationary predictions. The left and right values

correspond to N = 50 and N = 60, respectively, and Pξ = 2.20× 10−9 for N = 55.

r ns αs

[5.37× 10−4, 3.74× 10−4] [0.9604, 0.9669] [−1.06× 10−5, −6.18× 10−6]

Table 3.6: The parameter sets (a1 = 0.0459, a2 = 0.0459, a3 = 1, a4 = 5.82×10−5,

c1 = 1 + 10−7, c2 = 12.1, ρ = 3) and inflationary predictions. The left and right

values correspond to N = 50 and N = 60, respectively, and Pξ = 2.20 × 10−9 for

N = 55.

3.5 Conclusion

We have studied the axion inflation model proposed recently within the framework of

type IIB superstring theory with a particular emphasis on the sub-Planckian axion

decay constant, 0.01 ≲ f ≲ 1.0. The axion potential with such a sub-Planckian decay

constant possesses many flat plateaus and the small field inflation can be realized with

a sufficient number of e-folds.

In section 3.2, A notable feature of our scenario with a small decay constant f is

the low inflation energy scale Vinf ∝ f4 (eq. (3.12)). The implications of the conse-

quent low reheating temperature in our string axion inflation scenarios were discussed

including the dark matter abundance, gravitino/moduli problem and the isocurvature

fluctuations of the QCD axion. More detailed studies would be of great interest where

we combine concrete mechanism for the moduli stabilization/uplifting, fix the mass

scale of light moduli, choose a candidate for dark matter, and embed the QCD axion

in superstring theory. We leave such detailed studies through the concrete models and

their generalization for the next section.

We have studied one concrete potential which is derived from superstring theory.

The shift symmetry of axion is violated by quantum effects inducing the axion potential.

Such an axion potential consists of the mixture of polynomial functions and sinusoidal
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functions with the periodicity ϕ ∼ ϕ+2π/f , represented as V (ϕm, cos(ϕ/f), sin(ϕ/f)).

Similar but different forms including sinusoidal functions could be derived from another

setup different from our choice in superstring theory. For a small decay constant f ≪ 1,

such a potential can have many bumps and plateaus with the size of the flat regime

f/(2π), and the small field inflation can be realized on one of the plateaus.

We expect our concrete examples discussed in our paper can capture the generic

features for a wider class of axion inflation consisting of the sinusoidal and polynomial

terms with a sub-Planckian axion decay constant. For instance, let us assume that

the sinusoidal parts are dominant in some derivatives of the potential. We then would

find V (n+1) ∼ V (n)/f with n ≥ n0 for a certain value n0, where V
(n) denotes the n-th

derivative 1. Analogous to Eq. (3.10), we can then make a similar Ansatz, η ∼ ∆ϕf−p.

Here, p would depend on the form of the potential, e.g. n0, while p = 2 in our model

presented in this section. This would lead to r ∼ 10−6 × f2p when the tensor-to-

scalar ratio is small r < O(10−2) and we can estimate 2η ≈ ns − 1 ≈ 0.03. In such a

model analogous to our discussion in this section, the inflation energy scale and Hubble

parameter could have the power law dependence on f and hence become rapidly small

as f becomes small. As a consequence, the reheating temperature would become small

too, although its precise value depends on the detailed reheating processes such as

couplings between the inflaton and light modes. We would also be able to put the

tight lower bound on f from the BBN so that Treh > O(1) MeV. Confirming such a

generalization of our study is quite fascinating, and we have planned to present the

analysis extending our studies here for a wider class of axion inflation models which

can be explicitly derived from superstring theory.

In section 3.3, We have discussed the general class of small-field axion inflation which

is the mixture of polynomial and sinusoidal functions with an emphasis on the small

axion decay constant compared with the Planck scale. In contrast to the large-field

axion inflation, such as the natural inflation (18) and axion monodromy inflation (36),

the small-field axion inflation predicts that the small amount of primordial gravitational

wave and low inflation scale. This class of inflation models is motivated by the weak

gravity conjecture which prohibits the trans-Planckian axion decay constant and the

constraint from isocurvature perturbation due to the QCD axion. When the axion decay

1V (n+1) ∼ V (n)/f can well happen for a higher derivative of the potential including the sinusoidal

terms because a polynomial term vanishes at a sufficiently large n
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constants and parameters in the scalar potential satisfy the certain conditions leading

to the successful small-field axion inflations as discussed in sections 3.3.1, 3.3.2, we find

that the cosmological observables are written in terms of the axion decay constants in

a systematic way.

In section 3.4, we have studied a new type of moduli potential and stabilization.

In the model with Kähler moduli, this model has the flat direction along both Re(T )

and Im(T ) at the tree level. The SUSY vacuum and SUSY breaking vacuum are

degenerate, but the SUSY vacuum corresponds to the decompactification limit Re(T )

→ ∞. In this model, the modulus F term depends only on Re(T ). The real part Re(T )

can be stabilized by inclusion of α′ corrections and loop effects due to Re(T )-dependent

gaugino and sfermion masses. However, the axion Im(T ) remains massless at this stage.

We extend the model with the single Kähler modulus to the inflation. The result is

that it is possible if some parameters are tuned even in the case for adding the p-

lifting terms. Also, in this model, one of the light axions could derive the cosmological

inflation if a proper potential is generated. Moreover, these axions would be interesting

from the viewpoint of a string axiverse. Such axion phenomenology would be studied

elsewhere.
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4

Cosmological aspects of

Supersymmetry

In this chapter, we collectively review of Supersymmetry, which is attractive from both

theoretical and phenomenological point of view. We also remark on some aspects of

Cosmology in the context of Supersymmetry field theory. Note that here, we do not

concern about a concrete SUSY breaking mediation model and its breaking scale, just

discuss the implications of cosmology for supersymmetry, and vice versa.

4.1 Supersymmetry

Since there are several problems in the standard model of high-energy physics, Many

scientists actively work for the resolution. Naively, we suppose that the new physics

beyond the standard model based on (spontaneously broken) symmetries, and it would

describe a unified picture of those symmetries from the point of view of simplicity and

minimality. In the following, we introduce the supersymmetry as a new physics and its

motivations.

As we mentioned, the standard model can reproduce the experimental results as

well as expected. However, such results are only described under the around TeV

scale. This fact suggests that the standard model as a weak scale have to be extended

in order to describe the higher energy scale. Also, from viewpoint of Planck scale

(Mp = 2.4 × 1018) theory, we can naively expect the new physics in the Tev scale,

discussing some effective theory as a Planck scale theory. In this sense, supersymmetry
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also seems to be a fundamental theory beyond the standard model. The supersymmetry

is motivated due to the following reasons:

• solution to the gauge hierarchy problem,

• suggests the unification of gauge couplings,

• provides the candidate of the dark matters.

Not only for the above theoretical powerful motivations, but also for the existence of

the experimental hints, the supersymmetry theory became the frontiers of the particle

physics. Supersymmetry scenario is especially satisfying the solution to the hierarchy

problems, which requires at least O(10−32) level of fine tunings among the parameters

in the Higgs sector of the standard model. Indeed, supersymmetry assumed as a simple

structure relaxes such the tunings. Hence, it is important to study from the theoretical

predictions, and we have to test it by experiments to confirm phenomenologically. Un-

fortunately, so far 1 experimental signals for supersymmetry has never been confirmed.

The breaking mechanism itself does not tell us where the supersymmetry breaking scale

should be. Thus, the scale is to be set by phenomenological considerations.

The supersymmetry is a symmetry to transform a bosonic state into a fermionic

state, and vice versa,

Q|fermion⟩ = |boson⟩, Q|boson⟩ = |fermion⟩. (4.1)

Here, the operator Q generates such a transformation, whose complex object Q† is also

a symmetry generator. For realistic theories, like the standard model, this symmetry

implies that the complex generators Q and Q† must satisfy an algebra of anticommu-

tation and commutation relations with schematic form

{Q, Q†} = Pµ, {Q, Q} = {Q†, Q†} = 0, [Pµ, Q] = [Pµ, Q†] = 0, (4.2)

where Pµ is the four-momentum generator of space-time translations. Since Q carry

spin 1/2, it is clear that the supersymmetry must be a space-time symmetry. Note

that the above relations are restricted by the Haag-Lopuzanski-Sohnius (68) extension

of the Coleman-Mandula (69).

1at present: February 19, 2019
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4.2 Minimal Supersymmetric Standard Model (MSSM)

and its extension

We give a brief review of the minimal supersymmetric standard model (MSSM) which

is the simplest extension of the standard model. For more detail, see Ref. (70).

In a supersymmetric extension of the standard model, the fundamental known par-

ticles become chiral and gauge supermultiplet, and must have superpartners with spin

differing by 1/2. The squarks, sleptons, and gauginos present as the superpartners of

quarks, leptons, and gauge boson, respectively. The field contents of MSSM are sum-

marized in Table 4.1 and Table 4.2 (70). Note that when we extend the Higgs field

to superfield, anomaly cancellation in the standard model appears again due to the

new fermions, called a higgsino. In order to avoid this difficulty, we add another Higgs

doublet superfield which has the opposite hypercharge. These Higgs fields are often

denoted by Hu and Hd as a minimal extension of the standard model.

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL, d̃L) (uL, dL) (3,2, 16)

ū ũ∗R u†R (3̄,1,−2
3)

d̄ d̃∗R d†R (3̄,1, 13)

slepton, lepton L (ν̃, ẽL) (ν, eL) (1,2,−1
2)

ē ẽ∗R e†R (1,1, 1)

Higgs, higssino Hu (H+
u ,H

0
u) (H̃+

u , H̃
0
u) (1,2,+1

2)

Hd (H0
d ,H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1

2)

Table 4.1: Denote the chiral supermultiplets in the standard model. All fermion

fields are defined in terms of the two-component left-handed spinors. Note that

tilde, like as ū, d̄, ē indicate the superpartners of the corresponding standard model

fields, do not have meanings of its conjugate. There are 3 families in the quarks

and leptons.

In the MSSM, under the gauge invariance and the R-parity, the superpotential is

given as

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd (4.3)
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon ḡ g (8,1, 0)

wino, W bosons W̃±, W̃ 0 W±,W 0 (1̄,3, 0)

bino, B boson B̃0 B0 (1̄,1, 0)

Table 4.2: Gauge supermultiplets in the MSSM.

with A ·B ≡ AαBβϵ
αβ 1, and yu, yd, and ye are dimensionless Yukawa couplings. The

last term µHH is the so-called µ-term, where µ has mass dimension one, and it is the

only dimensionful parameter in the MSSM superpotential. The µ-term corresponds to

the Higgs mass term in the standard model, written as,

Hu =

(
H+

u

H0
u

)
, Hd =

(
H0

d

H−
d

)
(4.4)

Note that the holomorphy of the MSSM sperpotential requires both Hu and Hd. This

is another reason why we need at least two Higgs doublets in the MSSM superpotential.

A realistic phenomenological model must have supersymmetry breaking because

from a theoretical point of view we expect if it exists, superpartners of standard model

particles are massless. Therefore, in addition to being supersymmtric, the MSSM also

contains the soft supersymmetry breaking terms under the gauge invariance and the

R-parity;

Lsoft = −1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.)

− (˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeQ̃Hd + h.c.)

− Q̃†mQ
2Q̃− L̃†mL

2L̃− ˜̄u†mū
2 ˜̄u† − ˜̄d†md̄

2 ˜̄d† − ˜̄e†mē
2 ˜̄e†

−m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + h.c.)

(4.5)

where M1,2,3 are bino, wino, gluino, mass terms, au,d,e are 3-point coupling of scalars,

m2
Q,L,ū,d̄,ē

are squark and slepton mass terms, mHu,Hd
, b are contributions from SUSY

breaking to Higgs potential respectively. This is a generic soft SUSY breaking La-

grangian, and parameters in the above eq.(4.5) introduce new sources of flavor and

CP violation, which are restricted by low-energy precision experiments (71). Since

1The convention of the supersymmetry notation is defined in Appendix A.
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supersymmetry should be an exact symmetry that is broken spontaneously, the under-

lying model also supersymmetric Lagrangian, but vacuum state is not. Therefore, we

naively suppose that the supersymmetry is hidden at low energy scale, some kind of

mechanism passes down, so-called the mediation mechanism. Although many models

of spontaneous SUSY breaking have been proposed, we do not mention any of them in

this thesis.

Including the soft SUSY breaking terms, eq.(4.5), MSSM yields the scalar potential,

and its vacuum corresponds to the ground state of the theory. Finally, in the following

section, let us discuss the Higgs scalar potentials and standard model Higgs mass in

the same manner of the electroweak symmetry breaking mechanism. Here, we assume

that only the Higgs bosons in the MSSM have the VEVs, on the other hand, especially,

squarks and sleptons do not get

VEVs because they have large positive squared masses. Then, the Higgs scalar

potential in the MSSM is given as

VHiggs =
(
|µ|2 +m2

Hu

) (
|H0

u|2 + |H+
u |2
)
+
(
|µ|2 +m2

Hd

) (
|H0

d |2 + |H−
d |2
)

+
[
b(H+

u H
−
d −H0

uH
0
d) + h.c.

]
+
g21 + g22

8

(
|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−
d |2
)2

+
g22
2

∣∣∣H0
uH

−†
d +H+

u H
0†
d

∣∣∣2 ,(4.6)

where g1, g2 are the coupling constants of U(1)Y and SU(2)L, respectively. Here, we

demand that a minimum of the potential breakdown electroweak symmetry to elec-

tromagnetism (SU(2)L × U(1)Y → U(1)EM ). In this case, we can rotate away from

a possible VEV for one component of one of the scalar fields by using the SU(2)L

gauge transformation. As a result, one can always take ⟨H+
u ⟩ = 0 at the minimum of

potential without loss of generality. Further, we can take ⟨H−
d ⟩ = 0 due to satisfing the

stationary condition, ∂V/∂H+
u = 0. Then, after these two conditions, H+

u = H−
d = 0

are set, we reduce the eq.(4.6), and only consider the following potential consisting of

only the neutral scalar component fields,

VHiggs =
(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2

−
[
bH0

uH
0
d + h.c.

]
+
g21 + g22

8

(
|H0

u|2 − |H0
d |2
)2
. (4.7)

The only b-term depends on the phase of the field, but we can redefine the phases of

H+
u or H−

d such that the b is real and positive.
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When the potential eq.(4.7) has a minimum, parameters of it are restricted. Here,

we write the vev of the Higgs fields as

⟨H+
u ⟩ = vu, ⟨H−

d ⟩ = vd. (4.8)

These vevs are related to the known Z boson mass mZ and the electroweak gauge

couplings

v2u + v2d = v2 =
2m2

Z

g21 + g22
≃ (174GeV)2. (4.9)

Conventionally, the ratio of the vevs is denoted by

tanβ ≡ vu
vd
,

(
0 < tanβ <

π

2

)
, (4.10)

leading to

vu = v sinβ, vd = v cosβ. (4.11)

The W and Z boson mass are given by

mW =
1

2
g22v

2, mZ =
1

2
(g21 + g22)v

2, (4.12)

which are identical to the standard model case.

The Higgs scalar fields in the MSSM consist of eight real, scalar degree of freedom.

When the electroweak symmetry is broken in the potential eq.(4.6), three of them

would be eaten by Z0, W± as Nambu-Goldstone bosons. The remaining five Higgs

scalar masses consist of two CP-even neutral scalars h0, H0, one CP-odd neutral scalar

A0, and a charge ±1 scalar H±,

m2
A0

= 2b csc(2β)

m2
H± = m2

A0
+m2

W

m2
H0

=
(m2

A0
+m2

Z) +
√
(m2

A0
+m2

Z)
2 − 4m2

A0
m2

Z cos2 2β

2

m2
h0

=
(m2

A0
+m2

Z)−
√
(m2

A0
+m2

Z)
2 − 4m2

A0
m2

Z cos2 2β

2

(4.13)

which are calculated by taking account of the mass matrix of Higgs scalar. From

eq.(4.13), we can find that the mass of the lighter CP-even Higgs boson mh is bounded

at tree-level,

mh0 ≤ mZ | cos(2β)|. (4.14)
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This fact suggests that the lightest Higgs boson of the MSSM is smaller than the

Z boson mass at tree-level, which would be disfavored by current experiment results,

originated from the quartic coupling of the MSSMHiggs potential as seen in the eq.(4.7).

However, quantum corrections drastically change this situation (72, 73, 74, 75, 76). The

largest contribution is typically come from stop loops due to the large Yukawa coupling.

Including such the correction, the resultant Higgs mass at one-loop level is given by

∆(m2
h0) =

3

4π2
v2y4t sinβ ln

(
mt̃1

mt̃2

m2
t

)
≃ (90 GeV)2

sin2 β
, (4.15)

where mt is the top mass, and mt̃1,2
are the stop mass. Note that we cannot take sinβ

to be too small otherwise, the top Yukawa coupling will blow up at a relatively low

scale. From the above calculation, one finds large enough 126 GeV Higgs mass when

the stop mass is sufficiently large. This shows that mh can exceed the experimental

bounds. Note that including all of the sparticle that can contribute to m2
h in loops, one

can obtain an interesting bound

mh0 ≲ 135 GeV (4.16)

in the MSSM (70) (see also the references thereinn). By adding extra supermultiplet

to the MSSM, this bound can be made even weaker.

4.3 Cosmological aspects of supersymmetry

In order to construct realistic cosmological models, it is important to survey them de-

pended on the supersymmetry. Here, we want to discuss the implications of cosmology

for supersymmetry, and vice versa. We selectively include that motivation for the next-

to-minimal supersymmetric standard model (NMSSM) and the domain wall problems

in the NMSSM in section 4.3.1 and section 4.3.2, and about a baryogenesis and itself

from the Affleck-Dine mechanism in section 4.3.3 and section 4.3.4.

4.3.1 Next-to-minimal supersymmetric standard model (NMSSM)

As we mentioned above, the MSSM has phenomenologically quite fascinating features,

and it is predicted as a new physics in TeV scale. However, from theoretical points of

view, actually, the MSSM includes a serious problem; µ-problem, which originates from

the Higgs mass term in the MSSM superpotential. In order to reproduce a Higgs VEV
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of order 174 GeV without cancellation between |µ|2 and soft mass terms, naively we

expect that µ should be rough of order 102 – 103 GeV. Then, why should |µ|2 be small

or why should it be rough of the same order of soft mass terms? This is the µ-problem.

There are various models which solve the µ-problem, the simplest extension of the

particle contents of MSSM is proposed (77), (78, 79, 80, 81, 82, 83, 84, 85, 86), adding a

new gauge singlet chiral supermutiplet. This model is often called NMSSM. Generally,

in the NMSSM the new superpotential and Lagrangian is invariant under discrete

symmetry, Z3-symmetry to extract dimensionful terms in the NMSSM superpotential.

For every chiral superfield, we impose

Φ → e2πi/3Φ, (4.17)

and all gauge and gaugino fields are inert. Then, we could write down the renormaliz-

able NMSSM superpotential;

WNMSSM = λSHuHd +
κ

3
S3 +WYukawa (4.18)

where κ and λ are dimensionless couplings. After the Z3-symmetry is broken sponta-

neously and a new singlet S get a VEV, ⟨S⟩ ≡ s, an effective µ-term for HuHd will

arise as

µeff = λs. (4.19)

It is determined by the dimensionless coupling and the soft mass terms, which then

solves the µ-problem of the MSSM. The detail of NMSSM and µ-problem is discussed

in the next chapter 5.

4.3.2 Domain wall problem

In the following, let us review the domain wall solution in the Z3 symmetric NMSSM.

We already know the Z3-symmetry prohibit the dimensionful parameters in the super-

potential and Lagrangian in the NMSSM. However, there is a cosmological problem;

domain wall problem. Generally, discrete symmetries can generate domain wall prob-

lems, once they are spontaneously broken. In the early universe, domain walls in the

NMSSM are generated which can dominate the energy density of the universe, creat-

ing unfavorable large anisotropies of the cosmic microwave background and spoiling

successful Big-Bang nucleosynthesis (87). Subsequently solutions of this problem have
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been proposed in (88, 89, 90), hereafter, we do not pursue these solutions and just

review about the domain wall solution (91).

Again, discrete symmetries can generate domain wall. Then, we consider a following

Lagrangian which has ZN discrete symmetries for a complex scalar field

L = (∂µϕ)
†(∂µϕ)− 1

4
λ(ϕ†ϕ− η2)2 + 2

m2η2

N2
(cosNθ − 1), (4.20)

where N is an integer, η = ⟨ϕ⟩. At a low-energy scale, we assume that ϕ = ηeiθ, leading

to an effective Lagrangian or θ as

Lθ = η2(∂µe
iθ)†(∂µeiθ)− 1

4
λ(η2 − η2)2 + 2

m2η2

N2
(cosNθ − 1)

= η2(∂µθ)
2 + 2

m2η2

N2
(cosNθ − 1). (4.21)

The potential minimum in this potential exists at θ =
2πn

N
（with n = 0, 1, · · · , N − 1,

and we can see these vacua are separated by the domain walls. Such a Domain wall

solution between vacua is calculated as follows. From eq.(4.21), equation of motion for

θ is given

η2∂µ∂
µθ + 2

m2η2

N2
·N sinNθ = 0

d2θ

dz2
− m2

N
sinNθ = 0. (4.22)

Here we assume that the domain wall is vertical to z-axis and is stationary, or time

independent. This equation form relates to the sine-Gordon equation for N = 1. We

solve the eq.(4.22), then,

dθ

dz
· d

2θ

dz2
− m2

N

dθ

dz
· sinNθ = 0(
dθ

dz

)2

= −2m2

N2
cosNθ + C1. (4.23)

Now we chose θ → 0,
2π

N
at z → −∞, +∞,

C1 =
2m2

N2
. (4.24)

Therefore, we find (
dθ

dz

)2

=
2m2

N2
(1− cosNθ)

dθ

sin
(
Nθ
2

) = ±2m

N
dz. (4.25)
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By integrating above equation, the left hand side of it becomes as

(L.H.S) =

∫
dθ

1

sin
(
Nθ
2

)
=

1

N
log

(
tan2

(
Nθ

4

))
+ C2 (4.26)

and right hand side as

(R.H.S) = ±
∫
dz

2m

N

= ±2m

N
z + C3. (4.27)

Then, we obtain the equation of motion of θ for z-axis

1

N
log

(
tan2

(
Nθ

4

))
= ±2m

N
z + C4

θ =
4

N
arctan

(
e±m(z−z0)

)
, (4.28)

where z0 is a constant of integration. This is the domain wall solution.

Further, we define the tension (surface energy density) of domain wall σ, which

characterize the domain wall qualitativety, related to the product of energy density

and thin of domain wall,

σ =

∫
dz ρDW =

∫
dz
(
(∂µϕ)

†(∂µϕ)− V (ϕ)
)
= 2

∫
dz

∣∣∣∣dϕ(z)dθ

∣∣∣∣2 . (4.29)

Remaining ∣∣∣∣dϕ(z)dθ

∣∣∣∣2 = η2
(
dθ

dz

)2

=

(
2mη

N

)2 1

cosh2 (m(z − z0))
, (4.30)

and then, we get

σ = 2

(
2mη

N

)2 ∫ ∞

−∞
dz

1

cosh2 (m(z − z0))

=
16mη2

N2
. (4.31)

Above general results is used in chapter 5.

Our study related to this subsection is summarized in chapter 5, see it.
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4.3.3 Baryon asymmetry

The baryon asymmetry of the universe is one of the intriguing puzzles in our universe.

We have shown our attitude toward the inflation and proposed the concrete our models.

Depending on its motivation, one of the most important points of the inflation model

is that dilute unwanted relics, i.e. gravitino and moduli which contribute too generous

to the present energy density leading to unsuccessful standard cosmology. However,

inflation has serious negative parts: it also dilutes the baryon asymmetry in our un-

derstanding of the universe. Thus, the baryon asymmetry might be washed out by

the inflation, even in the case of the lepton-number violation through the sphaleron

processes (once the net lepton number is generated, it is transferred into the baryon

number via the sphaleron process). So, the baryogenesis (leptogenesis) is phenomeno-

logically interesting, and we eagerly desire the baryogenesis (leptogenesis) scenario for

the great triumph of particle cosmology.

Compared to particles or matters, there are few antiparticles (antimatter) on large

scale, around 10 Mpc at least, and this fact suggests that some mechanism of baryoge-

nesis work on between particles and antiparticles during cosmological evolution. The

baryon number of the universe may be explained as follows. When the nucleosynthesis

begin to occur in the early universe, with the expansion of the universe, the number

density of baryons changes as nb ∝ a−3 ∝ T 3, where T denotes a temperature of the

universe. The number density of baryons with a temperature T is given as

nb = n
(0)
b

(
T

T0

)3

= Ω
(0)
b

ρ0
mp

(
T

T0

)3

, (4.32)

where mp is proton mass, Ω
(0)
b = mpn

(0)
b /ρ0, ρ0 is the average energy density of the

universe, and (0) means the current values. Since the number density of photons is

provided as nγ = 2ζ(3)T 3/π2, the ratio nb/nγ is kept a constant,

ηb ≡ nb
nγ

=
π2

2ζ(3)

ρ0
mp

Ω
(0)
b

T 3
0

. (4.33)

With mp = 938 MeV, T0 = 2.725 K, and current critical density ρ0 = 1.878 ×
10−26h2 kg m−3, we can obtain easily

ηb = 2.7× 10−8 Ω
(0)
b h2

≃ 5.9× 10−10. (4.34)

77



4. COSMOLOGICAL ASPECTS OF SUPERSYMMETRY

Here, from the analysis of the anisotropy and polarization of cosmic microwave back-

ground data provided by WMAP collaboration(92), we obtain Ω
(0)
b h2 = 0.0455 ±

0.00028. Also, the ratio nb/s is kept fixed unless the baryon number and entropy

are created. The entropy in a temperature T is given as s = 2π2g∗T
3/45, and this

leads to

nb
s

=
45ζ(3)

π4g∗
ηb = 3.8× 10−9 Ω

(0)
b h2

≃ 8.4× 10−11, (4.35)

where g
(0)
∗ = 2+ 7

8 × 6× 4
11 = 3.91. Therefore, naively, we need the baryon asymmetry

around nb/s ∼ 10−10 to explain our present universe.

In order to generate the baryon asymmetry of the universe, the three conditions

should be satisfied, which have been pointed out by Sakharov (93); (i) violating baryon

(or lepton) number, (ii) violating C and CP, and (iii) dropping out of thermal equilib-

rium in the early universe.

The leptogenesis (94) is known as one of the most attractive and the relatively

simple ways to realize the Sakharov’s conditions, and baryon number is generated via

the electroweak sphaleron process at high-temperature (95). Then, the sphaleron effect

converts lepton number nL to baryon asymmetry

nB
s

∼ csph
nL
s

(4.36)

with csph ∼ −8/23 (96, 97) at higher temperature than the electroweak scale in SUSY

theories. In our study (chapter 6), we assume lepton asymmetry is originated from a

lepton current caused by a large VEV of left- (and right-) handed sneutrino, and such

an asymmetry generates the present baryon asymmetry eq.(4.35) which is observed

today from CMB data (98).

4.3.4 Affleck-Dine mechanism

As mentioned above, in order to reproduce the baryon asymmetry, we need some in-

teractions which violate the baryon number, or lepton number in the Lagrangian we

assumed. If we put the R-parity in a model, there are not such violating interaction,

and we have to introduce the non-renormalizable interactions, which seems to be a little

complicated and there need the concrete higher scale theory than the electroweak scale
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which we can observe by some experiments. However, today we know that there exists

the neutrino oscillation, and this fact suggests the lepton number violation, leading to

baryon asymmetry in a minimal assumption within the framework of supersymmetry.

Actually, some studies on the Affleck-Dine mechanism(64, 65) using the Lepton num-

ber violation are proposed (99), and in that paper, we can explain that the baryon

asymmetry is naturally realized by so-called the Affleck-Dine Leptogenesis.

Here, let us review the Affleck-Dine mechanism (leptogenesis) depending on the

LHu directions. This mechanism is one of the most beautiful scenarios, and the thermal

leptogenesis that produces a lepton asymmetry from thermally produced right-handed

(s)neutrinos. When the produced right-handed (s)neutrinos are out of equilibrium,

finally they decay asymmetrically into leptons and anti-leptons, and thus it generates a

net lepton number. In this section, we will a review on the Refs.(65), (99) and references

therein. Note that in this review here, we do not introduce the right-handed neutrinos

and thermal correction to the effective potentials, for simplicity.

We consider the minimal superpotential within the framework of MSSM. Introduc-

ing the effective dimension-five operator in the superpotential, we start wtih following

superpotential

W =WMSSM +
1

2M
(LHu)(LHu), (4.37)

where mν = v2u/M , vu = ⟨Hu⟩ = (174 GeV) sinβ. The second term is necessary to

produce the lepton number violation in this model.

There are some flat directions in the MSSM (100). Especially, the LHu flat direction

is one of the most extensively studied. Under the SU(2) gauge transformation, it is

parametarized with a complex scalar field ϕ as follows;

L =
1√
2

(
ϕ
0

)
, Hu =

1√
2

(
0
ϕ

)
, (4.38)

where L and Hu denote the scalar compornents of the superfields. In the following, we

call ϕ AD-field. Along this flat direction L = Hu = ϕ/
√
2, the potential is given by

VF = m2|ϕ|2 +A
(
ϕ3 + ϕ∗3

)
+

1

4M2
|ϕ|6. (4.39)

The last term is F-term potential come from the eq.(4.37), while the first and second

term represents soft SUSY breaking terms.

We want to consider the evolution of flat direction of the AD-field. Although this

direction is flat before the primordial inflation, it can have a large initial amplitude
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necessary for this model. During the inflation, the Hubble parameter is almost constant.

Within the framework of supergravity, generally, there is a possible negative Hubble

mass squared in the scalar potential,

VH = −c|ϕ|2H2 (4.40)

which is due to the non-zero energy in the early universe parameterized the Hubble

parameter H (See Appendix C.3). Here we assume that A, c are O(1) coefficients

depending on a model of the supergravity.

In this era, the AD-field quickly settle down to one of the minima of the scalar po-

tential, eq.(4.39). After AD-field is fixed at a minimum, the Hubble parameter varies in

time as H = 2/(3t) with the inflation ends. The AD-field will start coherent oscillation

since the negative Hubble mass term is decreased, and effective masses dominate the

scalar potential. In such a case, the phase of the AD-field is decided by almost the phase

of A-term. The phase direction of AD-field is kicked, and then, Lepton asymmetry is

generating through the evolution of AD-field at the time H ≃ m, as a result. Based on

the discussion here, minimizing

V = −cH2|ϕ|2 + 1

M2
|ϕ|6, (4.41)

we can estimate the amplitude of the AD-field at the end of inflation,

|ϕ|2 ∼M2H2
inf . (4.42)

It turns out that the initial value of the AD-field depend on only M and H at the end

of inflation.

After the AD-field is destabilized, and given the above initial condition, the equation

of motion of AD-field ϕ is written as

ϕ̈+ 3Hϕ̇+ Vϕ∗ = 0. (4.43)

The AD-field start coherent oscillation at eq.(4.42), since the negative Hubble mass term

is deceresed and effective mass dominated in the scalar potential. After the reheating

ends, Lepton asymmetry at this time is easily given as 1,

nL
s

∼ AMTreh
HoscM2

pl

δeff , where sin δeff = (arg(A)) . (4.44)

1We define the ϕ number density and show a concrete evolution of ϕ at the early universe in

Appendix C.1
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Here we utilize sreh ∼ T 3
reh, H

2
oscM

2
pl ∼ T 4

reh and assume Hosc ∼ m, and c ∼ 1,

δeff ∼ O(1).

By the effects of the sphaleron, the above Lepton asymmetry is partially converted

to the Baryon asymmetry. Especially, in the MSSM, we take (96, 97)

nB
s

=
8

23

∣∣∣nL
s

∣∣∣ . (4.45)

Then, finally we can obtain the Bryon asymmetry as

nB
s

∼ 6× 10−11
( mν

10meV

)−1 ( m

1TeV

)−1
(

A

1TeV

)(
Treh

1010GeV

).

(4.46)

Since the lepton number is inversely proportional to the mass of the neutrino, so far

we have considered only a lightest neutrino mass mν .

Our study related to this subsection is summarized in chapter 6.
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5

Entropy production by domain

wall decay in the NMSSM

In this chapter, we consider domain walls in the Z3 symmetric NMSSM. The sponta-

neous Z3 discrete symmetry breaking produces domain walls, and the stable domain

walls are problematic. Thus, we assume the Z3 symmetry is slightly, but explicitly

broken and the domain walls decay. Such a decay causes a large late-time entropy

production. We study its cosmological implications on unwanted relics such as moduli,

gravitino, LSP, and axion. Note that this chapter is based on our works (c).

5.1 Introduction

Supersymmetric extension of the standard model (SM) is one of the candidates for

TeV-scale physics, because supersymmetry (SUSY) can stabilize a large hierarchy. The

minimal supersymmetric standard model (MSSM) is quite interesting because of its

minimality, and various phenomenological aspects have been studied. However, from a

theoretical point of view, it has a serious problem. The MSSM includes supersymmetric

mass terms of Higgs superfields, Hu and Hd i.e. the so-called µ-term, µHuHd, in the

superpotential. It must be comparable with soft SUSY breaking masses in order to

realize successfully the electroweak symmetry breaking. However, the µ-term and soft

SUSY breaking terms, in general, have origins different from each other. Why are these

comparable to each other? That is the so-called µ-problem (101).
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The next-to-minimal supersymmetric standard model (NMSSM) is an extension of

the MSSM by adding a singlet superfield S (78) 1. Then, the NMSSM superpotential

has λSHuHd. Also, we impose the Z3 symmetry, which forbids dimensionful parameters

in the superpotential. Dimensionful parameters appear only as soft SUSY breaking

parameters. Thus, vacuum expectation values (VEVs) of Higgs and singlet fields are

determined by soft SUSY breaking terms. That is, the µ-problem is solved, and the

effective µ-term is generated as µ = λ⟨S⟩.
In the NMSSM, the Higgs sector, as well as the neutralino sector, has a richer

structure than one in the MSSM, because of inclusion of the singlet superfield S. Also,

the NMSSM can raise the SM-like Higgs boson mass. At any rate, heavier superpartner

masses such as O(1)−O(10) TeV may be favorable. We may need fine-tuning to realize

a little hierarchy between the electroweak scale and SUSY breaking scale. However,

such a fine-tuning can be improved in a certain mediation mechanism, e.g. in the

TeV-scale mirage mediation scenario (102) 2.

The Z3 symmetry is important to forbid dimensionful parameters in the superpo-

tential and to solve the µ-problem. However, it is problematic. VEVs of the Higgs

scalar and singlet break spontaneously the Z3 symmetry. In general, when a discrete

symmetry is spontaneously broken, domain walls appear. They would dominate the

energy density of the Universe and change the standard cosmology drastically. Thus,

the exact Z3 symmetry and the stable domain walls are problematic (107). See for the

NMSSM (108) .

Here, we assume that the Z3 symmetry is broken explicitly (e.g. by the hidden sec-

tor dynamics (109)), but its breaking size is much smaller than the electroweak scale.

Then, the domain walls are unstable. They may dominate the energy density of the

Universe at a certain period but decay. It has important effects on thermal history

3. In this chapter, we study implications of unstable domain walls in the NMSSM. In

general, SUSY models have other problems due to moduli, gravitino and the lightest

superparticle (LSP). For example, in the gravity mediation scenario, moduli and grav-

itino masses would be comparable with masses of superpartners in the visible sector.

When those are of O(1) − O(10) TeV, they affect successful big bang nucleosynthesis

1See for a review Ref. (77).
2 See for phenomenological aspects of MSSM in the TeV-scale mirage mediation scenario (103) and

for generic mirage mediation (104, 105, 106).
3See e.g. Ref. (110).
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(BBN), that is, the so-called moduli-problem and gravitino problem. They could be

diluted by the decay of domain walls (60). Furthermore, even if the moduli and grav-

itino are heavier than superpartners in the visible sector, that would lead to another

problem. Indeed, in the mirage mediation mechanism (104), the gravitino is heavier

by O(8π2) than superpartners in the visible sector, and the modulus is also heavier by

O(8π2) than the gravitino. In such a case, the moduli decay into the gravitino with

a large rate and the gravitino decays into the LSP. This overproduces non-thermally

the LSP (111). We need to dilute the moduli, gravitino and the LSP. Also, in some

other scenarios, the LSP such Bino-like neutralino has a large thermal relic density.

The decay of domain walls, which was mentioned above, can produce a large entropy

and dilute moduli and dark matter candidates in the NMSSM.

This chapter is organized as follows. In section 5.2, we study the domain wall

solution in the NMSSM. In section 5.3, we study cosmological evolution of unstable

domain walls. In sections 5.4 and 5.5, we study implications of the domain wall decay

in two scenarios. Section 5.6 is devoted to conclusion and discussion.

5.2 Domain wall solution in the NMSSM

5.2.1 Domain wall solution in the Z3 symmetric NMSSM

We briefly review a domain wall solution of the Higgs potential in the Z3 symmetric

NMSSM 1. We adopt the convention for Hu, Hd and S that the superfield and its lowest

component are written in the same letter. The superpotential terms including only Hu,

Hd and S are written as

WHiggs = λSHuHd +
κ

3
S3, (5.1)

where the Z3 symmetry is imposed as mentioned. The scalar potential is written by

VHiggs =
∑

ϕi=Hu,Hd,S

∣∣∣∣∂W∂ϕi
∣∣∣∣2 + VD + Vsoft, (5.2)

1 The full scalar potential includes superpartners of quarks and leptons, and it has several unrealistic

vacua. We assume that taken SUSY breaking parameters in the full potential satisfy the condition to

avoid such unrealistic vacua. (See e.g., Ref. (112) and references therein.)
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where VD is the D-term potential due to SU(2) × U(1)Y and Vsoft denotes the soft

SUSY breaking terms,

Vsoft = m2
Hu

|Hu|2 +m2
Hd

|Hd|2 +
1

3
κAκS

3 + λAλHuHdS + h.c. (5.3)

Only the neutral components develop their VEVs, and their scalar potential is written

explicitly by

VHiggs =
∣∣κS2 − λH0

uH
0
d

∣∣2 +m2
Hu

|H0
u|2 +m2

Hd
|H0

d |2 +m2
S |S|2 + |λ|2 |S|2 (|H0

d |2 + |H0
u|2)

+
g2 + g′2

8

(
|H0

u|2 − |H0
d |2
)2

+
1

3
κAκS

3 − λAλH
0
uH

0
dS + h.c., (5.4)

where g and g′ are the SU(2) and U(1)Y gauge couplings, respectively. Here, we assume

that all of λ, κ, Aλ and Aκ are real.

The potential minima are obtained by analyzing the stationary conditions,

∂VHiggs

∂H0
u

=
∂VHiggs

∂H0
d

=
∂VHiggs

∂S
= 0, (5.5)

and these VEVs lead to the successful electroweak symmetry breaking, where the effec-

tive µ term is obtained as µ = λ⟨S⟩. Since the scalar potential has the Z3 symmetry,

three vacua are degenerate,(
⟨S⟩ ,

⟨
H0

u

⟩
,
⟨
H0

d

⟩)
=
(
vse

2πim/3, vue
2πim/3, vde

2πim/3
)
, (5.6)

with m = 0, 1, 2, where all vs, vu and vd are real with v =
√
v2u + v2d ≃ 174 GeV. One of

three degenerate vacua is selected in the vacuum, and then the Z3 symmetry is broken

spontaneously. Then, the domain walls are generated.

First, we study the domain wall solution (91). We fix field values of radial directions

of S,Hu and Hd, and discuss a field equation for the phase degree of freedom ϕ,(
S,H0

u,H
0
d

)
=
(
vse

iϕ, vue
iϕ, vde

iϕ
)
. (5.7)

The potential of ϕ can be obtained from VHiggs as

V(ϕ) = −2

(
1

3

∣∣κAκv
3
s

∣∣+ λAλvsvuvd

)
cos(3ϕ) + V0, (5.8)

where V0 denotes ϕ-independent terms. The first term would be dominant when Aκ ∼
Aλ, λ ∼ κ and v2s ≫ vuvd. Also, the kinetic term of ϕ is written by

Lkinetic(ϕ) = η2(∂µϕ)(∂
µϕ), (5.9)
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with η2 = v2s + v2u + v2d.

For simplicity, we consider a planar domain wall orthogonal to the z-axis, ϕ(z).

Then, the field equation,

∂µ
∂Lkinetic

∂µ(∂ϕ)
+
∂VVEV

∂ϕ
= 0, (5.10)

can be written by

d2ϕ

dz2
− 1

3B2
sin(3ϕ) = 0, (5.11)

with (
1

B

)2

=
9
(
|13κAκv

3
s |+ λAλvsvuvd

)
η2

. (5.12)

The first term in the numerator of the left hand side of eq. (5.12) is dominant when

v2s ≫ vuvd. We set the boundary condition such that ϕ = 2πn/3 at z → −∞ and

ϕ = 2π(n+ 1)/3 at z → +∞ with n = 0, 1, 2. By solving the above field equation with

this boundary condition, the domain wall solution is derived as

ϕ =
2nπ

3
+

4

3
arctan

(
e±

1
B
(z−z0)

)
, (5.13)

where B corresponds to the width of the domain wall. Figure 5.1 shows this solution

for n = 0.

Now, we can estimate the domain wall tension

σ =

∫
dzρwall(z) =

∫
dz

(∣∣∣∣dSdz
∣∣∣∣2 + ∣∣∣∣dH0

u

dz

∣∣∣∣2 + ∣∣∣∣dH0
d

dz

∣∣∣∣2 + V (ϕ)

)

=
16

9

η2

B
.

Thus, we can estimate

σ ≃ 16

3
√
3
v2s
√
κAκvs =

16

3
√
3

µ2

λ2

√
κ

λ
Aκµ, (5.14)

for v2s ≫ vuvd. The size of µ is of the SUSY breaking scale 1. The couplings λ and κ

must be of O(0.1) or less at the electroweak scale such that they do not blow up below

a high energy scale such as the GUT or Planck scale. Thus, the size of σ1/3 would be

of the SUSY breaking scale or larger. Figure 5.2 shows an example of ρDW (z).

1 When µ is much larger than the electroweak scale, we have the fine-tuning problem to derive

the Z-boson mass mZ from m2
Hu

, µ, and m2
Hd

. However, in a certain mediation such as the TeV-scale

mirage mediation contributions due to µ and mH2
d
cancel each other in mZ , and mZ is independent of

µ. Without severe fine-tuning µ can be larger than the electroweak scale, e.g. µ = O(1)TeV (102).
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Figure 5.1: - The phase of scaler field(S(z),Hu(z),Hd(z)) of planer domain wall

solution. Here we take n = 0, z0 = 0, and normalize z-axis by 1/B (eq. (5.12)).
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Figure 5.2: - Spatial configuration of a domain wall energy density for λ = κ =

0.01, Aλ = Aκ = 10 TeV, µ = 1 TeV, tanβ = 10. The z-axis is normalized by 1/B.
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5.2.2 Decaying domain wall by Z3 breaking

Formed domain walls are stretched by the cosmic expansion and smoothed by interac-

tions with particles in the background thermal plasma. The energy density of domain

walls ρDW and its pressure pDW can be read from the averaged energy-momentum

tensor of domain walls. The equation of state of domain walls is given by

pDW =

(
v2 − 2

3

)
ρDW , (5.15)

with v being the averaged velocity of walls (113). The dynamics depend on v. In

one extremal limit, non-relativistic limit or static limit with v = 0, the energy density

behaves

ρDW ∝ a−1, (5.16)

where a(t) is the scale factor of the Universe. Such domain wall network is sometimes

referred to as “frustrated domain wall”. Such a frustrated domain wall dominated

Universe causes acceralating expansion because of w = p/ρ = −2/3 < −1/3. On the

other hand, for v2 ≥ 1/3 where w ≥ −1/3 is realized, the cosmic expansion is not

accelerating.

In fact, the dynamics of domain walls have been investigated and many detailed

numerical simulations show that the dynamics of domain wall network is relaxed at a

late time to the so-called scaling regime, where the typical length scale ξ of the system

stays of the Hubble radius H−1 (114, 115, 116, 117, 118, 119). Then, the energy density

of domain walls also scales as (119)

ρDW ≃ σ

t
. (5.17)

The energy density of domain wall decreases slower than any other “matter” or

radiation in the scaling solution 1. Thus, at some point, the energy density of domain

walls dominates that in the Universe. This is the domain wall problem (107).

Thus, the stable domain wall in the Z3 symmetric NMSSM is problematic (108).

Here, we consider a tiny but explicit breaking of the Z3 discrete symmetry so that

domain walls might have a long lifetime but finally decay. In fact, the decay of domain

1In the static limit v = 0, it is further slower.
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walls after domain wall domination has an interesting cosmological implication, namely

the dilution of unwanted relics by late time entropy production (60).

Few numerical detailed studies on the dynamics of the domain walls network in a

domain wall dominated Universe has been done. Hence, the domain wall dynamics in

a domain wall dominated Universe after its scaling behavior is uncertain. One likely

possibility is that the scale of the system remains of the order of the Hubble radius as

in the scaling regime after domain wall domination too. This can be realized for the

equation of the state w ≃ −1/3. Thus, in most of the following analysis, we assume this.

On the other hand, there is another possibility that the dynamics after the domination

would be frozen as suggested in Ref. (117), where ξ ∝ a(t) and ρ ∝ a(t)−1 are realized

as in the non-relativistic limit. We briefly discuss results for this latter case too.

Before closing this subsection, here we briefly note some examples of the Z3 sym-

metry breaking in the literature for information. In Ref. (90), Panagiotakopoulos and

Tamvakis proposed adding extra symmetries which consistently allows inducing a tiny

enough tadpole term

∆V ∼ 1

(16π2)n
m3

SUSY (S + S∗), (5.18)

where mSUSY is a soft SUSY breaking mass and n is a power of loop inducing this

term, in the scalar potential and the degeneracy of vacua is resolved. Hamaguchi et al

proposed another solution by introducing hidden QCD theory, where the Z3 symmetry

becomes anomalous and is broken by quantum effects (109). In such a minor extension

of Z3 symmetric NMSSM, the domain walls become unstable. Since the size of the

Z3 breaking term is highly model dependent and the main purpose is to study the

cosmological effects of late time domain walls decay, the decay rate of a domain wall

ΓDW , which also parameterize the size of the Z3 symmetry breaking, is treated as a

free parameter. Throughout this paper, in order to connect successful BBN, we take

the domain wall decay temperature Td of a few MeV. We note that the lower bound of

the rehearting temperature by late decay objects is about a few MeV (120, 121, 122).

5.3 Cosmological evolution of unstable domain wall

When doublet and/or singlet Higgs fields develop the VEVs, domain walls are formed.

For the temperature Ti, the initial energy density of domain walls is estimated as

ρDW,i ∼ σHi. (5.19)
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As mentioned above, after certain dynamics, the domain wall network would be

relaxed to be in the scaling solution. In the scaling regime, the energy density of

domain walls is given by

ρDW ≃ σH. (5.20)

On the other hand, several domain walls must be inside the horizon not to lead to the

old inflation and inhomogeneous Universe until its decay. That requires T 4
d > σΓDW ,

i.e.

T 2
d ≳ σ

MP
. (5.21)

This is rewritten as

Td ≳ 1MeV

(
σ1/3

10TeV

)3/2

. (5.22)

5.3.1 Matter-dominated era to domain wall dominated era

The first case we consider is that at the domain wall formation time H−1
i , the Uni-

verse is dominated by the energy density of a matter ρM such as a long-lived coherent

oscillating moduli field. In the scaling solution of the domain wall, the energy density

of domain walls relative to that of the background increases and eventually dominates

the Universe. The domain wall energy density becomes equal to one of the matter at

H−1
eq , which is estimated with eq. (5.20) as

Heq ≃
σ

3M2
P

, (5.23)

where MP is the reduced Planck mass. The condition that domain walls indeed domi-

nate the Universe before those decay is expressed as

Heq > ΓDW . (5.24)

After Heq, the domain walls dominate the energy density.

At the domain wall decay time Γ−1
DW , the ratio of these energy densities is estimated

as

ρM
ρDW

∣∣∣∣
ΓDW

=

(
ΓDW

Heq

)
, (5.25)
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from a ∝ t, where we assume ρDW ∝ a−2 during the domain wall domination between

Heq and ΓDW . After the domain walls decay, the energy density of the matter is diluted

as

ρM
s

=
3Td
4

(
ΓDW

Heq

)
≃ 3Td

4

(
π2g∗(Td)T

4
d

10

M2
P

σ2

)1/2

, (5.26)

for the case that the domain wall decays earlier than the matter does. Here, g∗ is the

number of relativistic degrees of freedom.

5.3.2 Radiation-dominated era to domain wall dominated era

Next, we discuss the case that domain walls are formed in radiation-dominated Uni-

verse. Both energy densities become comparable with each other at

Heq ≃
σ

3M2
P

, (5.27)

since domain walls are in the scaling solution. Assuming ρDW ∝ a−2 during the domain

wall domination, at the domain wall decay time, we have

ρR
ρDW

∣∣∣∣
ΓDW

=

(
ΓDW

Heq

)4

, (5.28)

ρR
s

∣∣∣
ΓDW

=
3Td
4

(
ΓDW

Heq

)4

. (5.29)

Then, the entropy density ratio of after- to before-domain wall decay is given by

∆ =
safter
sbefore

≃ Teq
Td

(
Heq

ΓDW

)
≃
(

10σ2

π2g∗(Td)T
4
dM

2
P

)3/4(
g∗(Td)

g∗(Teq)

)1/4

, (5.30)

for ∆ ≫ 1. We can obtain an entropy production

∆ ≃ 10

(
σ1/3

50TeV

)9/2(
2MeV

Td

)3

. (5.31)

One might think that the tension of about 100 TeV looks somewhat too large.

However, for instance, in the MSSM-like region of the NMSSM with λ ∼ κ ≪ 1 and

vs ≫ v, the domain wall tension

σ ≃ 16

3

√
2

3
κv3s , (5.32)
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can be of such an order with λ ∼ κ ∼ 10−2 and vs ∼ 100 TeV. Those results in the

effective µ term and the singlino mass of about 1 TeV. Figure 5.3 shows the entropy

density ratio of after- to before- domain wall decay for λ = κ = 0.01, Td = 3 MeV. The

ratio increases as µ and Aκ increase.

Such a large late-time entropy production can dilute unwanted relics such as grav-

itino, overproduced LSP as well as the axion.

Figure 5.3: - The entropy density ratio ∆ of after- to before- domain wall

decay in radiation-dominated era to domain wall dominated era for λ = κ = 0.01,

Td = 3 MeV.

5.3.3 Non-relativistc domain wall during the domination

Here, we note resultant quantities if the domain wall energy density scales as a−1 during

the domination.

5.3.3.1 Matter-dominated era to domain wall dominated era

At the domain wall decay time Γ−1
DW , the ratio of these energy densities is estimated as

ρM
ρDW

∣∣∣∣
ΓDW

=

(
ΓDW

Heq

)4

, (5.33)
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from H ∝ a−1/2, where we assume ρDW ∝ a−1 during the domain wall domination

between Heq and ΓDW . After the domain walls decay, the energy density of the matter

is diluted as

ρM
s

=
3Td
4

(
ΓDW

Heq

)4

≃ 3Td
4

(
π2g∗(Td)T

4
d

10

M2
P

σ2

)2

, (5.34)

for the case that the domain wall decays earlier than the matter does.

5.3.3.2 Radiation-dominated era to domain wall dominated era

At the domain wall decay time, we have

ρR
ρDW

∣∣∣∣
ΓDW

=

(
ΓDW

Heq

)6

, (5.35)

ρR
s

∣∣∣
ΓDW

=
3Td
4

(
ΓDW

Heq

)6

. (5.36)

Assuming ρDW ∝ a−1 during the domain wall domination, the entropy density ratio of

after- to before-domain wall decay is given by

∆ =
safter
sbefore

≃ Teq
Td

(
Heq

ΓDW

)4

≃
(

10σ2

π2g∗(Td)T
4
dM

2
P

)9/4(
g∗(Td)

g∗(Teq)

)1/4

, (5.37)

for ∆ ≫ 1. We can obtain an entropy production

∆ ≃ 600

(
σ1/3

50TeV

)27/2(
2MeV

Td

)9

. (5.38)

5.4 Cosmological evolution of unstabled domain wall

In this section, we study implications of the NMSSM domain wall decay to some relics

in several models.

5.4.1 Thermal relic WIMP LSP such as singlino or sneutrino

WIMPs have been regarded as a promising dark matter candidate in our Universe. In

the NMSSM, neutralino is the candidate (77). In a right-handed neutrino extended

model, right-handed sneutrino also becomes a WIMP dark matter candidate (123).
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Since the WIMP thermal relic abundance is inversely proportional to its thermal aver-

aged annihilation cross section ⟨σv⟩ as

ΩWIMPh
2 ≃ 0.1 pb

⟨σv⟩
, (5.39)

too small annihilation cross section leads to overabundant WIMPs. The Singlino- or

Bino-like neutralino, or right-handed sneutrino with small couplings is indeed such a

case. The domain wall decay produces extra entropy with the dilution factor (5.30)

and could regulate the WIMP relic abundance to be

ΩWIMPh
2 1

∆
≃ 0.1, (5.40)

even for a small annihilation cross section ⟨σv⟩ ≪ 1 pb.

5.4.2 The moduli problem in the mirage mediation scenario

Mirage mediation models appear free from the cosmological moduli problem because

a moduli mass is quite large. However, nonthermally produced LSP through a decay

chain by way of gravitino are in fact overabundant. Let us examine whether the domain

wall decay dilutes those LSPs.

Moduli decay before the energy density of domain walls dominates the Universe,

because the moduli decay rate

Γmoduli ≃
m3

moduli

8πM2
P

, (5.41)

is larger than Heq given by eq. (5.23) in the mirage mediation scenario. At H ≃ Γmoduli,

the moduli decay at a moduli dominated Universe produces gravitinos as

Y3/2 =
n3/2

s
= B3/2

3TD
2mmoduli

, (5.42)

with the branching ratio of moduli decay into gravitinos B3/2 = O(0.01)− O(1) (111),

and the Universe becomes radiation dominated. Here TD is the decay temperature of

the moduli field given by

3M2
PΓ

2
moduli =

π2g∗(TD)

30
T 4
D. (5.43)

The entropy density ratio of after- to before-domain wall decay is given by eq. (5.30).

Unstable gravitinos decay into LSP with n3/2 = nLSP due to R-parity conservation.
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Usually, this leads to the overproduction of LSP whose abundance exceeds the dark

matter abundance. After extra entropy production by the domain wall decay, the

resultant final LSP abundance becomes

ρLSP
s

≃ 3mLSPTD
2mmoduli

B3/2

∆
, (5.44)

in other words,

ΩLSPh
2 ≃ 4.2× 108

mLSPTD
mmoduli

B3/2

∆
GeV−1. (5.45)

In figure 5.4, we consider the case that the LSP is the dark matter, and plot ΩLSPh
2 =

0.1 by using (5.45). The input parameters are λ = κ = 0.01, Td = 3 MeV, mLSP =

100 GeV, mmoduli = 1000 TeV.

Figure 5.4: - The required branching ratio contour to keep ΩLSPh
2 = 0.1 in the

mirage mediation scenario for λ = κ = 0.01, Td = 3 MeV, mLSP = 100 GeV,

mmoduli = 1000 TeV. Above each curve, the relic abundance is smaller than

ΩLSPh
2 = 0.1.

5.4.3 The decay constant of the QCD axion

Finally, we comment on the QCD axion, a, with the decay constant fa. After the

QCD transition, axions are produced by coherent oscillation, so-called misalignment

mechanism, and a good candidate for dark matter because its lifetime is much longer
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than the age of the Universe. Its abundance is proportional to f
7/6
a (124). The condition

Ωa ≲ ΩDM is rewritten as

fa ≲ 1012GeV. (5.46)

fa, which is larger than (5.46), corresponds to the overproduction of axions. Again, the

domain wall decay can dilute the axion abundance for such a larger fa (60).

For example, with the dilution (5.30) by the domain wall decay, the bound on fa is

relaxed as

fa ≲ 1016GeV, (5.47)

for σ1/3 = 300 TeV and Td = 2 MeV.

The GUT scale axion decay constant is allowed, which is remarkable. In superstring

theory, the natural decay constant of axionic parts in closed string moduli would be of

the order of the GUT scale or string scale (27) 1. Such stringy axions with larger decay

constant can be the QCD axion.

Further, the dilution of axion implies that, in our scenario, the decay constant of the

QCD axion can be larger like the GUT scale and Planck scale (60). That is important

from the viewpoint of superstring theory because the decay constants of the axions

from closed string moduli are usually as large as the GUT scale or string scale. We

would study such possibility elsewhere.

5.5 Cosmological inmplication for w = −1/3 domain walls

In this section, we study implications of the NMSSM domain wall decay with w = −1/3

for the moduli problem within the gravity mediation scenario.

Now, let us study the dilution of moduli to avoid the moduli problem. After in-

flation, the moduli would start to oscillate and dominate the energy density of the

Universe. They may decay during or after the BBN and change the success of BBN.

In order to avoid such a situation, the energy density of moduli must satisfy

ρmoduli

s
≲ c · 3.6× 10−9GeV, (5.48)

1Even larger decay constants can be obtained in a certain situation (see e.g., Ref. (125)).
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where c ∼ 10−2−10−4 for 10 TeV moduli mass depending on the coupling between the

moduli and the gauge field (126). We use c = 10−3 in the following analysis.

The decay of domain walls can dilute the moduli density, which is given as

ρmoduli

s
≃ 3Td

4

(
π2g∗(Td)T

4
d

10

M2
P

σ2

)2

, (5.49)

as derived in eq. (5.34). It depends on only Td and tension σ, which depends on λ, κ,

Aκ and µ. Imposing the constraint (5.48) on the resultant abundance (5.49), we find

σ1/3 ≳ 220TeV

(
10−3

c

)1/12(
Td

3MeV

)3/4

, (5.50)

where g(Td) = 10 is used.

Figure 5.5 shows the constraints (5.48) with (5.49) for λ = κ = 0.01, Td = 3 MeV.

The shaded region is excluded by the constraint.
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Figure 5.5: - The bound of the moduli abundance in gravity mediation scenario

for λ = κ = 0.01, Td = 3 MeV. The yellow region is allowed in the (µ,Aκ) plane.

5.6 Conclusion and discussion

We have studied the cosmological implication of unstable domain walls in the NMSSM.

The spontaneous breaking of the Z3 discrete symmetry in the NMSSM causes the

cosmological domain wall problem. We consider that the Z3 symmetry is slightly but
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explicitly broken and the domain walls decay with the decay temperature Td. The

domain walls easily dominate the density of the Universe and its decay causes a late-

time entropy production, depending on its tension σ and Td. Such entropy production

has significant implications in thermal history. They can dilute unwanted relics such

as moduli, gravitino, LSP, and axion.

We have shown that Td of several MeV dilute various relics in several scenar-

ios. Those include thermal WIMP LSP in gravity mediation model, nonthermally

produced LSP in mirage mediation and misalignment produced cold axion in Peccei-

Quinn extended models. If the energy density of the domain wall network decreases as

ρDW ∝ a−1 during domain wall domination, cosmological moduli problem in gravity

mediation also might be relaxed.

Note that, again, in order to dilute sufficiently the moduli density, the SUSY break-

ing scale would be several TeV or larger, and the size of µ would be 500 GeV or larger.

Such a large SUSY breaking mass would be enough to realize the 125 GeV Higgs mass.

However, when µ is large like 500 GeV, we need fine-tuning to derive the Z-boson mass

from µ and soft Higgs masses. In the TeV-scale mirage mediation, µ and mHd
are

canceled each other, and severe fine-tuning would not be required (102).
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Affleck-Dine leptogenesis

In this chapter, we propose a model of Affleck-Dine mechanism (64) for the leptogen-

esis which is realized in the supersymmetric standard model with right-handed Dirac

neutrino. In this model, the baryon number can be explained through the leptogenesis

and sphaleron process, and we have pointed out that a sufficient amount of baryon

asymmetry can be generated in our model. We also discuss the amounts of the dark

matter abundance and cosmological consequences.

6.1 Introduction

The origin of the baryon asymmetry is one of the interesting puzzles in our universe

(127), and recently its existence is confirmed from Cocmic Microwave Backgraound

(CMB) data (98). The baryon number asymmetry is given in terms of the ratio of the

baryon density nB to entropy density s of the universe as (128)

nB
s

≃ (8.7± 0.3)× 10−11. (6.1)

In order to generate such an asymmetry of the universe, it is known that three Sakharov’s

conditions should be satisfied (93): violating baryon number, violatineg C and CP, and

dropping out of thermal equilibrium in the early univese.

While several ideas have been proposed to prodused a baryon number by using the

baryon number violation interaction, the leptogensis not only may be attractive and

simple ways to realize the Sakharov’s conditions, but also provides a different mecha-

nism for generating baryon asymmetry. In such a case, instead of baryon asymmetry, a
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6. AFFLECK-DINE LEPTOGENESIS

lepton asymmetry is generated in the early universe by lepton number violation and CP

violation phase produced by right-handed neutrinos. Such a lepton number is partially

converted into a baryon number via sphaleron process at high temperature, and the re-

lation between the lepton number density nL and final baryon asymmetry is expressed

as
nB
s

= csph
nL
s

(6.2)

with csph ∼ −8/23 in the minimal supersymmetric standard moddel (96, 97).

There are lots of attractive baryogenesis scenario in SUSY model. In this study,

we focus on the Affleck-Dine leptogenesis mechanism based on SUSY theories for the

baryogenesis scenario, where the difference of CP phase of the soft SUSY breaking A-

term plays an important role to generate an amount of baryan asymmetry. Since we

know that the heavy right-handed neutrinos also provide an attractive solution of the

origin of the baryon asymmetry by leptogenesis, here, we apply Affleck-Dine mechanism

based on a famous flat direction LHu (129) to our model which develops large values

due to a negative effective mass induced by the right-handed sneutrino condensate

through the Yukawa coupling of the right-handed neutrino. Also, we utilize the D-flat

directions, and consider the thermal collection with the F- and D-term scalar potential

which induces a negative effective mass given by the right-handed sneutrino condensate.

Due to the negative Hubble mass square of a right-handed sneutrino, minima of the

potential of the right-handed sneutrino largely deviates from the origin. We will see its

details in the following sections.

The remaining parts are organized as follows. In section 6.2, we address the model

and the flat direction considered here. In section 6.3, we estimate the baryon number

asymmetry generated through the evolution of this flat direction in our framework, and

we consider the cosmological implications in section 6.4. At last, We summarized this

study in section 6.5.

6.2 Model

6.2.1 Potential

Hereafter, we study a concrete leptogenesis scenario, which greatly depends on the

form of the neutrino sector. In our model, we assume the lepton asymmetry is pro-

duced through the A-term of the sneutrino Yukawa term by Affleck-Dine mechanism,
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surveying the minimum of supergravity arose from effective potential during inflation

and after inflaton slow-roll down to its global minimum if there exists negative Hubble

induced masses for left and right sneutrinos.

We extend the minimal supersymmetric standard model (MSSM) with including

right-handed Dirac neutrinos, N 1. This model is described by generic MSSM super-

potential plus ordinary MSSM sector, then the relevant superpotential is given by

W =WMSSM + yL ·HuN (6.3)

where L, Hu are the lepton doublet, and up-type Higgs doublet superfields respectively,

and the dot stands for SU(2) anti-symmetric product. Observed small neutrino masses

are due to quite small Yukawa couplings, y ∼ O(10−13).

The scalar potential in supergravity is expressed as

V = eK
(
Wi(K

−1)ijW
j − 3|W |2

)
+D – terms, (6.4)

withWi = ∂ΦiW+WKi, Ki = ∂ΦiK, whereK is the Kahler potential and (K−1)ij is the

inverse of the Kahler metric matrix ∂2
ΦiΦ̄jK. The LHu D-flat direction is parameterized

by a complex scalar field ϕ as

L̃ =
1√
2

(
ϕ
0

)
, Hu =

1√
2

(
0
ϕ

)
, (6.5)

where L̃, Hu are the scalar component of each superfields. Both LHu flat direction ϕ

and right-handed sneutrino Ñ are slightly lifted by soft SUSY breaking terms

Vsoft = m2
ϕ |ϕ|

2 +m2
N|Ñ |2 +

(
yANϕ

2Ñ + c.c.
)
. (6.6)

Although in addition, there are neutrino Yukawa y suppressed F-term potential

VF-term ⊃ |y|2
(
|ϕ|2|Ñ |2 + 1

4
|ϕ|4

)
, (6.7)

those terms are negligible in the effective scalar potential.

During and after the inflation, the energy density of the universe is dominated by

inflaton field I. Through supergravity interaction with supersymmetry breakingWI by

1we take the convention such that N = Ñ +
√
2θN† + θθFN .
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its inflaton energy, the fields ϕ and Ñ acquire effective terms of the order of Hubble

parameter as

Vinf = H2
(
−cH1|I|2|ϕ|2 − cH2|Ñ |2 + cH3|ϕ|4 + cH3|Ñ |4 + · · ·

)
+H

(
cAyϕ

2Ñ + c.c.
)
,

(6.8)

where H is the Hubble parameter at a giving time, ellipsis denote higher order terms,

cH1,2,3,4 are order unity real positive constants, and cA is an order unity complex

positive constant. Those terms generically arise from interaction terms in non-minimal

Kahler potential couplings with an inflaton field I as

K = |I|2 + |ϕ|2 + |Ñ |2 + c1|I|2|ϕ|2 + c2|I|2|Ñ |2 + · · · . (6.9)

A negative Hubble mass term with positive cH1,2 ∼ O(1) to work the Affleck-Dine

leptogenesis successfully is realized for cH1,2 ≳ 1 as we will assume. Note that we do

not concern about specific inflation models.

In addition, after inflation, the field ϕ and Ñ recive the effects of thermal collections

to the scalar potential for two-loop effects

Vthermal =
∑

fi|ϕ|<T

cif
2
i T

2|ϕ|2 +
∑

fi|ϕ|>T

athα
2
s(T )T

4 ln

(
|ϕ|2

T 2

)
, (6.10)

with T being the temperature of the thermal bath. The first term is a thermal-mass

term induced by one-loop correction to the potential of light particles in the thermal

bath. fi denotes coupling constants of interaction between ϕ and particles. ci are

determined by the degree of freedom of these particles. The second thermal logarithmic

term appears in two-loops level. αs is strong coupling constant and ath is estimated as

ath ≃ 0.47T (Ri), where T (Ri) = 1/2 for the fundamental representation. Before the

reheating completed, the temperature changes as

T ∼
(
HT 2

RMp

)1/4
, (6.11)

where TR is the reheating temperature after inflation.

Following the discussion, after the inflation, the relevant full effective scalar poten-
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tial is given by 1

Veff ≃ m2
ϕ |ϕ|

2 +m2
N|Ñ |2 +

(
yANϕ

2Ñ + c.c.
)

−cH1H
2 |ϕ|2 − cH2H

2|Ñ |2 + T 4 ln

(
|ϕ|2

T 2

)
+ · · · . (6.12)

Then, we will examine the dynamics of this effective potential in section 6.3.

6.2.2 Asymmetric number density

The asymmetric under densities of lepton asymmetry carried by ϕ and Ñ are respec-

tively given by

n∆φ = iqφ

(
ϕ̇∗ϕ− ϕ∗ϕ̇

)
. (6.13)

Here, φ is ϕ and Ñ with those charges qϕ = 1/2, qÑ = −1. Integrating the equation

for the evolutikon of the asymmetry,

ṅ∆φ + 3Hn∆φ = 2qφ Im

(
∂V

∂φ
φ

)
(6.14)

obtained from eq.(6.13) and equation of motion:φ̈+ 3Hφ̇+ Vφ∗ = 0, we obtain

n∆φ =
1

a(t)3

∫ t

φosc
2qφ a(t

′)3Im

(
∂V

∂φ
φ

)
dt′, (6.15)

where the lower limit of integration φosc is the time when each φ field starts to oscillate.

The lepton number asymmetry n∆φ can be generated as since Hosc,ϕ ≤ Hosc,N, the

produced lepton number density n∆ϕ would be diluted and be negligible compared to

n∆N as the universe evolves. Then, we will focus on only the non-vanishing vev of Ñ

which produces the lepton number asymmetry mainly.

6.3 Affleck-Dine leptogenesis from right-handed sneutrino

decay

6.3.1 Initial conditions

During and soon after the inflation ends, the AD-fields ϕ and Ñ are settled in the

minimum of the potential eq.(6.8) because the energy density of inflation denominates

1Besides, we could also obtain the F-term scalar potential VF from eq.(6.3). However, in our model

we assume dirac Yukawa coupling is very small, therefore we will neglect such the contribution to the

effective scalar potential.
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the universe. By solving stationary condition for the potential eq.(6.8), we find that ϕ

and Ñ are stabilized with non-vanishing expectation values as

ϕ ≃ Ñ ≃Mp, (6.16)

due to the negative Hubble mass terms with order unity positive ci.

6.3.2 Evolution of AD fields

After inflation, the energy density of the universe is dominated by that of coherent

oscillating inflation. In oscillating inflation dominated universe, the Hubble parameter

decreases as H = 2/(3t). When the negative Hubble induced mass terms becomes

small and negligible in the effective potential, ϕ and Ñ start oscillation with the initial

amplitude, eq.(6.16).

Once the negative Hubble mass terms are negligible, firstly the field ϕ will start to

oscillate due to the thermal log terms: V ∼ T 4 ln
(
|ϕ|2/T 2

)
. Then, Hosc,ϕ is estimated

as H2
osc,ϕ ∼ T 4/|ϕ|2, by using eq.(6.11), which can be rewritten as

Hosc,ϕ ≃
T 2
R

Mp

(
Mp

ϕ

)
. (6.17)

This value of Hubble parameter is the same as one at the time of the reheating HR ≃
T 2
R/Mp. We find that for Planckian initial values eq.(6.16) ϕ starts oscilate when the

reheating after inflation is completed. During ϕ oscillates by thermal log term after the

reheating by inflaton decay, we find that, by cosmic virial theorem, the amplitude of ϕ

scales as |ϕ|2 ∝ 1/a(t)2. Then, the amplitude of ϕ can be parameterized as

|ϕ|2 ≃M2
p

H

HR
≃M3

p

H

T 2
R

, (6.18)

under the radiation dominated universe where we used eq.(6.16) and Hosc,ϕ ≃ HR ≃
T 2
R/Mp.

After that, the field Ñ will starts roll down to the origin secondly. In this case,

Hosc,Ñ is estimated as soft mass SUSY breaking term V ≃ m2
Ñ
|Ñ |2, hence, we can

roughly estimate as

Hosc,Ñ ≃ mÑ . (6.19)
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The amplitude of ϕ and the temperature of radiation at this moment are estimated

respectively as

|ϕ|2
∣∣
Hosc,Ñ≃mÑ

≃
M2

p

T 2
R

MpmÑ , (6.20)

T 2
∣∣
Hosc,Ñ≃Mp

≃MpmÑ . (6.21)

When Ñ starts to oscillate, the lepton number is generated through the AD mechanism,

which is determined by the soft A-term SUSY breaking terms.

During Ñ oscillates, the effective mass matrix for the ϕ and Ñ is given as

(
ϕ Ñ∗)( m2

ϕ + f2T 2 + aα2 T 4

ϕ2 yAϕ

y∗A∗ϕ∗ mÑ

)(
ϕ∗

Ñ

)
. (6.22)

Due to a large value of ϕ, even with a small y, the mixing between ϕ and Ñ ,

mixing ≃ yAϕ

m2
ϕ + aα2 T 4

ϕ2

, (6.23)

can be large and even become of the order of unity. Thus, both ϕ and Ñ decay through

gauge interactions with decay rate. The decay rate of Ñ is estimated as

Γ ≃ 1

4π
g22mÑ × (mixing)2. (6.24)

6.3.3 Lepton and baryon asymmetry

In this section, we evaluate the lepton number asymmetry generated through the

Affleck-Dine mechanism with soft A-term SUSY breaking terms. Now, we can es-

timate the evolution of n∆Ñ from eq.(6.14). The lepton number would fix when the

AD-field Ñ starts to oscillate atHosc,N ∼ mÑ . With eqs.(6.19) and (6.20), this equation

is solved as

n∆Ñ

∣∣
osc

∼ qÑ
yAM4

p

T 2
R

δeff , (6.25)

where δeff ∼ sin
(
θÑ + 2θϕ

)
is the effective CP phese.

It is straightforward to estimate the lepton asymmetry, but in our scenario, so far

n∆Ñ might be quite large at this rate. In order to reproduce the precise baryon number

to explain the successful BBN, we need that a late time entropy production could dilute
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over abundant baryon asymmetry. One of the promising candidates of such an entropy

production is saxion field σ (130). The decay width Γσ is given by

Γσ ≃ 3α2
s

64π3
m3

σ

F 2
a

(6.26)

wheremσ is the saxion mass and Fa is the axion decay constant. Further, for simplicity,

we assume mϕ ≃ mÑ ≃ mσ. After the moduli decay at the time Γ−1
σ , the baryon

number density is diluted as

nB
s

∼ csph
n∆N

s

∣∣∣
Γ−1
σ

∼ δeff
yANMpTσ

m3
Ñ

∼ 6× 10−11

(
δeff
0.01

)( y

10−13

)( AN

100 GeV

)( mÑ

50 TeV

)−3
(

Tσ
1 GeV

)
,(6.27)

where we utilize csph ≃ 8/23. Therefore, sufficient baryon number asymmetry could be

reproduced in our model.

Generally, we can usually takeHosc,ϕ ≤ Hosc,Ñ. As a result, the left-right asymmetry

could be generated by such the difference. In this section, we will calculate the total

lepton number focusing on only the right-handed sneutrino which produces the lepton

number density by its decaying through the sphaleron process.

6.4 Cosmological implication

Since we have introduced the saxion to suppress overabundant baryon asymmetry, the

abundance of saxion σ decays could be the candidate of the dark matter. Hence, we

have to care that it is likely to overclose our universe. Here, we discuss one of the

possible scenarios.

After the saxion decayed, the dark matter produced by the decays of σ remains

being satisfy nDM ≃ nσBrDM, where BrDM is the branching ratio from saxion to

dark matter. If the freeze-out temperature of dark matter would be smaller than the

reheating temperature and consequently the dark matter yield is determined by the

non-thermal process of the saxion decay,

ρDM

s
≃ mDM

mσ
TσBrDM ≃ TσBrDM, (6.28)
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where s is the entropy density of the universe. With this relation, we can estimate the

relic abundance of dark matter using the ratio of the critical density to the current

entropy density of the universe ρ/s0 ≃ 3.6h2 × 10−9,

ΩDMh
2 ≃ mDM

nDM

s

s0
ρ

≃ 10−8 ×
(

Tσ
1 GeV

)(
BrDM

1

)
, (6.29)

with h being the dimensionless Hubble parameter. It suggests the relic abundance of

dark matter are negligible for our universe.

6.5 Conclusion

Let us summarize our study briefly here. We have proposed an Affleck-Dine mechanism

for the leptogenesis which is realized in the supersymmetric standard model with right-

handed Dirac neutrino model. In our scenario, right-handed sneutrino Ñ and LHu flat

direction ϕ play an important in the Affleck-Dine mechanism with soft A-term SUSY

breaking terms, where we identified these fields as the AD fields. After the AD fields

trapped at the effective potential minimums, then finally AD fields roll down to the

origin by decreasing magnitude of Hubble masses, which means that oscillation time

of AD fields is generally different. Hence, the left-right asymmetry is generated, and

we have calculated the total lepton number asymmetry focusing on only the right-

handed sneutrino. If the right-handed sneutino decays in the early universe before the

spharelon process occurs, it is found that the lepton number density is generated quite

large. In order to prevent such overabundant lepton asymmetry, we showed that in

particular, the saxion could do work well to reproduce the precise baryon asymmetry.

Unfortunately, we do not show the cosmological implication detail so far. We think this

treatment is not enough to investigate, and our future work on this model discussed here

will involve understanding the comprehensive new framework on which the cosmological

implications are also studied.
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It is our dearest wish to understand the precise connection of the Planck scale to the

electroweak scale that we have verified by experiments so far. Toward such our ultimate

goal which is to build a model (theory) which explains everything, through this thesis,

we stick to pragmatic models on about the cosmology, and we attempt to propose some

of the inflation models and solution to the cosmological problems in the viewpoints of

supersymmetry phenomenology, selectively. We hope that our study opens the window

to new physics beyond the standard model, even deeper level of more fundamental

physics.

In this thesis, we have proposed some extended models roughly including key in-

gredients for the construction of new comprehensive physics. This thesis is separated

into two non-over-lapping parts: “inflation part” and “supersymmetry and cosmology

part”.

In chapter 3, we have studied the axion inflation model proposed recently within

the framework of type IIB superstring theory with a particular emphasis on the sub-

Planckian axion decay constant, 0.01 ≲ f ≲ 1.0. Such an axion potential consists

of the mixture of polynomial functions and sinusoidal functions with the periodicity

ϕ ∼ ϕ + 2π/f , represented as V (ϕm, cos(ϕ/f), sin(ϕ/f)). For a small decay constant

f ≪ 1, such a potential can have many bumps, and the small field inflation can be

realized on one of the plateaus. As a result, we have found that in such a model,

the inflation energy scale and Hubble parameter could have the power law dependence

on f and hence become rapidly small as f becomes small. We expect our concrete

examples discussed in our paper can capture the generic features for a wider class of
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axion inflation consisting of the sinusoidal and polynomial terms with a sub-Planckian

axion decay constant. Confirming such a generalization of our study is quite fascinating,

and we have tried to present the analysis extending our studies here for a wider class

of axion inflation models which can be explicitly derived from superstring theory.

Then, we also have discussed the general class of small-field axion inflation which

is the mixture of polynomial and sinusoidal functions with an emphasis on the small

axion decay constant, and finally found that the cosmological observables are written

in terms of the axion decay constants in a systematic way. More detailed studies would

be of great interest where we combine concrete mechanism for the moduli stabiliza-

tion/uplifting, fix the mass scale of light moduli, choose a candidate for dark matter,

and embed the QCD axion in superstring theory.

Further, we have studied a new type of moduli potential which is related to its

stabilization. The result is that it is possible if some parameters are tuned even in the

case for adding the p-lifting terms. Also, in this model, one of the light axions could

derive the cosmological inflation if a proper potential is generated, as it is understood

so far. Such axion phenomenology would be studied elsewhere.

Now, the idea that supersymmetry has something to do with not only inflation

theory, but also possibly make a connection to the cosmological aspects, especially

including the domain wall problems in the NMSSM and baryogenesis (leptogenesis)

discussed in this thesis. After we remark on some aspects of cosmology in the context

of Supersymmetry field theory, we have proposed our fascinating models in chapter 5

and chapter 6.

First, we have studied the cosmological implication of unstable domain walls in

the NMSSM. We consider that the Z3 symmetry is slight, but explicitly broken and

the domain walls decay with the decay temperature. Such entropy production has

significant implications in thermal history, they can dilute unwanted relics such as

moduli, gravitino, LSP, and axion. We have pointed out that the decay temperature

of several MeV dilutes various relics in several scenarios. If the energy density of the

domain wall network decreases as ρDW ∝ a−1 during the domain wall domination,

cosmological moduli problem in gravity mediation also might be relaxed.

Moreover, we have proposed an Affleck-Dine mechanism for the leptogenesis which

is realized in the supersymmetric standard model with right-handed Dirac neutrino

model. In our scenario, right-handed sneutrino Ñ and LHu flat direction ϕ play an
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important role in the Affleck-Dine mechanism with soft A-term SUSY breaking terms,

where we identified these fields as the AD fields. Then, the left-right asymmetry is

generated, and we have calculated the total lepton number asymmetry focusing on only

the right-handed sneutrino. We have pointed out that a sufficient amount of baryon

asymmetry can be generated in our model. In order to prevent such the overabundant

lepton asymmetry, we showed that in particular, the saxion could do work well to

reproduce the precise baryon asymmetry.

The supersymmetry has something to do with the ideas of extension of the stan-

dard model, and possibly make a connection to other aspects of cosmology, including

inflation model and baryogenesis (leptogenesis). We hope that supersymmetry would

be experimentally verified in the future, and the discovery would become the beginning

of the current understanding theories in high energy physics.
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Appendix A

Conventions and notations

A.1 Conventions

First, let us define the general notation. Throughout this thesis, we employ natural

units with ℏ = c = 1. Further, the reduced Plank mass,

M−2
p ≡ 8πG =

(
2.4× 1018GeV

)−2
, (A.1)

is often set equal to one.

Our metric signature is (+, −, −, −). We use t for physical time and overdots stand

for derivatives with respect to physical time t. We also denote four-dimensinal space-

time coordinates by xµ, where µ runs 0, · · · , 3, while for three-dimensinal components

we use index i = 1, 2, 3.

A.2 Notations of supersymmetry

The Pauli matrices are

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.2)

and by using above Pauli matrices, gamma matrices are defined as

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 ≡ iγ0γ1γ2γ3 =

(
1 0
0 −1

)
. (A.3)

Note that we can find σ0 = σ̄0 and σ1,2,3 = −σ̄1,2,3.
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A. CONVENTIONS AND NOTATIONS

Depending on the van der Waerden notation, we define two-component spinors as

ξα expressed with undotted indices, while with dotted indices like η̄α̇ to distinguish the

transformation properties or left-right chirality. We contract spinor indices put in the

form as
α

α , or α̇
α̇ (A.4)

Namely,

ξ · η ≡ ξαηα = −ξαηα = ηαξα = η · ξ (A.5)

and also

ξ̄ · η̄ ≡ η̄ · ξ̄ (A.6)

in the same way. Here, the spinor indices are raised and lowered by using the asym-

metric tensor, defined as

(iσ2)αβ ≡ ϵαβ, (iσ2)αβ ≡ ϵαβ, (iσ2)α̇β̇ ≡ ϵα̇β̇, (iσ2)α̇β̇ ≡ ϵα̇β̇, (A.7)

and leading following forms,

ϵ12 = ϵ1̇2̇ = 1, ϵ12 = ϵ1̇2̇ = −1, ϵ21 = ϵ2̇1̇ = −1, ϵ21 = ϵ2̇1̇ = 1. (A.8)

We close this section with defining the four-component Dirac spinors ψD and Ma-

jonara fermions ψM , which are written as following, respectively

ψD =

(
ηα
ξ̄α̇

)
, ψM =

(
ηα
η̄α̇

)
. (A.9)
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Appendix B

Moduli stabilization and

radiative corrections

Here we mention about a new type of moduli stabilization scenario where the super-

symmetric and supersymmetry-breaking minima are degenerate at the leading level.

The inclusion of the loop-corrections originating from the matter fields resolves this de-

generacy of vacua. One of the moduli could derive the cosmological inflation if a proper

potential is generated. Such moduli phenomenology would be studied in chapter 3.

This content depends on our works Refs. (f) and (g).

B.1 Outlook

The superstring theory predicts six-dimensional compact space in addition to four-

dimensional space-time. The size and shape of the 6D compact space are determined by

moduli. Thus, moduli are a characteristic feature in the superstring theory on compact

space. Indeed, moduli fields play important roles in the superstring theory and its four-

dimensional low-energy effective field theory, in particular in particle phenomenology

and cosmology. (See for a review, e.g. Refs. (52, 66).) Studies on physics relevant to

moduli would provide a remnant of the superstring theory on compact space.

Gauge couplings, Yukawa couplings and other couplings in the 4D low-energy ef-

fective field theory are given by vacuum expectation values (VEVs) of moduli fields.

In the phenomenological point of view, the spectrum of supersymmetric particles is
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B. MODULI STABILIZATION AND RADIATIVE CORRECTIONS

sensitive to the supersymmetry (SUSY) breaking of moduli fields through the gravi-

tational interactions between the moduli fields and matter fields (103, 131, 132, 133).

This aspect would be relevant to dark matter physics, since the lightest superpartner

is a candidate of dark matter. Moreover, the thermal history of the Universe highly

depends on the dynamics of moduli fields as well as axion fields, which are the imag-

inary parts of moduli fields. From the theoretical point of view, these moduli fields

are originating from the vector and tensor fields in low-energy effective action of the

superstring theory as well as the higher-dimensional supergravity. The stabilization of

the moduli field is one of the most important issues to realize a consistent low-energy

effective action of the superstring theory.

The moduli potential is prohibited by the higher-dimensional gauge and Lorentz

symmetries at the perturbative level. On the other hand, the nontrivial background

fields and nonperturbative effects generate the moduli potential. Then, one can stabilize

the moduli fields and also study the dynamics relevant to moduli fields. The vacuum

structure of the moduli potential is of particular importance. For example, the flat

direction of the moduli potential can drive cosmological inflation 1 and the lifetime of

our Universe depends on the (meta)stability of the vacuum.

So far, there are several mechanisms to stabilize the moduli, in particular, closed

string moduli fields, e.g., the Kachru-Kallosh-Linde-Trivedi (KKLT) scenario (44) and

the LARGE volume scenario (50). (See, e.g., Ref. (66) and references therein.) In

this paper, we propose a new type of moduli stabilization scenario by using the string-

derived N = 1 four-dimensional supergravity action. We find that the supersymmetric

and SUSY-breaking vacua are degenerate at the tree level and they are independent of

the F term of certain moduli fields. The loop effects originating from the matter fields

generate the moduli potential and resolve this degeneracy of vacua.

B.2 Complex structure moduli

In sections B.2 and B.3, we consider two illustrative supergravity models where the

moduli fields correspond to the complex structure modulus and Kähler modulus within

the framework of the type IIB superstring theory. In both scenarios, we show that the

1See for the detail of moduli inflations as well as axion inflations, e.g. Ref. (12).
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B.2 Complex structure moduli

supersymmetric and SUSY-breaking vacua are degenerate at the leading level. The

inclusion of the one-loop corrections from the matter fields resolves this degeneracy.

In the type IIB superstring theory on the Calabi-Yau (CY) orientifold, the Kähler

potential of moduli fields is described by

K = − ln

(
i

∫
CY

Ω ∧ Ω̄

)
− ln(S + S̄)− 2 lnV, (B.1)

where Ω(Um) is the holomorphic three-form of the CY manifold and V(Ti) is the volume

of the CY manifold. Here, S, Um and Ti denote the dilaton, complex structure moduli

and Kähler moduli, respectively.

The three-form flux can induce the superpotential (42)

Wflux =

∫
CY

G3 ∧ Ω, (B.2)

where G3 = F3 − iSH3 is an imaginary self-dual three-form. Also nonperturbative

effects such as D-brane instantons and gaugino condensations can generate the super-

potential of S and Ti, e.g.,

Wnp =
∑
p

A(p)(Um)e−a(p)S−a
(p)
i Ti , (B.3)

where A(p)(Um) represent the Um-dependent one-loop corrections and a(p) and a
(p)
i are

the numerical constants.

B.2.1 The degenerate scalar potential

First, let us consider the following Kähler potential and superpotential based on the

four-dimensional N = 1 supergravity:

K = −3 ln(U + Ū), W = C0 + C1U, (B.4)

where C0,1 are the complex constants. In the type IIB superstring theory on the CY

orientifold, the modulus field U could be identified with one of the complex structure

moduli of the CY manifold. We now assume that the other complex structure moduli

and dilaton are stabilized at the minimum by the three-form fluxes (43). When the

parameters C0,1 are determined only by the three-form fluxes as well as VEVs of the

other complex structure moduli, these would be of O(1). On the other hand, when the

above superpotential appears from the instanton effects, C0,1 are characterized as e−aT ,
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B. MODULI STABILIZATION AND RADIATIVE CORRECTIONS

with T being a certain Kähler modulus of the CY manifold, and could be suppressed.

In the following analysis, we treat C0,1 as complex constants by further assuming that

all the Kähler moduli are stabilized at the minimum by the other nonperturbative

effects. When C0,1 are of the order of unity, it is a challenging issue to stabilize the

Kähler modulus at the scale above the mass of U . Conversely, when both C0,1 are

exponentially suppressed, one can achieve the above assumption as shown later. In the

following, we use the parametrization as C1 = w0 and C0/C1 = C.

To see the degenerate supersymmetric and SUSY-breaking vacua, we calculate the

scalar potential in the notation of U = UR + iUI and C = CR + iCI ,

V = eK
(
KUŪ |DUW |2 − 3|W |2

)
= −|w0|2

6U2
R

(3CR + 2UR), (B.5)

where KUŪ is the inverse of Kähler metric KUŪ = ∂U∂ŪK and

DUW = w0

(
−3

C + U

U + Ū
+ 1

)
. (B.6)

As a result, the scalar potential eq. (B.5) remains flat in the direction of UI . On the

other hand, from the extremal condition of UR,

∂V

∂UR
=

|w0|2

6U3
R

(6CR + 2UR) = 0, (B.7)

UR is stabilized at the minimum

UR,min = −3CR, (B.8)

where CR should be negative to justify our low-energy effective action. Note that |CR|
is typically of the order of unity in both scenarios: C0,1 ≃ O(1) and C0,1 ≃ O(e−aT ).

If |CR| is smaller than unity, the moduli space of U deviates from the large complex

structure regime and our discussing logarithmic the Kähler potential is not reliable. It

turns out that the mass squared of canonically normalized UR,

KUŪ

2

∂2V

∂U2
R

=
2U2

R,min

3

|w0|2

3U3
R,min

=
2|w0|2

9UR,min
, (B.9)

is positive and the vacuum energy,

V = − |w0|2

6UR,min
, (B.10)
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B.2 Complex structure moduli

is negative at this minimum. Note that the mass squared of canonically normalized

UR at this vacuum is taken smaller than the other moduli fields, in particular, the

Kähler moduli. For example, when we consider the nonperturbative superpotential for

the Kähler moduli irrelevant to our focus U , the Kähler moduli can be stabilized at

certain minima by them and the mass squared of the overall Kähler modulus is given

by O((2πRe(T ))2|w0|2) for the KKLT scenario.

Although the vacuum energy is independent of UI , the F -term of the modulus U

depends on UI ,

F = −eK/2KUŪDŪW̄ , (B.11)

where

Re(DUW ) = 0, Im(DUW ) = w0

(
−3(CI + UI)

2UR,min

)
. (B.12)

Thus, we find that the SUSY is preserved at CI+UI = 0 and broken at CI+UI ̸= 0, re-

spectively. From the fact that the scalar potential is independent of UI , supersymmetric

and SUSY-breaking vacua are degenerate.

B.2.2 Loop corrections

The analysis in section B.2.1 shows that the vacuum energy is negative, V < 0, and

at the same time, the scalar potential remains flat in the direction of UI . First, we

introduce the uplifting sector to obtain the tiny cosmological constant. In particular,

we assume that the U -independent potential induced by the anti-D-branes uplifts the

anti-de Sitter vacuum to the Minkowski one such as the KKLT scenario 1. Next, the

nonvanishing F term of U gives rise to the soft terms of matter fields. These massive

supersymmetric particles induce the UI -dependent scalar potential through one-loop

corrections (135):

∆V = Str
M4

64π2
ln
[
M2/Λ2

]
. (B.13)

In the following analysis, we illustrate how we can stabilize UI by one-loop effects.

For such a purpose, we focus on the situation that the gauginos and supersymmetric

scalar fields contribute to the one-loop corrections. The gaugino masses are provided

by

Ma =
1

2

∂ ln fa
∂ lnΦI

F I , (B.14)

1Uplifting by spontaneous F -term SUSY breaking is also possible (45, 134). Even in that case, the

UI direction would remain flat.
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B. MODULI STABILIZATION AND RADIATIVE CORRECTIONS

where fa(Φ
I) with a = U(1)Y , SU(2)L, SU(3)C representing the gauge kinetic functions

for the standard model gauge groups, respectively. On the other hand, the soft scalar

masses are given by

m2
i =

2

3
V0 − ∂I∂ĪYīi|F I |2 + (D–term), (B.15)

where

Yīi = e−K/3Zīi, (B.16)

with Zīi being the Kähler metric of the matter fields.

To simplify our illustrating analysis, we assume that the typical soft scalar mass

and gaugino mass mainly contribute to the one-loop potential. Then, those are char-

acterized as

M = kfF, m2 = m2
0 − km|F |2, (B.17)

where kf and km are real constants and m2
0 denotes the soft scalar mass induced by

the U -independent F -term contributions. The gaugino mass may also have another

contribution such as M = kfF +M0. Even in such a case, the following discussion

is similar. For a simple illustration, we restrict ourselves to the above spectrum of

superpartners.

By rescaling the F term of U , one can set km = 1, and the corresponding one-loop

potential can be written by

64π2∆V = a1(c
2 − |F |2)2 ln(c2 − |F |2)− a2F

4 ln(a3|F |2) + V0, (B.18)

where c2 = m2
0/km, a3 = kf/km and a1,2 correspond to the multiplicities of the scalars

and gauginos, respectively. Now, we include the constant V0 coming from the F terms

of Kähler moduli and anti-D-brane effects to achieve the tiny cosmological constant

at the vacuum. By using ∆Ṽ = 64π2∆V/a2, a0 = a1/a2, and Ṽ0 = V0/a2, the above

scalar potential is simplified as

∆Ṽ = a0(c
2 − |F |2)2 ln(c2 − |F |2)− F 4 ln(a3|F |2) + Ṽ0. (B.19)

The first derivative of the one-loop potential with respect to |F | is given by

∆Ṽ ′ = −2|F |
[
2|F |2 ln(a3|F |2) + |F |2 + a0(c

2 − |F |2) + 2a0(c
2 − |F |2) ln(c2 − |F |2)

]
,

(B.20)
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B.2 Complex structure moduli

from which there are two possible minima leading to |F | = 0 and |F | ̸= 0. To see the

nonvanishing F , we draw the one-loop scalar potential as a function of |F | by setting

the following illustrative parameters:

a0 = 1(−1), a3 = 0.1, c = 1.2(0.2), Ṽ0 ≃ −0.474(−0.00375), (B.21)

on the left (right) panel in Figs. B.1 and B.2

a0 = −1, a3 = 0.1, c = 10−5, Ṽ0 ≃ −1.24× 10−19, (B.22)

in Fig. B.3. It turns out that the nonvanishing of |F | depends on the sign of a0 and

the value of c.
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Figure B.1: - The one-loop scalar potential as a function of |F |. The parameters

are set as a0 = 1, a3 = 0.1, c = 1.2
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Figure B.2: - The one-loop scalar potential as a function of |F |. The parameters

are set as a0 = −1, a3 = 0.1, c = 0.2
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Figure B.3: - The one-loop scalar potential as a function of |F | in the case of

small c. The parameters are taken as a0 = −1, a3 = 0.1, c = 10−5.

To discuss the vacuum structure of the one-loop scalar potential, we analytically

derive the condition of vanishing |F |. From the second derivative of the one-loop

potential with respect to |F |

∆Ṽ ′′ = −2
(
a0c

2 − 7(a0 − 1)|F |2 + 6F 2 ln(a3|F |2) + 2a0(c
2 − 3|F |2) ln(c2 − |F |2)

)
,

(B.23)

∆Ṽ ′′ becomes negative at the origin |F | = 0 for

−2
(
a0c

2 + 2a0c
2 ln c2

)
< 0. (B.24)

It implies that when a0 > 0 and

c >
1

e1/4
≃ 0.78, (B.25)

the minimum of |F | is taken as O(1) because of the instability at |F | = 0. However, we

assume that the other moduli fields are decoupled from our system and such a high-

scale SUSY breaking is not reliable. Thus, when a0 > 0, supersymmetric minimum

|F | = 0 is favorable. In this case, the soft terms are determined by F terms of the

Kähler moduli. Such a vanishing F term of U is also interesting from the aspects of

the flavor structure of the matter fields. Indeed, Yukawa couplings among the standard

model particles depend on the complex structure moduli through the compactification

of an extra dimension as derived in the type IIB superstring theory with magnetized

D-branes (53). Thus, a sizable F term of a complex structure modulus is dangerous for

the flavor-changing processes among the supersymmetric particles, which are severely

constrained in the low-scale SUSY-breaking scenario.

124



B.3 Kähler moduli

Finally, we discuss the possibility of nonvanishing F by adding the nonperturbative

effects of U into the one-loop scalar potential. The nonperturbative effects of U are

expected to appear through e.g. the gaugino condensation on hidden D-branes where

the gauge kinetic function involves the U -dependent one-loop corrections (51). Since

the real part of U is already stabilized by the superpotential in eq. (B.4), the potential

of UI can be extracted as

Λ4 cos(UI/f + θ0), (B.26)

where f is the typical decay constant and θ0 is a real constant. In the following, we set

CI = 0 for simplicity. Then, the F term of U ,

|FU | = eK/2KUŪ |DUW | = 9W0UI , (B.27)

leads to the following total scalar potential:

V =
1

64π2

[
a1(c

2 − |F |2)2 ln(c2 − |F |2)− a2|F |4 ln(a3|F |2)
]
+Λ4 cos

(
|F |

9W0f

)
+ V1.

(B.28)

Here, the constant V1 is inserted to realize the tiny cosmological constant at the vacuum

in a way similar to the previous scenario. By rescaling the parameters as

Ṽ ≡ 64π2V/a2, a0 ≡ a1/a2, Λ̃ ≡ Λ(64π2/a2)
1/4, a4 ≡ 9W0f, Ṽ1 ≡ V1(64π

2/a2),
(B.29)

we analyze the following potential

Ṽ = a0(c
2 − |F |2)2 ln(c2 − |F |2)− F 4 ln(a3|F |2) + Λ̃4 cos

(
|F |
a4

)
+ Ṽ1. (B.30)

Figure B.4 and figure B.5 shows that the nonvanishing |F | is achieved even when a0 is

positive. Since the origin of c and Λ̃ are the nonperturbative effects, one can realize

the low-scale SUSY-breaking scenario in this model.

We have assumed that loop corrections are dominant in the potential of UI . When

other nonperturbative effects are dominant, obviously UI is stabilized by such nonper-

turbative effects and loop effects provide subdominant corrections.

B.3 Kähler moduli

In this section, we consider another example where the supersymmetric and SUSY-

breaking minima are degenerate at the leading level.
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Figure B.4: - The one-loop scalar potential involving the nonperturbative cor-

rection in eq. (B.30) is drawn as a function of |F |. The parameters are set as

a0 = a3 = 1, a4 = 10−15, c = 5× 10−15, Λ̃ = 1.4× 10−14, Ṽ1 = 5.2× 10−56.
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Figure B.5: - The parameters are set as a0 = a3 = 1, a4 = 10−15, c = 9 ×
10−14, Λ̃ = 2.5× 10−13, Ṽ1 = 5.9× 10−51.
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B.3 Kähler moduli

By use of the flux-induced superpotential eq.(B.2), the F -term scalar potential is

calculated as

VF = eK
[ ∑
I,J=S,Um

KIJ̄DIWDJ̄W̄ +
(
KTiT̄jKTiKT̄j

− 3
)
|W |2

]

= eK
[ ∑
I,J=S,Um

KIJ̄DIWDJ̄W̄

]
, (B.31)

where −3|W |2 is canceled by the no-scale structure of the Kähler moduli,∑
i,j

KTiT̄jKTiKT̄j
− 3 = 0. (B.32)

Note that the above no-scale structure is valid only at the tree level.

Then, the dilaton and complex structure moduli are stabilized at the minimum,

DSW = 0, DUmW = 0, (B.33)

which lead to the Minkowski minimum VF = 0. When W ̸= 0, the supersymmetry is

broken by the F term of the Kähler moduli. In contrast to the previous section, we now

assume that all the complex structure moduli and dilaton are stabilized by the flux-

induced superpotential. Although the F terms of S and U vanish at this Minkowski

minimum, the F terms of the Kähler moduli are nonvanishing, in general:

F Ti = −eK/2
∑
j

KTiT̄jDT̄j
W̄ = −eK/2

∑
j

KTiT̄jKT̄j
W̄ , (B.34)

when W ̸= 0.

For simplicity, we study the model with the overall Kähler modulus with the CY

volume V = (T + T̄ )3/2. Then, the F term of the Kähler modulus is simplified as

F T ≃ eK(S,U)/2 T + T̄

(T + T̄ )3/2
W̄ = eK(S,U)/2 W̄

(T + T̄ )1/2
. (B.35)

Thus, supersymmetric and SUSY-breaking minima are also degenerate in a way similar

to the previous section, since the scalar potential is independent of T and F T . However,

the supersymmetric vacuum corresponds to Re(T ) → ∞, that is, the decompactification

limit.

When the leading α′ corrections are involved, the Kähler potential of the Kähler

modulus is corrected as (67)

K = −2 ln

(
V+

ξ

2

)
, (B.36)
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where ξ = −χ(CY )ζ(3)

2(2π)3g
3/2
s

with χ and gs being the Euler characteristic of CY and string

coupling. These α′-corrections break the no-scale structure, and the scalar potential is

generated as

VF ≃ eK(S,U) 3ξ

4V3
|W |2. (B.37)

The sign of ξ depends on the number of complex structure moduli and Kähler moduli.

When the number of Kähler moduli is smaller than that of complex structure moduli,

ξ is positive. In the case of single Kähler modulus, the F -term potential reduces to

VF ≃ eK(S,U) 3ξ

4(T + T̄ )9/2
|W |2 = 3ξ

4(T + T̄ )7/2
|F T |2. (B.38)

Along the same step outlined in section B.2, we take into account the loop correc-

tions originating from the supersymmetric particles whose soft terms are dominated by

the F term of the Kähler modulus. It is remarkable that the loop corrections give rise

to the stabilization of Re(T ) unlike the case in section B.2. Then, by assuming that the

typical gaugino and supersymmetric scalar fields mainly contribute to the loop effects,

the total scalar potential becomes

V ≃ 3ξ

4(T + T̄ )7/2
|F T |2 + 1

64π2

[
a1

(
c2 −

(
|F T |
T + T̄

)2
)2

ln

(
c2 −

(
|F T |
T + T̄

)2
)

− a2

(
|F T |
T + T̄

)4

ln

(
a3

(
|F T |
T + T̄

)2
)]

=
3ξ

4(T + T̄ )3/2
(F̂ T )2 +

1

64π2

[
a1

(
c2 −

(
F̂ T
)2)2

ln

(
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(
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)2)

− a2

(
F̂ T
)4

ln

(
a3

(
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)2)]

=
3ξ

4eK(S,U)/2W
(F̂ T )3 +

1

64π2

[
a1

(
c2 −

(
F̂ T
)2)2

ln

(
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(
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)2)

− a2

(
F̂ T
)4

ln

(
a3

(
F̂ T
)2)]

, (B.39)

where F̂ T ≡ |F T |/(T + T̄ ). Here, we employ the same notation of section B.2 and W

is chosen as a real constant, for simplicity.

By setting the illustrative parameters

a1 = 10, a2 = 3, a3 = 8, c = 1.1, ξ = 1, eK(S,U)/2W ≃ 60.42,
(B.40)
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B.3 Kähler moduli

the scalar potential is drawn as in Fig. B.6. As a result, the degeneracy of vacua

is resolved by the loop corrections. In contrast to the discussion in section B.2, the

vanishing |F T | ∝ (T+T̄ )−1/2 corresponds to the unphysical domain Re(T ) → ∞. Thus,

the SUSY-breaking vacuum is selected. Indeed, the above illustrative parameters give

rise to the high-scale SUSY-breaking minimum, where the vacuum expectation value

of Re(T ),

Re(T ) ≃ 9.9, (B.41)

resides in a reliable range of the supergravity approximation. After canonically nor-

malizing the modulus,

σ̂ =

√
3

2
lnσ, (B.42)

with σ = Re(T )/
√
2, its mass squared is evaluated as

m2
σ̂ ≃ 3.3× 10−2, (B.43)

in the reduced Planck unit, i.e. mσ̂ ≃ 0.18×MPl, which should be smaller than the other

complex structure moduli and dilaton to justify our low-energy effective action. Since

those complex structure moduli and dilaton fields have been stabilized at the SUSY-

breaking minimum, their masses are typically greater than or equal to the gravitino

mass eK(S,U)/2W/V ≃ 6.9 × 10−1 in our numerical example. Our situation is thus

justified.

Figure B.6: - he scalar potential as a function of F̂ T by setting the parameters

as in eq. (B.40).
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B. MODULI STABILIZATION AND RADIATIVE CORRECTIONS

Interestingly, the tuning of eK(S,U)/2W allows us to consider the tiny cosmologi-

cal constant. In the above scenario, Re(T ) can be stabilized at a fine value, but its

imaginary part, i.e. the axion, remains massless.

B.4 Shhort summary

We have studied a new type of moduli potential and stabilization. In the model with

the complex structure modulus U , the supersymmetric and SUSY-breaking minima are

degenerate at the leading order. That is, the tree-level potential is independent of the

F term of U , but depends on Re(U). The F term itself depends on Im(U). Loop

effects due to Im(U)-dependent gaugino and sfermion masses resolve the degeneracy of

vacua and stabilize the axion Im(U). The SUSY vacuum or SUSY-breaking vacuum is

selected depending on parameters in the potential. Low-scale SUSY breaking is also

possible when additional proper nonperturbative effects are involved.

We have also studied the model with the Kähler modulus T . This model has the

flat direction along both Re(T ) and Im(T ) at the leading level. The SUSY vacuum

and SUSY-breaking vacuum are degenerate, but the SUSY vacuum corresponds to the

decompactification limit Re(T ) → ∞. In this model, the modulus F term depends only

on Re(T ). The real part Re(T ) can be stabilized by inclusion of α′-corrections, and

loop effects due to Re(T )-dependent gaugino and sfermion masses. However, the axion

Im(T ) remains massless at this stage.

We can extend the model with the single Kähler modulus to the models with many

Kähler moduli. Their real parts can be stabilized in a similar mechanism, but many

axionic parts would remain light. Such axions would be interesting, e.g., for candidates

of dark matter and the QCD axion. Also, one of the light axions could derive the

cosmological inflation if a proper potential is generated. Moreover, these axions would

be interesting from the viewpoint of a string axiverse. Such axion phenomenology

would be studied elsewhere.

130



Appendix C

Preparation for the Affleck-Dine

mechanism

Here, let us mention about the Noether current and Scalar potential in the supergravity

(SUGRA). We will also summarize the Hubble induced mass-term and A-term briefly.

We review what the Affleck-Dine mechanism is in chapter 6.

C.1 Nether current and asymmetric number density

We define the current of a scalar field ϕ as

Jµ = iα(ϕ∂µϕ∗ − ϕ∗∂µϕ), (C.1)

and the conserved charge as

Q =

∫
d3xJ0(x) = iα

∫
d3x(ϕϕ̇∗ − ϕ∗ϕ̇), (C.2)

where α is a small arbitrary parameter (describing a displacement in space-time).

Using above definitions, with the equation of motion (or continuity equation) of

a scalar field ϕ̈ + 3Hϕ̇ + Vϕ = 0, we can obtain by integrating the equation for the

evolution of the asymmetry,

[
a3J0

]
(t) =

∫ t

dt(−iα)a3 (ϕVϕ − ϕ∗Vϕ∗)

J0(t0) ∼ (−iα) 1

H0
(ϕVϕ − ϕ∗Vϕ∗) . (C.3)
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C. PREPARATION FOR THE AFFLECK-DINE MECHANISM

In the second line, we use the approximation such that
∫ t
dt ∼ 1/H(t0)(= 1/H0).

The difference of complex parts of the potential makes some currents, which plays an

important role in our study (in chapter 6).

C.2 Scalar potential in the supergravity

In local supersymmetry (supergravity, SUGRA), the scalar potential becomes, in terms

of Kähler potential K and superpotential W ,

V = eK
(
Wi(K

−1)ijW
j − 3|W |2

)
+D-terms , (C.4)

where Wi = ∂ϕi
W + WKi, Ki = ∂ϕi

K, and (K−1)ij is the inverse of the matrix =

∂2
ϕiϕ∗jK. Note that through this paper, we use the units where the reduced Planck

mass Mp = 2.4× 1018 GeV = 1 unless otherwise noted explicitly.

C.3 Hubble induced mass-term and A-term

During and inflation, the AD field obtains effective potentials from the energy density

of inflaton I, When we introduce an inaflaton I. We consider the following the Kahler

potential

K = |I|2 + |ϕ|2 + c

M2
p

|I|2|ϕ|2, (C.5)

where c is an O(1) constant. In the model, the scalar potential have

V ⊃ |FI |2
(
1 + (1− c)

|ϕ|2

M2
p

)
. (C.6)

Then, due to the above the terms, the AD field ϕ obtains an effective mass term of

order the Hubble parameter during inflation:

VH = cHH
2|ϕ|2, where cH = −3(c− 1) (C.7)

where H is the Hubble parameter at the giving time, and we use |FI |2 = 3H2M2
p . This

is called a Hubble induced mass-term.

The same procedure is applied for the Hubble induced A-term. We assume that

there is a Kahler potential of I|ϕ|2/Mp + c.c.. It reads to

VA ⊃
(
− λaH

nMn−3
p H|ϕ|n

+ c.c.

)
(C.8)
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C.3 Hubble induced mass-term and A-term

where aH is an O(1) constant.

These Hubble induced terms are playing important roles in our Affleck-Dine lepto-

genesis model.
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