Large thickness dependence of the carrier mobility in a transparent oxide semiconductor, La-doped BaSnO$_3$

Anup V. Sanchela, Mian Wei, Haruki Zensyo, Bin Feng, Joonhyuk Lee, Gowoon Kim, Hyoungjeen Jeen, Yuichi Ikuhara, and Hiromichi Ohta

Citation: Appl. Phys. Lett. 112, 232102 (2018); doi: 10.1063/1.5033326
View online: https://doi.org/10.1063/1.5033326
View Table of Contents: http://aip.scitation.org/toc/apl/112/23
Published by the American Institute of Physics

Articles you may be interested in

Controlling surface carrier density by illumination in the transparent conductor La-doped BaSnO$_3$

Chemical intermixing at oxide heterointerfaces with polar discontinuity

High-mobility BaSnO$_3$ grown by oxide molecular beam epitaxy
APL Materials 4, 016106 (2016); 10.1063/1.4939657

Interface energy band alignment at the all-transparent p-n heterojunction based on NiO and BaSnO$_3$

Stability of the oxygen vacancy induced conductivity in BaSnO$_3$ thin films on SrTiO$_3$
Applied Physics Letters 111, 172102 (2017); 10.1063/1.4996548

High quality gate dielectric/MoS$_2$ interfaces probed by the conductance method
Large thickness dependence of the carrier mobility in a transparent oxide semiconductor, La-doped BaSnO₃

Anup V. Sanchela, Mian Wei, Haruki Zensyo, Bin Feng, Joonhyuk Lee, Gowoon Kim, Hyoungjeen Jeen, Yuichi Ikuhara, and Hiromichi Ohta

1Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan
2Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
3School of Engineering, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan
4Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-8656, Japan
5Department of Physics, Pusan National University, Busan 46241, South Korea

(Received 4 April 2018; accepted 14 May 2018; published online 6 June 2018)

In this study, we report that the carrier mobility of 2%-La-doped BaSnO₃ (LBSO) films on (001) SrTiO₃ and (001) MgO substrates strongly depends on the thickness, whereas it is unrelated to the film/substrate lattice mismatch (+5.4% for SrTiO₃ and −2.3% for MgO). The films exhibited large differences in lattice parameters, lateral grain sizes (∼85 nm for SrTiO₃ and ∼20 nm for MgO), surface morphologies, threading dislocation densities, and misfit dislocation densities. However, the mobility dependences on the film thickness in both cases were almost the same, saturating at ~100 cm² V⁻¹ s⁻¹, while the charge carrier densities approached the nominal carrier concentration (≈2% La³⁺). Our study clearly indicates that the carrier mobility of LBSO films strongly depends on the thickness. These results would be beneficial for understanding the carrier transport properties and fruitful to further enhance the mobility of LBSO films. Published by AIP Publishing.

https://doi.org/10.1063/1.5033326

Transparent oxide semiconductors (TOSs) showing high optical transparency and high electrical conductivity have been applied as active materials in wide-scale advanced electronic device applications. Recently, there has been growing interest on La-doped BaSnO₃ (LBSO; bandgap, E₉ ∼3.5 eV) with a cubic perovskite structure (a = 4.115 Å) as a novel TOS because flux-grown LBSO single crystals exhibited a very high mobility of 320 cm² V⁻¹ s⁻¹ and electrical features of epitaxial LBSO (La₀.02Ba₀.98SnO₃) films strongly depends on the thickness, whereas it is unrelated to the film/substrate lattice mismatch (+5.4% for SrTiO₃ and −2.3% for MgO). The films exhibited large differences in lattice parameters, lateral grain sizes (∼85 nm for SrTiO₃ and ∼20 nm for MgO), surface morphologies, threading dislocation densities, and misfit dislocation densities. However, the mobility dependences on the film thickness in both cases were almost the same, saturating at ~100 cm² V⁻¹ s⁻¹, while the charge carrier densities approached the nominal carrier concentration (≈2% La³⁺). Our study clearly indicates that the carrier mobility of LBSO films strongly depends on the thickness. These results would be beneficial for understanding the carrier transport properties and fruitful to further enhance the mobility of LBSO films. Published by AIP Publishing.

In order to minimize Δa, a buffer layer deposition on a substrate was also investigated. Shin et al. used an undoped BaSnO₃ film as a buffer layer (150 nm thick) on MgO by the pulsed laser deposition (PLD) technique and obtained a mobility of 97.2 cm² V⁻¹ s⁻¹. Another study by Shigai et al. reported a mobility of 80 cm² V⁻¹ s⁻¹ with (Sr, Ba)SnO₃ buffer (200-nm-thick) deposited by PLD on SrTiO₃. Lee et al. have used the flux grown undoped BaSnO₃ (001) single crystal as a substrate, but the resulting mobility was <100 cm² V⁻¹ s⁻¹. These contradict the hypothesis regarding the misfit/threading dislocations since there was almost no lattice mismatch between the substrate and the film.

Several studies suggest that cation off-stoichiometry or cation mixing can introduce charge point defects and dislocations, which act as scattering sources and thus suppress the mobility. However, the origin of the limited electron mobility in LBSO thin films has not been clearly explained to date, and a fundamental study on other factors such as the film thickness is required to understand this phenomenon. Therefore, in this study, we analyzed the structural and electrical features of epitaxial LBSO (La₀.02Ba₀.98SnO₃) films with various thicknesses (14–1040 nm), which were grown on (001) perovskite SrTiO₃ (Δa = +5.4%) and non-perovskite (001) MgO (Δa = −2.3%) by PLD.

Here, we report that the carrier mobility of the LBSO films strongly depends on the thickness, whereas it is unrelated to the lattice mismatch. Although we observed large differences in lattice parameters, lateral grain size, the density of threading dislocations, the surface morphology, and the density of misfit dislocations, the mobility increased almost simultaneously with the thickness in both cases and saturated at ~100 cm² V⁻¹ s⁻¹, together with approaching to...
the nominal carrier concentration ([La3+])

Epitaxial La0.02Ba0.98SnO3 films with thicknesses varying from 14 nm to 1.04 μm were heteroepitaxially grown on (001) SrTiO3 and (001) MgO single crystal substrates by the PLD technique using a KrF excimer laser (λ = 248 nm, fluence ~2 J cm⁻² pulse⁻¹, 10 Hz). The temperatures during the film growth were 700 °C for SrTiO3 substrates and 750 °C for MgO substrates, while the oxygen pressure was kept at 10 Pa. In the case of SrTiO3 substrates, the LBSO films were annealed at 1200 °C in air to obtain atomically smooth surfaces.\(^5,15\)

High-resolution X-ray diffraction (Cu Kα1, ATX-G, Rigaku Co.) measurements revealed that the LBSO films were heteroepitaxially grown on (001) SrTiO3 and (001) MgO substrates with a cube-on-cube epitaxial relationship. The film thicknesses were determined from the Kiessig fringes or Pendellosung fringes. The surface morphology was investigated using an atomic force microscope (AFM, Nanocute, Hitachi High Tech.). The stepped and terraced surface was observed on the film grown on a (001) SrTiO3 substrate (Fig. S1(a) in the supplementary material), whereas very tiny grains were observed in the film grown on a (001) MgO substrate (Fig. S1(b) in the supplementary material). The AFM images show that the films grown on SrTiO3 and MgO have very different surface morphologies.

In order to elaborate the structural differences in more detail, X-ray reciprocal space mappings (RSMs) were performed around the asymmetric 103 diffraction spots of BaSnO3 with the 103 diffraction spots of SrTiO3 [Fig. 1(a)] and the 204 diffraction spot of MgO [Fig. 1(b)]. While the \(q_x/2\pi\) peak position of BaSnO3 and the substrate are different from each other, they both are located nearby the red dotted line (cubic), indicating incoherent epitaxial growth occurred in both cases. In order to determine the lateral grain size \(D\), we plotted the cross-sectional peak intensity as a function of \(q_x/2\pi\). In the case of the SrTiO3 substrate, an integral width of 0.0306 nm⁻¹ was obtained for the 14-nm-thick film, whereas that of 0.0127 nm⁻¹ was obtained for the 1040-nm-thick film [Fig. 1(c)]. In the case of the MgO substrate, an integral width of 0.1085 nm⁻¹ was obtained for the 44-nm-thick film, whereas that of 0.0557 nm⁻¹ was obtained for the 1000-nm-thick film [Fig. 1(d)].

Using the 103 diffraction spots, we calculated the average lattice parameters, \((a^2-c)^{1/3}\), of the LBSO films grown on SrTiO3 and MgO substrates [Fig. 2(a)], where \(a\) and \(c\) are the in-plane and the out-of-plane lattice parameters, respectively. The \((a^2-c)^{1/3}\) values of the films on SrTiO3 and MgO substrates initially showed opposite behaviors; \((a^2-c)^{1/3}\) of the films on MgO was larger than the bulk, whereas that of the films on SrTiO3 was smaller than the bulk, which are probably attributed to the differences in the lattice mismatch. On both substrates, the \((a^2-c)^{1/3}\) values were nearly similar when the thickness was greater than 300 nm. We then calculated the lateral grain size \(D = (\text{integral width in the } q_x/2\pi \text{ direction of the RSM}^{-1})\) of the LBSO films grown on SrTiO3 and MgO substrates as shown in Fig. 2(b). The lateral grain sizes were quite different as the LBSO films on SrTiO3 exhibited a maximum grain size of ~85 nm, whereas the grains in the LBSO films on MgO were 20 nm or less.

The microstructure of the LBSO films was characterized by high-angle annular dark-field scanning transmission electron microscopy.
electron microscopy (HAADF-STEM). Figure 3 shows the cross-sectional HAADF-STEM images of (a) the 1.04-\(\mu\)m-thick LBSO/SrTiO\(_3\) and (b) the 1-\(\mu\)m-thick LBSO/MgO films. In the case of LBSO/SrTiO\(_3\) [Fig. 3(a)], mismatch dislocations (indicated by arrows) are observed periodically (~7.3 nm) in (a), such periodicity is not clearly seen in (b), indicating the difference of the mismatch dislocation density.

FIG. 3. Cross-sectional HAADF-STEM images for the LBSO epitaxial films. (a) 1040-nm-thick LBSO film grown on a SrTiO\(_3\) substrate. (b) 1000-nm-thick LBSO film grown on a MgO substrate. While mismatch dislocations (arrow) are seen periodically (~7.3 nm) in (a), such periodicity is not clearly seen in (b), indicating the difference of the mismatch dislocation density.

Thus, the densities of the threading dislocations are 1.4 \(\times\) 10\(^{10}\) cm\(^{-2}\) for the film on the SrTiO\(_3\) substrate and 2.5 \(\times\) 10\(^{11}\) cm\(^{-2}\) for the film on the MgO substrate. These results show that there are several structural differences between the LBSO films on SrTiO\(_3\) and MgO substrates, which include the surface morphology, lattice parameter, lateral grain size, density of threading dislocations, and density of misfit dislocations.

The electrical resistivity (\(\rho\)), carrier concentration (\(n\)), Hall mobility (\(\mu_{\text{Hall}}\)), and thermopower (\(S\)) of the LBSO films at room temperature (RT) and low temperatures were measured by the conventional DC four-probe method using an In-Ga alloy electrode with van der Pauw geometry. \(S\)-values were measured by creating a temperature difference (\(\Delta T\)) of ~4 K across the film using two Peltier devices. Two small thermocouples were used to monitor the actual temperatures of each end of the film. The thermo-electromotive force (\(\Delta V\)) and \(\Delta T\) were measured simultaneously, and the \(S\)-values were obtained from the slope of the \(\Delta V\)–\(\Delta T\) plots (correlation coefficient >0.9999).

Figure 4 and Tables SI and SII in the supplementary material summarize the electron transport properties of the LBSO films grown on SrTiO\(_3\) and MgO substrates at RT. Regarding the overall tendencies, no clear difference was observed from LBSO films deposited on SrTiO\(_3\) and MgO substrates. The value of \(n\) increased with the increasing thickness and approached the nominal carrier concentration (=[2\% La\(^{3+}\)]. Approximately, 88\% La\(^{3+}\) dopants were activated and produced conducting electrons for films thicker than 350 nm [Fig. 4(a)]. Similarly, the magnitude of \(S\) [Fig. 4(b)], which decreases with increasing \(n\), gradually decreased with the thickness, which is consistent with Fig. 4(a). All values of \(S\) were negative, indicating that the LBSO films are \(n\)-type semiconductors. In addition, \(\mu_{\text{Hall}}\) increased gradually with the thickness and became constant for films thicker than 350 nm. The highest mobility values were 97.7 cm\(^2\) V\(^{-1}\) s\(^{-1}\) for 1040 nm thick LBSO/SrTiO\(_3\) and 99.2 cm\(^2\) V\(^{-1}\) s\(^{-1}\) for 450 nm thick LBSO/MgO. The thickness dependence of \(\mu_{\text{Hall}}\) and \(n\) in the LBSO films were similar on both SrTiO\(_3\) and MgO substrates. In addition, since \(\mu_{\text{Hall}}\) and \(n\) of LBSO films thicker than 350 nm do not show a significant dependence on the substrates, the contributions from the structural differences between LBSO/SrTiO\(_3\) and LBSO/MgO on the mobility are likely small.
Finally, we measured the temperature dependence of the electron transport properties of the LBSO epilayers at RT. (a) carrier concentration (n), (b) thermopower (S), and (c) Hall mobility (μHall). No clear differences in the overall tendencies were observed on SrTiO3 and MgO substrates.

observations, the Sn2+ ions substitute either the B-site or the A-site of the perovskite BaSnO3. If Sn2+ ions substitute the B-site in the LBSO films, the Sn2+ should play as electron acceptors and ionized impurities, and they may be related to the suppression of μHall and n in the films (compared to bulk values). From these observations, we speculate that the thickness dependence of the electron transport properties originates from the thickness dependence of the Sn2+ ion concentration. In order to clarify the formation mechanism of Sn2+ ions, a further study is needed.

We have demonstrated that the electron transport properties of the LBSO films grown on (001) SrTiO3 and (001) MgO substrates show a strong thickness dependence in the range of 14 nm–1040 nm. Although LBSO/SrTiO3 and LBSO/MgO exhibited several structural differences including lattice parameters, lateral grain size, the density of threading dislocations, the surface morphology, and the density of misfit dislocations, these structural discrepancies did not play a major role in the carrier mobility as no clear structure-induced difference was observed in the electron transport properties. μHall and n increased with the increasing LBSO film thickness. On both SrTiO3 and MgO substrates, the maximum μHall observed was ~100 cm2 V−1 s−1. While the origin of the strong thickness dependence of μHall remains unclear, we detected the 2+-valence state of Sn in the XAS spectrum of a 500 nm thick LBSO film. Since Sn2+ ions should play not only as electron acceptors but also as ionized impurities, they may increase the scattering cross section of the electrons and contribute to the mobility suppression.21–23 We hope to clarify the effect of the Sn valence state on the electron mobility of LBSO films in near future.

We believe that our results can provide a guideline for the thickness optimization of high-mobility LBSO films grown on other substrates. This study also provides further insights into the development of LBSO-based electronic devices.

See supplementary material for the topographic AFM, cross-sectional LAADF-STEM, XAS, and temperature dependence of the electron transport properties of the LBSO films.

This research was supported by Grants-in-Aid for Scientific Research on Innovative Areas “Nano Informatics” (Nos. 25106003 and 25106007) from the Japan Society for the Promotion of Science (JSPS). H.I. and H.O. were supported by the Korea-Japan bilateral program funded from the following programs of each country: International cooperation program by the NRF (NRF-2018K2A9A2A0800079) and JSPS. H.O. was supported by Grants-in-Aid for Scientific Research A (No. 17H01314) from the JSPS, the Asahi Glass Foundation, and the Mitsubishi Foundation. A part of this work was supported by Dynamic Alliance for Open Innovation Bridging Human, Environment, and Materials and by the Network Joint Research Center for Materials and Devices.

A.S., M.W., and H.Z. performed the sample preparation and electron transport measurements. B.F. and Y.I. performed the STEM analyses. J.L., G.K., and H.J. performed the XAS measurements. H.O. planned and supervised the project. All authors discussed the results and commented on the manuscript.

The authors declare no competing financial interests.

