<table>
<thead>
<tr>
<th>Title</th>
<th>Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Chemosphere, 178, 333-339</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-07</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/74828</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license</td>
</tr>
<tr>
<td>Rights(URL)</td>
<td>http://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>Frequent Presence of the β-Triketone Herbicide.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
Presence of the β-Triketone Herbicide Tefuryltrione in Drinking Water

Sources and its Degradation Product in Drinking Waters

Motoyuki Kamataa,*, Mari Asamib, Yoshihiko Matsuić

a College of Engineering, Kanto Gakuin University,
Mutsuura-higashi 1-50-1, Kanazawa-ku, Yokohama 236-8501, Japan

b Department of Environmental Health, National Institute of Public Health,
2-3-6 Minami, Wako-shi, Saitama 351-0197 Japan

c Faculty of Engineering, Hokkaido University,
N13W8, Sapporo 060-8628, Japan

* Corresponding author: Phone & Fax: +81-45-786-4978
Email: motoyuki@kanto-gakuin.ac.jp
Abstract

Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 µg/L. The maximum observed concentration was lower than but close to 2 µg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 µg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive.

Keywords: pesticide, HPPD inhibitor, river water, chlorination by-products, tap water
1. Introduction

The annual global consumption of pesticides is estimated to be 24 million tons as active ingredients, and these ingredients represent approximately 900 different chemicals (USEPA, 2011). This intentional application of such a huge amount of pesticides to open surface areas may have a strong impact on both the environment and human health. Due to high public concern regarding residual pesticides in drinking water and food, governments restrict authorized concentration in drinking waters through each standard or directive. In drinking water quality standards or directives, however, the degradation products of pesticides are seldom considered. However, some survey studies have reported higher concentrations of degradation products than of original forms in river waters (Hladik et al., 2008; Botta et al., 2009; Iwafune et al., 2010; McMahen et al., 2016).

Rice-farming herbicides easily enter natural river waters at higher rates than other pesticides used in upland farming because they are applied to paddy fields where a large amount of water is irrigated, ponded, and drained during the rice-farming seasons (Narita et al., 2014). According to a national survey of drinking and source water quality (Matsui, 2016), rice-farming herbicides such as molinate and pretilachlor are detected more frequently at high concentrations than other pesticides. The ADI (acceptable daily intake) values of pesticides, which span a broad range (more than five orders of magnitude), affect the significance of measured concentrations relative to the toxicities of pesticides, because the individual guideline values of pesticides are derived from their ADI values.

Given this background information, we focused on a new rice-farming herbicide, tefurylitrione (TFT) (Table 1), and its degradation product. TFT is a β-triketone herbicide, which causes weed whitening and death by inhibiting HPPD (hydroxyphenylpyruvate...
dioxygenase) activity. Triketone herbicides including TFT are becoming popular, replacing sulfonylurea herbicides, because of their herbicidal activity against resistant weeds (Itoh et al., 1999; Uchino et al., 2000). In Japan, TFT was registered in 2007, and since then has been increasingly used in rice farming. TFT was also registered in 2015 in Korea (Park et al., 2012), and other triketone herbicides (mesotrione, sulcotrione, and tembotrione) are registered in many other countries, including the USA and several European countries (USEPA, 2007, 2009a; ECHA, 2011). Environmental monitoring information about triketone herbicides is gradually accumulating, as is information about their behaviour during water purification processes (Freitas et al., 2008; Patil et al., 2016; Dumas et al., 2017). However, information is still limited regarding their degradation products (Freitas et al., 2004; Durand et al., 2010; Bensalah et al., 2011; Murati et al., 2012; Jović et al., 2013; Barchanska et al., 2016), in particular those found in drinking water.

In an assessment conducted by the Food Safety Commission of Japan (FSC), the ADI of TFT was set at 0.8 µg/kg/day (FSC, 2009), and a prospective reference concentration of 2 µg/L can be derived from this ADI value multiplied by standard body weight (50 kg) and allocation factor (10%), divided by drinking water consumption (2 L). This value is the lowest among the herbicides registered in Japan. Yet, TFT is not included in the list of motoring candidates of the Japanese Drinking Water Quality Guideline (JDWQG) (MHLWJ, 2003), and it is not listed in any of the national drinking water quality standards or guidelines. The low ADI value of TFT, coupled with the recent increase in the quantity of TFT that is shipped annually, raises concern that TFT should be monitored in drinking and source waters.

Accordingly, the aim of this research was to develop a method to analyse TFT in water, to reveal its presence in drinking and source waters, and to investigate its behaviour during the water purification process. Importantly, we identified a degradation product of
TFT during the chlorination process, the presence and behaviour of which are also described.

2. Materials and Methods

2.1. Sampling points of river waters

Twelve rivers that flow through Kanagawa prefecture were selected for water sampling. Sampling at the Tsurumi River [Fig. S1 in Supplementary Information (SI)] was conducted first and with the highest frequency of every two weeks from April to September 2013 and then April to September 2014. Sampling at the other rivers was conducted every month from April to July 2014. Because high concentrations were detected in the Shibuta River, sampling was conducted every week from May to June 2015. Samples were transported to the laboratory at Kanto Gakuin University for TFT concentration analysis according to the procedure described in the section 2.2. In addition to this sampling and analysis, in 2014 and 2015, sampling and analysis were also conducted in 8 prefectures by waterworks authorities (Fig. S2 and Table S1 in SI).

2.2. Analytical method

Because no analytical method for TFT concentration in environmental and drinking waters has yet been reported, we developed one (Fig. S3 in SI) in this study after referring to the analytical method for neonicotinoid pesticides because of their similar low Log-
Kow and high water solubility (Kawasaki et al., 2012). After filtrating the sample water through a glass fiber filter with nominal pore size of 1.0 µm (GA-100, Advantec Toyo Kaisha, Ltd.) and adjusting the filtrate to pH 3.0 by adding formic acid (the pH adjustment is less than necessary: it was implemented for the simultaneous analysis of other pesticides), a specified volume (250 mL) of the resultant sample water was passed through an Oasis HLB cartridge (250 mg, Waters Corporation, USA) at a 5 mL/min flow rate by using a concentrator; the Oasis HLB was previously rinsed and conditioned with 10 mL of MeOH and 20 mL of ultrapure water (LC/MS analytical grade, Wako Pure Chemical Industries, Ltd., Japan) (Kawasaki et al., 2012). The Oasis HLB was then dried with N₂ gas for 5 minutes, and then it was eluted with 10 mL of MeOH. The volume of the eluate was reduced under an N₂ gas stream to 0.1 mL. After adding 100 µL of a 1% formic acid aqueous solution, that mixture was made up to 1 mL with the ultrapure water and filtrated through a 0.22-µm filter (PTFE, RephiLe Bioscience, Ltd.). The final concentration factor was, therefore, 250 fold. The pretreatment using the Oasis HLB was not carried out with the samples obtained in the laboratory experiment of TFT chlorination because of their high concentrations. Recovery tests for the pretreatment were conducted using distilled water and river water spiked with reagent-grade TFT (Wako Pure Chemical Industries, Ltd. JAPAN) to obtain a concentration of 2 µg/L, which is equivalent to the prospective reference concentration in JDWQG. Each test was conducted five times, and the average recovery rate was determined.

The liquid chromatography tandem-mass spectrometry (LC-MS/MS) (ACQUITY UPLC System and Quattro Premier XE, Waters Corporation, USA) analytical conditions used are shown in Table S1. The monitor ion and confirmation ion were set to $m/z = 340.8$ and $m/z = 262.0$, respectively. After creating a calibration curve, the detection limit was fixed. The same analytical procedure was applied to the quantification of a degradation product. The monitor and the confirmation ions for the degradation product were set at $m/z = 247.0$
and 85.0, respectively. The TFT analyses of the samples taken at the 8 prefectures were conducted at each local waterworks authority according to the above-described method with some modifications. Further details are provided in Table S2 (SI).

The quantification limit of TFT was 0.02 µg/L (Table S2). The coefficients of variance (CVs) for multiple analyses (n = 5) at 0.02 µg/L were 12.0% and 19.6% for distilled water and the river water, respectively. The recovery ratios, by solid phase extraction and elution, were fairly good; they were 118% (n = 5) and 116% (n = 5) for distilled water and the river water, respectively, both at 0.02 µg/L TFT (this is 1/100 of the prospective reference concentration of drinking water in Japan, 2 µg/L), when the concentration factor was 250 fold after extraction and elution.

2.3. Identification of the chlorination degradation product of TFT

To detect and identify degradation product(s), we conducted chlorination experiments in glass bottles containing 25 mL of TFT solution. Reagent-grade TFT was added to a phosphate buffer solution of pH 7 to bring the concentration to 0.4 µmol/L. Sodium hypochlorite solution was then added to bring the free residual chlorine concentration to 1 mg/L as the chlorination reaction proceeded for 2 hours after the addition of the sodium hypochlorite solution. After the chlorination reaction was allowed to proceed for 2 hours, the residual chlorine was quenched to terminate the chlorination reaction by adding 7.5 µL of ascorbic acid solution (0.28 mol/L).

The chlorination degradation product formed in these chlorination experiments was first analyzed by liquid chromatography time-of-flight mass spectrometry (LC/TOF-MS) (Xevo G2-XS Tof, Waters Corporation). The elemental composition of the degradation
product was determined from its accurate mass obtained by LC/TOF-MS analysis. The structural formula of the degradation product was estimated from its elemental composition and the structural formula of the parent compound (TFT) by using a chemical structure estimation software (Elemental Composition, Waters Corporation, USA).

The structural formula was further confirmed by using orbitrap–tandem-mass spectrometry (Orbitrap-MS) (Q-Exactive Quadrupole-Orbitrap mass spectrometer equipped with a high-resolution accurate-mass Orbitrap™ detector, Thermo Fisher Scientific, USA). The injection volume was 5 µL and an Acclaim C18 column (150×2.2 mm, 2.6 µm) was used in gradient mode with a flow rate of 0.4 µL·min⁻¹. Thirty seconds after the sample injection, the gradient was started at 2% MeOH/98% water (10 mM ammonium acetate solution), and then the ratio linearly increased to reach 98% MeOH at 15 min. Ionization was performed in the electrospray positive mode. The flow rates of the auxiliary and sheath gases were 15 (arbitrary units) and 50 (arbitrary units), respectively. A spray voltage of 3 kV and S-less TF level of 50 were applied. The temperature of the ion transfer capillary was 350 °C, and the heart temperature was 250 °C. The resolution of the MS analysis was 70,000. The AGC target was 1×10⁶, and the maximum time of injection was 200 ms. For all samples, a 60–900-amu mass range was applied. For MS/MS analysis, the resolution was set to 17,500, with an isolation window of 5 amu. The collision energy was normalized between 10 and 60%, and the AGC target was 2×10⁵.

To confirm the chemical structural formula of the degradation product and to quantify it, a reagent-grade version of the degradation product was obtained from Hayashi Pure Chemical Ind., Ltd. (Osaka, Japan). The analytical method for the degradation product was developed with the LC-MS/MS. After determining the monitor ion and creating a calibration curve, the minimum determination limit was fixed (Table S1). Pretreatment for the extraction and elution using the Oasis HLB cartridge was not conducted because
the initial and final concentrations of the samples were sufficiently high without any pretreatment.

To observe changes in TFT and the degradation product, a long-term chlorination experiment was conducted. The chlorination condition are the same as that described above except that the chlorination reaction proceeded for 24 hours after the addition of the sodium hypochlorite solution. The analytical condition for the determination of TFT and the degradation product are shown in Table S2 (SI).

2.4. Sampling points of tap waters

To determine the level of TFT and the degradation product in drinking water from household water taps, we sampled tap water in Niigata prefecture because TFT sales was high this region compared with others (see the section 3.1). Tap water samples (25 mL) were collected approximately every day from June to August 2015. Immediately after sampling, residual chlorine was removed by adding an ascorbic acid solution of 0.28 mol/L at a ratio of 7.5 µL per 25 mL, and the samples were shipped to the laboratory at Kanto Gakuin University for analysis. Samples were also corrected at the water treatment plant that treats and supplies the drinking water to the household water taps. The source water (37.93124°N, 139.11807°E) and the process water were sampled and analyzed for TFT concentration at the laboratory of the water treatment plant in Niigata prefecture.

3. Results and Discussion
3.1. Distribution and use of TFT

TFT is included in 21 commercial pesticide products, all of which are mostly used in rice farming. Of these 21 products, 3 contain TFT as the single active ingredient (FAMIC, 2016). The 18 products are multi-component mixtures containing TFT and other active ingredients: 6 products contain oxaziclomefone, 3 contain pyraclonil, 3 contain pyraclonil and metazosulfuron, 3 contain fentrazamide, and 3 contain mefenacet. By examining the TFT contents and the annual sales of these pesticide products, we calculated the total TFT annual sales for each prefecture in Japan (Japan Plant Protection Association, 2010-2015). The quantity of TFT being shipped began to increase in 2009 in Japan, and 44.4 tons were shipped in 2014 (Fig. S4). Yamagata and Niigata prefectures received the largest quantities (Fig. S5). The fact that Kanagawa, the site selected for river water sampling, had high TFT sales relative to the area devoted to rice farming (MAFFJ, 2011) suggests that there was intensive application of TFT in rice farming in this prefecture.

3.2. TFT concentrations in river waters and drinking waters

TFT concentrations in the Tsurumi River (the main test river) and the other rivers in Kanagawa prefecture are shown in Fig. 1. The maximum detected concentration was 0.19 µg/L, and the detection rate was 33% (49 samples out of 146) in 2013. In 2014, the maximum detected concentration increased to 1.14 µg/L and the detection rate was 39% (84 samples out of 213). In 2015, the maximum detected concentration increased further to 1.85 µg/L, and the detection rate was 43% (12 samples out of 28). Kanagawa is not a prefecture where a large quantity of TFT was sold, although the TFT quantity divided by the rice-farming field area was moderate among other prefectures (Fig. S5). Therefore, the TFT detection in Kanagawa suggested that contamination with TFT likely also
occurred in other prefectures, particularly Niigata and Yamagata, into which a large amount of TFT was shipped, as described in the previous section.

Nationwide monitoring of TFT concentrations in rivers, including drinking water sources, was conducted at waterworks authorities in 7 prefectures, including Niigata in 2014 and 2015. The results are shown in Fig. 2. TFT was detected in all of the river waters of the prefectures tested. In Niigata and Fukuoka, the river waters used as source waters for drinking water production exhibited the maximum TFT concentration of 0.81 µg/L. From the end of May to the middle of June both 2014 and 2015, the primary period when TFT was applied to rice fields, the concentrations were higher. The high concentrations were observed in small rivers whose catchment areas were used mainly for rice farming. The maximum observed concentration was 1.9 µg/L, which was near 2 µg/L: the prospective reference concentration of the DWQG and the predicted environmental concentration of environmental risk assessment for ambient water (MOEJ, 2009).

However, TFT was not detected in any of the finished waters in the water treatment plants of the water authorities (Table S4), indicating that TFT might have been removed or transformed during the water treatment processes. Some water treatment plants use conventional water treatment processes such as coagulation, sedimentation, filtration, and chlorination. It was unlikely for the TFT to be removed by coagulation, sedimentation, or filtration because its water solubility (64.2 g/L at pH 7) is high and its Log-Kow (1.05) is relatively low. In fact, we observed no TFT removal by coagulation and membrane filtration in our laboratory experiments (Fig. S6). In the water purification plants, TFT was still detectable in the process water after coagulation-sedimentation at the same level as that in the influent water (Fig. S7). However, TFT disappeared after sand filtration and chlorination. It is highly probable that the TFT reacted with the chlorine and degraded. We therefore hypothesized that degradation products were formed from the TFT during chlorination rather than the TFT being completely mineralized.
Identification and quantification of a chlorination degradation product of TFT

Orbitrap-MS chromatograms were obtained in the positive mode before and after chlorination of the TFT-containing solution (Fig. 3). No peak corresponding to TFT was observed for the sample after chlorination, but a single peak was observed, suggesting the production of a main degradation product. The MS spectra for the peak showed a molecular ion at 349.052, which indicated a compound consisting of C_{14}H_{17}ClO_{6}S. From these data, we estimated the structure and proposed that the main product was probably 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA).

The MS and MS/MS characteristics, including the theoretical and observed m/z values and the molecular structure, are shown in Table 1. The chemical structure of CMTBA was in agreement with the molecular formula obtained from the exact mass of the molecular ion. The MS spectra of CMTBA showed an NH$_4$-adapted molecular ion at 366 Da and a protonated molecular ion at 349 Da. For this product, an isotopic distribution typical of the presence of one chlorine atom was observed. A mass loss of 94 was observed for CMTBA to the mass of its parent TFT. Moreover, no carboxylic acid function loss was observed in the MS/MS analyses. Therefore, CMTBA would be formed by the cleavage of the ether bond of the chemical side chain of TFT. The formation of CMTBA was finally confirmed by observing that the ratio of the two major fragments for the chlorinated TFT solution was the same as that for a reagent-grade version of CMTBA.

Quantification of the TFT and CMTBA concentrations before and after chlorination are shown in Fig. 4. The CMTBA concentration after chlorination was almost the same as the TFT concentration before chlorination. TFT was not detected after chlorination.
Therefore, TFT was entirely transformed to CMTBA: the transformation percentage of TFT to CMTBA was 94–103%. When a solution containing only CMTBA was subjected to chlorination, the CMTBA concentration did not change, even after 24 hours. These data indicate that CMTBA, formed by chlorination, is stable in the presence of chlorine, and no further degradation of CMTBA occurs. According to the agrochemical evaluation report (FSC, 2009), CMTBA is a degradation product in plant fate tests, soil fate tests, and aquatic photo-degradation tests. However, in these tests the transformation percentage of TFT to CMTBA was very low (less than 10%) (FSC, 2009). Therefore, any special reaction condition in the presence of chlorine would transform TFT to its stable degradation product CMTBA. The almost 100% transformation percentage of TFT to CMTBA and the stability of CMTBA in the presence of chlorine suggest that CMTBA may be present in drinking water from household water taps if the water undergoes chlorination at the water treatment facility.

3.5. Presence of CMTBA in drinking water and its source water

TFT and its degradation product CMTBA were measured in tap waters in Niigata prefecture (Fig. 5). Niigata was selected because of the large amount of TFT purchased and the high level of TFT detection in the river water (the source water of the drinking water). TFT was not detected in any of the tap water samples, but CMTBA was detected from late May to the middle of July 2015. The highest observed concentration was 0.35 µg/L. Although this was low compared with the TFT reference concentration of Japan (2 µg/L), it exceeded the 0.1 µg/L of European Union (EU) Drinking Water Directive (European Union, 1998). Of the 50 samples tested, 36 (72%) contained CMTBA at concentrations > 0.1 µg/L. TFT concentrations in the source waters of the water purification plant of Niigata showed a similar trend to that of CMTBA concentrations in
tap waters. CMTBA concentrations in tap waters were sometimes higher than TFT concentrations in the source waters, but this could have been due 1) to the presence of CMTBA in the source waters, 2) to the limited number of samplings and analyses conducted for raw water at the water purification plant, and/or 3) to a time lag in water distribution from purification at the plant to retrieval from the household water tap.

3.6. Implications

In drinking water quality guidelines and standards, active ingredients of pesticides are usually listed, but their degradation products are seldom considered (WHO, 2011) (USEPA, 2009b). The EU directive refers to degradation compounds, but the compounds are not specifically named (European Union, 1998). Oxon, sulfone, and sulfoxide, which are by-products formed from organophosphorus pesticides, are listed in the JDWQG (MHLWJ, 2003). These products are formed by chlorination process for the water purification as well as environmental processes, and they are generally no less toxic than their parent compounds (Chambers and Carr, 1993). Their concentrations in drinking waters are monitored by water authorities, and the detection of these degradation products is reported in the Water Supply Statistics (JWWA, 2009–2012). In this context, our data clearly call for attention to be paid to the degradation product (CMTBA) of TFT. Moreover, our findings highlight the need to also consider the degradation products of the other triketone herbicides. Actually, the degradation of other triketone herbicides follows the same pattern as TFT (Dumas et al., 2017).

The results of acute toxicity tests in rats indicate that the acute toxicities are low (LD$_{50} > 2500$ (mg/kg) for TFT and > 2500 (mg/kg) for CMTBA) (FSC, 2009). By using the EPI Suite (USEPA, 2012), we compared CMTBA and TFT for their acute toxicity against
aquatic organisms, and we found that CMTBA has less toxic than TFT: in fish, the 96-h
LD$_{50}$ for TFT was 31 mg/L, whereas that for CMTBA was 20.4 g/L, and in daphnia, the
48-h LD$_{50}$ for TFT was 102 mg/L, whereas that for CMTBA was 10.6 g/L. No
mutagenicity would be seen for CMTBA according to a reverse mutation test with S.
typhimurium (TA98, TA100, TA1535, TA1537) with and without S9 mix (FSC, 2009).
The ADI for TFT was derived from a two-year chronic toxicity test with rats that
confirmed that corneal opacity and keratitis could occur at the lowest dose (FSC, 2009).
The mechanism behind this corneal effect in rats is HPPD inhibition: triketone-based
compounds inhibit HPPD in the liver, increasing the blood tyrosine concentration, and
uptake of tyrosine crystals by corneal epithelial cells (FSC, 2009). In plants, TFT inhibits
HPPD, thereby blocking the formation of homogetisate, which leads to foliage bleaching.
In an *in vitro* study using the HPPD of *arabidopsis thaliana*, a popular model plant, the
inhibitory activity was lower for CMTBA than for TFT (MHLWJ, 2016). In mammals,
therefore, the inhibitory activity of CMTBA may be similarly lower than that of TFT,
because the basic structure of triketone is degraded in CMTBA. Mesotrione, which is
another triketone herbicide, forms two major degradation products [MNBA (2-
methylsulfonyl-4-nitrobenzoic acid) and AMBA (2-amino-4-methanesulfonyl benzoic
acid)] (FSC, 2009), possibly through reaction similar to the degradation of TFT. In an *in
vitro* test, MNBA weakly inhibits HPPD, but the inhibitory activity is lower than the
parent, mesotrione (FSC, 2009). AMBA might be less toxic because it is more degraded.
Compared with TFT, overall, CMTBA is considered to have no higher chronic toxicity
through the HPPD inhibition, which facilitates the establishment of the ADI of TFT.
However, given the high concentrations of CMTBA found in drinking waters, further
study of its toxicity might be needed to confirm that CMTBA is indeed lower in the
chronic toxicity than TFT.
4. Conclusion

1) An intensive survey investigating rivers in Kanagawa prefecture revealed TFT contamination. TFT was detected in 37% of 387 samples analysed; concentrations ranged from 0.02 to 1.85 \(\mu g/L \). In subsequent examinations of river waters used as drinking water sources in other prefectures with high rice-farming activity, TFT was detected at concentrations up to 0.81 \(\mu g/L \) during the period when TFT was applied to the rice-farming paddy.

2) TFT was not removed by coagulation, but it was 100% transformed by chlorination to CMTBA. CMTBA was stable in the presence of chlorine.

3) CMTBA was found in drinking water sampled from a household water tap. The concentrations of CMTBA in drinking waters were similar to those of TFT in the source waters of the drinking waters. The highest observed concentration was 0.35 \(\mu g/L \). The reference concentration of CMTBA was not derived because there is no defined ADI value for CMTBA, but the concentration of CMTBA exceeded 0.1 \(\mu g/L \), the maximum allowable concentration according to the EU directive.

Acknowledgements

We thank the Hachinohe Regional Water Supply Authority, the Waterworks Bureau of the City of Sendai, the Waterworks Bureau of the City of Niigata, the Chiba Prefectural Waterworks Bureau, the Kanagawa Water Supply Authority, the Waterworks Bureau of the City of Hiroshima, and the Water Supply Authority of Southern Fukuoka Pref. for
providing pesticide data. Thanks are also due to Mr. Yoshitoshi Nakata, Ms. Etsuko Kawasaki, and Ms. Asuka Kubo for their technical help. This study was supported by Health and Labour Sciences Research Grants (H25-Kenki-Ippan-007 and H28-Kenki-Ippan-005) from the Ministry of Health, Labour, and Welfare, Japan. This study has not been evaluated by these entities and does not necessarily reflect their opinion; therefore, no official endorsement should be inferred.

References

MAFFJ, 2011, Crop Statistics, Ministry of Agriculture, Forestry and Fisheries, Government

Fig. 1. Changes in TFT concentrations in the Tsurumi River and other rivers, including the Shibuta and Suzu Rivers, in Kanagawa Prefecture.
Fig. 2. Changes in TFT concentrations in river waters used as source waters for drinking waters.
Fig. 3. Orbitrap-MS chromatographs of samples obtained (Panel A) before and (Panel B) after chlorination of a TFT-containing solution. The small panels in Panels A and B are the MS spectra corresponding to the chromatogram peaks at 8.39 min (TFT) and 7.02 min (CMTBA), respectively.
Fig. 4. Changes in TFT and CMTBA concentrations due to chlorination (the error bars show SD for triplicate samples).
Fig. 6. Changes in TFT and CMTBA concentrations in water sampled from household tap water, source water of drinking water, and treated water at the water purification plant.
Table 1. Mass spectrum characteristics of TFT and its degradation product (CMTBA).

<table>
<thead>
<tr>
<th>Composition</th>
<th>Theoretical m/z [M-NH₄]^+</th>
<th>Observed m/z [M-NH₄]^+</th>
<th>∆ ppm</th>
<th>MS</th>
<th>MS2</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFT</td>
<td>C₂₀H₂₇O₇NClS</td>
<td>460.1191</td>
<td>460.1194</td>
<td>0.593</td>
<td>460.1194</td>
<td>262.0392 85.0648 305.0479 341.0242</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMTBA</td>
<td>C₁₄H₂₁O₆NClS</td>
<td>366.0773</td>
<td>366.0772</td>
<td>-0.17</td>
<td>366.0774</td>
<td>349.0507 85.0647 246.9823</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Information

Frequent Presence of the β-Triketone Herbicide Tefuryltrione in Drinking Water Sources and its Degradation Product in Drinking Waters

Motoyuki Kamataa,*, Mari Asamib, Yoshihiko Matsuić

a College of Engineering, Kanto Gakuin University, Mutsuura-higashi 1-50-1, Kanazawa-ku, Yokohama 236-8501, Japan

b Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197 Japan

c Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan

* Corresponding author: Phone & Fax: +81-45-786-4978 Email: motoyuki@kanto-gakuin.ac.jp
Fig. S1. Sampling points in Kanagawa Prefecture, Japan (the blue lines are rivers, and the dashed red lines show the prefecture border).
Fig. S2. Prefectures investigated in this research (the dashed red lines show the prefecture borders).
Fig. S3. Pretreatment flow for LC-MS/MS analysis.
Fig. S4. TFT shipping in Japan.

Fig. S5. Total TFT sales, TFT sales per land area, and TFT sales per rice-field area for each prefecture.
Fig. S6. Changes in TFT concentration after coagulation, settling and membrane filtration. Coagulant (poly-aluminum chloride) dose: 20 mg-Al/L. Rapid mixing: 150 rpm. Slow mixing: 40 rpm. Settling: 10 min, Pore size of membrane filter: 0.22 µm. pH: 6.5. Temperature: 20 °C. Analytical condition of TFT: Table 1S. The error bars show SD for triplicate samples.
Fig. S7. Changes in TFT concentration during water treatment processes (May to June, 2015, the Waterworks Bureau of the City of Niigata).
<table>
<thead>
<tr>
<th>Pretreatment</th>
<th>SPE: Oasis HLB (Waters)</th>
<th>SPE: Oasis HLB (Waters)</th>
<th>SPE-Sep-Pak PS2 and Oasis HLB (Waters)</th>
<th>SPE-Sep-Pak PS2 (waters)</th>
<th>Filtration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>AQUITY UPLC (Waters)</td>
<td>UltiMate3000 (Thermo Fisher Scientific)</td>
<td>Quattro Micro API (Waters)</td>
<td>Acquity UPLC (Waters)</td>
<td>AQUITY UPLC (Waters)</td>
</tr>
<tr>
<td>Column</td>
<td>ACQUITY UPLC HSS T3, 2.1 × 100 mm, 3 µm (Waters)</td>
<td>ACQUITY UPLC HSS T3, 2.1 × 100 mm, 1.8 µm (Waters)</td>
<td>ACQUITY UPLC HSS T3, 2.1 × 100 mm, 1.8 µm (Waters)</td>
<td>L-column2 ODS, 2.1 × 75 mm, 2 µm (CERI)</td>
<td>ACQUITY UPLC HSS T3, 2.1 × 100 mm, 1.8 µm (Waters)</td>
</tr>
<tr>
<td>Gradient condition</td>
<td>A: 90 % → (14.0 min) → 5 % → (2.5 min) → 5 % → (0.1 min) → 90 % → (3.4 min)</td>
<td>A: 98 % → (1.5 min) → 60 % → (1.5 min) → 40 % → (1 min) → 2 % → (1.0 min) → 98 % → (0.5 min)</td>
<td>A: 100 % → (2.0 min) → 55 % → (15.0 min) → 0 % → (20.0 min) → 90 %, C: 1 %</td>
<td>A: 99 % → (0.5 min) → 60 % → (4.0 min) → 25 % → (8.0 min) → 1 % → (10.0 min) → 99 %</td>
<td>A: 1 % → (9.8 min) → 98% → (7.7 min) → 98% → (0.1 min) → 1 % → (7.5 min) → 1 %</td>
</tr>
<tr>
<td>Mobile phase</td>
<td>A: 0.05% formic acid in 2 mM ammonium acetate, B: MeOH in 2 mM ammonium acetate</td>
<td>A: 0.10 mM ammonium acetate, B:MeOH, C:1 % formic acid</td>
<td>A: Water, B:MeOH, C:5 % formic acid</td>
<td>A: 0.05% formic acid : Acetonitrile → 95:5, B: Acetonitrile</td>
<td>A: 0.05% formic acid + 0.1% acetate acid, B:MeOH</td>
</tr>
<tr>
<td>Injection volume</td>
<td>5 µL</td>
<td>5 µL</td>
<td>50 µL</td>
<td>5 µL</td>
<td>30 µL</td>
</tr>
<tr>
<td>Flow rate</td>
<td>0. mL min⁻¹</td>
<td>0.3 mL min⁻¹</td>
<td>0.2 mL min⁻¹</td>
<td>0.35 mL min⁻¹</td>
<td>0.4 mL min⁻¹</td>
</tr>
<tr>
<td>Column temperature</td>
<td>40 °C</td>
<td>40 °C</td>
<td>40 °C</td>
<td>45 °C</td>
<td>40 °C</td>
</tr>
<tr>
<td>MS</td>
<td>Xevo TQ-S (Waters)</td>
<td>Q-Exactive Focus (Thermo Fisher Scientific)</td>
<td>Quattro micro API(Waters)</td>
<td>Xevo TQ MS (Waters)</td>
<td>Xevo TQ-S (Waters)</td>
</tr>
<tr>
<td>Ionization</td>
<td>ESI positive</td>
<td>ESI positive</td>
<td>ESI positive</td>
<td>ESI positive</td>
<td>ESI positive</td>
</tr>
<tr>
<td>m/z</td>
<td>443.10, 341.05</td>
<td>460.1194, 566.0774</td>
<td>443.10, 261.9</td>
<td>443.10, 341.05</td>
<td>443.05, 341.03</td>
</tr>
</tbody>
</table>

Table S1. Analytical methods applied at Kanto Gakuin University and at the water supply facilities in the 8 prefectures.
<table>
<thead>
<tr>
<th>Detection Limit (µg/L)</th>
<th>0.0004</th>
<th>0.01</th>
<th>0.01</th>
<th>0.002</th>
<th>0.02</th>
<th>0.04</th>
<th>0.02</th>
<th>0.01</th>
<th>0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2. TFT and CMTBA recovery rates and CVs.

<table>
<thead>
<tr>
<th>Target</th>
<th>Water</th>
<th>Recover rate (%)</th>
<th>CV (%)</th>
<th>n</th>
<th>Concentration (µg/L)</th>
<th>Concentration method</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFT</td>
<td>Distillated water</td>
<td>116</td>
<td>12.0</td>
<td>5</td>
<td>0.02</td>
<td>solid-phase extraction</td>
</tr>
<tr>
<td></td>
<td>River water</td>
<td>118</td>
<td>19.6</td>
<td>5</td>
<td>0.02</td>
<td>solid-phase extraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Water</th>
<th>Recover rate (%)</th>
<th>CV (%)</th>
<th>n</th>
<th>Concentration (µg/L)</th>
<th>Concentration method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMTBA</td>
<td>Distillated water</td>
<td>97</td>
<td>9</td>
<td>5</td>
<td>0.1</td>
<td>No concentration</td>
</tr>
</tbody>
</table>

Table S3. Detection of TFT in source waters and finished waters at water treatment plants.

<table>
<thead>
<tr>
<th>Site of water treatment plant</th>
<th>Source water</th>
<th>Finished water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of samples</td>
<td>Number of detected samples</td>
</tr>
<tr>
<td>Kanagawa</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>Miyagi</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Chiba</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Niigata</td>
<td>51</td>
<td>22</td>
</tr>
<tr>
<td>Hiroshima</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Fukuoka</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>