<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>第9回関数空間セミナー報告集 (Seminar on Function Spaces, 2000)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>宮島 靖雄, 竹尾 富貴子, 井上 純治</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2001-01-01</td>
</tr>
<tr>
<td>Note</td>
<td>2000年12月24日(日)〜12月26日(火)会場:お茶の水女子大学理学部</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
</tbody>
</table>

ファイル情報

- **66.pdf**

DOI

10.14943/740

URL

http://hdl.handle.net/2115/743; http://eprints3.math.sci.hokudai.ac.jp/1225/
第9回 関数空間セミナー報告集
（Seminar on Function Spaces, 2000）

2000年12月24日(日) ～ 12月26日(火)
（会場：お茶の水女子大学理学部）

代表者：宮島 静雄・竹尾富貴子・井上 純治

Series #66. February, 2001
Several properties of Aluthge transformation ... 1
 T. Yamazaki (Kanagawa University)

Powers of class $wA(s, t)$ operators associated with generalized Aluthge transformation
.. 7
 M. Yanagida (Science University of Tokyo)

On some classes of operators by Fujii and Nakamoto related to p-hyponormal and paranormal operators... 13
 M. Ito (Science University of Tokyo)

Furuta's question on chaotic order ... 19
 M. Fujii (Osaka Kyoiku University)

Chaotic order and Furuta inequality... 25
 E. Kamei (Maebashi Institute of Technology)

Weak projections on unital commutative C^*-algebras.. 31
 K. Izuchi (Niigata University)

Measurable Norms and Related Conditions in Some Examples............................... 34
 K. Harai and M. Maeda (Ochanomizu University)
Quasi-norms for double sequences...40
 T. Ueno, T. Tokuyama and M. Okada (Tohoku University)

On construction of continuous functions with cusp singularities........................46
 H. Watanabe (Hokkaido University).

Complex form of a Poncelet type property appeared in the numerical range of
a matrix...52
 H. Nakazato (Hirosaki University)

Conditional stability of a real inverse formula for the Laplace transform..............58
 S. Saitoh (Gunma University), V. K. Tuan and M. Yamamoto

Yoneda's problems for compact Toeplitz operators on the Bergman space63
 K. Kasuga (Niigata University).

The composition operators on weighted Bloch space..68
 R. Yoneda (Hokkaido University).

Nevanlinna-type spaces on the upper half plane..74
 Y. Iida (Tohoku University).

Norm of a linear combination of two operators on a Hilbert space.....................79
 T. Nakazi (Hokkaido Univ.) and T. Yamamoto (Hokkai-Gakuen Univ.)

Weighted shift operators and Rudin's orthogonal polynomials.............................85
 T. Nakazi (Hokkaido University)

Completely positive matrices...90
 T. Ando (Hokusei Gakuen University)

Convex analysis and approximation of fixed points...96
 W. Takahashi (Tokyo Institute of Technology)
Chaotic semigroups generated by certain differential operators of order 1
M. Matsui and F. Takeo (Ochanomizu University).

The elliptic differential operator with first order terms in Lipschitz domain and
analytic semigroup.
M. Giga (Nippon Medical School)

On the Hyers-Ulam stability of a differentiable maps
T. Miura (Niigata University)

A remark on random Clarkson inequalities
Y. Takahashi (Okayama Prefectural University)
M. Kato (kyushu Institute of Technology)

Convex sets and inequalities
S. Takahasi (Yamagata University)
Y. Takahashi (Okayama Prefectural University)
S. Miyajima (Science University of Tokyo)
Several properties of Aluthge transformation

Department of mathematics, Kanagawa University

This report is based on the following preprints:

ABSTRACT

In 1990, Aluthge defined an operator transformation \tilde{T} of T by $\tilde{T} = |T|^\frac{1}{2}U|T|^\frac{1}{2}$, where $T = U|T|$ is the polar decomposition of T. This transformation has very interesting properties, and many authors call \tilde{T} Aluthge transformation and are studying properties of this transformation.

In this paper, firstly, we shall show properties of Aluthge transformation on operator norm, and show a characterization of normaloid operators by giving a definition to n-th Aluthge transformation $\tilde{T}_n = (\tilde{T}_{n-1})$. Secondly, we shall point out that there are parallelisms between Aluthge transformation and powers of operators. Moreover we shall show $\lim_{n \to \infty} \|\tilde{T}_n\| = r(T)$ which is a parallel result to $\lim_{n \to \infty} \|T^n\|^\frac{1}{2} = r(T)$.

Lastly, we shall discuss relations between the orders $|\tilde{T}|^p \geq |T|^p$ and $|T|^p^{-1} \geq |T^*|^p^{-1}$ for some positive number p.

1. Introduction

ここで、ヒルベルト空間 H 上の有界線形作用素の話題とする。任意の $p > 0$ に対して、作用素 T が p-hyponormal とは、$|T|^{2p} \geq |T^*|^{2p}$ が成り立つこととする。ここで、$|T| = (T^*T)^{\frac{1}{2}}$ である。特に $p = 1$ のとき、T を hyponormal 作用素という。p-Hyponormal 作用素に関しては、"every p-hyponormal operator is q-hyponormal for $p \geq q > 0$" が良く知られており、これとあわせて "for each $q > 0$, there exists a q-hyponormal and non-p-hyponormal operator for any $p > q > 0$" も有名である。このことより、特に $\frac{1}{2}$-hyponormal であるが
Let \(T = U|T| \) be the polar decomposition of \(T \).

(i) \(S = U|T|^{1/2} \).
(ii) \(\tilde{T} = |T|^{1/2}U|T|^{1/2} \) (Aluthge transformation [1]).

\(T \) が \(1/2 \)-hyponormal 作用素ならば, 上の \(S \) と \(\tilde{T} \) は共に hyponormal 作用素になる。更に \(\tilde{T} \) については \(\sigma(T) = \sigma(\tilde{T}) \) であるということが \([3, 4, 9]\) で示されている。ここで, \(\sigma(T) \) は \(T \) の spectrum とする。このことより, Aluthge transformation は (i) の変換よりも良い性質を持っているということがわかる。

この講究録では, Aluthge transformation のいくつかの性質についてまとめた。最初に Aluthge transformation の定義より, 任意の作用素に対して \(\|T\| \geq \|\tilde{T}\| \) が成り立つことがわかる。これに対して, \(\|T\| = \|\tilde{T}\| \) となる条件を示した。一方, 作用素 \(T \) が normaloid であるとは, \(\|T\| = r(T) \) が成り立つことである。ここで, \(r(T) \) は \(T \) の spectral radius とする。そして, “\(n \)-th Aluthge transformation” というものを定義することによって, normaloid 作用素の characterization を得た。

2. A CHARACTERIZATION OF NORMALOID OPERATORS

Theorem A ([6]). The following assertions are mutually equivalent:

(1) \(T \) は normaloid.
(2) \(\|T\| = \|\tilde{T}\| \) と \(\tilde{T} \) は normaloid (i.e., \(\|\tilde{T}\| = r(\tilde{T}) \)).

このセクションでは, 最初に \(\|T\| = \|\tilde{T}\| \) という条件と同値な条件を示し, それを用いることによって, Theorem A の拡張を示す。

最初に, 次の結果を得た。

Theorem 1 ([Y1]). Let \(T \in B(H) \). Then for each natural number \(n \), the following assertions are equivalent:

(1) \(\|T\| = \|T^n\|^{1/n} \).
(2) \(\|T\| = \|\tilde{T}^n\|^{1/n} \).
Remark. Theorem 1 において，$n = 1$ とおくことによって，次の同値関係を得る。

(2.1) \[\| T \| = \| T^2 \|^{\frac{1}{2}} \iff \| T \| = \| \overline{T} \|. \]

そして，次の "n-th Aluthge transformation" というものを考えることによって，(2.1) の別の一般化を得ることができる。

Definition 1 (n-th Aluthge transformation [Y1]). Let $T \in B(H)$ and $T = U |T|$ be the polar decomposition of T. Then for each natural number n, n-th Aluthge transformation \overline{T}_n of T is defined by $\overline{T}_n = (T_{n-1})$ and $\overline{T}_1 = \overline{T}$.

Theorem 2 ([Y1]). Let $T \in B(H)$. Then for each natural number n, the following assertions are equivalent:

1. $\| T \| = \| T^{n+1} \|^{-\frac{1}{n+1}}$.
2. $\| T \| = \| \overline{T}_n \|$.

Theorem 2 によって，normaloid 作用素の characterization である次の Corollary 3 をすぐに得ることができる。

Corollary 3 ([Y1]). Let $T \in B(H)$. Then the following assertions are equivalent:

1. T is normaloid.
2. $\| T \| = \| \overline{T}_n \|$ for all natural number n.

なお，Corollary 3 から次のようにして Theorem A を得ることができる。

T is normaloid

\[\iff \| T \| = \| \overline{T} \| = \| \overline{T}_n \| = \| (\overline{T})_{n-1} \| \text{ for all natural number } n \text{ by Corollary 3} \]

\[\iff \| T \| = \| \overline{T} \| \text{ and } \overline{T} \text{ is normaloid by Corollary 3}. \]

3. PARALLEL RESULTS BETWEEN ALUTHGE TRANSFORMATION AND POWERS OF OPERATORS

Normal 作用素や normaloid 作用素は何乗しても元の作用素の class に属するが，hyponormal 作用素に関しては [8] で "there exists a hyponormal operator T such that T^2 is not hyponormal" のような例が示されている．このことに関連して，Aluthge と Wang は [2] で "if T is a p-hyponormal operator for $p \in (0,1]$, then T^n is $\frac{p^n}{n}$-hyponormal for all natural number n" ということを示している．さらに，次の拡張が [7] で示されている。

Theorem B ([7]). Let T be a p-hyponormal operator for $p \in (0,1]$. Then for each natural number n, the following inequalities hold:

1. $|T|^2(p+1) \leq |T^2|^p+1 \leq \cdots \leq |T^n|^{\frac{2(p+1)}{n}}$.
2. $|T^n|^2(p+1) \geq |T^n|^p+1 \geq \cdots \geq |T^n|^\frac{2(p+1)}{n}$.
It is a p-hyponormal operator for $p > 0$, then T^n is min\(\{1, \frac{p}{n}\}\)-hyponormal for all natural number n." 更に Ito [10] は Theorem B において, $p > 0$ に拡張した結果も示している.

Theorem B と parallel な結果として, 次の結果を得た.

Theorem 4 ([Y2]). Let T be a $\frac{p}{2}$-hyponormal operator for $p \in (0, 1]$. Then for each natural number n, the following inequalities hold:

(i) $|T|^p+1 \leq |\hat{T}|^p+1 \leq \cdots \leq |T_n|^p+1$.
(ii) $|T^n|^p+1 \geq |\hat{T_n}|^p+1 \geq \cdots \geq |\hat{T_n}|^p+1$.

Theorem 4 と Theorem B を比較してみると, n-th Aluthge transformation と作用素の帯乗はお互いに parallel な性質を持っていることが考えられる. 一方, 作用素の spectral radius を求める公式として $\lim_{n \to \infty} \|T^n\|^\frac{1}{n} = r(T)$ は大変有名である. そこで, この結果と parallel な次の結果を得ることができた.

Theorem 5 ([Y3]). Let $T \in B(H)$. Then $\lim_{n \to \infty} \|\hat{T_n}\| = r(T)$.

Theorem 5 を示すために以下の Lemma を用意しておく.

Lemma 6 ([Y3]). For a natural number n and $k = 0, 1, \cdots, n + 1$, let

\[
\nu D_k = \frac{n!(n - 2k + 1)}{k!(n - k + 1)!}.
\]

Then the following assertions hold:

(i) $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (n - 2k + 1) \nu D_k = 2^n$, where $\lfloor \frac{n}{2} \rfloor$ is the largest integer satisfying $\lfloor \frac{n}{2} \rfloor \leq \frac{n}{2}$.
(ii) $\lim_{n \to \infty} \frac{(n - 2k + 1) \nu D_k}{2^n} = 0$ for all positive integer k.

Lemma 7 ([Y3]). Let $T \in B(H)$ and $m = \lfloor \frac{n}{2} \rfloor$. Then

\[
\|\hat{T_n}\| \leq \|T^{n+1}\| \frac{nD_0}{2^n} \|T^{n-1}\| \frac{nD_1}{2^n} \cdots \|T^{n-2k+1}\| \frac{nD_k}{2^n} \cdots \|T^{n-2m+1}\| \frac{nD_m}{2^n}.
\]

Lemma 8 ([Y3]). Let $\{a_n\}_{n=1}^{\infty}$ be a sequence satisfying $\lim_{n \to \infty} a_n = a$, and for each natural number n, $\{c_{n,k}\}_{k=1}^{n}$ be a positive sequence satisfying

\[
c_{n,1} + \cdots + c_{n,k} + \cdots + c_{n,n} = 1 \quad \text{for all natural number } n
\]
and $\lim_{n \to \infty} c_{n,k} = 0$ for fixed $k = 1, 2, \cdots$. Then

\[
\lim_{n \to \infty} (c_{n,1}a_1 + \cdots + c_{n,k}a_k + \cdots + c_{n,n}a_n) = a.
\]
Proof of Theorem 5. \(m = \lceil \frac{n}{2} \rceil \) とする。すると Lemma 7, Lemma 6 の (i), そして相加相乗平均の関係より, 次を得る。

\[
r(T) = r(T_n) \leq \| T_n^{m+1} \| \frac{nD_0}{2^n} \| T_n^{n-1} \| \frac{nD_1}{2^n} \ldots \| T_n^{n-2k+1} \| \frac{nD_k}{2^n} \ldots \| T_n^{n-2m+1} \| \frac{nD_m}{2^n} \\
\leq \frac{n + 1}{2^n} \| T_n^{n+1} \| \| T_n^{n+1} \| \frac{nD_1}{2^n} \ldots \| T_n^{n+1} \| \frac{nD_m}{2^n} \ldots \| T_n^{n+1} \| \frac{nD_m}{2^n} \\
\rightarrow r(T) \quad \text{as } n \to \infty
\]

ここで \(\lim_{n \to \infty} \| T_n^{n+1} \| = r(T) \), Lemma 6 の (i) と (ii), Lemma 8 を適用することによって証明ができた。□

4. RELATIONS BETWEEN THE ORDERS \(|T|^p \geq |T^*|^p \) AND \(|\tilde{T}|^{p-1} \geq |T|^{p-1} \)

このセクションでは, ある \(p > 0 \) に対して, 二つの作用素の順序 \(|T|^p \geq |T^*|^p \) と \(|\tilde{T}|^{p-1} \geq |T|^{p-1} \) との関係について述べる。これらの関係については, 次の結果が有名である。

Theorem C ([1, 9, 14]). Let \(T \) be a \(\frac{p}{2} \)-hyponormal operator for \(p > 0 \) (i.e., \(|T|^p \geq |T^*|^p \).
Then the following inequalities hold:

(i) In case \(p \in (0, 1] \), \(|\tilde{T}|^{p+1} \geq |T|^{p+1} \geq |(\tilde{T})^*|^{p+1} \)
 (i.e., \(\tilde{T} \) is \(\frac{p+1}{2} \)-hyponormal).

(ii) In case \(p \in [1, 2] \), \(|\tilde{T}|^2 \geq |T|^2 \geq |(\tilde{T})^*|^2 \) (i.e., \(\tilde{T} \) is hyponormal).

なお, Theorem C は最初に [1] で \(T = U|T| \) を polar decomposition とした場合に \(U \) が unitary の時に示され, 続いて一般の場合が [9, 14] で示された. なお, [9, 14] では Theorem C の更なる拡張が示されている。

ここでは, Theorem C の逆の関係も言える次の結果を示そう.

Theorem 9 ([Y2]). Let \(T \) be an invertible operator. Then the following assertions hold:

(i) For each \(p \in [2, 4] \), \(|\tilde{T}|^p \geq |T|^p \) ensures \(|T|^{p-1} \geq |T^*|^{p-1} \).

(ii) For each \(p \geq 4 \), \(|\tilde{T}|^p \geq |T|^p \) ensures \(|T|^3 \geq |T^*|^3 \).

Theorem 9 を示すために, 次の作用素不等式を用意しておく。

Theorem D ([5, 11, 12, 13]). Let \(A \) and \(B \) be positive invertible operators. Then the following assertions hold:

(i) \(A \geq B > 0 \) ensures \((B^\frac{1}{p} A^p B^\frac{1}{p})^{1-\frac{1}{p}} \geq B^{1-\frac{1}{p}} \) for \(1 \geq p \geq \frac{1}{2} \) with \(p > t \geq 0 \).

(ii) \(A \geq B > 0 \) ensures \((B^\frac{1}{p} A^p B^\frac{1}{p})^{\frac{3p-1}{2p}} \geq B^{2p-t} \) for \(\frac{1}{2} \geq p > t \geq 0 \).
Proof of Theorem 9. Let $T = U|T|$ to be the polar decomposition of T. Then, T is invertible if and only if U is unitary.

Proof of (i). Theorem D (i) to be applied to $|T|^p$ and $|T|^{p-1}$ yield the following.

\[(4.1) \quad (|T|^{-t_1}|T|^{p-1})^{1-t_1} \geq |T|^{p(1-t_1)} \quad \text{for } 1 \geq p_1 \geq \frac{1}{2} \text{ with } p_1 > t_1 \geq 0.\]

Hence, (4.1) if $p_1 = \frac{2}{p}$ and $t_1 = \frac{1}{p}$, then

\[(|T|^{-\frac{1}{2}}|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}}|T|^{\frac{3}{2}})^{p-1} \geq |T|^{p-1}.\]

Thus, this inequality, U to be unitary, $U^*|T|^{p-1}U \geq |T|^{p-1}$. Therefore, $|T|^{p-1} \geq U^*|T|^{p-1}U = |T|^{p-1}$.

Proof of (ii). Theorem D (ii) to be applied to $|T|^p$ and $|T|^{p-1}$ yield the following.

\[[(|T|^{-\frac{1}{2}}|T|^{\frac{1}{2}}U^*|T|^{\frac{1}{2}}|T|^{\frac{3}{2}})^{p-1} \geq |T|^{p-1}.\]

References

Takeaki Yamazaki, Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan
E-mail address: yamazt26@kanagawa-u.ac.jp
Powers of class \(wA(s, t) \) operators associated with generalized Aluthge transformation

Masahiro Yanagida (Science University of Tokyo)

Abstract

This report is based on the following preprint:

A bounded linear operator \(T \) on a Hilbert space is said to belong to class \(wA(s, t) \) for \(s, t > 0 \) if \(\|T^s + T^t\|_{2t} \geq \|T^s\|_{2s}^t \) and \(\|T^s + T^t\|_{2s} \geq \|T^s\|_{2t}^t \) hold, where \(T_{s,t} \) is the generalized Aluthge transformation of \(T = U|T| \), that is, \(T_{s,t} = |T|^s U|T|^t \). We show that if \(T \) belongs to class \(wA(s, t) \) for \(s, t \in (0, 1] \), then \(T^n \) belongs to class \(wA(s, t, n) \) for every natural number \(n \).

1 順序を保存する作用素不等式

以下，作用素とはヒルベルト空間 \(H \) 上の有界線形作用素のことであり，英大文字で表すものとする．また，作用素 \(T \) が正であるとは正定値，即ち \((Tx, x) \geq 0 \) なる全ての \(x \in H \) と定義し， \(T \geq 0 \) と表すものとする．更に， \(T \) が可逆な正作用素であるとき， \(T > 0 \) と表すものとする．2つの自己共役作用素 \(A, B \) について， \(A - B \geq 0 \) であるとき， \(A \geq B \) と表すものとする．

まず，非正規作用素の研究に非常に有用である，次の結果を紹介する．

Theorem F (Furuta inequality [11]).

If \(A \geq B \geq 0 \), then for each \(r \geq 0 \),

(i) \((B^\frac{r}{2} A B^\frac{r}{2})^{\frac{1}{2}} \geq (B^\frac{r}{2} B^\frac{r}{2})^{\frac{1}{2}} \)

and

(ii) \((A^\frac{r}{2} A A^\frac{r}{2})^{\frac{1}{2}} \geq (A^\frac{r}{2} B A^\frac{r}{2})^{\frac{1}{2}} \)

hold for \(p \geq 0 \) and \(q \geq 1 \) with \((1 + r)q \geq p + r \).

Theorem F の (i) または (ii) において \(r = 0 \) とおくことにより，Löwner-Heinz の不等式 "\(A \geq B \geq 0 \) ensures \(A^\alpha \geq B^\alpha \) for any \(\alpha \in [0, 1] \)" が導かれる．Theorem F の別証明は [9][20] で与えられており，また [12] では1ページの証明が示されている．Theorem F のパラメータ \(p, q, r \) の領域を表したのが Figure 1 であるが，この領域は best possible であることが Tanahashi [22] により示されている．
2 p-Hyponormal作用素, log-hyponormal作用素の
Aluthge変換

正規作用素（$T^{*}T = TT^{*}$）を含むクラスとして、hyponormal作用素（$T^{*}T \geq TT^{*}$）がよく知られているが、これを超張したものとして、次の作用素のクラスがある。

Definition.

(i) $T: p$-hyponormal for $p > 0 \iff (T^{*}T)^{p} \geq (TT^{*})^{p}$.
(ii) $T: log$-hyponormal $\iff T$ is invertible and $logT^{*}T \geq logTT^{*}$.

1-hyponormalはhyponormalであることは明らかである．また，これらのクラスの包含関係は次のようなになる．

Proposition.

(i) $T: p$-hyponormal $\implies T: q$-hyponormal for any q such that $p \geq q > 0$.
(ii) T: invertible and p-hyponormal for some $p > 0 \implies T$: log-hyponormal.

(i) は前述のLöwner-Heinzの不等式から，(ii) は$\log t$が作用素単調関数であることから，共に容易に示される．更に，任意の$X > 0$について，$\lim_{p \to +0} \frac{X^{p}-I}{p} = \log X$が成り立つことから，log-hyponormalはp-hyponormalの$p \to +0$の場合であり，その意味で0-hyponormalと考えることができる．

ヒルベルト空間H上の有限線形作用素Tの極分解を$T = U|T|$とするとき，$\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$を$T$のAluthge変換と呼ぶ（$|T| = (T^{*}T)^{\frac{1}{2}}$とする）．Aluthge変換の重要な性質として，スペクトルが変化しないこと，即ち任意のTについて，$\sigma(\tilde{T}) = \sigma(T)$が成り立つことが[4][7]で示されている$(\sigma(T)$は$T$のスペクトルを表す）．

Aluthge[1]は，Theorem Fの応用として，p-hyponormal作用素のAluthge変換に関する次の結果を示した．このTheorem Aから，$0 < p < 1$のとき，p-hyponormal作用素Tより，そのAluthge変換\tilde{T}は狭いクラスに属することがわかる．

Theorem A ([1]). Let $T = U|T|$ be the polar decomposition of a p-hyponormal operator for $0 < p < 1$ and U be unitary. Then

(i) $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ is $(p + \frac{1}{2})$-hyponormal if $0 < p \leq \frac{1}{2}$.
(ii) $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$ is hyponormal if $\frac{1}{2} \leq p < 1$.

Aluthge変換$\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$の自然な一般化として，$\tilde{T}_{s,t} = |T|^{s}U|T|^{t}$（$s, t > 0$）が考えられる．$\tilde{T}_{\frac{1}{2}, \frac{1}{2}} = \tilde{T}$であることは明らかである．Huruya[16], Yoshino[26]は，Theorem Aの拡張として，p-hyponormal作用素の一般化Aluthge変換に関する結果を示した．Tanahashi[23]は，これとparallelな結果として，log-hyponormal作用素の一般化Aluthge変換に関する結果を示した．
3 Aluthge 変換に関連した作用素のクラス

最近 Aluthge-Wang は、Aluthge 変換 \(\tilde{T} = |T|^{\frac{1}{2}} U |T|^{\frac{1}{2}} \) によって定義される次の作用素のクラスを紹介し [4]、また、同値な条件として次の作用素不等式を示した [5]。

Definition ([4][5]).

\[
T : w\text{-hyponormal } \iff |\tilde{T}| \geq |T| \geq |(\tilde{T})^*| \iff \left\{ \begin{array}{l}
|T^*| \geq |T| \geq |(\tilde{T})^*| \geq |T| \\
|T| \geq |(T^\frac{1}{2}|T^*|T^\frac{1}{2})\frac{1}{2}|
\end{array} \right.
\]

where \(\tilde{T} \) is the Aluthge transformation of \(T \).

Ito [17] は \(w\text{-hyponormal} \) の一般化として、一般化 Aluthge 変換 \(\tilde{T}_{s,t} = |T|^s U |T|^t (s, t > 0) \) によって定義される次のクラスを紹介した。明らかに class \(wA(\frac{1}{2}, \frac{1}{2}) \) は \(w\text{-hyponormal} \) 作用素のクラスである。

Definition ([17]). For \(s > 0 \) and \(t > 0 \),

\[
T \in \text{class } wA(s, t) \iff \left\{ \begin{array}{l}
|\tilde{T}_{s,t}| \geq |T|^s \\
|T|^s \geq |(\tilde{T}_{s,t})^*| \geq |T|^s
\end{array} \right.
\]

where \(\tilde{T}_{s,t} \) is the generalized Aluthge transformation of \(T \). For the sake of convenience, we call class \(wA(1, 1) \) class \(wA \) for short.

一方、Furuta-Ito-Yamazaki [13] は次のような "class A" と呼ばれる作用素のクラスを導入し、更にすべての log-hyponormal 作用素は class A に属すること、すべての class A 作用素は paranormal \((\iff \|T^2 x\| \geq \|T x\|^2 \text{ for every unit vector } x) \) であることを示した。これは Ando [6] による結果の別証明を与えている。

Definition ([13]). \(T \in \text{class } A \iff |T^2| \geq |T|^2 \).

Fujii-D.Jung-S.H.Lee-M.Y.Lee-Nakamoto [10] は、class A、その一般化である class \(A(k) \) \((\iff (T^k |T|^{2k} T)^\frac{1}{2k} \geq |T|^2 \text{ for } k > 0 [13]) \) の更なる一般化として、次の class A(s, t) \((s, t > 0) \) を紹介した。実際に、各 \(k > 0 \) について class \(A(k, 1) \) は class \(A(k) \) と、class \(A(1, 1) \) は class \(A \) とそれぞれ一致している [25].

Definition ([10]). For \(s > 0 \) and \(t > 0 \),

(i) \(T \in \text{class } A(s, t) \iff |T^s| |T^2| |T^*| |T^*|^s \frac{1}{2s} \geq |T^*|^2 t. \)

(ii) \(T \in \text{class } A(s, t) \iff T \in \text{class } A(s, t) \text{ and } T \text{ is invertible.} \)

これらのクラスの包含関係について次が成り立つことが知られており、それらを図示したものが Figure 2 である。

Theorem B ([10][17][Y]).

(i) class \(A(s, t) \supseteq class wA(s, t) \supseteq class AI(s, t) \) holds for each \(s > 0 \) and \(t > 0 \).
(ii) $T: p$-hyponormal for some $p > 0 \iff T \in \text{class } wA(s,t)$ for all $s > 0$ and $t > 0$.

(iii) $T: \text{log-hyponormal} \iff T \in \text{class } A(s,t)$ for all $s > 0$ and $t > 0$.

(iv) $\text{class } A(s,t_1) \subseteq \text{class } A(s,t_2)$ holds for each $0 < t_1 \leq t_2$.

(v) $\text{class } wA(s_1,t_1) \subseteq \text{class } wA(s_2,t_2)$ holds for each $0 < s_1 \leq s_2$ and $0 < t_1 \leq t_2$.

4 非正規作用素のべき乗に関する結果

Theorem C.1 ([5]). Let T be an invertible w-hyponormal operator. Then T^2 is also w-hyponormal.
Cho-Huruya-Y.O.Kim [8] は、Theorem C.1 の仮定において T の可逆性をより弱い条件である $N(T) = \{0\}$ に置き換えても同様の結論が導かれることがを示す。次的手続きを示した。

Theorem C.2 ([8]). Let T be a w-hyponormal operator with $N(T) = \{0\}$. Then T^2 is also w-hyponormal.

一方、Ito [18] は可逆な class A 作用素のべき乗に関する次の結果を示した。

Theorem C.3 ([18]). Let T be an invertible class A operator. Then the following assertions hold for all positive integer n:

(i) $|T^{n+1}|^2 \geq |T^n|^2$ and $|T^{n+1^*}|^2 \geq |T^n|^2 |T^*|^2$.

(ii) $|T^n|^2 \geq \cdots \geq |T^2|^2 \geq |T|^2$ and $|T^n|^2 \geq |T^2|^2 \geq \cdots \geq |T^*|^2$.

(iii) $|T^{2n}|^2 \geq |T^n|^2$ and $|T^{n+1^*}|^2 \geq |T^{n+1}|^2$, i.e., T^n also belongs to class A.

Theorem C.1 と Theorem C.3 の (iii) の拡張として、Yamazaki [25] は class AI(s, t) 作用素のべき乗に関する次の結果を示した。

Theorem C.4 ([25]). Let T be a class AI(s, t) operator for $s \in (0, 1]$ and $t \in (0, 1]$. Then T^n belongs to AI($s\frac{n}{n_1}, t\frac{n}{n_1}$) for all positive integer n.

実際、Theorem B の (i)(v) より class AI($s\frac{1}{2}, t\frac{1}{2}$) が成り立つことから、$s = t = \frac{1}{2}$, $n = 2$ とおくことで、Theorem C.1 が得られる。また、Theorem B の (i)(v) より class AI($\frac{1}{n}, \frac{1}{n}$) が成り立つことから、$s = t = 1$ とおくことにより Theorem C.3 の (iii) が得られる。

Yanagida [Y] は、class wA 作用素のべき乗に関する次の結果を示した。

Theorem 1 ([Y]). Let T be a class wA operator. Then the following assertions hold for all positive integer n:

(i) $|T^{n+1}|^2 \geq |T^n|^2$ and $|T^{n+1^*}|^2 \geq |T^n|^2 |T^*|^2$.

(ii) $|T^n|^2 \geq \cdots \geq |T^2|^2 \geq |T|^2$ and $|T^n|^2 \geq |T^2|^2 \geq \cdots \geq |T^*|^2$.

更に、class $wA(s, t)$ 作用素のべき乗に関する次の結果を示した。

Theorem 2 ([Y]). Let T be a class $wA(s, t)$ operator for $s \in (0, 1]$ and $t \in (0, 1]$. Then T^n belongs to $wA(s\frac{n}{n_1}, t\frac{n}{n_1})$ for all positive integer n.

Theorem B の (i) より class $wA(s, t)$ が成り立つことから、Theorem 1, Theorem 2 とはそれぞれ Theorem C.3, Theorem C.4 の拡張である。言い換えれば、Theorem 1, Theorem 2 は、それぞれ Theorem C.3, Theorem C.4 が T の可逆性の仮定なしに class wA 作用素、class $wA(s, t)$ 作用素について成立することを示している。

Theorem 2 の簡単な系として、Theorem C.2 の拡張である次の結果が導かれる。

Corollary 3 ([Y]). Let T be a w-hyponormal operator. Then T^n is also w-hyponormal for all positive integer n.

"
参考文献

On some classes of operators by Fujii and Nakamoto related to p-hyponormal and paranormal operators

Masatoshi Ito
Faculty of Science, Science University of Tokyo

Abstract

This report is based on the following paper:

Recently, we introduced class A as a new class of operators in [14]. Class A is defined by an operator inequality and also the definition of class A is similar to that of paranormality defined by a norm inequality. We showed that every 10-hyponormal operator belongs to class A and every class A operator is paranormal in [14]. As generalizations of class A and paranormality, class $A(p, r)$ was introduced in [9] and absolute-(p, r)-paranormality was introduced in [21]. Moreover, Fujii-Nakamoto [10] introduced class $F(p, r, q)$ and (p, r, q)-paranormality which are further generalizations of these classes.

In this report, we obtain some inclusion relations among the families of class $F(p, r, q)$ and (p, r, q)-paranormality, and the result on powers of class $F(p, r, q)$ operators.

1 Introduction

このことはヒルベルト空間 H 上の有界線形作用素（以下，作用素と呼ぶ）について考える。作用素 T が有定であるとは positive definite、即ち $(Tx, x) \geq 0$ であることを意味する。また，T が positive かつ invertible であるとき T は strictly positive であるといい，$T > 0$ と表す。

Normal $T^*T = TT^*$ を含む作用素の class として hyponormal $(T^*T \geq TT^*)$ や，その拡張である p-hyponormal $((T^*T)^p \geq (TT^*)^p$ for $p > 0$)，log-hyponormal $(T$ is invertible and $log T^*T \geq \log TT^*)$ がよく知られている。なお，p-hyponormal for $p > 0 \implies q$-hyponormal for $p \geq q > 0$，invertible p-hyponormal for $p > 0 \implies log$-hyponormal である。

最近，この p-hyponormal や log-hyponormal と paranormal $\|T^2x\| \geq \|T^*x\|^2$ for every unit vector $x \in H$ の中間の作用素の class として，class A ($(T^2) \geq |T|^2$ where $|T| = (T^*T)^{1\over 2}$) が [14] で導入され，log-hyponormal \implies class $A \implies$ paranormal であることが示された。Class A は operator inequality で定義されていること，norm inequality で定義された paranormal のそれと非常によく似た形をしていることに注意する。また，[14] では class A，paranormal の拡張に関しても議論がなされ，p-hyponormal や log-hyponormal と paranormal の関係に対する自然な解釈が与えられている。

更に，class A，paranormal や [2][5][14] で定義された作用素の class の拡張として，次の作用素の class が導入された。

Definition ([9][21]). For each $p > 0$ and $r > 0$,

1) $T : c l a s s \ A(p, r) \overset{\text{def}}{=} \frac{[(T^*T)^{p-2}T^*T]^{2r}}{(T^*T)^{p-2r}} \geq |T|^2r$.

$T : c l a s s \ A(p, r) \overset{\text{def}}{=} T$ is invertible and belongs to class $A(p, r)$.

−13−
(2) $T: \text{absolute-}(p,r)$-paranormal $\overset{\text{def}}{=} \left\| T^*\left| T^*\right|^r x \right\| \geq \left\| \left| T^*\right|^r x \right\|^{p+r}$

for every unit vector $x \in H$.

(1) は [9] で、(2) は [21] でそれぞれ導入された。また、class A(1,1)=class A, absolute-(1,1)-paranormal=paranormal であり、class A(p,r), absolute-(p,r)-paranormal の包含関係に関する次の結果が [9][21] で示された。

Theorem A.1 ([9][21]).

(i) T is log-hyponormal iff T belongs to class AI(p,r) for all $p > 0$ and $r > 0$ iff T is invertible and absolute-(p,r)-paranormal for all $p > 0$ and $r > 0$.

(ii) If T belongs to class AI(p_0,r) for $p_0 > 0$ and $r_0 > 0$, then T belongs to class AI(p,r) for any $p \geq p_0$ and $r \geq r_0$.

(iii) If T is absolute-(p_0,r_0)-paranormal for $p_0 > 0$ and $r_0 > 0$, then T is absolute-(p,r)-paranormal for any $p \geq p_0$ and $r \geq r_0$.

(iv) If T belongs to class A(p,r) for $p > 0$ and $r > 0$, then T is absolute-(p,r)-paranormal.

Theorem A.1 の結果は次の Figure 1 のようにまとめることができる。この Figure 1 において、class A(p,r) と absolute-(p,r)-paranormal が log-hyponormal を原点とする2本の increasing line で表われていることに注意する。

![Figure 1](image)

更に、[10] で class A(p,r) と absolute-(p,r)-paranormal の更なる拡張が次のように定義された。

Definition ([10]). For each $p > 0$, $r \geq 0$ and $q > 0$,

(1) $T: \text{class } F(p,r,q) \overset{\text{def}}{=} \left\{ \left| T^*\right|^r \left| T^*\right|^q \right\} \overset{\frac{2(p+1)}{r}}{\geq} \left| T^*\right| \overset{\frac{2(p+1)}{r}}{\geq} \left\| \left| T^*\right|^r x \right\|$

for every unit vector $x \in H$, where $T = U |T|$ is the polar decomposition of T.

このとき、class $F(p,r,\frac{p+r}{r})$=class A(p,r) である。また、次の Proposition 1 より $(p,r,\frac{p+r}{r})$-paranormal=absolute-(p,r)-paranormal であることがわかる。
Proposition 1. For each $p > 0$, $r > 0$ and $q \geq 1$, an operator T is (p, r, q)-paranormal if and only if

$$\|T^*[T^*]^* x\|^{\frac{1}{q}} \geq \|T^*[T^*]^* x\|^{\frac{1}{r}}$$

for every unit vector $x \in H$.

また、[10] では class $F(p, r, q)$, (p, r, q)-paranormal の包含関係に関する次の結果が示されている。

Theorem A.2 ([10]).

(i) For a fixed $k > 0$, T is k-hyponormal if and only if T belongs to class $F(2kp, 2kr, q)$ for all $p > 0$, $r \geq 0$ and $q \geq 1$ with $(1 + 2r)q \geq 2(p + r)$, i.e., T belongs to class $F(p, r, q)$ for all $p > 0$, $r \geq 0$ and $q \geq 1$ with $(1 + r)q \geq p + r$.

(ii) If T belongs to class $F(p_0, r_0, q_0)$ for $p_0 > 0$, $r_0 \geq 0$ and $q_0 > 0$, then T belongs to class $F(p_0, r_0, q)$ for any $q \geq q_0$.

(iii) If T is (p_0, r_0, q_0)-paranormal for $p_0 > 0$, $r_0 \geq 0$ and $q_0 > 0$, then T is (p_0, r_0, q)-paranormal for any $q > q_0$.

(iv) If T belongs to class $F(p, r, q)$ for $p > 0$, $r \geq 0$ and $q \geq 1$, then T is (p, r, q)-paranormal.

ここでは、class $A(p, r)$, absolute-(p, r)-paranormal の monotonicity に関する Theorem A.1 と 対応した class $F(p, r, q)$, (p, r, q)-paranormal の monotonicity に関する結果について紹介する。

2 Main results

[10] では、class $F(p, r, q)$ は次の Theorem F から派生した作用素の class であることが指摘されている。

Theorem F (Furuta inequality [11]).

If $A \geq B \geq 0$, then for each $r \geq 0$,

(i) \((B^\frac{1}{2} A^\frac{1}{2} B^\frac{1}{2})^\frac{1}{q} \geq (B^\frac{1}{2} B^\frac{1}{2} B^\frac{1}{2})^\frac{1}{q} \) \n
and

(ii) \((A^\frac{1}{2} A^\frac{1}{2} A^\frac{1}{2})^\frac{1}{q} \geq (A^\frac{1}{2} A^\frac{1}{2} A^\frac{1}{2})^\frac{1}{q} \) \n
hold for $p \geq 0$ and $q \geq 1$ with $(1 + r)q \geq p + r$.

Theorem F の (i) または (ii) で $r = 0$ するとと Loewner-Heinz の不等式 "$A \geq B \geq 0$ で $A^\alpha \geq B^\alpha$ となる $\alpha \in [0, 1]$" を導く。Theorem F の別証は [3],[16]、また、1 page の簡潔な証明が [12] で与えられている。[17] では Figure 2 で示された p, q, r の領域が Theorem F に対して best possible であることが示された。また、Theorem F は次の形が本質となっていることがわかる。

Theorem F'. For $A, B \geq 0$, $A \geq B \geq 0$ if and only if

\((B^\frac{1}{2} A^\frac{1}{2} B^\frac{1}{2})^\frac{1}{q + r} \geq B^{1 + r} \) \n
holds for all $p \geq 1$ and $r \geq 0$.

A, B > 0 に対して、log A ≥ log B を満たす order を chaotc order と呼ぶ。log t が作用素単調関数であることより、chaotic order は usual order A ≥ B より弱い order である。

Theorem F' に対応した chaotc order の characterization として次の Theorem B.1 が知られている。

Theorem B.1 ([4][6][13][18]). For A, B > 0, log A ≥ log B if and only if

\[(B^\frac{1}{r} A^\frac{1}{r} B^\frac{1}{r})^{\frac{1}{r}} \geq B^r\] holds for all \(p \geq 0\) and \(r \geq 0\).

さらに、Theorem F' と Theorem B.1 を補助する結果として、次の Theorem B.2 が Theorem F' より簡便に導かれる。

Theorem B.2 ([7][8]). For A, B ≥ 0, \(A^\frac{1}{r} \geq B^\frac{1}{r}\) で a fixed \(\delta > 0\) if and only if

\[(B^\frac{1}{r} A^\frac{1}{r} B^\frac{1}{r})^{\frac{1}{r}} \geq B^\frac{1}{r}\] holds for all \(p \geq \delta\) and \(r \geq 0\).

Theorem B.2 において \(\delta = 1\) とすると Theorem F' を導く。また、\(X > 0\) に対して \(\lim_{\delta \rightarrow +0} \frac{X^{\frac{1}{r}} - 1}{\delta} = \log X\) であることより、Theorem B.2 において \(\delta \rightarrow +0\) としたものが Theorem B.1 であると考えることができる。

また、右の Figure 3 は Theorem F', Theorem B.2, Theorem B.1 の関係を表したものである。

Section 1 において、class \(F(p, r, \frac{p+r}{r})\)=class \(A(p, r)\) であり、また、class AI(p, r) と absolute-(p, r)-paranormal は log-hyponormal を原点とする 2 次の increasing line として表われることを述べた。よって、これらのことより class \(F(p, r, q), (p, r, q)\)-paranormal の monotonicity を考える際、パラメータ \(q\) を \(q = \frac{p+r}{r}\) と置き換えることが自然であると考えることができる。実際、class \(A(p, r)\), absolute-(p, r)-paranormal に関する Theorem A.1 に対応した結果として、class \(F(p, r, q)\), (p, r, q)-paranormal に関する次の結果を得た。

Proposition 2. For each \(\delta > 0\) and \(r_0 > 0\), \(T\) is \(\delta\)-quasihyponormal (i.e., \(\delta\)-hyponormal on \(R(T)\)) if and only if \(T\) belongs to class \(F(\delta, r_0, 1)\) if and only if \(T\) is \((\delta, r_0, 1)\)-paranormal.

Theorem 3. Let \(T\) be a class \(F(p_0, r_0, \frac{p_0+r_0}{r_0})\) operator for \(p_0 > 0, r_0 \geq 0\) and \(-r_0 < \delta \leq p_0\). Then the following assertions hold:

(i) \(T\) belongs to class \(F(p_0, r, \frac{p_0+r}{r})\) for any \(r \geq r_0\).

(ii) If \(T\) is invertible and \(0 \leq \delta \leq p_0\), then \(T\) belongs to class \(F(p, r, \frac{p+r}{r})\) for any \(p \geq p_0\) and \(r \geq r_0\).

Theorem 4. Let \(T\) be a \((p_0, r_0, \frac{p_0+r_0}{r_0})\)-paranormal operator for \(p_0 > 0, r_0 \geq 0\) and \(\delta > -r_0\). Then the following assertions hold:

(i) If \(-r_0 < \delta \leq p_0\), then \(T\) is \((p_0, r, \frac{p_0+r}{r})\)-paranormal for any \(r \geq r_0\).

(ii) If \(0 \leq \delta\), then \(T\) is \((p, r_0, \frac{p_0+r_0}{r})\)-paranormal for any \(p \geq p_0\).
(iii) If $0 \leq \delta \leq p_0$, then T is $(p, r, \frac{p+\delta}{p})$-paranormal for any $p \geq p_0$ and $r \geq r_0$.

Theorem 3 の (ii), Theorem 4 の (iii) においてそれぞれ $\delta = 0$ とすることにより、Theorem A.1 の (ii), (iii) を導く。また、log-hyponormal は invertible δ-quasihyponormal (または δ-hyponormal) において $\delta \to +0$ としたものとみなせることより、これらの結果を Figure 4 のようにまとめることができる (Figure 4 において、$1 < \delta < p, 1 < r_0 < r$ である)。

![Figure 4](image)

3 Powers of class $F(p, r, q)$ operators

p-Hyponormal operator と log-hyponormal operator のべき乗に関して次の結果が示されている。

Theorem C.1 ([1]). Let T be a p-hyponormal operator for $0 < p \leq 1$. Then T^n is $\frac{p}{n}$-hyponormal for all positive integer n.

Theorem C.2 ([19]). Let T be a log-hyponormal operator. Then T^n is also log-hyponormal for all positive integer n.

一方、invertible class A operator のべき乗について示した [15] の結果の拡張として、[20] では class $A_1(p, r)$ operator のべき乗に関する次の結果が示されている。

Theorem C.3 ([20]). Let T be a class $A_1(p, r)$ operator for $0 < p \leq 1$ and $0 < r \leq 1$. Then T^n belongs to class $A_1(\frac{p}{n}, \frac{r}{n})$ for all positive integer n.

-17-
Theorem C.1, Theorem C.3において、Tが属する作用素のclassのパラメータp,rがT^nではそれぞれ$r/q,n$となり、T^nはもとのTよりlog-hyponormalに近い作用素のclassに属していることに注意する。ここでは、これらの結果を統一するものとして、invertible class $F(p,r,q)$ operatorのべき乗に関する次の結果を得た。

Theorem 5. Let T be an invertible class $F(p,r,q)$ operator for $0 < p \leq 1$, $0 \leq r \leq 1$ and $q \geq 1$ with $rq \leq p + r$. Then T^n belongs to class $F(p,r,q)$ for all positive integer n.

Theorem 5において$q = 1$, $r = 0$とすると (invertibleの場合の) Theorem C.1 を、$q = \frac{p+r}{r}$とするとき Theorem C.3 をそれぞれ導く。

参考文献

[11] T.Furuta, *A \geq B \geq 0 assures $(B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1+2r)q \geq p+2r$*, Proc. Amer. Math. Soc., 101 (1987), 85–88.

FURUTA’S QUESTION ON CHAOTIC ORDER

MASATOSHI FUJII

ABSTRACT. The chaotic order among positive invertible operators on a Hilbert space is introduced by \(\log A \geq \log B \). Uchiyama’s method brings us the Furuta inequality for the chaotic order from the Furuta inequality. Related to this, Furuta posed the following question: For \(A, B > 0 \), \(A \gg B \) if and only if

\[
A^{-1} \geq \left\{ A^{\frac{1}{p}} (A^{\frac{1}{p}} A^{-\frac{1}{p}})^{\frac{1}{q}} A^{\frac{1}{q}} \right\}^{\frac{p}{p-1}} \]

holds for all \(p \geq 1, r \geq t, s \geq 1 \) and \(t \in [0,1] \)? Recently he gave a counterexample to the “only if” part. In this note, we point out that the condition (Q) characterizes the operator order \(A \gg B \). Moreover (Q) characterizes the spectral order by extending the bounds of \(t \). Finally we give an affirmative answer to Furuta’s question by exchanging the bounds of \(t \) and \(s \) such as \(t \leq 0 \) and \(1 \leq s \leq 2 \).

1. INTRODUCTION

Throughout this note, a capital letter means a (bounded linear) operator on a Hilbert space \(H \). An operator \(T \) is said to be positive in symbol \(T \geq 0 \) if \((Tx,x) \geq 0 \) for all \(x \in H \). In particular, we denote by \(A > 0 \) if \(A^2 \) is invertible. The order \(A \geq B \) for selfadjoint operators \(A \) and \(B \) is defined by \(A - B \geq 0 \). The operator monotonicity of the logarithmic function yields the chaotic order \(A \gg B \) for \(A, B > 0 \) by \(\log A \geq \log B \).

We now recall the Furuta inequality [11] which is a beautiful and historical extension of the Löwner-Heinz inequality. We call it (FI) simply.

The Furuta inequality.
If \(A \geq B \geq 0 \), then for each \(r \geq 0 \),

(i) \((B^{\frac{1}{2}} A^p B^{\frac{1}{2}})^{\frac{1}{q}} \geq (B^{\frac{1}{2}} B^p B^{\frac{1}{2}})^{\frac{1}{q}} \)

and

(ii) \((A^{\frac{1}{2}} A^p A^{\frac{1}{2}})^{\frac{1}{q}} \geq (A^{\frac{1}{2}} B^p A^{\frac{1}{2}})^{\frac{1}{q}} \)

holds for \(p \geq 0 \) and \(q \geq 1 \) with \((1+r)q \geq p+r \).

We refer [18] and [3] for mean theoretic proofs, and [12] for a one-page proof of it. The best possibility of the domain drawn in the Figure is proved by Tanabashi [22].

On the other hand, motivated by Ando [1], the Furuta inequality for the chaotic order was shown in [4] and [13], cf.[6],[7] and [28], which is named (FC) in the below:

If \(A \gg B \) for \(A, B > 0 \), then

\[
A^r \geq \left(A^{\frac{1}{q}} B^p A^{\frac{1}{q}} \right)^{\frac{p}{p-1}}
\]

holds for all \(p, r \geq 0 \).

Afterwards, Furuta [14] himself generalized the Furuta inequality, which interpolates the Furuta inequality and the Ando-Hiai one [2].

The grand Furuta inequality.
If \(A \geq B > 0 \), then for each \(t \in [0,1] \),

\[
A^{1-t+r} \geq \left\{ A^{\frac{1}{p}} (A^{\frac{1}{p}} B^p A^{-\frac{1}{p}})^{\frac{1}{q}} A^{\frac{1}{q}} \right\}^{\frac{p}{p-1}} \]

holds for all \(s \geq 1, p \geq 1 \) and \(r \geq t \).

1991 Mathematics Subject Classification. 47A30 and 47A63.

Key words and phrases. Furuta inequality, Grand Furuta inequality, chaotic order and spectral order..
We call it (GFI) simply and refer [8] for a mean theoretic approach and [15] for a one-page proof. Tanahashi [23] also proved the best possibility of the power of (GFI) and its simplified proof are given in [26] and [10].

2. UCHIYAMA'S METHOD

Uchiyama [25] pointed out that (FI) implies (FC) by a marvelous method. In Furuta's recent paper [17], the heart of Uchiyama's method is expressed as

\[(1 + \log X)^n \to X\]

for all \(X > 0\). We now rephrase Uchiyama's proof of (FC) by using (U): Suppose that \(\log A \geq \log B\) for \(A, B > 0\) and \(p, r \geq 0\). Then we have

\[A_n = 1 + \frac{\log A}{n} \geq B_n = 1 + \frac{\log B}{n} > 0\]

for sufficiently large \(n\). Assuming (FI), we have

\[A^{1+nr}_n \geq (A^p_n B^np^r A^q_n)^{\frac{1+nr}{np+nr}}\]

Taking \(n \to \infty\), it follows from (U) and \(A_n \to 1\) that

\[A^r \geq (A^q B^r A^p)^{\frac{1}{np+nr}}\]

that is, (FC) is proved.

Next we cite a proof of (GFI) \(\Rightarrow\) (FC) proved by Furuta [17], for convenience. Also we suppose that \(\log A \geq \log B\) for \(A, B > 0\) and \(p, r \geq 0\). We apply (GFI) to \(np, nr, s = 1, t = \min\{1, r\}\) and \(A_n \geq B_n > 0\), where \(A_n\) and \(B_n\) are as in above, namely

\[A^{1+nr}_n \geq (A^q_n (A^{-\frac{t}{p}} B^{np} A^{-\frac{s}{r}})A^p_n)^{\frac{1+nr}{np+nr}}\]

Hence we have (FC) by taking \(n \to \infty\).

3. FURUTA'S QUESTION

Related to (GFI) and (FC), Furuta posed the following question for himself about 5 years ago.

Furuta's question. For \(A, B > 0\), \(A \gg B\) if and only if

\[(Q)\]

\[A^{r-t} \geq \{A^q (A^{-\frac{t}{p}} B^p A^{-\frac{s}{r}})^q A^p\}^{\frac{r-t}{np+nr}}\]

holds for all \(p \geq 1, r \geq t, s \geq 1\) and \(t \in [0, 1]\)?

Since it follows from (FC) that (Q) implies \(A \gg B\) by taking \(t = 0\) and \(s = 1\), the converse is essential in the question. Recently Furuta himself gave it a counterexample in [17]. Namely (Q) is not necessary to the chaotic order \(A \gg B\). One can infer from reading between the lines that the example was based on his tough work. As a matter of fact, it was given by \(A = e^X\) and \(B = e^Y\), where

\[(1)\]

\[X = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 1 & 3 \\ 3 & -2 \end{pmatrix}\]

Then \(\log A = X \geq Y = \log B\) and

\[(2)\]

\[A^{r-t} \geq \{A^q (A^{-\frac{t}{p}} B^p A^{-\frac{s}{r}})^q A^p\}^{\frac{r-t}{np+nr}}\]

does not hold for \(r = 2, t = 1, s = 2\) and \(p = 2\).

We now point out that (Q) characterizes the operator order \(A \geq B\) for \(A, B > 0\). As an immediate consequence, Furuta's question is not true because the chaotic order is exactly weaker than the operator order.
Theorem 1. For $A, B > 0$, $A \geq B$ if and only if (Q) is satisfied, i.e.,

$$(Q) \quad A^{r-s} \geq \{A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\}^s A^{\frac{1}{2}}$$

holds for all $p \geq 1, r \geq t, s \geq 1$ and $t \in [0, 1]$.

Proof. First of all, we recall the following Kantorovich type operator inequality, Theorem 6 in [5], cf. also [27] and [19]: If $A \geq C$ for $A, C > 0$ and $0 < m \leq A \leq M$, then

$$(K) \quad \frac{(M + m)^2}{4 M m} A^2 \geq C^2.$$

Now we suppose that (Q) is satisfied and $0 < m \leq A \leq M$. If we take $p = t = 1$ and $r = 2$ in (Q), then we have

$$(3) \quad A \geq \{A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\}^s A^{\frac{1}{2}},$$

so that

$$(4) \quad \frac{(M + m)^2}{4 M m} A^2 \geq A^{-\frac{1}{2}} B A^{-\frac{1}{2}} A$$

by (K). Hence it implies that

$$(5) \quad \frac{(M + m)^2}{4 M m} A^2 \geq A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$$

for all $s \geq 1$ and so $1 \geq A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$, or equivalently $A \geq B$.

Conversely, if $A \geq B$, then (GFI) says that for each $t \in [0, 1],$

$$A^{1-t+r} \geq \{A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\}^s A^{\frac{1}{2}}$$

holds for all $s \geq 1, p \geq 1$ and $r \geq t$. Since $\frac{r-t}{1-t+r} \in [0, 1]$, the Löwner-Heinz inequality implies that (Q) holds for all $s \geq 1, p \geq 1$ and $r \geq t$.

So the proof is complete.

Moreover we have the following extension of Theorem 1, which says that the bounds of t is very important in such discussion:

Theorem 2. For each $\alpha \geq 0$ and $A, B > 0$, $A^\alpha \geq B^\alpha$, where the case $\alpha = 0$ means $\log A \geq \log B$, if and only if (Q) holds for all $p \geq \alpha, r \geq t, s \geq 1$ and $t \in [0, \alpha]$.

Proof. The case $\alpha = 0$ is just ensured by (FC). For each $\alpha > 0$, we can follow Theorem 1 by replacing as $A_1 = A^\alpha$ and $B_1 = B^\alpha$.

Since the selfadjoint operators do not form a complete vector lattice, Olson [21] introduced a new order among the selfadjoint operators, by which it becomes a conditionally complete lattice, cf. also [9]: Let E_t (resp. F_t) be the resolution of the identity of A (resp. B), i.e.,

$$A = \int t \, dE_t \quad \text{and} \quad B = \int t \, dF_t.$$

Then the spectral order $A \geq B$ holds if $E_t \leq F_t$ for all t. He also proved: For positive operators A and B, $A \geq B$ if and only if

$$A^n \geq B^n \quad \text{for all } n \in \mathbb{N}.$$

In addition, several useful properties of the spectral order are given by Uchiyama [24].

Anyway, as a consequence of Theorem 2, we have the following characterization of the spectral order by virtue of Olson’s theorem:

Theorem 3. For $A, B > 0$, $A \geq B$ if and only if for each $\alpha > 0$, (Q) holds for all $p \geq \alpha, r \geq t, s \geq 1$ and $t \in [0, \alpha]$.

In addition, we have the following slight variant of Theorem 3:
Theorem 4. For A, $B > 0$, $A \succeq B$ if and only if \((Q)\) holds for all p, $r \geq t \geq 1$ and $s \geq 1$.

Proof. For the sake of completeness, we cite the proof. Suppose that \((Q)\) holds for all p, $r \geq t \geq 1$ and $s \geq 1$. We take $p = t = n$ and $r = 2n$ for a given $n \in \mathbb{N}$. Then, as in the proof of Theorem 1, we have

$$A^n \geq \{A^{-(t-1)} B^n A^{-1} \} s A^n \} \geq,$$

so that \((K)\) implies

$$\frac{(M^n + m^n)^2}{4M^n m^n} \geq (A^{-\frac{t}{2}} B^n A^{-\frac{t}{2}})^*.$$

Therefore we have $A^n \geq B^n$, which means that $A \succeq B$ by Olson’s theorem.

The converse follows from Theorem 3.

4. The Chaotic Order

As stated in front of Theorem 2, we should pay our attention to the bounds of t, cf. [20]. So we consider the case $t \leq 0$ and give an affirmative answer to Furuta’s question in some sense.

For the sake of convenience, we cite the following useful lemma due to Furuta:

Lemma F. For A, $B > 0$ and $\alpha \in \mathbb{R}$,

$$(AB^2 A)^\alpha = AB(BA^2 B)^{\alpha - 1} B A,$$

or simply $(X^* X)^\alpha = X^*(XX^*)^{\alpha - 1} X$ for invertible X.

Lemma. If $A \succ B$ for A, $B > 0$ and $0 \leq p \leq \beta \leq 2p - t$ for some $t \leq 0$, then

\[
(B^p A^{-u} B^p)^{\frac{t}{p - t}} \leq (B^p A^{-u} B^p)^{\frac{t}{p - t}}
\]

for $u \leq t$.

Proof. We first prove that

$$B^p (B^p A^{-u} B^p)^{\frac{t}{p - t}} B^p \leq A^t$$

for $p \geq 0$ and $u \leq t < 0$, cf. [20]. Actually it follows from Lemma F and \((FC)\) that

$$B^p (B^p A^{-u} B^p)^{\frac{t}{p - t}} B^p$$

$$= [B^{-\frac{p}{2}} (B^p A^{-u} B^p)^{\frac{t}{2}} B^{-\frac{p}{2}}]^{-1}$$

$$= [A^{-\frac{p}{2}} (A^{-\frac{t}{2}} B^p A^{-\frac{t}{2}})^{\frac{t}{2}} A^{-\frac{t}{2}}]^{-1}$$

$$= A^\frac{p}{2} (A^{-\frac{t}{2}} B^p A^{-\frac{t}{2}})^{\frac{t}{2}} A^\frac{p}{2}$$

$$\leq A^\frac{p}{2} A^{-\frac{t}{2}} A^\frac{p}{2}$$

$$= A^t.$$

By using this, we have

$$B^p A^{-t} B^p \leq (B^p B^{-\frac{p}{2}} (B^p A^{-u} B^p)^{\frac{t}{p - t}} B^{-\frac{p}{2}} B^p)^{\frac{t}{p - t}}$$

$$= (B^p A^{-u} B^p)^{\frac{t}{p - t}}.$$

Theorem 5. For $A, B > 0$, $A \succ B$ if and only if

\[(Q)\]

$$A^r \geq \{A^\frac{r}{2} (A^{-\frac{1}{2}} B^p A^{-\frac{1}{2}})^s A^\frac{r}{2}\} \frac{t}{p - t}$$

holds for all $p \geq 0$, $r \geq 0$, $s \in [1, 2]$ and $t \leq 0$.

-22-
Proof. Suppose that $A \gg B$. We put $\beta = (p-t)s + t$ and $u = t - r \leq t \leq 0$ for convenience. Then $1 \leq s \leq 2$ if and only if $p \leq \beta \leq 2p - t$ and the conclusion (Q) is rephrased as follows:

$$A^{-u} \geq \left(A^{-\frac{1}{2}} B^p A^{-\frac{1}{2}} \right)^{\frac{p-t}{p-t}} A^{-\frac{2}{p-t}}$$

for $0 \leq p \leq \beta \leq 2p - t$ and $u \leq t \leq 0$.

We now prove it, which depends on the use of Lemma, Lemma F twice and (FC):

$$\left\{ A^{-\frac{1}{2}} B^p A^{-\frac{1}{2}} \right\}^{\frac{p-t}{p-t}} A^{\frac{2}{p-t}} = \left(A^{-\frac{1}{2}} B^p (B^a A^{-1} B^\frac{1}{2}) B^{\frac{1}{2}} A^{-\frac{1}{2}} \right)^{\frac{p-t}{p-t}} \leq \left(A^{-\frac{1}{2}} B^p (B^a A^{-1} B^\frac{1}{2}) B^{\frac{1}{2}} A^{-\frac{1}{2}} \right)^{\frac{p-t}{p-t}} = \left(A^{-\frac{1}{2}} B^p (B^a A^{-1} B^\frac{1}{2}) B^{\frac{1}{2}} A^{-\frac{1}{2}} \right)^{\frac{p-t}{p-t}} \leq A^{-u}.$$
11. T. Furuta, $A \geq B \geq 0$ assures $(B^{r} A B^{s})^{1/2} \geq B^{(r+2s)/2}$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1 + 2r)q \geq p + 2s$, Proc. Amer. Math. Soc., 101(1987), 85-88.
17. T. Furuta, Results under log $A \geq \log B$ can be derived from ones under $A \geq B \geq 0$ by Uchiyama's method - associated with Furuta and Kantorovich type operator inequalities -, Preprint.

Department of Mathematics, Osaka Kyotiku University, Asahigaoka, Kashiwara, Osaka 582-8582, JAPAN.
E-mail address: mfuji@cc.osaka-kyotiku.ac.jp
Chaotic order and Furuta inequality

Maebashi Institute of Technology
Eizaburo Kamei

1. Operator Chaos. For a positive invertible operator A on a Hilbert space, we regard $\log A$ as the operator chaos of A. The reason why we can regard $\log A$ as the operator chaos, we must go back to the von Neumann entropy [16]. Von Neumann had given the entropy of a statistical operator (i.e. positive trace class operator) A which is corresponding to a quantum ensemble by

$$\hat{S}(A) = -\text{tr} A \log A.$$

As an extension of the quantum entropy, Umegaki [21] had given the relative entropy for statistical operators A and B as follows:

$$\hat{S}(A|B) = \text{tr} A (\log A - \log B).$$

This relative entropy has been an essential and fundamental concept in the operator algebra or information theory and extended by Araki, Uhlmann and etc. (cf. [22]).

Moreover Nakamura and Umegaki [15] (cf. [22]) had shown the operator entropy is definable as follows:

$$S(A) = -A \log A.$$

In this formulation, Nakamura and Umegaki needed a hard work to show the operator concavity of this function, but very recently Furuta has given a simple proof [8] about this.

We had been searched the form of the relative operator entropy, and found the operator mean theory which is established by Kubo and Ando [14] being very useful for this purpose. Especially, the α-power mean \sharp_α is essential and it is given as the follows:

For positive operators A and B on a Hilbert space

$$A \sharp_\alpha B = A^{\frac{\alpha}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^\alpha A^{\frac{\alpha}{2}}, \text{ for } \alpha \in [0, 1].$$

The case where $\alpha = \frac{1}{2}$ is just the geometric mean. By using this α-power mean, we can define the relative operator mean $S(A|B)$ for positive
invertible operators A and B as follows [3]:
\[
\lim_{\alpha \to 0} \frac{A^\alpha B - A}{\alpha} = A^{\frac{1}{2}}(\log A^{-\frac{1}{2}} BA^{-\frac{1}{2}})A^{\frac{1}{2}} = S(A|B).
\]
This is an operator version of Uhlmann’s relative entropy [20]. The case where $B = I$, we have the operator entropy $S(A|I) = -A \log A$. On the other hand, we have $S(I|A) = \log A$ and regard this the operator chaos of A. The order $\log A \geq \log B$, we call chaotic order and denote $A \gg B$ [4].

2. Chaotic Furuta Inequality.

In the process of considering the Furuta type inequality under the chaotic order, we can obtain the next instrument [5]. This is an extension of Ando’s exponential inequality [1] and we call this chaotic Furuta inequality.

Theorem A (Chaotic Furuta inequality). Let A and B be positive invertible operators. Then the followings are equivalent.

(i) \(\gg B \)

(ii) \(C^r \leq B \) for \(0 \leq r \) and \(0 \leq p \)

(iii) \(B^{-r} \geq A \) for \(0 \leq r \) and \(0 \leq p \).

We can generalize this as follows [12]:

Theorem 1. Let A and B be positive invertible operators, then the followings are equivalent.

1. \(\gg B \) (i.e. \(\log A \geq \log B \))

2. \(A^{-r} \leq B \) for \(r \geq 0 \) and \(0 \leq \delta \leq p \)

3. \(B^{-r} \geq A \) for \(r \geq 0 \) and \(0 \leq \delta \leq p \)
(4) \[A^{-r} \left(\frac{1}{p} + \frac{1}{q} + r \right) \geq B^p \leq A^\gamma \quad \text{for} \quad -r \leq \gamma \leq 0 \quad \text{and} \quad 0 \leq p \]

(5) \[B^{-r} \left(\frac{1}{p} + \frac{1}{q} + r \right) \geq A^p \leq B^\gamma \quad \text{for} \quad -r \leq \gamma \leq 0 \quad \text{and} \quad 0 \leq p. \]

3. Furuta inequality. The original form of the Furuta inequality is the following \([6]\)(cf.\([7]\)).

If \(A \geq B \geq 0 \), then for each \(r \geq 0 \),

\[(A^\frac{r}{2}A^\frac{r}{2})^\frac{1}{r} \geq (A^\frac{r}{2}B^\frac{r}{2}A^\frac{r}{2})^\frac{1}{r} \]

and

\[(B^\frac{r}{2}A^\frac{r}{2}B^\frac{r}{2})^\frac{1}{r} \geq (B^\frac{r}{2}B^\frac{r}{2}B^\frac{r}{2})^\frac{1}{r} \]

holds for \(p \) and \(q \) such that \(p \geq 0 \) and \(q \geq 1 \) with

\[(1 + r)q \geq p + r. \]

In this inequality, the case where \(r = 0 \) is the Löwner-Heinz one. The best possibility of the domain for \(p, q \) and \(r \) in the Figure 1 is proved by Tanahashi \([17]\).

By the terms of \(\alpha \)-power mean, we can give the Furuta inequality as follows (\([2],[6],[7],[11]\) etc.): If \(A \geq B \geq 0 \), then

(1) \[A^{-r} \left(\frac{1}{p} + \frac{1}{q} + r \right) \geq B^p \leq A^\gamma \quad \text{and} \quad B \leq B^{-r} \left(\frac{1}{p} + \frac{1}{q} + r \right) A^p \]

hold for \(p \geq 1 \) and \(r \geq 0 \).

Moreover, we had given an another proof of the Furuta inequality by using \(\alpha \)-power mean \(\sharp_\alpha \) and obtained the following relations \([11]\):

Satellite theorem of the Furuta inequality: If \(A \geq B \geq 0 \), then

\[A^u \left(\frac{1}{p} + \frac{1}{q} + u \right) \geq B^p \leq A \leq B^u \left(\frac{1}{p} + \frac{1}{q} + u \right) A^p \]
for all $p \geq 1$ and $u \leq 0$.

Uchiyama [18] has pointed out that the chaotic Furuta inequality is obtained by only using the Furuta inequality. We explain about this according to Furuta [9]. The tool is the following fact.

\[
\lim_{n \to \infty} \left(1 + \frac{\log X}{n} \right)^{n} = X.
\]

Suppose $A \gg B$, then

\[
A_n = 1 + \frac{\log A}{n} \geq B_n = 1 + \frac{\log B}{n}.
\]

For $A_n \geq B_n \geq 0$, applying the Furuta inequality we have

\[
(A_n^{\frac{n\delta}{p+r}} B_n^{np} A_n^{\frac{n\delta}{p+r}})^{\frac{p+r}{n\delta}} \leq A_n^{1+\delta r},
\]

and (4) is shown as $n \to \infty$.

4. Chaotic order and Furuta inequality. In this section, we show the converse of the above pointed out by Uchiyama [18]. Namely, the chaotic Furuta inequality implies the Furuta one. First of all, we point out the following which is the case where $\delta = 1$ in Theorem 1, but the satellite Theorem shows the difference of the chaotic order \gg and the usual order \geq clearly.

Theorem 2. If $A \gg B$ for $A, B > 0$, then

\[
(\text{II}) \quad A^{-r} \leq B \quad \text{and} \quad A \leq B^{-r} \quad \text{hold for all } p \geq 1 \text{ and } r \geq 0.
\]

The equivalence of the chaotic Furuta inequality and the Furuta one is shown as follows [13]:

Theorem 3. The followings are equivalent.

(i) If $A \geq B > 0$, then (I) holds for $p \geq 1$ and $r \geq 0$.

\[28\]
(ii) If $A \succ B$ for A, $B > 0$, then (II) holds for $p \geq 1$ and $r \geq 0$.

5. Application. Very recently, Uchiyama [19] has shown the following result which is an attempt to extend the Furuta inequality.

Uchiyama's result. Let A, B and C be positive invertible operators. If $A \leq B !_{\lambda} C$, then for $t \geq s \geq 0$ and $r \geq 0$

$$A^{\frac{r}{s}} (B^s \nabla_{\lambda} C^s) A^{\frac{r}{s}} \leq \{A^{\frac{r}{s}} (B^t \nabla_{\lambda} C^t) A^{\frac{r}{s}}\}^\frac{t}{s+r}.$$

Here $B !_{\lambda} C$ and $B \nabla_{\lambda} C$ are the harmonic mean and the arithmetic operator mean respectively [14] which are defined as follows:

For $\lambda \in [0, 1]$,

$$B !_{\lambda} C = (\lambda B^{-1} + (1 - \lambda) C^{-1})^{-1} \quad B \nabla_{\lambda} C = \lambda B + (1 - \lambda) C.$$

The following results are shown in [10], but in this note, we see them from a little different viewpoint.

Theorem 4. Let A, B, $C > 0$. If $A \ll B !_{\lambda} C$, then

$$A^t \ll B^t \nabla_{\lambda} C^t \quad \text{(or } A \ll (B^t \nabla_{\lambda} C^t)^\frac{1}{t})$$

for all $t > 0$.

Applying Theorem 1 to this results, we can obtain the next theorem.

Theorem 5. Let A, B, $C > 0$.

If $A^t \ll B^t \nabla_{\lambda} C^t$ for all $t \geq s \geq 0$ and $t > 0$, then

$$(B^s \nabla_{\lambda} C^s) \leq A^{-r} \#_{\frac{s+r}{r+t}} (B^t \nabla_{\lambda} C^t).$$

Proof. We have only use Theorem 1 (3) and (4) for $A \ll (B^t \nabla_{\lambda} C^t)^\frac{1}{t}$.

References

[6] T. Furuta, $A \geq B \geq 0$ assures $(B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1 + 2r)q \geq p + 2r$, Proc. Amer. Math. Soc., 101(1987), 85-88.
I talk about my paper with Sergio Canoy Jr. and Go Hirasawa in the same title which appeared in Nihonkai Math. J. 10(1999), 157-164. The following is the introduction of our paper.

Let Ω be a compact Hausdorff space and let $C(\Omega)$ be the space of complex valued continuous functions on Ω. With the supremum norm, $C(\Omega)$ is a unital commutative C^*-algebra. Let S be a unital C^*-subalgebra of $C(\Omega)$. A bounded linear operator P on $C(\Omega)$ is called a projection onto S if $Ph = h$ for every $h \in S$ and the range of P equals to S. A bounded linear operator Q on $C(\Omega)$ is called a weak projection for S if $Qh = h$ for every $h \in S$. If P is a projection onto S, then P is a weak projection for S. The converse of this assertion is not true. A counterexample is $S = \{ f \in C([0,1]); f(1/3) = f(x) \text{ for } 1/3 \leq x \leq 2/3 \}$. For a unital C^*-subalgebra S of $C(\Omega)$, there may not exist a weak projection for S. Our problem in this paper is to find which conditions on S there exists a weak projection for S.

A motivation of this study comes from Korovkin type approximation theorems. A subset E of $C(\Omega)$ is called a Korovkin set if for every sequence of bounded linear operators $\{T_n\}$ on $C(\Omega)$ such that $\|T_n\| \leq 1$ for every n and $T_nh \to h$ for each $h \in E$, it holds $T_nf \to f$ for every $f \in C(\Omega)$. Korovkin [4] (see also [6]) proved that $\{1, x, x^2\}$ is a Korovkin set of $C([0,1])$. There are many researches on Korovkin type approximation theorems, see [1, 3, 5].

By the definitions, if S is a unital C^*-subalgebra of $C(\Omega)$ and S is a Korovkin set, then there are no weak projections Q for S such that $Q \neq I$ and $\|Q\| = 1$.

Let S be a unital C^*-subalgebra of $C(\Omega)$. For $x \in \Omega$, put

$E(x) = \{ y \in \Omega; f(y) = f(x) \text{ for every } f \in S \}$.

Then $E(x)$ is a closed subset of Ω, and it holds $E(x) = E(y)$ or $E(x) \cap E(y) = \emptyset$. We call the family $\{ E(x) \}_{x \in \Omega}$ the Shilov decomposition for S. We have the following proposition.

Proposition. Let S be a unital C^*-subalgebra of $C(\Omega)$ and let $\{ E(x) \}_{x \in \Omega}$ be the Shilov decomposition for S. Assume that there exist a non-empty open subset U of Ω and a continuous map φ from U to Ω such that

i) $\varphi(x) \in E(x)$ for $x \in U$,

ii) $\varphi(x) \neq x$ for $x \in U$.

Then there exists a weak projection Q for S such that $Q \neq I$ and $\|Q\| = 1$.

Proof. Let φ be a continuous map satisfying i) and ii). We shall prove the existence of a weak projection Q for S with $Q \neq I$ and $\|Q\| = 1$. Take a point x_0 in U and a continuous
function ψ on Ω such that $0 \leq \psi \leq 1$ on Ω,

\[(1) \quad \psi = 0 \text{ on } \Omega \setminus U \quad \text{and} \quad \psi(x_0) = 1.
\]

We define an operator Q on $C(\Omega)$ as

\[(2) \quad (Qg)(x) = \psi(x)g(\phi(x)) + (1 - \psi(x))g(x) \quad \text{for } g \in C(\Omega), x \in \Omega.
\]

Then it is not difficult to see that Q is a bounded linear operator on $C(\Omega)$ with $\|Q\| = 1$.

Let $h \in S$. Then by i), $h(\phi(x)) = h(x)$ for $x \in U$. Hence by (2), $(Qh)(x) = h(x)$ for $x \in U$.

For $x \in \Omega \setminus U$, by (1) we have $\psi(x) = 0$, so that $(Qh)(x) = h(x)$. Thus we get $Qh = h$ for $h \in S$.

Since $x_0 \in U$, by ii) we have $\phi(x_0) \neq x_0$, so that there exists $g_0 \in C(\Omega)$ such that $g_0(\phi(x_0)) \neq g_0(x_0)$. Hence by (1) and (2), $(Qg_0)(x_0) \neq g_0(x_0)$. Therefore Q is a weak projection for S with $Q \neq 1$ and $\|Q\| = 1$.

We conjecture that the converse of Proposition is affirmative.

Conjecture. Let S be a unital C^*-subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x \in \Omega}$ be the Shilov decomposition for S. If there exists a weak projection Q for S such that $Q \neq 1$ and $\|Q\| = 1$, then there exist a non-empty open subset U of Ω and a continuous map ϕ from U to Ω such that

i) $\phi(x) \in E(x)$ for $x \in U$,

ii) $\phi(x) \neq x$ for $x \in U$.

In the next section, we study this conjecture under some additional conditions.

2. Weak projections

In this section, we shall prove the following theorem.

Theorem 1. Let S be a unital C^*-subalgebra of $C(\Omega)$ and let $\{E(x)\}_{x \in \Omega}$ be the Shilov decomposition for S. Suppose that $E(x)$ is a countable set for every $x \in \Omega$. If there exists a weak projection Q for S such that $Q \neq 1$ and $\|Q\| = 1$, then there exist a non-empty open subset U of Ω and a continuous map ϕ from U to Ω such that

i) $\phi(x) \in E(x)$ for $x \in U$,

ii) $\phi(x) \neq x$ for $x \in U$.

For a subset E of Γ, we denote by $\text{int} E$ the interior of E. To prove Theorem 1, we use the following theorem.

Theorem 2. Let Ω and Γ be compact Hausdorff spaces. Suppose that $\mu_x, x \in \Gamma$, is a positive Borel measure on Ω such that $\sup \{\mu_x(\Omega); x \in \Gamma\} < \infty$, μ_x has an atom for every $x \in \Gamma$, and $\int_\Omega f d\mu_x$ is continuous in $x \in \Gamma$ for every $f \in C(\Omega)$. Then there exists a continuous map ϕ from some non-empty open subset U of Γ to Ω such that $\mu_x(\{\phi(x)\}) > 0$ for every $x \in U$.

32
REFERENCES

Department of Mathematics
Niigata University
Niigata 950-2181, JAPAN
Measurable Norms and Related Conditions in Some Examples
(実例にみる可測ノルムとその周辺の条件)

Keiko Harai
Graduate School of Humanities and Sciences, Ochanomizu University

Michie Maeda
Faculty of Science, Ochanomizu University

1 導入
無限次元空間上の測度論は1950年代のProkhorov, Sazonov, Minlos等の仕事([14, 15, 12])により独立した研究分野として確立された。この分野のことを簡単に言えば、「有限次元空間内で有効なLebesgue測度は、無限次元空間上では存在しない。無限次元空間上でLebesgue測度にできるだけ近い性質をもたった測度をつくることが究極の目的である。」ということになるだろう。しかし、無限次元という性質上、有限測度が主な研究対象となる。もちろん、無限測度に関する研究もあるが([18])。そこで、中心的な役割を果たす、目標とする測度は、Lebesgue測度そのものではなく、Gauss確率測度になる。Gauss測度は、有限次元空間での定義をそのまま無限次元Hilbert空間上において拡張して定義できるが、実は、これはシリンダー測度であって、σ-加法性を満たす通常の測度になっていない。従って、このGaussシリンダー測度がどのような条件のもとで測度に拡張可能になるかが、重要な問題となる。1962年、Gross([5])が可測ノルムという概念を導入した。これはGaussシリンダー測度を測度に拡張するための条件である。1971年、Dudley-Feldman-LeCamら([3])が更に広い範囲でのシリンダー測度について測度化可能となる必要十分条件として可測ノルムを定義した。この2つの概念は極めて近いが微妙に異なる。このことについて、Badrikian-Chevet([1])がすべてのシリンダー測度について同値ではないかというConjectureを提示した。これは1984年、Maeda([8])により、否定的に解決されている。この2つの可測ノルムの周辺には複数の条件がある。この論文の中では、6つの条件について調べる。
2 準備

この論文では、X を Banach 空間、X' を X の位相的双対空間とし、(\cdot, \cdot) を X' と X の natural pairing とする。また、$B(X)$ を X 上の Borel σ-algebra とする。H を実可分 Hilbert 空間、$\langle \cdot, \cdot \rangle$ を H 上の内積、$FD(H)$ を H の有限次元部分空間全体、F を H 上の有限次元部分空間への直交射影の全体とする。また、I で恒等写像を表すことにする。

Z が、$\xi_1, \xi_2, \ldots, \xi_n \in X', D \in B(R^n)$ に対して、次のように表されるとき、シンリンダー集合という。

$$Z = \{ x \in X; ((\xi_1, x), (\xi_2, x), \ldots, (\xi_n, x)) \in D \}$$

$\xi_1, \xi_2, \ldots, \xi_n$ を固定したときのシンリンダー集合全体、$R_{\xi_1, \xi_2, \ldots, \xi_n}$ は σ-algebra になるが、シンリンダー集合全体、R は σ-algebra になるとは限らない。

また、Hilbert 空間上のシンリンダー集合は、直交射影を使って次のように表すことができる。

$$Z = \{ x \in H; Px \in F \} \quad (P \in F, F \in B(PH))$$

次にシンリンダー測度を定義する。

定義 2.1 (シンリンダー測度) R 上に定義された関数 μ が次の条件を満たすとき、シンリンダー測度であるという。

(i) $\mu : R \rightarrow [0, 1]$
(ii) μ の $R_{\xi_1, \xi_2, \ldots, \xi_n}$ への制限は確率測度

次に Hilbert 空間上で重要な役割を果たす Gauss シンリンダー測度を定義する。

定義 2.2 (Gauss シンリンダー測度) 集合関数 $\gamma : R \rightarrow [0, 1]$ が次のような形で表されるとき、Gauss シンリンダー測度であるという。

$$\gamma(Z) = \frac{1}{2\pi} \int_F e^{-\frac{|x|^2}{2}} \, dx$$

ただし、$Z = \{ x \in H; Px \in F \}$、$n = \dim PH$、$dx$ は PH 上の Lebesgue 測度とする。

次に、この論文の主題である可測ノルムの定義をする。

定義 2.3 (Gross の可測ノルム) 任意の $\varepsilon > 0$ に対して、ある $G \in FD(H)$ が存在して、$F \perp G$ となるどんな $F \in FD(H)$ に対しても、
\[\mu(\{ N_\varepsilon \cap F + F^\perp \}) \geq 1 - \varepsilon \]

が成り立つとき、\(\| \cdot \| \)は\(\mu \)-可測（Gross）であるという。

ただし、\(N_\varepsilon = \{ x \in H; \| x \| \leq \varepsilon \} \)，\(F^\perp \)は\(F \)の直交補空間とする。

無限次元 Hilbert 空間上では、Gauss シリンダー測度\(\gamma \)は可算加法的測度ではない。そこで、初めの位相よりも弱い位相を導入する新しいノルムを考え、これに関する完備化空間の中ではじめの空間上のシリンダー測度を埋め込み写像による像測度として考える。これが可算加法的となるための十分条件を求めたのが、L.Gross である。

Gross が可測ノルムを定義した後、Dudley-Feldman-LeCam が別の可測ノルムを定義した。この可測ノルムはシリンダー測度を可算加法的測度に拡張するための必要十分条件となるものである。

定義 2.4 (D.F.L の可測ノルム) 任意の\(\varepsilon > 0 \)に対して、ある \(G \in FD(H) \) が存在して、\(F \perp G \)となるどんな \(F \in FD(H) \)に対しても、

\[\mu(\{ P_F(\varepsilon) + F^\perp \}) \geq 1 - \varepsilon \]

が成り立つとき、\(\| \cdot \| \)は\(\mu \)-可測（D.F.L）であるという。

ただし、\(P_F \)は \(H \)から \(F \)への直交射影とする。

したがって、2つの可測ノルムの条件を比較すると、D.F.L の可測ノルムの条件よりも Gross の可測ノルムの条件の方が強い条件であることが分かる。

3 可測ノルムを取り囲む条件とその関係

ここでは、Gross の可測ノルムの条件、D.F.L の可測ノルムの条件を取り囲む条件とその関係を紹介する。

定理 3.1 \(H \) を実可分ヒルベルト空間、\(\mu \)を \(H \)上のシリンダー測度、\(\| \cdot \| \)を \(H \)上で定義されたノルム、\(B \)を \(\| \cdot \| \)に関する \(H \)の完備化とする。このとき、次の (i) から (vi) に対しても、(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) が成り立つ。

(i) \(I \)に強収束する \(\mathcal{F} \)の任意の列 \(P_n \)が、任意の\(\varepsilon > 0 \)に対して、

\[
\lim_{n, m \to \infty} \mu(\{ x \in H; \| P_n x - P_m x \| > \varepsilon \}) = 0
\]

-36-
(ii) $\| \cdot \|$ は μ-可測（Gross）である。
(iii) I に強収束する増加列 $P_n \in \mathcal{F}$ で、任意の $\varepsilon > 0$ に対して、
\[
\lim_{n,m \to \infty} \mu(\{ x \in H; \| P_n x - P_m x \| > \varepsilon \}) = 0
\]
を満たすものが存在する。
(iv) I に強収束する増加列 $P_n \in \mathcal{F}$ で、
\[
\lim_{N \to \infty} \lim_{n \to \infty} \mu(\{ x \in H; \sup_{1 \leq k \leq n} \| P_k x \| > N \}) = 0
\]
を満たすものが存在する。
(v) $\| \cdot \|$ は μ-可測（D.F.L）である。
(vi) $i(\mu)$ は測度に拡張できる。
ただし、i は H から B への埋め込み写像で、$i(\mu) = \mu \circ i^{-1}$ とする。

4 ℓ^2 空間上のいくつかの例

ここでは、Hilbert 空間を具体的な ℓ^2 空間として、具体的にシリンダー測度とノルムを構成して、定理 3.1 の条件との関係を調べる。

$(\ell^2)^*$ を弱位相相$(\ell^2)^*, \ell^2)$ をもつ ℓ^2 の代数的対空間とし、I を $\{ e_n \}_{n=1,2,\ldots}$ を含む ℓ^2 の代数的基とする。ただし、$e_n = (0,0,\ldots,0,1,0,\ldots)$ とする。(\cdot, \cdot) を $(\ell^2)^*$ と ℓ^2 の natural pairing とする。

測度の構成

$(\ell^2)^*$ 上に次のような a, b をとり、これに対し、Dirac 測度 δ_a, δ_b を考える。それから導入される ℓ^2 上のシリンダー測度を μ_a, μ_b とする。

\[
a \in (\ell^2)^* \text{ s.t } (a, e_n) = 1, \quad n = 1, 2, \ldots \quad (a, e_\alpha) = 0, \quad e_\alpha \in I \setminus \{ e_n \}_{n=1,2,\ldots}
\]
\[
b \in (\ell^2)^* \text{ s.t } (a, e_n) = n, \quad n = 1, 2, \ldots \quad (a, e_\alpha) = 0, \quad e_\alpha \in I \setminus \{ e_n \}_{n=1,2,\ldots}
\]
\[
\mu_a(\{ x \in \ell^2; (\xi_1, x), (\xi_2, x), \ldots, (\xi_n, x) \in D \}) = \delta_a(\{ x \in (\ell^2)^*; ((\xi_1, x), (\xi_2, x), \ldots, (\xi_n, x)) \in D \})
\]
\[
\mu_b(\{ x \in \ell^2; (\xi_1, x), (\xi_2, x), \ldots, (\xi_n, x) \in D \}) = \delta_b(\{ x \in (\ell^2)^*; ((\xi_1, x), (\xi_2, x), \ldots, (\xi_n, x)) \in D \})
\]

ただし、$\xi_1, \xi_2, \ldots, \xi_n \in \ell^2$, $D \in \mathcal{B}(\mathbb{R}^n)$ とする。
ノルムの構成
まず、open, convex, absorbing, circled な集合、U_1, U_2, U_3 を次のように定義する。
非負実数列 $\{\beta_n\}, \{\lambda_n\}$ を次のように定める。$\{\beta_n\}$ は正の実数列で単調増加で、
$\beta_n \to \infty \ (n \to \infty)$ とし、$\{\lambda_n\}$ は $\lambda_{2^m} = 0, \lambda_{2^m - 1} > 0$ で、$\{\lambda_{2^m - 1}\}$ は単調増加列で、
$\lambda_{2^m - 1} \to \infty \ (m \to \infty)$ とする。
$\Gamma_1 = \{\pm \beta_n (e_1 + e_2 + \ldots + e_n); n = 1, 2, \ldots\}$ の convex hull、
$\Gamma_2 = \{\pm \lambda_n (e_1 + e_2 + \ldots + e_n); n = 1, 2, \ldots\}$ の convex hull、
$\Gamma_3 = \{\pm \lambda_n (e_1 + 2e_2 + \ldots + ne_n); n = 1, 2, \ldots\}$ の convex hull。
とし、B_1 を ℓ^2 上の開単位球、B_2 を集合集合 $\{x = (x_n) \in \ell^2; \sqrt{\sum_{n=1}^{\infty} \frac{x_n^2}{n}} < 1\}$ とし、
$U_1 = \Gamma_1 + B_1, U_2 = \Gamma_2 + B_1, U_3 = \Gamma_3 + B_2$ とする。
このとき、U_1, U_2, U_3, B_2 の gauge として、$\| \cdot \|_1, \| \cdot \|_2, \| \cdot \|_3, \| \cdot \|_4$ を定義する。

このように定義した測度とノルムに関して、得られた結果を定理として紹介する。

定理 4.1 $\| \cdot \|_2$ は γ-可測ではない。

定理 4.2 $\| \cdot \|_3$ は μ_3 について (iii) を満たす。

定理 4.3 $\| \cdot \|_4$ は μ_4 で可測 (D.F.L) ではない。

定理 4.4 $\| \cdot \|_5$ は μ_5 について (iii) を満たす。

定理 4.5 $\| \cdot \|_3$ と $\| \cdot \|_4$ は μ_6 について (iii) を満たす。

$\| \cdot \|_6$ が γ-可測になるのか、ならないのか、また、$\| \cdot \|_3, \| \cdot \|_4$ が Gross の意味で μ_6-可測になるのか、ならないのか等を考えることが、今後の課題である。

参考文献

－38－

[18] 山崎 泰郎 "無限次元空間上の測度" 紀伊国屋書店 (1978)
Quasi-norms for double sequences
(準ノルムの入った二重級数の空間について)

Toshihide Ueno1(D1), Takeshi Tokuyama2, Masami Okada3
(Graduate School of Information Sciences4, Tohoku University)

Abstract
The purpose of this note is to characterize quasi-norms which are distinct weak \(l^p \)-norms for a double sequence. In fact we can give some bound of the ratio of a weak \(l^p \)-norm and a successive weak \(l^p \)-norm for any double sequences.

1 はじめに

\(L^2(\mathbb{R}) \) で正規直交のウェイヴレット基底を \(\{\phi_{0,k}\}_{k \in \mathbb{Z}} \cup \{\psi_{j,k}\}_{j \geq 0, k \in \mathbb{Z}} \) とする。このとき関数 \(f \in L^2(\mathbb{R}) \) の展開 (ウェイヴレット展開) を

\[
f = \sum_{k \in \mathbb{Z}} c_{0,k} \phi_{0,k} + \sum_{j \geq 0} \sum_{k \in \mathbb{Z}} d_{j,k} \psi_{j,k}
\]

とする。ただし

\[
\phi_{0,k}(x) = \phi(x - k), \quad \psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k),
\]

\[
c_{0,k} = \langle f, \phi_{0,k} \rangle, \quad d_{j,k} = \langle f, \psi_{j,k} \rangle.
\]

また、\(\psi \) をスケーリング関数、\(\phi \) をウェイヴレット関数とよぶ。
ウェイヴレットには何種類もありそれぞれ特徴を持っている。特にドーベシィのウェイヴレットは次のような性質を持つ:

性質 1.1

(i) \(\{\phi_{0,k}, \psi_{j,k} \mid j \geq 0, k \in \mathbb{Z}\} \) は \(L^2(\mathbb{R}) \) の正規直交基底。

(ii) \(\phi, \psi \) はコンパクトサポートを持つ。

(iii) \(\phi, \psi \) は \(m \) 回微分可能な関数。

(iv) \(i = 0, 1, 2, \ldots, m \) に対して

\[
\int_{-\infty}^{\infty} x^i \psi(x) \, dx = 0.
\]

多次元の場合、1 次元ウェイヴレットのテンソル積を用いて表す ([1]):

\[
\{\psi^{(i)}_{j,k} \mid i = 0, 1, \ldots, 2^d - 1, k \in \mathbb{Z}^d\}, \quad k = (k_1, \ldots, k_d).
\]
例えば 2 次元 \((d = 2)\) のときは

\[
\psi_{j_1(l,m)}^{(0)}(x,y) = \delta_{j_0,0}\phi_{j_1,l}(x)\phi_{j_2,m}(y), \quad \psi_{j_1(l,m)}^{(1)}(x,y) = \phi_{j_1,l}(x)\psi_{j_2,m}(y),
\]

\[
\psi_{j_1(l,m)}^{(2)}(x,y) = \psi_{j_1,l}(x)\phi_{j_2,m}(y), \quad \psi_{j_1(l,m)}^{(3)}(x,y) = \psi_{j_1,l}(x)\psi_{j_2,m}(y),
\]

となり、それぞれ \(L^2(\mathbb{R}^2)\) の正規直交基底である。

ベソノルムとウェイヴレット展開係数の関係について次の定理が知られている:

定理 1.1 \([2]\) 正規直交ウェイヴレット \(\psi_{j,k}^{(i)}\) は性質 1.1 を満たし、その \(m\) が十分大きいとき、

\[
c_j(k) = \langle f, \psi_{j,k}^{(i)} \rangle, \quad i = 0, \ldots, 2^d - 1, \quad j = 0, 1, 2, \ldots, \quad k \in \mathbb{Z}^d
\]

であるとき、\(s > d(1/p - 1)\) に対して

\[
\|f\|_{B_{p,q}} \sim \left(\sum_{k} \left| c_0^{(0)}(k) \right|^p \right)^{1/p} + \left\{ \sum_{j=0}^{\infty} 2^{jq(1 + 2d - d/p)} \left(\sum_{i=1}^{2^d - 1} \left| c_{j,k}^{(i)} \right|^p \right)^{q/p} \right\}^{1/q}
\]

が成立する。

我々は上の定理のようにウェイヴレット展開係数の評価により元の関数の特徴を得られるという事実に注目し、二重数列を評価するために弱 \(p\)-ノルムの概念を導入し、そのノルムの違いを評価した。

2 弱 \(p\)-ノルムの定義とその性質

\(p \geq 1\) とし、\(a = (a_k)_{k=1}^{\infty}\) を数列とする。また、\(a_k^*\) は \((a_k^*)_{k=1}^{\infty} = \{a_k\}_{k=1}^{\infty}, |a_k^*| \geq |a_2^*| \geq \ldots\) を満たす \(a\) の大きい順にとった再列とする。このとき離散版ローレンツノルムは

\[
|a|_{p,q} = \left\{ \begin{array}{ll}
\left(\sum_{k=1}^{\infty} \left(k^{1/p} |a_k^*| \right)^q \frac{1}{k} \right)^{1/q}, & 1 \leq q < \infty \\
\sup_k k^{1/p} |a_k^*|, & q = \infty,
\end{array} \right.
\]

(2.1)

と定義される。このノルムは \(1 \leq q \leq p < \infty\) のとき

\(q > p\) のときは準ノルムであることが知られている (cf. [3]). 今、\(|a|_{p,\infty}\) を \(|a|_{W_p}\) で表し弱 \(p\)-ノルムとよぶ。

また、\(a_k^{**} = \sum_{i=1}^{k} |a_i^*| / k\) とすると離散版カルテゴンノルムは

\[
|a|_{p,\infty} = \left\{ \begin{array}{ll}
\left(\sum_{k=1}^{\infty} \left(k^{1/p} |a_k^{**}| \right)^q \frac{1}{k} \right)^{1/q}, & 1 \leq q < \infty \\
\sup_k k^{1/p} |a_k^{**}|, & q = \infty,
\end{array} \right.
\]

(2.2)

で与えられる。\((2.2)\) は \(q > p\) のときもノルムになる (cf. [3], [6])。

(2.1), (2.2) が同値であることを示すために次の定理を用いる。

定理 2.1 (離散版ハディ不等式 cf. [3]) \(0 < \theta < 1, 1 \leq q < \infty\) に対して

\[
\sum_{i=1}^{\infty} \left(i^{-\theta} \sum_{j=1}^{i} \frac{|a_j|}{j} \right)^q \frac{1}{i} \leq C_1 \frac{1}{\theta q} \sum_{i=1}^{\infty} \left(i^{-\theta} |a_i| \right)^q \frac{1}{i}
\]
が成立し，\(q = \infty \) に対して

\[
\sup_i \left(\prod \sum \frac{|a_j|}{j} \right) \leq C_2^{-1} \sup_i \left(\prod \sum \frac{|a_i|}{j} \right)
\]

が成立する。ただし，\(C_1, C_2 \) は \(\theta, q \) に無関係の定数である。

上の定理から次の命題がわかる。

命題 2.1 1 < \(p < \infty \)，1 \leq q \leq \infty に対してノルム (2.1)，(2.2) は同値である。すなわち

\[
|a|_{p,q}^* \leq |a|_{p,q} \leq C_3 - \frac{p}{p-1} |a|_{p,q}^*
\]

注意 2.1 定理 2.1 は [3] の離散版である \(q = \infty \) のとき cf.[6]。

今 \(p > 0 \) とし，\(b = (b_k)_{k=1}^{\infty} \) を数列とするとき，次の (i)，(ii) は同値である ([5]):

(i) \(\left(\frac{C_4}{k} \right)^{1/p} < |b|_{p,q} \left(\frac{C_5}{k} \right)^{1/p}, \quad k = 1, 2, \ldots, n \)

(ii) \(\left[\frac{C_4}{p} \right] n \leq \# \{ k \mid |b_k| > x, k = 1, 2, \ldots, n \} \leq \left[\frac{C_5}{p} \right] n \)

ただし，(i) は \(m \leq t < m + 1 \) を満たす整数 \(m \) である。この同値は \(n = \infty \) でも成立し，\(C_5 \) として \(|b|_{W_p} \) を取れる。これを用いると次の評価が得られる。

補題 2.1 \(p > 0 \) に対して

\[
|b|_{W_p} \leq |b|_{p,q} \leq (1 + \log n)^{1/p} |b|_{W_p}
\]

が成立する。左側の等号は \(p = \infty \) のときである。

弱 \(p \)-ノルムは \(p \)-ノルムより弱いノルムである。更に補題 2.1 の一般化が次の命題である。

命題 2.2 1 \leq p, q \leq \infty に対して

\[
|b|_{p,q}^* \leq (1 + \log n)^{1/q} \left| b \right|_{W_p}
\]

が成立し，\(p < q, p \geq q \) のときそれぞれ

\[
\begin{cases}
|b|_{W_{pq}} \leq C_6 |b|_{p,q}^*, & p < q \\
|b|_{W_{pq}} \leq |b|_{p,q}, & p \geq q
\end{cases}
\]

が成立する。ただし，\(C_6 \) は \(p, q \) に無関係の定数である。

3 二重数列に対する弱 \(p \)-ノルムの定義

\(A = (a_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n} \) を二重数列とする。\(A \) に対して弱 \(p \)-ノルムを次のように定義する。

定義 3.1 \(a_n^* \) は \(\{a_k^*\}_{1 \leq k \leq mn} = \{a_{i,j}^*\}_{1 \leq i \leq m, 1 \leq j \leq n}, |a_n^*| \geq |a_k^*| \geq \cdots \) を満たす \(A \) の大きい順にとった再配列とする。このとき準ノルムをそれぞれ

\[
(i) \|A\|_{W_p} = \left| \left| \left(a_{i,j} \right) \right|_{W_p} \right|_{W_{pq}},
\]

−42−
(ii) \[|A|_{W_p} = \sup_k k^{1/p} |a_k^*|, \]
と定義する. (i) を逐次弱 \(p \)-ノルム, (ii) を弱 \(p \)-ノルムと言ぶ.

我々は定義 3.1 の (i), (ii) で定まる 2 つの準ノルムの関係を調べた. まず最初に具体例による 2 つの準ノルムの関係を述べる.

例 3.1

(i) \(B = (b_{i,j})_{1 \leq i,j \leq n} \) を二重数列とし \(b_{i,j} = 1/ij \) を満たすとする. このとき \(B \) の逐次弱 \(l^1 \)-ノルムと弱 \(l^1 \)-ノルムはそれぞれ

\[\|B\|_{W_1} = 1, \]

\[|B|_{W_1} \approx \log n. \]

従って \(n \to \infty \) のときの \(\|B\|_{W_1} \) の増大オーダーは \(|B|_{W_1} \) の増大オーダーより小さい.

(ii) \(C \) は次の条件を満たす二重数列とする:

\[
C = \begin{bmatrix}
1 & 2 & 3 & \cdots & k+1 & \cdots & n \\
1 & 2^{-1} & 2^{-2} & \cdots & 2^{-k} & \cdots & 2^{-n+1} \\
2 & 2^{-1} & 2^{-2} & & & & \\
3 & 2^{-2} & & & & & \\
4 & 2^{-2} & & & & & \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2^k & & & \cdots & 2^{-k} & & \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
m & & & & & & 0
\end{bmatrix}
\]

このとき \(C \) の逐次弱 \(l^1 \)-ノルムと弱 \(l^1 \)-ノルムはそれぞれ

\[\|C\|_{W_1} = \min \{ [\log_2 m], n \}, \]

\[|C|_{W_1} \approx \min \left\{ 2 - \frac{1}{m}, 2 - \frac{1}{2^{n-1}} \right\}. \]

従って \(m,n \to \infty \) のときの \(\|C\|_{W_1} \) の増大オーダーは \(|C|_{W_1} \) の増大オーダーより大きい.

(iii) \(D = (d_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n} \) を二重数列とし \(d_{i,j} = 1/(\max(i,j))^2 \) を満たすとする. このとき

\[\|D\|_{W_1} = |D|_{W_1} = 1. \]

4 得られた評価

例 3.1 のように二重数列に対して一般に逐次弱 \(p \)-ノルムと弱 \(p \)-ノルムの大小についての同値関係は定まらないが、これらの間には次のような関係がある.

定理 4.1 \(p > 0 \) に対して

\[((1 + \log m) \wedge n)^{-1/p} \|A\|_{W_p} \leq |A|_{W_p} \leq (1 + \log n)^{1/p} \|A\|_{W_p} \]

が成立する.
注意 4.1 補題 2.1 によっても \(||A||_{W^p} \) と \(|A|_{W^p} \) の関係を導くことができる:

\[
\begin{align*}
||A||_{W^p} & \leq (1 + \log m n)^{1/p} |A|_{W^p}, \\
|A|_{W^p} & \leq (1 + \log m)^{1/p} (1 + \log n)^{1/p} ||A||_{W^p}.
\end{align*}
\]

しかし、定理 4.1 の評価のほうがより良い評価である。

また、一般に二重数列ノルム (行列ノルム):

\[
|A|_p = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{i,j}|^p \right)^{1/p}
\]

はフビニの定理により \(A \) と \(^{\top}A \) の二重数列ノルムは等しくなる。しかし一般に逐次弱 \(l^p \)-ノルムでは等しくなく、次のような関係ある。

定理 4.2 \(p > 0 \) に対して

\[
||A||_{W^p} \leq (2 \log_2 m)^{1/p} ||A||_{W^p}
\]

が成立する。

つまり、逐次弱 \(l^p \)-ノルムは \(A \) の成分の大きさだけでなくその配列の仕方にも関係することが言える。

5 二変数関数に対する弱 \(l^p \)-ノルムについて

二重数列に対して定理 4.1 のような評価が得られたが、連続版として二変数関数に対しても同様に二重数列の弱 \(l^p \)-ノルムを定義し、考察した。

\(\mathbf{R} \) におけるルベッゲ測度を \(m \) とし、関数 \(f \) を \(A \subset \mathbf{R} \) 上で定義された可測関数とする。関数 \(f \) に対して分布関数 \(\mu_f \) を

\[
\mu_f(\lambda) = m\{ x \in A \ | \ |f(x)| > \lambda \}, \quad \lambda \geq 0,
\]

と定義し、\(f \) の再配列を

\[
f^*(t) = \inf \{ \lambda \ | \ \mu_f(\lambda) \leq t \}, \quad t \geq 0,
\]

とする。このとき \(f \) の弱 \(l^p \)-ノルムは

\[
|f|_{W^p} = \sup_{t>0} t^{1/p} f^*(t)
\]

で与えられる (cf.[7])。

注意 5.1 \(|f|_{W^p} \) は離散版同様、ローレンツノルムの \(q = \infty \) の場合 (マルチンキーヴィッツノルム) である (cf.[7])。

定義 5.1 \(\mathbf{R}^2 \) におけるルベッゲ測度を \(m_2 \) とし、関数 \(g \) を \(B \subset \mathbf{R}^2 \) 上で定義された可測関数とする。関数 \(g \) に対して分布関数 \(\mu_2 \) を

\[
\mu_2(\lambda) = m_2\{ (x,y) \in B \ | \ |g(x,y)| > \lambda \}, \quad \lambda \geq 0,
\]

と定義し、\(g \) の再配列を

\[
g^*(t) = \inf \{ \lambda \ | \ \mu_2(\lambda) \leq t \}, \quad t \geq 0,
\]

とする。このとき、逐次弱 \(l^p \)-ノルム、弱 \(l^p \)-ノルムをそれぞれ
(i) \(\|g\|_{W^p} = \|g(x,y)\|_{W^p} \),
(ii) \(|g|_{W^p} = \sup_{t \geq 0} t^{1/p} |g^*(t)| \),
と定義する。

連続版弱 \(L^p \)-ノルムについては定理 4.1 のような評価が行えない。

例 5.1 \(B = [0,1]^2 \) 上で関数 \(h(x,y) = 1/xy \) を考える。このとき逐次弱 \(L^1 \)-ノルムは \(\|h\|_{W^1} = 1 \)。
しかし弱 \(L^1 \)-ノルムは
\[
\mu_2(\lambda) = m_2 \left\{ (x,y) \mid \left| \frac{1}{xy} \right| > \lambda \right\} = \int_0^1 \left(1 \wedge \frac{1}{\lambda x} \right) \, dx = \frac{1}{\lambda} (\log \lambda + 1).
\]
従って、\(t \downarrow 0 \) で
\[
h^*(t) \approx \frac{1}{t} \left(\log \frac{1}{t} + 1 \right).
\]
故に
\[
|h|_{W^1} = \sup_{t \geq 0} \left(\log \frac{1}{t} + 1 \right) = \infty
\]
となるため、\(h \) は弱 \(L^1 \) に属さない。このように典型的な例においても二変数関数に対する二種類の弱 \(L^p \)-ノルムでは定理 4.1 のような評価が行えない。

References

On Construction of Continuous Functions with Cusp Singularities

Hidenori Watanabe

Abstract

We study the following problem: Let s be a function from $[0,1]$ to $[0,1]$. Under what conditions on s does there exist a continuous function f from $[0,1]$ to \mathbb{R} such that the regularity of f at x, measured in terms of the pointwise Hölder exponent, is exactly $s(x)$ for all x in $[0,1]$ and each point in $[0,1]$ is a cusp singularity?

We obtain a necessary and sufficient condition s and give a construction of the associated function f. We can find the value of their pointwise Hölder exponents in terms of computing the value of their weak scaling exponents.

1 Introduction

Let s be a positive number which is not an integer and let x_0 be a point in \mathbb{R}^n. Then a function f on \mathbb{R}^n belongs to the pointwise Hölder space $C^s(x_0)$, if there exists a polynomial P of degree less than s such that

$$|f(x) - P(x - x_0)| \leq C|x - x_0|^s$$

in a neighborhood of x_0. The pointwise Hölder exponent of a function f at a point x_0 in \mathbb{R}^n is defined as

$$H(f, x_0) = \sup \{s > 0; f \in C^s(x_0)\}.$$

However the pointwise Hölder exponent of a function f at a point x_0 in \mathbb{R}^n is not stable under the pseudo-differential operators. Similarly it does not fully characterize the oscillatory behavior on a neighborhood of x_0. This implies that $f \in C^s(x_0)$ cannot be characterized by size estimates on the wavelet coefficients of f.

Here let us recall the definition of the weak scaling exponent characterizing the local oscillatory behavior.
$\mathcal{S}_0(\mathbb{R}^n)$ denotes the closed subspace of the Schwartz class $\mathcal{S}(\mathbb{R}^n)$ such that

$$\int_{\mathbb{R}^n} x^\alpha \psi(x) \, dx = 0$$

for every multi-index α in \mathbb{Z}_+^n. Then a tempered distribution f belongs to $\Gamma^s(x_0)$, if for every ψ in $\mathcal{S}_0(\mathbb{R}^n)$, there exists a constant $C(\psi)$ such that

$$\left| \int_{\mathbb{R}^n} f(x) \frac{1}{a^n} \psi \left(\frac{x - x_0}{a} \right) \, dx \right| \leq C(\psi)a^s, \quad 0 < a \leq 1.$$

The weak scaling exponent of a function f at a point x_0 in \mathbb{R}^n is defined as

$$\beta(f, x_0) = \sup \{s \in \mathbb{R}; f \text{ locally belongs to } \Gamma^s(x_0) \}.$$

Since it is known that the pointwise Hölder space $C^s(x_0)$ is contained in local $\Gamma^s(x_0)$, it is obvious that

$$H(f, x_0) \leq \beta(f, x_0).$$

Several scientists have been studied constructing irregular functions. The well-known example is the Weierstrass function [6]. It is an example of a nowhere differentiable continuous function. Hardy gave better estimates for the Weierstrass function

$$\mathcal{W}_c(x) = \sum_{n=0}^\infty a^n \cos(b^n \pi x)$$

and its sine series

$$\mathcal{W}_s(x) = \sum_{n=0}^\infty a^n \sin(b^n \pi x),$$

where $0 < a < 1$, $b > 1$ and $ab \geq 1$ [2]. He proved that these functions do not possess finite derivatives at each point x and showed more precisely that if $ab > 1$ and $\xi = \frac{\log(\log b)}{\log b}$, then these functions $\mathcal{W}(x)$ satisfy the condition

$$\mathcal{W}(x + h) - \mathcal{W}(x) = O(|h|^{\xi})$$

for each x, but do not satisfy

$$\mathcal{W}(x + h) - \mathcal{W}(x) = o(|h|^{\xi})$$

for any x.

Here let us recall the definition of the Takagi function [4]. Let θ^* be the 1-periodic function such that

$$\theta^*(x) = \begin{cases}
2x & \text{if } 0 \leq x < \frac{1}{2} \\
2 - 2x & \text{if } \frac{1}{2} \leq x < 1
\end{cases}.$$
Then the Takagi function is defined by
\[T(x) = \sum_{n=0}^{\infty} \theta^*(2^n x) \frac{1}{2^{n+1}}. \]
It is another example of a nowhere differentiable continuous function.

Using the scaling exponents, Meyer defined two types of singularities of functions as follows [3]: a point \(x_0 \) in \(\mathbb{R}^n \) is called a cusp singularity of a function \(f \), when
\[H(f, x_0) = \beta(f, x_0) < \infty, \]
while a point \(x_0 \) in \(\mathbb{R}^n \) is called an oscillating singularity of a function \(f \), when
\[H(f, x_0) < \beta(f, x_0). \]

When a point \(x_0 \) is a cusp singularity of a function \(f \), the pointwise Hölder exponent can be found by computing the size estimates on the wavelet coefficients of \(f \) inside the influence cone. Using this fact, we construct continuous functions which have a cusp singularity at \(x_0 \).

Daoudi and his team studied the following problem which was raised by Lévy Véhel [1]:

Let \(s \) be a function from \([0, 1]\) to \([0, 1]\). Under what conditions on \(s \) does there exist a continuous function \(f \) from \([0, 1]\) to \(\mathbb{R} \) such that \(H(f, x) = s(x) \) for all \(x \) in \([0, 1]\)?

They proved that the conditional Weierstrass type continuous functions are examples of the associated functions.

Our main theorem is the following:

Theorem 1. Let \(s \) be a function from \([0, 1]\) to \([0, 1]\) such that \(s(x) = \lim \inf_{n \to \infty} s_n(x) \), where \(\{s_n\}_{n \in \mathbb{Z}_+} \) is a sequence of continuous functions. Then there exists a continuous function \(f \) from \([0, 1]\) to \(\mathbb{R} \) such that
\[H(f, x_0) = \beta(f, x_0) = s(x_0) \]
for each point \(x_0 \) in \([0, 1]\) and hence each point in \([0, 1]\) is a cusp singularity of this function.

From now on, in the following section, we give a constructive theorem of this result.

In Section 2, we construct the Weierstrass type continuous functions which have a cusp singularity at each point.

2 Use of Weierstrass Type Functions

In this section, we construct two types of the Weierstrass type continuous functions which have a cusp singularity at each point.
To construct a continuous function defined on \([0, 1]\) which has a cusp singularity at each point in \([0, 1]\) using a sequence of continuous functions, we need a following lemma.

Lemma A [1, Lemma 2.]. Let \(s\) be a function from \([0, 1]\) to \([0, 1]\), which is the lower limit of a sequence of continuous functions. Then there exists a sequence \(\{P_n\}_{n \in \mathbb{Z}^+}\) of polynomials such that

\[
s(x) = \lim_{n \to \infty} \inf P_n(x), \quad x \in [0, 1] \tag{1}
\]

and

\[
\sup_{0 \leq x \leq 1} |P'_n(x)| \leq n, \quad n \in \mathbb{N}, \tag{2}
\]

where \(P'_n\) is the derivative of \(P_n\).

Let \(\{Q_n\}_{n \in \mathbb{Z}^+}\) be a sequence such that

\[
Q_n(x) = \sqrt{P_n(x)^2 + \frac{1}{n}}, \quad x \in [0, 1],
\]

where \(\{P_n\}_{n \in \mathbb{Z}^+}\) satisfies (1) and (2). It is obvious that \(\{Q_n\}_{n \in \mathbb{Z}^+}\) satisfies (1), (2) and

\[
Q_n(x) \geq \frac{1}{\sqrt{n}}, \quad n \in \mathbb{Z}^+, \quad x \in [0, 1]. \tag{3}
\]

Theorem 2. Let \(s\) be a function from \([0, 1]\) to \((0, 1]\), which is the lower limit of a sequence of continuous functions and let \(\{Q_n\}_{n \in \mathbb{Z}^+}\) be the associated sequence satisfying (1), (2) and (3).

We define two continuous functions \(f\) and \(g\) defined on \([0, 1]\) by

\[
f(x) = \sum_{l=0}^{\infty} \frac{1}{\lambda^{Q_l(x)}} \sin(\lambda^l x + \theta)
\]

and

\[
g(x) = \sum_{l=0}^{\infty} \frac{1}{\lambda^{Q_l(x)}} \cos(\lambda^l x + \theta),
\]

where \(\lambda > 1\) and \(\theta \in \mathbb{R}\). Then

\[
H(f, x_0) = \beta(f, x_0) = s(x_0)
\]

and

\[
H(g, x_0) = \beta(g, x_0) = s(x_0)
\]
at each point \(x_0 \) in \([0, 1]\) and hence each point in \([0, 1]\) is a cusp singularity of these functions.

In the case where \(s \) is a continuous function, we have the following result.

Theorem 3. Let \(s \) be a continuous function from \(\mathbb{R} \) to \((0, 1)\) such that

\[
s(x_0) < H(s, x_0)
\]

at each point \(x_0 \) in \(\mathbb{R} \).

We define two continuous functions \(f \) and \(g \) by

\[
f(x) = \sum_{l=0}^{\infty} \frac{1}{\lambda^{l_0}(x)} \sin(\lambda^l x + \theta)
\]

and

\[
g(x) = \sum_{l=0}^{\infty} \frac{1}{\lambda^{l_0}(x)} \cos(\lambda^l x + \theta),
\]

where \(\lambda > 1 \) and \(\theta \in \mathbb{R} \). Then

\[
H(f, x_0) = \beta(f, x_0) = s(x_0)
\]

and

\[
H(g, x_0) = \beta(g, x_0) = s(x_0)
\]

at each point \(x_0 \) in \(\mathbb{R} \) and hence each point in \(\mathbb{R} \) is a cusp singularity of these functions.

In the case where \(s \) is a differentiable function, we have the following corollary.

Corollary 1. Let \(s \) be a differentiable function from \(\mathbb{R} \) to \((0, 1)\) at each point \(x_0 \) in \(\mathbb{R} \).

We define two continuous functions \(f \) and \(g \) by

\[
f(x) = \sum_{l=0}^{\infty} \frac{1}{\lambda^{l_0}(x)} \sin(\lambda^l x + \theta)
\]

and

\[
g(x) = \sum_{l=0}^{\infty} \frac{1}{\lambda^{l_0}(x)} \cos(\lambda^l x + \theta),
\]

where \(\lambda > 1 \) and \(\theta \in \mathbb{R} \). Then

\[
H(f, x_0) = \beta(f, x_0) = s(x_0)
\]
and

\[H(g, x_0) = \beta(g, x_0) = s(x_0) \]

at each point \(x_0 \) in \(\mathbb{R} \) and hence each point in \(\mathbb{R} \) is a cusp singularity of these functions.

Corollary 2. Each point in \(\mathbb{R} \) is a cusp singularity of the Weierstrass functions. The direct proof of this result can be found in [5] the case where \(\lambda \in \mathbb{N}_{\geq 2} \) and \(s \in (0, 1) \).

Acknowledgment

The author would like to thank Professor Jyunji Inoue for his advice.

References

Complex form of a Poncelet type property appeared in the Numerical range of a Matrix

行列の数域に登場するポンスレ型の性質の複素形

Hiroshi Nakazato 中里 博 (Hirosaki University, 弘前大学)

Abstract The author gives a complex formulation of a Poncelet type property for the numerical range of some contractions. A new viewpoint is presented for a theorem of Wu and Gau.

1 Poncelet の定理とは？

Poncelet (ポンスレー) というフランスの数学者 (1788 年生, 1867 年死去) による次のような定理を含む著書 "Traité sur les propriétés projectives des figures" (図形の射影的な性質についての研究) が, 1822 年に出版された。

定理 (Poncelet) E_1 と E_2 は, 平面上の 2 つの楕円で, E_2 は, E_1 が囲む領域の内部にあるとする。E_1 の交点を P から始め, P から反時計回りの方向に E_2 に接線を引き P_1 で, E_1 と交わるとする。P_1 から, E_2 へ, 反時計回りに接線を引き P_2 で E_1 と交わるとする。このような操作を n 回続けて, 最後の接線が $P_{n-1}P_n$ であるとする。楕円 E_1 の回りを 1 回以上回転した後 $P_n = P$ ($n \geq 3$) となるならば, 最初の出発点 P をどこに選んでも, 一定の n に対して, $P_n = P$ がつねに成り立つ。

この定理のかなり簡潔な証明が, Schoenberg の "Mathematical Time Exposure" (1982)[邦訳『数学点描』, 近代科学社) の 14 章に載っている。さて, 上の定理において「平面」とは, 2 次元ユークリッド空間 \mathbb{R}^2 である。これを, 2 次元複素射影空間 $\mathbb{C}P^2$ (複素射影平面) で置き換え, E_1, E_2 を, 複素射影平面における相異なる非退化（非特異）2 次曲線で置き換えてでも定理は成り立つ。ただし, この場合は, 上の実形の Poncelet の定理の場合の設定と違って, E_1, E_2 が, (通常の場合は) 4 個の交点を持つので, E_1 上の接点 P_j だけでなく, そこを通る E_2 の接線 $\ell_j = P_jP_{j+1}$ を組み合わせて対 (P_j, ℓ_j) を問題として, $(P_0, \ell_0) = (P_n, \ell_n)$ となる対 (P_0, ℓ_0) があれば, E_1 上のどの点 P_0 とその点を通る E_2 の接線 ℓ_0 を任意に取ったときにも, $(P_0, \ell_0) = (P_n, \ell_n)$ が成り立つ。これが複素形の Poncelet の定理であり, この形
での定理の証明は、谷（はざま）文夫氏の『代数幾何学』（森北出版、1999年）の12章に載っている。

2 dilation および数域と Poncelet 型の性質の関係

数域の問題で Poncelet 型の性質が登場するのは、(unitary) dilation に関係してである。dilation と数域の関係で Poncelet 型の性質に深く関係するものを過ごると、Boris Mirman 氏（ロシア-アメリカ）の1968年の論文[Mir]がある。この論文のなかで次のような定理を与えている。これについては、中村 美浩氏が、'82年に[Y. Na]で、簡潔な証明を与えている。（'77 or '78年の論文[G-S]で、M. Goldberg, E. G. Straus も別証明を与えている）

定理 (B. Mirman) ヒルベルト空間 H における有界線形作用素 T の数域 W(T) が、単位円周内接する三角形 Δ に含まれる W(T) ⊆ Δ ならば、T は縮小作用素である：||T|| ≤ 1.

この定理の後も、[Mir-2] などに Mirman 氏、Goldberg 氏、Wu (呉) 氏などにより、数域で登場する Poncelet 型の性質の研究が行われている。ここで考えるのは、Wu (Pei-Yuan Wu, 呉 培元) および Gau (Hwa-Long Gau, 高) による次の定理である。

定理 ([Wu-Gau], 1998年) T は、n × n の縮小行列であって、絶対値 1 の固有値は持たず、rank(I − T*T) = 1 が、成り立つとする。このとき、单位円周 |z| = 1 上の任意の点 λ = λ_0 から始め、λ_0 から、反時計回りの方向に∂W(T) に接線を引き λ_1 で、|z| = 1 と交わるとする。以下同様に、λ_j から、反時計回りの方向に∂W(T) に接線を引き λ_{j+1} で、|z| = 1 と交わるとする。このとき、λ_{n+1} = λ_0 が必ず成り立ち、λ_0, λ_1, ..., λ_{n+1} を順次線分で結んだものは、凸 n + 1 角形の辺となる。

Wu-Gau の論文では、上記のような n × n の completely non-unitary contraction であって不足作用素 (I − T*T)^{1/2} の階数がちょうど 1 であるようなもの全体から成るクラスを、S_n で表わしている。さて、T ∈ S_n に対し、単位円周 |z| = 1 上の 1 点 λ_0 を取り、上記のように λ_j (j = 1, ..., n+1) を定めていくとき、それらを固有値とする実分 (n+1) × (n+1) unitary 行列が、T の unitary dilation となることも証明されている。さらに、T の n + 1 次元空間における unitary dilation U を任意にとれば、その固有値の重複度はすべて 1 であって、U の固有値を、反時計まわりに λ_0, ..., λ_n とし、λ_{n+1} = λ_0 と定めれば、線分 [λ_j, λ_{j+1}] (j = 0, 1, ..., n) の1点でこの線分は、∂W(T) と接することが示されている。

3 数域の境界である曲線を含む実代数曲線を考える

さて、A を一般的 n × n 行列とする。数域 W(A) の境界 ∂W(A) 自体ではなくて、(∂W(A) 上に線分が現われない場合には) それを含むような実代数曲線を考える。それは、W(T) の境界を生成する曲線 boundary generating curve と呼ばれる。そのような曲線は、1951年に Kippenhahn によって数域の研究に導入された。それは、次のように定義される。

−53−
F(T, X, Y) = det(T I_n + (X/2)(A + A^*) - i(Y/2)(A - A^*))

により3変数n次実多項式F(T, X, Y)を定める。n(n-1)次以下の次数をもつ実多項式

f(t, x, y) = 0を、曲線{(x, y) ∈ R^2 : f(1, x, y) = 0}上の各点(x, y), 曲線C={(X, Y) ∈

R^2 : F(1, X, Y) = 0}上の点においてCの接線{(X, Y) ∈ R^2 : x X + y Y + 1 = 0}となるように定める。boundary generating curve とは、

{x + iy : (x, y) ∈ R^2, f(1, x, y) = 0}

のことである。この凸包が, W(T)と一致する。∂W(T) 上に線分が登場しないときは、この曲線は、∂W(T)を含んでいる。さて、まず次のことが言える。

命題 T ∈ S_n とし、U を、n+1次元空間における、Tのunitary dilation し、Tの固有値を、反時計回りにλ_0, ..., λ_n とする。このとき、任意の0 ≤ i < j ≤ nに対し、λ_i, λ_j を結ぶ直線L_{ij} を取れば、この直線上でその一点で、W(T)の境界を生成する曲線の接線と

さらに、この命題の主張を複素射影幾何学的なものに置き換えることを考える。まず、単位円{exp(i θ) : θ ∈ R}を複素化すると、C\{0\}となる。T ∈ S_n のn+1次元空間におけるunitary dilation の族は、単位円周{c ∈ C : |c| = 1}上を動くパラメーターに従う。それ故、{c ∈ C : c ≠ 0}上を動くパラメーターに従う、Tのdilation (で、可逆なもの)の族に拡大する。さて、T とそのdilation を行列表示しよう。

4 S_n の元とその dilation の行列表示

T ∈ S_n とし、T は、n-次元ヒルベルト空間H 上の作用素とする。[Wu-Gau] p. 53 に従って

T とその dilation の行列表示を与える。T は、縮小作用素であっても、rank(I_n - T^* T) =

1 であるから、Hの余次元1の線形部分空間（超平面）K で、< Tξ, Tη > = < ξ, η >が、任

何のξ, η ∈ Kに対して成り立つようなものが一意に存在する。このとき、K_1 = T(K)と置

けば、K_1も、Hの超平面となる。Kに直交する単位ベクトルf_1および、K_1に直交する単

位ベクトルf_2をとる。このとき、ある0 ≤ b < 1に対して、T^* T(f_1) = b f_1, TT^*(f_2) = b f_2

であって、b = |q|^2 となる或る複素数qに対して、T(f_1) = q f_2, T^*(f_2) = q f_1 となる。

さて、{e_1, e_2, ..., e_n}を、Hの任意の正規直交基底とする。ここで、

f_1 = a_1 e_1 + a_2 e_2 + ... + a_n e_n,

f_2 = b_1 e_1 + b_2 e_2 + ... + b_n e_n.

とする (a_j, b_j ∈ C)。基底を用いて T を行列表示する:

−54−
\[t_{ij} = \langle T(e_j), e_i \rangle \]
(\(i, j = 1, 2, \ldots, n \)). このとき，\(T = (t_{ij}) \) は，(\(n + 1 \)) × (\(n + 1 \)) ユニタリ行列 \(U = U(c) = (u_{ij}) = (u_{ij}(c)) \) で次のようなものに拡大 (dilate) される。
\[
u_{ij} = t_{ij}
\tag{1}
\]
(\(i, j = 1, 2, \ldots, n \)) であってさらに
\[
u_{n+1,j} = \langle (I - T^*T)^{1/2}(e_j), f_1 \rangle = \langle e_j, (I - T^*T)^{1/2}(f_1) \rangle = \langle e_j, \sqrt{1 - b} f_1 \rangle = \sqrt{1 - b} < e_j, f_1 > = \sqrt{1 - b} \overline{a_j}
\tag{2}
\]
(\(j = 1, 2, \ldots, n \)),
\[
u_{i,n+1} = c \langle (I - TT^*)^{1/2}(f_2), e_i \rangle = c \sqrt{1 - b} < f_2, e_i > = c \sqrt{1 - b} b_i
\tag{3}
\]
(\(i = 1, 2, \ldots, n \)),
\[
u_{n+1,n+1} = -c \langle T^*(f_2), f_1 \rangle = -c < f_2, T(f_1) > .
\tag{4}
\]
上記において，\(c \) は，絶対値 1 の任意の複素数である。このとき，\(U = U(c) \) はユニタリ行列となる。定義の仕方より明らかに \(U(c) \) は，\(T \) の dilation である。

さて，\(c \neq 0 \) に対しても，(1)，(2)，(3)，(4) を用いて \(n \times n \) 行列 \(U(c) \) を定義するとき，\(U(c) \) は可逆行列であって，\(U(c)^{-1} = (w_{ij}(c)) \) とするとき，1 \(\leq i, j \leq n \) に対して
\[
w_{ij}(c) = \overline{t_{ji}}
\]
また，1 \(\leq i, j \leq n \) に対し，
\[
w_{n+1,j}(c) = c^{-1} < e_j, (I - TT^*)^{1/2}(f_2) > = c^{-1} \sqrt{1 - bb_j},
\]
\[
w_{i,n+1}(c) = < f_1, (I - T^*T)^{1/2}(e_i) > = \sqrt{1 - ba_i},
\]
\[
w_{n+1,n+1}(c) = -c^{-1} < f_1, T^*(f_2) > = -c^{-1} < T(f_1), f_2 > .
\]
となる。さて，\(T \) のこのような (non unitary) dilation \(U(c) \) を，\(c \neq 0 \) を考えるとき，どんなことが言えるのかを次に考える。複素数 \(c \neq 0 \) に対して
\[
G(t, x, y : c) = \det(t I_{n+1} + (x/2)(U(c) + U(c)^{-1}) + (-iy/2)(U(c) - U(c)^{-1})), \tag{4}
\]
と置く。ここで，\(U(c^2)U(c)^{-1} = U(c)^{-1}U(c) \) だから (1/2)(\(U(c) + U(c)^{-1} \)) と (-i/2)(\(U(c) - U(c)^{-1} \)) は同時三角化可能であり、このことより各 \(c \neq 0 \) に対し，\(G(t, x, y : c) \) は，\(n + 1 \) 個
の1次形式 \(t + \alpha_j(c)x + \beta_j(c)y \) の積となる。\(U(c) \) の固有値を、\(\{\lambda_1, \ldots, \lambda_{n+1}\} \) とする。このとき、\(\lambda_j(c) \neq 0 \) であって、(\(U(c) + U(c)^{-1})/2 \)の固有値は、\(\alpha_j = (\lambda_j + \lambda_j^{-1})/2, (U(c) - U(c)^{-1})/(2\sqrt{-1}) \) の固有値は、\(\beta_j = (\lambda_j - \lambda_j^{-1})/(2\sqrt{-1}) \) であって、\(\alpha_j^2 + \beta_j^2 = 1 \) となる。さて、各 \(c \neq 0 \) に対して、\(G(t, x, y; c) = 0 \) の双対となるもの（dual object）は、通常は、複素射影平面上の \(n + 1 \) 個の点である。有限個の \(c \) に対しては、それらのうちの2点が重なることもあり得る。さて、そのような2点のうち異なるものをとり、その2点を結ぶ直線を考えれば、その直線は必ず \(W(T) \) の境界を生成する直線（の複素化）の接線となる。これが結論である。また、

\[
F(t, x, y) = \det(t I_n + (x/2)(T + T^*) - i y/2 (T - T^*)), \quad (b)
\]

と置く。上記のことを双対となるものを使って言えばつきのようなになる：

命題 \(T \in S_n \) と、\(c \) を \(\neq 0 \) なる任意の複素数とする。多项式 \(F \) および \(G(\cdots; c) \) を、\((b), (\&t) \) で定める。\(t + \alpha_i(c)x + \beta_i(c)y \) および \(t + \alpha_j(c)x + \beta_j(c)y \) を \(G(t, x, y; c) \) の相異なる1次因子とする。2直線 \(t + \alpha_i(c)x + \beta_i(c)y = 0 \) と \(t + \alpha_j(c)x + \beta_j(c)y = 0 \) は、次の点で交わる。

\[(t, x, y) = (\alpha_i\beta_j - \alpha_j\beta_i, \beta_i - \beta_j, \alpha_j - \alpha_i).\]

この点を、\(W(T) \) の境界を生成する曲線の双対曲線 \(F(t, x, y) = 0 \) は通過する：

\[F(\alpha_i\beta_j - \alpha_j\beta_i, \beta_i - \beta_j, \alpha_j - \alpha_i) = 0,\]

すなわち \(T \) が作用する \(n \) 次元空間 \(H \) のベクトル \(\xi \neq 0 \) で次のようなものが存在する。

\[(\beta_i - \beta_j)((T + T^*)/2)\xi + (\alpha_j - \alpha_i)((T - T^*)/(2i))\xi + (\alpha_i\beta_j - \alpha_j\beta_i)\xi = 0.\]

5 例の構成

\(n = 2 \) のとき、\(2 \times 2 \) 行列 \(A \) は、次のような行列とユニタリ同値のとき、またそのとき

に限り \(A \in S_2 \) となる：

\[
\begin{pmatrix}
 a & (1 - |a|^2)^{1/2}(1 - |b|^2)^{1/2} \\
 0 & b
\end{pmatrix}
\]

\((a, b \in C, |a| < 1, |b| < 1)。\) 一般のサイズの行列 \(T \) の場合もこれと同様に次のような行列

とユニタリ同値のとき、またそのときに限り \(T \in S_n \) となる (cf. [Wu] p.536)：\(A = (a_{ij}) \)

\(|a_{ii}| < 1 (i = 1, 2, \ldots, n) \) であって、1 \(\leq i < j \leq n \) に対しては、まず \(j = i + 1 \) のとき、

\[a_{i,i+1} = (1 - |a_{ii}|^2)^{1/2}(1 - |a_{i+1,i+1}|^2)^{1/2}\]

であって、\(j \geq i + 2 \) のとき、
\[a_{i,j} = (-1)^{j-i-1} (1 - |a_{ii}|^2)^{1/2} (1 - |a_{jj}|^2)^{1/2} \prod_{k=i+1}^{j-1} a_{kk} \]

また、1 ≤ j < i ≤ n のとき \(a_{ij} = 0 \)。この特徴づけとより、\(T \in S_n \) は容易に構成できるが、\(T \in S_n \) の unitary dilation に基づく特徴づけを利用して \(T \in S_n \) の元の 1 階数族とその unitary dilation の族 \(U(s; c) \) (1 < s < ∞, c ∈ C, |c| = 1) を次のように与える:

\[
U(s : c) = \begin{pmatrix}
\frac{(2s)^2}{(s^2+1)^2} + i \frac{(s^2-1)^2}{(s^2+1)^2} & 0 & -\frac{(1-i)(2s)(s^2-1)}{(2s+1)^2} & \sqrt{2}c \frac{(2s)(s^2-1)}{(2s+1)^2} \\
0 & -\frac{(s^2-1)^2}{(s^2+1)^2} - i \frac{(2s)^2}{(s^2+1)^2} & -\frac{(1-i)(2s)(s^2-1)}{(2s+1)^2} & -\sqrt{2}c \frac{(2s)(s^2-1)}{(2s+1)^2} \\
-(1-i) \frac{(2s)^2(s^2-1)}{(s^2+1)^2} & -(1-i) \frac{(2s)(s^2-1)}{(s^2+1)^2} & -i \frac{(s^2-1)^2-(2s)^2}{(s^2+1)^2} & -i \sqrt{2}c \frac{(2s)(s^2-1)}{(s^2+1)^2} \\
\sqrt{2} \frac{(2s)(s^2-1)}{(s^2+1)^2} & -\sqrt{2} \frac{(2s)(s^2-1)}{(s^2+1)^2} & -i \sqrt{2}c \frac{(2s)(s^2-1)}{(s^2+1)^2} & i \frac{(s^2-1)^2-(2s)^2}{(s^2+1)^2}
\end{pmatrix}
\]

上の行列の最初の 3 行と最初の 3 列を採ったものが \(T = T(s) \) である。ここで、\(s = 2 \) のときは、次のようになる。多項式 \(F(t, x, y) \) は次のように与えられる。

\[
625 F(t, x, y) = 625 \det(tI_3 + (x/2)(T + T^*) + (-iy)/2(T - T^*))
\]

\[
= 625t^3 + 175t^2x - 288t^2y^2 - 337tx^2 - 175xy^2
\]

References

[H] 裕文夫:『代数幾何学』、森北出版、1999 年。

CONDITIONAL STABILITY OF A REAL INVERSE FORMULA FOR THE LAPLACE TRANSFORM

S. Saitoh, Vu Kim Tuan and M. Yamamoto

ABSTRACT. We establish a conditional stability estimate of a real inverse formula for the Laplace transform under the assumption that Bergman-Selberg norms of Laplace transforms are uniformly bounded. The rate of the stability is given by a logarithmic function.

§1. Introduction and main results.

We are concerned with the Laplace transform

\[(\mathcal{L}F)(x) = \int_0^\infty F(t)e^{-xt}dt, \quad x > 0. \]

Our main purpose is to get some estimates of \(F(t) \), \(t > 0 \), by means of \(\sup_{t \geq 0} |(\mathcal{L}F)(x)| \). In particular, we are interested in such estimates of \(F \), that are small when \(\sup_{t > 0} |(\mathcal{L}F)(x)| \) is small. This kind of estimates is called stability estimate for the inverse Laplace transform, and, in general, we cannot expect such stability estimates, because the Laplace transform \(\mathcal{L} \) advances the regularity of \(F \) very much. For example, consider \(F_n(t) = \sin(nt), n \in \mathbb{N} \). Then \((\mathcal{L}F_n)(x) = \frac{n^2}{x^2+n^2}, x > 0, \) and \(\sup_{x > 0} |(\mathcal{L}F_n)(x)| = \frac{1}{n} \to 0 \) as \(n \to \infty \), but \(\lim_{n \to \infty} \|F_n\|_{L^\infty(0,\infty)} \neq 0 \).

The lack of stability implies the ill-posedness in taking the inverse of the Laplace transform if we choose \(L^\infty \)-norms for functions under consideration. However it is possible to obtain some stability estimates provided that we restrict to some reasonable space of functions. They are called conditional stability estimates and there are many such estimates depending on the choice of norms and "reasonable" functions spaces. In this paper, we establish such a conditional stability estimate in \(L^\infty \)-norm for a subclass of Hölder continuous functions. The image of this space under the Laplace transform turns out to be a Bergman-Selberg space.

For \(q > 0 \), we can define a norm equivalent to the Bergman-Selberg norm \(\| \cdot \|_{H_q(\mathbb{R}^+)} \) by

\[
\|f\|_{H_q(\mathbb{R}^+)}^2 = \sum_{n=0}^\infty \frac{1}{n!(n+2q+1)} \int_0^\infty \frac{x^n}{x^{2q+2}} (\partial_x^nf(x))^2 x^{2n+2q-1}dx.
\]

It is known (e.g. Saitoh [4], Chapter 5) that

\[
\|F\|_{L^2_q} = \left(\int_0^\infty |F(t)|^2t^{1-2q}dt \right)^{\frac{1}{2}} = \|\mathcal{L}F\|_{H_q(\mathbb{R}^+)}. \tag{1.2}
\]

The equality (1.2) means that the Laplace transform is an isometry between the norms \(\| \cdot \|_{L^2_q} \) and \(\| \cdot \|_{H_q(\mathbb{R}^+)} \) for any fixed \(q > 0 \). The norm \(\| \cdot \|_{H_q(\mathbb{R}^+)} \) specifies our choice of an admissible set. We state our main results.

Theorem 1. Let \(\frac{1}{4} < q < 1, M > 0 \), and

\[
\max \left\{ \frac{1}{2}, 2q - 1 \right\} < \alpha < \min \{1, 2q\}. \tag{1.3}
\]

Set

\[
\mathcal{U} = \{ f; \|f\|_{H_q(\mathbb{R}^+)} < M, \|x^\alpha f(\cdot)\|_{H_{1-q}(\mathbb{R}^+)} < M \}. \tag{1.4}
\]

Typeset by AMSTeX
Then for $0 < t_0 < t_1 < \infty$, and for $0 < \gamma < \frac{2\alpha-1}{4}$, there exists a constant $C = C(U, t_0, t_1, \gamma) > 0$ such that

$$
\|F\|_{L^\infty(t_0, t_1)} \leq C \left(\frac{-1}{\log \|LF\|_{L^\infty(0, \infty)}} \right)^\gamma
$$

if $LF \in U$.

The right hand side of (1.5) tends to 0 as $\|LF\|_{L^\infty(0, \infty)} \to 0$, but with the logarithmic rate. So the conditional stability estimate is worse than any Hölder continuity.

We can give another characterization of an admissible set U, independently of the Bergman-Selberg space.

Theorem 2. Let $\alpha, \gamma, q, t_0, t_1, M, C$ be defined as in Theorem 1. Set

$$
\mathcal{V} = \{ F \in C^1[0, \infty); F(0) = 0, \|F\|_{L^q_0} \leq M, \|F''\|_{L^q_{3+\gamma-1}} \leq \frac{M \Gamma(\frac{3}{\gamma} - \alpha)}{\sqrt{\pi}} \}.
$$

Then the estimate (1.5) holds for all $F \in \mathcal{V}$.

In the next section Preliminaries, we shall show that the condition $\alpha < 1$ in (1.3) is sharp. That is, this assumption is needed essentially in the paper [2], which is the base of Theorems 1 and 2.

§2. Preliminaries and best possibility for α.

The keys to the proofs of Theorems 1 and 2 are the real inversion formula of the Laplace transform (Byun and Saitoh [3], Saitoh [4]) and the error estimate of this real inversion formula (Amano, Saitoh and Yamamoto [2]):

Proposition 1 ([3], [4]). Let $q > 0$ be fixed and $\|F\|_{L^q_0} < \infty$. Let $f = LF$. Then the inversion formula

$$
F(t) = s - \lim_{N \to \infty} \int_0^\infty f(x)e^{-xt}P_{N,q}(xt)dx, \quad t > 0
$$

is valid, where the limit is taken in the space L^q_0 and the polynomials $P_{N,q}$ are given by the formulas

$$
P_{N,q}(\xi) = \sum_{0 \leq \nu \leq n \leq N} \frac{(-1)^{\nu+1}\Gamma(2n+2q)}{\nu!(n-\nu)\Gamma(n+2q+1)\Gamma(n+\nu+2q)} \xi^{n+\nu+2q-1}
\times \left\{ \frac{2(n+q)}{n+\nu+2q} - \frac{2(n+q)}{n+\nu+2q} + 3n+2q \right\} \xi + n(n+\nu+2q) \right \}.
$$

Moreover, the series

$$
\sum_{n=0}^{\infty} \frac{1}{n!\Gamma(n+2q+1)} \int_0^\infty \left| \partial_\xi^n (xf'(x)) \right|^2 x^{2n+2q-1} dx
$$

converges, and the inequality holds

$$
\left\| F(t) - \int_0^\infty f(x)e^{-xt}P_{N,q}(xt)dx \right\|_{L^q_0} \leq \sum_{n=N+1}^{\infty} \frac{1}{n!\Gamma(n+2q+1)} \int_0^\infty \left| \partial_\xi^n (xf'(x)) \right|^2 x^{2n+2q-1} dx.
$$
Inverse Laplace Transform

Proposition 2 ([2]). Let (1.3) hold. Then for $f \in H_q(\mathbb{R}^+)$ there exists a constant $M_1 = M_1(q, \alpha) > 0$ such that

$$
(2.1) \quad \left| F(t) - \int_0^\infty f(x)e^{-xt}P_{N,q}(xt)dx \right| \leq M_1\|x^{\alpha}f(\cdot)\|_{H_{\alpha-\frac{1}{2}}(\mathbb{R}^+)} \times \frac{t^{q-1+\frac{\alpha}{2}}}{N^{\frac{q-1}{2}}}.
$$

Theorem 1 in [2] only asserts that for $N \to \infty$

$$
(2.2) \quad \left| F(t) - \int_0^\infty f(x)e^{-xt}P_{N,q}(xt)dx \right| \leq t^{q-1+\frac{\alpha}{2}}o\left(\frac{1}{N^{\frac{q-1}{2}}}\right).
$$

However, from the proof given in [2], we easily specify the dependency of the coefficient at the right hand side of (2.2) to obtain the inequality (2.1).

In order to see the condition (1.3), recall

Proposition 3([2], Lemma). If $f \in C^\infty(0, \infty)$ and

$$
(2.3) \quad I_{q,\alpha}(f) := \sum_{n=0}^{\infty} \frac{1}{n! \Gamma(n + 2q + 1)} \int_0^\infty |\partial_x^n [xf'(x)]|^2 x^{2n+2q-1+\alpha} dx < \infty,
$$

for a fixed $\alpha > \max\left(\frac{1}{2}, 2q - 1\right)$, then

$$
\left| \sum_{n=N+1}^{\infty} \frac{1}{n! \Gamma(n + 2q + 1)} \int_0^\infty \partial_x^n (xf'(x)) \partial_x^n (x\partial_x (e^{-tx})) x^{2n+2q-1} dx \right| = t^{q-\frac{1}{2}}o(N^{-\frac{1}{2} - \frac{q-1}{4}}), \quad N \to \infty.
$$

We set

$$
F_N(t) = \int_0^\infty f(x)e^{-xt}P_{N,q}(xt)dx
$$

for any $q > 0$ and $f \in L_q^2$. Then, as shown in [3,4],

$$
F_N(t) = \sum_{n=0}^{N} \frac{t^{2q-1}}{n! \Gamma(n + 2q + 1)} \int_0^\infty \partial_x^n (xf'(x)) \partial_x^n (x\partial_x (e^{-tx})) x^{2n+2q-1} dx
$$

and by Proposition 1

$$
s - \lim_{N \to \infty} F_N = F.
$$

In order to examine the property of the functions f satisfying (2.3), for the Mellin transform of f

$$
(Mf)(s) = \int_0^\infty f(x)x^{s-1}dx,
$$

recall the identity

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|(Mf)(q-it)|^2}{|\Gamma(q-it)|^2} dt = \|f\|^2_{H_q(\mathbb{R}^+)},
$$

and notice that

$$
\int_{-\infty}^{\infty} |(Mf)(q-it)|^2 (q^2 + t^2)^2 \{(q+1)^2 + t^2\} \cdots \{(q+n-1)^2 + t^2\} dt = 2\pi \int_0^\infty |\partial_x^n (xf'(x))|^2 x^{2n+2q-1} dx
$$

Hence,

\[
2\pi \int_0^\infty |\partial_x^n(xf'(x))|^2 x^{2n+2a+\alpha -1} \, dx
\]

\[
= \int_{-\infty}^{\infty} |(Mf)(q + \frac{\alpha}{2} - it)|^2 \{(q + \frac{\alpha}{2} + t^2)\} (q + \frac{\alpha}{2} + 1)^2 + t^2 \} \cdots \{(q + \frac{\alpha}{2} + n-1)^2 + t^2\} \, dt,
\]

and so

(2.4)

\[
I_{\alpha}(f) = \frac{1}{2\pi} \sum_{n=0}^{\infty} \frac{1}{n! \Gamma(n + 2q + 1)} \times \int_{-\infty}^{\infty} |(Mf)(q + \frac{\alpha}{2} - it)|^2 \{(q + \frac{\alpha}{2} + t^2)\} (q + \frac{\alpha}{2} + 1)^2 + t^2 \} \cdots \{(q + \frac{\alpha}{2} + n-1)^2 + t^2\} \, dt
\]

(2.5)

\[
\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} = \frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \text{Re}(c-a-b) > 0, \quad c \neq 0, -1, -2, \ldots,
\]

and using the property \(\Gamma(z) = \Gamma(z)\) we obtain

\[
\sum_{n=0}^{\infty} \frac{(q + \frac{\alpha}{2} + it)_n}{(c)_n n!} \frac{(q + \frac{\alpha}{2} - it)_n}{(q + \frac{\alpha}{2} - it)^2} \frac{\Gamma(2q + 1) \Gamma(1 - \alpha)}{\Gamma(q + 1 - \frac{\alpha}{2} + it)^2}
\]

Hence

\[
I_{\alpha}(f) = \frac{\Gamma(1 - \alpha)}{2\pi} \int_{-\infty}^{\infty} |(Mf)(q + \frac{\alpha}{2} - it)|^2 \frac{(q + \frac{\alpha}{2})^2 + t^2}{\Gamma(q + 1 - \frac{\alpha}{2} + it)^2} \, dt
\]

\[
= \frac{\Gamma(1 - \alpha)}{2\pi} \int_{-\infty}^{\infty} \frac{|(Mf)(q + \frac{\alpha}{2} - it)|^2}{\Gamma(q + \frac{\alpha}{2} + it)^2} \frac{(q + \frac{\alpha}{2})^2 + t^2}{\Gamma(q + \frac{\alpha}{2} + it)^2} \, dt
\]

\[
\leq C \int_{-\infty}^{\infty} \frac{|(Mf)(q + \frac{\alpha}{2} - it)|^2}{\Gamma(q + \frac{\alpha}{2} + it)^2} \, dt.
\]

Note that

\[
(Mf)(q + \frac{\alpha}{2} - it) = \int_0^\infty f(x)x^{q + \frac{\alpha}{2} - it} \, dx = M(f(x)x^\alpha)(q - \frac{\alpha}{2} - it).
\]

Hence,

\[
I_{\alpha}(f) \leq C \int_{-\infty}^{\infty} \frac{|(M(x^\alpha f(x)))(q - \frac{\alpha}{2} - it)|^2}{\Gamma(q - \frac{\alpha}{2} + it)^2} \, dt = C \|x^\alpha f(x)\|_{H_{q - \frac{\alpha}{2} + it}}^2.
\]

We see that if \(x^\alpha f(x) \in H_{q - \frac{\alpha}{2} + it}(R^+),\) then the function \(f(x)\) satisfies the condition (2.3). In this way, we have Proposition 2 with the condition \(\alpha < 1,\) which comes from (2.5).

We show now the condition \(\alpha < 1\) is sharp. In the case \(\alpha \geq 1,\) we shall show that (2.3), that is, (2.4) does not converge for \(f \neq 0.\)
Indeed, from (2.4)

\[I_{q,\alpha}(f) = \frac{1}{2\pi} \sum_{n=0}^{\infty} \frac{1}{n!} \Gamma(n + 2q + 1) \]

\[\times \int_{-\infty}^{\infty} |(Mf)(q + \frac{\alpha}{2} - it)|^2 \{ (q + \frac{\alpha}{2} + t^2)^2 \{ (q + \frac{\alpha}{2} + 1)^2 + t^2 \} \cdots \{ (q + \frac{\alpha}{2} + n - 1)^2 + t^2 \} \} \, dt \]

\[\geq \frac{1}{2\pi \Gamma(2q + 1)} \int_{-\infty}^{\infty} |(Mf)(q + \frac{\alpha}{2} - it)|^2 \, dt \cdot (q + \frac{\alpha}{2})^2 \sum_{n=0}^{\infty} \frac{(q + \frac{\alpha}{2})_n (q + \frac{\alpha}{2})_n}{(2q + 1)_n n!} \]

Since \((2q + 1) - (q + \frac{\alpha}{2}) - (q + \frac{\alpha}{2}) \leq 0 \), the series is divergent, and \(I_{q,\alpha}(f) \) is finite only if

\[\int_{-\infty}^{\infty} |(Mf)(q + \frac{\alpha}{2} - it)|^2 \, dt = 0, \]

that is, if \(f \equiv 0 \).

For the proofs of Theorems 1 and 2, look the original paper.

Acknowledgements.
The work of the first author was partially supported by the Japanese Ministry of Education, Science, Sports and Culture; Grant-in-Aid Scientific Research, Kiban Kenkyuu (A)(1), 10304009. The second author was supported by the Kuwait University Research Administration under the grant SM 187.

REFERENCES
2. AMANO, K., SAITO, S., and YAMAMOTO, M., Error estimates of the real inversion formulas for the Laplace transform, Integral Transforms and Special Functions (to appear).
Yoneda's problems for compact Toeplitz operators on the Bergman space

Kazuhiro Kasuga
Niigata University

Abstract

In this report, we give counterexamples for one of Yoneda's problems.

1. Introduction

Let \(D \) be the open unit disc in the complex plane \(\mathbb{C} \). Let \(dA \) be the normalized area measure on \(D \). The Bergman space on \(D \), denoted by \(L^2_a(D) \), is the space of analytic functions \(f \) on \(D \) such that

\[
\|f\|^2 = \int_D |f(z)|^2 dA(z) < \infty.
\]

Let \(P \) be the orthogonal projection from \(L^2(D,dA) \) onto \(L^2_a(D) \). For \(\phi \) in \(L^\infty(D) \) the Toeplitz operator \(T_\phi : L^2_a(D) \to L^2_a(D) \) is defined by \(T_\phi f = P(\phi f) \), \(f \in L^2_a(D) \). Put

\[
k_z(w) = \frac{1 - |z|^2}{(1 - \bar{z}w)^2} \quad \text{for } z, w \in D,
\]

and \(k_z \) is called the normalized reproducing kernel for \(z \). For \(z \in D \), define

\[
\varphi_z(w) = \frac{z - w}{1 - \bar{z}w}, \quad w \in D.
\]

We shall give known results about the compactness of \(T_\phi \).

Theorem A ([6]) Let \(\phi \) be in \(L^\infty(D) \). Then the following are equivalent.

(i) \(T_\phi \) is a compact operator on \(L^2_a(D) \).

(ii) \(\|T_\phi k_z\| \to 0 \) as \(|z| \to 1- \).

(iii) \(\|P(\phi \circ \varphi_z)\| \to 0 \) as \(|z| \to 1- \).

Theorem B ([1]) Let \(\phi \) be in \(L^\infty(D) \). Then \(T_\phi \) is a compact operator on \(L^2_a(D) \) if and only if \(\tilde{\phi}(z) \to 0 \) as \(|z| \to 1- \), where

\[
\tilde{\phi}(z) = \int_D (\phi \circ \varphi_z)(w)dA(w) \quad z \in D.
\]

Let

\[
S_z = \{ w \in D : |z| < |w| < 1, |\arg z - \arg w| < 2\pi(1 - |z|) \}
\]

be the Carleson square at \(z \) and \(|S_z| \) be the \(dA \)-measure of \(S_z \).
Theorem C ([4]) Let ϕ be a nonnegative function on D. Then T_ϕ is a compact operator on $L^2_\alpha(D)$ if and only if $\phi(z) \to 0$ as $|z| \to 1^-$, where
\[
\hat{\phi}(z) = \frac{1}{|S_z|} \int_{S_z} \phi(w) dA(w) \quad z \in D.
\]

Theorem D ([3]) Let ϕ be a bounded radial function in D. Then T_ϕ is a compact operator on $L^2_\alpha(D)$ if and only if
\[
\lim_{x \to 1^-} \frac{1}{1-x} \int_x^1 \phi(r) dr = 0.
\]

2. Examples

R. Yoneda studied compact Toeplitz operators on the Bergman space for special symbols and he posed several problems. The following is one of these problems.

Problem Let $\{a_n\}$ be a sequence in $[0,1)$ such that $0 = a_0 < a_1 < \cdots < a_n$ and $a_n \to 1$ as $n \to \infty$. Let $E_n = [a_n, a_{n+1})$. Let $\phi(re^{i\theta}) = \sum_{n=0}^{\infty} e^{in\theta} \chi_{E_n}(r)$. Whether T_ϕ is compact or not?

We shall show that both cases occur.

Example 2.1. We choose a sequence $\{R_n\} \subset (0,1)$ such that R_n increases to 1. By induction, we can choose sequences $\{a_n\}$ and $\{r_n\}$ which satisfy the following;

\[
\left| \frac{1}{(a_n)^n} - 1 \right| < \frac{1}{n} \quad \text{for } n \geq 1,
\]

(1)

\[0 = a_0 < a_n < r_n < a_{n+1} < 1 \quad \text{for } n \geq 1,
\]

(2)

and

\[\varphi_{r_n}(R_n) = a_n, \quad \varphi_{r_n}(-R_n) < a_{n+1}.
\]

(3)

First, put $r_0 = R_0$. Then $\varphi_{r_0}(R_0) = a_0 = 0$ and $a_0 < r_0$. We find a_1 such that $\left| \frac{1}{a_1} - 1 \right| < 1$ and $\varphi_{r_0}(-R_0) < a_1$. Then $a_0 < r_0 < \varphi_{r_0}(-R_0) < a_1$. Suppose that r_0, \ldots, r_{k-1} and a_0, \ldots, a_k are chosen satisfying (1), (2) and (3). There exists r_k such that $\varphi_{r_k}(R_k) = a_k$. Then $a_k < r_k$. Choose a_{k+1} such that $\left| \frac{1}{(a_{k+1})^{k+1}} - 1 \right| < \frac{1}{k+1}$ and $\varphi_{r_k}(-R_k) < a_{k+1}$. Then $a_k < r_k < a_{k+1}$. This completes the induction.
Put $E_n = [a_n, a_{n+1})$ and $\phi(re^{i\theta}) = \sum_{n=0}^{\infty} e^{in\theta} \chi_{E_n}(r)$. Then

$$\left| \int_D \phi \circ \varphi_r dA - \int_{D_{R_n}} \phi \circ \varphi_r dA \right| \to 0 \text{ as } n \to \infty$$

(4)

and

$$\left| \int_D z^n \circ \varphi_r dA - \int_{D_{R_n}} z^n \circ \varphi_r dA \right| \to 0 \text{ as } n \to \infty,$$

(5)

where $D_{R_n} = \{ z \in \mathbb{C} : |z| < R_n \}$. We have

$$\varphi_r(R_n) \leq \left| \frac{r_n - w}{1 - r_n w} \right| \leq \varphi_r(-R_n), \quad w \in D_{R_n}.$$

Then by (3),

$$\varphi_r(D_{R_n}) \subset \{ re^{i\theta} : a_n \leq r < a_{n+1} \}.$$

(6)

Therefore

$$\int_{D_{R_n}} \phi \circ \varphi_r dA = \int_{D_{R_n}} e^{in\theta} \circ \varphi_r dA = \int_{D_{R_n}} \frac{z^n \circ \varphi_r}{|z^n \circ \varphi_r|} dA.$$

(7)

By (6) and (1),

$$\left| \int_{D_{R_n}} \left(\frac{z^n \circ \varphi_r}{|z^n \circ \varphi_r|} - z^n \circ \varphi_r \right) dA \right| \leq \int_{D_{R_n}} \frac{1}{(a_n)^n} - 1 | dA \leq \frac{1}{n} \Delta A(D_{R_n}).$$

Then by (7),

$$\left| \int_{D_{R_n}} \phi \circ \varphi_r dA - \int_{D_{R_n}} z^n \circ \varphi_r dA \right| \to 0 \text{ as } n \to \infty.$$

Hence by (4) and (5),

$$\int_D \phi \circ \varphi_r dA - \int_D z^n \circ \varphi_r dA \to 0 \text{ as } n \to \infty.$$

Now, by [7, p.52],

$$\int_D z^n \circ \varphi_r dA = (z^n k_{r_n}, \tilde{k}_{r_n}) = (r_n)^n.$$

Therefore

$$\int_D \phi \circ \varphi_r dA - (r_n)^n \to 0 \text{ as } n \to \infty.$$

By (1), \((a_n)^n \to 1\). Then by (2), \((r_n)^n \to 1\). Hence
\[
\int_D \phi \circ \varphi_n dA \to 1 \text{ as } n \to \infty.
\]
By Theorem B, \(T_\phi\) is not compact.

Example 2.2. Let \(0 \leq t < 1\). Then we have
\[
\sup_{0 \leq r \leq t} \left| \int_0^{2\pi} \frac{e^{in\theta}}{|1-re^{i\theta}|^4} d\theta / 2\pi \right| \to 0 \text{ as } n \to \infty.
\]
Let \(N_t\) be the smallest positive integer satisfying
\[
\sup_{0 \leq r \leq t} \left| \int_0^{2\pi} \frac{e^{in\theta}}{|1-re^{i\theta}|^4} d\theta / 2\pi \right| \leq \frac{1}{2} \text{ for all } n \geq N_t.
\]
(8)

Then it is easy to see that \(N_0 = 1\), \(N_t\) increase with respect to \(t\), \(N_t \to \infty\) as \(t \to 1\), \(N_t\) is left continuous, and \(N_t = 1\) for sufficient small \(t\). Put
\[
\{n_j\}_{j=0}^{\infty} = \{N_t : 0 \leq t < 1\}, \quad \text{where } n_j < n_{j+1} \text{ for any } j.
\]
Then \(n_0 = 1\). For each positive integer \(j\), we define \(c_j = \inf \{t : N_t = n_j\}\). Then we get
\[
0 = c_0 < c_1 < \cdots < 1,
\]
\[
\{t : N_t = n_0\} = [0, c_1],
\]
and
\[
\{t : N_t = n_j\} = (c_j, c_{j+1}] \quad j \geq 1.
\]
Next we divide the interval \([0, c_1]\) into \(n_1\) equal intervals. And we divide the interval \((c_j, c_{j+1}]\) into \(n_{j+1}\) equal intervals. Then we get divided points \(\{a_k\}\) such that
\[
0 = a_0 < a_1 < \cdots < a_k < 1 \text{ and } a_k \to 1 \text{ as } k \to \infty.
\]
For a sufficiently large \(k\), there exist a unique \(j_k \geq 1\) such that \([a_k, a_{k+1}) \subset [c_{j_k}, c_{j_k+1}]\).

We put \(E_k = [a_k, a_{k+1})\). Then by the above, we have
\[
N_t \leq n_{j_k} \text{ for all } t \in E_k \text{ and } n_{j_k} \leq k.
\]
(9)

Put \(\phi(re^{i\theta}) = \sum_{k=0}^{\infty} e^{ik\theta} \chi_{E_k}(r)\). Let \(r \in E_k\). By (9), \(N_r \leq n_{j_k} \leq k\). Since \(N_t\) is left continuous, \(N_{a_{k+1}} \leq k\). By (8),
\[
\sup_{0 \leq r \leq a_{k+1}} \left| \int_0^{2\pi} \frac{e^{ik\theta}}{|1-re^{i\theta}|^4} d\theta / 2\pi \right| \leq \frac{1}{2}.
\]
Therefore
\[
\left| \int_0^{2\pi} \frac{e^{ik\theta}}{|1-ze^{i\theta}|^4} d\theta / 2\pi \right| \leq \frac{1}{2}.
\]
for \(r \in E_k \) and \(z \in D \). Thus
\[
\left| \int_D \phi \circ \varphi_z dA \right| = \left| \int_D \phi |k_z|^2 dA \right| = (1 - |z|^2)^2 \left| \int_D \frac{\phi(w)}{|1 - \overline{z}w|^4} dA(w) \right|
\]
\[
= (1 - |z|^2)^2 \int_0^{2\pi} \int_0^1 \sum_{k=0}^{\infty} e^{ik\theta} \chi_k(r) 2r dr d\theta / 2\pi
\]
\[
\leq (1 - |z|^2)^2 \sum_{k=0}^{\infty} \int_{a_k}^{a_{k+1}} 2r dr \int_0^{2\pi} e^{ik\theta} \frac{1}{|1 - \overline{z}re^{i\theta}|^4} d\theta / 2\pi
\]
\[
\leq (1 - |z|^2)^2 \sum_{k=0}^{\infty} \int_{a_k}^{a_{k+1}} r dr
\]
\[
= \frac{1}{2} (1 - |z|^2)^2 \to 0 \text{ as } |z| \to 1.
\]

Hence by Theorem B, \(T_\phi \) is compact.

REFERENCES

The Composition Operators On Weighted Bloch Space

Rikio Yoneda (Hokkaido University)

Abstract

We will characterize the boundedness and compactness of the composition operators on weighted Bloch space \(B_{\log} = \{ f \in H(D) : \sup_{z \in D} (1 - |z|^2) (\log \frac{2}{1-|z|^2}) |f'(z)| < +\infty \} \), where \(H(D) \) be the class of all analytic functions on \(D \).

Let \(D \) denote the open unit disk in \(C \) and \(\partial D = \{ z \in C ; |z| = 1 \} \) denote the unit circle. Let \(H(D) \) denote the space of analytic functions on \(D \). For \(1 \leq p < +\infty \), the Lebesgue space \(L^p(D, dA) \) is defined to be the Banach space of Lebesgue measurable functions on the open unit disc \(D \) with

\[
\| f \|_{L^p} := \left(\int_D |f(z)|^p dA(z) \right)^{1/p} < +\infty ,
\]

where \(dA(z) \) is the normalized area measure on \(D \). The Bergman space \(L^2_a(D) \) is defined to be the subspace of \(L^p(D, dA) \) consisting of analytic functions. And the reproducing kernel (Bergman kernel) at a point \(w \in D \) is \(k_w(z) = \frac{1}{(1 - \overline{w}z)^2} \) for \(z \in D \). There is the orthogonal projection (Bergman projection) \(P \) from the Lebesgue space \(L^2(D, dA) \) onto the Bergman space \(L^2_a(D, dA) \):

\[
P f(z) := \int_D \frac{f(w)}{(1 - \overline{w}z)^2} dA(w) , \quad f \in L^2(D, dA).
\]

Given a function \(f \in L^2(D, dA) \), we define an operator \(H_f : L^2_a \rightarrow (L^2_a)^\perp \) by

\[
H_f g = (I - P)(fg), \quad g \in L^2_a.
\]

The operator \(H_f \) is called the Hankel operator on the Bergman space with symbol \(f \).

For \(0 < p < +\infty \), the Hardy space \(H^p \) is defined to be the Banach space of analytic functions \(f \) on \(D \) with

\[
\| f \|_p := \left(\sup_{\theta \in \mathbb{R}} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{1/p} < \infty .
\]

The orthogonal projection from \(L^2(\partial D) \) onto \(H^2 \) is called the Szegö projection and is also denoted by \(P \). Then given a function \(f \in L^2(\partial D) \), we define an operator \(H_f : H^2 \rightarrow (H^2)^\perp \) by

\[
H_f g = (I - P)(fg), \quad g \in H^2.
\]
The operator H_f is called the Hankel operator on the Hardy space with symbol f.

The Bloch space B of D is defined to be the space of analytic functions f on D such that

$$
\|f\|_B := \sup\{(1-|z|^2)|f'(z)|; z \in D\} < +\infty.
$$

This defines a semi-norm and it is Möbius invariant in the sense of $\|f \circ \varphi\|_B = \|f\|_B$ for all $f \in B$ and $\varphi \in \text{Aut}(D)$, where $\text{Aut}(D)$ is the Möbius group of bi-analytic mappings of D. The Bloch functions form a Banach space with the norm $\|f\| = |f(0)| + \|f\|_B$. The space of analytic functions on D of bounded mean oscillation, denoted by BMOA, consists of functions f in H^2 for which

$$
\|f\|_{\text{BMOA}} := \sup\{\|f \circ \varphi - f\|_2; z \in D\} < +\infty.
$$

And the following are the classical results for the spaces B and BMOA (see [11]): For $f \in L^2_a$, Hankel operator $H_f : L^2_a \rightarrow (L^2_a)^1$ is bounded if and only if $f \in B$.

And for $f \in H^2$, Hankel operator $H_f : H^2 \rightarrow (H^2)^1$ is bounded if and only if $f \in \text{BMOA}$, i.e.

$$
\frac{2}{|I|} \int_{S(I)} |f'(z)|^2 \log \frac{1}{|z|} dA(z) < +\infty
$$

where I denotes a subarc of the unit circle, $|I|$ denotes the arclength measure of I, and $S(I) = \{re^{i\theta}; 1-r \leq |r|, e^{i\theta} \in I\}$. It is clear that $|g'(0)| \leq \|g\|_B$ for every analytic function g on D. Applying $g = f \circ \varphi - f(z)$, it follows that $(1-|z|^2)|f'(z)| \leq \|f \circ \varphi - f\|_2$ for an analytic function f on D and $z \in D$. Thus it follows that the inclusion $\text{BMOA} \subset B$. We will say that a holomorphic self map φ of D has Bloch-to-BMOA pullback property if it has the following property: $f \circ \varphi \in \text{BMOA}$ for all $f \in B$. In [3], B.R.Choe, W.Ramey, and D.Ullrich studied Bloch-to-BMOA pullbacks.

On the other hand, in [1], K.R.M. Attle proved that for $f \in L^2_a(D)$, the Hankel operator $L^1_a \rightarrow L^1$ is bounded if and only if

$$
\sup\{(1-|z|^2) \left(\log \frac{2}{1-|z|^2}\right) |f'(z)|; z \in D\} < +\infty,
$$

and in [4], Cima and Stegenga proved that the Hankel operator $H_f : H^1 \rightarrow H^1$, with an analytic symbol f (see their paper for the definition of this Hankel operator) is bounded if and only if

$$
\sup_{I} \left(\log \frac{2}{|I|}\right)^2 \int_{S(I)} |f'(z)|^2 \log \frac{1}{|z|} dA(z) < +\infty.
$$

For g analytic on D, the operator J_g is defined on the Bloch space by the following:

$$
J_g(h)(z) := \int_0^\infty h(\zeta) g(\zeta) d\zeta.
$$

If $g(z) = z$, then J_g is the integration operator. If $g(z) = \log \frac{1}{1-z}$, then J_g is the Cesáro operator.

In [9], we showed the following result about the operator J_g defined on the Bloch space B.

Theorem A. For g analytic on D, the operator J_g is bounded on B if and only if

$$
\sup_{z \in D} (1-|z|^2) \log \frac{1}{1-|z|^2} |g'(z)| < +\infty.
$$
In [8], A.G.Siskakis and R.Zhao showed the following result.

Theorem B. For \(g \) analytic on \(D \), the operator \(J_g \) is bounded on \(BMOA \) if and only if

\[
\sup_{I \in \delta D} \left(\frac{(\log \frac{2}{|I|})^2}{|I|} \int_{\partial I} |g'(z)|^2 (1 - |z|^2)^2 dA(z) \right) < +\infty.
\]

Accordingly, we define the weighted Bloch space \(B_{\log} \) of \(D \) to be the space of analytic functions \(f \) on \(D \) such that

\[
\| f \|_{B_{\log}} := \sup \{(1 - |z|^2) \left(\frac{2}{1 - |z|^2} \right) |f'(z)| ; z \in D \} < +\infty.
\]

And we define the space of analytic functions on \(D \) of weighted bounded mean oscillation, denoted by \(BMOA_{\log} \), to be the space of functions \(f \) in \(H^2 \) for which

\[
\| f \|_{BMOA_{\log}} := \sup_{I} \left(\frac{(\log \frac{2}{|I|})^2}{|I|} \int_{\partial I} |f'(z)|^2 \log \frac{1}{|z|} dA(z) \right) < +\infty.
\]

For an analytic function \(f \) on \(D \) and \(z \in D \), \((1 - |z|^2)|f'(z)| \leq \| f \circ \varphi_z - f(z) \|_2 \). On the other hand, for \(g(e^{i\theta}) \in L^1(T) \), it has been shown in [6, Lemma 3.2, page 237] that \(\| g \circ \varphi_z - g(z) \|_2^2 \leq \int_D (1 - |\varphi_z(w)|^2)^2 |g'(w)|^2 dA(w) \). Since \(1 - |\varphi_z(w)|^2 \leq 2 \log \frac{1}{|\varphi_z(w)|} \) for \(z, w \in D \), we have

\[
\left(\frac{2}{1 - |z|^2} \right) (1 - |z|^2) |f'(z)|^2 \leq \left(\frac{2}{1 - |z|^2} \right) \int_D |f'(w)|^2 \log \frac{1}{|\varphi_z(w)|} dA(w).
\]

Since \(\sup_{z \in D} \left(\frac{2}{1 - |z|^2} \right) \int_D \log \frac{1 - \varphi_z w}{z - w} |f'(w)|^2 dA(w) \leq C \| f \|_{BMOA_{\log}}^2 \) (see [6] or [11]), thus we have \(BMOA_{\log} \subset B_{\log} \). We will also say that a holomorphic self map \(\varphi \) of \(D \) has \(B_{\log} \)-to- \(BMOA_{\log} \) pullback property if it has the following property: \(f \circ \varphi \in BMOA_{\log} \) for all \(f \in B_{\log} \).

Let \(\varphi \) denote a holomorphic function taking the open unit disk \(D \) into \(D \) and \(C_\varphi \) denote the composition operator with \(\varphi \). Then it is trivial that \(C_\varphi \) is bounded on \(B \). In fact, if \(f \in B \),

\[
(1 - |z|^2) \left| (f \circ \varphi)'(z) \right| = (1 - |z|^2) \left| f'(\varphi(z)) \right| \left| \varphi'(z) \right| = \frac{1 - |z|^2}{1 - |\varphi(z)|^2} \left| \varphi'(z) \right| (1 - |\varphi(z)|^2) \left| f'(\varphi(z)) \right|.
\]

By the Schwarz-Pick lemma,

\[
\frac{1 - |z|^2}{1 - |\varphi(z)|^2} \left| \varphi'(z) \right| \leq 1.
\]

Hence we see \(\| C_\varphi f \|_B \leq \| f \|_B \). But, it is not trivial that \(C_\varphi \) is bounded on \(B_{\log} \). In [7], K.Madigan and A.Matheson showed the following result about the compactness of \(C_\varphi \) on \(B \):

\[
-70-
Theorem C. Let \(\varphi \) be a holomorphic function taking the open unit disk \(D \) into \(D \). Then \(C_\varphi \) is compact on \(B \) if and only if for every \(\epsilon > 0 \), there exists \(0 < r < 1 \) such that

\[
\sup_{|\varphi(z)| > r} \left(\frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)} |\varphi'(z)| \right) < \epsilon.
\]

We can prove the following theorem with respect to the boundedness of \(B_{\log} \).

Theorem 1. Let \(\varphi \) be a holomorphic function taking the open unit disk \(D \) into \(D \). Then \(C_\varphi \) is bounded on \(B_{\log} \) if and only if

\[
\sup_{z \in D} \left(\frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)} \log \frac{2}{1 - |z|^2} \right) |\varphi'(z)| < +\infty.
\]

proof. Suppose

\[
\sup_{z \in D} \left(\frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)} \log \frac{2}{1 - |z|^2} \right) |\varphi'(z)| < +\infty.
\]

Let \(f \in B_{\log} \). Then we see

\[
\sup_{z \in D} |(f \circ \varphi)'(z)| (1 - |z|^2) \log \frac{2}{1 - |z|^2} = \sup_{z \in D} |f'(\varphi(z))| |\varphi'(z)|(1 - |z|^2) \log \frac{2}{1 - |z|^2}
\]

\[
\leq \sup_{z \in D} |f'(\varphi(z))| (1 - |\varphi(z)|^2) \left(\log \frac{2}{1 - |\varphi(z)|^2} \right) \sup_{z \in D} \left(\frac{(1 - |z|^2)}{(1 - |\varphi(z)|^2)} \log \frac{2}{1 - |z|^2} \right) |\varphi'(z)|
\]

\[
\leq C \| f \|_{B_{\log}}.
\]

To prove the converse, suppose that \(C_\varphi \) is bounded on \(B_{\log} \). Then \(\| f \circ \varphi \|_{B_{\log}} \leq C \| f \|_{B_{\log}} \) for all \(f \in B_{\log} \). For \(w \neq 0 \), let \(f_w \) be the anti-derivative of

\[
\left(1 - \frac{w^2}{|w|^2 z^2} \right)^{-1} \left(\log \frac{2}{1 - \frac{w^2}{|w|^2 z^2}} \right)^{-1}
\]

with \(f_w(0) = 0 \). Since

\[
\sup_{z_1 \in D} \left((1 - |z_1|^2) \left(\log \frac{2}{1 - |z_1|^2} \right) |1 - z_1^2|^{-1} \right) \log \frac{2}{1 - |z_1|^2} < +\infty,
\]

applying \(z_1 = \frac{w}{|w|} z \), we have

\[
\sup_{z \in D} (1 - |z|^2) \left(\log \frac{2}{1 - |z|^2} \right) \left| 1 - \frac{w^2}{|w|^2 z^2} \right|^{-1} \log \frac{2}{1 - \frac{w^2}{|w|^2 z^2}} < +\infty.
\]

Hence we have \(f_w \in B_{\log} \) for \(w \neq 0 \). Since \(C_\varphi \) is bounded on \(B_{\log} \), we have \(\| f_w \circ \varphi \|_{B_{\log}} < +\infty \). Thus for \(w \neq 0 \),

\[
\sup_{z \in D} (1 - |z|^2) \left(\log \frac{2}{1 - |z|^2} \right) |(f_w \circ \varphi)'(z)| \leq K < +\infty.
\]
For any \(z \in D \) and \(w \neq 0 \in D \), we have \((1 - |z|^2) \left(\log \frac{2}{1 - |z|^2} \right) |f_w'(\varphi(z))| |\varphi'(z)| \leq K\). Fix an arbitrary \(z \in D \) with \(\varphi(z) \neq 0 \), applying \(w = \varphi(z) \) to the above inequality, we have

\[
(1 - |z|^2) \left(\log \frac{2}{1 - |z|^2} \right) \left| 1 - \frac{\varphi(z)^2}{|\varphi(z)|^2} \varphi'(z)^2 \right|^{-1} \left| \log \frac{2}{1 - \frac{\varphi(z)^2}{|\varphi(z)|^2}} \right|^{-1} |\varphi'(z)| \leq K < \infty.
\]

Hence for an arbitrary \(z \in D \) with \(\varphi(z) \neq 0 \),

\[
\frac{(1 - |z|^2) \log \frac{2}{1 - |z|^2}}{(1 - |\varphi(z)|^2) \log \frac{2}{1 - |\varphi(z)|^2}} |\varphi'(z)| \leq K < \infty.
\]

For an arbitrary \(z \in D \) with \(\varphi(z) = 0 \), since \(\varphi \in B_{\log} \), we have

\[
\frac{(1 - |z|^2) \log \frac{2}{1 - |z|^2}}{(1 - |\varphi(z)|^2) \log \frac{2}{1 - |\varphi(z)|^2}} |\varphi'(z)| = \frac{1}{\log 2} \left(\log \frac{2}{1 - |z|^2} \right) |\varphi'(z)| < \infty.
\]

This completes the proof of the theorem. \(\square \)

We can also prove the following theorem with respect to the compactness of \(B_{\log} \).

Theorem 2. Let \(\varphi \) be a holomorphic function taking the open unit disk \(D \) into \(D \). Then \(C_{\varphi} \) is compact on \(B_{\log} \) if and only if \(\varphi \in B_{\log} \) and for every \(\epsilon > 0 \) there exists \(0 < r < 1 \) such that

\[
\sup_{|\varphi(z)| > r} \left(\frac{(1 - |z|^2) \log \frac{2}{1 - |z|^2}}{(1 - |\varphi(z)|^2) \log \frac{2}{1 - |\varphi(z)|^2}} |\varphi'(z)| \right) < \epsilon.
\]

By a direct calculation, it is not easy that we do see when \(C_{\varphi}f \in BMOA_{\log} \) for \(f \in BMOA_{\log} \). So by the following proposition, we can get the condition of a holomorphic function \(\varphi \) that \(C_{\varphi}f \in BMOA_{\log} \) for \(f \in B_{\log} \) holds. In particular, we can get the condition of a holomorphic function \(\varphi \) that \(C_{\varphi}f \in BMOA_{\log} \) for \(f \in BMOA_{\log} \) holds because of \(BMOA_{\log} \subset B_{\log} \).

Proposition 3. If

\[
\sup_I \frac{(\log \frac{2}{|I|})^2}{|I|} \int_{S(I)} \frac{(1 - |z|^2)|\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^2 (\log \frac{2}{1 - |\varphi(z)|^2})^2} dA(z) < +\infty,
\]

\(\varphi(z) \) has \(B_{\log} \)-to-\(BMOA_{\log} \) pullback property. Conversely, if there exists a sequence \(\{w_n\}_{n=1}^\infty \subset \partial D \) such that \(\varphi(D) \subset \bigcup_{n=1}^\infty \{z \in D : |1 - \overline{w_n} z| < \lambda (1 - |z|^2)\} \) where \(\lambda > 0 \), if \(\varphi(z) \) has \(B_{\log} \)-to-\(BMOA_{\log} \) pullback property, then

\[
\sup_I \frac{(\log \frac{2}{|I|})^2}{|I|} \int_{S(I)} \frac{(1 - |z|^2)|\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^2 (\log \frac{2}{1 - |\varphi(z)|^2})^2} dA(z) < +\infty.
\]
References

Nevanlinna-type spaces on the upper half plane

東北大学大学院情報科学研究科

飯田 安保

(Yasuo IIDA, Graduate School of Information Sciences, Tohoku University)

abstract

In this paper, we shall define the Smirnov class \mathfrak{N}, and its subspace \mathfrak{N}^p, $p > 1$, on the upper half plane and show some properties of \mathfrak{N}, and a canonical factorization theorem for \mathfrak{N}^p.

1. 準備

まず、単位円板 $U = \{ z \in \mathbb{C} ||z| < 1 \}$ 上の Nevanlinna 型空間の定義を与える：

定義 1-1 (N, N_*, N^p)

f を U 上の正則関数とする。また、$T = \{ z \in \mathbb{C} ||z| = 1 \}$ とする。

1. $\sup_{0 < r < 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})|d\theta < +\infty$ を満たすとき、$f \in N$ とする。

(注) $f \in N$ のとき、$f^*(e^{i\theta}) := \lim_{r \to 1^-} f(re^{i\theta})$ が a.e. $e^{i\theta} \in T$ で存在することが知られている。

2. ある $\phi \in L^1(T), \phi \geq 0$ に対し $\log^+ |f(z)| \leq Q(\phi)(z)$ ($z \in U$) を満たすとき、$f \in N_*$ とする。

ただし、右辺は U 上の Poisson 積分を表す。

3. $p > 1$ とする。$\sup_{0 < r < 1} \int_0^{2\pi} \left(\log^+ |f(re^{i\theta})| \right)^pd\theta < +\infty$ を満たすとき、$f \in N^p$ とする。

N を Nevanlinna class, N_* を Smirnov class, $N^p(p > 1)$ を Privalov space と呼ぶ。N とその部分空間 N_*, N^p 等を総称して Nevanlinna 型空間と呼ぶ。

これらの空間のあだには、包含関係 $N^p \subset N_* \subset N (p > 1)$ が成り立つ。

一方、上半平面 $D = \{ z \in \mathbb{C} | \text{Im}z > 0 \}$ 上の Nevanlinna 型空間については Mochizuki の結果 [M] をはじめ、いろいろ知られているが、Krylov は D 上の Nevanlinna class \mathfrak{N} を以下のように定義した [K]：

定義 1-2 ([K])

D 上の正則関数 f が $\sup_{\nu > 0} \int_{\mathbb{R}} \log^+ |f(x + iy)| dx < +\infty$ を満たすとき、$f \in \mathfrak{N}$ とする。
ここでは、\(N, N^p (p > 1)\) に対応する \(D\) 上の空間として、Smirnov class \(\mathcal{N}\) と Privalov space \(\mathcal{M}^p (p > 1)\) を以下のように定義する ([II]):

定義 1-3

1. \(f\) が \(D\) 上の正則関数で、ある \(\phi \in L^1(\mathbb{R})\)、\(\phi \geq 0\) に対し \(\log^+ |f(z)| \leq P[\phi](z)\) \((z \in D)\) を満たすとき、\(f \in \mathcal{N}\) とする。ただし、右辺は \(D\) 上の Poisson 積分を表す。

2. \(p > 1\) とする。\(D\) 上の正則関数 \(f\) が \(\sup_{p > 0} \int_{\mathbb{R}} \left(\log^+ |f(x + iy)|\right)^p dx < +\infty\) を満たすとき、

\(f \in \mathcal{M}^p\) とする。

単位円板での場合と同様にこれらの空間の間には、包含関係 \(\mathcal{M}^p \subset \mathcal{N} \subset \mathcal{M}(p > 1)\) が成り立つ。

2. \(\mathcal{N}\) に属する関数の因数分解定理

次の定理は Krylov の結果である [K]。

定理 2-1 (Canonical factorization theorem [K])

\(f \in \mathcal{N}, f \neq 0\) は次の形に一意に分解される。

\[
f(z) = ae^{iaz} b(z) d(z) g(z) \quad (z \in D).
\]

ここで、

(i) \(a \in T, a \geq 0\).

(ii) \(b(z)\) は \(f\) の零点から構成される Blaschke 積。

(iii) \(d(z) = \exp \left(\frac{1}{\pi i} \int_{\mathbb{R}} \frac{1 + tz}{t - z} \frac{1}{1 + t^2} \log h(t) dt \right)\).

ただし \(h(t) \geq 0, \log h \in L^1(\mathbb{R}, (1 + t^2)^{-1} dt), \log^+ h \in L^1(\mathbb{R})\) である。

(iv) \(g(z) = \exp \left(\frac{1}{i} \int_{\mathbb{R}} \frac{1 + tz}{t - z} d\mu(t) \right)\).

ただし \(\mu\) は \(\mathbb{R}\) 上の有限実測度で、Lebesgue 測度に関して特異で、さらに

\[
\int_{\mathbb{R}} (1 + t^2) d\mu^+(t) < \infty
\]

を満たす。
定理 2-2 ([K])

\[f \in \mathcal{N} \text{ は次の性質を持つ。} \]

(i) \[f^*(x) := \lim_{y \to 0^+} f(x + iy) \text{ が a.e. } x \in \mathbb{R} \text{ で存在する。} \]

(ii) \[\sup_{y > 0} \int_{\mathbb{R}} \log^+ |f(x + iy)| \, dx = \lim_{y \to 0^+} \int_{\mathbb{R}} \log^+ |f(x + iy)| \, dx = \int_{\mathbb{R}} \log^+ |f^*(x)| \, dx + \frac{1}{2} \int_{\mathbb{R}} \pi(1 + x^2) \, d\mu^+(x) \]

が成り立つ。

3. \(\mathcal{N}_s \) の性質

\(\mathbb{R} \) 上の凸関数 \(\varphi \) が、\(\varphi \geq 0 \) かつ非減少で、\(\lim_{t \to -\infty} \varphi(t) = \infty \) であるとき、strongly convex と呼ぶ。

定理 3-1 ([I], [K])

\[f \in \mathcal{N}, f \neq 0 \text{ とする。このとき、以下の条件は互いに同値である：} \]

(i) \[f \in \mathcal{N}_s. \]

(ii) \[f \circ \Psi^{-1} \in \mathcal{N}_s, \text{ ここで } \Psi(z) = \frac{z - i}{z + i} \quad (z \in \overline{D}) \text{ である。} \]

(iii) 定理 2-1 において、\(\mu \leq 0. \)

(iv) \[\lim_{y \to 0^+} \int_{\mathbb{R}} \log^+ |f(x + iy)| \, dx = \int_{\mathbb{R}} \log^+ |f^*(x)| \, dx. \]

(v) 次を満たす strongly convex function \(\varphi \) が存在する：\[\sup_{y > 0} \int_{\mathbb{R}} \varphi(\log^+ |f(x + iy)|) \, dx < \infty. \]

(vi) \[\{\log^+ |f(x + iy)|\}_{y > 0} \text{ が } \mathbb{R} \text{ 上一致可積分である。} \]

Remark.

\(\varphi \) を \(\mathbb{R} \) 上の strongly convex function とする。\(D \) 上の正則関数 \(f \) が\[\sup_{y > 0} \int_{\mathbb{R}} \varphi(\log^+ |f(x + iy)|) \, dx < +\infty \]

を満たすとき、\(f \in H_\varphi \) とする。

このとき、定理 3-1 より次が得られる。

\[\mathcal{N}_s = \bigcup \{H_\varphi \mid \varphi : \text{ strongly convex}\}. \]
4. \mathcal{H}^p に関する結果

$p > 1$ とする。\mathbb{R} 上の関数 φ を、$t \geq 0$ のとき $\varphi(t) = t^p$, $t < 0$ のとき $\varphi(t) = 0$ とする。これは strongly convex function なので、この φ に対して前ページ Remark. のクラス H_φ は \mathcal{H}^p と一致する。

まず、以下の結果は [SW, Chapter II, Theorem 4.6] よりすぐに成り立つことが分かる。

命題 4.1([I])

$\mathcal{H}^p(p > 1)$ に属する関数 f について、以下が成り立つ。

(i) $(\log^+ |f|)^p$ は least harmonic majorant $P[\tau]$ を持つ。ここで τ は \mathbb{R} 上の有限実測度である。

(ii) 上記の τ に対して、$\| \tau \| \leq \sup_{y > 0} \int_{\mathbb{R}} (\log^+ |f(x + iy)|)^p dx$ が成り立つ。

(iii) $D_\delta = \{ z \in \mathbb{C} | \text{Im} z > \delta \}$ とする。$|z| \to +\infty (z \in \overline{D_\delta})$ のとき $\log^+ |f(z)| \to 0$ が成り立つ。

この命題を用いると、\mathcal{H}^p は以下の性質を持つことが示される。

定理 4.2([I])

関数 $f \in \mathcal{H}^p$ について、以下が成り立つ。

(i) $f \circ \Psi^{-1} \in N^p$。

(ii) $\sup_{y > 0} \int_{\mathbb{R}} (\log^+ |f(x + iy)|)^p dx = \lim_{y \to 0^+} \int_{\mathbb{R}} (\log^+ |f(x + iy)|)^p dx = \int_{\mathbb{R}} (\log^+ |f^*(x)|)^p dx$

また、\mathcal{H}^p に属する関数の因数分解定理も以下のように与えられる。

定理 4.3 (Canonical factorization theorem [I])

$p > 1$ とする。$f \in \mathcal{H}^p$, $f \neq 0$ は次の形に一意に分解される。

$$f(z) = ae^{iaz}b(z)d(z)g(z) \quad (z \in D).$$

ここで、

(A) $a, \alpha, b(z), g(z)$ は定理 2.1 と同じ。

(B) $d(z) = \exp \left(\frac{1}{\pi i} \int_{\mathbb{R}} \frac{1 + tz}{t - z} \frac{1}{1 + t^2} \log h(t) \, dt \right)$。

ただし $h(t) \geq 0$, $\log h \in L^1(\mathbb{R}, (1 + t^2)^{-1} \, dt)$ で、さらに $\log^+ h \in L^p(\mathbb{R})$ が成り立つ。
參考文献

[I] Y. Iida, Nevanlinna-type spaces on the upper half plane, 投稿中.

[K] V. I. Krylov, On functions regular in a half-plane, Mat. Sb. 6 (48) (1939); Amer. Math. Soc. Transl. (2) 32 (1963), 37-81.

Yasuo IIDA
Graduate School of Information Sciences,
Tohoku University,
Katahira, Aoba-ku, Sendai 980-8577,
Japan
e-mail : iida@ims.is.tohoku.ac.jp
Norm of a linear combination of two operators on a Hilbert space

Takahiko Nakazi
Department of Mathematics, Faculty of Science, Hokkaido University

Takanori Yamamoto
Department of Mathematics, Hockai-Gakuen University

Abstract

Let $\alpha, \beta, \gamma, \delta$ be complex numbers such that $\gamma \delta \neq 0$. If A and B are bounded linear operators on the Hilbert space H such that $\gamma A + \delta B$ is right invertible then we study the operator norm of $(\alpha A + \beta B)(\gamma A + \delta B)^{-1}$ using the angle ϕ between two subspaces $\text{ran} \ A$ and $\text{ran} \ B$ or the angle $\psi = \psi(A, B)$ between A and B where

$$\cos \psi(A, B) = \sup_{\|Af\| \neq 0, \|Bf\| \neq 0} \frac{|\langle Af, Bf \rangle|}{\|Af\| \cdot \|Bf\|}.$$

AMS Classification: 47A30; 47B35.

Keywords: Operator norm; Angle; Hilbert space; Idempotent operator.

第1章 序文

単位円周 T 上の Helson-Szegö 荷重 W について特異積分作用素

$$(Sf)(\zeta) = \frac{1}{2\pi i} \int_{T} \frac{f(\eta)}{\eta - \zeta} d\eta \quad (a.e., \zeta \in T)$$

はヒルベルト空間 $L^2(W)$ 上の有界作用素であるが，解析射影 $P = (I + S)/2$ と $Q = I - P$ のノルムとの関係は，$\|P\| = \|Q\|$ (cf. [1]), $\|S\| = \|P\| + \sqrt{\|P\|^2 - 1}$ (cf. [7]) が知られている。以下の Feldman-Krupnik-Markus による FKM 公式はその一般化であり，$\|P\|$ を用いて $\|\alpha P + \beta Q\|$ を表している。更に，$\|P\|$ は 2 つの部分空間 $\text{ran} \ P = H^2(W)$, $\text{ran} \ Q = H^2_\delta(W)$ のなす角度 ϕ を用いて $\|P\| = \csc \phi$ と表されることが知られている。

以下の結果は一般のヒルベルト空間 H で成り立つ。以下 $\alpha, \beta, \gamma, \delta \in C, (\gamma \delta \neq 0)$ とする。$A, B \in B(H)$ について $\gamma A + \delta B$ が可逆のときノルム $\|(\alpha A + \beta B)(\gamma A + \delta B)^{-1}\|$ を

$$\cos \phi = \sup_{\|Af\| \neq 0, \|Bg\| \neq 0} \frac{|\langle Af, Bg \rangle|}{\|Af\| \cdot \|Bg\|}$$

より定まる部分空間 $\text{ran} \ A, \text{ran} \ B$ のなす角度 $\phi = \phi(\text{ran} \ A, \text{ran} \ B), (0 \leq \phi \leq \frac{\pi}{2})$ または

$$\cos \psi = \sup_{\|Af\| \neq 0, \|Bf\| \neq 0} \frac{|\langle Af, Bf \rangle|}{\|Af\| \cdot \|Bf\|}$$
より定まる作用素 A, B のなす角度 $\psi = \psi(A, B), (0 \leq \psi \leq \frac{\pi}{2})$ を用いて調べる。$\cos \psi(A, B) \leq \cos \phi(ran A, ran B)$ より $\psi(A, B) \geq \phi(ran A, ran B)$. 我々は $\psi(A, B)$ を作用素 A と B のなす角度と呼ぶことにする。もし $P^2 = P(\neq 0, I)$ かつ $Q = I - P$ ならば $\phi(ran P, ran Q) = \psi(P, Q)$ が成り立つ。なぜならば $h = Pf + Qg$ について次が成り立つ。

$$\frac{|< Pf, Qg >|}{\|Pf\| \cdot \|Qg\|} = \frac{|< Ph, Qh >|}{\|Ph\| \cdot \|Qh\|}.$$

定義 1

$$F(\alpha, \beta, t) = \sqrt{\left| \frac{\alpha - \beta}{2} \right|^2 t + \left(\frac{|\alpha| + |\beta|}{2} \right)^2} + \sqrt{\left| \frac{\alpha - \beta}{2} \right|^2 t + \left(\frac{|\alpha| - |\beta|}{2} \right)^2}.$$

もし $t \geq 0$ ならば $F(\alpha, \beta, t) \geq \max(|N|, |E|)$.

FKM 公式 $P \in B(H), P \neq 0, I, P^2 = P$ と $Q = I - P$ について

$$\|\alpha P + \beta Q\| = F(\alpha, \beta, \|P\|^2 - 1).$$

このとき $\phi = \phi(ran P, ran Q) = \psi(P, Q) = \psi$. 更に $\|P\| = \csc \phi$ より $\|P\|^2 - 1 = \cot^2 \phi$. よって $\|\alpha P + \beta Q\| = F(\alpha, \beta, \cot^2 \phi) = F(\alpha, \beta, \cot^2 \psi)$. この公式の一般化として H 上の作用素 A, B に対し『$\|\alpha A + \beta B\|$ を ϕ や ψ を用いて表せ』という問題は難しい。そこで我々は、『$(\alpha A + \beta B)(\gamma A + \delta B)^{-1}$ を ϕ や ψ を用いて表せ』という問題を考える。

第 2 章. 角度 $\phi(ran A, ran B) > 0$ のとき

このときは、$\psi(A, B) \geq \phi(ran A, ran B) > 0$, よって $\cot \phi \geq \cot \psi$ が成り立っている。

補題 1 零でない $A, B \in B(H)$ が $ran (A + B) = H$ を満たしているとき次の条件は互いに同値である。

1. $ran A \cap ran B = \{0\}$.
2. $ran A \cap ran B = \{0\}$.
3. $\phi(ran A, ran B) > 0$.

(1) ～ (3) が成り立っているとき、$(A + B)^{-1}$ により $A + B$ の右逆元の 1 つを表し、$P = A(A + B)^{-1}, \ Q = B(A + B)^{-1}$ と定める。このとき P と Q は $(A + B)^{-1}$ の選び方に依らずに定まり、$P + Q = I, \ P^2 = P \neq 0, I, \ ran P = ran A, \ ran Q = ran B$ が成り立つ。

定理 1 もし零でない $A, B \in B(H)$ が

$$ran (\gamma A + \delta B) = H \quad \text{かつ} \quad ran A \cap ran B = \{0\}$$

−80−
を満たすならば，

\[\phi = \phi(\text{ran } A, \text{ran } B) > 0 \text{ かつ} \]

\[||(\alpha A + \beta B)(\gamma A + \delta B)^{-1}|| = F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot^2 \phi\right). \]

ただし \((\gamma A + \delta B)^{-1}\) は右逆元の 1 つを表す。

定理 1 は補題 1 と FKM 公式より直に導かれる。特に \(A = P, \ B = Q\) のとき FKM 公式になる。特に \(A = P, \ B = Q^*\) のときは，\(A + B\) は可逆になり \(\text{ran } A \perp \text{ran } B\) よって

\[\phi(\text{ran } A, \text{ran } B) = \frac{\pi}{2}. \text{ Theorem 1 より} \]

\[||(\alpha A + \beta B)(A + B)^{-1}|| = F(\alpha, \beta, 0) = \max(|\alpha|, |\beta|). \]

このとき \((A + B)^{-1}\) と \(B(A + B)^{-1}\) は自己共役なべき等元である。

系 1 もし \(A, B \in B(H)\) が \(\text{ran } (A + B) = H\) を満たし，\(p, q, r, s \geq p + r = q + s = 1, \]
\(ps - qr \neq 0, \ \text{ran } (pA + qB) \neq H, \ \text{ran } (rA + sB) \neq H, \ \text{ran } (pA + qB) \cap \text{ran } (rA + sB) = \{0\}\)
を満たすならば

\[||(\alpha A + \beta B)(A + B)^{-1}|| = F\left(\frac{\alpha s - \beta r}{ps - qr}, \frac{p\beta - qa}{ps - qr}, \cot^2 \phi(\text{ran } (pA + qB), \text{ran } (rA + sB))\right). \]

ただし \((A + B)^{-1}\) は \(A + B\) の右逆元の 1 つを表す。

定理 2 もし \(A, B \in B(H)\) について \(\gamma A + \delta B\) が可逆であり \(K = \text{ran } A \cap \text{ran } B\) が
\(A(\gamma A + \delta B)^{-1}\) の不変部分空間であり \(K \neq \text{ran } A\) かつ \(K \neq \text{ran } B\) ならば，
\(\phi = \phi(\text{ran } A \cap K, \text{ran } B \cap K) > 0\) かつ

\[||(\alpha A + \beta B)(\gamma A + \delta B)^{-1}|| \geq F\left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot^2 \phi\right). \]

定理 2 の証明には補題 1 と定理 1 を用いる。定理 1 より，もし \(K = \{0\}\) ならば定理 2 は
等号が成り立つ。\(\phi(\text{ran } A, \text{ran } B) = 0\) かつ

\[\phi(\text{ran } A \cap K, \text{ran } B \cap K) > 0 \]
を満たす作用素 \(A, B\) はたくさんある。もし \(AB = BA\) ならば \(A(\gamma A + \delta B)^{-1}B = BA(\gamma A + \delta B)^{-1}\)
が成り立つから \(K = \text{ran } A \cap \text{ran } B\) は \(A(\gamma A + \delta B)^{-1}\) の不変部分空間になる。定理 2 よりも
一般に次の事実が成り立つ。もし零でない \(A, B \in B(H)\) について \(A + B\) が右可逆であり，更に
開部分空間 \(M\) が

\[\text{ran } A \cap \text{ran } B \subset M \subset \text{ran } B, \]

-81-
を満たしているならば

\[\| (\alpha A + \beta B)(\gamma A + \delta B)^{-1} \| \geq F \left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot^2 \phi \right). \]

ただし \(\phi = \phi(P_{M^1} A (A + B)^{-1}|_{M^1}, P_{M^1} B (A + B)^{-1}|_{M^1}) > 0. \)

第 3 章. \(A = I, \quad B^n = 0 \) のときのノルム公式

\[B \in B(H) \] が \(B^2 = 0 \) を満たしているならば

\[\| \alpha I + \beta B \| = \sqrt{\frac{\beta^2}{2} \| B \|^2 + |\alpha|^2 + \frac{\beta^2}{2} \| B \|} \]

\[B \in B(H) \] が \(B^n = 0 \) を満たしているならば

\[\| \alpha I + \beta B \| \geq \sqrt{\frac{\beta^2}{2} \| B \|_{\text{ran} B^n}^2 + |\alpha|^2 + \frac{\beta^2}{2} \| B \|_{\text{ran} B^n}^2} \]

第 4 章. 角度 \(\psi(A, B) > 0 \) のとき

\(\psi(A, B) > 0 \) より \(\phi(\text{ran } A, \text{ran } B) > 0 \) を導けるか否かはわからない。第 2 章と第 3 章では、FKM 公式を用えたが、この章では使えない。我々は以下の補題 2, 3 を用いて定理 3 を証明できる。特に定理 3 (1) は \(A, B \) に有界性を仮定しなくても成り立つことから、系 2 が導かれる。定理 3 を用いた系 3 の証明は、FKM 公式的別証明になっている。

定義 2 \(f, g \in H \) に対し

\[\rho(f, g) = \begin{cases} \frac{|f, g|}{\| f \| \| g \|} & f \neq 0, \quad g \neq 0 \text{ のとき} \\ 0 & \text{その他} \end{cases} \]

補題 2 相異なる \(\alpha, \beta \) について \(x \geq \max(|\alpha|, |\beta|) \) と \(0 \leq \rho < 1 \) が成り立っているとき、次の条件は互いに同値である。

\[x \geq F(\alpha, \beta, \frac{\rho^2}{1 - \rho^2}) \]
(2) \[x^4 - \left(\frac{\rho^2}{1 - \rho^2} |\alpha - \beta|^2 + |\alpha|^2 + |\beta|^2 \right) x^2 + |\alpha\beta|^2 \geq 0. \]

(3) \[\frac{|x^2 - \alpha\beta|}{|\alpha - \beta|} \geq \frac{1}{\sqrt{1 - \rho^2}}. \]

(4) \[\left(x^2 - |\alpha|^2 \right) \left(x^2 - |\beta|^2 \right) \geq \rho^2 \left| x^2 - \alpha\beta \right|^2. \]

この同値性は不等号だけでなく等号に対しても成り立つ。

補題 3 もし零でない \(f, g \in H \) が \(\rho = \rho(f, g) < 1 \) を満たすならば

\[\frac{\|\alpha f + \beta g\|}{\|\gamma f + \delta g\|} \leq F \left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \frac{\rho^2}{1 - \rho^2} \right). \]

定理 3 もし零でない \(A, B \in B(H) \) が \(\psi(A, B) > 0 \) を満たすならば,

(1) \(\gamma A + \delta B \neq 0 \) かつ

\[\sup_{(\gamma A + \delta B)f \neq 0} \frac{\|\alpha A + \beta B\|}{\|\gamma A + \delta B\|} \leq F \left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot^2 \psi(A, B) \right). \]

(2) もし \(\gamma A + \delta B \) が右逆元をもつならば,

\[\|A(A + \beta B)(\gamma A + \delta B)^{-1}\| \leq F \left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot^2 \psi(A, B) \right). \]

ただし \((\gamma A + \delta B)^{-1} \) は右逆元の 1 つを表す。(\(AB = BA = 0 \) のとき等号成立。)

(3) もし \(\gamma A + \delta B \) が左逆元をもつならば

\[\|\alpha A + \beta B\| \leq ||(\gamma A + \delta B)(\gamma A + \delta B)^{-1}|| \|F \left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot^2 \psi(A, B) \right). \]

ただし \((\gamma A + \delta B)^{-1} \) は左逆元の 1 つを表す。

\((\gamma A + \delta B)^{-1} \) が右逆元のときは \(||(\gamma A + \delta B)(\gamma A + \delta B)^{-1}|| = ||I|| = 1 \).

特に (1) は \(A, B \) に有界性や線形性を仮定せずに成り立つ。(1) より

\[\|\gamma A + \delta B\| < \infty \text{ かつ } \psi(A, B) > 0 \Rightarrow \|\alpha A + \beta B\| \leq ||\gamma A + \delta B\|| F \left(\alpha, \beta, \cot^2 \psi(A, B) \right) \]

よって

\[\frac{\|\alpha A + \beta B\|}{||\gamma A + \delta B\||} \leq F \left(\frac{\alpha}{\gamma}, \frac{\beta}{\delta}, \cot^2 \psi(A, B) \right) \]
もし H 上の線形作用素 A, B が $\|A + B\| < \infty$ かつ $\psi(A, B) > 0$ を満たすならば

$\|A\| < \infty$ かつ $\|B\| < \infty$.

Helson and Szegö は荷重付き L^2 空間上の解析射影 P の有界性を示すとき $\psi(P, I - P) > 0$ と $\|P\| < \infty$ の同値性を使った。次の補題 4 で $t = 1$ とした不等式が定理 3 (1) になっている。補題 4 は A, B に有界性や線形性を仮定せずに成り立つ。

補題 4 もし零でない H 上の作用素 A, B が $\psi(A, B) > 0$ を満たすならば

$$
\sup_{t \in \mathbb{C}} \sup_{(\gamma A + \delta B) \neq 0} \|tA + \beta B \| = \sup_{t \in \mathbb{C}} \sup_{(\gamma A + \delta B) \neq 0} \|tA + A + B \| = F\left(\frac{\alpha A + B}{\gamma, \delta}, \cot^2 \psi(A, B)\right).
$$

系 3 もし零でない H 上の線形作用素 A, B が $\psi(A, B) > 0$ と $AB = BA = 0$ を満たし更に $\gamma A + \delta B$ が右可逆ならば

$$
\|\alpha A + B \| (\gamma A + \delta B)^{-1} = F\left(\frac{\alpha, \beta}{\gamma, \delta}, \cot^2 \psi(A, B)\right).
$$

参考文献

Weighted Shift Operators And Rudin’s Orthogonal Polynomials

Takahiko Nakazi (Hokkaido University)

Abstract. H^∞ and H^2 denote the Hardy spaces on the open unit disc D. Let ϕ be a function in H^∞ and $\|\phi\|_\infty = 1$. If ϕ is an inner function and $\phi(0) = 0$, then \{\phi^n; n = 0, 1, 2, \cdots\} is orthogonal in H^2. W. Rudin asked if the converse is true and C. Sundberg showed that the converse is not true. Therefore there exists a function ϕ such that ϕ is not an inner function and \{\phi^n\} is orthogonal in H^2. In this paper, the following is shown: \{\phi^n\} is orthogonal in H^2 if and only if there exists a unique probability measure ν_0 on $[0,1]$ with $1 \in \text{supp} \, \nu_0$ such that $N_\phi(z) = \int_{\{|z|\}}^{1} \frac{r}{|z|} d\nu_0(r)$ for nearly all z in D where N_ϕ is the Nevanlinna counting function of ϕ. If ϕ is an inner function, then ν_0 is a Dirac measure at $r = 1$.

§1. Rudin の直交問題

$H^p(1 \leq p \leq \infty)$ を C の単位開円板 D 上の Hardy 空間とする。このとき H^2 は Hilbert 空間となる。H^p の関数は radial limit をとることにより Lebesgue 空間 $L^p(\partial D, d\theta/2\pi)$ に isometrical に埋め込むことができる。$\phi \in H^\infty$ が inner 関数とは ϕ が ∂D 上で a.e. 絶対値 1 なることである。ϕ が inner 関数 かつ $\phi(0) = 0$ ならば \{\phi^n; n = 0, 1, 2, \cdots\} は H^2 で直交系となることを示すことはやさしい。1988 年に Rudin はその逆が正しいかという問題を出した。

Rudin の直交問題：$\phi \in H^\infty$ かつ $\|\phi\|_\infty = 1$ とする。もし \{\phi^n; n = 0, 1, 2, \cdots\} が H^2 で直交系ならば ϕ は inner 関数となるか？

この問題は、$\phi \in L^p$, $\alpha > 1/2$ ならば正しい (Cima-Korenblum-Stessin [2], 1999 ?)。また ϕ が univalent ならば正しい (Bourdon [1], 1997)。しかし Sundberg [5] は 1999 年に Rudin の直交問題は ϕ が continuous でないならば正しくないという形で解いた。よって ϕ が inner 関数でないが \{\phi^n; n = 0, 1, 2, \cdots\} が直交系となるものが存在する。よってそんな関数は依然として神秘的であるから、我々は \{\phi^n; n = 0, 1, 2, \cdots\} が直交系となる ϕ を Rudin の直交関数と呼ぶ。
§2. Weighted shift 作用素

H を Hilbert 空間, $\{e_n ; n = 1,2,\cdots\}$ をその正規直交基底とする。T が H 上の unilateral weighted shift 作用素とは, $\{w_n \in \mathbb{C} ; n = 1,2,\cdots\}$ が存在して $T e_n = w_n e_{n+1}$ なるものをいう。$\|T\| = \sup_n |w_n|$ かつ T が compact 作用素である必要十分条件は $w_n \to 0 \ (n \to \infty)$ であることが知られている。また $\{|w_n|\}$ を重みとする shift 作用素と, $\{w_n\}$ を重みとする shift 作用素は similar であること, T が injective である必要十分条件は $|w_n| > 0 \ (n = 1,2,\cdots)$ であることが知られているので以後 $w_n > 0 \ (n = 1,2,\cdots)$ と仮定する。

weighted sequence space $H^2(\beta)$ とは, $\beta = \{\beta(n) ; \beta(0) = 0, \beta(n) > 0 \ (n = 1,2,\cdots)\}$ のとき, $\|f\|_{\beta}^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 \beta(n)^2 < \infty$ となる $f = \{\hat{f}(n) ; n = 0,1,2,\cdots\}$ の全体を示す。$H^2(\beta)$ は内積を $(f,g) = \sum_{n=0}^{\infty} \hat{f}(n) \overline{\hat{g}(n)} \beta(n)^2$ とする Hilbert 空間で, $f \in H^2(\beta)$ は $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$ と書くことができる。$H^2(\beta)$ 上の線形作用素 M_z は, $(M_zf)(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^{n+1}$ として定義される。

weighted Hardy 空間 $H^2(\nu)$ とは ν が \hat{D} 上の probability measure で z の多項式全体の $L^2(\hat{D},\nu)$ での閉包を示す。$\phi \in H^\infty$ かつ $\|\phi\|_{\infty} = 1$ とするとき, ϕ の多項式 $H^2 \subset L^2(\hat{D},d\theta/2\pi)$ での閉包とする。

次の場合 $(1) \sim (4)$ において T が重み $\{w_n\}$ の weighted shift 作用素とする。$(1) \sim (4)$ は Shield [4] に書かれているが (3) は C.A.Berger, (4) は R.Gellar-L.J.Wallen による。

(1) T が injective であるならば, $\beta(n) = w_0\cdots w_{n-1} (n \geq 1)$ となる $H^2(\beta)$ 上の M_z が存在して, T は M_z に unitary equivalent である。またその逆も成立する。

(2) T が hyponormal である必要十分条件は $w_n \leq w_{n+1} (n \geq 0)$ である。

(3) T が subnormal かつ $\sup_n w_n = 1$ である必要十分条件は, $[0,1]$ 上の probability measure ν_0 で $1 \in supp \nu_0$ となるものが存在して $(w_0\cdots w_{n-1})^2 = \int_0^1 r^{2n}d\nu_0(r) \ (n \geq 1)$ が成立する。

(4) T が subnormal かつ $\sup_n w_n = 1$ である必要十分条件は, \hat{D} 上の probability measure ν で $d\nu = d\nu_0(r)d\theta/2\pi$ かつ $H^2(\beta) \cong H^2(\nu)$ とできることである。

定理 1 $\phi \in H^\infty$ かつ $\|\phi\|_{\infty} = 1$ とする。$\{\phi^n ; n = 0,1,2,\cdots\}$ が H^2 で直交系である必要十分条件は \hat{D} 上の probability measure ν で $d\nu = d\nu_0(r)d\theta/2\pi$ かつ $H^2(\phi) \cong H^2(\nu)$ とできることである。

証明 必要性: $\{\phi^n\}$ が H^2 で直交系とする。$\beta(n) = \left(\int_0^{2\pi} |\phi|^{2n}d\theta/2\pi\right)^{1/2} (n = 0,1,2,\cdots)$ とすると, $F = \sum_{n=0}^{\infty} \left(\int_0^{2\pi} F\phi^n d\theta/2\pi\right) \phi^n \to f = \sum_{n=0}^{\infty} \hat{f}(n) z^n$ という写像によって, $H^2(\phi) \cong H^2(\beta)$ 上での z による multiplication, M_ϕ を $H^2(\beta)$ 上での ϕ による multiplication とすると, M_ϕ と M_z は unitarily equivalent である。よって M_ϕ は subnormal である。また $\sup_n w_n = \sup_n (\beta(n+1)/\beta(n)) = 1$ であるから, (4) より \hat{D} 上
§3. Nevanlinna counting function

\[\phi \in H^{\infty} \text{かつ} \| \phi \|_\infty = 1 \] とする。\(N_\phi(w) \) が \(\phi \) の Nevanlinna counting function とは、\(w \in D \setminus \{ \phi(0) \} \) に対して次の様に定義されるものである。

\[
N_\phi(w) = \begin{cases}
\sum_{\phi(z)=w} \frac{\log \frac{1}{|z|}}{2} & w \in \phi(D) \\
0 & w \notin \phi(D)
\end{cases}
\]

次の (5) ～ (7) はよく知られていて、(5) は Littlewood-Paley identity の結果で、(6) は Littlewood’s inequality と呼ばれる。(7) は \(\phi \) が inner function のときは Frostman、一般には W. Rudin による。

(5) \(f \in H^2, \phi \in H^{\infty} \text{かつ} \| \phi \|_\infty = 1 \) とすると

\[
\| f \circ \phi \|_2^2 = |f(\phi(0))|^2 + 2 \int_D |f'(w)|^2 N_\phi(w) dA(w).
\]

(6) \(\phi \in H^{\infty} \text{かつ} \| \phi \|_\infty = 1 \) ならば

\[
N_\phi(w) \leq \log \left| \frac{1 - \bar{\omega}(0)}{w - \phi(0)} \right| (w \in D \setminus \{ \phi(0) \}).
\]

(7) \(\phi \in H^{\infty} \text{かつ} \| \phi \|_\infty \leq 1 \) ならば

\[
\lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} \log \left| \frac{w - \phi(re^{i\theta})}{1 - \bar{\omega}(re^{i\theta})} \right| d\theta / 2\pi = \frac{1}{2\pi} \int_0^{2\pi} \log \left| \frac{w - \phi(e^{i\theta})}{1 - \bar{\omega}(e^{i\theta})} \right| d\theta / 2\pi
\]

(nearly all \(w \in D \)).

補題 \(\phi \in H^{\infty} \text{かつ} \| \phi \|_\infty = 1 \) ならば

\[
N_\phi(w) = \int_0^{2\pi} \log \left| \frac{w - \phi(e^{i\theta})}{1 - \bar{\omega}(e^{i\theta})} \right| d\theta / 2\pi - \log \left| \frac{w - \phi(0)}{1 - \bar{\omega}(0)} \right|
\]

(nearly all \(w \in D \)).
証明 (6) の証明より、

\[N_\phi(w) = \lim_{r \to 1} \int_0^{2\pi} \log \left| \frac{w - \phi(r e^{i\theta})}{1 - \bar{w}\phi(r e^{i\theta})} \right| d\theta/2\pi - \log \left| \frac{w - \phi(0)}{1 - \bar{w}\phi(0)} \right| \quad (w \in D \setminus \{\phi(0)\}) \]

だから (7) は明らか。

定理 2 \[\phi \in H^\infty \text{ かつ } \|\phi\|_\infty = 1 \text{ とするとき、次の (1) ～ (3) は同値である。}

(1) \{\phi^n ; n = 0, 1, 2, \cdots \} \text{ は } H^2 \text{ で直交系である。}

(2) \[N_\phi(z) = N_\phi(\{z\}) \text{ (nearly all } z \in D). \]

(3) \[[0,1] \text{ 上の probability measure } \nu_0 \text{ が一意に存在し、} 1 \in \text{supp} \nu_0 \text{ かつ}
\]

\[N_\phi(z) = \int_0^1 \log \frac{r}{|z|} d\nu_0(r) \quad \text{(nearly all } z \in D) \]

とできる。

証明 (3) \Rightarrow (2) は明らかである。 (2) \Rightarrow (1) (5) より、n > m に対して

\[\int_0^{2\pi} \phi^n \bar{\phi}^m d\theta/2\pi \]

\[= 2nm \int_D z^{n-1} \bar{z}^{m-1} N_\phi(|z|) 2r \, dr \, d\theta/2\pi \]

\[= 4nm \int_0^1 r^{n+m-1} N_\phi(r) \, dr \int_0^{2\pi} e^{i(n-m)\theta} d\theta/2\pi = 0. \]

(1) \Rightarrow (3)。定理 1 より \[d\nu = d\nu_0(r) d\theta/2\pi \text{ かつ } H^2_\phi = H^2(\nu) \text{ となる } \nu \text{ が存在する。これより } w \in D \text{ に対して}
\]

\[\int_0^{2\pi} \left| \frac{w - \phi}{1 - \bar{w}\phi} \right|^n d\theta/2\pi = \int_D \left| \frac{w - z}{1 - \bar{w}z} \right|^n \, d\nu(z) \quad (n = 0, 1, 2, \cdots) \]

を示すことができる。またこれより

\[\int_0^{2\pi} \log \left| \frac{w - \phi}{1 - \bar{w}\phi} \right| d\theta/2\pi = \int_D \log \left| \frac{w - z}{1 - \bar{w}z} \right| \, d\nu(z) \]

を示すことができる。補題より nearly all \(w \in D \) に対して \(\phi(0) = 0 \) だから

\[N_\phi(w) = \int_D \log \left| \frac{w - z}{1 - \bar{w}z} \right| \, d\nu(z) - \log |w| \]

\[= \int_0^1 d\nu_0(r) \left(\int_0^{2\pi} \log \left| \frac{w - re^{i\theta}}{1 - \bar{w}re^{i\theta}} \right| d\theta/2\pi - \log |w| \right). \]

よって nearly all \(w \in D \) に対して

\[N_\phi(w) = \int_{|w|}^1 \log \frac{r}{|w|} d\nu_0(r). \]
何故ならば

\[
\int_0^{2\pi} \log \left| \frac{w - re^{i\theta}}{1 - \overline{w}re^{i\theta}} \right| d\theta/2\pi - \log |w| = \begin{cases}
\log \frac{r}{|w|} & (|w| \leq r) \\
0 & (|w| > r)
\end{cases}
\]

参考文献

2. J.A.Cima, B.Korenblum and M.Stessin, On Rudin's orthogonality and independence problem, preprint
5. C.Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, preprint
完全正値行列について

安藤 殷（北星学園大学）

1. この報告では $n \times n$ 実行列を考察する。行列空間での自然な順序構造としては、半正定値 (positive semi-definite) 行列の錶 P_+に基づく順序の他に、要素がすべて非負な (entrywise non-negative) 行列の錶 F_+に基づく二つが考えられる。この二つの錶の共通部分を DP で
あらわし、すなわち $DP = P_+ \cap F_+$ そこで入る行列を 双正値 (doubly positive) という。
以下では順序記号 $A \geq B$ は P_+ による順序を表すものとする。

半正定値行列 A は $A = BB^t$ の形に表示できることはよく知られており、さらに B をやはり $n \times n$（半正定値）行列としたり、もとは（または下）三角行列にとることも可能である。
しかし、たとえば B が $n \times m$ の矩形行列でも、BB^t は半正定値になることも明らかである。

特別な場合として、B が要素がすべて非負な行列であるとき BB^t は当然的に双定値になるが、
逆は一般には成り立たない。このような表示を許す行列を 完全正値 (completely positive) と
よび、その全体を CP と書く。

$1 \leq n \leq 4$ では、$DP = CP$ であることが知られている (cf. [Da], [MM])。しかし、$n > 4$
ではこれが成り立たないことは次の例で示される (cf. [GW], [HL], [Y]):

$$
A_n = \begin{bmatrix}
\rho_n & 1 & 0 & \cdots & 0 & 1 \\
1 & \rho_n & 1 & \cdots & 0 & \vdots \\
0 & 1 & \rho_n & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 0 & 0 & \cdots & 1 & \rho_n
\end{bmatrix}
$$

ここで事実に関連して、無向グラフ Γ が 完全正値グラフ (completely positive graph) とは
「Γ の隣接行列と同じ位置に 0 をもつ $A \in DP$ はすべて完全正値」
ことで定義する。グラフの完全正値性は、

「Γ が長さが 5 以上の奇数長のサイクルを含まない」

で特徴付けられる (cf. [KB])

この報告は、$A \in DP$ が 完全正値 になるための簡単で検証しやすい条件についてのこれま
で得られている成果の解説である。主要な部分は私の古いノート [An] に基づいている。
2. まず CP が閉じた錐とることの説明から始めよう。

\[A = BB^t \equiv [b_1, b_2, \cdots, b_m] \cdot [b_1, b_2, \cdots, b_m]^t \iff A = \sum_{k=1}^{m} b_k b_k^t. \]

であるから，

\[A : \text{完全正値} \iff A = \sum_{k=1}^{m} b_k b_k^t \quad \exists b_k \in \mathbb{R}_+^n \quad (k = 1, 2, \ldots, m). \]

が判る。したがって，CP は錐で，その extremal ray は階数 1 の \(b b^t \) で \(b \in \mathbb{R}_+^n \) の形のものからなることも判る。さらに，\(P_+ \) の次元は \(n(n+1)/2 \) であるから，

\[A = \sum_{k=1}^{m} b_k b_k^t \]

の表示で，適当に \(b_k \) を変換すれば，\(m \leq N \equiv n(n+1)/2 \) と修正することができる。また正定値行列だけが現れることより，

\[||A|| \geq ||bb^t||^2 \quad (k = 1, 2, \ldots, m) \]

となるから，CP は閉錐 (closed cone) であることが判る。

行列 \(A = [a_{ij}] \) が （行）diagonally dominant とは

\[|a_{ii}| \geq \sum_{j \neq i} |a_{ij}| \quad (i = 1, 2, \ldots, n) \]

のことである。この条件は

\[2|a_{ii}| \geq \sum_{j=1}^{n} |a_{ij}| \quad (i = 1, 2, \ldots, n) \]

と書いてもよい。

[定理] \(A \in \text{DP} \) とする。

(1) ([Ka]) \(A \) が diagonally dominant \(\implies A : \text{完全正値}, \)

(2) ([DJL]) \(2 \cdot \text{diag}(A) \geq A \implies A : \text{完全正値} \) （終）

3. 2 つの正方行列 \(C = [c_{ij}], \ D = [d_{ij}] \) に対しては，行列積の他に，要素毎の積で定義される Hadamard 積 (Hadamard product) \(C \circ D \equiv [c_{ij}d_{ij}] \) が考えられる。

明らかに，DP も CP も Hadamard 積で閉じている。さらに関数 \(f(t) \) が

\[f(t) = \sum_{k=0}^{\infty} \alpha_k t^k \quad (\alpha_k \geq 0, \ 0 \leq t < \infty) \]

と表示されると，

\[C \in \text{DP} \implies [f(c_{ij})] \in \text{DP}, \ C \in \text{CP} \implies [f(c_{ij})] \in \text{CP} \]

が容易に判る。これは特に \(f(t) = \exp(t) \) に適用されるが，さらに強く次ぎのことが成り立つ。

[基本的な補題] \(A = [a_{ij}] \in \mathcal{P}_+ \implies [\exp(a_{ij})] \) は完全正値 （終）
この証明は CP が閉錐でことに基づいており、\(A = BB^t \) \(B \in \mathcal{F}_+ \) となる \(B \) を構成する具体的な手順は与えない。

実行列 \(C = [c_{ij}] \) 関して、以下の事はよく知られているし (cf. [R1], [R2]), 証明も簡単である：
\[
\exp(-tc_{ij}) \in \text{DP} \quad \forall t > 0 \iff \exp(-tc_{ij}) \in \text{CP} \quad \forall t > 0
\]
\[
\iff \sum_{i,j=1}^n c_{ij} \xi_i \xi_j \leq 0 \quad \forall \sum_{j=1}^n \xi_j = 0 \iff (I - \frac{1}{n} J) \cdot C \cdot (I - \frac{1}{n} J) \leq 0
\]
ここで \(J \) は要素がすべて 1 な矩行列である。

上の（同値な）性質をもつとき行列 \(C \) は 条件付き負定値 (conditionally negative definite) とか
負型 (negative type) と言われる。

上の結果を応用するに際してのわわれれた指針は、\(A = [a_{ij}] \) \(a_{ij} > 0 \) にたいして
\[A = [a_{ij}] = \left[\exp \left(-\log \left(\frac{1}{a_{ij}} \right) \right) \right] = \int_0^\infty \left[\exp \left(-\frac{t}{a_{ij}} \right) \right] dt. \]
の等式と、CP が閉錐なことである。

[定理] \(A = [a_{ij}] \in \text{DP}, \ a_{ij} > 0 \ (i, j = 1, 2, \ldots, n) \) とする。

（1）\(\left[\log \left(\frac{1}{a_{ij}} \right) \right] : \text{negative - type} \iff A \) : 完全正値。,

（2）\(\left[\frac{1}{a_{ij}} \right] : \text{negative - type} \iff A \) : 完全正値 （終）

ここに現れる条件を別な形で書くと、次のようになる。

（1）\(\left[\log \left(\frac{1}{a_{ij}} \right) \right] : \text{negative - type} \iff [a_{ij}^p] \in \mathcal{P}_+ \quad \forall 0 < p < 1. \)

（2）\(\left[\frac{1}{a_{ij}} \right] : \text{negative - type} \iff \left[\frac{a_{ij}}{t + a_{ij}} \right] \in \mathcal{P}_+ \quad \forall t > 0. \)

実際、（2）の条件の方が（1）の条件より強いことは、例えば積分表示
\[[a_{ij}^p] = \frac{\sin(\pi p)}{\pi} \int_0^\infty \left[\frac{a_{ij}}{t + a_{ij}} \right] t^{p-1} dt, \]
を使って判る。

一般の \(A \in \text{DP} \) に関しては次の言える。

[定理] \(A = [a_{ij}] \in \text{DP} \) に関して：
\[\left[\frac{a_{ij}}{t + a_{ij}} \right] \in \mathcal{P}_+ \quad \forall t > 0 \iff [a_{ij}^p] \in \mathcal{P}_+ \quad \forall 0 < p < 1 \iff A \) : 完全正値 （終）
行列 \(A = [a_{ij}] \in \text{DP} \) が \([a_{ij}] \in \mathcal{P}_+ \) \(\forall \ 0 < p < 1 \) を満たすとき，\(A \) は，無限分解可能
(infinitely divisible) という。完全正値行列は必ずしも無限分解可能ではない \((\text{cf. FR}) \)。

4. 前節では関数 \(f(t) \) を要素毎に (entrywise) に適用して新しい行列を作って行ったが，この節では普通の functional calculus を見て，類似の考察を進める。

\(C \in \text{DP} \implies \exp(C) \in \text{CP} \) は容易に判るが，さらに進めて，実対称行列 \(C \) に関して次が成り立つ:

\[
\exp(-tC) \in \text{DP} \quad \forall \ t > 0 \iff \exp(-tC) \in \text{CP} \quad \forall \ t > 0 \iff \text{diag}(C) - C \in \mathcal{F}_+
\]

この最後の条件は，\(C \) の off-diagonal 元がすべて " \(\leq 0 \) " のことである。このような行列を Z-行列 (Z-matrix) と呼ぶ。Z-行列よりも強い条件として，Z-行列 \(C \) が M-行列
(M-matrix) であるとは，逆があって \(C^{-1} \in \mathcal{F}_+ \)。Perron-Frobenius の結果から，\(C \) が M-行列であることは，次のこととき特徴付けられる:

「\(C = \rho I - D \quad \exists \rho > 0, \ D \in \mathcal{F}_+, \ \rho > "D \) のスペクトル半径”」

この結果を応用すると当たってのわれわれの指針は，\(A > 0 \) 関して:

\[
A = \exp(-\log(A^{-1})) = \int_0^\infty \exp(-tA^{-1}) \, dt.
\]

なる等式と，CP が閉線なことである。

[定理] 0 < \(A \in \text{DP} \) に関して:

(1) \(\log(A^{-1}) : Z - 行列 \implies A : \) 完全正値,

(2) \(A^{-1} : M - 行列 \implies A : \) 完全正値 （終）

ここに現れる条件を別の形で書くと次のようになる。

(1) \(A^{-1} : M - 行列 \iff A(tI + A)^{-1} \in \mathcal{F}_+ \quad \forall \ t > 0. \)

(2) \(\log(A^{-1}) : Z - 行列 \iff A^p \in \mathcal{F}_+ \quad \forall \ 0 < p < 1. \)

前節のように積分表示を使えば，(2) の条件が (1) の条件より強いことが判る。一般的 \(A \in \text{DP} \) に関しては次が言える。

[定理] \(A \in \mathcal{P}_+ \) に関して:

\[
A(tI + A)^{-1} \in \mathcal{F}_+ \forall \ t > 0 \implies A^p \in \mathcal{F}_+ \forall \ 0 < p < 1 \implies A : \) 完全正値 （終）

上の定理の条件から，結局 \(A^{\frac{1}{2}} \in \text{DP} \) がでることであるが，\(A^{-1} \) に対する条件の方が，次節で具体的な手順を確立するのに役立つところに利点がある。
5. 完全正値行列の表示 $A = B B^t \exists B \in \mathcal{F}_+$ で、B が 上半三角 (upper triangular) に選べるとき $A \in UL$、下半三角 (lower triangular) に選べるとき $A \in LU$ と書こう。ここでも、どちらの場合も、B は $n \times n$ 行列であることに注意する。

半正定値行列に関する命題を、次元 n に関する帰納法で証明するのに有用な手段として、直交射影 P による圧縮 (compression) $P A P$ の他に、$(A$ の) $P A P$ に関しての Schur 補行列 (Schur complement) $A / P A P$ がある：

$$A / P A P \equiv P \perp A P \perp - P \perp A P \perp (P A P)^{-1} \cdot P A P \perp.$$

圧縮に関しては

$$A \geq B \geq 0 \iff P A P \geq P B P \geq 0$$

は明らかであるが、重要なのは Schur 補行列に関しても

$$A \geq B \geq 0 \iff A / P A P \geq B / P B P \geq 0.$$

も成り立つことである。これは次のような等式を考えれば理解できる：

$$P \perp A^{-1} P \perp = (A / P A P)^{-1}.$$

最もよく使われるのは $1 \leq i_1 < \cdots < i_k \leq n$ のように index の部分集合をとり、P として

e_{i_1}, \ldots, e_{i_k} に張られる部分空間への射影をとる場合である。このとき次のように書こう：

$$P A P \equiv A[i_1, \ldots, i_k], \quad A / P A P \equiv A / A[i_1, \ldots, i_k]$$

$A \in \mathcal{F}_+$ のとき、$A[i_1, \ldots, i_k] \in \mathcal{F}_+$ であるが、一般には $A[i_1, \ldots, i_k] \notin \mathcal{F}_+$ である。M-行列の重要性は次の事実にある：

$$A : M-\text{行列} \iff A[i_1, \ldots, i_k], \quad A / A[i_1, \ldots, i_k] : M-\text{行列}.$$

[定理] ([LM], [M]) $A \in \mathcal{D} P$ に関して：

(1) $A \in \mathcal{U} L \iff A[A[k, k + 1, \ldots, n]] \in \mathcal{D} P \quad (k = 1, 2, \ldots, n),$

(2) $A \in \mathcal{F}_+ \iff A[A[1, 2, \ldots, k]] \in \mathcal{F}_+ \quad (k = 1, 2, \ldots, n)$ (続)

[定理] (cf. [DJ]) $0 < A \in \mathcal{D} P$ に関して：

$A^{-1} : M-\text{行列} \iff A[A[i_1, i_2, \ldots, i_k]] \in \mathcal{F}_+ \quad \forall i_1 < i_2 < \ldots < i_k.$

1. INTRODUCTION

Let H be a nonempty closed convex subset of a real Hilbert space H and let g be a proper convex lower semicontinuous function of H into $(-\infty, \infty]$. Consider a convex minimization problem:

$$\min \{g(x) : x \in H\}.$$

For such a g, we can define a multivalued operator ∂g on H by

$$\partial g(x) = \{x^* \in H : g(y) \geq g(x) + (x^*, y - x), y \in H\}$$

for all $x \in H$. ∂g is said to be the subdifferential of g. Let C be a nonempty closed convex subset of H. Then a mapping $T : C \to C$ is called nonexpansive on C if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$. We denote by $F(T)$ the set of fixed points of T. An operator $A \subset H \times H$ is accretive if for $(x_1, y_1), (x_2, y_2) \in A$, $(x_1 - x_2, y_1 - y_2) \geq 0$. If A is accretive, we can define, for each positive λ, the resolvent $J_\lambda : R(I + \lambda A) \to D(A)$ by $J_\lambda = (I + \lambda A)^{-1}$. We know that J_λ is a nonexpansive mapping. An accretive operator $A \subset H \times H$ is called m-accretive if $R(I + \lambda A) = H$ for all $\lambda > 0$. If $g : H \to (-\infty, \infty]$ is a proper lower semicontinuous convex function, then ∂g is an m-accretive operator. We also know that

$$0 \in \partial g(x_0) \iff g(x_0) = \min \{g(x) : x \in H\} \iff J_\lambda x_0 = x_0 \quad \text{for} \quad \lambda > 0.$$

Thus, a convex minimization problem is equivalent to a fixed point problem for a nonexpansive mapping. Further, we know that one method for solving (*) is the proximal point algorithm first introduced by Martinet [18]. The proximal point algorithm is based on the notion of resolvent J_λ, i.e.,

$$J_\lambda x = \arg \min \{g(z) + \frac{1}{2\lambda} ||z - x||^2 : z \in H\},$$

introduced by Moreau [19]. The proximal point algorithm is an iterative procedure, which starts at a point $x_1 \in H$, and generates recursively a sequence $\{x_n\}$ of points $x_{n+1} = J_{\lambda_n} x_n$, where $\{\lambda_n\}$ is a sequence of positive numbers; see, for instance, Rockafellar [23].

On the other hand, there are two well-known iterative methods for approximation of fixed points. Mann [17] introduced an iteration procedure for approximation of fixed points of a nonexpansive mapping T in a Hilbert space as follows: $x_1 = x \in C$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Tx_n, \quad n = 1, 2, \ldots,$$
where \(\{ \alpha_n \} \) is a sequence in \([0,1]\). Also, Wittmann [38] dealt with the iterative process:
\[
x_{n+1} = \alpha_n x + (1 - \alpha_n)Tx_n, \quad n = 1, 2, \ldots,
\]
where \(\{ \alpha_n \} \) is a sequence in \([0,1]\); see originally Halpern [8].

In this article, we first deal with weak and strong convergence theorems of Mann’s type and Halpern’s type in Banach spaces. Then, using these ideas, we obtain weak and strong convergence theorems for resolvents of accretive operators and consider the convex minimization problem of finding a minimizer of a convex function. These results are connected with the proximal point algorithms.

2. PRELIMINARIES

Let \(C \) be a nonempty closed convex subset of a Banach space \(E \) and let \(T \) be a mapping of \(C \) into \(C \). Then we denote by \(R(T) \) the range of \(T \). Let \(D \) be a subset of \(C \) and let \(P \) be a mapping of \(C \) into \(D \). Then \(P \) is said to be sunny if \(P(Px + t(x - Px)) = Px \) whenever \(Px + t(x - Px) \in C \) for \(x \in C \) and \(t \geq 0 \). A mapping \(P \) of \(C \) into \(C \) is said to be a \emph{retraction} if \(P^2 = P \). If a mapping \(P \) of \(C \) into \(C \) is a retraction, then \(Px = x \) for every \(x \in R(P) \).

Let \(E \) be a Banach space. Then, for every \(\varepsilon \) with \(0 \leq \varepsilon \leq 2 \), the \emph{modulus \(\delta(\varepsilon) \) of convexity} of \(E \) is defined by
\[
\delta(\varepsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : \|x\| \leq 1, \|y\| \leq 1, \|x - y\| \geq \varepsilon \right\}.
\]
A Banach space \(E \) is said to be \emph{uniformly convex} if \(\delta(\varepsilon) > 0 \) for every \(\varepsilon > 0 \). \(E \) is also said to be \emph{strictly convex} if \(\|x + y\| < 2 \) for \(x, y \in E \) with \(\|x\| \leq 1 \), \(\|y\| \leq 1 \) and \(x \neq y \). A uniformly convex Banach space is strictly convex.

Let \(E \) be a Banach space and let \(E^* \) be its dual, that is, the space of all continuous linear functionals \(x^* \) on \(E \). The value of \(x^* \in E^* \) at \(x \in E \) will be denoted by \((x, x^*) \). With each \(x \in E \), we associate the set \(J(x) = \{ x^* \in E^* : (x, x^*) = \|x\|^2 = \|x^*\|^2 \} \). Using the Hahn-Banach theorem, it is immediately clear that \(J(x) \neq \emptyset \) for any \(x \in E \). Then the multi-valued operator \(J : E \to E^* \) is called the \emph{duality mapping} of \(E \). Let \(U = \{ x \in E : \|x\| = 1 \} \) be the unit sphere of \(E \). Then a Banach space \(E \) is said to be \emph{smooth} provided
\[
\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}
\]
exists for each \(x, y \in U \). When this is the case, the norm of \(E \) is said to be \emph{Gâteaux differentiable}. It is said to be \emph{Fréchet differentiable} if for each \(x \) in \(U \), this limit is attained uniformly for \(y \) in \(U \). The space \(E \) is said to have a \emph{uniformly Gâteaux differentiable norm} if for each \(y \in U \), the limit is attained uniformly for \(x \in U \). It is well known that if \(E \) is smooth, then the duality mapping \(J \) is single valued. It is also known that if \(E \) has a Fréchet differentiable norm, then \(J \) is norm to norm continuous; see [7] for more details. A Banach space \(E \) is said to satisfy \emph{Opial’s condition} [20] if \(x_n \rightharpoonup x \) and \(x \neq y \) imply
\[
\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|,
\]
where \(\rightharpoonup \) denotes the weak convergence.
3. WEAK AND STRONG CONVERGENCE THEOREMS

Mann [17] introduced an iteration procedure for approximation of fixed points of a nonexpansive mapping \(T \) in a Hilbert space as follows: \(x_1 = x \in C \) and

\[
x_{n+1} = \alpha_n x_n + (1 - \alpha_n)Tx_n, \quad n = 1, 2, \ldots,
\]

where \(\{\alpha_n\} \) is a sequence in \([0, 1]\). Later, Reich [21] discussed this iteration procedure in a uniformly convex Banach space whose norm is Fréchet differentiable.

Theorem 3.1 ([21]) Let \(C \) be a closed convex subset of a uniformly convex Banach space \(E \) with a Fréchet differentiable norm, let \(T : C \to C \) be a nonexpansive mapping with a fixed point, and let \(\{c_n\} \) be a real sequence such that \(0 \leq c_n \leq 1 \) and \(\sum_{n=1}^{\infty} c_n(1 - c_n) = \infty \). If \(x_1 \in C \) and

\[
x_{n+1} = c_n Tx_n + (1 - c_n)x_n, \quad n = 1, 2, \ldots,
\]

then \(\{x_n\} \) converges weakly to a fixed point of \(T \).

Wittmann [38] dealt with the following iterative process: \(x_1 = x \in C \) and

\[
x_{n+1} = \alpha_n x + (1 - \alpha_n)Tx_n, \quad n = 1, 2, \ldots,
\]

where \(\{\alpha_n\} \) is a sequence in \([0, 1]\); see originally Halpern [8]. The following theorem was proved by Wittmann.

Theorem 3.2 ([38]) Let \(H \) be a Hilbert space. Let \(C \) be a nonempty closed convex subset of \(H \). Let \(T \) be a nonexpansive mapping of \(C \) into itself such that \(F(T) \neq \emptyset \). Let \(\{\beta_n\} \) be a sequence of real numbers such that \(0 \leq \beta_n \leq 1 \), \(\lim_{n \to \infty} \beta_n = 0 \), \(\sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty \) and \(\sum_{n=1}^{\infty} \beta_n = \infty \). Suppose that \(\{x_n\} \) is given by \(x_1 = x \in C \) and

\[
x_{n+1} = \beta_n x + (1 - \beta_n)Tx_n, \quad n = 1, 2, \ldots,
\]

Then, \(\{x_n\} \) converges strongly to \(Px \in F(T) \), where \(P \) is the metric projection from \(C \) onto \(F(T) \).

Theorem 3.3 ([25]) Let \(E \) be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm. Let \(C \) be a nonempty closed convex subset of \(E \). Let \(T \) be a nonexpansive mapping of \(C \) into itself such that \(F(T) \neq \emptyset \). Let \(\{\beta_n\} \) be a sequence of real numbers such that \(0 \leq \beta_n \leq 1 \), \(\lim_{n \to \infty} \beta_n = 0 \), \(\sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty \) and \(\sum_{n=1}^{\infty} \beta_n = \infty \). Suppose that \(\{x_n\} \) is given by \(x_1 = x \in C \) and

\[
x_{n+1} = \beta_n x + (1 - \beta_n)Tx_n, \quad n = 1, 2, \ldots,
\]

Then, \(\{x_n\} \) converges strongly to \(Px \in F(T) \), where \(P \) is a unique sunny nonexpansive retraction from \(C \) onto \(F(T) \).
Kamimura and Takahashi [10] obtained the following theorem, which is connected with the proximal point algorithm.

Theorem 4.1 ([10]) Let E be a uniformly convex Banach space whose norm is Fréchet differentiable or which satisfies Opial's condition, let $A \subset E \times E$ be an accretive operator, and let C be a nonempty closed convex subset of E such that $D(A) \subset C \subset \bigcap_{r \in (0, 1)} R(I + rA)$. Assume that $\{\alpha_n\} \subset [0, 1]$ and $\{r_n\} \subset (0, \infty)$ satisfy $\limsup_{n \to \infty} \alpha_n < 1$ and $\liminf_{n \to \infty} r_n > 0$. Let $x_1 = x \in C$ and let $\{x_n\}$ be a sequence generated by

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) J_{r_n} x_n, \quad n = 1, 2, \ldots.$$ \hspace{1cm} (1)

If $A^{-1}0 \neq \emptyset$, then $\{x_n\}$ converges weakly to an element of $A^{-1}0$.

The following is the proximal point algorithm by the Mann iteration procedure.

Theorem 4.2 ([11]) Let H be a Hilbert space and let $f : H \to (-\infty, \infty]$ be a lower semicontinuous proper convex function. Let $x \in H$ and let $\{x_n\}$ be a sequence defined by $x_1 = x$ and

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) J_{r_n} x_n, \quad n = 1, 2, \ldots,$$

where $\{\alpha_n\} \subset [0, 1]$ and $\{r_n\} \subset (0, \infty)$ satisfy $\alpha_n \in [0, k]$ for some k with $0 < k < 1$ and $\lim_{n \to \infty} r_n = \infty$. If $(\partial f)^{-1}0 \neq \emptyset$, then $\{x_n\}$ converges weakly to $v \in H$, which is a minimizer of f. Further

$$f(x_{n+1}) - f(x) \leq \alpha_n (f(x_n) - f(x)) + \frac{1 - \alpha_n}{r_n} \|J_{r_n} x_n - v\| \|J_{r_n} x_n - x_n\|.$$

Kamimura and Takahashi [11] also obtained the following strong convergence theorem.

Theorem 4.3 ([11]) Let H be a Hilbert space and let $A \subset H \times H$ be an m-accretive operator. Let $x \in H$ and let $\{x_n\}$ be a sequence defined by $x_1 = x$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{r_n} x_n, \quad n = 1, 2, \ldots,$$

where $\{\alpha_n\} \subset [0, 1]$ and $\{r_n\} \subset (0, \infty)$ satisfy $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\lim_{n \to \infty} r_n = \infty$. If $A^{-1}0 \neq \emptyset$, then $\{x_n\}$ converges strongly to $Px \in A^{-1}0$, where P is the metric projection of H onto $A^{-1}0$.

Compare Theorem 4.3 with that in Rockafellar [23]. Using Theorem 4.3, we obtain the following theorem.

Theorem 4.4 ([11]) Let H be a Hilbert space and let $f : H \to (-\infty, \infty]$ be a lower semicontinuous proper convex function. Let $x \in H$ and let $\{x_n\}$ be a sequence defined by $x_1 = x$ and

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{r_n} x_n, \quad n = 1, 2, \ldots,$$

$$J_{r_n} x_n = \arg \min \left\{ f(z) + \frac{1}{2r_n} \|z - x_n\|^2 : z \in H \right\},$$

where \(\{\alpha_n\} \subset [0, 1] \) and \(\{r_n\} \subset (0, \infty) \) satisfy \(\lim_{n \to \infty} \alpha_n = 0 \), \(\sum_{n=1}^{\infty} \alpha_n = \infty \) and \(\lim_{n \to \infty} r_n = \infty \). If \((\partial f)^{-1} \neq \phi \), then \(\{x_n\} \) converges strongly to \(v \in H \), which is the minimizer of \(f \) nearest to \(x \). Further

\[
f(x_{n+1}) - f(v) \leq \alpha_n (f(x) - f(v)) + \frac{1 - \alpha_n}{r_n} \|J_{r_n} x_n - v\| \|J_{r_n} x_n - x_n\|.
\]

We do not know whether Theorems 4.1, 4.2, 4.3 and 4.4 would hold in the case when \(A \subset E \times E^* \) is a maximal monotone operator. We also know that if \(E \) and \(E^* \) are uniformly convex Banach spaces and \(A \subset E \times E^* \) is a maximal monotone operator, then for \(x \in E \) and \(r > 0 \), there is a unique element \(x_r \in D(A) \) such that \(J(x_r - x) + rA_x r \in 0 \). So, we can define the resolvent \(J_r \) of \(A \) by \(J_r x = x_r \); see [32] for more details.

REFERENCES

Chaotic semigroups generated by certain differential operators of order 1

Mai Matsui and Fukiko Takeo
Ochanomizu University

1 Introduction

The equation

\[
\frac{\partial u}{\partial t} = c(x) \frac{\partial u}{\partial x} + g(x, u)
\]

has been used to model the dynamics of a population of cells undergoing simultaneous proliferation and maturation (\([4], [5]\)). The solutions of the partial differential equations have some connection with Wiener process. In fact, A. Lasota and M. C. Mackey showed how to construct an exact continuous time semidynamical system on a measure space coming from a one dimensional Wiener process, which corresponds to the above partial differential equation with \(c(x) = -x\) and \(g(x, u) = \frac{1}{2} u\) (\([3]\)).

We consider the case of \(c(x) = \gamma x\) (\(\gamma \in \mathbb{R}\)) and \(g(x, u) = au\) (\(a \in \mathbb{C}\)). At first we shall consider the space \(X = \{ f \in C([0,1]) \mid f(0) = 0 \}\) and the following initial value problem of a partial differential equation:

\[
\begin{cases}
\frac{\partial u}{\partial t} = \gamma x \frac{\partial u}{\partial x} + au \\
u(0, x) = f(x)
\end{cases}
\] (1)

where \(\gamma > 0\), \(a \in \mathbb{C}\) and \(f \in X\). For \(f \in C^1([0,1]) \cap X\) satisfying \(\gamma x f'(x) + af(x) \in X\), \(u(t, x) = e^{\gamma t} f(e^{\gamma t} x)\) is the solution of (1). By using the representation formula \(e^{\gamma t} f(e^{\gamma t} x)\) of the solution of (1), we define the bounded linear operator \(\{ T_t \}_{t \geq 0}\) on \(X\) by \(T_t f(x) = e^{\gamma t} f(e^{\gamma t} x)\) for \(f \in X\). Then \(\{ T_t \}_{t \geq 0}\) is a strongly continuous semigroup on \(X\) (Theorem 1). Here we call \(\{ T_t \}_{t \geq 0}\) the solution semigroup to the partial differential equation.

A strongly continuous semigroup \(\{ T_t \}_{t \geq 0}\) is called hypercyclic if there exists an \(x \in X\) such that the set \(\{ T_t x \mid t \geq 0 \}\) is dense in \(X\). The semigroup \(\{ T_t \}_{t \geq 0}\) is called chaotic if \(\{ T_t \}_{t \geq 0}\) is hypercyclic and the set of periodic points \(X_p = \{ x \in X \mid \exists t > 0 \text{ s.t. } T_t x = x \}\) is dense in \(X\). In \([1]\), W. Desch, W. Schappacher and G. F. Webb gave a sufficient condition for a strongly continuous semigroup \(\{ T_t \}_{t \geq 0}\) to be chaotic in the following Theorem A, by using the eigenvectors of the infinitesimal generator \(A\) of \(\{ T_t \}_{t \geq 0}\).

Theorem A ([1]).

Let \(X\) be a separable Banach space and let \(A\) be the infinitesimal generator of a strongly continuous semigroup \(\{ T_t \}_{t \geq 0}\) on \(X\). Let \(U\) be an open subset of the point spectrum of \(A\), which intersects the imaginary axis, and for each \(\lambda \in U\) let \(x_\lambda\) be a nonzero eigenvector, i.e. \(Ax_\lambda = \lambda x_\lambda\). For each \(\phi \in X^*\) we define a function \(F_\phi : U \to \mathbb{C}\) by
\(F_\phi(\lambda) = \langle \phi, x_\lambda \rangle \): Assume that for each \(\phi \in X^* \) the function \(F_\phi \) is analytic and that \(F_\phi \) does not vanish identically on \(U \) unless \(\phi = 0 \). Then \(\{T_t\}_{t \geq 0} \) is chaotic.

By applying their result to the solution semigroup, we give a sufficient condition for the solution semigroup to be chaotic on \(X \) (Theorem 1) and on \(L^2([0, 1], \mathbb{C}) \) (Theorem 2). We also consider the case with \(c(x) = 1 \) and \(g(u, x) = h(x)u \), and give a sufficient condition for the solution semigroup to be chaotic (Theorem 3).

2 chaotic semigroups

We shall consider the solution semigroup to the partial differential equation (1) and give sufficient conditions for the solution semigroup to be chaotic.

Theorem 1.
Let \(X_1 \) be the space \(\{ f \in C([0, 1]) \mid f(0) = 0 \} \) with sup norm. We consider the following initial value problem of a partial differential equation:

\[
\begin{align*}
\frac{\partial u}{\partial t} &= \gamma x \frac{\partial u}{\partial x} + au \\
u(0, x) &= f(x)
\end{align*}
\]

where \(\gamma < 0, a \in \mathbb{C} \) and \(f \in X_1 \). Then the solution semigroup \(\{T_t\}_{t \geq 0} \) \((T_tf(x) = e^{\gamma t} f(e^{\gamma t} x)) \) to the partial differential equation is a strongly continuous semigroup on \(X_1 \). Moreover if the real part \(\Re(a) \) of \(a \) is positive, then \(\{T_t\}_{t \geq 0} \) is chaotic.

Proof. For \(f \in X_1 \), we have

\[
\|T_t f - f\| = \sup_{0 \leq t \leq 1} |e^{\gamma t} f(e^{\gamma t} x) - f(x)|
\]

\[
\leq |e^{\gamma t} - 1| \sup_{0 \leq x \leq 1} |f(e^{\gamma t} x)| + \sup_{0 \leq x \leq 1} |f(e^{\gamma t} x) - f(x)|
\]

\[
= |e^{\gamma t} - 1| \|f\| + \sup_{0 \leq x \leq 1} |f(e^{\gamma t} x) - f(x)|,
\]

which implies the strong continuity of \(\{T_t\} \).

We shall show that \(\{T_t\}_{t \geq 0} \) is chaotic if \(\Re(a) > 0 \). To show that all assumptions of Theorem A hold, we verify the following:
(i) \(X_1 \) is a separable Banach space.
(ii) The existence of an open \(U \) of the point spectrum of the infinitesimal generator \(A \) which intersects the imaginary axis.
(iii) For \(\lambda \in U \), put \(f_\lambda(x) = x^{\frac{\lambda a}{\gamma}} \). For each \(\phi \in X_1^* \) we define a function \(F_\phi: U \to \mathbb{C} \) by \(F_\phi(\lambda) = \langle \phi, f_\lambda \rangle \). Then for each \(\phi \in X_1^* \) the function \(F_\phi \) is analytic on \(U \).
(iv) If \(F_\phi = 0 \) on \(U \), then \(\phi = 0 \).
(i) It is clear that X_1 is a separable Banach space by Weierstrass approximation theorem.

(ii) Let $A: D(A) \subseteq X_1 \to X_1$ be the infinitesimal generator of the strongly continuous semigroup $\{T_t\}_{t \geq 0}$ on X_1 as follows:

$$D(A) = \left\{ f \in X_1 \mid \lim_{t \to 0} \frac{T_t f - f}{t} \text{ exists.} \right\}$$

and

$$A f = \lim_{t \to 0} \frac{T_t f - f}{t} \quad \text{for } f \in D(A).$$

Put

$$D = \{ f \in X_1 \mid \gamma x f' + af \in X_1 \}.$$

For $f \in D(A)$, put $g(t) = T_t f$. Then $g'(0) = af + \gamma x f'$ belongs to X_1, which implies $D(A) \subseteq D$. For $f \in D$, $af + \gamma x f' \in X_1$. So for any $\varepsilon > 0$, there exists $1 > \delta_1 > 0$ such that $|af(x) + \gamma x f'(x)| < \varepsilon$ for any $x \in [0, \delta_1]$, $|xf'(x) - x'f'(x')| < \varepsilon$ and $|f(x) - f(x')| < \varepsilon$ for any $x, x' \in [0, 1]$ with $|x - x'| < \delta_1$. Since $\lim_{t \to 0} \frac{e^{at} - 1 - a}{t} = 0$ holds, there exists $\delta_2 > 0$ such that

$$\left| \frac{e^{at} - 1 - a}{t} \right| < \frac{\varepsilon}{\|f\|}$$

holds for $0 < t < \delta_2$. Then for $0 < t < \min\{\frac{1}{\gamma} \log(1 - \delta_1), \delta_2\}$,

$$\left| \frac{T_t f(x) - f(x)}{t} - (\gamma x f'(x) + af(x)) \right|$$

$$\leq \left| \frac{e^{at} - 1}{t} f(e^{\gamma t}x) - af(x) \right| + \frac{1}{t} \int_0^t |\gamma e^{\gamma s}x f'(e^{\gamma s}x) - \gamma x f'(x)| ds$$

$$\leq (|a| + 1 + \gamma) \varepsilon,$$

which implies $D \subseteq D(A)$. Hence $D(A) = \{ f \in X_1 \mid \gamma x f' + af \in X_1 \}$. Put

$$U = \{ \lambda \in \mathbb{C} \mid \Re(\lambda) < \Re(a) \}.$$

For $\lambda \in U$, $f_\lambda(x) = x^{\frac{\lambda - a}{\gamma}}$ belongs to the domain $D(A)$ of the infinitesimal generator A of $\{T_t\}_{t \geq 0}$ and is an eigenvector of A. So U is an open subset of the point spectrum of A.

(iii) Put $v_h(x) = \frac{f_{\lambda+h}(x)}{h} - \frac{f_\lambda(x)}{h}$ and $g_\lambda(x) = \frac{\log x}{\gamma} x^{\frac{\lambda - a}{\gamma}}$ for $x \in (0, 1]$ and $g_\lambda(0) = 0$. Since $\lim_{x \to 0} g_\lambda(x) = 0$, we have $g_\lambda \in X_1$. For $\lambda \in U$, we have

$$v_h(x) - g_\lambda(x) = \int_0^1 \frac{\log x}{\gamma} \left(x^{\frac{\lambda - a + th}{\gamma}} - x^{\frac{\lambda - a}{\gamma}} \right) dt$$

$$= g_\lambda(x) \int_0^1 (x^{\frac{th}{\gamma}} - 1) dt.$$
Let $c = \frac{\Re(a) - \Re(\lambda)}{2} > 0$. For any $\varepsilon > 0$, there exists $\delta_1 > 0$ such that $|\log x \frac{\lambda - a + \varepsilon}{\gamma} | < \varepsilon$ for $0 < x < \delta_1$, and there exists $\delta_2 > 0$ such that $|x^{\frac{1}{h}} - 1| < \frac{\varepsilon}{\| \phi \|}$ for $\delta_1 < x \leq 1$ and $|h| < \delta_2$.

For $x \in [0, \delta_1]$ and $|h| < \varepsilon$, we have

$$|v_h(x) - g_\lambda(x)| \leq \int_0^1 \left| \frac{\log x}{\gamma} - \frac{\lambda - a + \varepsilon}{\gamma} \right| dt + \int_0^1 \left| \frac{\log x}{\gamma} - \frac{\lambda - a}{\gamma} \right| dt < 2\varepsilon.$$

For $x \in [\delta_1, 1]$ and for $|h| < \delta_2$, we have

$$|v_h(x) - g_\lambda(x)| \leq |g_\lambda(x)| \int_0^1 |x^{\frac{1}{h}} - 1| dt < \varepsilon.$$

Hence we have $|v_h(x) - g_\lambda(x)| < 2\varepsilon$ for $|h| < \min \{\varepsilon, \delta_2\}$ and for $x \in [0, 1]$. So $|v_h(x) - g_\lambda(x)|$ goes to zero uniformly on $[0,1]$ as $h \to 0$ and

$$\frac{dF_\phi}{d\lambda} = \lim_{h \to 0} \langle \phi, \frac{f_{\lambda+h} - f_\lambda}{h} \rangle = \langle \phi, g_\lambda \rangle.$$

Therefore $F_\phi(\lambda)$ is analytic with respect to $\lambda \in U$.

(iv) We shall show that if $F_\phi(\lambda) = 0$ for all $\lambda \in U$ then $\phi = 0$. We recall the following: $U = \{\lambda \in \mathbb{C} \mid \Re(\lambda) < \Re(a)\}$ and $f_\lambda(x) = x^{\frac{\lambda - a}{\gamma}}$ for $\lambda \in U$. For $n \in \{1, 2, 3, \ldots\}$, put $\lambda_n = \gamma n + a$. The assumption $\gamma < 0$ implies $\lambda_n \in U$ for $n = 1, 2, 3, \ldots$.

Then we have $f_{\lambda_n}(x) = x^n$ for $n = 1, 2, 3, \ldots$. From the assumption, $F_\phi(\lambda_n) = \langle \phi, f_{\lambda_n} \rangle = \langle \phi, x^n \rangle = 0$ holds for $n = 1, 2, 3, \ldots$. By the Stone-Weierstrass theorem, we have $\langle \phi, f \rangle = 0$ for any $f \in X_1$, i.e. $\phi = 0$.

By (i) to (iv), all assumptions of Theorem A hold. So $\{T_t\}_{t \geq 0}$ is chaotic by Theorem A.

If we consider the mapping $\phi : X_1 \to Y_1$ defined by $(\phi f)(x) = f(\frac{x}{a})$, the space $Y_1 = \{f \in C([1, \infty)) \mid \lim_{x \to \infty} f(x) = 0\}$ has correspondence with the space $X_1 = \{f \in C([0,1]) \mid f(0) = 0\}$. So we shall consider the same equation in Y_1 as that considered in X_1. Let $\{T_t\}_{t \geq 0}$ be a strongly continuous semigroup on X_1 and put $X_1 \xrightarrow{T_t} X_1$.

$S_t = \phi \circ T_t \circ \phi^{-1}$. Then the following diagram commutes: ϕ.

So $\{S_t\}_{t \geq 0}$ is also a strongly continuous semigroup on Y_1 and the equation (2) in Theorem 1 becomes

$$\frac{\partial u}{\partial t} = -\gamma y \frac{\partial u}{\partial y} + au.$$

So we have the following.
Corollary.
Let Y_1 be the space $\{ f \in C([1, \infty)) \mid \lim_{x \to \infty} f(x) = 0 \}$ with sup norm. We consider the following initial value problem of a partial differential equation:

$$\begin{cases}
\frac{\partial u}{\partial t} = \gamma x \frac{\partial u}{\partial x} + au \\
u(0, x) = f(x)
\end{cases}$$

where $\gamma > 0$, $a \in \mathbb{C}$ and $f \in Y_1$. Then the solution semigroup $\{S_t\}_{t \geq 0}$ ($S_tf(x) = e^{at}f(e^{\gamma t}x)$) to the partial differential equation is a strongly continuous semigroup on Y_1. Moreover, if $\Re(a) > 0$ then $\{S_t\}_{t \geq 0}$ is chaotic.

Similarly, we have the following.

Theorem 2.
Let X_2 be the space $L^2(\Omega, \mathbb{C})$ with $\Omega = [0, 1]$. We consider the following initial value problem of a partial differential equation:

$$\begin{cases}
\frac{\partial u}{\partial t} = \gamma x \frac{\partial u}{\partial x} + au \\
u(0, x) = f(x)
\end{cases}$$

where $\gamma < 0$, $a \in \mathbb{C}$ and $f \in X_2$. Then the solution semigroup $\{T_t\}_{t \geq 0}$ ($T_tf(x) = e^{at}f(e^{\gamma t}x)$) to the partial differential equation is a strongly continuous semigroup on X_2. Moreover, if $\Re(a) > \frac{\gamma}{2}$ then $\{T_t\}_{t \geq 0}$ is chaotic.

Corollary.
Let Y_2 be the space $L^2(\Omega, \mathbb{C})$ with $\Omega = [1, \infty)$. We consider the following initial value problem of a partial differential equation:

$$\begin{cases}
\frac{\partial u}{\partial t} = \gamma x \frac{\partial u}{\partial x} + au \\
u(0, x) = f(x)
\end{cases}$$

where $\gamma > 0$, $a \in \mathbb{C}$ and $f \in Y_2$. Then the solution semigroup $\{T_t\}_{t \geq 0}$ ($T_tf(x) = e^{at}f(e^{\gamma t}x)$) to the partial differential equation is a strongly continuous semigroup on Y_2. Moreover, if $\Re(a) > \frac{\gamma}{2}$ then $\{T_t\}_{t \geq 0}$ is chaotic.

We also consider the case $c(x) = 1$ and $g(x, u) = h(x)u$. We deal with the partial differential equation

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + h(x)u$$

with the initial condition $u(0, x) = f(x)$ with some $f \in C_0(I)$, where $I = [0, \infty)$ and $C_0(I)$ is the space of all complex-valued continuous functions on I satisfying
\[\lim_{x \to \infty} f(x) = 0. \] If \(h \) is a bounded continuous function on \(I \) satisfying \(\int_0^\infty h(s)ds = \infty \), we show that the solution semigroup \(\{T_t\}_{t \geq 0} \) to the partial differential equation (3) is strongly continuous and chaotic on \(C_0(I) \) (Theorem 3) by using the result in [6].

Theorem 3.
Let \(\mathring{X} = C_0(I) \) with \(I = [0, \infty) \). We consider the partial differential equation:

\[
\begin{cases}
\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + h(x)u \\
u(0, x) = f(x)
\end{cases}
\]
with some \(f \in \mathring{X} \). Define \(\mathring{T}_t : \mathring{X} \to \mathring{X} \) as \(\mathring{T}_t f(x) = u(t, x) \) for \(f \in \mathring{X} \), by using the solution \(u(t, x) \) of (4).

If \(h \) is a bounded continuous function on \(I \) satisfying \(\int_0^\infty h(s)ds = \infty \), then \(\{\mathring{T}_t\}_{t \geq 0} \) is a chaotic and strongly continuous semigroup on \(\mathring{X} \).

References

The Elliptic Differential Operator with First Order Terms in Lipschitz Domain and Analytic Semigroup

Mariko GIGA

Department of Mathematics
Nippon Medical School

Abstract. In this report, it is shown that the elliptic differential operator with first order terms in Lipschitz Domain generates an analytic semigroup of bounded linear operators in $L^p(\Omega)$. The same result is already obtained in the case that the differential operator is Laplacian. But, in the proof of Laplacian case, it is used that the operator is selfadjoint, and the same argument cannot be applied to the operator with first order terms. So we use entirely different argument.

1 問題の設定

$\Omega \subset \mathbb{R}^m$ を有界な Lipschitz domain とする．
積分型微分作用素 A として次のものを考える．

$$
\left\{ \begin{align*}
Au &= \sum_{i,j=1}^{m} \frac{1}{a(x)} \frac{\partial}{\partial x_i} [\sqrt{a(x)}a_{ij}(x) \frac{\partial u}{\partial x_j}] + \sum_{j=1}^{m} b_j(x) \frac{\partial u}{\partial x_j} \\
\text{Dirichlet 境界条件} & \quad u|_{\partial \Omega} = 0.
\end{align*} \right.
$$

ここで

- $a_{ij} \in C^2$ は有界，$a_{ij} = a_{ji}$ で，次の積分性の条件を満たす．
- $\sum_{i,j} a_{ij}(x)\xi_i \xi_j \geq \delta_0 |\xi|^2$ (δ_0 は x, ξ に依らない正の数)
- $b_j \in C^1$ は有界．

volume element として $d\alpha = \sqrt{a(x)}dx_1 \ldots dx_m$ を考える．

この微分作用素を

$$
\tilde{D} = \{ u \mid u \in C^2(\Omega) \cap L^p(\Omega) \cap H_0^1(\Omega), Au \in L^p(\Omega) \}
$$

に制限して $\tilde{A} = A|_{\tilde{D}}$ とおくと，作用素 \tilde{A} の $L^p(\Omega)$ (1 $\leq p < \infty$) における smallest closed extension (これらも同じく A と書く) が $L^p(\Omega)$ における bounded linear operator T_t (t ≥ 0) の analytic semigroup を生成することを示したい．
2 Laplacianの場合

Lipschitz domainにおいて、作用素Aが1階微分の項をもたない場合は、この結論はすでに得られている。

そのひとつは[6]である。ここでは$L^p(\Omega)(1 \leq p < \infty)$におけるsemigroupがGaussian estimateを持つことを仮定すると、それが解析的に拡張できる、という方法で証明されている。そこでは、Aがselfadjointであることが使われている。

もうひとつはM.Gigaによるもので

\[
\begin{align*}
(1) & \ AはC_0-semigroupのgenerator \\
(2) & \ |Ae^{tA}| = O(\frac{1}{t}) \ (t \downarrow 0)
\end{align*}
\]

を示すことにより、e^{tA}がanalytic semigroupであることを証明している。そこでも、Aがselfadjointであることが使われている。

1階微分の項があるとAはselfadjointでないから、このままでは使えない。
M.Gigaの(1)の証明の中では

G_λを先ず$C_0(\Omega)$におけるGreen operator$(\lambda - A)^{-1}$として、これが

\[
(3) \quad \int_\Omega G_\lambda(x,y)dy \leq \frac{1}{\lambda} \quad \text{for a.a.} x
\]

なる積分作用素になることを示し、これにより$L^p(\Omega)$におけるboundedなGreen operatorを定義した。この評価を示すために

\[
G_\lambda(x,y) = G_\lambda(y,x) \quad \text{for a.a.}(x,y) \in \Omega \times \Omega
\]

を用いたが、これは微分作用素がselfadjointでないと見えない。

3 1階微分の項を含む積円型偏微分作用素の場合

$Au = \text{div}(\nabla u) + (b \cdot \nabla u)$を考えると、$u, v \in C_0^0(\Omega)$に対して、

\[
(Au, v) = \int_\Omega \{\text{div}(\nabla u) + (b \cdot \nabla u)\}vdx
= \int_\Omega u \text{div}(\nabla v)dx - \int_\Omega \sum b_i(x)\frac{\partial v}{\partial x_i}udx - \int_\Omega \sum \frac{\partial b_i}{\partial x_i}uvdx
= (u, A^*v)
\]

となるから、Aのformal adjointA^*は

\[
A^*v = \text{div}(\nabla v) - (b \cdot \nabla v) - (\text{div} b)v
= \text{div}(\nabla v - bv).
\]
A, A*のGreen operator をそれぞれG_λ, G_λ*とする。

Proposition 1 u ∈ C_0^1(Ω), v ∈ C_0^1(Ω), div b = 0 とすると

\((b \cdot \nabla u), v\) = -(u, (b \cdot \nabla v)).

Proposition 2 f ∈ C_0^1(Ω), g ∈ C_0^1(Ω), div b = 0 とすると, density G_λ(x, y), G_λ*(x, y) の存在が

\(G_λ(x, y) = G_λ*(y, x)\).

今, div b = 0 を仮定する. すなわち

\[
\begin{align*}
Au & = \text{div}(\nabla u) + (b \cdot \nabla u) \\
A^*u & = \text{div}(\nabla u) - (b \cdot \nabla u)
\end{align*}
\]

とする. \((\lambda - A)u = f\) とおくと,

\[
\lambda \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 - ((b \cdot \nabla u), u)_{L^2} = (f, u)_{L^2} \leq \|f\|_{L^2}\|u\|_{L^2}.
\]

Proposition 1 を使うことにより

\[
\lambda \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 \leq \|f\|_{L^2}\|u\|_{L^2}
\]

\[
\|u\|_{L^2} \leq \frac{1}{\lambda} \|f\|_{L^2}.
\]

よって \(\|G_λ\| \leq \frac{1}{\lambda}\). 同様に \(\|G_λ^*\| \leq \frac{1}{\lambda}\).

これと Proposition 2 により, (3) の形のGreen operator の評価が出せる. この評価を使って \(L^p(\Omega)\)
における有界なGreen operator を定義することができる. そうすると, その後はselfadjoint な作用素のとき同様の議論ができる. よってdiv b = 0 の場合に帰着させることを考える.

Proposition 3 A^*ω = 0, ω > 0 in Ωを満たす関数ωが存在する．

（証明） Ω ⊂ R^mを有界な Lipschitz domain とする．領域の列{Ω_n} で, \(\partial \Omega_n\) は十分滑らか, \(\overline{\Omega}_n\): compact であるもので\(\Omega_n \uparrow \Omega\)なるものが存在する．各{Ω_n} において, \(A^*u_n = 0, u_n|_{\partial \Omega_n} = 1\)
なる関数 \(u_n > 0\) が存在する．

\(
x_0 \in \Omega\)を固定する. \(ω_n(x) = \frac{u_n(x)}{u_n(x_0)}\) とおくと,

\(A^*ω_n(x) = 0, ω_n(x_0) = 1\).

\(n\) を一応固定すると, Harnackのlemmaより, ある定数\(c_{\Omega_n}\) が存在して, 任意の\(k \geq n\)に対し, 任意の\(x \in \overline{\Omega}_n\)に対して

\[
\frac{1}{c_{\Omega_n}}ω_k(x_0) \leq ω_k(x) \leq c_{\Omega_n}ω_k(x_0).
\]
すなわち \(\{ \omega_k(x) \} \) はオメガで一致有界となる。
だから、各 \(\Omega_n \) において、\(\{ \omega_k \}_{k=m+1, m+2, \ldots} \) のある部分列は一致収束する。
対角線論法により、\(\{ \omega_k \} \) のある部分列 \(\{ \omega_m \} \) はどの \(\Omega_n \) の中でも一致収束する。
よって、\(\lim_{n \to \infty} \omega_n(x) = \omega(x) \) とおくと

\[
A^* \omega = 0, \omega > 0 \text{ in } \Omega.
\]

Proposition 3 で作った \(\omega \) を考える。

\[
b_\omega = \frac{1}{\omega}(\omega b - \nabla \omega)
\]
とおく。volume element を \(d_\omega x = \sqrt{a(x) \omega(x)} dx_1 \cdots dx_m \) とすると、divergence の形は \(\text{div}_\omega \Phi = \frac{1}{\omega} \text{div}(\omega \Phi) \) となる。だから

\[
\text{div}_\omega b_\omega = \frac{1}{\omega} \text{div}\left\{ \omega \frac{1}{\omega}(\omega b - \nabla \omega) \right\}
= \frac{1}{\omega} \text{div}(\omega b - \nabla \omega)
= -\frac{1}{\omega} A^* \omega = 0.
\]

\(A_\omega \) を次のようにおく。

\[
A_\omega u = \text{div}_\omega (\nabla u) + (b_\omega \cdot \nabla u).
\]

Proposition 4 \(A_\omega = A \).

\[
\begin{align*}
A_\omega u &= \frac{1}{\omega} \text{div}(\omega \nabla u) + \left(\frac{1}{\omega}(\omega b - \nabla \omega) \cdot \nabla u \right) \\
&= \frac{1}{\omega}(\nabla \omega \cdot \nabla u) + \frac{1}{\omega} \text{div}(\nabla u) + (b_\omega \cdot \nabla u) - \frac{1}{\omega}(\nabla \omega \cdot \nabla u) \\
&= \text{div}(\nabla u) + (b_\omega \cdot \nabla u) = Au.
\end{align*}
\]

これが最初に欲しかった結論を得た。ところで \(A \) と \(A_\omega \) は operator としては同じものであるが、そこで使う measure (volume element) は、

\[
A \text{ のときは } \sqrt{a(x)} dx_1 \cdots dx_m, \quad A_\omega \text{ のときは } \omega(x) \sqrt{a(x)} dx_1 \cdots dx_m
\]
である。だから semigroup においても

\[
\frac{e^{tA} u - u}{t} \to Au \quad (\text{in } L^p(\Omega, d_\omega x)), \quad \frac{e^{tA_\omega} u - u}{t} \to A_\omega u \quad (\text{in } L^p(\Omega, d_\omega x))
\]
は異なる measure を使っていることになる。
\(A \) のときは、横円性の条件より \(\sqrt{a(x)} \) >ある定数 > 0 が言えるが、\(A_\omega \) のときは、この作り方では \(\omega(x) > 0 \) しか言えないので、だから、元の measure との同値性は必ずしも言えないことが問題点である。
References

On the Hyers-Ulam stability of a differentiable map

Takeshi Miura (Niigata University)

Abstract. We consider a differentiable map f from an open interval I to $C(X)$, the Banach space of all complex-valued bounded continuous functions on a topological space X. Let ε be a non-negative real number, λ a complex number so that $\text{Re}\lambda \neq 0$. Then we show that f can be approximated by the solution to $C(X)$-valued differential equation $x'(t) = \lambda x(t)$, if $||f'(t) - \lambda f(t)||_\infty \leq \varepsilon$ holds for every $t \in I$.

\mathbb{R} で実数全体の集合を表わすことにする. また I は \mathbb{R} の開区間とする. すなわち $I = (a, b), -\infty \leq a < b \leq \infty$ である. 特に断らない限り λ は 0 でない複素数, ε は非負の実数とする. Alsina-Ger[1] は微分可能な関数 $f: I \to \mathbb{R}$ で $|f'(t) - f(t)| \leq \varepsilon, (t \in I)$ をみたすものを完全に決定し, このときさらに定数 c が存在して $|f(t) - ce^t| \leq 3\varepsilon, (t \in I)$ が成り立つことを示した. この最後の不等式は, 関数 f が微分方程式 $x'(t) = x(t)$ の解に近い振る舞いをとると, 実際に微分方程式の解で近似されることを主張している. このような意味での安定性を Hyers-Ulam stability と呼んでいる. 全く同様にして 0 でない実数 r に対して $|f'(t) - rf(t)| \leq \varepsilon, (t \in I)$ ならば $|f(t) - ce^t| \leq 3\varepsilon/|r|, (t \in I)$ なる定数 c が存在することも分かる.

$C(X)$ を位相空間 X 上の複素数値有界連続関数全体からなる Banach 空間とする. 我々の目的は写像 $f: I \to C(X)$ についても Hyers-Ulam stability が成り立つことを示すことである. そこで $C(X)$ に値をとる写像の微分可能性を次のように定義する.

定義 1 写像 $f: I \to C(X)$ が微分可能であるとは, 任意の $t \in I$ に対して $f'(t) \in C(X)$ が存在して

$$\lim_{h \to 0} \left\| \frac{f(t + h) - f(t)}{h} - f'(t) \right\|_\infty = 0$$
なることである．ここに $\| \cdot \|_\infty$ は X 上の最大値ノルムである．

次の命題は簡単な計算により直ちに得られる．

命題 1 $f : I \to C(X)$ を微分可能とする．このとき次は同値である．

1. $\| f'(t) - \lambda f(t) \|_\infty \leq \varepsilon, \quad (t \in I)$.

2. ある $g : I \to C(X)$ が存在して $f(t) = g(t)e^{\lambda t}$ と $\| g'(t) \|_\infty \leq \varepsilon e^{-(\Re \lambda) t}, \quad (t \in I)$ となる．

特に $f'(t) = \lambda f(t)$ の解は $f(t) = ge^{\lambda t}, \quad g \in C(X)$ である．

$C_\infty(X)$ を位相空間 X 上の実数値有界連続関数全体からなる Banach 空間とする．$r \neq 0$ に対し写像 $f : I \to C_\infty(X)$ が $\| f'(t) - rf(t) \|_\infty \leq \varepsilon, \quad (t \in I)$ をみたすとき，[1] と同様に Hyers-Ulam stability が成り立つことが知られている ([2])．つまり上の不等式をみたす写像 f は微分方程式のある解 $ge^{\lambda t}$ により近似される．

我々の目的は $f : I \to C(X)$ の Hyers-Ulam stability を示すことであるが，まず X が一点集合である場合について考える．このとき次が得られる．

定理 1 $\Re \lambda \neq 0, f : I \to \mathbb{C}$ は微分可能で

$$| f'(t) - \lambda f(t) | \leq \varepsilon, \quad (t \in I)$$

とする．このとき

$$| f(t) - \theta e^{\lambda t} | \leq \frac{\sqrt{2 \varepsilon}}{| \Re \lambda |}, \quad (t \in I)$$

なる $\theta \in \mathbb{C}$ が存在する．
証明 Re \lambda > 0 のときを考える。まず命題 1 から |f'(t) - \lambda f(t)| \leq \varepsilon の解は f(t) = g(t)e^{\lambda t}
の形をしており、|g'(t)| \leq \varepsilon e^{-(\Re \lambda) t} をみたす。関数 g の実部、虚部をそれぞれ u_1, u_2 とすると |u_j(t)| \leq \varepsilon e^{-(\Re \lambda) t}, (j = 1, 2) である。このとき
\[\tilde{u}_j(t) = u_j(t) - \frac{\varepsilon}{\Re \lambda} e^{-(\Re \lambda) t}, (t \in I) \]
を考えると、0 \leq \tilde{u}_j(t) \leq 2\varepsilon e^{-(\Re \lambda) t} であることから、t \leq s ならば
\[0 \leq \tilde{u}_j(s) - \tilde{u}_j(t) \leq \frac{2\varepsilon}{\Re \lambda} \left\{ e^{-(\Re \lambda) t} - e^{-(\Re \lambda) s} \right\}, \]
が成り立つ。このことから \sup_{t \in I} \tilde{u}_j(t) < \infty であり、\lim_{t \to \sup I} \tilde{u}_j(t) = \sup_{t \in I} \tilde{u}_j(t) なることも分かる。したがって
\[\left| u_j(t) - \lim_{s \to \sup I} \tilde{u}_j(s) \right| = \lim_{s \to \sup I} \left| \tilde{u}_j(t) + \frac{\varepsilon}{\Re \lambda} e^{-(\Re \lambda) t} - \tilde{u}_j(s) \right| \leq \frac{\varepsilon}{\Re \lambda} e^{-(\Re \lambda) t} \]
である。このとき \theta = \lim_{s \to \sup I} \{\tilde{u}_1(s) + i\tilde{u}_2(s)\} とおけば
\[|f(t) - \theta e^{\lambda t}| = \lim_{s \to \sup I} \left[\{u_1(t) - \tilde{u}_1(s)\}^2 + \{u_2(t) - \tilde{u}_2(s)\}^2 \right]^{1/2} e^{(\Re \lambda) t} \leq \frac{\sqrt{2\varepsilon}}{\Re \lambda} e^{-(\Re \lambda) t} e^{(\Re \lambda) t} = \frac{\sqrt{2\varepsilon}}{\Re \lambda} \]
が任意の t \in I に対して成り立つことが示された。同様にして \Re \lambda < 0 の場合も証明される。

定理 2 Re \lambda \neq 0, f : I \to C(X) は微分可能で
\[\|f'(t) - \lambda f(t)\|_{\infty} \leq \varepsilon, \quad (t \in I) \]
とする。このとき
\[\|f(t) - \theta e^{\lambda t}\|_{\infty} \leq \frac{\sqrt{2\varepsilon}}{|\text{Re} \lambda|}, \quad (t \in I) \]
なる \(\theta \in C(X) \) が存在する。

証明 各 \(x \in X \) に対して \(f_x : I \to \mathbb{C} \) を次のように定める。

\[f_x(t) = f(t)(x), \quad (t \in I). \]

このとき \(f_x \) は微分可能で、さらに各 \(x \in X \) に対して

\[(f_x)'(t) = f'(t)(x), \quad (t \in I) \]
となる。また

\[|(f_x)'(t) - \lambda f_x(t)| \leq \|f'(t) - \lambda f(t)\|_{\infty} \leq \varepsilon, \quad (t \in I). \]

であるから、各 \(x \in X \) に対して定理1の証明で得られる定数を \(\theta(x) \) と書くことにする。このとき \(\theta \) は \(X \) から \(\mathbb{C} \) への関数で

\[\|f(t) - \theta e^{\lambda t}\|_{\infty} \leq \frac{\sqrt{2\varepsilon}}{|\text{Re} \lambda|}, \quad (t \in I) \]
をみたす。さらに \(\theta(x) \) の取り方から、\(\theta \) は \(C(X) \) の関数列の一様極限になっていることも分かる。よって \(\theta \in C(X) \) である。 □

例1 \(\text{Re} \lambda = 0 \) のとき Hyers-Ulam stability は一般には成立しない。実際、\(\varepsilon > 0 \) に対し \(f(t) = ete^{it} \) を考えると \(|f'(t) - if(t)| = \varepsilon \) となることが分かる。ところが \(|f(t) - c e^{it}| \leq k \varepsilon \)
なる \(k \geq 0, \ c \in \mathbb{C} \) は存在しない。

—116—
参考文献

A Remark on Random Clarkson Inequalities

Yasuji Takahashi and Mikio Kato

Abstract. This is an announcement of the author’s recent result concerning an extension of the random Clarkson inequality.

Introduction.

Recently the authors et al. showed the following. If \((p, p')\)-Clarkson inequality holds in a Banach space \(X\), then the random Clarkson inequality (RCI) holds in \(X\) and a "weak converse" holds true in the following sense: If RCI holds, then \((p, 1)\)-Clarkson inequality holds in \(X\) ([2]; see also [10]). \((p, p')\)-Clarkson inequality implies \((p, 1)\)-Clarkson inequality, whereas it is not known whether the former is strictly stronger than the latter.

We shall present an extension of the random Clarkson inequality which is valid in a Banach space satisfying \((p, p')\)-Clarkson inequality, and as a consequence we shall obtain that the converse assertion is true for our extended version of RCI.

1. Random Clarkson inequality for a Banach space

In what follows let \(1 \leq p \leq 2\), \(1 \leq r, s \leq \infty\) and \(1/p + 1/p' = 1/r + 1/r' = 1/s + 1/s' = 1\). In connection with the generalized Clarkson inequality given in Kato [1] A. Tonge [11] presented the following random Clarkson inequality for \(L_p\).

Theorem A (Random Clarkson inequality (RCI) for \(L_p\); Tonge [11]). Let \(1 \leq p \leq 2\), \(1 \leq r, s \leq \infty\) and \(n \in \mathbb{N}\). Let \(A_n = (a_{ij})\) denote a random \(n \times n\)-matrix whose coefficients are independent identically distributed random variables taking the values +1 or −1 with equal probability. Then, \(E\) denoting the mathematical expectation, for all \(f_1, f_2, \ldots, f_n \in L_p\)

\[
E \left(\sum_{i=1}^{n} \left\| \sum_{j=1}^{n} a_{ij} f_j \right\|_p^r \right)^{1/r} \leq K n^{c(r, s; p)} \left(\sum_{j=1}^{n} \left\| f_j \right\|_p^r \right)^{1/r},
\]

where \(c(r, s; p) = \max\{1/r' + 1/s - 1/p', 1/s, 1/r'\}\) and \(K\) is a constant independent on \(n, r\) and \(s\).

For the case \(2 \leq p \leq \infty\) RCI (1) holds with the constant \(c(r, s; p')\).

This inequality was proved in a general Banach space setting by Takahashi and Kato [9]:

−118−
Theorem B (RCI for a Banach space; Takahashi-Kato [9], see also [10]).
Let \(1 \leq p \leq 2, \ 1 \leq r, s \leq \infty\). Assume that the following \((p, p')\)-Clarkson inequality
\[
(\|x + y\|^{p'} + \|x - y\|^{p'})^{1/p'} \leq 2^{1/p'}(\|x\|^{p} + \|y\|^{p})^{1/p}
\]
holds in \(X\). Let \(A = (a_{ij})\) be as in Theorem A. Then, for all \(x_1, x_2, \ldots, x_n \in X\) (resp. \(X'\), the dual space of \(X\))
\[
E\left(\sum_{i=1}^{n} \left(\frac{1}{n} \sum_{j=1}^{n} a_{ij} x_j \right)^{s} \right)^{1/s} \leq n^{c(r,s;p)} \left(\sum_{j=1}^{n} \|x_j\|^r\right)^{1/r},
\]
where \(c(r, s; p)\) is as in Theorem A.

In the above theorem we note that \((p, p')\)-Clarkson inequality holds in \(X\) if and only if it does in \(X'\) ([3]). A "weak" converse of Theorem B holds:

Theorem C (Kato-Persson-Takahashi [2, 10]). Let \(1 \leq p \leq 2\). If RCI (3) holds in \(X\), then the following \((p, 1)\)-Clarkson inequality
\[
\|x + y\| + \|x - y\| \leq 2(\|x\|^{p} + \|y\|^{p})^{1/p}
\]
holds in \(X\). (Note that \((p, p')\)-Clarkson inequality (2) implies \((p, 1)\)-Clarkson inequality (4), whereas it is not known whether the former is strictly stronger than the latter.)

2. A global version of type inequality

A Banach space \(X\) is called of type \(p\), \(1 \leq p \leq 2\), if for any (resp. some) \(1 \leq s < \infty\) there exists \(M\) such that
\[
\left(\int_0^1 \left(\sum_{j=1}^{n} r_j(t) x_j \right)^s dt\right)^{1/s} \leq M \left(\sum_{j=1}^{n} \|x_j\|^p\right)^{1/p}
\]
for any finite system \(x_1, \ldots, x_n \in X\), where \(r_j(t)\) are the Rademacher functions. The smallest constant \(M\) satisfying (5) is denoted by \(T_{p(s)}(X)\).

\(X\) is called of cotype \(q\), \(2 \leq q \leq \infty\), if for any (resp. some) \(1 \leq s < \infty\) there exists \(M\) such that
\[
\left(\sum_{j=1}^{n} \|x_j\|^q\right)^{1/q} \leq M \left(\int_0^1 \left(\sum_{j=1}^{n} r_j(t) x_j \right)^s dt\right)^{1/s}
\]
for any finite system \(x_1, \ldots, x_n \in X\). The smallest constant \(M\) satisfying (6) is denoted by \(C_{q(s)}(X)\).
Remark. If \(1 \leq s_1 \leq s_2 < \infty \), then
\[
1 \leq T_{p(s_1)}(X) \leq T_{p(s_2)}(X),
\]
\[
C_{q(s_1)}(X) \geq C_{q(s_2)}(X) \geq 1.
\]

The next result of Kato-Takahashi [3] states the exact relation between the notions of type, cotype, and \((p, p')\)-Clarkson inequality (see [3] for further results):

Theorem D (Kato-Takahashi [3]). Let \(1 \leq p \leq 2 \) and \(1/p + 1/p' = 1 \). Then the following are equivalent.

(i) \((p, p')\)-Clarkson inequality (2) holds in \(X \).

(ii) \(X \) is of type \(p \) and \(T_{p(p')}(X) = 1 \).

(iii) \(X \) is of cotype \(p' \) and \(C_{p'(p)}(X) = 1 \).

We now consider a global version of the type inequality (5), which we will need to obtain our main result (Theorem 2). Obviously the left term of (5) is rewritten as
\[
\left(\int_0^1 \left\| \sum_{j=1}^n r_j(t)x_j \right\|^s dt \right)^{1/s} = \left(\mathbb{E} \left\| \sum_{j=1}^n \epsilon_j x_j \right\|^s \right)^{1/s},
\]
where \(\epsilon_j \) denote a sequence of "random signs", i.e., independent identically distributed random variables taking the values \(\pm 1 \) with equal probability. We shall use the latter expression in the following.

Theorem 1. Let \(1 \leq p \leq 2 \). Assume that \((p, p')\)-Clarkson inequality (2) holds in a Banach space \(X \), namely, \(X \) is of type \(p \) and \(T_{p(p')}(X) = 1 \). Then for any \(1 \leq r, s \leq \infty \) and for all finite systems \(x_1, x_2, \ldots, x_n \) in \(X \)
\[
\left(\mathbb{E} \left\| \sum_{j=1}^n \epsilon_j x_j \right\|^s \right)^{1/s} \leq n^{\tau(r,s;p)} \left(\sum_{j=1}^n \| x_j \|^r \right)^{1/r},
\]
where \(\tau(r, s; p) = \max\{1/r' - 1/p', 1/r' - 1/s, 0\} = c(r, s; p) - 1/s \) (c(r, s; p) is as in Theorem A).

3. An extension of the random Clarkson inequality

Owing to Theorem 1, Theorem B is extended as follows; and as a consequence the converse holds true for our extended version of RCI.

Theorem 2. Let \(1 \leq p \leq 2 \). Suppose that \((p, p')\)-Clarkson inequality holds in a Banach space \(X \). Let \(A = (a_{ij}) \) be as in Theorem A. Then for any \(1 \leq r, s, t \leq \infty \) and for all \(x_1, x_2, \ldots, x_n \) in \(X \), (resp., \(X' \)).
\[
\left\{ \mathbb{E} \left(\sum_{i=1}^n \left\| \sum_{j=1}^n a_{ij}x_j \right\|^s \right)^{t/s} \right\}^{1/t} \leq n^{c(r,s,t;p)} \left(\sum_{j=1}^n \| x_j \|^r \right)^{1/r},
\]
where \(c(r, s, t; p) = \max\{1/s + 1/r' - 1/p', 1/s, 1/r', 1/s + 1/r' - 1/l\} \).

Conversely, if the inequality (8) holds in \(X \) (or \(X' \)), then \((p, p')\)-Clarkson inequality holds in \(X \).

References

Department of System Engineering, Okayama Prefectural University, Soja 719-1197, Japan
e-mail: takahasi@cse.oka-pu.ac.jp

Department of Mathematics, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
e-mail: katom@tobata.isc.kyutech.ac.jp
Convex sets and Inequalities

Sin-Ei Takahasi
Department of Basic Technology, Applied Mathematics and Physics,
Yamagata University, Yonezawa 992-8510, Japan

Yasuji Takahashi
Department of System Engineering, Okayama Prefectural University,
Soja, Okayama 719-1197, Japan

and

Shizuo Miyajima
Department of Mathematics, Faculty of Science, Science University of Tokyo,
Shinjuku-ku, Wakamiya 26, Tokyo 162-8601, Japan

Abstract. In view of the convex analysis theory, we give a new type of the power mean
inequality and the Hölder inequality.

今年の8月解析研で開催された非線形解析学と凸解析学の研究集会で、「ある線
形空間上の閉凸集合の各点に一つの不等式が対応しているとき、最良不等式に対応
している点は何か幾何学的性質を持つであろう」という極自然な考え方を述べ、一
つの実現を試みた。そしてその応用例として、Hlawka不等式の一つの拡張である
Djokovic不等式に新解釈を与えた。ここでは、そのときの講演で問題として取り上
げた他の応用例について考察する。

まず復習から始めよう。いま任意の集合X上の非負値関数q, q_0, q_1を考え、

$$m = \inf_{x \in Z(q_0)} \frac{q(x)}{q_0(x)} \quad \text{and} \quad M = \sup_{x \in Z(q_1)} \frac{q(x)}{q_1(x)}$$

where $Z(q_i) = \{x \in X : q_i(x) = 0\} (i = 0, 1)$ と置き、$0 < m, M < \infty$ を仮定する。従って

$$m q_0(x) \leq q(x) \leq M q_1(x) \quad (\forall x \in X)$$

が成り立つ。ここで各$x \in X$に対して

$$D_q(x) = \{(\alpha, \beta) \in \mathbb{R}^2 : q(x) \leq \alpha q_1(x) + \beta q_0(x)\}$$

と置き、そのようなものの全ての共通部分
$D_\varphi = \bigcap_{x \in X} D_\varphi(x)$
を考える。このとき、D_φ は平面 \mathbb{R}^2 上の空でない閉凸領域を作り、D_φ の各点 (α, β) に X 上の一つの不等式

$\varphi \leq \alpha \varphi_1 + \beta \varphi_0$
が対応している。そこで閉凸領域 D_φ を調べるため次のような定数を定義する。

\[
\alpha_\varphi = \sup_{M \varphi_1(x) \neq m \varphi_0(x)} \frac{M \varphi(x) - m \varphi_0(x)}{M \varphi_1(x) - m \varphi_0(x)}
\]

このとき $0 \leq \alpha_\varphi \leq M$ であり、次の一般的結果を得る。

定理 1. (i) 令 $(\alpha, \beta) \in D_\varphi$ が成立するときの不等式で

$1 = \frac{\alpha}{M} + \frac{\beta}{m}$

により $\alpha_\varphi \leq \alpha$。

(ii) $((\alpha, \beta) \in \mathbb{R}^2 : 1 = \frac{\alpha}{M} + \frac{\beta}{m}, \alpha_\varphi \leq \alpha) \subseteq D_\varphi$。

(iii) 令 $\alpha_\varphi < M$ が成立するとき

$D_\varphi \subseteq \{(\alpha, \beta) \in \mathbb{R}^2 : 1 = \frac{\alpha}{M} + \frac{\beta}{m}\}$。

(iv) 令 $\alpha_\varphi = M$ が成立するとき

$D_\varphi \cap \{(\alpha, \beta) \in \mathbb{R}^2 : \beta \geq 0\} \subseteq \{(\alpha, \beta) \in \mathbb{R}^2 : \beta \geq 0 \text{ and } 1 = \frac{\alpha}{M} + \frac{\beta}{m}\}$。

証明。以上に述べた定理を参照。

注意 1. 上の定理で、$\alpha_\varphi = M$ のとき、$D_\varphi \subseteq \{(\alpha, \beta) \in \mathbb{R}^2 : 1 = \frac{\alpha}{M} + \frac{\beta}{m}\}$ が成り立つのか、まだ不明である。

さて先の講演で問題として取り上げた次の応用例について考察する。

応用例 1. Let $X = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1, \ldots, x_n > 0\}$ とし、$t \in \mathbb{R}$. Set

$q_\varphi(x_1, \ldots, x_n) = \min(x_1, \ldots, x_n), \quad q(t) = \left(\frac{x_1 + \cdots + x_n}{n}\right)^t$ と、$q_1(x_1, \ldots, x_n) = \max(x_1, \ldots, x_n)$ で、それぞれ $(x_1, \ldots, x_n) \in X$. 従って $m = M = 1$. このとき、我々の目的は領域 D_φ を決定することである。Let $(\alpha, \beta) \in \mathbb{R}^2$. 次は同値である：

(i) $(\alpha, \beta) \in D_\varphi$,

(ii) \[
\left(\frac{x_1 + \cdots + x_n}{n}\right)^{\frac{1}{t}} \leq \alpha \max(x_1, \ldots, x_n) + \beta \min(x_1, \ldots, x_n), \quad \text{for all } (x_1, \ldots, x_n) \in X.
\]
Replacing x_i by $y_i = \frac{x_i}{\max(x_1, \ldots, x_n)}$, (2) is next rewritten as:

$$\alpha + \beta u \geq \sup \left\{ \left(\frac{y_1^{i} + \cdots + y_n^i}{n} \right)^\frac{1}{t} : \min(y_1, \cdots, y_n) = u \text{ and } \max(y_1, \cdots, y_n) = 1 \right\} \text{ for all } 0 < u \leq 1.
$$

(3) の右辺を $f(u)$ で表すと、

$$f(u) = u^{1-n} \quad (0 < u \leq 1) \quad \text{if } t = 0$$

and

$$f(u) = \left(\frac{n-1}{n} + \frac{u}{n} \right)^\frac{1}{t} \quad (0 < u \leq 1) \quad \text{if } t \neq 0.$$

この関数に注目すると、結局次のことがわかる。

The case of $t < 1$: $\alpha_q = \frac{n-1}{n}$ and

$$D_q: \quad \alpha + \beta \geq 1 \quad \text{for all } \alpha > \frac{n-1}{n}.$$

if $t > 0$ and

$$D_q: \quad \beta \geq \left(n^{1-t} - (n-1)^{1-t} \alpha^{1-t} \right)^\frac{1}{t} \quad \text{for all } 0 \leq \alpha \leq \frac{n-1}{n}.$$

if $t < 0$.

The case of $t = 0$:

$$\alpha_q = \frac{n-1}{n} \quad \text{and } D_q: \quad \beta \geq \frac{(n-1)^{n-1}}{n^n} \alpha^{1-n} \quad \text{for all } 0 < \alpha \leq \frac{n-1}{n}.$$

The case of $t > 1$:

$$\alpha_q = \left(\frac{n-1}{n} \right)^t \quad \text{and } D_q = \{ (\alpha, \beta) \in \mathbb{R}^2 : \left(\frac{n-1}{n} \right)^{1-t} \leq \alpha \text{ and } \alpha + \beta \geq 1 \}.$$

以上から次のことがわかる。

(i) Let $0 < t < 1$. Then

$$\left(\frac{y_1^{i} + \cdots + y_n^i}{n} \right)^\frac{1}{t} \leq \alpha x_n + \left(n^{1-t} - (n-1)^{1-t} \alpha^{1-t} \right)^\frac{1}{t} x_1$$

holds for all $0 < x_1 \leq \cdots \leq x_n$ and $\left(\frac{n-1}{n} \right)^{1-t} \leq \alpha \leq \frac{n-1}{n}$. In particular,
(a) \[
\left(\frac{x_1 + \cdots + x_n}{n} \right)^{\frac{1}{t}} \leq \frac{(n-1)x_n + x_1}{n}
\]
holds for all \(0 < x_1 \leq \cdots \leq x_n\).

(i) Let \(t < 0\). Then
\[
\left(\frac{x_1 + \cdots + x_n}{n} \right)^{\frac{1}{t}} \leq \alpha x_n + \left(\frac{n-1}{n} - (n-1)^{\frac{1}{t}} \alpha^{\frac{t}{t-1}} \right)^{\frac{1}{t-1}} x_1
\]
holds for all \(0 < x_1 \leq \cdots \leq x_n\) and \(0 < \alpha \leq \frac{n-1}{n}\). In particular,
\[
\left(\frac{x_1 + \cdots + x_n}{n} \right)^{\frac{1}{t}} \leq \frac{(n-1)x_n + x_1}{n}
\]
holds for all \(0 < x_1 \leq \cdots \leq x_n\).

(ii) \(\sqrt[n]{x_1 \cdots x_n} \leq \alpha x_n + \left(\frac{n-1}{n} \right)^{\frac{n-1}{n}} \alpha^{\frac{1}{n}} x_1\) holds for all \(0 < x_1 \leq \cdots \leq x_n\) and \(0 \leq \alpha \leq 1 - \frac{1}{n}\). In particular,
\[
\sqrt[n]{x_1 \cdots x_n} \leq \frac{x_n + (n-1)^{\frac{n-1}{n}} x_1}{n}
\]
holds for all \(0 < x_1 \leq \cdots \leq x_n\).

(iii) Let \(t > 1\). Then
\[
\left(\frac{x_1 + \cdots + x_n}{n} \right)^{\frac{1}{t}} \leq \alpha x_n + (1 - \alpha) x_1
\]
holds for all \(0 < x_1 \leq \cdots \leq x_n\) and \(\left(\frac{n-1}{n} \right)^{\frac{1}{t}} \leq \alpha\). In particular,
\[
\left(\frac{x_1 + \cdots + x_n}{n} \right)^{\frac{1}{t}} \leq \left(\frac{n-1}{n} \right)^{\frac{1}{t}} x_n + \left(1 - \left(\frac{n-1}{n} \right)^{\frac{1}{t}} \right) x_1
\]
holds for all \(0 < x_1 \leq \cdots \leq x_n\).

応用例 2. 令 \((\Omega, \mu)\) 为有限测度空间且 \(0 < p < q < r \leq \infty\). Let \(X = L^r(\Omega, \mu)\) and set
\[
\varphi_0(f) = \|f\|_p, \quad \varphi(f) = \|f\|_q \text{ and } \varphi_1(f) = \|f\|_r
\]
for each \(f \in L^r(\Omega, \mu)\). Then
\[
m = \mu(\Omega)^{\frac{1}{r-1}} \text{ and } M = \mu(\Omega)^{\frac{1}{r}}.
\]
and
\[
D_q = \{(\alpha, \beta) \in \mathbb{R}^2: \mu(\Omega)^{\frac{1}{q}} \leq \alpha \mu(\Omega)^{\frac{1}{r}} + \beta \mu(\Omega)^{\frac{1}{r}}\}\text{ if } \dim L^r(\Omega, \mu) = 1.
\]
ここで我々は特別の場合を考察する。

(1) $\Omega = \{1, 2\}$, $\mu(1) = a > 0$, $\mu(2) = b > 0$, $p = 1$ and $r = \infty$ の場合。

このとき, $m = (a + b)^{\frac{1}{r-1}}$ and $M = (a + b)^{\frac{1}{r}}$ が成り立つ。Let $(\alpha, \beta) \in \mathbb{R}^2$. 次は同値である:

(4) $(\alpha, \beta) \in D_\psi$

(5) $\left(ax^q + by^q\right)^{\frac{1}{q}} \leq \alpha \max(x, y) + \beta(ax + by)$ for all $x, y \geq 0$.

(6) $\alpha + \beta t \geq \sup \left\{\left(ax^q + by^q\right)^{\frac{1}{q}} : ax + by = t, 0 \leq x, y \leq 1 \text{ and } \max(x, y) = 1\right\}$ for all $\min(a, b) \leq t \leq a + b$.

(7) $\alpha + \beta t \geq \left(a^\frac{1}{q}(t-b)^q + b\right)^{\frac{1}{q}}$ for all $b \leq t \leq a + b$ and $\alpha + \beta t \geq \left(b^\frac{1}{q}(t-a)^q + a\right)^{\frac{1}{q}}$ for all $a \leq t \leq a + b$.

ここで条件 (7) を良く観察すると,

$D_\psi = \{ (\alpha, \beta) \in \mathbb{R}^2 : b^\frac{1}{q} \leq \alpha + \beta b, a^\frac{1}{q} \leq \alpha + \beta a \text{ and } (a + b)^\frac{1}{q} \leq \alpha + \beta(a + b) \}$

が成り立つことがわかる。そこで, Theorem 1, (i) and (ii) から

$$\alpha = \frac{b^\frac{1}{q}(a+b) - b(a+b)^\frac{1}{q}}{\min(a, b)}$$

である。このとき D_ψ の端点は次の 2 点からなることがわかる。

$$(\min(a, b) \cdot (a + b)^\frac{1}{q} - b^\frac{1}{q}), \left(\frac{a^\frac{1}{q}b - ab^\frac{1}{q}}{b - a}, \frac{b^\frac{1}{q} - a^\frac{1}{q}}{b - a}\right).$$

最初の端点は次の不等式を生む:

$$\left(ax^q + by^q\right)^{\frac{1}{q}} \leq \max(x, y) \left(b^\frac{1}{q}(a+b) - b(a+b)^\frac{1}{q}\right) + \frac{ax + by}{\min(a, b)} \left((a+b)^\frac{1}{q} - b^\frac{1}{q}\right)$$

for all $a, b, x, y > 0$ and $q > 1$. 特に,

(e) $\left(x^q + y^q\right)^{\frac{1}{q}} \leq \max(x, y) + \left(2^\frac{1}{q} - 1\right)\min(x, y)$

for all $x, y > 0$ and $q > 1$. 第 2 の端点は次の不等式を生む:

$$\left(ax^q + by^q\right)^{\frac{1}{q}} \leq \frac{a^\frac{1}{q}b - ab^\frac{1}{q}}{b - a} \max(x, y) + \frac{b^\frac{1}{q} - a^\frac{1}{q}}{b - a} (ax + by)$$

for all $a, b, x, y > 0$ and $q > 1$. 特に,

(f) $\left(x^q + y^q\right)^{\frac{1}{q}} \leq \max(x, y) + \frac{1}{q} \min(x, y)$

for all $x, y > 0$ and $q > 1$.

—126—
注意2. (a) ～ (f) は既存の不等式から導くことが出来る。
注意3. (d) で \(n=2 \) とおくと、(e) がでてくる。
不思議1: \(2^k-1 < \frac{1}{q} \) (\(q > 1 \)) であるから、(e) は (f) よりシャープである。にもかかわらず、これらは異なる端点から生まれた不等式である。

(II) \(1 \leq p < q < r \) and \(\mu \) is non-atomic の場合。
Let \(f \in X \). \(\frac{r}{i} + \frac{p}{s} = q, \ \frac{1}{i} + \frac{1}{s} = 1 \) を解いて、\(t = \frac{r-p}{q-p}, \ \frac{1}{i} = \frac{r-q}{r-q} \)。

\[
\frac{r}{iq} + \frac{p}{sq} = \left(\frac{r}{i} + \frac{p}{s} \right) \frac{1}{q} \frac{1}{q} = \frac{q}{q} = 1.
\]
従って、

\[
\frac{p}{sq} = \frac{r-p}{q-p} = \frac{1}{i} - \frac{1}{r} \frac{1}{r} \frac{1}{q} \frac{1}{r} = 1 - \frac{p}{s} = 1 - \frac{1}{i} - \frac{1}{r} \frac{1}{q}
\]

が成り立つ。そこで、\(\gamma = \frac{1}{i} - \frac{1}{r} \frac{1}{q} \) とおくと、\(0 < \gamma < 1 \) であり、Hölder の不等式より、

\[
\left\| f \right\|_q = \left(\int \left| f \right|^q dx \right)^\frac{1}{q} \leq \left(\int \left| f \right|^r dx \right)^\frac{1}{r} \left(\int \left| f \right|^p dx \right)^\frac{1}{p}
\]

(8)

次に、\(\varepsilon > 0 \) を任意に fix する。今 \(u = \frac{1}{1-\gamma}, \ \nu = \frac{1}{\gamma} \) とおくと、Young の不等式から、

\[
\left\| f \right\|_\gamma + \left\| f \right\|_\nu = \left(\varepsilon \left\| f \right\|_\gamma \right)^{1-\gamma} \left(\varepsilon \left\| f \right\|_\nu \right)^{1-\gamma} \leq \left(\left(\varepsilon \left\| f \right\|_\gamma \right)^{1-\gamma} \right)^{\frac{1}{u}} + \left(\left(\varepsilon \left\| f \right\|_\nu \right)^{1-\gamma} \right)^{\frac{1}{\nu}}
\]

(9)

但し、\(\alpha = (1-\gamma)\varepsilon \)。以上から、

\[
\left\| f \right\|_\nu \leq \alpha \left\| f \right\|_\gamma + \gamma \left(\frac{\alpha}{1-\gamma} \right)^{1-\gamma} \left\| f \right\|_\nu
\]

が成り立つ。ここで、\(\alpha > 0 \) は任意であることを考えると、

\[
\left\{ (\alpha, \beta) : \alpha > 0, \beta \geq h(\alpha) \right\} \subseteq D_\psi
\]

が成り立つ。但し、\(h(\alpha) = \gamma \left(\frac{\alpha}{1-\gamma} \right)^{(1-\gamma)} \) (\(\alpha > 0 \)). ところで、今

\[
\alpha_0 = (1-\gamma)\mu(\Omega)^{\frac{1-\gamma}{\nu}}
\]

とおくと、

\[
\left\{ (\alpha, \beta) : 0 < \alpha \leq \alpha_0, \beta \geq h(\alpha) \right\} = D_\psi \cap \left\{ (\alpha, \beta) : 0 < \alpha \leq \alpha_0 \right\}
\]

-127-
を示すことができる。実際、(10) 式で等号成立の必要十分条件は、(8) and (9) 式が等号成立であることに注意すると、
\[\{ f(\omega) : \omega \in \Omega \} \subseteq \{ 0, c \} \text{ for some } c \in \mathbb{R} \text{ and } \left\{ \frac{\alpha}{1 - \gamma} \right\}^{|\gamma|} \| f \|_p = \| f \|_p \]
であることがわかる。そこで、
\[a = \left(\frac{\alpha}{1 - \gamma} \right)^{|\gamma|} \]
とおくと、\(0 < \alpha \leq \alpha_0 \) である限り、\(a \leq \mu(\Omega) \) であることが検証できるので、
\(\mu(A) = a \) なる可測集合 \(A \) をとり、\(A \) 上の特性関数 \(\chi_A \) を考えると、
\[\left(\frac{\alpha}{1 - \gamma} \right)^{|\gamma|} \| \chi_A \|_p = \| \chi_A \|_p \]
が成り立つ。従って \(f = \chi_A \) は (10) 式の等号を成り立たせるから、(11) が示されたことになる。次ぎに
\[h'(\alpha) = \frac{\gamma}{1 - \gamma} \left(\frac{\alpha}{1 - \gamma} \right)^{\gamma - 1} = \left(\frac{\alpha}{1 - \gamma} \right)^{\gamma - 1} (\alpha > 0) \]
and
\[h''(\alpha) = \frac{1}{1 - \gamma} \left(\frac{\alpha}{1 - \gamma} \right)^{\gamma - 1} = \frac{1}{\gamma(1 - \gamma)} \left(\frac{\alpha}{1 - \gamma} \right)^{\gamma - 1} (\alpha > 0) \]
であるから、\(h(\alpha) \) は単調減少凸関数である。従って (11) 式から \(\alpha_0 \leq \alpha_\psi \) を得る。

次ぎに \(-\frac{m}{M} = -\mu(\Omega)^{\frac{1}{p} + 1} \) に注意して、\(h'(\alpha) = -\frac{m}{M} \) を解くと、\(\alpha = \alpha_0 \) を得る。更に点 \((\alpha_0, h(\alpha_0)) \) は直線 \(\alpha \frac{M}{m} + \frac{\beta}{m} = 1 \) 上に乗っていることを見ることができる。実際、
\[\frac{\gamma - 1}{p} + \frac{1 - \gamma}{r} = (\gamma - 1) \left(\frac{1}{p} + \frac{1}{r} \right) = -\frac{r}{q} \frac{q - p}{pr} \frac{r - p}{pr} = -\frac{q - p}{pq} = \frac{p - q}{pq} = 1 \cdot \frac{1}{p} \]
に注意して、
\[m \left(1 - \frac{\alpha_0}{M} \right) = \mu(\Omega)^{\frac{1}{p} + 1} - \mu(\Omega)^{\frac{1}{p} + 1} (1 - \gamma) \mu(\Omega)^{\gamma - 1} \]
\[= \mu(\Omega)^{\frac{1}{p} + 1} - \mu(\Omega)^{\gamma - 1} + \gamma \mu(\Omega)^{\gamma - 1} \]
\[= \gamma \mu(\Omega)^{\gamma - 1} \]
\[= h(\alpha_0) \]
となるからである。従って、Theorem 1, (i) から、\(\alpha_\psi \leq \alpha_0 \) でなければならない。以上から、
\[\alpha_\psi = (1 - \gamma) \mu(\Omega)^{\frac{\gamma}{p - \gamma}} \]
and
$$D_{\nu} = \{(\alpha, \beta) : 0 < \alpha \leq \alpha_{\nu}, \beta \geq h(\alpha) \} \cup \{(\alpha, \beta) : \alpha \geq \alpha_{\nu}, \frac{\alpha}{\lambda} + \frac{\beta}{m} \geq 1\}$$

である。特に次の不等式が成り立つ。

$$\|f\|_q \leq (1 - \gamma)\mu(\Omega)^{\frac{1}{r}} \|f\|_{\rho} + \gamma\mu(\Omega)^{\frac{1}{r}} \frac{1}{1 - \gamma} \|f\|_{\rho},$$

where $\gamma = \frac{1 - 1/\nu}{1 - 1/r}$.

注意 4. (10) 式は、$\mu(\Omega)$ が有限でなくても、$f \in L^p(\Omega, \mu) \cap L^r(\Omega, \mu)$ であれば常に成立する。

参考文献
