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Abstract

Transportation networks of biological systems are essential for enabling efficient
mass flow where diffusion alone would be too slow. Thus, they play a central role
for an organism’s physiology and a high degree of energetic efficiency has been
proposed as a guiding principle for the layouts of these networks. However, it is
unclear how they form in a domain that is itself changing (extending) spatially,
since at the time of network development, crucial information on the spatial lay-
out of the domain is not yet available. The aim of the present work is to study
how a biological transportation network can develop spatial efficiency in a regime
of incomplete spatial information.

The true slime mould Physarum polycephalum is an apt model organism for
studying the development of a transportation network in an expanding domain,
because it prominently features an adaptive tube network as it extends over
surfaces and we have an understanding of the rules that shape this network, at
least in a static situation.

To understand the typical shape and development of the vein network of
Physarum, we let the organism explore a spatially limited arena, in particular a
narrow lane with 90◦ turns, and observed the position of the main vein relative
to the corridor’s edges. In this setting, the slime mould’s main vein, instead of
keeping to the centre line of the corridor or being established along the line of
the geometrically shortest possible path, cuts the corners and then returns to
the centre line. The result is a centre-in-centre line at each corner. This is a
striking behaviour that is reproduced well throughout replicates and different
arena shapes. However, the lay-out thus realised strikes a good balance between
two conflicting measures of efficiency, namely total network length and average
network accessibility.

The best-known model of Physarum vein development, the ‘Physarum Solver’,
works on the premise that the organism has fully extended over the available
arena with all possible veins within its domain being of essentially the same
diameter. However, this is not the situation we are dealing with during exten-
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sion. Running the Physarum Solver model on an arena of the same shape as
used in the extension experiments, we therefore find a vein pattern very different
from the experimental result. In particular, in that simulation, the single main
vein follows the geometrically shortest possible path closely, which pre-supposes
global information not available to Physarum in a natural setting.

In order to understand the development of the extending tube network in
its dynamic environment, we introduce a composite model considering three ele-
ments essential to the extension of Physarum: the extension of the growth front,
the development of the tube network, and the rhythmic contraction waves as a
driving force for the cytosolic flux.

The resulting model robustly and accurately re-creates the key features of the
organism’s extension: the main veins are formed at a short distance behind the
growth front; the position of the main vein, once it has emerged, remains constant
over time; and the trajectory of the main vein follows a centre-in-centre pattern
at each corner. A variation of the model parameters and the observation of the
results suggests that the centre-in-centre geometry is a product of the organism
coupling the development of its vein network to the extension of the growth front
such that current-reinforcement-based optimisation can work locally, while still
allowing for the rapid construction of a tube network.

A corollary of this finding is that growth front extension history alone should
be sufficient to make a prediction on the main vein trajectory. To this end we in-
troduce a simple graphical algorithm which is able to predict experimental results
with remarkable accuracy. This algorithm is based on very general principles:
the local minimisation of connections and the pruning of globally disadvanta-
geous connections due to their carrying less flow. Due to this generality, it would
be interesting to see whether the algorithmic formulation can also capture the
development of other systems in which the expansion of the system’s boundaries
are in step with the construction of its internal network.

In summary, the importance of the growth front expansion for the vein net-
work development had been neglected in previous studies, even though it dynam-
ically determines the area within which the vein network is to be formed. This is
relevant since the static situation yields results very different from the dynamic
one and is therefore an incomplete and inaccurate description of the biological
situation. In addition, the global consequences of a local process such as em-
ployed by the current reinforcement model in a dynamic setting are interesting
in themselves.

Under the assumptions of the static model, the food sources act as attrac-
tors for the body mass of Physarum and generate a directional body mass flow
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necessary for the current reinforcement mechanism to work. In the more natural
setting described here, it is the expansion of the growth front that acts as the
body mass sink causing a directional flow. Therefore, we claim that the advan-
tage the current reinforcement mechanism confers to Physarum mainly lies in it
affording the organism very efficient spatial exploration.
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Chapter 1

Introduction

Transportation networks are a ubiquitous feature of biological systems. They
play a central role in enabling efficient mass flow over extended domains, where
diffusion alone would be too slow [41, 19]. Due to their often considerable size
and the necessity to distribute metabolic educts and information as well as collect
metabolic products and dispose of them, most multi-cellular organisms feature at
least one such network. Vascular plants, as their name suggests, have a phloem
system to transport photosynthetic products to their roots and a parallel xylem
system that transports water and nutrients to the leaves. These networks can
be seen as servicing the two different spheres of plant life and mediating the
chemical exchange necessary for their existence. Fungi have (are) a structurally
very different network with many redundancies. Their mycelium spans large
soil volumes and provides the organism with the ability to distribute nutrients
from rich to poor body portions in bundles of parallel hyphae that can handle
bi-directional mass flow [18, 23, 31]. Animals show a large diversity of networks
both in shape and function. There are of course often different networks for
different media such as a pulmonary system for air, a cardiovascular system for
blood, a lymphatic system for lymph, and it can be argued that there are even
hierarchies of transportation networks such as when social or eu-social organisms
construct networks enabling an efficient flow of individuals.

This ubiquity underscores the idea that transportation networks play a central
role for an organism’s physiology and a high degree of energetic efficiency has
been proposed as a guiding principle for the layouts of these networks. Network
branching patterns are considered to be physiologically optimised to reduce the
energy lost to friction and network maintenance [51], a fact scaling laws for
metabolic rates can be based on [87]. Similarly, the routing and the connectivity
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of spatial networks have been explained using generalised ‘costs’ and ‘efficiency’
[25]. In addition, the topology of networks can also be understood as the result
of a local energy optimisation process [33].

However, these analyses don’t consider the development of the network. Net-
works of biological organisms are usually not constructed within a fully devel-
oped domain, but instead extend together with the growth of the organism’s
body. This is most obvious in fungi whose growth means the longitudinal ex-
tension of the mycelial network [16, 9]. In plants, the root and branch networks
stretch out over the whole life time of the organism, while leaf vein patterns are
usually determined in leaf anlagen and stretch and differentiate concurrent with
leaf growth [48, 71, 67]. Similarly, the cardiovascular system is laid out in the
early stages of embryonic development and grows and undergoes flow-dependent
differentiation as the organism gains in size [21, 8]. Neural wiring through axon
sprouting, however, is happening in a somewhat more developed organism and
even occurs in the adult [26]. It is a highly regulated process in which the axons
are guided through the organism to reach their target [78]. But then, the nervous
system is not a transportation network and thus the topological lay-out is likely
not subject to the same physical requirements.

In summary, transportation networks enable efficient metabolism through
their efficient spatial construction. However, they are constructed in a domain
that is itself changing (extending) spatially. In other words, at the time of
network development, crucial information on the spatial lay-out of the domain
is not yet available. The aim of the present work is to study how a biological
transportation network can develop spatial efficiency in a regime of incomplete
spatial information.

To illustrate this point we can imagine an organism with a simple vein struc-
ture extending through domains of various shapes, as in figure 1.1, and suppose
each of the veins (orange) are efficiently placed (for a given task in a given sys-
tem). However, the organism has to grow and gradually fill the shape. Assuming
the organism is placed at the bottom of each shape and extends towards the top,
constructing its vein concurrently with the growth, and assuming the organism
has no advance knowledge of the over-all shape of its environment, a seeming
dilemma becomes obvious once the organism has reached the stage highlighted
in yellow: The organism, has no motivation according to its momentary infor-
mation to construct the vein anywhere but in the middle, while we know from
inspection of the over-all geometry of the arena that the vein should start to
swerve towards the direction of the bend in the areas delineated with the bro-
ken line, if it is to maintain over-all efficiency. Therefore, one may ask how the
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transportation network should be constructed so as to enable an efficient lay-out
through all developmental stages as more and more of the arena is discovered.

Figure 1.1: Conceptual illustration of the main issue of this work. An organism,
which constructs a single vein through its body, extends through a narrow arena,
the geometry of which is unknown to the organism until exploration, from the
bottom towards the top. Assuming that for each arena shape we know what
the ‘optimal’ vein trajectory should look like for the fully extended organism
(orange line), at the extension stage highlighted in yellow it is unclear how the
vein should be constructed in the area delineated with the broken line, since in
all cases the organism has experienced the same geometry this far. There is no
motivation to deviate from the centre line, however, not doing so would result in
an over-all inefficient vein position.

Uni-cellular, eukaryotic organisms (‘protists’) are an attractive study object
for many general questions, especially as regards spatial behaviour [42, 60, 38, 62].
They are subject to many of the same physical constraints as larger organisms
and, due to their simplicity, often find quite pure solutions that are showing
of trade-offs and interdependences of physical processes. That is to say, their
behaviour is easy to model and general rules can readily be found. In addition,
they are conveniently cultured in large numbers. However, even though their
simplicity makes them attractive, their behaviour is often governed by very basic
molecular mechanisms that are also present in our cells.

The true slime mould Physarum polycephalum lends itself particularly well
to studying the development of a transportation network in an expanding do-
main, for two reasons. First, it is an easy-to-handle, macroscopic organism that
prominently features an adaptive tube network as it extends over surfaces [76,
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12]. More importantly, though, we have an understanding of the rules that shape
this network, at least in a static situation [81, 35, 15].

For these reasons, we use Physarum as a model of a transportation network
extending through an extending domain in the present study. Using experimental
evidence and results from mathematical models of the organism’s behaviour, we
demonstrate the ability of local optimisation rules to produce globally efficient
solutions.

In the following chapter, we will first introduce Physarum as a biological
organism and then focus on individual aspects of its physiology that are relevant
to its extension and to the formation of its network. We will also review models
for each of these aspects. In the third chapter, we will discuss the striking
characteristics of the organism’s network formed during expansion, but also the
shortcomings of present models to explain the behavior. In the fourth chapter
we will construct a novel mathematical model and interpret it from a biological
point of view. In the last chapter, we will discuss some of the ramifications of
the model.
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Chapter 2

Physarum polycephalum and
mathematical models describing
its behaviour

2.1 Structure and life style

Physarum polycephalum is a eukaryotic, uni-cellular organism, a member of the
class Myxogastria (‘plasmodial slime moulds’), which are a sister group to the
Dictyostelia within the Mycetozoa, part of the Amoebozoa (figure 2.1) [20]. These
are a basal eukaryotic group distinct from the plant-containing Diaphoretickes
and the Excavata, but a sister group to the Opisthokonta comprising animals
and fungi [10, 17].

The life cycle of Physarum (figure 2.2) contains a haploid phase that starts
with spores being distributed passively. They germinate in moist environments
forming uni-nucleated swarm cells. If two such cells fuse and undergo karyogamy,
the fusing of nuclei, they produce a diploid plasmodium. In this stage, the
organism can undergo synchronous nuclear divisions without cytokinesis, the
separation of cell plasma by membranes, and increase in size enormously [49, 74].
After starvation or in UV-radiated environments, the slime mould will sporulate
and form sporangia containing haploid spores [39, 49, 11].

The plasmodium deserves a more detailed description, since it is the main
object of most Physarum studies. The plasmodium expands over surfaces (sec-
tion 2.2.3) in the search for food, which it engulfs and ingests by endocytosis.
In this process, the single cell can span up to 5m2 [74], making it the largest
cell on record. The body is nerved by a tube network (section 2.2.1), through
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Eukaryotes

Excavata
Diaphoretickes

Opisthokonta

AmoebozoaFungi

Metazoa

Mycetozoa

Myxogastria
Dyctostelia

Physarum

polycephalum

Figure 2.1: Phylogenetic tree of the eukaryotes. The Myxogastria (yellow) con-
taining Physarum are a sister group to Dictyostelia within the Mycetozoa, which
are a part of the Amoebozoa. These are a sister group to the Opisthokonta
which contain the Fungi (ochre) and animals within the Metazoa (red). The
Diaphoretickes (green) contain the plants. The Excavata are the most basal Eu-
karyotes. [10, 17] The branch lengths do not represent antyhing particular (e.g.,
time, sequence difference or statistical support).
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Figure 2.2: Life cycle of Physarum polycephalum. From [4].
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which cytoplasm is pumped by periodic actomyosin contraction (section 2.2.2).
If dried, the plasmodium can form into a hardened state called ‘sclerotium’ in
which it can survive for a few years. If re-wetted, a plasmodium will re-emerge
from the sclerotium [39].

2.1.1 Culturing practice

In experimental practice, the plasmodium is either grown in liquid culture or
on large agar plates. Liquid culture plasmodia are small and spherical (on the
order of 100µm diameter), and coalesce after being plated onto agar to form
small functional plasmodia [13]. Growing Physarum plasmodia on large agar
plates has the advantage that much more body mass is available for experimental
manipulation [85].

For the experiments in this study, we cultured plasmodia on agar plates kept
in the dark at room conditions (22◦C or 23◦C, 30%-60% humidity). To start
such a culture, we placed sclerotia, that is, dried plasmodia onto agar plates and
re-wetted them with purified water. After a day, a plasmodial sheet re-emerged.
We fed the sheet with oat flakes, placing them gently directly onto the growth
front. Once the organism has filled the whole plate (measuring 232×335mm2),
we scattered oat flakes homogeneously and gently over the whole body mass
at regular time intervals, with about 8h in-between. This time span is usually
enough for the organism to completely engulf the food. When the organism
had reached considerable density, after usually 2 or 3 days, we cut the organism
together with the underlying agar into (usually 3 or 4) parts and placed them
onto new agar. From here we kept the culturing cycle of letting the organism
extend over the plate, letting it grow dense, and sub-culturing its parts onto new
agar.

For storage, superfluous body mass was placed in a bucket. The plasmodium
of Physarum climbed the walls clad with wet filter paper over the course of a
day, after which we harvested the organism together with the filter paper and
placed it in a desiccation box made of cardboard. In these dry conditions, the
organism formed a sclerotium.

2.2 Properties and models

In this section we will discuss specific aspects of the plasmodium’s physiology to
more detail and introduce models describing each of them. These three models
will be the foundation of the synthetic model introduced in section 3.
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2.2.1 The network adapts to flows

One of the most prominent features of large plasmodia is the network of veins
spanning the organism (figure 2.3 a) [76, 12, 22]. The network transports cytosol
from the organism’s rear to the front to provide body mass for the extension but
also to exchange chemical information between remote body parts [47, 46, 6].
This network also enables the organism to maintain over-all connectivity even if
a very small amount of body mass is spread over a physically large area, e.g., to
digest multiple food sources (figure 2.3 b) [58].

Figure 2.3: Network of Physarum polycephalum. a: Tubes span the body mass
from the growth front to the rear. b: Even in very small specimens the organism
maintains connectivity by its tube network. The bar indicates a length of 10 mm
in both figures.
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The first anlage of the tube network can be found directly behind the growth
front. As the cytoplasm is squeezed through the tube network to extend the
growth front, the flow of the more liquid parts (the endoplasm) through the
more viscous parts (the ectoplasm) creates proto-channels (figure 2.4 a) [29].

Figure 2.4: Dynamics of the Physarum network. a: Tubes are formed by cyc-
tosolic flux in the expansion process. This results in many tiny veins that follow
the cytosolic flow pattern from the larger veins outward to the growth front. b:
In the rear of the organism, tubes are retracted by successive constriction of the
tube wall from the rear end (black arrows) forward (in the picture: up) and leave
behind a slime pattern in the agar that traces the former position of the veins.
The scale bar represents 1mm in both images.

The channels are lined with actin filaments running in parallel to the flow.
These actin filaments orient themselves passively in the direction of the flow in a
process called shear banding, locally separating the cytoplasm into two fractions
with different shear rates. Shear banding also implies that a higher flow velocity
should increase the volume fraction of the structure with the lower viscosity,
effectively postulating a relationship between the diameter of the vein and the
flow through it [44].

On the rear end of the organism the channels are closed and retracted (figure
2.4 b), although this doesn’t only occur ‘on the other side’ of the organism, that
is, far away from the growth front, but at all tubes that don’t lead to a place
of cellular activity [54, 84, 55]. In this way, also tubes relatively close to the
growth front that hit a wall or end blind will be contracted until they disappear.
This contractility is reminiscent of amoeboid movement and also effected by
actomyosin contraction (more on this in section 2.2.2) [39, 52, 5, 80].
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This shows that the network is highly dynamic in its ability to respond to
the flows it carries. A classic experiment demonstrating this ability is the maze
experiment conducted by [54]. The researchers created a maze-shaped arena
by placing plastic film onto agar. They then completely filled the arena with
Physarum plasmodium pieces and placed food sources at two points in the maze.
A few hours thereafter, the organism had concentrated its body mass on the food
sources but kept them connected with a single tube through the maze. In other
words, it had created tubes to evacuate body mass and subsequently retracted
all tubes that didn’t connect the food sources. Furthermore, the tubes that
connected the food sources grew in diameter, with the shorter connections out
of all possible connections being chosen statistically more often than others.

These results together hint at a mechanism that exists in Physarum poly-
cephalum by which the organism adapts the diameter of its tubes to the flow
through it. This is the basis of the current reinforcement rule proposed in [81]
and expressed mathematically as

dD

dT
= f(Q)− kD (2.1)

where D = r4 is an expression of the tube diameter, termed ‘conductivity’ and
the fourth power is for convenience (cf. equation (2.3)). Q is the flow through
the tube, f is any constantly increasing function, and k is a constant.

This expression of the temporal behaviour of tube diameter as a function of
the flow has two terms. The first (positive) term indicates that the diameter
increase depends positively on the flow through the tube. The second term is a
natural degradation term of the diameter based on the stochastic re-arrangement
of the actin filaments that will lead to tube shrinking if it is not counter-acted
by flow-induced tube growth. Taken together, the dynamics of the diameter
will be dominated by the positive (growth) term in tubes with a relatively high
flow, whereas in tubes with relatively low flows the negative (shrinking) term
will prevail. The equivalent formulation of the above equation as a relaxation
law dD/dt = −k(D − 1/kf(Q)) emphasises this interpretation. Here, the system
tries to maintain an equilibrium level depending on f(Q). In any case, the result
is that current (flow) through a tube reinforces the tube’s existence.

Typically, two functions for the flow dependency are considered:

f(Q) = a|Q|µ (2.2a)

f(Q) =
|Q|µ

1 + a|Q|µ
(2.2b)
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where µ and a are constants. The parameter µ is significant for the asymptotic
behaviour of the system and has experimentally determined as µ = 4/3, which
also is in agreement with Murray’s law [3].

The behaviour resulting from equation (2.2a) is more readily analysed ana-
lytically. However, the form of equation (2.2b) allows the response of the tube
diameter to the flow to saturate. This leads to the possibility of many smaller
veins remaining when the flow through the system is large, whereas only a sin-
gle vein remains when the flow is small. This is in accordance to experimental
evidence and is probably the more biologically relevant form [81].

The flow through the tube is assumed to follow the Hagen-Poiseuille relation
of flow, tube diameter and tube length (equation (2.3)). This is supported by the
flow profile of the cytoplasm, indicating it is transported passively by generation
of a pressure gradient across the organism [79, 39, 29].

Q =
π∆Pr4

8ηL
(2.3)

where Q is again the flow through the tube, ∆P is the pressure difference along
the tube, r is the tube’s diameter and L its length. η is the viscosity of the
medium. For convenience of equation (2.1), r4 := D, the ‘conductivity’.

These two assumptions automatically suggest a mechanism by which Physarum
is able to select the shortest possible route through a network out of many al-
ternatives. Comparing two possible routes between the same two points in the
organism’s network, which means identical pressure difference, and assuming the
tube radii to be equal under initial conditions (and cytosol viscosity not depend-
ing on time or tube radius), the flow through the longer tube will be less than
through the shorter tube as a consequence of the Hagen-Poiseuille relation. This,
following the current reinforcement relation, causes the shorter tube to grow in
diameter and the longer tube to shrink, which, in turn, will allow more flow
through the shorter tube and less through the longer one.

The above model can be applied to not just a simple network containing two
vertices and two edges, but to a complex grid filling an arena with multiple in-
and outlets of flow. This is the well-known Physarum Solver model that famously
re-created a network very similar to the rail network of the Tokyo Bay area [84,
86].

2.2.2 Contraction waves

The flow through the tube network of Physarum polycephalum is driven by con-
traction waves through the body [39, 52, 5, 80]. At regular intervals of around
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once in 2 minutes, the ectoplasm contracts, thus increasing the pressure locally
and driving the endoplasm to a portion of plasmodium with lower pressure [56,
65]. The ensuing flow transports cytoplasm through the channels, and because
the contractions are periodic and coordinated, the flow changes direction peri-
odically. This is called ‘shuttle streaming’ and facilitates cytoplasmic dispersal
and tube formation [46, 6].

The contractions are caused by myosin fibers cross-linking with actin fila-
ments through their head subdomains that can cock and bend repeatedly to
exert tension on the actin filament [52, 74]. This process hydrolyses ATP and
leads to a contraction of the actomyosin complex.

The regulation of this process in Physarum is generally similar to the mech-
anism in smooth muscle (figure 2.5 a). In both cases, the ATPase is activated
by phosphorylation of the myosin light chain regulatory subunit, called ‘LC1’
in the slime mould. This phosphorylation is effected by myosin light chain
kinase (MLCK), which is active only if it can bind to a calcium-calmodulin
complex. MLCK is itself regulated by another phosphorylation, by protein ki-
nase A (PKA), however, this phosphorylation is inhibitory by drastically reduc-
ing MLCK’s affinity to calcium-calmodulin. PKA is activated by cyclic AMP
(cAMP), which is, in turn, produced by a calcium-dependent adenylyl cyclase.
Together, this means that calcium has on independent time scales an activating
and an inhibitory effect on myosin contraction: activating through the activation
of MLCK, but inhibitory through the cAMP-mediated activation of PKA. Cal-
cium concentration in the cytoplasm itself, finally, depends on leakage from the
vacuole, on active transport to the vacuole (which is up-regulated by a cAMP-
dependent kinase), and on the calcium-calmodulin affinity of MLCK (regulated
by cAMP-dependent PKA) [91, 73, 36].

In contrast to smooth muscle, however, Physarum myosin has its own calmodulin-
like calcium-binding site (like in mollusk muscle), called the light chain regulatory
subunit ‘LC2’, and calcium binding to this subunit inhibits activation by MLCK.
This is to say that calcium, in Physarum, directly inhibits contraction [39].

Based on these observations, [73] constructed a mathematical model for a
calcium-dependent chemical oscillator regulating the rhythmic contraction in
Physarum (see figure 2.5 b). This model is the second key element of the syn-
thetic model introduced in section 3. Since it is a spatially 0-dimensional model,
all reactions are considered to take place in the same location, leading to a few
assumptions that might not reflect biological reality. Specifically, the authors
combine MLC and MLCK into one entity, so that calcium binding to MLC-
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MLC

MLCK

tension
+Pi

PKA
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Ca2+
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Ca2+
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Figure 2.5: Regulation of actomyosin contraction. AC: adenylyl cyclase. PKA:
protein kinase A. MLC: myosin light chain. MLCK: myosin light chain kinase.
a: Regulation pattern in smooth muscle, including Ca2+-dependent inhibition of
MLC phosphorylation by MLCK unique to Physarum (dotted line). b: Simplified
interaction model used in [73]. This model retains the Ca2+-dependent inhibition
of MLC phosphorylation by MLCK as well as the Ca2+-PKA feedback loop.
However, the MLC-MLCK complex is treated as if not needing specific activation.

MLCK both regulates contractile tension and is regulated by phosphorylation
by PKA.

In mathematical terms, a model can be constructed that describes the changes
in the total cytoplasmic calcium levels and the phosphorylation state of the
MLCK. These two are the entities driving the oscillator since the phosphorylation
state of the MLCK is crucial for the contractile activity of MLC, and the levels
of total cytoplasmic calcium are affected only by the exchange with the vacuole
but not by fast binding to and release from the MLC-MLCK complex:

dc

dt
= kL(Nc − c(t))− kV nc(t)

dϕ

dt
= kQ(nc(t))(1− ϕ(t))− kEϕ(t)

(2.4)

where Nc is the total concentration of Ca2+ in Physarum, c the concentration of
cytoplasmic Ca2+, and nc the concentration of free, unbound cytoplasmic Ca2+.
Note that (Nc − c) is the concentration of Ca2+ in vacuoles. kL is the Ca2+

leakage rate constant and kV the rate constant of the Ca2+ pump, transporting
the ion back into the vacuole. Therefore, the concentration of cytoplasmic Ca2+

is determined by leakage of the ion from the vacuole and the active transport
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back into the vacuole. The second equation is for the temporal development
of ϕ, the fraction of phosphorylated MLCK, where kQ and kE are respectively
the rate constants for phosphorylation and de-phosphorylation. Note that the
rate constant kQ is a function of the cytoplasmic unbound Ca2+ concentration,
corresponding to the activation of PKA by Ca2+. The different pools of Ca2+

are related through a conservation law:

c = nc +NM

2∑
k=1

k(qka(nc)(1− ϕ) + qkb(nc)ϕ) (2.5)

that states that the total cytoplasmic Ca2+ concentration c is the sum of the
unbound Ca2+ nc and the Ca2+ bound to MLC. The latter can bind either zero
or one or two atoms of Ca2+ per protein and the total concentration of MLC in
the cell is NM . qka is the fraction of unphosphorylated MLC-MLCK complexes
with k Ca2+ ions (with q0a+q1a+q2a = 1) and qkb is the same for phosphorylated
MLC-MLCK complexes. These fractions are determined by:

qka(nc) =
(Kanc)

k

(1 +Kanc)2

qkb(nc) =
(Kbnc)

k

(1 +Kbnc)2

(2.6)

where Ka and Kb are, respectively, the affinities of unphosphorylated and phos-
phorylated MLC-MLCK complexes to Ca2+. Since Ka ≫ Kb, phosphorylation
of MLC-MLCK leads to an increase in the proportion of unbound Ca2+ nc. The
rate constant for the phosphorylation of MLC-MLCK, finally, is:

kQ(nc) = kQ∗

( K∗nc

1 +K∗nc

)β

(2.7)

where kQ∗ is the maximum rate, K∗ is the Michaelis-Menten constant, and β is
the Hill constant, so that PKA activity is an increasing function of the levels of
Ca2+.

The evaluation of this model is computationally complex and requires sub-
algorithms to compute the concentrations of free calcium nc at each time step.
It pays to expand the model into a three-dimensional system with nc not being
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determined by a strict conservation law but by its own dynamical equation:

dc

dt
= kL(Nc − c(t))− kV nc(t)

dϕ

dt
= kQ(nc(t))(1− ϕ(t))− kEϕ(t)

dnc

dt
= −k(nc(t)− (c(t)− A(nc(t), ϕ(t))))

(2.8)

where k ≫ O(kV ) is a relaxation constant and A(nc(t), ϕ(t)) = NM

∑2
k=1

k(qka(nc)(1− ϕ) + qkb(nc)ϕ) is the concentration of calcium bound to the MLC-
MLCK complex. This formulation provides an opportunity to directly model
the calcium binding dynamics to that complex while being equivalent to equa-
tion (2.5) for all intents and purposes, since the large relaxation constant k will
ensure that the difference between the free cytoplasmic calcium nc and the term
c− A will stay practically zero, which will then retrieve the conservation law.

Most importantly, this system can now be analysed with ease (figure 2.6).
Using the same parameter values as in [73], the system has one fixed point which
is a saddle point with one incoming and two outgoing directions. For all starting
conditions of the system variables, the system trajectories quickly converge to a
limit cycle in the unstable manifold of the fixed point. A linear stability analysis
of the fixed point under variation of the parameters shows that the system has
only a small window of values for most parameters where it exhibits non-decaying
oscillations. It is quite remarkable that the parameters in [73], many of which
were taken from measured values, fall neatly within these windows, because it is
by no means obvious that they should enable the expected behaviour. However,
the Michaelis-Menten constant K∗ for the speed constant of the phosphorylation
of the MLCK was chosen arbitrarily and such that it, too, falls within its window
of non-decaying oscillations (figure 2.6).

Plotting the nullclines of the system, the reason for this behaviour becomes
obvious (see figure 2.7). At the standard value K∗ = 1.5 (black and grey lines)
the system has an unstable fixed point with complex-valued eigenvalues. Owing
to kQ∗ ≫ kL (see section 4.1.2), the vastly different time scales of the equations
for ϕ̇ = 0 (fast) and ċ = 0 (slow) result in a relaxation oscillation around the
fixed point (blue line with green dot as starting values). As K∗ is varied, the
stability of the fixed point changes as a result of the change in the shape of the
nullcline for the proportion of phosphorylated MLC-MLCK complex, ϕ (yellow
lines), whereas the nullcline for the cytoplasmic calcium concentration, c (grey
line) remains unchanged. This shifts the position of the intersection of the two
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Figure 2.6: Analysis of the fixed point of the three-variable system under vari-
ation of a parameter, in this case the Michaelis-Menten constant K∗. Changing
this parameter not only shifts the position of the fixed point but also changes its
character from stable without oscillations (dark blue) via stable but oscillatory
(light blue) to unstable and oscillatory (light red), and back. The parameter
value chosen by [73], K∗ = 1.5, puts the system in the unstable regime, thus
allowing bi-stability.

nullclines, that is, the fixed point along the nullcline ϕ̇ = 0, which determines
whether or not a relaxation oscillation is possible.

The dynamics of the model (under standard conditions) develop as follows
(see figure 2.8). Calcium leaks from vacuoles and starts to inhibit MLCK activity
through binding to MLC as well as activation of PKA. MLCK phosphorylation
by PKA releases even more calcium, since the phosphorylated MLCK reduces
the MLC’s affinity to calcium. At this point there is minimal contraction, but the
calcium transporters are active and pump calcium into the vacuoles. As calcium
levels keep dropping and MLCK becomes increasingly dephosphorylated, MLC
affinity for calcium increases as a result, soaking up the remaining calcium. The
cell now experiences maximal contraction, however, leaky vacuoles restart the
cycle.

The local pressure oscillations produce cytosolic flux to neighbouring regions
where the membrane system is passively deformed. This induces mechanosen-
sitive calcium channels to release calcium ions from vacuoles, in the process
entraining the local oscillators. Thus, influx-driven stretch entrainment has the
ability to couple local oscillators system-wide [39, 7].
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Figure 2.7: The 2-dimensional phase diagram for the proportion of phosphory-
lated MLC-MLCK complex, phi and the cytoplasmic calcium concentration, c.
Shown are the nullclines dc/dt = ċ = 0 in grey and dϕ/dt = ϕ̇ = 0 in black for
the standard condition K∗ = 1.5 and in yellow for other values of K∗. At the
intersections of the nullclines are the system’s fixed points (red): circles indicate
stable fixed points with real-valued eigenvalues, filled diamonds indicate stable
fixed points with complex-valued eigenvalues (leading to dampened oscillations),
and open diamonds indicate unstable fixed points with complex-valued eigenval-
ues (leading to a limit cycle and stable oscillations). For the standard condition,
a trajectory is shown in blue with starting values in green.
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Figure 2.8: Numerical simulation of the three-variable model using the parameter
values in [73]. All trajectories (blue) are quickly drawn into a limit cycle around
the unstable fixed point (red).
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2.2.3 The growth front

While the tube network supplies new biomass to the growth front, the extension
of the growth front does not directly depend on the tube network (in the same
way as a car’s fuel comes from a petrol station, but the petrol station is not
directly necessary for the operation of the car). This was clearly demonstrated
by amputation experiments in [75]. The researchers let a piece of Physarum
plasmodium extend through a narrow lane and after a few minutes cut away
all of the plasmodial sheet up to a few millimetres at the front, varying the
thickness of the piece left between 0.8 and 5 millimetres. Even so, the growth
front kept extending for at least another 10 minutes at almost unaffected rates.
Notably, the oscillatory contractions (section 2.2.2) ceased immediately upon
amputation demonstrating that neither the supply of biomass from the rear nor
the contraction waves are immediately required for the extension. However, the
growth front became thinner over time and eventually stopped about 20 minutes
after amputation [85], which means that supply with cytosol is necessary to
sustain extension over prolonged periods.

These findings induced the team to model the propagation of the tip with a
one-dimensional reaction-diffusion system based on the transformation of some
resource, e.g., sugar into a chemical sustaining the extension, e.g., ATP. The
identity of the chemicals involved is not directly relevant, however, since the
modelling aim was primarily a spatially propagating chemical transformation
that can sustain itself but requires input for long-term survival. Such a polarised
chemical pulse can be described well by a Gray-Scott model, which is an auto-
catalytic chemical reaction propagating through diffusion of the reaction product
to neighbouring regions which ‘ignites’ the reaction there. A supply term for the
educt and an outflow term for the product can be added:

∂u

∂t
= Du

∂2u

∂x2
− uv2 + f(1− u)

∂v

∂t
= Dv

∂2v

∂x2
+ uv2 − (f + k(x))v

(2.9)

where u is the concentration of the resource and v the concentration of the prod-
uct, the extension-sustaining chemical. Du and Dv are the diffusive constants
of u and v. f , originally termed for ‘flow rate’ into and out of reaction tanks,
is a constant regulating the supply of u into and the efflux of v out of the sys-
tem. k(x) is a function that allows the system to react to its immediate spatial
environment. If k(x) = k0 everywhere, this is an expression of the general en-
vironmental conditions affecting the wave propagation, and if k(x) = k0 + c for



2.2. PROPERTIES AND MODELS 21

some small interval of x within its domain, this is an expression of locally adverse
or, if c is negative, beneficial conditions. Obviously, this system represents an
autocatalytic chemical reaction consuming u to produce v. f can be set to 0 if no
supply of u is permitted. In this case, the reaction will eventually fully consume
u and then stop.
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Chapter 3

Network formation during
extension

Physarum, in order to forage for potential food sources, has to extend over the
available surface [66, 12]. This extension requires the advection of body mass
from the rear of the organism to the growth front [5, 29]. Since the transport
of body mass takes place in the vein network, the energy efficiency of Physarum
foraging depends on the lay-out of this tube system [50, 3, 77]. To study how
the organism forages efficiently, therefore, we need to understand both how it
organises the movement of its body mass itself and the patterns of its locomotive
behaviour through space and time.

In the following sections we will discuss, first, an experimental study of how
the slime mould constructs its network during locomotion. This will be followed
up by the introduction of a mathematical model and a simpler algorithm derived
from that model that try to explain the experimental findings. In the last section
of this chapter we introduce experimental studies focussing on finding regularities
in Physarum’s foraging behaviour.

3.1 Tube network dynamics during exploration

– experimental evidence

Physarum polycephalum is a remarkable experimental model organism: It is easy
to handle, grows quickly, and yet has the potential to exhibit complex and adap-
tive behaviour [54, 1, 68, 34, 45]. At the same time, its organisational simplicity
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as a giant (up to several m2) coenocyte [39, 74] ensures that behavioural decisions
are based on general rules, that is, are made in a distributed fashion.

Thus we use Physarum’s unique organisation to uncover general principles
that enable emergent but ‘smart’ behaviours [63, 54, 53, 84]. Our general exper-
imental approach is to submit the organism to conditions in which its potential
to exhibiting such behaviours can be exposed. Since any observed behaviours
are based on capabilities of the organism even if they are not seen under natural
conditions, we assume that they lead us to formulating general rules.

For the study of the emergence of a transportation network in expanding
domains, we let Physarum extend over a carefully shaped surface. The shape is
designed to be complex enough to expose adaptive behaviours, but also simple
enough to be able to trace observed behaviours back to specific geometric factors.
In more concrete terms, we confine the extension of the organism to a narrow
lane that is just wide enough for it to form one or two main veins. That is,
we basically restrict the organism to one-dimensional extension [75, 85]. On the
other hand, we are interested in the organism’s ability to adapt its vein network
to a change in growth direction. Therefore, we introduce turns into the lane.

We conducted experiments with a variety of shapes following this pattern
(figure 3.1): straight lines (as controls), a wide narrow bend, a narrow round
bend, a single orthogonal bend, two consecutive orthogonal bends both into the
same direction and into opposite directions, and a complicated combination of
orthogonal turns into a snake-shape. None of the lanes contained any food source
so as to focus on the explorative behaviour and not confuse it with exploitative
behaviour, which can induce dramatic morphological changes [54, 58].

3.1.1 Materials and methods

We cultivated Physarum polycephalum in the plasmodium stage at 23◦C in the
dark on 1%(w/v) agar. The culture was fed with unground oat flakes (Quaker
Oats Co.) at regular intervals. Before an experiment a batch of well grown
Physarum culture was transplanted onto a new agar and let expand over it [85,
69].

For the experiments we used segments of the growth front. These segments
were cut with a scalpel, weighed to ensure they were of a defined weight of
20±2mg, and lifted onto a 2%-agar plate bounded by the experimental arena.
The arena consisted of a 5mm-wide corridor of various shapes but with a total
area of 35mm2.
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Figure 3.1: Experimental arenas. The lanes are 5 mm wide. a: Shapes. The red
dots show where the samples were placed. 1: straight lane; 2: wide round bend;
3: two consecutive orthogonal bends in the same direction (‘U-shape’); 4: single
orthogonal bend; 5: narrow round bend; 6: two consecutive orthogonal bends in
opposite directions; 7: combination of multiple orthogonal bends (‘snake shape’).
b: Images of representative experimental results. c: Interpretation of the results.
The main vein is highlighted in red.
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We used 15 replications of a U-shaped arena and 8 replications of a snake-
shaped arena. For the duration of the experiment, all dished were kept in the
dark under a slightly opened lid (2mm gap between the lid and the upper edge
of the dish). To record the samples’ growth, they were placed in-between an
infra-red (λ ≈ 950nm) light source and a CCD camera capturing an image every
three minutes (figure 3.2).

In order to ascertain the effect of gravity on the development of the vein net-
work pattern, we mounted 4 of the U-turn arenas horizontally while the other
11 were mounted vertically. Out of these, 5 had the opening of the ‘U’ point-
ing downwards and 6 upwards. For the snake shape, all samples were placed
horizontally (figure 3.3).

3.1.2 Statistical analysis

To understand the typical exploratory behaviour of Physarum, that is, the typical
position of its veins when growing in a corridor containing a corner, we evaluated
images of the organism’s extension through the U-shaped corridor at a stage just
after having completely explored the arena. To do this, we measured the distance
of the centre of the major vein(s) to the inner boundary at regular intervals of
2mm along the corridor. Then, for each measurement site along the corridor, the
respective results across the different samples were averaged to find the average
vein position at that site. These averages were then connected with straight lines
to estimate the average main vein’s course (figure 3.4).

In order to see whether gravity, or rather, the spatial orientation of the or-
ganism influences its exploration behaviour, we tested the average vein positions
for the different orientations using one-way analysis of variance. At the 95%-
significance level, no difference could be found at any point. Therefore, all 15
samples were considered as belonging to the same distribution for further anal-
yses.

3.1.3 Results – a characteristic centre-in-centre trajec-
tory

When growing in the U-shaped corridor containing two 90◦ turns, the organism’s
main vein, instead of keeping to the centre line of the corridor or being established
along the line of the shortest possible path, cuts the corners and then returns to
the centre line. The result is a centre-in-centre line at each corner (figure 3.4).
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Figure 3.2: Schematic of the experimental set-up. a: Infra-red (λ ≈ 950nm) LED
light source. b: A pair of light diffuser plates to homogenise light. c: The sample
is placed on top of the upper diffuser plate. The lid is raised about 2mm above
the upper rim of the dish and held in place by tape in three places. This gap
prevents condensation on the lid while minimising evaporation. d: CCD camera.
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Figure 3.3: Orientation of the plates to test sensitivity of the results to gravita-
tion. a: U-shaped arena with the opening upwards (6 replications). b: U-shaped
arena with the opening downwards (5 replications). c: U-shaped arena placed
horizontally (4 replications). d: All other samples were placed horizontally only
(snake shape: 8 replications).
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Figure 3.4: Average position of the main vein in experiments with the U-shaped
arena. The distance of the main vein from the arena’s edge was measured every 2
mm. The resulting average trajectory (solid black line, with standard deviations
at each measurement point) is only 6% longer than the geometrically shortest
possible path (broken line), while the arena’s centre line (dotted line) is 18%
longer. The growth direction is indicated by the white arrows. Note the trajec-
tory before, at, and after each corner: The main vein is close to the centre line
far a way from the turns, but cuts to the inside of the turn at each corner. We
call this trajectory ‘centre-in-centre’. See figure 3.5 to see the centre-in-centre
trajectory at a single turn. From [69].
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This is a striking behaviour that is reproduced well throughout replicates and
different arena shapes (also visible in [43, 54, 2]).

Even though the resulting vein is constructed along a clearly distinct line
from the shortest possible path, it is only 4.6% longer than the latter over the
whole arch (containing two 90◦ turns).

Analysis of the time series of the exploration showed that it took Physarum
an average of 15±4 hours to explore the whole arena while the main vein emerges
at a spot typically some 50 minutes after the organism has extended its growth
front over it. However, in almost all cases the position of the main vein did not
change after its emergence (figure 3.5) [43]. In other words, that trajectory had
been fixed long before the organism explored the arena fully.

Figure 3.5: Time series example of the experiment. a: 495min after inoculation.
b: 1014min after inoculation, just before placing food sources at each end of each
lane. c: 2367min after inoculation, 1353min after placing the food sources. The
main vein first emerges at a short distance after the growth front (a) and doesn’t
change its position even after the arena is completely explored (b) or food sources
(stimulating flux through the main connecting vein) are available (c).

3.1.4 Discussion – achieving global efficiency

When expanding through a corridor containing a 90◦ bend, the free-roaming
slime mould constructed its vein network with a striking characteristic: The main
vein does not follow the centre line of its body, nor does it achieve the globally
shortest path. Instead, the organism generally followed the centre line, cut the
corners, and then returned to the centre line, thus forming a ‘centre-in-centre’
trajectory (figure 3.4). This vein network was laid down at a short distance
behind the growth front and remained largely unchanged as long as exploration
was ongoing, apart from minor side veins gradually disappearing (figure 3.5). In
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other words, the vein network lay-out was determined before the global geometry
of the arena was ‘known’ to the organism.

How efficient, then, is the result? There are various measures for efficiency of
networks, among them average shortest path length, diameter, several definitions
of betweenness, and accessibility [14, 28]. Given that the networks produced in
our experiments essentially consist of only one vein which may vary in shape and
position within the body of Physarum, we focus here on length and accessibility.

The total network length determines the efficiency with which body mass can
be transported through the main vein. The shortest possible path through the
arena used in our experiments would lead the vein along its inner edge between
the two bends (broken line in figure 3.4). Compared to this, Physarum’s vein is
only 4.6% longer. To appreciate this one needs to consider that a path strictly
along the centre line (thin line in figure 3.4) would have resulted in a trajectory
18.5% longer than the shortest possible path.

The accessibility, on the other hand, measures the average minimum dis-
tance of all points within the arena to the vein. Since a transportation network’s
purpose is to service the whole body mass of the organism, it makes sense to con-
struct the vein system such that diffusion distances or transportation through
smaller and, therefore, much more resistive vessels are minimised. The best pos-
sible vein trajectory in this respect is the centre line. Physarum polycephalum’s
vein is on average 27.9% farther away from the points within its body. To put
this into perspective, the globally shortest path has an average distance 76.4%
larger than the centre line.

At this point it should be mentioned that real veins are almost never perfectly
straight, but show numerous undulations. This is, however, true for both the
actual vein position here and for situations where the organism approaches the
globally minimal network length (as in [54, 2, 58]). We therefore deem the
underestimation of the path length to be negligible.

Physarum’s vein is not best in either measure, but it strikes a good balance,
since probably both dimensions are relevant to the organism’s functioning. If we
naively construct a linear combination of both measures of efficiency,

E = (w − 1)L+ wD (3.1)

where E is the combined efficiency (smaller values are better), L is the length
of the vein, D the average minimum distance of all points to the vein, and w
a weight for the relative importance of the two measures, we can anticipate for
which weights Physarum’s trajectory would perform better than either of the
extreme cases, namely, the globally shortest path and the centre line (figure 3.6).
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Figure 3.6: A composite measure for efficiency E combining total vein length
and average minimum distance between the vein and all points in the body with
different weights w. The values for the length were normalised to the length of
the globally shortest path, the values for the average minimum distance were
normalised to the value for the centre line. The centre line (yellow), the globally
shortest path (red) and the vein trajectory of Physarum all have a region of
weight values of optimal efficiency.
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With this approach of simple linear combination of these measures for the effi-
ciency, it is now possible to accurately estimate the relative importance Physarum
gives to each of these network characteristics. By first asking, for each value of w,
which trajectory out of all possible trajectories yields the optimal efficiency, we
can search for the trajectories thus obtained for the one closest to Physarum’s.
The weight corresponding to that trajectory may then be assumed to be an
indicator of the weight in the organism as well.

However, it is mathematically difficult and computationally costly to search
all possible trajectories. Thus, we performed this search with a piece-wise linear
approximation. We chose 9 points, 7 of which are variable, within the arena to
serve as anchor points for the trajectory and assumed a straight-line connection
between them. We further decreased the number of parameters in the search
space by assuming symmetry both between the left and the right side of the
arena and between the trajectory directly before and after the 90◦ turn, thus
ending up with only 3 independent parameters (figure 3.7).

We tried 16 values from 0 to 1 for each and all combinations of the parameters
a, b and c, resulting in 4,096 different trajectories. For each of these we calculated
the length and average minimum distance between the trajectories and all points
within the arena. Then we varied the value of the weight w in 151 steps from 0
to 1 and calculated the efficiency for each trajectory. An example for the result
can be found in figure 3.8.

Finally, after finding the trajectories with the optimal over-all efficiency for
each value of the weight w, we calculated which of these optimal trajectories
most closely approximated the trajectory of Physarum (see figure 3.9).

The best-fit trajectory was found for a weight w = 0.167, which may be
interpreted that Physarum prioritises the reduction of the total length of the
main vein over the optimisation of accessibility, at least in the case of exploratory
migration. However, the analysis presented here is very superficial. It can be
improved by comparing it to vein trajectories in arenae of different geometry, by
including additional measures of efficiency other than just length and average
distance, and by generally considering a more physically motivated approach to
‘efficiency’, that is, calculating a concrete physical dimension such as energetic
cost to measure efficiency.
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Figure 3.7: The set-up of the piece-wise linear approximation of the total trajec-
tory space to search for the trajectory with optimal combined efficiency for each
weight. Within the arena (grey), seven lines (black broken lines) were set up.
These lines reach from the inside boundary of the arena to the centre line (but
don’t extend to the outer boundary). Along each of the lines a parameter (a,
b or c) determined the position of the anchor point that would mount the tra-
jectory (red, blue and yellow lines for three different value triplets). Parameters
a and c were raised to a power in order to narrow the search spread in certain
areas where, from experience, trajectories of Physarum could be found more fre-
quently. Note that this is a bias only in accuracy, not in the resulting geometry.
Two additional anchor points were fixed at the middle points of the ends of the
arena. The red line is the globally shortest path with a = b = c = 0, and the
yellow line is the centre line with a = b = c = 1. The blue line is an example for
a trajectory for intermediate values (e.g., a = 0.4, b = 0.6 and c = 0.9).
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Figure 3.8: One-dimensional example for the results of the calculation of ef-
ficiency for all possible trajectories with only one free parameter a and fixing
b = c = a (see figure 3.7 for the definitions). Shown are the results of the over-all
efficiency E for w = 0 (‘length only’, blue), w = 1 (‘distance only’, red) and
w = 0.225 (‘weighted efficiency’, yellow). It can be seen clearly that in the case
where only length is regarded (w = 0), the optimal trajectory is found at a = 0,
which corresponds to the globally shortest trajectory. Likewise, when only dis-
tance is considered (w = 1), the optimal trajectory has a parameter a = 1, which
is the centre line. At an intermediate value w = 0.225, the optimal trajectory
has an intermediate geometry parameter a = 0.4.
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Figure 3.9: Overlay of Physarum’s vein trajectory (yellow) and the trajectory
with the geometry parameters a = 0.4, b = 0.6 and c = 0.933 (black), which has
the optimal over-all efficiency for a weight w = 0.167.
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3.2 Centre-in-centre vein trajectory and the

Physarum Solver

The Physarum Solver developed by [81] is a powerful tool to simulate the de-
velopment of the vein network of Physarum (section 2.2.1). The premise of the
model is that the organism has fully extended over the available arena with all
possible veins within its domain being of essentially the same diameter. How-
ever, this is not the situation we are dealing with in the extension experiments
discussed above, where the organism’s, and therefore, the network’s domain is
continuously extending concurrently with the formation of the vein network.

Running the Physarum Solver model on an U-shaped arena, with the end
points serving as sources and sinks of the flow, we therefore find a vein pattern
very different from the experimental result (figure 3.10). In this simulation, the
single main vein follows the geometrically shortest possible path closely. This
is best seen in the stretch between the two 90◦ turns where the vein does not
separate from the inner boundary of the arena and, as a consequence, does not
produce the typical centre-in-centre pattern at the corners.

This means that the Physarum Solver is able to find the globally optimal
solution where Physarum does reproducibly not find the shortest possible so-
lution. Nevertheless, the organism is able to come close to it even in the ab-
sence of complete information, and the centre-in-centre vein pattern is of key
importance to this. The geometric reason for this is that the main contribution
to the additional length of a divergence from the globally shortest path comes
from the behaviour at the corners. Rounding the corners of a path reduces its
length significantly. However, a rounding of corners itself is a local phenomenon,
whereas omitting rounded trajectories in favour of sticking to the globally optimal
path is obviously only possible under complete spatial information. Therefore,
since Physarum vein patterns do produce (rounded) centre-in-centre trajectories
whereas the Physarum Solver model does not, but finds the global optimum, we
have to conclude that the vein network dynamics described by the Physarum
Solver model alone are insufficient to capture the mechanism driving the emer-
gence of the vein network during extension.

However, a recent study [2] found centre-in-centre trajectories reproduced by
the Physarum Solver model, although the arena used in that publication was
much more complex than the ones used here. As a consequence, the appearance
of centre-in-centre trajectories depended on the configuration and interaction of
neighbouring corners, on the local ‘randomness’ of the mesh, and on fluctua-
tions in the initial vein thickness (figure 3.11). In other words, the trajectories
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mesh

vein

source and

sink nodes

Figure 3.10: The result of a Physarum Solver simulation based solely on the
current reinforcement principle. A network spans the whole of the arena. Two
points are defined as entry and exit points of some arbitrary flux, the rest of the
grid is allowed to adapt its edge diameters to the fluxes. The resulting single
vein is the shortest possible path [81]. Most critically, the vein does not return
to the centre between the turns. Modified from [69].
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found in that study can be considered a result of strict global optimisation under
complicated conditions.

Here, however, ‘centre-in-centre trajectory’ means the return of the vein to
the centre, unguided by the boundary, after each corner (given sufficient space
to do so), even if two consecutive corners turn in the same direction [69]. This
is in contradiction to strict global optimisation and can be considered an effect
of local optimisation.

(a)

(f)

(e)

(d)

(c)(b)
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Figure 3.11 (previous page): Possible definitions of and causes for a ‘centre-in-
centre trajectory’. a: Result of strict global optimisation if starting and ending
points are at a distance from the inner boundary. b: In a pre-defined mesh not
all trajectories are available. Therefore, there might be a number of trajecto-
ries of equal length that are all at the global minimum. Random fluctuations of
initial conditions might choose one such trajectory that appears to exhibit the
characteristics of a centre-in-centre trajectory (solid line), although other initial
conditions might have resulted in a trajectory that is clearly not centre-in-centre
(broken line). c: In a random mesh not all space around a corner may be avail-
able. In such circumstances, strict global optimisation may produce a trajectory
that looks as if it starts from and returns to the centre of the lane, although
the reason for this is that a path closer to the inside boundary is simply not
available in the mesh. d: Strict global optimisation between orthogonal turns in
opposite directions lead to trajectories that cut to the turns’ inside but approach
them from the centre line. However, this is a result of the arena’s lay-out. e: If
two consecutive turns in the same direction and the space between them are not
considered individually, but rather one combined turn, strict global optimisation
may lead to a trajectory that follows the inside of the ‘turn’ while starting from
and returning to the centre of the lane due to the arena geometry outside of the
spot considered. However, the trajectory around each individual corner is clearly
not centre-in-centre. f: Only if the trajectory of the vein robustly returns to the
centre of the lane even between two consecutive turns in the same direction and
even if other choices are available we speak of a ‘centre-in-centre trajectory’.
This is the only definition that is in contradiction to global optimisation of path
length, allowing us to differentiate between trajectories being optimised globally
and locally.
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Chapter 4

Modeling the network formation
during extension

In this chapter we will introduce two models to recreate the vein trajectory
formation of Physarum polycephalum during exploratory migration in the absence
of food sources. The first model is generative, that is, it is based on certain
experimentally determined physiological characteristics, but is not fed with any
of the experimental results it is meant to recreate. That is to say, no information
on the actual explorative behaviour of the real organism is used in this first model.
This will allow us to check which physiological processes and their interactions
need to be modeled in order to recreate the behaviour accurately. The second
model is based on the understanding gained from the first, but is unrelated in
mathematical terms. The quintessence of the relevant building blocks of the
first model and their interaction are used to make simple, phenomenological
predictions on the trajectory of the vein. However, these predictions are based
on the input of some experimental data, specifically, the growth front history.
The simplicity of the second model will give us a clear, intuitive understanding
of how Physarum is able to construct efficient transportation networks during
exploratory migration.

4.1 A complex model based on the physiology

of the extending slime mould

In order to predict the development of the extending tube network in its dynamic
environment, we need a model that can capture the effect of the extension of the
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growth front on the development of the tube network. In addition, we model the
rhythmic contraction waves of Physarum as a driving force for the cytosolic flux
through the tube network.

4.1.1 The elements of the model

We employ a composite model [69] consisting of three elements: the growth front,
the tube network, and the actomyosin contraction waves, which we will discuss in
the given order hereafter. However, while the growth front and the contraction
waves can be modelled in continuous two-dimensional space, the tube network
has to be modelled on a pre-defined grid of nodes and vertices stretching through
the same space.

The growth front

The first element needs to be able to reproduce the behaviour of the growth
front. Certainly there is a degree of influence of the rear part of the body on
the extension of the frontal tip, if not only for the fact that the body mass
necessary for this process is supplied from the rear through the tube network
stretching throughout the organism’s domain. However, [75] showed that growth
front extension can be accurately modelled independently of processes occurring
in the rear of the body by a Gray-Scott reaction-diffusion model.

Given that enough body mass is present for the organism to extend through-
out the whole of the available arena space, and given that most of the organism’s
body mass is concentrated in the growth front, it is plausible to model the be-
havior of the growth front independently from the rear. Thus, we employed the
above-mentioned Gray-Scott model (section 2.2.3).

As mentioned there, the physiological interpretation of the reaction-diffusion
process, that is, the identification of the model variables with actual chemical
species, is at this point only tentative. In the original study [75] introducing
a Gray-Scott-type model for the simulation of the growth front behaviour, the
model variables were identified as ‘intracellular ATP’ and ‘nutrients’. In a later
study [85] they were replaced by ‘solation factors’ and ‘solation regulation fac-
tors’, the same as used here. In addition we note that in the present implemen-
tation of the simulation the concentration of the the solation regulation factors is
high even outside the body mass. In other words, these chemicals are modelled
as if the pre-existed in the arena. This certainly is not a realistic situation.

How trustworthy, then, is a model which not only includes some clearly un-
realistic assumptions, but is not even clear about which conditions are to be
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modelled, in the first place? The answer to this question has to framed from a
different point of view: For our purposes, we are looking for a model that can
accurately describe the behaviour of the expanding growth front of Physarum
polycephalum. The only model capable of realistically doing so, to our knowledge,
is the above reaction-diffusion-type model. However, it is true that its variables
and parameters are not well defined and the model remains a phenomenological
one at this level.

The mathematical realisation of the model, equivalent to equations (2.9), is
given as

τ2
∂u

∂t
= Du∆u− uv2 (4.1a)

τ2
∂v

∂t
= Dv∆v + uv2 − α1v (4.1b)

τ2
dw

dt
= h(v) (4.1c)

where u is the concentration of the regulatory factors and v is the concentration
of the solation factors. Du and Dv are their respective diffusion constants and
∆ represents the Laplace operator ∂2/∂x2 + ∂2/∂y2. α1 is a positive constant.
Supplementing the system given in equations (2.9), the variable w is the organ-
ism’s thickness, assumed to grow as a function of the presence solation factors
h(v) = α2v, α2 being another positive constant. τ2 defines the time scale of the
growth front extension relative to the following processes.

The tube network

The aim of the presently proposed model is to accurately describe the develop-
ment of the tube network in an extending organism. Therefore, a description of
the dynamics of the tube system is necessary. The second element of the model
is, therefore, a version of the current reinforcement model introduced in [81].
However, we have to adapt the model to work in the context of the extending
domain.

Since the growth front is propagating largely independently from the devel-
opment of the tube network, cytoplasmic flow sinks may not always be available
at the same rate as fluid is supplied from the rear – there could either be more
flow than the growth front extension can absorb at a given time, or the growth
front has expanded more than what can readily be filled by cytosol. In either
case, an area of the organism’s domain newly made available to the tube network
is, in this model, spanned by empty tubes of zero diameter that do not, initially
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conduct any flow. Therefore, the tube network must be able to compensate for
flow in a pressure-dependent manner by distensible tube walls [64].

As a consequence, the interaction between pressure and flow is not fully cap-
tured by the analogy of the electric circuit normally employed for a pure current
reinforcement model, with pressure taking the place of voltage and flow the place
of current. Instead, the interrelation between pressure and flow is modelled ex-
plicitly and individually, and has to incorporate the material properties of the
tube.

Together, these dynamics are written in mathematical form as

dqij
dt

=
1

Ĩij(Dij)
{(pi − pj)− R̃ij(Dij)qij} (4.2a)

dpj
dt

=
∑
i

1

C̃ij(Dij)
qij (4.2b)

dDij

dt
=

|q|µ

1 + ad|q|µ
− rDij (4.2c)

where qij is the flow through a vertex between nodes i and j, and pi is the pressure

at node i. Ĩij, R̃ij and C̃ij are the fluid inductance, resistance and capacitance,
respectively, of the tube between nodes i and j. These are model properties of
distensible tubes, modified such that they don’t diverge at a tube radius of zero,
which is the default state of the grid vertices in this model. Inductance, resis-
tance and capacitance are defined respectively as Ĩij(Dij) = Lij/(āi + aiD

1/2
ij ),

R̃ij(Dij) = Lij/(ār + arDij), C̃ij(Dij) = (āc + acD
3/4
ij )Lij, where we define

Dij(t) := d4ij(t), dij being the radius of the tube between nodes i and j, for
convenience and will refer to it as ‘conductivity’. Lij is the length of the tube.
ai = 4π/9ρ, ar = 8π/81ν and ac = 2π(1−σ2)/(Eθ) are constants that are defined
by the fluid density ρ, the ordinary coefficient of viscosity ν, Young’s modulus
for the tube wall E, the thickness of the boundary wall θ and the Poisson ratio
for the wall σ. āi, ār and āc are arbitrary constants to generate the saturation
terms. The third equation (4.2c) represents the current reinforcement dynamics
as in equation (2.1), with ad and µ being constants controlling the non-linearity
of the feedback.

The actomyosin contraction waves

The model for the tube network described in the preceding section is usually
realised by choosing, at each iteration, two random nodes in the network’s mesh
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and designating one as an inlet node and the other as an outlet node with an
arbitrary (though fixed) ‘full’ pressure level at the inlet and a zero-pressure level
at the outlet. All other nodes have to follow mass conservation for the flows
in and out and are assigned pressure values in analogy to assigning voltages to
points in an electric circuit.

However, in a situation where the organism is extending more or less unidirec-
tionally over a surface, this implementation is neither practical nor realistic. It is
not practical, since the domain changes size at each iteration and, therefore, the
chance of choosing a node at the growth front would decrease rapidly over time;
it is not realistic, since the over-all flow would not follow a consistent pattern,
whereas such a pattern is evidently present in unidirectional extension.

Therefore, flow has to be generated in a different manner than by choosing
random inlets and outlets. We achieve this by creating pressure waves that are
generated at the starting point for the simulation and propagate throughout
the organism. We employ a Smith-Saldana-type model [73] for calcium-driven
contraction waves, where the calcium concentration and the phosphorylation
state (and, therefore, the activity) of the myosin light-chain kinase influence
each other, thus generating a series of self-propagating waves.

The mathematical formulation of the oscillator (cf. equations (2.9)) is

τ1
∂c

∂t
= −kV nc(c, φ) + kL(Nc − c) +Dc∆c

τ1
∂φ

∂t
= KQ(nc(c, φ))(1− φ)− kEφ

(4.3)

where c is the concentration of total cytosolic calcium and φ the probability of
the myosin light chain kinase (MLCK) being phosphorylated. τ1 defines the time
scale of the contraction waves relative to the dynamics of the growth front and the
tube network. kV and kL are the respective rate constant for calcium pumping
into the vacuole and leakage out of it into the cytosol. Nc is the total calcium con-
centration in the cell and nc the concentration of unbound cytosolic calcium, so
that Nc−c is the concentration of calcium in the vacuole. Dc is the diffusion con-
stant of calcium and ∆ the Laplacian operator as above. kE is the rate constant of
the MLC-MLCK complex de-phosphorylation, whereas the rate of the phosphory-
lation process KQ is a function of the free cytosolic calcium concentration nc (see
section 2.2.2), given byKQ(nc) = kQ[K∗nc(c, φ)/(1+K∗nc(c, φ))]. Here, kQ is the
maximum rate of MLC-MLCK phosphorylation and K∗ is the Michaelis-Menten
constant. The relative quanitities, finally, of the total cytosolic calcium c and the
free cytosolic calcium nc depend on the phosphorylation state of the MLC-MLCK
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complex and are given by nc(c, φ) = [1 + 0.17(c− 7.5)](a0 + a1φ+ a2φ
2 + a3φ

3)
which is a fitted version of equation (2.5) with fitting parameters a0, a1, a2 and
a3 [72].

4.1.2 Layers, interactions, time scales, and numerical scheme

The models above fall into two broad categories: the network dynamics are ex-
pressed by a discrete model for the dynamics at pre-defined nodes and edges
of a planar network. On the other hand, the reaction-diffusion process and the
actomyosin contraction waves are descriptions of processes in continuous space.
We therefore implement the model as the extension of a continuous ‘organism’
over a discrete and pre-defined network, with the reactions taking place in the
appropriate ‘layer’. However, the dynamics of vein formation, actomyosin con-
traction and leading edge formation interact with each other. There are four
such interactions.

(1) The tube network advects chemicals that take part in the reaction-diffusion
process in the growth front. As stated earlier, this process, as modelled here, can
sustain itself independently due to the regulation factor v being ubiquitously
located to model excess amounts of body mass, nevertheless the advection of
additional reactant v destabilises the behaviour of the growth front [70, 12]. We
assume that v is advected to network nodes in amounts proportional to the con-
ductivities D of all tubes ending at the node. Thus, we adapt equation (4.1b)
to

∂v

∂t
= (Dv∆v + uv2 − α1v)/τ2 + kB(w)D̃(x) (4.4)

where k is the interaction strength (for example the concentration of advected

v), D̃(xi) :=
∑

j Dij is the sum of the conductivities of the tubes ending at a
node i located at xi, and B(w) is the location of the growth front since we claim
that the emergence of v from the tube network only occurs at the growth front:

B(w) =

{
1 w ∈ [wext, wint]
0 otherwise.

(4.5)

where wext and wint are constants chosen such that w < wext everywhere outside
the organism and w > wint everywhere inside the organism except at the growth
front.

(2), (3) The pressure at any point in the tube network is determined by
the contraction state of the actomyosin, that is, by proxy, by the local calcium
concentration [89, 91]. Since this is the driver of the cytosolic flux, we include
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it in equation (4.2b). In addition, the pressure change is also influenced by the
stiffness of the wall which is in turn affected by the local concentration of solation
factors [30, 40]. The high concentration of solation factors at the growth front
and the resulting low pressure there creates a sink at the growth front. This,
too, is considered in equation (4.2b) as

dpj
dt

=
∑
i

1

C̃ij(Dij)(1 + avvij)
qij − κ(cj − c̄) (4.6)

where vij := [v(xi) + v(xj)]/2 is the average concentration of v in the tube
between nodes i and j and av is a positive constant. Since the contraction in
Physarum is small when the calcium concentration is large, we take κ to be a
positive constant. cj := c(xj) is the concentration of calcium at node j and c̄ is
the basal concentration of calcium.

(4) Finally, a rather technical point, which is a consequence of the model
being set-up in two layers. Although a fine and dense grid of veins pre-exist in
this implementation of the model, they are only allowed to expand their diameter
to assume non-zero size when the vein is in the region occupied by the organism.
Therefore, we assume that equation (4.2c) for the conductivity change depends on
the organism’s thickness so that tube growth can only occur inside the organism,
defined by a threshold thickness:

dDij

dt
= Γ(wij)

|q|µ

1 + ad|q|µ
− rDij

Γ(w) : =

{
1 w > wth

0 otherwise

(4.7)

where wij := [w(xi) + w(xj)]/2 is the average thickness of the organism along a
tube and wth is the threshold thickness defining the border between ‘inside’ and
‘outside’.

In addition to influencing each other numerically, the three model compo-
nents also have to have co-ordinated time scales. The relative time scales of the
contraction waves and the growth front extension, that is, the ratio between τ1
in equations (4.3) and τ2 in equations (4.1) was chosen such that approximately
600 contraction waves run through the body until it has extended over the whole
arena, which is in concordance with experimental observations. The absolute
values of τ1 and τ2 were chosen such that the resulting vein network visually
resembles the structure in the real organism. We will revisit the latter point
further down (section 4.1.4).
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We used the finite element method to solve the contraction wave and the
growth front dynamics, employing Neuman boundary conditions. We generated
the spatial mesh (figure 4.1) by using the software FreeFEM++ [32]. The pa-
rameter values for the numerical evaluation are listed in table 4.1.

a

b

Figure 4.1: Examples for the spatial mesh generated for the evolution of the tube
network. a: The snake-shaped arena. b: The U-shaped arena. Ω0 indicates the
starting position representing the location where a biological sample would be
placed. Modified from [69].
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The initial values for the variables are

pj(0) = 0 (j = 1, · · · , N)

qij(0) = 0 (i, j = 1, · · · , N)

Dij(0) =

{
0.1 if xi ∈ Ω0 or xj ∈ Ω0 (i, j = 1, · · · , N)

0 otherwise

c(x, 0) =

{
1.0 x ∈ Ω0

0.0 x ∈ Ω\Ω0

φ(x, 0) = 0 x ∈ Ω

u(x, 0) = 3 x ∈ Ω

v(x, 0) =

{
1.0 x ∈ Ω0

0.0 x ∈ Ω\Ω0

w(x, 0) = 0 x ∈ Ω

where Ω ⊂ R2 are the points within the arena and Ω0 ⊂ Ω represents the region
in which the organism is initially placed (figure 4.1).

In order to generate an actomyosin contraction wave [88], we take τ1 to be a
function of space (see table 4.1). In particular, we assume that τ1 in the starting
region Ω0 is smaller:

τ1(x) =

{
τ̄1/3, x ∈ Ω0

τ̄1, otherwise
(4.8)

With this setting, a periodic contraction wave propagating from Ω0 to the
leading edge is observed. In addition, due to the interaction term κ(cj − c̄) in
(4.6), a to-and-fro sol flow reminiscent of the ‘shuttle streaming’ in Physarum
[39, 90, 73] occurs.

The components of the model are summarised visually in figure 4.2 a, and
the distributions of the variables in equation (4.1) are shown in figure 4.2 b.

4.1.3 Evaluation of the model

A typical sequence of the model’s evolution is depicted in figure 4.3. It is clearly
visible that the model re-creates the key features of the organism’s extension: the
main veins are formed at a short distance behind the growth front; the position
of the main vein, once it has emerged, remains constant over time; and the
trajectory of the main vein follows a centre-in-centre pattern at each corner.
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(iii) Contraction wave

u

v

w
win

wext
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x
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Γ

wth

(ii) Vein formation

(i) Growth front extension

a

b

interactions

Figure 4.2: Visual summary of the numerical model. a: The main model com-
ponents. b: The distributions of the solation factor v (equation (4.1b)) and the
regulatory factor u (equation (4.1a)), the thickness of the organism w (equa-
tion (4.1c)), and the definition of the ‘inside’ of the organism Γ relative to the
modelled processes. Modified from [69].
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v

t = 1040

t = 1280

t = 800t = 429 min

t = 543 min

t = 726 min

a b

Figure 4.3: A typical sequence of the model’s evolution in comparison to a time
series of an experiment with the real organism. a: 3 frames from an experiment
with Physarum polycephalum in a snake-shaped arena. Note how multiple major
veins emerge after the growth front (e.g., arrow at 543min), while only those that
connect to the growth front at later stages are maintained (compare to the same
location at 726min). b: 3 frames from a model run. Highlighted are the growth
front (thick solid line), the main vein (solid line), and the location of solation
factors v (grey dots, indicating the growth zone of the organism; see text for
details). Note that the model not only qualitatively recreates the trajectory, but
also produces multiple veins behind the growth front, only one of which is kept
later. From [69].
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a0 = 0.349353 Dc = 0.2 wext = 0.1
a1 = -0.0454567 Du = 0.2 win = 0.9
a2 = 1.15905 Dv = 0.02 wth = 1.0
a3 = 1.823858 k = 0.01 α1 = 0.01
ac = 0.03 kE = 0.1 α2 = 0.1
ad = 0.01 kL = 0.004 κ = 1.0
ai = 5.0 kQ = 1.0 µ = 1.3
āi = 10.0 kV = 0.12 τ̄1 = 0.0072
ar = 13.5 K∗ = 1.75 τ2 = 20
āc = 0.1 Nc = 25.0
av = 0.01 r = 0.15
ār = 2.5 R = 1.0
c̄ = 7.0

Table 4.1: Parameter values for the numerical simulation. Values from [73, 72,
3], see also [69].

These observations are statistically stable (figure 4.4). Moreover, a compar-
ison between the experimental data and the model data (figure 4.4) shows that
the two coincide at almost all places, save for a single location where the model
exhibits exceptionally low variability. However, even this deviation, while quan-
titatively significant, is qualitatively irrelevant, since both data show the typical
centre-in-centre trajectory.

It is interesting to compare the time scales of the components of the model.
The time scale of the tube development is difficult to calculate and may, in fact,
have multiple time scales, depending on the geometric situation. The effective
time scale of the vein formation process in the experiment can, however, be
determined by fitting an exponential function through data indicative of the
process. For example, the absorbance of a given piece of plasmodium decreases as
that piece goes through various stages in the vein formation process concurrently
with the growth front moving away. Then, the denominator of the exponent is
the time scale. Thus, we could determine the effective time scale of the vein
formation process to be 195 seconds (see figure 4.5). In other words, the tube
network formation is not on the same time scale as the (faster) growth front
extension, but the difference (a factor of roughly 10) is not so large as to call
the two processes uncoupled (as is, for example, the case between the actomyosin
contractions and the other two processes). In the next section, we will investigate
the relevance of this ratio of the two processes’ time scales.
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Figure 4.4: Quantitative analysis of the vein trajectory of the model. The model’s
main vein’s position was measured at intervals equivalent to the experiment with
the real organism. The average vein (solid black line with standard deviations at
the measurement points) is in most parts statistically indistinguishable from the
position of the real organism’s vein (grey area indicating the area spanned by the
standard deviation around the average position) at almost all positions. Only at
the second corner there is significant difference due to the very low variation in
the model’s results. We also show the geometrically shortest path (broken line)
and the arena’s centre line (dotted line). The model exhibits the same centre-in-
centre trajectory at each corner seen in the experiments with Physarum and is
clearly different from the globally shortest path. Modified from [69].
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Figure 4.5: The absorbance of a given location in the plasmodium decays ex-
ponentially. This is indicative of the recruitment of body mass into the vein
network as the growth front moves away. The fitting curve follows the equation
A = 76e−

t
195 + 9. Thus, the time scale of the process is 195 seconds.

4.1.4 Variation of model parameters

Now that we have established that the model is able to reproduce the natu-
ral behaviour well, it is instructive to examine its performance under different
numerical conditions. We do this to investigate the importance of individual
elements to the model’s over-all performance and the interrelation of model com-
ponents with each other. In particular, we are interested in the relevance of the
interaction between growth front and vein network dynamics for the emergence
of the typical centre-in-centre vein trajectory.

First, we examine the disappearance of the explicit interaction term between
the vein network and the growth front. By setting k in equation (4.4) to zero, we
eliminate the destabilisation of the self-propagating wave front by the advection
of the solation factors through the tube network. In other words, the shape of
the growth front does not any longer depend on the state of the tube network.

The result of this (figure 4.6) is that the model constructs the main vein much
more closely to the globally shortest path and diverges from the experimental
results more strongly and in more places. However, a centre-in-centre trajectory
is still visible. This may be attributed to the fact that vein network formation still
occurs in close temporal and spatial connection to the growth front extension.
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Therefore, the position of the emergence of the main vein is still mainly guided
by local information. But we learn that the shape of the network sensitively
depends on the specific shape of the growth front.

Figure 4.6: Quantitative analysis of the vein trajectory of the model with no
explicit interaction between the growth front dynamics and the vein network
(k = 0). The average vein (solid black line with standard deviations at the mea-
surement points) is statistically different from the position of the real organism’s
vein (grey area indicating the area spanned by the standard deviation around the
average position) at a greater number of positions. The vein’s trajectory is much
closer to the geometrically shortest path (broken line), but still exhibits a centre-
in-centre trajectory at each corner (especially obvious in the stretch between the
two turns). Modified from [69].

Next, we investigate the importance of the relative speeds (that is, time scales)
of the growth front’s migration speed and the vein network formation. One of the
possible parameters that can control the migration speed is τ2 in equation (4.4),
the time scale of the leading edge dynamics. By decreasing τ2 the migration
speed of the growth front increases. But since we also decrease τ1, thus keeping
the ratio between τ1 and τ2 constant, the number of contraction waves until full
exploration is unchanged.
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The over-all effect of this is that the time scale of the tube network formation
is much slower relative to the modelled organism’s extension and the main veins
do not any longer emerge shortly behind the growth front (figures 4.7 a and b).
This change has a clear and significant impact on the tube network’s lay-out
(figures 4.7 c and d). The main vein does now not exhibit the centre-in-centre
trajectory, but runs alongside the inner boundary between the two 90◦ turns.

Since in this situation the network is forming in a globalised hydrodynamic
regime, that is, with most of the arena’s geometry accessible to the developing
network, this lends heightened credibility to our assessment (section 3.2) that the
centre-in-centre geometry is a product of local optimisation in the tight interplay
between growth front and tube network dynamics.

4.1.5 Interpretation

It is remarkable that a simple organism like Physarum polycephalum, without
means to perceive its distant environment, is able to produce network solutions
‘on-the-go’ that are close to optimal solutions even in the absence of full spatial
information. It is even more remarkable that this phenomenon could only be
modelled by the ‘complex reduction’ of available information. This is to say,
the model we propose above is highly complex (even though very incomplete) in
that it employs very disparate sub-models; however, the resulting whole does not
integrate a greater deal of information than each of the sub-units, but rather,
each sub-unit determines and, therefore, restricts the way others can unfold. For
example, instead of allowing the tube network to develop over the whole space
at once, the growth front grants access to the network only gradually; or, vice
versa, instead of letting the growth front propagate freely, its speed was limited
to the developmental time scale of the tube network.

In the real organism, Physarum polycephalum, these limitations are not, of
course, arbitrary but a result of its physiology. In other words, the complicated
model was necessary to understand the specific limitations the organism is facing
and how it is overcoming them to arrive at such efficient network solutions. The
answer to this seems to be that the organism couples the development of its vein
network to the extension of the growth front such that current-reinforcement-
based optimisation can work locally, while still allowing for the rapid construction
of a tube network. This combination guarantees efficient body mass supply from
and (chemical or hydrodynamic) communication with the rear of the organism.
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a b

c d

Figure 4.7: Effects of dissociating the time scale of the growth front extension
from the network development. τ2 controls the time scale of the growth front
propagation relative to the vein network development. Smaller values result in a
faster growth front. a: Development of the vein network under standard model
conditions. Multiple veins form directly after the growth front, reducing to a
single main vein at a short distance further back. b: Development of the vein
network with the growth front developing on a much faster time scale than the
vein network. Veins emerge only at a distance behind the growth front and, until
this point in the simulation, have not yet converged to single main vein. c: Final
vein lay-out under standard conditions. Note that the vein detaches from the
inner boundary between the two turns. d: Final vein lay-out under dissociated
conditions. The vein trajectory approaches the global optimum. Modified from
[69].
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4.2 Derivation of a simple algorithm to predict

the vein network’s lay-out

The take-away message of the above model is that the vein development is closely
controlled by the growth front extension. Not only is the network’s emergence
spatially linked to the extension zone, it also depends sensitively on the shape of
the growth front. A corollary of this finding is that growth front extension history
alone should be sufficient to make a prediction on the main vein trajectory. This
prediction can be made using only the quintessence of the above model: the local
optimisation of vein trajectories [69].

4.2.1 Algorithm principle

If it is true that the shape of the growth front is the major determinant of the lay-
out of the organism’s internal tube network under extension, a series of growth
front positions as it sweeps through the arena should be enough to predict, or
rather, reconstruct the trajectory of the main vein. The input of the algorithm
is, therefore, simply the sequence of extension front shapes (figure 4.8).

Two consecutive growth front positions are then connected tentatively by
straight lines such that for each point in the later (newer) position, the closest
point in the earlier (older) position is sought (figure 4.9, but see next para-
graph). This follows the rationale that, during extension, a large number of
proto-channels are formed in more or less straight lines outward from [29]. This
process is simply repeated for all consecutive pairs of growth front positions. In
the end, however, only those tentative connecting lines are kept for the final re-
sult that link up to a continuous connection from the very last (newest) growth
front position to the very first (oldest) position. The idea behind this is that all
channels that end blind will not continue to carry flow, and thus they will be
depreciated, whereas those that continue to experience flow because they connect
the organism end-to-end will not only remain, but also grow in diameter. This
method will usually lead to only one remaining vein which is the prediction for
the trajectory of the real organism’s main vein.

In order to simplify the calculation, we run the vein prediction algorithm on
an inverted time sequence of growth fronts (figure 4.9). Thus, we first calculate
the shortest linear connections of all points in the last (newest) growth front to
points in the growth front just before. For the next step and all steps after that,
we only consider the points in the earlier (older) growth front that the algorithm
has arrived at from the later (newer) growth front in the previous step. The
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Figure 4.8: A representation of the growth front history of Physarum poly-
cephalum extending through a U-shaped arena. Growth front positions are shown
at 60-minute intervals. Note that the main vein seems to connect its intersection
point with the later (younger) to the closest point in the earlier (older) of two
consecutive growth fronts. The data used for the algorithm is are the positions
of the growth fronts only. From [69].
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Figure 4.9: Illustration of the procedure used to obtain a prediction of the posi-
tion of the main vein from the history of the expansion of the organism’s growth
front. The organism extends from the (top) left to the (bottom) right. The wave
front is defined as the largest set of newly occupied pixels in each frame. To
predict the position of the vein at (m− 1)∆T , the minimal distance connection
of the vein position at m∆T to the growth front at (m− 1)∆T was determined.
This was done for every frame from the last (M∆T ) to the first. From [69].
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rationale is that all other points in the considered growth front will not connect
to the growth front after it and any connection to these points from the growth
front before it will, therefore, disappear. The result is necessarily the same as in
the natural time sequence. However, not all shortest connections from all points
in all consecutive growth fronts have to be calculated but only those that will
link up to the final growth front.

4.2.2 Evaluating the algorithm’s performance

The algorithm is able to predict experimental results with remarkable accuracy
(figure 4.10). Here, we used the algorithm to predict the trajectory of the main
vein of a sample of Physarum extending through a more complicated, snake-
shaped arena.

The good performance can be expressed quantitatively by the very low av-
erage distance (figure 4.11 a) of the predicted vein from the actual major vein
(figure 4.11 b). By comparison, the average distance between the real vein and
the shortest possible path (figure 4.11 c) is more than twice as large. This also
means that the hypothesis that the organism tries to minimise its global path
length is less predictive than the hypothesis that the organism’s behaviour is
driven by local optimisation.

In addition, the prediction algorithm also manages to accurately capture the
branching pattern of the vein network directly behind the growth front, with
many parallel veins coalescing into a few major veins, which finally merge into a
single vein.

The data presented above are based on time differences between growth front
positions of 9 minutes. However, since we took pictures of the growth front at a
smaller time interval, i.e., every 3 minutes, we made the predictions using only
every third picture of the full data series. Therefore, three possible predictions are
possible, which we superimposed. All three predictions yielded almost identical
results in all samples (n = 8) but one.

Figure 4.12 shows an example of a partially failed prediction. In this super-
imposition of three parallel predictions, based on the three different subsets that
can be chosen for a time interval of 9 minutes, two of these predictions trace the
actual major vein of the organism, but one prediction deviates between the third
and the fourth 90◦ bend. Interestingly, though, this deviation traces a secondary
vein that the organism did in fact construct, but dismantled shortly thereafter.

Generally, a multiplicity of veins is encountered either immediately behind
the growth front or where the growth front has expanded to a wide arch, e.g. at
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Figure 4.10: The vein prediction algorithm (right: black lines superimposed over
pictures of the experimental data) predicts the position of the organism’s main
vein (left: experimental data) with remarkable accuracy. From [69].
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a b

c

Figure 4.11: Quantitative evaluation of the performance of the vein prediction
algorithm. a: Comparison between the average normal distance of each point of
the predicted vein (PV) to the real vein (RV), compared to the average distance
of each point of the globally shortest trajectory (ST) to the real vein. The
average distance of the algorithm is less than half that of the globally shortest
path, demonstrating that local optimisation yields a better prediction of the real
vein’s position than global optimisation. b: Highlight of the real vein’s position
(black line). c: Globally shortest possible path through the arena (dotted line).
From [69].

a corner where a new direction for expansion opens up [29, 76]. In both cases
this is due to the geometric fact that if the angle of aspect of the growth front is
large from a given distance from it, local path length minimisation will require
more than one end point. But both in the organism as well as in the algorithm,
as the growth front moves away and refocuses, the number of paths is reduced,
as many of the now disappearing veins do not connect to the growth front in an
efficient way anymore. However, sometimes (usually: two) parallel veins survive,
at least for an extended time [43]. This is true for the organism in a literal sense,
but even in the algorithm this can occur when looking at the composite image of
numerous parallel predictions based on different subsets of the same image series
(as described above and shown in figure 4.12).

We interpret this occurrence as examples for situations in which, in the real
organism, two veins are virtually equally efficient for supplying body mass to
the growth front at one point in time, so that current reinforcement (or, in the
algorithm, local path minimisation) cannot decide on one particular path. In
these cases, the organism keeps both veins functional, a trait that might pay
off at a later point in time, when the geometry of the environment is explored
to a higher degree. Then, one of the multiple veins might be in a preferable
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Figure 4.12: Partially failed main vein predictions. Left side: Experimental data.
Right side: Algorithm results (lack lines) over-laid over experimental data. Mul-
tiple lines result from the over-laying of multiple predictions based on different
sub-sets of the full growth front history. Note that the failed prediction (black ar-
row in the middle panel of the right column) seems to trace one of the secondary
veins of the organism (small arrows in the middle panel of the left column). From
[69].
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position and will be used to a greater extent than the other, which will disappear
as a consequence. Therefore, the appearance of a multiplicity of veins can be
interpreted as an adaption to a fundamental problem of Physarum, that is, the
lack of remote sensory abilities, and the need to entertain multiple behavioural
options to be able to react to ‘unforeseen’ environmental conditions.

We also varied the time interval between growth front positions used for
making the predictions. Using time intervals that are too small often fails to
correctly identify the main vein. In these cases the algorithm returned predictions
that retrieved the position of some secondary vein or a temporary main vein (see
figure 4.12 for an example). On the other hand, if the time interval for the vein
prediction is too large the accuracy of the prediction decreases (figure 4.13). This
is due to the fact that the growth reacts to environmental conditions (e.g. corners
or obstacles) and in turn influences the position of the vein, and this information
is ignored for the frames skipped when working with large time intervals. In
practice, time intervals around 15 min yielded the smallest median distance of the
predicted vein from the actual major vein. However, owing to the large variation
among the samples, the differences between the time intervals in figure 4.13 were
not statistically significant, and we could not establish a single time interval
∆T (≤30min) yielding the best result for all studied samples. We interpret
this as hinting at a variability in the duration of the determination process in
the organism itself, possibly depending on expansion speed and environmental
conditions.

4.2.3 Conclusion

The algorithm is based on the observation that the tube network development
in Physarum is coupled to the growth front extension and is using current rein-
forcement dynamics to choose between available locally optimal solution.

The good performance of the algorithm suggests that it captures a central ele-
ment of the real organism’s behaviour. This is supported by the fact that its core
mechanism is derived from a model incorporating physiological characteristics of
Physarum.
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Figure 4.13: The distance of the vein prediction (PV) from the real vein (RV)
, averaged over all samples, depends on the chosen frame interval. The lowest
average distance is at ∆T = 15min, but the large variation makes the choice of a
single best time interval for all samples impossible. However, at intervals larger
than 30 minutes the distance becomes larger, too. From [69].
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Chapter 5

Outlook

In the preceding chapters we described how the uni-cellular slime mould Physarum
polycephalum constructs its vein network during exploratory migration. We char-
acterised the network in experimental studies and introduced a numerical model
that integrates three physiological features that are necessary for migration and
tube formation. Based on the model’s success we introduced a simplified, phe-
nomenological algorithm that draws on the model’s main assumptions.

In the following, we will discuss the natural setting of this description of
Physarum tube network development, regarding the biological reality of the or-
ganism and, briefly, the applicability of the description to other networks. We
will then review which other questions are connected with the present issue.

5.1 The biological setting of the current rein-

forcement dynamics

The migration behaviour of Physarum consists of three processes: uni-directional
growth front expansion [12, 29, 65], cytoplasmic streaming generated by acto-
myosin contraction [39, 52, 5, 80], and plasmodial vein network formation occur-
ring in the inner part of the body [76, 12, 22]. Each of these phenomena have
been described separately by mathematical models that allowed their prediction
in computer simulations [75, 73, 69]. However, in nature, Physarum employs
all three mechanisms simultaneously while foraging. As a consequence, the vein
network formation depends on both the contraction waves and the growth front
expansion, while the latter requires advection of protoplasm which also desta-
bilises the wave propagation [70, 12]. Describing these three processes in concert
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provides, therefore, natural boundary conditions such as coordinated temporal
and spatial scales for each of the components, as well as sheds light on their
interplay.

In particular, the importance of the growth front expansion for the vein net-
work development had been neglected so far, even though it dynamically deter-
mines the area within which the vein network is to be formed. This is relevant
since the static situation [81, 84, 92] yields results very different from the dy-
namic one (section 3.2) and is therefore an incomplete and inaccurate description
of the biological situation. In addition, the global consequences of a local process
such as employed by the current reinforcement model in a dynamic setting are
interesting in themselves.

Under the assumptions of the static model, the food sources act as attractors
for the body mass of Physarum and generate a directional body mass flow nec-
essary for the current reinforcement mechanism to work, thus creating a highly
efficient network connecting the food sources [82, 83]. But being spread out over
a large area and then be presented with food sources placed at different positions
in the area occupied is not a natural situation for the slime mould. In nature, the
organism extends over surfaces and in soil in the search for food sources and am-
icable environmental conditions. In this process it has an incentive to transport
body mass efficiently to the growth front, that is, to expend as little energy (lost
due to viscous drag) as possible and to maximise extension speed [50, 77]. Here
it is the expansion of the growth front, in particular the sol-gel transformation,
that acts as the body mass sink causing a directional flow. Therefore, we claim
that the advantage the current reinforcement mechanism confers to Physarum
mainly lies in it affording the organism very efficient spatial exploration.

5.2 Generality of the algorithm

There are many models inspired by slime mould behaviour (for example [85, 40,
81, 37, 73, 61, 27, 57], also see [24] for a review), however, many are quite phe-
nomenological. The benefit of the numerical model presented in this work is that
it contains many parameters that physically relatable to physiological processes
in Physraum. This allows us to study the biological meaning of and connections
between the processes in the slime mould. On the other hand, because of this,
the numerical model does not enjoy wide applicability.

In contrast, the derived phenomenological algorithm is based on very general
principles: the local minimisation of connections and the pruning of globally dis-
advantageous connections due to their carrying less flow. Due to this generality,
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it would be interesting to see whether the algorithmic formulation can also cap-
ture the development of other systems in which the expansion of the system’s
boundaries are in step with the construction of its internal network.

Can, for example, the lay-out of overland road networks be understood in
terms of its contribution to the expansion of civilisation, or the growth of roots
or mycelia by the flow of nutrients necessary for their construction? There are, of
course, differences, as civilisations have ‘remote-sensing capabilities’, and roots
and mycelia have no body other than the transport network (they are the trans-
port network). Nevertheless, in all these cases the network depends on the bound-
aries and will develop according to flow requirements through the body, and in
all these cases some form of local optimisation may yield an advantage to the
efficiency of the over-all system. Therefore, it might not be unreasonable to think
that the phenomenology and the mechanism discussed above are shared among a
wide and significant group of natural networks, namely flow-responsive networks
that form within an expanding domain.
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