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Abstract

Modular symmetry is a symmetry on two dimensional torus T 2 typically
considered in string compactification. First, we study the modular symmetry
in magnetized D-brane models on T 2. Zero-modes on T 2 with magnetic flux
M = 2 (in a certain unit) are transformed as doublet of S3 with certain
identification under the transformation of the modulus. We also study the
modular symmetry in heterotic orbifold models. The T 2/Z4 orbifold model
has the same modular symmetry as the magnetized D-brane model with
M = 2. Next, we study lepton flavor models with S3 and A4 symmetries
from the modular group. We consider S3 model with flavons and A4 models
with no flavon. In A4 model, we classify our neutrino models along with type
I seesaw model, Weinberg operator model, and the Dirac neutrino model.
In the normal hierarchy of neutrino masses, the seesaw model is available
by taking account for recent experimental data of neutrino oscillations. In
the case of inverted hierarchy, the Dirac neutrino model is consistent with
experimental data.
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1 Introduction

The standard model (SM) is a theory explaining electroweak and strong
interactions and which is precisely confirmed by many experiments. On the
other hand, there are discrepancies between theoretical and experimental
values such as anomalous magnetic moment of muon (muon g−2) at BNL [1]
and anomalies in semileptonic decays of B meson (B-anomalies) at BaBar [2]
and at LHCb [3]. These discrepancies can be hints for new physics beyond
the SM. The existence of neutrino oscillation phenomena, and hence non-
vanishing mass of neutrinos, are also important hints for new physics, which
are observed by Super-Kamiokande [4–6], SNO [7], Borexino [8–10], IceCube
[11], KamLAND [12], T2K [13], and NOνA [14]. The flavor structure of
leptons affects directly on neutrino oscillation, and possibly on muon g − 2
and B-anomalies. Thus, it is worthwhile to understand the lepton flavor
structure.

One of interesting ideas on the flavor structure is to impose non-Abelian
discrete symmetries for flavors on a theory. Many models have been proposed
by using S3, A4, S4, A5 and other groups with lager orders [15–19]. In
particular, S3 and A4 symmetries are small and attractive for flavor model.
S3 is the permutation group of three elements and which is the smallest non-
Abelian discrete group. This symmetry is used as permutation symmetry of
three families of leptons to lead so-called tri-bimaximal type of the PMNS
matrix [20]. A4 is the minimal group which has a triplet as its irreducible
representation and enable us to explain three families of quarks and leptons
naturally [21–26]. However, variety of models is so wide that it is difficult
to obtain clear clues of flavor symmetry. Indeed, symmetry breakings are
required to reproduce realistic mixing angles [27]. The effective Lagrangian of
a typical flavor model is given by introducing the gauge singlet scalars which
are so-called flavons. Those vacuum expectation values (VEVs) determine
the flavor structure of quarks and leptons. Finally, the breaking sector of
flavor symmetry typically produces many unknown parameters.

The absence of gravity in the SM is also a hint for new physics, and su-
perstring theory is a promising candidate of unified theory including gravity.
Superstring theory with certain compactifications can lead to non-Abelian
discrete flavor symmetries. For example, heterotic orbifold models lead to
D4, ∆(54), etc. [28]. (See also [29, 30].) Similar flavor symmetries are also
derived in type II magnetized and intersecting D-brane models [31, 32]. On
the other hand, string theory on tori or orbifolds has the modular symmetry
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which acts non-trivially on flavors of quarks and leptons [33–38]. In this
sense, the modular symmetry is a non-Abelian discrete flavor symmetry.

It is interesting that the modular group includes S3, A4, S4, and A5 as its
finite subgroups, Γ(N). However, there is a difference between the modular
symmetry and the usual flavor symmetry. Yukawa couplings are written as
modular forms, functions of the modulus τ , and transform non-trivially under
the modular symmetry as well as fields. On the other hand, Yukawa couplings
are invariants in the usual flavor symmetries. In this aspect, an attractive
ansatz was proposed by taking Γ(3) ≃ A4 in Ref. [39] where Yukawa couplings
are A4 triplets of modular forms, and both left-handed leptons and right-
handed neutrinos are A4 triplets while right-handed charged leptons are A4

singlets. (See also [40].) Along with this work, Γ(4) ≃ S4 [41, 42] and
Γ(5) ≃ A5 [43] have been discussed.

In this paper, we have following two purpose. First, we study more how
modular transformation is represented by zero-modes in magnetized D-brane
models, and to discuss relations between modular transformation and non-
Abelian flavor symmetries in magnetized D-brane models. Intersecting D-
brane models have the same aspects as magnetized D-brane models, because
they are T-dual to each other. Furthermore, intersecting D-brane models
in type II superstring theory and heterotic string theory have similarities,
e.g. in two-dimensional conformal field theory. Thus, we also study modular
symmetry and non-Abelian discrete flavor symmetries in heterotic orbifold
models. Next, we present a comprehensive study of Γ(2) ≃ S3 and Γ(3) ≃ A4

numerically by taking account of the recent experimental data of neutrino
oscillations. The mass matrices of neutrinos and charged leptons are essen-
tially given by the expectation value of the modulus τ , which is the only
source of modular invariance breaking. However, there are freedoms for the
assignments of irreducible representations and modular weights to leptons.

This thesis is organized as follows. In chapter 2, we study the relation
between modular symmetry and string compactification. In sec 2.1, we in-
troduce the modular group and its finite subgroups. We study magnetized
D-brane models in section 2.2 and heterotic orbifold models in section 2.3. In
chapter 3, we study lepton flavor models with non-Abelian discrete symme-
try coming from the modular symmetry We study S3 models in section 3.3,
and A4 models in section 3.4. Section 4 is devoted to a summary.

This paper is based on [44–46].
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2 Modular symmetry and string compactifi-

cation

Since superstring theory is ten-dimensional theory, the extra six-dimensional
space must be sufficiently small so as not to be observed. Torus is a simple
but interesting manifold for compact space because of its flatness and doubly
periodic structure. There are well known two ways of compactification using
torus to build realistic models from string theory, magnetized torus models
and toroidal orbifold models. In the first way, we impose the vacuum expec-
tation values of some gauge fields on the torus, and earn multi-generation
chiral fermions. Magnetized D-brane models are models in this class. In the
second way, we consider quotient of torus by rotational symmetry ZN such
as T 2/ZN , T

4/ZN and T 6/ZN . Heterotic orbifold models are models in this
class.

In this chapter, we study the relation between modular symmetry and
string compactification.

2.1 Modular group and its finite subgroups

In this section, we introduce the modular transformation, or the modular
group, and its finite subgroups.

Two dimensional torus T 2 is constructed by C/Λ, where Λ is a lattice
spanned by basis vectors (α1, α2). We can take αi as α1 = 2πR and α2 =
2πRτ by using R > 0 and τ ∈ C defined in upper half-plane Im(τ) > 0
without loss of generality. τ is called the modulus which represents the
complex structure of the T 2. There are specific transformations of the basis
vectors keeping the lattice unchanged, and denoted by(

α′
1

α′
2

)
=

(
a b
c d

)(
α1

α2

)
,

(
a b
c d

)
∈ SL(2,Z). (2.1)

The transformation (2.1) transform the modulus τ = α2/α1 as

τ → aτ + b

cτ + d
. (2.2)

This transformation is called the modular transformation, and this group
is called the modular group Γ. Note that the transformation (2.2) keeps τ
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on upper half-plane Im(τ) > 0. The modular transformation includes two
important generators, S and T ,

S : τ → −1

τ
,

T : τ → τ + 1,
(2.3)

which satisfy
S2 = I, (ST )3 = I. (2.4)

Thus, the modular group is represented by

Γ ≃
{
S, T

∣∣S2 = I, (ST )3 = I
}
. (2.5)

When we impose an additional algebraic relation

TN = I (2.6)

on Γ, we earn subgroups of Γ represented by

Γ(N) =
{
S, T

∣∣S2 = I, (ST )3 = I, (T )N = I
}
. (2.7)

The Γ(N) is a finite Non-Abelian discrete group, and it is found that Γ(2) ≃
S3, Γ(3) ≃ A4, Γ(4) ≃ S4, and Γ(5) ≃ A5.

The group A4 is the symmetry of tetrahedron, and which is often called
the tetrahedral group T = A4. It may also be useful to mention ∆(3N2) ≃
(ZN ×ZN)⋊Z3 and ∆(6N2) ≃ (ZN ×ZN)⋊S3, and S3 ≃ ∆(6), A4 ≃ ∆(12),
and S4 ≃ ∆(24).

2.2 Modular transformation in magnetized D-

brane models

In this section, we study modular transformation of zero-mode wavefunctions
in magnetized D-brane models.

2.2.1 Zero-mode wavefunction

First, we give a brief review on zero-mode wavefunctions on torus with mag-
netic flux [37]. We concentrate on T 2 with U(1) magnetic flux for simplicity.
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The complex coordinate on T 2 is denoted by z = x1 + τx2, where τ is the
complex modular parameter, and x1 and x2 are real coordinates. The metric
on T 2 is given by

gαβ =

(
gzz gzz̄
gz̄z gz̄z̄

)
= (2πR)2

(
0 1

2
1
2

0

)
. (2.8)

We identify z ∼ z + 1 and z ∼ z + τ on T 2.
On T 2, we introduce the U(1) magnetic flux F ,

F = i
πM

Imτ
(dz ∧ dz̄), (2.9)

which corresponds to the vector potential,

A(z) =
πM

Imτ
Im(z̄dz). (2.10)

Here we concentrate on vanishing Wilson lines.
On the above background, we consider the zero-mode equation for the

spinor field with the U(1) charge q = 1,

i D̸Ψ = 0. (2.11)

The spinor field on T 2 has two components,

Ψ(z, z̄) =

(
ψ+

ψ−

)
. (2.12)

The magnetic flux should be quantized such that M is integer. Either ψ+

or ψ− has zero-modes exclusively for M ̸= 0. For example, we set M to be
positive. Then, ψ+ has M zero-modes, while ψ− has no zero-mode. Hence,
we can realize a chiral theory. Their zero-mode profiles are given by

ψj,M(z) = N eiπMz Imz
Imτ · ϑ

[
j
M

0

]
(Mz,Mτ) , (2.13)

with j = 0, 1, · · · , (M − 1), where ϑ denotes the Jacobi theta function,

ϑ

[
a
b

]
(ν, τ) =

∑
l∈Z

eπi(a+l)2τe2πi(a+l)(ν+b). (2.14)
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Here, N denotes the normalization factor given by

N =

(
2ImτM

A2

)1/4

, (2.15)

with A = 4π2R2Imτ .
The ground states of scalar fields also have the same profiles as ψj,M .

Thus, the Yukawa coupling including one scalar and two spinor fields can be
computed by using these zero-mode waverfunctions. Zero mode wavefunc-
tions satisfy the following relation,

ψi,Mψj,M = A−1/2(2Imτ)1/4
(

MN

M +N

)1/4

×
∑
m

ψi+j+Mm,M+N · ϑ
[Ni−Mj+MNm

MN(M+N)

0

]
(0,MN(M +N)τ) .

(2.16)

By use of this relation, their Yukawa couplings are given by the wavefunction
overlap integral,

Yijk = y

∫
d2zψi,Mψj,N(ψk,M ′

)∗

= y

(
2Imτ

A2

)1/4 ∑
m∈ZM′

δk,i+j+Mm · ϑ
[
Ni−Mj+MNm

MNM ′

0

]
(0,MNM ′τ) ,

(2.17)

where y is constant. This Yukawa coupling vanishes for M ′ ̸=M +N . Simi-
larly, we can compute higher order couplings using the relation (2.16) [47]. In
the above equation, the Kronecker delta δk,i+j+Mm implies the coupling selec-
tion rule. For g = gcd(M,N,M ′), non-vanishing Yukawa couplings appear
only if

i+ j = k (mod g). (2.18)

Hence, we can definite Zg charges in these couplings [31].

2.2.2 Modular transformation of zero-mode

The τ in this context is the same thing as the modulus τ in chapter 2.1.
Since the zero-mode wave functions ψj,M(z) in (2.13) and hence the Yukawa

6



couplings in (2.17) depend on the modulus τ , they transform under the
modular transformation (2.2). To investigate the transformation row of the
zero-modes ψj,M(z) under the modular transformation, we check their be-
havior along to the generators of the modular transformation, S- and T -
transformation (2.3).

Following [38], we restrict ourselves to even magnetic fluxes M (M > 0).
The zero-mode wavefunctions transform as

ψj,M → 1√
M

∑
k

e2πijk/Mψk,M (2.19)

under S-transformation according to [37,38], and transform as

ψj,M → eπij
2/Mψj,M (2.20)

under T -transformation according to [38]. Generically, the T -transformation
satisfies

T 2M = I, (2.21)

on the zero-modes, ψj,M . Furthermore, in Ref. [38] it is shown that

(ST )3 = eπi/4, (2.22)

on the zero-modes, ψj,M .
In what follows, we study more concretely.

2.2.3 Magnetic flux M = 2

Let us study the case with the magnetic flux M = 2 concretely. There are
two zero-modes, ψ0,2, ψ1,2. The S-transformation acts on these zero-modes
as (

ψ0,2

ψ1,2

)
−→ S(2)

(
ψ0,2

ψ1,2

)
, S(2) =

1√
2

(
1 1
1 −1

)
. (2.23)

The T -transformation acts as(
ψ0,2

ψ1,2

)
−→ T(2)

(
ψ0,2

ψ1,2

)
, T(2) =

(
1 0
0 i

)
. (2.24)

They satisfy the following algebraic relations,

S2
(2) = I, T 4

(2) = I, (S(2)T(2))
3 = eπi/4I. (2.25)
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They construct a closed algebra with the order 192, which we denote here
by G(2). By such an algebra, modular transformation is represented by two
zero-modes, ψ0,2, ψ1,2. We find that (S(2)T(2))

3 is a center. Indeed, there
are eight center elements and their group is Z8. Other diagonal elements
correspond to Z4, which is generated by T(2). Here, we denote

a = (S(2)T(2))
3, a′ = T(2). (2.26)

The diagonal elements are represented by ama′n, i.e. Z8 × Z4.
Here, we examine the right coset Hg for g ∈ G(2), where H is the above

Z8 ×Z4, i.e. H = {ama′n}. There would be 6(= 192/(8× 4)) cosets. Indeed,
we obtain the following six cosets:

H, HS(2), HS(2)T
k
(2), HS(2)T

2
(2)S(2), (2.27)

with k = 1, 2, 3. By simple computations, we find

HS(2)T
k
(2)S(2) ∼ HS(2)T

4−k
(2) S(2), HS(2)T

2
(2)S(2)T ∼ HS(2)T

2
(2)S(2). (2.28)

Furthermore, we would make a (non-Abelian) subgroup with the order
6 by choosing properly six elements such that we pick one element up from
each coset and their algebra is closed. The non-Abelian group with the order
6 is unique, i.e. S3. For example, we may be able to obtain the Z3 generator
from HS(2)T(2) because (S(2)T(2))

3 ∈ H. That is, we define

b = ama′nS(2)T(2). (2.29)

Then, we require b3 = I. There are three solutions, (m,n) = (3, 2), (5,0)
mod (8,4). Similarly, we can obtain the Z2 generator e.g. form HS(2)T

2
(2)S(2)

because (S(2)T
2
(2)S(2))

2 ∈ H. Then, we define

c = am
′
a′n

′
S(2)T

2
(2)S(2). (2.30)

We find c2 = I when n′ = −m′ mod 4. On top of that, we require (bc)2 = I,
and that leads to the conditions, n = −m′ − 1 mod 4 and m = m′ + 2 mod
8. As a result, there are six solutions, (m,n,m′) = (3, 2, 1), (3,2,5), (5,0,3),
(5,0,7) with n′ = −m′ mod 4.

For example, for (m,n,m′) = (3, 2, 5) we write

b =
1√
2

(
ρ3 ρ−3

ρ−1 ρ−3

)
, c =

(
0 ρ−3

ρ3 0

)
. (2.31)
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The six elements of the subgroup are written explicitly,(
1 0
0 1

)
,

1√
2

(
1 1
1 −1

)
,

(
0 ρ−3

ρ3 0

)
,

1√
2

(
−1 i
−i 1

)
,

1√
2

(
ρ3 ρ−3

ρ−1 ρ−3

)
,

1√
2

(
ρ−3 ρ
ρ3 ρ3

)
,(2.32)

where ρ = e2πi/8. They correspond to S3 ≃ Γ(2) ≃ ∆(6) because they satisfy
the following algebraic relations,

c2 = b3 = (bc)2 = I. (2.33)

Moreover, they satisfy the following algebraic relation with Z8 × Z4,

b−1ab1 = a, cac = a, b−1a′b = a, ca′c−1 = a2a′3. (2.34)

Thus, the algebra of G(2) is isomorphic to (Z8 × Z4)⋊ S3.
We have started by choosing HS(2)T

2
(2)S(2) for a candidate of the Z2 gen-

erator. We can obtain the same results by starting with HS(2) for a candidate
of the Z2 generator.

2.2.4 Magnetic flux M = 4

Similarly, we study the case with the magnetic flux M = 4. There are
four zero-modes, ψi,M with i = 0, 1, 2, 3. The S and T -transformations are
represented by ψi,M ,

S(4) =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , T(4) =


1

eπi/4

−1
eπi/4

 .

(2.35)
This is a reducible representation. In order to obtain irreducible representa-
tions, we use the flowing basis, ψ0.4

ψ1,4
+

ψ2,4

 =

 ψ0.4

1√
2
(ψ1,4 + ψ3,4)

ψ2,4

 , ψ1,4
− =

1√
2
(ψ1,4 − ψ3,4). (2.36)

This is nothing but zero-modes on the T 2/Z2 orbifold [48]. The former cor-
responds to Z2 even states, while the latter corresponds to the Z2 odd state.
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Note that (ST )3 transforms the lattice basis (α1, α2) → (−α1,−α2). Thus,
it is reasonable that the zero-modes on the T 2/Z2 orbifold correspond to the
irreducible representations.

The S and T -representations by the Z2 odd zero-mode are quite simple,
and these are represented by

S(4−) = i, T(4)− = eπi/4. (2.37)

Their closed algebra is Z8.
On the other hand, the S and T -transformations are represented by the

Z2 even zero-modes,

S(4)+ =
1

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , T(4)+ =

 1
eπi/4

−1

 . (2.38)

They satisfy the following algebraic relation,

(S(4)+)
2 = I, (T(4)+)

8 = I, (S(4)+T(4)+)
3 = eπi/4I. (2.39)

We denote the closed algebra of S(4)+ and T(4)+ by G(4)+. Its order is equal to
768, and it includes the center element (S(4)+T(4)+)

3, i.e. Z8. Other diagonal
elements correspond to Z8, which is generated by T(4)+. Again, we denote
a = (S(4)+T(4)+)

3 and a′ = T(4)+, and the diagonal elements are written by
ama′n, i.e. Z8 × Z8.

Similar to the case with M = 2, we examine the coset structure, Hg.
Indeed, there are the following 12 cosets:

H, HS(4)+, HSk
(4)+, HS(4)+T

ℓ
(4)+S(4)+, (2.40)

where k = 1, · · · , 7 and ℓ = 2, 4, 6. By simple computation, we find that

HS(4)+T
k
(4)+S(4)+ ∼ HS(4)+T

8−k
(4)+,

HS(4)+T
ℓ
(4)+S(4)+T ∼ HS(4)+T

8−ℓ
(4)+S(4)+

(2.41)

for k = odd and ℓ = even.
We make a subgroup with the order 12 by choosing properly 12 elements

such that we pick one element up from each coset and their algebra is closed.
The non-Abelian group with the order 12 are D6, Q6 and A4. Among them,
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A4 would be a good candidate. Indeed, we can obtain the Z3 generator from
HS(4)+T(4)+, gain. That is, we define

t = ama′nS(4)+T(4)+. (2.42)

The solutions for t3 = I are obtained by (m,n) = (1, 4), (3,6), (5,0), and
(7,2). We also define

s = am
′
a′n

′
S(4)+T

4
(4)+S(4)+. (2.43)

The solutions for s2 = I are obtained by (m′, n′) = (0, 0), (0,4), (4,0) and
(4,4). These two generators satisfy (st)3 = I if (m′, n′) = (0, 4), and (4,0),
i.e.

s =

 0 0 ±1
0 −1 0
±1 0 0

 . (2.44)

As a result, they satisfy
s2 = t3 = (st)3 = I. (2.45)

That is the A4 algebra.

2.2.5 Large magnetic flux M

For larger magnetic fluxes, S and T -transformations are represented by zero-
modes ψj,M , but those are reducible representations. The irreducible repre-
sentations are obtained in the T 2/Z2 orbifold basis,

ψj,M
± =

1√
2

(
ψj,M ± ψM−j,j

)
. (2.46)

The representations of T(M) are simply obtained by

T(M)+



ψ0,M
+

ψ1,M
+
...

ψj,M
+
...

ψ
M/2,M
+


=



1
eπi/M

. . .

eπij
2/M

. . .

eπiM/4





ψ0,M
+

ψ1,M
+
...

ψj,M
+
...

ψ
M/2,M
+


,

(2.47)
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and

T(M)−


ψ1,M
−
...

ψj,M
−
...

ψ
M/2−1,M
−

 =


eπi/M

. . .

eπij
2/M

. . .

eπ(M/2−1)2/M




ψ1,M
−
...

ψj,M
−
...

ψ
M/2−1,M
−

 .

(2.48)
Both correspond to Z2M .

On the other hand, the S(M)± transforms

S(M)±ψ
j,M
± =

1√
2M

∑
k

(
e2πjk/M ± e2πi(M−j)k/M,M

)
ψk,M . (2.49)

This representation is also written by

S(M)±ψ
j,M
± =

1√
2M

∑
k

(
e2π(M−j)(M−k)/M ± e2πij(M−k)/M,M

)
ψM−k,M . (2.50)

Thus, the S-transformation is represented on the T 2/Z2 orbifold basis by

S(M)±ψ
j,M
± =

1√
M

∑
k≤M/2

(
e2πjk/M ± e2πi(M−j)k/M

)
ψk,M
± . (2.51)

These are written by

S(M)+ψ
j,M
+ =

2√
M

∑
k≤M/2

cos(2πjk/M)ψj,M
+ ,

S(M)−ψ
j,M
− =

2i√
M

∑
k≤M/2

sin(2πjk/M)ψj,M
− . (2.52)

For example, forM = 6, S and T are represented by Z2 even zero-modes,

S(6)+


ψ0,6

ψ1,6
+

ψ2,6
+

ψ3,6

 =
1√
6


1

√
2

√
2 1√

2 1 −1 −
√
2√

2 −1 −1
√
2

1 −
√
2

√
2 −1




ψ0,6

ψ1,6
+

ψ2,6
+

ψ3,6

 , (2.53)
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T(6)+


ψ0,6

ψ1,6
+

ψ2,6
+

ψ3,6

 =


1

eπi/6

e2πi/3

e
3πi/2




ψ0,6

ψ1,6
+

ψ2,6
+

ψ3,6

 , (2.54)

while S and T are represented by Z2 odd zero-mode,

S(6)−

(
ψ1,6
−

ψ2,6
−

)
=

i√
2

(
1 1
1 −1

)(
ψ1,6
−

ψ2,6
−

)
, (2.55)

T(6)−

(
ψ1,6
−

ψ2,6
−

)
=

(
eπi/6 0
0 e2πi/3

)(
ψ1,6
−

ψ2,6
−

)
. (2.56)

2.2.6 Non-Abelian discrete flavor symmetries

In Ref. [31], it is shown that the models withM = 2 as well as even magnetic
fluxes have the D4 flavor symmetry. See Appendix A. One of the Z2 elements
in D4 corresponds to (T(2))

2 on the zero-modes, ψ0,2 and ψ1,2, i.e.

Z =

(
1 0
0 −1

)
= (T(2))

2. (2.57)

In addition, the permutation ZC
2 element inD4 corresponds to S(2)T(2)T(2)S(2),

i.e.

C =

(
0 1
1 0

)
= S(2)T(2)T(2)S(2). (2.58)

Thus, the D4 group, which includes the eight elements (A.8), is subgroup of
G(2) ≃ (Z8 × Z4)⋊ S3.

However, there is the difference between the modular symmetry and the
D4 flavor symmetry, which studied in Ref. [31]. The modular symmetry
transforms the Yukawa couplings, while the Yukawa couplings are invariant
under the D4 flavor symmetry. In order to study this point, here we examine
the Yukawa couplings among ψi,2, ψ′j,2 and ψk,4. Both ψi,2 and ψ′j,2 are D4

doublets, and their tensor product 2× 2 is expanded by

2× 2 = 1++ + 1+− + 1−+ + 1−−. (2.59)

Thus, the products ψi,2ψ′j,2 correspond to four singlets,

1+± : ψ0,2ψ′0,2 ± ψ1,2ψ′1,2, 1−± : ψ0,2ψ′1,2 ± ψ1,2ψ′0,2. (2.60)
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On the other hand, by use of Eq.(2.16), the products ψi,2ψ′j,2 are ex-
panded by ψk,4. For example, we can expand as

ψ0,2ψ′0,2 ± ψ1,2ψ′1,2

∼
(
Y (0)(16τ) + Y (8/16)(16τ)±

(
Y (4/16)(16τ) + Y (12/16)(16τ)

))
×

(
ψ0,4 ± ψ2,4

) (2.61)

up to constant factors, where

Y (j/M)(Mτ) = N · ϑ
[

j
M

0

]
(0,Mτ) . (2.62)

Note that Y (j/M)(Mτ) = Y (1−j/M)(Mτ). It is found that

(T(4))
2
(
ψ0,4 ± ψ2,4

)
=

(
ψ0,4 ± ψ2,4

)
,

(S(4)T(4)T(4)S(4))
(
ψ0,4 ± ψ2,4

)
= ±

(
ψ0,4 ± ψ2,4

)
. (2.63)

Thus, the zero-modes ψ0,4±ψ2,4 are indeed D4 singlets, 1+± when we identify
(T(4))

2 and (S(4)T(4)T(4)S(4)) as Z2 and Z
C
2 of D4. In this sense, the D4 flavor

symmetry is a subgroup of the modular symmetry. Also, it is found that the
above Yukawa couplings, Y (m/4)(16τ), with m = 0, 1, 2, 3 are invariant under
T 2 and STTS transformation.

Similarly, we can expand

ψ0,2ψ′1,2 + ψ1,2ψ′0,2

∼
(
Y (2/16)(16τ) + Y (6/16)(16τ)

)
×

(
ψ1,4 + ψ3,4

)
,

(2.64)

up to constant factors. It is found that

(T(2))
2
(
ψ0,2ψ′1,2 + ψ1,2ψ′0,2) = −

(
ψ0,2ψ′1,2 + ψ1,2ψ′0,2) . (2.65)

On the other hand, we obtain

(T(4))
2
(
ψ1,4 + ψ3,4

)
= i

(
ψ1,4 + ψ3,4

)
. (2.66)

In addition, we find

T 2 :
(
Y (2/16)(16τ) + Y (6/16)(16τ)

)
→ i

(
Y (2/16)(16τ) + Y (6/16)(16τ)

)
. (2.67)

Thus, the T 2 transformation is consistent between left and right hand sides
in (2.64). However, when we interpret T 2 as Z2 of the D4 flavor symme-
try, we face inconsistency, because Yukawa couplings are not invariant and
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(ψ1,4+ψ3,4) has transformation behavior different from (ψ0,2ψ′1,2+ψ1,2ψ′0,2).
We can make this consistent by defining Z2 of theD4 on (ψ1,4+ψ3,4) such that
its transformation absorbs the phase of Yukawa couplings under T 2 transfor-
mation. Then, the mode (ψ1,4 + ψ3,4) exactly corresponds to the D4 singlet,
1−+. We find that (ψ0,2ψ′1,2 + ψ1,2ψ′0,2) is invariant under S(2)T(2)T(2)S(2),
and (ψ1,4 + ψ3,4) is also invariant under S(4)T(4)T(4)S(4). That is consistent.
Therefore, the D4 flavor symmetry is a subgroup of the modular symmetry
on ψj,2 (j = 0, 1). However, when the model includes couplings to zero-modes
with larger M , we have to modify their modular symmetries such that cou-
pling constants are invariant under the flavor symmetry. Then, we can define
the D4 flavor symmetry.

Here, we give a comment on the T 2/Z2 orbifold. The T
2/Z2 orbifold basis

gives the irreducible representations of the modular symmetry. The D4 flavor
symmetry is defined through the modular symmetry, as above. That is the
reason why the D4 flavor symmetry remains on the T 2/Z2 orbifold [49,50].

2.3 Heterotic orbifold models

Intersecting D-brane models in type II superstring theory is T-dual to mag-
netized D-brane models. Thus, intersecting D-brane models also have the
same behavior under modular transformation as magnetized D-brane models.
Furthermore, intersecting D-brane models in type II superstring theory and
heterotic string theory on orbifolds have similarities, e.g. in two-dimensional
conformal field theory. For example, computations of 3-point couplings as
well as n-point couplings are similar to each other. Here, we study modu-
lar symmetry in heterotic orbifold models. Using results in Ref. [33, 35, 36],
we compare the modular symmetries in heterotic orbifold models with non-
Abelian flavor symmetries and also the modular symmetries in the magne-
tized D-brane models, which have been derived in the previous section.

2.3.1 Twisted sector

Here, we give a brief review on heterotic string theory on orbifolds. The
orbifold is the division of the torus T n by the ZN twist θ, i.e. T n/ZN . Since
the T n is constructed by Rn/Λ, the ZN twist θ should be an automorphism
of the lattice Λ. Here, we focus on two-dimensional orbifolds, T 2/ZN . The
six-dimensional orbifolds can be constructed by products of two-dimensional
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ones. All of the possible orbifolds are classified as T 2/ZN with N = 2, 3, 4, 6.
On orbifolds, there are fixed points, which satisfy the following condition,

xi = (θnx)i +
∑
k

mkα
i
k, (2.68)

where xi are real coordinates, αi
k are two lattice vectors, and mk are integer

for i, k = 1, 2. Thus, the fixed points can be represented by corresponding
space group elements (θn,

∑
kmkα

i
k), or in short (θn, (m1,m2)).

The heterotic string theory on orbifolds has localized modes at fixed
points, and these are the so-called twisted strings. These twisted states
can be labeled by use of fixed points, σθ,(m1,m2). All of the twisted states
σθ,(m1,m2) have the same spectrum, if discrete Wilson lines vanish. Thus, the
massless modes are degenerate by the number of fixed points.

On the T 2/Z2 orbifold, there are four fixed points, which are denoted by
(θ, (0, 0)), (θ, (1, 0)), (θ, (0, 1)), (θ, (1, 1)). The corresponding twisted states
are denoted by σθ,(m,n) for m,n = 0, 1.

On the T 2/Z3 orbifold, α1 and α2 correspond to the SU(3) simple roots
and they are identified each other by the Z3 twist. Thus, three fixed points
on the T 2/Z3 orbifold are represented by the space group elements, (θ,mα1)
for m = 0, 1, 2, or in short (θ,m). The corresponding twisted states are
denoted by σθ,m for m = 0, 1, 2.

Similarly, we can obtain the fixed points and twisted states on the T 2/Z4,
where α1 and α2 correspond to the SO(4) simple roots and they are identified
each other by the Z4 twist. For the Z4 twist θ, two fixed points satisfy
Eq.(2.68), and these can be represented by (θ,mα1) for m = 0, 1, or in short
(θ,m). Then, the first twisted states are denoted by σθ,m for m = 0, 1. In
addition, for θ2, there are four points, which satisfy Eq.(2.68), and these
can denoted by (θ2, (m,n)) for m,n = 0, 1. Indeed, these correspond to the
four fixed points on the T 2/Z2 orbifold. Then, the second twisted states are
denoted by σθ2,(m,n) for m,n = 0, 1. However, the fixed points (θ2, (1, 0)) and
(θ2, (0, 1)) transform each other under the Z4 twist θ. Thus, the Z4 invariant
states are written by [51]

σθ2,(0,0), σθ2,+, σθ2,(1,1), (2.69)

while σθ2,− transforms to −σθ2,− under the Z4 twist, where

σθ2,± =
1√
2

(
σθ2,(1,0) ± σθ2,(0,1)

)
. (2.70)
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Similarly, we can obtain the fixed points on T 2/Z6. There is a fixed point
(θ, 0) for the Z6 twist θ, and a single twisted state σθ,0. The second twisted
sector has three fixed points (θ2,m) (m = 0, 1, 2), which correspond to the
three fixed points on the T 2/Z3 orbifold. The two fixed points (θ2, 1) and
(θ2, 2) transform each other by the Z6 twist, while (θ2, 0) is invariant. Thus,
we can write the Z6-invariant θ

2-twisted states by

σθ2,0, σθ2,+, (2.71)

while σθ2,− transforms to −σθ2,− under the Z6 twist, where

σθ2,± =
1√
2
(σθ2,1 ± σθ2,2) . (2.72)

The third twisted sector has four fixed points, which correspond to the fixed
points on T 2/Z2, and the corresponding θ3 twisted states. Their linear com-
binations are Z6 eigenstates similar to the second twisted states. Since the
first twisted sector has the single fixed point and twisted state, the modular
symmetry as well as non-Abelian discrete flavor symmetry is rather trivial.
We do not discuss the T 2/Z6 orbifold itself.

2.3.2 Modular symmetry

In Ref. [33], modular symmetry in heterotic string theory on orbifolds was
studied in detail. Here we use those results.

T 2/Z4 orbifold

The S and T transformations are represented by the first twisted sectors of
T 2/Z4 orbifold as [33],(

σθ,0
σθ,1

)
−→ SZ4

(
σθ,0
σθ,1

)
, SZ4 =

1√
2

(
1 1
1 −1

)
,(

σθ,0
σθ,1

)
−→ TZ4

(
σθ,0
σθ,1

)
, TZ4 =

(
1 0
0 i

)
. (2.73)

These are exactly the same as representations of S(2) and T(2) on two-zero
modes, ψ0,2 and ψ1,2 in the magnetized model with magnetic flux M = 2.
Hence, the twisted sectors on the T 2/Z4 orbifold has the same behavior of
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modular symmetry as the magnetized model with magnetic flux M = 2. In-
deed, the twisted sectors have theD4 flavor symmetry and two twisted states,
σθ,0 and σθ,1 correspond to the D4 doublet [28]. The whole flavor symmetry
of the T 2/Z4 orbifold model is slightly larger than D4. (See Appendix B.)
The T 2/Z4 orbifold model has the Z4 symmetry, which transforms the first
twisted sector,

σθ,m −→ eπi/2σθ,m, (2.74)

for m = 0, 1 and the second twisted sector,

σθ2,(m,n) −→ eπiσθ2,(m,n), (2.75)

for m,n = 0, 1. The above Z4 transformation (2.74) is nothing but (SZ4TZ4)
6

as clearly seen from Eq. (2.25). Thus, the whole flavor symmetry originates
from the modular symmetry.

The second twisted sectors correspond to D4 singlets, 1±1,± [28] as

1+± : σθ2,(0,0) ± σθ2,(1,1), 1−± : σθ2,±, (2.76)

up to coefficients. Compared with the results in section 2.2.6, theD4 behavior
of the second twisted states correspond to one of the zero-modes ψm,4 with
magnetic flux M = 4. Their correspondence can be written as

σθ2,(0,0) ∼ ψ0,4, σθ2,(1,1) ∼ ψ2,4,

σθ2,(1,0) ∼ ψ1,4, σθ2,(1,0) ∼ ψ3,4. (2.77)

The above correspondence can also been seen from the Yukawa couplings.
By use of operator product expansion, we obtain the following relations [33],

σθ,0σθ,0 ∼ Y0,0
(
σθ2,(0,0) + σθ2,(1,1)

)
,

σθ,1σθ,1 ∼ Y1,1
(
σθ2,(0,0) + σθ2,(1,1)

)
, (2.78)

σθ,0σθ,1 + σθ,1σθ,0 ∼ Y0,1σθ2,+

up to constants. The second twisted state σθ2,− can not couple with the first
twisted sectors. Using results in Ref. [33], it is found that

(TZ4)
2

 Y0,0
Y1,1
Y0,1

 =

 1 0 0
0 1 0
0 0 −1

 Y0,0
Y1,1
Y0,1

 . (2.79)

This is the same as behavior of the Yukawa couplings under T 2 studied in
section 2.2.6.

18



T 2/Z2 orbifold

Here, let us study the T 2/Z2 orbifold in a way to similar to the previous
section on the T 2/Z4. The S transformation is represented by the four twisted
states on the T 2/Z2 orbifold [33],

σθ,(0,0)
σθ,(0,1)
σθ,(1,0)
σθ,(1,1)

 −→ SZ2


σθ,(0,0)
σθ,(0,1)
σθ,(1,0)
σθ,(1,1)

 , SZ2 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

(2.80)
Also the T transformation is represented as

σθ,(0,0)
σθ,(0,1)
σθ,(1,0)
σθ,(1,1)

 −→ TZ2


σθ,(0,0)
σθ,(0,1)
σθ,(1,0)
σθ,(1,1)

 , TZ2 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

(2.81)
The representation SZ2 is similar to SZ4 and S(2). Indeed, we find that
SZ2 = S(2) ⊗ S(2). However, the representation TZ2 is different from TZ4 and
T(2).

The matrices SZ2 and TZ2 satisfy the following relations,

(SZ2)
2 = (TZ2)

2 = (SZ2TZ2)
6 = I. (2.82)

These correspond to the D6. Indeed, the order of closed algebra including
SZ2 and TZ2 is equal to 12. At any rate, these matrices are reducible. We
change the basis in order to obtain irreducible representations,

σ1
σ2
σ3
σ4

 =


1 0 0 0
0 1√

3
1√
3

1√
3

0 1√
2

−1√
3

0

0 1√
6

1√
6

−2√
6




σθ,(0,0)
σθ,(1,0)
σθ,(0,1)
σθ,(1,1)

 . (2.83)

Then, σ1 and σ2 correspond to the D6 doublet, while σ3 and σ4 correspond
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to the D6 singlets. For example, SZ2TZ2 and TZ2 are represented by

SZ2TZ2


σ1
σ2
σ3
σ4

 =


cos(2π/6) − sin(2π/6) 0 0
sin(2π/6) cos(2π/6) 0 0

0 0 1 0
0 0 0 −1




σ1
σ2
σ3
σ4

 ,

TZ2


σ1
σ2
σ3
σ4

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




σ1
σ2
σ3
σ4

 . (2.84)

It is found that σ3 and σ4 correspond to 1−− and 1−+.
The twisted sector on the T 2/Z2 orbifold has the flavor symmetry (D4 ×

D4)/Z2. However, this flavor symmetry seems independent of the above D6,
because they do not include any common elements. The twisted sector on the
S1/Z2 orbifold has the flavor symmetry D4. The flavor symmetry of T 2/Z2

orbifold is obtained as a kind of product, D4 ×D4, although two D4 groups
have a common Z2 element. Thus, the flavor symmetry of T 2/Z2 originates
from the product of symmetries of the one-dimensional orbifold. On the other
hand, the modular symmetry appears in two or more dimensions, but not in
one dimension. Hence, these symmetries would be independent. When we
include the above D6 as low-energy effective field theory in addition to the
flavor symmetry (D4 ×D4)/Z2, low-energy effective field theory would have
larger symmetry including D6 and (D4×D4)/Z2, although Yukawa couplings
as well as higher order couplings transform non-trivially under D6.

T 2/Z3 orbifold

The S and T transformations are represented by the first twisted sectors of
T 2/Z3 orbifold as [33], σθ,0

σθ,1
σθ,2

 −→ SZ3

 σθ,0
σθ,1
σθ,2

 , SZ3 =
1√
3

1 1 1
1 e2πi/3 e−2πi/3

1 e−2πi/3 e2πi/3

 ,

 σθ,0
σθ,1
σθ,2

 −→ TZ3

 σθ,0
σθ,1
σθ,2

 , TZ3 =

1 0 0
0 e2πi/3 0
0 0 e2πi/3

 . (2.85)

These forms look similar to S and T transformations in magnetized models
(2.19) and (2.20). Indeed, they correspond to submatrices of S(6) and T(6)
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in the magnetized models with the magnetic flux M = 6. Alternatively, in
Ref. [35] the following S and T representations were studied1

S ′
Z3

= − i√
3

1 1 1
1 e2πi/3 e−2πi/3

1 e−2πi/3 e2πi/3

 , T ′
Z3

=

e2πi/3 0 0
0 1 0
0 0 1

 . (2.86)

At any rate, the above representations are reducible representations.
Thus, we use the flowing basis,  σ+

σ0
σ−

 , (2.87)

where σ± = (σ1 ± σ−)/
√
2. The (σ+, σ0) is a doublet, while σ− is a singlet.

The former corresponds to the Z6 invariant states among the θ2 twisted
sector on the T 2/Z6 orbifold. Similarly, σ− is the θ2 twisted state, which
transforms σ− → −σ− under the Z6 twist. Alternatively, we can say that
the doublet (σ+, σ0) corresponds to Z2 even states and the singlet σ− is the
Z2 odd states, where the Z2 means the π rotation of the lattice vectors,
(α1, α2) → (−α1,−α2). This point is similar to the aspect in magnetized
D-brane models, where irreducible representations correspond to the T 2/Z2

orbifold basis. Also, note that the first twisted states of the T 2/Z4 orbifold
correspond already to the Z2-invariant basis.

For example, we represent S ′
Z3

and T ′
Z3

on the above basis [35] ,

S ′
Z3

=
i√
3

(
1

√
2√

2 −1

)
, T ′

Z3
=

(
e2πi/3 0
0 1

)
, (2.88)

on the doublet (σ+, σ0)
T , while σ− is the trivial singlet. Here, we define

Z =

(
−1 0
0 −1

)
, T̃Z3 = ZT ′

Z3
. (2.89)

Then, they satisfy the following algebraic relations [35, 36],

(S ′
Z3
)2 = (T̃Z3)

3 = (S ′
Z3
T̃Z3)

3 = Z, Z2 = I. (2.90)

This group is the so-called T ′, which is the binary extension of A4 = T .

1See also Ref. [36].
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The non-Abelian discrete flavor symmetry on the T 2/Z3 orbifold is ∆(54),
and the three twsisted states correspond to the triplet of ∆(54). Thus, this
modular symmetry seems independent of the ∆(54) flavor symmetry.

Two representations are related as

S ′
Z3

= −iSZ3 , T ′
Z3

= e2πi/3(TZ3)
−1. (2.91)

When we change phases of S, T and ST , the group such as (ZN × ZM)⋊H
in sections 2.2 2.3 and would change to (ZN ′ × ZM ′)⋊H.

3 Flavor models with modular symmetry

3.1 Modular forms

String theory on T 2 as well as orbifolds T 2/ZN has the modular symmetry.
Furthermore, four-dimensional low-energy effective field theory on the com-
pactification T 2×X4 as well as (T

2/ZN)×X4 also has the modular symmetry,
where X4 is a four-dimensional compact space.

In this section and following two sections, we study lepton flavor models
with S3 or A4 symmetry from the modular group. Here, we do not specify
explicit string model but assume effective theory having S3 or A4 symmetry.

In effective theories having modular invariance, coupling constants and
fields should be obey specific transformation under transformation of the
modulus τ . Coupling constants are written by using holomorphic functions
which transform as

f(τ) → (cτ + d)kf(τ) (3.1)

under the modular transformation Eq.(2.2) called modular forms of weight
k. Similarly, a set of chiral superfields ϕ(I) transform under the modular
transformation (2.2) as a multiplet [52],

ϕ(I) → (cτ + d)−kIρ(I)(γ)ϕ(I), (3.2)

where −kI is the so-called modular weight and ρ(I) denotes a representation
matrix. Modular invariant kinetic terms expanded around a VEV of the
modulus τ are written by

|∂µτ |2

⟨−iτ + iτ̄⟩2
+
∑
I

|∂µϕ(I)|2

⟨−iτ + iτ̄⟩kI
. (3.3)
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Also, the superpotential should be invariant under the modular symme-
try. That is, the superpotential should have vanishing modular weight in
global supersymmetric models. Indeed, Yukawa coupling constants as well
as higher-order couplings constants are modular functions of τ [37,47,53,54].
In the framework of supergravity theory, the superpotential must be invariant
up to the Kähler transformation [52]. That implies that the superpotential
of supergravity models with the above kinetic term should have modular
weight one. In sections 3.3 and 3.4, we consider the global supersymmetric
models, and require that the superpotential has vanishing modular weight,
although it is straightforward to arrange modular weights of chiral superfields
for supergravity models.

The Dedekind eta-function η(τ) is one of famous modular functions, which
is written by

η(τ) = q1/24
∞∏
n=1

(1− qn), (3.4)

where q = e2πiτ . The η(τ) function behaves under S and T transformations
as

η(−1/τ) =
√
−iτη(τ), η(τ + 1) = eiπ/12η(τ). (3.5)

The former transformation implies that the η(τ)24 function has the modular
weight 12.

The modular functions (Y1, Y2, Y3) with weight 2, which behave as an A4

triplet, are obtained as

Y1(τ) =
i

2π

(
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

)
,

Y2(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω2η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
, (3.6)

Y3(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2η

′((τ + 2)/3)

η((τ + 2)/3)

)
,

in Ref. [39], where ω = e2πi/3. (See Appendix C.)
We can obtain the modular functions with weight 2, which behave as an

S3 doublet,

Y1(τ) =
i

4π

(
η′(τ/2)

η(τ/2)
+
η′((τ + 1)/2)

η((τ + 1)/2)
− 8η′(2τ)

η(2τ)

)
,

Y2(τ) =

√
3i

4π

(
η′(τ/2)

η(τ/2)
− η′((τ + 1)/2)

η((τ + 1)/2)

)
, (3.7)
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by a similar technique. (See Appendix C.)

3.2 Experimental values

Flavor eigenstates of neutrino (νe, νµ, ντ ) are linear combinations of mass
eigenstates (ν1, ν2, ν3). Their mixing matrix U , i.e. the so-called PMNS
matrix can be written by

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


=

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1


×

1 0 0
0 eiα2/2 0
0 0 eiα3/2

 , (3.8)

where cij = cos θij and sij = sin θij for mixing angles θij, δCP is the Dirac
CP phase, and αi are Majorana CP phases. The mass-squared differences
are defined by

δm2 = m2
2 −m2

1, (3.9)

∆m2 = m2
3 −

m2
1 +m2

2

2
, (3.10)

where mi is the mass eigenvalue of νi. We also define the ratio between the
mass-squared differences as

r =
δm2

|∆m2|
. (3.11)

Experimental values with normal ordering (NO) and inverted ordering (IO)
are shown in Table 3.1.

3.3 S3 models

3.3.1 Models with S3 symmetry

In this section, we construct the models with the flavor symmetry Γ(2) ≃ S3

and study them systematically.
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Parameter Normal Ordering Inverted Ordering
δm2/10−5eV2 7.37+0.17

−0.16 7.37+0.17
−0.16

|∆m2|/10−3eV2 2.525+0.042
−0.030 2.505+0.034

−0.032

sin2 θ12/10
−1 2.97+0.17

−0.16 2.97+0.17
−0.16

sin2 θ13/10
−2 2.15+0.07

−0.07 2.16+0.08
−0.07

sin2 θ23/10
−1 4.25+0.21

−0.15 5.89+0.16
−0.22 ⊕ 4.33+0.15

−0.16

δCP/π 1.38+0.23
−0.20 1.31+0.31

−0.19

r 2.92+0.10
−0.11 × 10−2 2.94+0.11

−0.10 × 10−2

Table 3.1: The best-fit values and 1σ-ranges in experiments with NO and IO
from Ref. [55].

SU(2)L × U(1)Y S3 kI
ecRa

(1,+1) 1 −3
ecRb

(1,+1) 1 −4
ecRc

(1,+1) 1′ −4

L(1) (2,−1/2) 1 1

L(2) (2,−1/2) 2 1
Hu (2,+1/2) 1 0
Hd (2,−1/2) 1 0

ϕ(1) (1, 0) 1 2

ϕ(2) (1, 0) 2 3

Table 3.2: S3 representations and kI in the S3 models.
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Table 3.2 shows the S3 representations and kI of lepton and Higgs su-
perfields. The ϕ(1) and ϕ(2) fields are flavon fields, and ϕ(1) and ϕ(2) are S3

singlet and doublet, respectively. In order to distinguish eRa and eRb
, we

assign kI different from each other. For such a purpose, we can impose an
additional symmetry, e.g. Z2. We assign kI such that we can realize the
diagonal charged lepton mass matrix similar to the A4 model. Indeed, the
superpotential terms in the charged lepton sector can be written by

We = βae
c
Ra
Hd(L

(1)ϕ(1))1 + βbe
c
Rb
Hd(L

(2)ϕ(2))1 − βce
c
Rc
Hd(L

(2)ϕ(2))1′ , (3.12)

where the βi are constant coefficients. We assume that the flavon fields
develop their VEVs as

⟨ϕ(1)⟩ = u1, ⟨ϕ(2)⟩ = (u2, 0). (3.13)

Then, we can realize the diagonal charged lepton mass matrix when the
neutral component of Hd develops its VEV. Similar to the A4 model, we can
realize the experimental values of the charged lepton masses, me,µ,τ by choos-
ing proper values of couplings βa. Note that the assignment of generations
to eRi

, i = a, b, c is not fixed yet.
Modular invariant Weinberg operators in the superpotential can be writ-

ten by

Lν
eff =

1

Λ

[
dHH

(
L(2)L(2)

)
2
Y (2) + 2aHH

(
L(1)L(2)

)
2
Y (2)

+bHH
(
L(1)L(1)

)
1
Y (1) + cHH

(
L(2)L(2)

)
1
Y (1)

]
, (3.14)

where a, b, c, d ∈ C are constant coefficients. Y (1) and Y (2) are modular
forms with modular weight 2, and Y (1) and Y (2) are S3 singlet and doublet
1 , respectively. Note that since 1′ in 2 × 2 = 1 + 1′ + 2 is antisymmetric,(
L(2)L(2)

)
1′
= 0. We denote Y (1) = Y and Y (2) = (Y1, Y2). There are 6 ways

to assign 3 generations of lepton doublets Li to S3 singlet L(1) and doublet
L(2). When we assign leptons (L1, L2, L3) as L

(1) = L1 and L(2) = (L2, L3),
we obtain the following mass matrix

Mν ∝ d

0 0 0
0 −Y1 −Y2
0 −Y2 Y1

+a

 0 Y1 Y2
Y1 0 0
Y2 0 0

+b

Y 0 0
0 0 0
0 0 0

+c

0 0 0
0 Y 0
0 0 Y

 .

(3.15)
1There are two independent modular forms with weight 2 and Γ(2) [39,56]. Thus, there

is only one independent modular form doublet Y (2) in (3.14).
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Furthermore, we rewrite y(τ) = Y2(τ)/Y1(τ), and (B,C,D) = (bY, cY, d)/a
and we obtain

Mν ∝

B 1 y
1 C −D −Dy
y −Dy C +D

 . (3.16)

3.3.2 Numerical results

There are four complex parameters (y,B,C,D) except overall coefficient in
the S3 model (3.14). Since there are eight real free parameters and also six
ways to assign three generations of leptons, it is difficult to search whole
region of parameters. In this subsection, we only study the case of L(1) = L1

and L(2) = (L2, L3) leading the mass matrix

Mν =

B 1 y
1 C −D −Dy
y −Dy C +D

 . (3.17)

First, we treat the function y(τ) as a free complex parameter instead of its
argment τ . Next, we fit the value of y by using concrete form of modular
form in (C.24).

We search parameters under following conditions:

|y| < 2.0, |Re(B,C,D)| < 10 , |Im(B,C,D)| < 10. (3.18)

There are many sets of parameters consistent with 3σ of experimental
results in both of NH and IH case. In the case of NH, predicted values
of mixing angles in this model cover whole region of experimental bound
with 3σ deviation. Thus, we cannot find any meaningful correlation between
mixing angles. On the other hand, we find some correlation between Dirac
and Majorana CP phases as in Figure 3.1.

All points in Figure 3.1 are consistent with 3σ of experimental results.
Hare, we pick up one point in Figure 3.1 as an example of solutions for NH.
Input values are

y = 0.97 + 0.70i, B = −10.0 + 4.0i, C = −2.0− 4.0i, D = 8.0− 6.0i
(3.19)

and predicted values of observables are

s212 = 3.23×10−1, s213 = 2.17×10−2, s223 = 4.47×10−1, r = 3.11×10−2,
(3.20)
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Figure 3.1: The predictions of (Left) δCP versus α21 and (Right) δCP versus
α31 for NH in S3 model.

and predicted values of Dirac and Majorana CP phases are

d(δCP , α21, α31) = (52.0,−34.2,−128.4)[deg]. (3.21)

The value of the modulus τ leading y(τ) = Y2(τ)/Y1(τ) is τ = 0.247+0.774i.
In the case of IH, the number of realistic solutions is much less than those

in NH.
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Figure 3.2: The predictions of (Left) δCP versus α21 and (Right) δCP versus
α31 for IH in S3 model.

Figure 3.2 shows the correlations between Dirac and Majorana CP phases.
All points in this figure are consistent with 3σ of experimental results. Hare,
we pick up one point in Figure 3.1 as an example of solutions for NH. Input
values are

y = 0.70 + 0.97i, B = −9.0 + 6.0i, C = 2.0− 5.0i, D = −4.0− 1.0i
(3.22)
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and predicted values of observables are

s212 = 3.39×10−1, s213 = 2.16×10−2, s223 = 4.41×10−1, r = 3.04×10−2

(3.23)
and predicted values of Dirac and Majorana CP phases are

(δCP , α21, α31) = (−23.2, 18.0,−59.6)[deg]. (3.24)

The value of the modulus τ leading the value of y(τ) is τ = 0.340 + 0.800i.

3.4 A4 models

3.4.1 Models with A4 symmetry

Let us consider a modular invariant flavor model with the A4 symmetry
for leptons. At first, we discuss the type I seesaw model where neutrinos
are Majorana particles. There are freedoms for the assignments of irre-
ducible representations and modular weights to leptons. We suppose that
three left-handed lepton doublets are compiled in a triplet of A4. The three
right-handed neutrinos are also of a triplet of A4. On the other hand, the
Higgs doublets are supposed to be singlets of A4. The generic assignments of
representations and modular weights to the MSSM fields and right-handed
neutrino superfields are presented in Table 3.3. In order to build a model
with minimal number of parameters, we introduce no flavons.

For the charged leptons, we assign three right-handed charged leptons
for three different singlets of A4, (1, 1

′′, 1′). Therefore, there are three inde-
pendent couplings in the superpotential of the charged lepton sector. Those
coupling constants can be adjusted to the observed charged lepton masses.
Since there are three singlets in the A4 group, there are six cases for the
assignment of three right-handed charged leptons. However, the freedom of
these assignments for right-handed neutrinos do not affect the results for
lepton mixing angles.

It may be helpful to comment that if the right-handed charged leptons
are of a A4 triplet, we cannot reproduce the well known charged lepton mass
hierarchy 1 : λ2 : λ5, where λ ≃ 0.2.

The modular invariant mass terms of the leptons are given as the following
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L eR, µR, τR νR Hu Hd Y

SU(2) 2 1 1 2 2 1
A4 3 1, 1′′, 1′ 3 1 1 3
−kI −1 (1) −1 (−3) −1 0 0 k = 2

Table 3.3: The charge assignment of SU(2), A4, and the modular weight
(−kI for fields and k for coupling Y ) in the type I seesaw model. The right-
handed charged leptons are assigned three A4 singlets, respectively. Values
of −kI in the parentheses are alternative assignments of the modular weight.

superpotentials:

we = αeRHd(LY ) + βµRHd(LY ) + γτRHd(LY ) , (3.25)

wD = g(νRHuLY )1 , (3.26)

wN = Λ(νRνRY )1 , (3.27)

where sums of the modular weights vanish. The parameters α, β, γ, g, and
Λ are constant coefficients. The functions Yi(τ) are A4 triplet modular forms
and they consist of the modulus parameter τ :

Y =

Y1(τ)Y2(τ)
Y3(τ)

 =

1 + 12q + 36q2 + 12q3 + . . .
−6q1/3(1 + 7q + 8q2 + . . . )
−18q2/3(1 + 2q + 5q2 + . . . )

 , q = e2πiτ , (3.28)

where the q-expansion of Yi(τ) is used. The Yi(τ) satisfy the constraint [39]:

Y 2
2 + 2Y1Y3 = 0 . (3.29)

Since the dimension of the space of modular forms of weight 2 for Γ(3) ≃ A4

is 3 (see, e.g. [39, 56]), all Y ’s in Eqs.(3.25)-(3.27) are the same modular
forms.

There is an alternative assignment of the modular weight for the left-
handed lepton and the right-handed charged leptons as presented in paren-
theses of Table 3.3 [40]. For the alternative assignment, the modular invariant
superpotential wD is given with constant parameters without the modular
coupling Y as:

wD = g(νRHuL)1 . (3.30)
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Next, we discuss the case where neutrino masses originate from the Wein-
berg operator. We have the unique possibility of the superpotential

wν = − 1

Λ
(HuHuLLY )1 , (3.31)

where both modular weights of L and right-handed charged leptons are −1
as shown in Table 3.3.

There is another possibility for neutrinos, that is, neutrinos are Dirac
particles. In this case, the neutrino mass matrix is derived only from wD in
Eq.(3.26).

3.4.2 Charged lepton mass matrix

Let us consider an assignment of A4 for the right-handed charged leptons
as (eR, µR, τR) = (1, 1′′, 1′) in Table 3.3. By using the decomposition rule of
a A4 tensor product in Appendix A, we obtain the mass matrix of charged
leptons as follows 2:

ME = diag[α, β, γ]

Y1 Y3 Y2
Y2 Y1 Y3
Y3 Y2 Y1


RL

. (3.32)

The coefficients α, β, and γ are taken to be real positive by rephasing
right-handed charged lepton fields without loss of generality. Those param-
eters can be written in terms of the modulus parameter τ and the charged
lepton masses as seen in Appendix B.

3.4.3 Neutrino mass matrix

Since the tensor product of 3⊗ 3 is decomposed into a symmetric triplet and
an antisymmetric triplet as seen in Appendix A, the superpotential of the
Dirac neutrino mass in Eq.(3.26) is expressed with additional two parameters

2There are six cases to assign A4 singlets for the right-handed charged leptons as
(eR, µR, τR) = (1, 1′′, 1′), (1, 1′, 1′′), (1′, 1, 1′′), (1′, 1′′, 1), (1′′, 1′, 1), (1′′, 1, 1′). The mass

matrices are obtained by permutations of rows each other. Then, the combinationsM†
EME

are same ones up to re-labeling of parameters α, β, and γ for all cases.
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g1 and g2 as:

wD = vu

νR1

νR2

νR3

⊗

g1
2νeY1 − νµY3 − ντY2

2ντY3 − νeY2 − µY1
2νµY2 − ντY1 − νeY3

⊕ g2

νµY3 − ντY2
νeY2 − νµY1
ντY1 − νeY3


= vug1 [νR1(2νeY1 − νµY3 − ντY2) + νR2(2νµY2 − ντY1 − νeY3)

+νR3(2ντY3 − νeY2 − νµY1)]

+ vug2 [νR1(νµY3 − ντY2) + νR2(ντY1 − νeY3) + νR3(νeY2 − νµY1)] .
(3.33)

The Dirac neutrino mass matrix is given as

MD = vu

 2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2
(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1
(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3


RL

. (3.34)

For the alternative case in Eq.(3.30), the superpotential of the Dirac
neutrino is written as:

wD = vug

νR1

νR2

νR3

⊗

νe
νµ
ντ

 = vug (νR1νe + νR2ντ + νR3νµ) . (3.35)

The Dirac neutrino mass matrix is simply given as

MD = vug

1 0 0
0 0 1
0 1 0


RL

. (3.36)

On the other hand, since the Majorana neutrino mass terms are symmet-
ric, the superpotential in Eq.(3.27) is expressed simply as

wN =Λ

2νR1νR1 − νR2νR3 − νR3νR2

2νR3νR3 − νR1νR2 − νR2νR1

2νR2νR2 − νR3νR1 − νR1νR3

⊗

Y1Y2
Y3


=Λ [(2νR1νR1 − νR2νR3 − νR3νR2)Y1 + (2νR3νR3 − νR1νR2 − νR2νR1)Y3

+(2νR2νR2 − νR3νR1 − νR1νR3)Y2] .

(3.37)
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Then, the right-handed Majorana neutrino mass matrix is given as

MN = Λ

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3


RR

. (3.38)

Finally, the effective neutrino mass matrix is obtained by the type I seesaw
as follows:

Mν = −MT
DM

−1
N MD . (3.39)

Models Mass Matrices

I (a): Seesaw MD ∼

 2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2
(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1
(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3

 ,

MN ∼

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3


I (a): Seesaw MD ∼

1 0 0
0 0 1
0 1 0

 ,MN ∼

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3


II: Weinberg Operator Mν ∼

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3


III: Dirac Neutrino Mν ∼

 2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2
(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1
(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3


Table 3.4: The classification of the modular invariant mass matrices for neu-
trino models.

For the case where neutrino masses originate from the Weinberg operator,
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the superpotential in Eq.(3.31) is written as:

wν = −v
2
u

Λ

2νeνe − νµντ − ντνµ
2ντντ − νeνµ − νµντ
2νµνµ − ντνe − νeντ

⊗

Y1Y2
Y3


= −v

2
u

Λ
[(2νeνe − νµντ − ντνµ)Y1 + (2ντντ − νeνµ − νµνe)Y3

+(2νµνµ − ντνe − νeντ )Y2] . (3.40)

The neutrino mass matrix is given as follows:

Mν = −v
2
u

Λ

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3


LL

. (3.41)

For the case where the neutrino is the Dirac particle, we use the mass matrix
in Eq.(3.34).

It is important to address the transformation needed to put kinetic terms
of matter superfields in the canonical form because kinetic terms are given
in Eq.(3.3). The canonical form is realized by the overall normalization of
the lepton mass matrices, which shifts our parameters such as

α→ α′ = α(KLKeR)
−1/2, β → β′ = β(KLKµR

)−1/2,

γ → γ′ = γ(KLKτR)
−1/2,

gi → g′i = gi(KLKνR)
−1/2 (i = 1, 2), Λ → Λ′ = ΛKνR

−1,

(3.42)

where Kϕ denotes a coefficient of the kinetic term of Eq.(3.3). Hereafter, we
rewrite α, β, γ, gi, and Λ for α′, β′, γ′, g′i, and Λ′ in our convention.

Finally, we summarize the classification of mass matrices for neutrino
models in Table 3.4.

3.4.4 Numerical results

We discuss numerical results for neutrino models in Table 3.4. The lepton
mass matrices in the previous section are given by modulus parameter τ . By
fixing τ , the modular invariance is broken, and then the lepton mass matrices
give the mass eigenvalues and flavor mixing numerically. In order to fix the
value of τ , we use the result of NuFIT 3.2 with the 3σ error-bar [57,58]. We
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consider both the normal hierarchy (NH) of neutrino masses m1 < m2 < m3

and the inverted hierarchy (IH) of neutrino masses m3 < m1 < m2, where
m1, m2, and m3 denote three light neutrino masses. The sum of neutrino
masses are restricted by the cosmological observations [59, 60]. Planck 2018
results provide us its cosmological upper bound for sum of neutrino masses;
120-160 meV [61] at the 95% C.L. depending on the combined data. We
have used the upper bound of 160 meV as a conservative constraint of our
models. By inputting the data of ∆m2

atm ≡ m2
3−m2

1, ∆m
2
sol ≡ m2

2−m2
1, and

three mixing angles θ23, θ12, and θ13 with 3σ error-bar given in Table 3.5, we
fix the modulus τ and the other parameters. Then we can predict the CP
violating Dirac phases δCP and Majorana phases α31, α21, which are defined
in Appendix C.

observable 3 σ range for NH 3 σ range for IH

∆m2
atm/10

−3eV2 (2.399 - 2.593) (−2.562 - −2.369)

∆m2
sol/10

−5eV2 (6.80 - 8.02) (6.80 - 8.02)

sin2 θ23 0.418 - 0.613 0.435 - 0.616

sin2 θ12 0.272 - 0.346 0.272 - 0.346

sin2 θ13 0.01981 - 0.02436 0.02006 - 0.02452

Table 3.5: The 3 σ ranges of neutrino oscillation parameters from NuFIT 3.2
for NH and IH [57,58].

Model I(a): Seesaw

The coefficients α/γ and β/γ in the charged lepton mass matrix are given
only in terms of τ after inputting the observed values me/mτ and mµ/mτ

as shown in Appendix B. Then, we have two free parameters, g1/g2 and the
modulus τ apart from the overall factors in the neutrino sector. Since these
are complex, we set

τ = Re[τ ] + i Im[τ ] ,
g2
g1

= g eiϕg . (3.43)

The fundamental domain of τ is presented in Ref. [39]. In practice, we restrict
our parametric search in Re[τ ] ∈ [−1.5, 1.5] and Im[τ ] > 0.6. We also take
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ϕg ∈ [−π, π]. These four parameters are fixed by the observed ∆m2
sol/∆m

2
atm

and three mixing angles θ23, θ12 and θ13.

Figure 3.3: The prediction of δCP

versus sin2 θ23 for NH in model I(a).
The vertical red lines represent the
upper and lower bounds of the ex-
perimental data with 3 σ.

Figure 3.4: The prediction of JCP

versus sin2 θ23 for NH in model I(a).
The vertical red lines represent the
upper and lower bounds of the ex-
perimental data with 3 σ.

Figure 3.5: The prediction of Majo-
rana phases α21 and α31 for NH in
model I(a).

Figure 3.6: The prediction of mee

versus m1 for NH in model I(a). The
red vertical line denotes the upper-
bound of m1.

At first, we present the prediction of the Dirac CP violating phase δCP

versus sin2 θ23 for NH of neutrino masses in Fig.1. It is emphasized that
sin2 θ23 is restricted to be larger than 0.54, and δCP = ±(50◦–180◦). Since
the correlation of sin2 θ23 and δCP is characteristic, this prediction is testable
in the future experiments of neutrinos. On the other hand, predicted sin2 θ12
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parameter Im[τ ] Re[τ ]
region (0.66, 0.73) ±(0.25, 0.31)⊕±(0.46, 0.54)⊕±(0.66, 0.75)

⊕(1.17, 1.32) ⊕± (1.25, 1.31)⊕±(1.46, 1.50)

parameter g ϕg α/γ β/γ
region (1.20, 1.22) ±(84, 88)◦ ⊕±(92, 93)◦ (202, 203) (3286, 3306)

Table 3.6: The parameter regions consistent with the experimental data of
Table 3.5 for model I(a). Results do not change under the exchange of α/γ
and β/γ.

and sin2 θ13 cover observed full region with 3σ error-bar, and there are no
correlations with δCP .

We also show the predicted Jarlskog invariant JCP [62], characterizing the
magnitude of CP violation in neutrino oscillations, versus sin2 θ23 for NH of
neutrino masses in Fig.2. The magnitude of JCP and predicted to be 0 – 0.035
depending on θ23.

We show the prediction of Majorana phases α21 and α31 in Fig.3. The
predicted regions are restricted, α21 ≃ α31 = ±(90◦–140◦). This result is
used in the calculation of neutrinoless double beta decay.

Let us show the prediction of the effective mass mee which is the measure
of the neutrinoless double beta decay as seen in Appendix C. The prediction
of mee is presented versus m1 in Fig.4. It is remarkable that mee is around
22meV while m1 is 40meV. The red vertical line in Fig.4 denotes the upper
bound ofm1, which is derived from the cosmological bound

∑
mi < 160meV.

The obtained value of m1 indicates near degenerate neutrino mass spectrum,
m1 ≃ m2 ≃ 40meV and m3 ≃ 60meV. The prediction of mee ≃ 22meV is
testable in the future experiments of the neutrinoless double beta decay. We
predict the rather large sum of neutrino masses as

∑
mi ≃ 145meV, which

is required by consistency with the observed value of sin2 θ13.
The parameters of our model are determined by the input data of Table

3.5. Numerical values are listed in Table 3.6.
We have also scanned the parameter space for the case of IH of neutrino

masses. We have found parameter sets which fit the data of ∆m2
sol and ∆m2

atm

reproduce the observed three mixing angles sin2 θ23, sin2 θ12, and sin2 θ13.
However, the predicted

∑
mi is around 190–200meV. Therefore, we also
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omit to show numerical results.

Model I(b): Seesaw

There is another assignment of the modular weight for the left-handed lepton
and the right-handed charged leptons as presented in parentheses of Table
3.3 [40]. Then, the Dirac neutrino mass matrix is given by the constant pa-
rameter as seen in Eq.(3.36). We have scanned the parameter space for both
NH and IH of neutrino masses. The parameters to reproduce the observed
∆m2

sol and ∆m2
atm cannot give the large mixing angle of θ23. The predicted

value sin2 θ23 ≃ 0.18 for NH. We also obtain sin2 θ12 ≃ 0.8 and sin2 θ13 ≃ 0.15.
On the other hand, the predicted value sin2 θ23 ≃ 0, sin2 θ12 ≃ 0.5, and
sin2 θ13 ≃ 0 for IH. In conclusion, the model I(b) is inconsistent with the
experimental data of Table 3.5.

It may be useful to add the discussion on the model by Criado and Fer-
uglio [40], where the charged lepton mass matrix is different from ours in
Eq.(3.32), but given by a flavon while the neutrino mass matrix is just same
one in model I(b). We have reproduced the numerical results of Ref. [40],
in which the three mixing angles and masses are consistent with the exper-
imental data and the cosmological bound, respectively, for NH of neutrino
masses. The predicted CP violating phase is δCP ≃ ±100◦.

Model II: Weinberg Operator

In this case, the modulus τ is the only parameter in the neutrino mass matrix
apart from the overall factors. We can find the parameter space to be consis-
tent with the observed sin2 θ12 as well as ∆m

2
sol and ∆m2

atm for both NH and
IH. However, the predicted sin2 θ23 is around 0.8 and sin2 θ13 is very large
as 0.45 for NH. On the other hand, for IH, the predicted sin2 θ23 is rather
small as 0.35 and sin2 θ13 is around 0.04, which is larger than 1.6 times of the
observed value. Thus, the neutrino mass matrix by the Weinberg operator
do not lead to the realistic flavor mixing.

Model III: Dirac Neutrino

There is still a possibility of the neutrino being the Dirac particle. Then, the
neutrino mass matrix is different from the Majorana one as shown in Table
3.4 although parameters are τ and g likewise in the case of the seesaw model
I(a).
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We have found the parameter space to be consistent with both observed
sin2 θ23 and sin2 θ12 as well as ∆m2

sol and ∆m2
atm for NH. However, the pre-

dicted sin2 θ13 is much smaller than the observed value of O(10−3).

Figure 3.7: The prediction of δCP

versus sin2 θ23 for IH in model III.
The vertical red lines represent the
upper and lower bounds of the ex-
perimental data with 3 σ.

Figure 3.8: The prediction of JCP

versus sin2 θ23 for IH in model III.
The vertical red lines represent the
upper and lower bounds of the ex-
perimental data with 3 σ.

Im[τ ] Re[τ ] g ϕg α/γ β/γ

0.90 – 1.12 ±(0.01 – 0.07) 1.43 – 2.12 ±(76 – 104)◦ 59 – 88 857 – 1302
±(0.94 – 1.10)

Table 3.7: The parameter regions consistent with the experimental data of
Table 3.5 for model III. Results do not change under the exchange of α/γ
and β/γ.

On the other hand, the sin2 θ13 is completely consistent with the observed
value for IH of neutrino masses. We present the prediction of the Dirac CP
violating phase δCP versus sin2 θ23 for IH in Fig.5. The predicted δCP is still
allowed in [−π, π] depending on the magnitude of sin2 θ23. Since there are no
correlations among sin2 θ12, sin

2 θ13, and δCP , we omit figures of sin2 θ12 and
sin2 θ13.

We also show the predicted Jarlskog invariant JCP versus sin2 θ23 for IH of
neutrino masses in Fig.6. The magnitude of JCP is predicted to be 0 – 0.035.

In order to see the neutrino mass dependence of sin2 θ13, we plot sin2 θ13
versus

∑
mi in Fig.6. The

∑
mi is required in 102 – 150meV to be consistent
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with the observed value of sin2 θ13.
We summarize numerical values of parameters in Table 5. In the Dirac

neutrino model, the neutrinoless double beta decay is forbidden.

4 Conclusion

Modular symmetry is the symmetry of T 2 and which has subgroups such as S3

and A4. In chapter 2, we have studied the modular symmetry in magnetized
D-brane models and heterotic orbifold models. In magnetized D-brane mod-
els, representations due to zero-modes on T 2 are reducible except the models
with the magnetic flux M = 2. Irreducible representations are provided by
zero-modes on the T 2/Z2, i.e. Z2 even states and odd states. It is rea-
sonable because (ST )3 transforms the lattice vectors (α1, α2) to (−α1,−α2).
The orders of modular groups are large, and in general, they include the
Z8 symmetry as the center. In the case of M = 2, the forth power of T -
transformation becomes identity (T(2))

4 = I and zero-modes form doublet of
S3. After all, (Z8 × Z4) ⋊ S3 appears as whole symmetry. In the case of
M = 4, the eighth power of T -transformation becomes identity (T(4)±)

8 = I.
Zero-modes are divided into Z2 even mods forming triplet of A4 and odd
mode forming singlet. After all, (Z8 ×Z8)⋊A4 appears as whole symmetry.
The D4 flavor symmetry is a subgroup of the modular group, which is rep-
resented in the models with the magnetic flux M = 2. The system including
zero-modes with M = 2, M = 4 and larger even M , also includes the D4

flavor symmetry, when we define transformations of couplings in a proper
way.

In heterotic orbifold models, the similarity with magnetized D-brane mod-
els on T 2 can be seen in the behavior of their zero-modes. The heterotic
model on the T 2/Z4 has exactly the same representation as the magnetized
model with M = 2, and the modular symmetry includes the D4 flavor sym-
metry. The representation due to the twisted states on the T 2/Z3 orbifold
is reducible, and their irreducible representations correspond to Z2 even and
odd states, similar to those in magnetized models. Thus, the ∆(54) flavor
symmetry seems independent of the modular symmetry in the T 2/Z3 orb-
ifold models. Note that the first twisted states on the T 2/Z4 are Z2-invariant
states. In this sense, we find that the modular symmetry is the symmetry
on the Z2 orbifold in both heterotic orbifold models and magnetized D-brane
models. The symmetries, which remain under the Z2 twist, can be realized
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as the modular symmetry.
In chapter 3, we have studied lepton flavor models with S3 and A4 sym-

metries. At this stage, we assume effective theories with S3 and A4 flavor
symmetries from the modular symmetry without specific model building of
string compactification. We study the phenomenological implications of the
modular symmetry Γ(2) ≃ S3 and Γ(3) ≃ A4 facing recent experimental
data of neutrino oscillations. The mass matrices of neutrinos and charged
leptons are essentially given by fixing the expectation value of the modu-
lus τ . In the case of no flavon, this modulus is the only source of modular
invariance breaking. In S3 models, we introduce flavons and only consider
Weinberg operator for effective Majorana mass term of left-handed neutrino.
As the result of numerical study, we have found realistic value of parameters
consistent with experimental results within 3σ-range for NH and IH.

In A4 models, we introduce no flavons in contrast with conventional flavor
models with the A4 symmetry. We classify the neutrino models along with
type I seesaw (model I(a) and I(b)), Weinberg operator (model II), and Dirac
neutrino (model III). For the charged lepton mass matrix, three right-handed
charged leptons eR, µR, and τR are assigned to three different singlets 1,
1′′, and 1′ of A4, respectively. For NH of neutrino masses, we have found
that the seesaw model I(a) is available facing recent experimental data of
NuFIT 3.2 [57,58] and the cosmological bound of the sum of neutrino masses
[61]. The predicted sin2 θ23 is restricted to be larger than 0.54 and δCP =
±(50◦ – 180◦). The sharp correlation between sin2 θ23 and δCP is testable in
the future experiments of the neutrino oscillations. It is remarkable that mee

is around 22meV while the sum of neutrino masses is 145meV. For IH of
neutrino masses, the Dirac neutrino model III is completely consistent with
the experimental data of NuFIT 3.2 and the cosmological bound of the sum
of neutrino masses. The predicted δCP is still allowed in [−π, π] depending
on the magnitude of sin2 θ23. The

∑
mi = 102 – 150meV is required by

consistency with the observed value of sin2 θ13. The seesaw model I(b) and
the Weinberg operator model II cannot reproduce the observed mixing angles
after inputting the data of ∆m2

sol and ∆m2
atm for both NH and IH.

It would be interesting to try to explain baryon asymmetry universe by
using lepton number violating effect in our A4 models. Since almost all of pa-
rameters in model I(a) of A4 are determined and the region of Dirac and two
Majorana CP violating phases are predicted, the magnitude of baryon asym-
metry and the energy scale of right-handed neutrinos would be predictable.
It would be also interesting to study flavon-less models of S3 symmetry for
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leptons and quarks to construct minimal unification models of quarks and
leptons.

As seen in chapter 2, non-Abelian discrete symmetries for flavor possibly
appear from string theory in natural ways. Thus, flavor models with finite
modular groups are worth studying in the sense of not only model building
for flavor physics, but also exploration of underlying theory of the SM.
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A Non-Abelian discrete flavor symmetry in

magnetized D-brane models

In this Appendix, we give a brief review on non-Abelian discrete flavor sym-
metries in magnetized D-brane models [31].

As mentioned in section 2.2.1, the Yukawa coulings as well as higher order
couplings have the coupling selection rule (2.18). That is, we can define Zg

charges for zero-modes. Such Zg transformation is represented on ψi,M=g by

Z =


1

ρ
ρ2

. . .

ρg−1

 , (A.1)

where ρ = e2πi/g. Furthermore, their effective field theory has the following
permutation symmetry,

ψi,g → ψi+1,g, (A.2)

and such permutation can be represented by

C =


0 1 0 0 · · · 0
0 0 1 0 · · · 0

. . .

1 0 0 0 · · · 0

 . (A.3)

This is another ZC
g symmetry. However, these two generators do not com-

mute each other,
CZ = ρZC. (A.4)

Thus, the flavor symmetry corresponds to the closed algebra including Z and
C. Its diagonal elements are given by ZmZ ′n, i.e. Zg × Z ′

g where

Z ′ =

 ρ
. . .

ρ

 , (A.5)

and the full group corresponds to (Zg × Z ′
g)⋊ ZC

g .
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Furthermore, the zero-modes ψi,M=gn with the magnetic flux M = gn
also represent (Zg × Z ′

g) ⋊ ZC
g . The zero-modes, ψi,M=gn have Zg charges

(mod g). Under C, they transform as

ψi,M=gn → ψi+n,M=gn. (A.6)

For example, the model with g = 2 has the D4 flavor symmetry. The
zero-modes, (

ψ0,2

ψ1,2

)
, (A.7)

correspond to the D4 doublet 2, where eight D4 elements are represented by

±
(

1 0
0 1

)
, ±

(
0 1
1 0

)
, ±

(
0 1
−1 0

)
, ±

(
1 0
0 −1

)
.

(A.8)
In addition, when the model has the zero-modes ψi,4 (i = 0, 1, 2, 3), the zero-
modes, ψ0,4 and ψ2,4 ( ψ1,4 and ψ3,4) transform each other under C, and
they have Z2 charge even (odd). Thus, ψ0,4 ± ψ2,4 correspond to 1+± of D4

representations, while ψ1,4±ψ3,4 correspond to 1−±. Furthermore, among the
zero-modes ψi,6 (i = 0, 1, 2, 3, 4, 5), the zero-modes ψi,6 and ψi+3,6 transform
each other under C. Hence, three pairs of zero-modes,(

ψ0,6

ψ3,6

)
,

(
ψ1,6

ψ4,6

)
,

(
ψ2,6

ψ5,6

)
, (A.9)

correspond to three D4 doublets. These results are shown in Table A.1.

Magnetic flux M D4 representations

2 2
4 1++, 1+−, 1−+, 1−−
6 3 ×2

Table A.1: D4 representation
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B Non-Abelian discrete flavor symmetry in

heterotic orbifold models

Here, we give a brief review on non-Abelian discrete flavor symmetries in
heteotic orbifold models [28].

The twisted string xi on the orbifold satisfy the following boundary con-
dition:

xi(σ = 2π) = (θnx(σ = 0))i +
∑
k

mkα
i
k, (B.1)

similar to Eq. (2.68). Thus, the twisted string can be characterized by the
space group element g = (θn,

∑
kmkα

i
k). The product of the two space group

elements (θn1 , v1) and (θn2 , v2) is computed as

(θn1 , v1)(θ
n2 , v2) = (θn1θn2 , v1 + θn1v2). (B.2)

The space group element g belongs to the same conjugacy class as hgh−1,
where h is any space group element on the same orbifold.

Now, let us consider the couplings among twisted strings corresponding
to space group elements (θnk , vk). Their couplings are allowed by the space
group invariance if the following condition:∏

k

(θnk , vk) = (1, 0), (B.3)

is satisfied up to the conjugacy class. That includes the point group selection
rule,

∏
k θ

nk = 1, which is the ZN invariance on the ZN orbifold. We can
define discrete Abelian symmetries from the space group invariance as well
as the point group invariance. These symmetries together with geometrical
symmetries of orbifolds become non-Abelian discrete flavor symmetries in
heterotic orbifold models. We show them explicitly on concrete orbifolds.

B.1 S1/Z2 orbifold

The S1/Z2 orbifold has two fixed points, which are denoted by the space
group elements, (θ,mα) with m = 0, 1, where α is the lattice vector. In
short, we denote them by (θ,m) and the corresponding twisted states are
denoted by σ(θ,m). These states transform(

σθ,0
σθ,1

)
−→

(
−1 0
0 −1

)(
σθ,0
σθ,1

)
, (B.4)
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under the Z2 twist. In addition, the space group invariance requires
∑

kmk =
0 (mod 2) for the couplings corresponding to the product of the space group
elements

∏
k(θ,mk) with mk = 0, 1. Hence, we can define another Z2 sym-

metry, under which σ(θ,0) is even, while σ(θ,1) is odd. That is, another Z2

transformation can be written by(
σθ,0
σθ,1

)
−→

(
1 0
0 −1

)(
σθ,0
σθ,1

)
. (B.5)

Furthermore, there is the geometrical permutation symmetry, which ex-
change two fixed points each other. Such a permutation is represented by(

σθ,0
σθ,1

)
−→

(
0 1
1 0

)(
σθ,0
σθ,1

)
. (B.6)

The closed algebra including Eqs.(B.4), (B.5) and (B.6) is D4 ≃ (Z2 ×Z2)⋊
Z2.

B.2 T 2/Z3 orbifold

As shown in Section 2.3, the T 2/Z3 orbifold has three fixed points denoted
by (θ,m) with m = 0, 1, 2, and the corresponding twisted states are denote
by σ(θ,m). The Z3 twist transforms σθ,0

σθ,1
σθ,2

 −→

 e2πi/3 0 0
0 e2πi/3 0
0 0 e2πi/3

 σθ,0
σθ,1
σθ,2

 . (B.7)

The space group invariance requires
∑

kmk = 0 (mod 3) for the couplings
corresponding to the product of the space group elements

∏
k(θ,mk) with

mk = 0, 1, 2. Then, we can define another Z3 symmetry, under which σ(θ,m)

transform  σθ,0
σθ,1
σθ,2

 −→

 1 0 0
0 e2πi/3 0
0 0 e2πi/3

 σθ,0
σθ,1
σθ,2

 . (B.8)

There is also the permutation symmetry of the three fixed points, that is,
S3. Thus, the flavor symmetry is ∆(54) ≃ (Z3 × Z3)⋊ S3.
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B.3 T 2/Z4 orbifold

As shown in Section 2.3, the T 2/Z4 orbifold has two θ fixed points denoted
by (θ,m) with m = 0, 1, and the corresponding twisted states are denote by
σ(θ,m). The Z4 twist transforms(

σθ,0
σθ,1

)
−→

(
i 0
0 i

)(
σθ,0
σθ,1

)
. (B.9)

The space group invariance requires
∑

kmk = 0 (mod 2) for the couplings
corresponding to the product of the space group elements

∏
k(θ,mk) with

mk = 0, 1. Then, we can define another Z2 symmetry, under which σ(θ,m)

transform  σθ,0
σθ,1
σθ,2

 −→
(

1 0
0 −1

)(
σθ,0
σθ,1

)
. (B.10)

There is also the permutation symmetry of the two fixed points. Thus,
the flavor symmetry is almost the same as one on the S1/Z2 orbifold. The
difference is the Z4 twist, although its squire is nothing but the Z2 twist.
Hence, the flavor symmetry can be written as (D4 × Z4)/Z2.

B.4 T 2/Z2 orbifold

As shown in Section 2.3, the T 2/Z4 orbifold has two θ fixed points denoted by
(θ, (m,n)) with m,n = 0, 1, and the corresponding twisted states are denote
by σθ,(m,n). The space group invariance requires

∑
kmk =

∑
j nj = 0 (mod 2)

for the couplings corresponding to the product of the space group elements∏
k(θ, (mk, nj)) with mk, nj = 0, 1. There are two independent permutation

symmetries between (θ, (0, n)) and (θ, (1, n)), and (θ, (m, 0)) and (θ, (m, 1)).
Thus, this structure seems be a product of two one-dimensional orbifolds,
S1/Z2. However, the Z2 twist is comment such as σθ,(m,n) −→ −σθ,(m,n).
Thus, the flavor symmetry can be written by (D4 ×D4)/Z2.
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C Modular forms

Here, following [39], we derive modular functions with modular weight 2,
which behave as an A4 triplet and an S3 doublet.

Suppose that the function fi(τ) has modular weight ki. That is, it trans-
forms under the modular transformation (2.2),

fi(τ) → (cτ + d)kifi(τ). (C.1)

Then, it is found that

d

dτ

∑
i

log fi(τ) → (cτ + d)2
d

dτ

∑
i

log fi(τ) + c(cτ + d)
∑
i

ki. (C.2)

Thus, d
dτ

∑
i log fi(τ) is a modular function with the weight 2 if∑

i

ki = 0. (C.3)

We find the following transformation behaviors under T ,

η(3τ) → eiπ/4η(3τ),

η(τ/3) → η((τ + 1)/3),

η((τ + 1)/3) → η((τ + 2)/3), (C.4)

η((τ + 2)/3) → eiπ/12η(τ/3),

and the following transformations under S,

η(3τ) →
√

−iτ
3
η(τ/3),

η(τ/3) →
√
−i3τη(3τ),

η((τ + 1)/3) → e−iπ/12
√
−iτη((τ + 2)/3), (C.5)

η((τ + 2)/3) → eiπ/12
√
−iτη((τ + 1)/3).

Using them, we can construct the modular functions with weight 2 by

Y (α, β, γ, δ|τ)

=
d

dτ
(α log η(τ/3) + β log η((τ + 1)/3) + γ log η((τ + 2)/3) + δ log η(3τ)) ,

(C.6)
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with α+β+γ+δ = 0 because of Eq.(C.3). These functions transform under
S and T as

S : Y (α, β, γ, δ|τ) → τ 2Y (δ, γ, β, α|τ),
T : Y (α, β, γ, δ|τ) → Y (γ, α, β, δ|τ). (C.7)

Now let us construct anA4 triplet by the modular functions Y (α, β, γ, δ|τ).
We use the (3× 3) matrix presentations of S and T as

ρ(S) =
1

3

 −1 2 2
2 −1 2
2 2 −1

 , ρ(T ) =

 1 0 0
0 ω 0
0 0 ω2

 , (C.8)

where ω = e2πi/3. They satisfy

(ρ(S))2 = I, (ρ(S)ρ(T ))3 = I, (ρ(T ))3 = I, (C.9)

that is, Γ(3) ≃ A4. Using these matrices and Y (α, β, γ, δ|τ), we search an
A4 triplet, which satisfy, Y1(−1/τ)

Y2(−1/τ)
Y3(−1/τ)

 = τ 2ρ(S)

 Y1(τ)
Y2(τ)
Y3(τ)

 ,

 Y1(τ + 1)
Y2(τ + 1)
Y3(τ + 1)

 = ρ(T )

 Y1(τ)
Y2(τ)
Y3(τ)

 .

(C.10)

Their solutions are written by

Y1(τ) = 3cY (1, 1, 1,−3|τ),
Y2(τ) = −6cY (1, ω2, ω, 0|τ),
Y3(τ) = −6cY (1, ω, ω2, 0|τ),

(C.11)

up to the constant c. They are explicitly written by use of eta-function as

Y1(τ) =
i

2π

(
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

)
,

Y2(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω2η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
, (C.12)

Y3(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2η

′((τ + 2)/3)

η((τ + 2)/3)

)
,
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where we set c = i/(2π). They can be expanded as

Y1(τ) = 1 + 12q + 36q2 + 12q3 + · · · ,
Y2(τ) = −6q1/3(1 + 7q + 8q2 + · · · ), (C.13)

Y3(τ) = −18q2/3(1 + 2q + 5q2 + · · · ).

Similarly, we can construct the modular functions, which behave as an
S3 doublet. Under T , we find the following transformation behaviors,

η(2τ) → eiπ/6η(2τ),

η(τ/2) → η((τ + 1)/2), (C.14)

η((τ + 1)/2) → eiπ/12η(τ/2).

(C.15)

Also, S transformation is represented by

η(2τ) →
√

−iτ
2
η(τ/2),

η(τ/2) →
√
−i3τη(2τ), (C.16)

η((τ + 1)/2) → e−iπ/12
√
−iτη((τ + 1)/2).

(C.17)

Then, we consider

Y (α, β, γ|τ) = d

dτ
(α log η(τ/2) + β log η((τ + 1)/2) + γ log η(2τ)) . (C.18)

These functions are the modular functions with the weight 2 if α+β+γ = 0.
They transform under S and T as

S : Y (α, β, γ|τ) → τ 2Y (γ, β, α|τ),
T : Y (α, β, γ|τ) → Y (γ, α, β|τ). (C.19)

Using Y (α, β, γ|τ), we construct the S3 doublet. For example, we use the
(2× 2) matrix representations of S and T as

ρ(S) =
1

2

(
−1 −

√
3

−
√
3 1

)
, ρ(T ) =

(
1 0
0 −1

)
. (C.20)
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They satisfy

(ρ(S))2 = I, (ρ(S)ρ(T ))3 = I, (ρ(T ))2 = I, (C.21)

that is, Γ(3) ≃ S3. Using these matrices and Y (α, β, γ|τ), we search an S3

doublet, which satisfy,(
Y1(−1/τ)
Y2(−1/τ)

)
= τ 2ρ(S)

(
Y1(τ)
Y2(τ)

)
,

(
Y1(τ + 1)
Y2(τ + 1)

)
= ρ(T )

(
Y1(τ)
Y2(τ)

)
.

(C.22)
Their solutions are written by

Y1(τ) = cY (1, 1,−2|τ), Y2(τ) =
√
3cY (1,−1, 0|τ), (C.23)

up to the constant c. They are explicitly written by use of eta-function as

Y1(τ) =
i

4π

(
η′(τ/2)

η(τ/2)
+
η′((τ + 1)/2)

η((τ + 1)/2)
− 8η′(2τ)

η(2τ)

)
,

Y2(τ) =

√
3i

4π

(
η′(τ/2)

η(τ/2)
− η′((τ + 1)/2)

η((τ + 1)/2)

)
, (C.24)

where we set c = i/(2π). Moreover, they can be expanded as

Y1(τ) =
1

8
+ 3q + 3q2 + 12q3 + 3q4 · · · ,

Y2(τ) =
√
3q1/2(1 + 4q + 6q2 + 8q3 · · · ). (C.25)
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D Multiplication rule of S3 and A4 group

D.1 S3 group

We use the multiplication rule of the S3 doublet as follows:

(
a1
a2

)
2

⊗
(
b1
b2

)
2

= (a1b1 + a2b2)1 ⊕ (a1b2 − a2b1)1′

⊕
(
a1b1 − a2b2
−a1b2 − a2b1

)
2

,

1⊗ 1 = 1 , 1′ ⊗ 1′ = 1 . (D.1)

D.2 A4 group

We use the multiplication rule of the A4 triplet as follows:a1a2
a3


3

⊗

b1b2
b3


3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′

⊕ (a2b2 + a1b3 + a3b1)1′′

⊕ 1

3

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1


3

⊕ 1

2

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3


3

,

1⊗ 1 = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 . (D.2)

More details are shown in the review [16,17].
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E Determination of α/γ and β/γ

The coefficients α, β, and γ in Eq.(3.32) are taken to be real positive without
loss of generality. We show these parameters are described in terms of the
modular parameter τ and the charged lepton masses. We rewrite the mass
matrix of Eq.(3.32) as

M
(1)
E = γY3diag[α̂, β̂, 1]

Ŷ1 Ŷ2 1

1 Ŷ1 Ŷ2
Ŷ2 1 Ŷ1


RL

, (E.1)

where α̂ ≡ α/γ, β̂ ≡ β/γ, Ŷ1 ≡ Y1/Y3, and Ŷ2 ≡ Y2/Y3. We use the relation
Y 2
2 +2Y1Y3 = 0 to eliminate Y1 in the equation. Then, we obtain the following

three equations:

Tr[M
(1)†
E M

(1)
E ] =

τ∑
i=e

m2
i =

|γY3|2

4
(1 + α̂2 + β̂2)C1 , (E.2)

Det[M
(1)†
E M

(1)
E ] =

τ∏
i=e

m2
i =

|γY3|6

64
α̂2β̂2C2 , (E.3)

Tr[M
(1)†
E M

(1)
E ]2 − Tr[(M

(1)†
E M

(1)
E )2]

2
= χ =

|γY3|4

16
(α̂2 + α̂2β̂2 + β̂2)C3 ,

(E.4)

where χ ≡ m2
em

2
µ +m2

µm
2
τ +m2

τm
2
e. The coefficients C1, C2, and C3 depend

only on Ŷ2 ≡ Y eiϕY , where Y is real positive and ϕY is a phase parameter,

C1 = (2 + Y 2)2,

C2 = 64 + 400Y 6 + Y 12 − 40Y 3(Y 6 − 8) cos(3ϕY )− 16Y 6 cos(6ϕY ) ,

C3 = 16 + 16Y 2 + 36Y 4 + 4Y 6 + Y 8 − 8Y 3(Y 2 − 2) cos(3ϕY ) .

(E.5)

These values are determined if the value of modulus τ is fixed. Then, we
obtain the general equations which describe α̂ and β̂ as functions of charged
lepton masses and τ :

(1 + s)(s+ t)

t
=

(
∑
m2

i /C1)(χ/C3)∏
m2

i /C2

,
(1 + s)2

s+ t
=

(
∑
m2

i /C1)
2

χ/C3

,

(E.6)
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where we redefine the parameters α̂2+ β̂2 = s and α̂2β̂2 = t. They are related
as follows,

α̂2 =
s±

√
s2 − 4t

2
, β̂2 =

s∓
√
s2 − 4t

2
. (E.7)
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F Lepton mixing and neutrinoless double beta

decay

Supposing neutrinos to be Majorana particles, the PMNS matrix UPMNS [63,
64] is parametrized in terms of the three mixing angles θij (i, j = 1, 2, 3; i <
j), one CP violating Dirac phase δCP, and two Majorana phases α21, α31 as
follows:

UPMNS =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13


×

1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 , (F.1)

where cij and sij denote cos θij and sin θij, respectively.
The rephasing invariant CP violating measure, the Jarlskog invariant [62],

is defined by the PMNS matrix elements Uαi. It is written in terms of the
mixing angles and the CP violating Dirac phase as:

JCP = Im
[
Ue1Uµ2U

∗
e2U

∗
µ1

]
= s23c23s12c12s13c

2
13 sin δCP . (F.2)

There are also other invariants I1 and I2 associated with Majorana phases
[65–68],

I1 = Im [U∗
e1Ue2] = s12c12c

2
13 sin

(α21

2

)
,

I2 = Im [U∗
e1Ue3] = c12s13c13 sin

(α31

2
− δCP

)
.

(F.3)

We calculate δCP, α21, and α31 with these relations.
In terms of these parametrization, the effective mass for the 0νββ decay

is given as follows:

mee =
∣∣m1c

2
12c

2
13 +m2s

2
12c

2
13e

iα21 +m3s
2
13e

i(α31−2δCP )
∣∣ . (F.4)
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