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Kinetic boundary condition in vapor–liquid two-phase system

during unsteady net evaporation/condensation

Misaki Kon1,∗, Kazumichi Kobayashi1, Masao Watanabe1

Division of Mechanical and Space Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi
8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

Abstract

Heat and mass transfer caused by nonequilibrium phase change (net evaporation/condensation)
play a major role in a vapor–liquid two-phase flow. In general, liquid temperature changes
with time because of the heat and mass transfer between the vapor and liquid phases; how-
ever, a precise investigation of the transport phenomena related to this temporal evolution
of liquid temperature is still lacking. The aim of this study is to examine a kinetic boundary
condition, which depends on liquid temperature, for the Boltzmann equation in a vapor–
liquid two-phase system with unsteady net evaporation/condensation. In this study, we
confirmed whether the kinetic boundary condition follows the temporal evolution of liquid
temperature attributed to unsteady net evaporation/condensation by using the molecular
simulation based on mean-field kinetic theory, and then we validated the accuracy of the
kinetic boundary condition by solving the initial boundary value problem of the Boltzmann
equation in unsteady net evaporation/condensation. These results showed that the kinetic
boundary condition follows the temporal evolution of liquid temperature in the simulation
setting of this study. Furthermore, we concluded that the kinetic boundary condition that
depends on liquid temperature is guaranteed to be accurate even in unsteady net evapora-
tion/condensation by considering the temporal evolution of liquid temperature.

Keywords: kinetic boundary condition, evaporation and condensation, unsteady
vapor–liquid two-phase flow, kinetic theory of gases

1. Introduction

As micro/nanofluidics progress, we should consider not only the rarefaction effect in-
duced by the downsizing of a system but also nonequilibrium phase change (net evap-
oration/condensation) induced by molecular motion in the vicinity of the vapor–liquid
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interface[1]. Although net evaporation and condensation are essentially microscopic phe-
nomena, it has been indicated that the heat and mass transfer attributed to net evapora-
tion/condensation affects the dynamics of vapor–liquid two-phase flows, such as the motion
of bubbles and droplets[2, 3, 4, 5, 6, 7]. In recent years, some applications using bubbles
and droplets accompanied with net evaporation/condensation have been proposed; for in-
stance, Ohl et al.,[8] and Kobayashi et al.,[9] suggested the base of medical technologies that
use the shock wave and liquid jet produced by the collapse of the cavitation bubble, and
Sazhin et al.,[10] proposed an optimal control technology for the diesel fuel by considering
droplet evaporation. Hence, further investigation of vapor–liquid two-phase flow with net
evaporation/condensation is required.

The most practical method to investigate a vapor–liquid two-phase flow is a numerical
simulation of the fluid dynamic equations, especially one that utilizes the diffuse interface
model or the Hertz-Knudsen-Langmuir model. However, there is a nonequilibrium transition
layer between the bulk liquid and bulk vapor, which includes an interface layer and a Knudsen
layer as shown in Fig. 1, in a micro-scale point of view. Note that the interface layer is
synonymous with the term interphase, which has been used in the previous literature[11, 12,
13, 14]. The numerical simulation of the fluid dynamic equation with the diffuse interface
model or the Hertz-Knudsen-Langmuir model would be advantageous if we would like to
omit the complicated analysis in the nonequilibrium transition layer and obtain an overview
of vapor–liquid two-phase flow with net evaporation/condensation. However, this numerical
simulation cannot describe the certain transport phenomena in the nonequilibrium transition
layer induced by the evaporation, reflection, and condensation of molecules, as shown in
Fig. 1; therefore, it is essentially hard to quantitatively estimate vapor–liquid two-phase
flows with net evaporation/condensation as have already pointed out [4, 15].

In this problem, an analytical approach based on molecular gas dynamics is essential. The
Boltzmann equation, which governs molecular gas dynamics, describes the spatiotemporal
development of the molecular velocity distribution function, f , in vapor which includes the
Knudsen layer. However, the Boltzmann equation postulates a condition of the ideal gas.
That means this equation cannot support the interface layer. Hence, we have to impose
the velocity distribution function fout, composed of molecules outgoing from the kinetic
boundary into the Knudsen layer as the kinetic boundary condition (KBC), where the kinetic
boundary refers to the boundary between the interface layer and Knudsen layer (see Fig. 1).
In the classical approach to the molecular gas dynamics, the conventional KBCs that are
simplified so that they may be solved analytically and satisfy the fundamental physical
requirements have been utilized[16, 17, 18].

In contrast, with the development of high-performance computing from the late 1990s to
the present, numerous studies have performed a molecular simulation of the full vapor–liquid
two-phase system including the nonequilibrium transition layer in terms of constructing the
KBC [11, 12, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Although it is clear that liquid
temperature changes with time according to the heat and mass transfer caused by net evap-
oration/condensation, most of the studies mentioned above assume a steady or quasi-steady
net evaporation/condensation because of the high computational cost of molecular simula-
tion. In general, an unsteady molecular simulation requires an ensemble average to estimate
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the macroscopic variables; hence, the computational cost of the unsteady molecular simula-
tion is exceedingly higher than a steady one. Soga[18] showed that the solution for unsteady
net evaporation/condensation with the normalized Maxwellian evolution differs from that of
quasi-steady net evaporation/condensation by analyzing the linearized Boltzmann equation.
However, the detailed investigation based on the micro-scale point of view of the KBC in
unsteady net evaporation/condensation has never been carried out.

The aim of this study is to investigate the KBC in the vapor–liquid two-phase system
with unsteady net evaporation/condensation by a molecular simulation based on mean-field
kinetic theory. This type of molecular simulation allows us to reduce the computational
cost compared with the typically used molecular dynamics simulation [15, 24, 25, 26, 27,
28, 29]. In this study, we examine whether the KBC can be imposed by simply specifying
liquid temperature even in unsteady net evaporation/condensation in order to extend the
previous results that the KBC, which is established in the vapor–liquid two-phase system
with steady net evaporation/condensation[24, 27], depends only on liquid temperature (a
detailed explanation of this KBC is given in Section 2.1). As illustrated in Fig. 1, the
interface layer has a finite thickness; hence, a delay time arises from molecules traveling in
this finite interface layer in unsteady net evaporation and condensation. Note that it is not
obvious that the functional form of the KBC is the same as that in steady net evaporation
and condensation.

First, we simulate the unsteady net evaporation and condensation problem in a system
composed two liquid slabs at different temperatures by using the molecular simulation based
on mean-field kinetic theory (Section 2.3). Second, we confirm whether the functional form
of the KBC at each time is the same as that in steady net evaporation and condensation
(Section 3.1), and then we estimate the temporal evolution of liquid temperature to establish
the KBC, which depends on liquid temperature, in unsteady net evaporation/condensation
(Section 3.2). Finally, we carry out a numerical simulation of the Boltzmann equation
with the KBC that varies with the temporal evolution of liquid temperature estimated
in Section 3.2 and then validate the accuracy of the KBC by comparing the macroscopic
variables, namely, vapor velocity and temperature, at each time obtained from the numerical
simulation of the Boltzmann equation and the molecular simulation based on mean-field
kinetic theory (Section 3.3).

2. Methods

2.1. Kinetic boundary condition

In this section, we explain the KBC that is established in the vapor–liquid two-phase
system with steady net evaporation/condensation[24, 27]. As the starting point, we examine
a conventional KBC that is expressed as the linear combination of the diffuse reflection and
complete condensation conditions[30, 31],

fout =
[
αeρ

∗(TL) + (1− αc)σ
]
f̂ , ξz > 0, (1)

where ρ∗ is the saturated vapor density, αe and αc are evaporation and condensation co-
efficients, respectively, ξz is the molecular velocity in the direction normal to the kinetic
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boundary; ξz > 0 indicates the direction of molecular velocity outgoing from the kinetic
boundary into the Knudsen layer, and f̂ is a normalized molecular velocity distribution
function; the normalized Maxwellian distribution at liquid temperature TL,

f̂(TL) =
1

(2πRTL)
3
2

exp

(
− ξ2i
2RTL

)
(2)

is conventionally assumed, where R is the gas constant. Furthermore, σ is a parameter that
is related to a molecular velocity distribution function fcoll, composed of molecules colliding
onto the liquid from the vapor phase (ξz < 0). This parameter is defined as

σ

(
RTL

2π

) 1
2

= −
∫
ξz<0

ξzfcolldξ = Jcoll, (3)

where Jcoll is the molecular mass flux composed of molecules colliding onto the kinetic
boundary from the Knudsen layer and

∫
ξz<0

dξ =
∫ 0

−∞

∫∞
−∞

∫∞
−∞ dξxdξydξz. fcoll at each time

is obtained by solving the initial boundary value problem of the Boltzmann equation[30].
In terms of the definitions of αe and αc, some different models have been proposed[13,

19, 20, 21, 23]. We adopt the widely used definitions of αe and αc as follows[11, 21, 32]:

αe =
Jevap
J∗
out

, αc =
Jcond
Jcoll

, (4)

where J indicates the molecular mass flux that is related to each molecular motions at the
kinetic boundary (see Fig. 1); Jevap and Jcond are the molecular mass fluxes composed of
evaporation and condensation molecules, and Jout is the molecular mass flux composed of
molecules outgoing from the kinetic boundary into the Knudsen layer. Furthermore, J∗

out is

Jout at the vapor–liquid equilibrium, where J∗
out = J∗

coll = ρ∗(RTL/(2π))
1
2 . The relations of

each molecular mass flux at the kinetic boundary are as follows [24]:

Jout = Jref + Jevap, Jcoll = Jref + Jcond, (5)

where Jref is the molecular mass flux composed of reflection molecules.
In our recent studies[24, 25], we formulated αe and αc for hard-sphere molecules in steady

net evaporation/condensation with the use of the net mass flux ρvz, at the kinetic boundary;
ρvz is obtained as the difference between Jout and Jcoll. The mass flux relation at the kinetic
boundary with steady net evaporation is as follows:

ρvz
J∗
out

= βne(TL)

(
1− Jcoll

J∗
coll

)
= βne(TL)

(
1− σ

ρ∗

)
, (6)

and that with net condensation is as follows:

ρvz
J∗
out

= βnc(TL)

(
1− σ

ρ∗

)
. (7)
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In our recent studies[24, 27], we confirmed that ρvz is well described as a linear function of
σ/ρ∗ and furthermore that βne and βnc depend only on liquid temperature. When Jcoll = 0
in Eq. (6), αe can be obtained according to the concept of spontaneous evaporation[21] as

αe = βne(TL). (8)

Furthermore, αc in net evaporation can be formulated as

αc = αe = βne(TL), (9)

and that in net condensation can be formulated as

αc =
ρ∗

σ
(βne(TL)− βnc(TL)) + βnc(TL). (10)

Note that we assume that f̂ is the normalized Maxwellian distribution at liquid temperature
(Eq. (2)) in the above derivations. The derivations of Eqs. (9) and (10) can be found in the
literature[24, 27].

We can obtain the KBC in net evaporation by substituting Eqs. (8) and (9) into Eq. (1):

fout =
[
βne(TL)(ρ

∗ − σ) + σ
]
f̂(TL), for ξz > 0. (11)

In the same way, we can obtain the KBC in net condensation by substituting Eqs. (8) and
(10) into Eq. (1):

fout =
[
βnc(TL)(ρ

∗ − σ) + σ
]
f̂(TL), for ξz > 0. (12)

As already mentioned above, because fcoll is obtained at each time by solving the initial
boundary value problem of the Boltzmann equation, σ is also obtained from Eq. (3). It is
the most significant advantage that βne, βnc, and f̂(TL) in Eqs. (11) and (12) depend only
on liquid temperature in steady net evaporation/condensation.

2.2. Molecular simulation based on mean-field kinetic theory

One practical equation based on mean-field kinetic theory is the Enskog–Vlasov equation[33,
34]. This equation is a kinetic equation that takes into account a self-consistent force field
Fi generated by the Sutherland potential ϕ(r),

ϕ(r) =

+∞ (r < a)

−ϕa

(r
a

)−γ

(r ≥ a),
(13)

where r is the intermolecular distance, a is a molecular diameter, ϕa and γ are constants.
Here, γ is set to six to follow the attractive tail of the 12–6 Lennard-Jones intermolecu-
lar potential. In terms of a one-particle velocity distribution function, the Enskog–Vlasov
equation is expressed as

∂f

∂t
+ ξi

∂f

∂xi

+
Fi(xi, t)

m

∂f

∂ξi
= CE, (14)
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The right-hand side of Eq. (14) is the Enskog collision term for dense hard-sphere molecules
expressed as

CE = a2
∫

{Y [n(xi +
a

2
Ki, t)]f(xi + aKi, ξ

′
1i, t)f(xi, ξ

′
i, t)− Y [n(xi −

a

2
Ki, t)]

×f(xi − aKi, ξ1i, t)f(xi, ξi, t)}H(ξriKi)(ξriKi)dξ1d
2K,

where t is time, xi is the position (x, y, and z), Y is a pair correlation function, n is number
density, Ki is the unit vector, and H is the Heaviside function. Furthermore, ξi and ξ1i
indicate the molecular velocity of two colliding molecules, prime (′) superscripts indicate
quantities of post-collisional molecules, ξri indicates the relative velocity ξri = ξ1i − ξi, and
Fi is a self-consistent force field determined from Eq. (13)[28]

Fi(xi, t) =

∫
∥x1i−xi∥>a

dϕ

dr

x1i − xi

∥x1i − xi∥
n(x1i, t)dx1i, (15)

where x1i indicates the general position in the physical space. Once the velocity distribution
function f over the whole physical space is obtained as the solution of the Enskog–Vlasov
equation, the macroscopic variables, such as density, velocity, and temperature, are respec-
tively defined by

ρ =

∫ ∞

−∞
fdξ, vi =

1

ρ

∫ ∞

−∞
ξifdξ, T =

1

3ρR

∫ ∞

−∞
(ξi − vi)

2fdξ, (16)

where ρ is density, vi = (vx, vy, vz) is velocity, T is temperature, and
∫∞
−∞ dξ =

∫∞
−∞

∫∞
−∞

∫∞
−∞ dξxdξydξz.

We utilize the following equation of state[28]:

p = ρRT
1 + η + η2 − η3

(1− η)3
− 2

3
πa3

γ

γ − 3

ϕa

k
, (17)

where p is pressure, k is the Boltzmann constant, and η = (π/6)na3. The first term on
the right-hand side of Eq. (17) is obtained from Carnahan and Starling approximation[35]
for the equation state of the hard-sphere molecules, and the second term on the right-hand
side of Eq. (17) is related to the attractive tail of the Sutherland potential. According to
Eq. (17), the critical temperature, Tc, is given as follows[28]:

Tc = 0.094329
4γ

γ − 3

ϕa

k
(18)

The direct simulation Monte Carlo (DSMC) based numerical scheme is used for solving
the Enskog-Vlasov equation (EV-DSMC simulation[28, 36]). The DSMCmethod is a particle
scheme for solving the kinetic equation[37, 38]. The EV-DSMC simulation is similar to
molecular dynamics as it is a molecular simulation but is essentially different because it is
a stochastic simulation. In general, an unsteady molecular simulation requires an ensemble
average to estimate the macroscopic variables, such as density, velocity, and temperature;
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hence, the computational cost of the unsteady molecular simulation is exceedingly higher
than a steady one. The fluctuation for estimating such a macroscopic variable is to be
O(1/(NM)

1
2 ), where N is the number of molecules and M is the number of sampling.

Barbante et al.[15] showed that the EV-DSMC simulation runs approximately 50–60 times
faster than molecular dynamics simulations using the same number of particles, in other
words, the EV-DSMC simulation enables us to deal with a larger number of particles than
the molecular dynamics simulations in the same computational cost. Hence, we can reduce
the fluctuation and obtain the accurate macroscopic variables by utilizing the EV-DSMC
simulation for the unsteady net evaporation and condensation problem. Several studies have
confirmed that the macroscopic variables obtained from the EV-DSMC simulation show
similar tendencies to those obtained from the molecular dynamics simulation for monatomic
molecules[15, 24, 25, 26, 27, 28, 29].

2.3. System setting

We consider a one-dimensional physical space (z-direction) and three-dimensional molec-
ular velocity space. The system is composed of hard-sphere vapor and its condensed phase
(liquid). Figure 2 shows a schematic of the simulation configuration and the spatial distri-

bution of the macroscopic variables at the initial condition (t∗ = t(2RTc)
1
2/a = 0) and the

final condition (t∗ = 500) of the simulation period; the system length is 80a and the total
molecular number in the whole system is set to 1.2 million. A region between the two liquid
slabs at temperatures TL1 and TL2 is filled with vapor, where we refer to the left liquid at
TL1 and right liquid at TL2 as liquid 1 and liquid 2, respectively. The cell size, ∆z/a, and

the time-step size, ∆t/(a/(2RTc)
1
2 ), are set to 0.2 and 0.001, respectively.

In the initial condition (t∗ = 0), we set the temperatures of liquid 1 and liquid 2 to
0.72Tc and 0.60Tc, respectively. As a consequence of the temperature difference between TL1

and TL2, net evaporation occurs at the left kinetic boundary and net condensation occurs
at the right kinetic boundary; we confirmed that this liquid temperature difference induces
relatively strong net evaporation and condensation in our recent study [24].

Figure 2(a) shows the density, velocity in the direction normal to the kinetic boundary,
and temperature fields at t∗ = 0 estimated from Eq. (16); the higher density regions in the
vicinity of z = −20a and 20a are liquids and the lower density region around the center of the
system is vapor. The smooth density transition layers are formed between each liquid and
vapor. As can be seen, the vapor velocity in the direction normal to the kinetic boundary
(z-direction) takes a positive value, which is induced by net evaporation and condensation.
Furthermore, a drop in temperature near the left kinetic boundary occurs as a consequence
of net evaporation, while a rise in temperature near the right kinetic boundary occurs as
a consequence of net condensation. In Fig. 2(a), we can observe a peak in temperature
in the vicinity of the kinetic boundary with net condensation. This peak in temperature
is also observed in the previous studies[24, 27, 39] by both molecular dynamics and EV-
DSMC simulations. A detailed physical explanation of this peak in temperature has not
been investigated; however, it is confirmed that this peak in temperature occurs only when
the temperature difference between the kinetic boundary and liquid is larger, that is, the
case of strong net condensation.
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Figure 2(b) shows the density, velocity in the direction normal to the kinetic boundary,
and temperature fields at t∗ = 500 estimated from Eq. (16). As can be seen, a velocity in the
direction normal to the kinetic boundary (z-direction) becomes zero in the whole system.
The temperature field in the whole system becomes uniform and constant as a result of the
drop and rise in temperature attributed to the net evaporation and condensation. These
results indicate that the vapor–liquid two-phase system achieves at vapor–liquid equilibrium
at t∗ = 500.

In addition, we estimate the spatial distribution of the macroscopic variables in Fig. 2
from the ensemble average of 200 simulations obtained from different initial conditions. To
obtain each initial condition with a different microstate, we simulate steady net evaporation
and condensation between two liquid slabs at different temperatures using velocity-scaling
and particle-shifting methods[24, 27]; The velocity-scaling method modifies the molecular
velocity in the bulk liquid at each time step, keeping the bulk liquid temperatures at 0.72Tc

and 0.60Tc. The particle-shifting method modifies the position of molecules in the whole
system, fixing the position of the kinetic boundary during the simulation period.

Figure 3 shows the temporal evolution of the net mass flux ρvz at each kinetic boundary,
where ρvz is obtained as the difference between Jout and Jcoll. The molecular mass flux
relations (Eq. (5)) and the definitions of ρvz in the simulation system of this study are
illustrated in the enlarged view of Fig. 2. We define the position of each kinetic boundary to
be 2.5δ from the center of each 10–90 thickness density transition layer toward the vapor, at
which the vapor density becomes the saturated value at liquid temperature in vapor–liquid
equilibrium, where δ is the thickness of the density transition layer. As can be seen, ρvz
at each kinetic boundary decreases drastically until t∗ = 200. After that time ρvz at each
kinetic boundary decreases gently and converges to zero eventually.

3. Results and discussion

3.1. Confirmation of the normalized velocity distribution function.

In this section, we confirm whether the functional form of the KBC in unsteady net evapo-
ration/condensation at each time is the same as that in steady net evaporation/condensation.
In other words, we confirm the normalized velocity distribution function of the KBC (f̂ in
Eq. (11) or (12)) to be the normalized Maxwellian distribution at liquid temperature ex-
pressed in Eq. (2) during unsteady net evaporation/condensation. We postulate the position
of the boundary between the bulk liquid and interface layer to specify the thickness of the
interface layer (see Fig. 2). Herewith, we can estimate a delay time caused by molecules
traveling in the interface layer.

Figure 4 shows the temperature field at the initial condition (t∗ = 0): the solid line
denotes temperature estimated from Eq. (16), the dotted line denotes temperature in the
direction tangential to the kinetic boundary (x-direction), estimated as Tx = 1

ρR

∫∞
−∞ ξ2xfdξ,

and the dashed line denotes temperature in the direction normal to the kinetic boundary
(z-direction), estimated as Tz = 1

ρR

∫∞
−∞(ξz − vz)

2fdξ. We emphasize that the tendencies

of these temperatures (T , Tx, and Tz) are in good agreement with these obtained from the
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molecular dynamics simulation[40, 41]. These are important results showing the validity of
the EV-DSMC simulation.

In Fig. 4, BL1 and BL2 indicate the positions of the boundaries between each bulk liquid
and each interface layer. These positions are set to 3.0a from each center of the 10–90
thickness density transition layer toward each liquid. As can be seen, Tx and Tz agree with
T , showing that temperature in each bulk liquid is isotropic. In addition, BV1 and BV2 are
the positions of each kinetic boundary as defined in Section 2.3. The distance between BL1

and BV1 or BL2 and BV2 represents the thickness of the interface layer as illustrated in Fig. 1.
The delay time, tI, caused by molecules traveling in the interface layer can be expressed from
the characteristic velocity, (2RT0)

1
2 , at the reference temperature T0 = (TL1+TL2)/2 = 0.66Tc

and the thickness of the interface layer, LI, as tI = LI/(2RT0)
1
2 . Since LI of each interface

layer is approximately 6a or 8a at t∗ = 0 found from Fig. 4, the delay time normalized by the
molecular diameter and the critical temperature, t∗I = tI(2RTc)

1
2/a, becomes approximately

7.4 or 9.8, that is, t∗I ≈ 10.
Then, we examine the normalized velocity distribution functions at BV1, BV2, BL1, and

BL2. In the EV-DSMC simulation, the normalized velocity distribution function is obtained
by the following procedure. We set the upper and lower limits of the velocity space to
ξi/(2RTref)

1
2 = −6 and ξi/(2RTref)

1
2 = 6, respectively, where Tref is set to 0.60Tc, and divide

this velocity space into 60 cells. We can obtain the normalized velocity distribution function
at the arbitrary cell of the physical space in the simulation system, which is divided into 400
cells, by determining which cells molecular velocity belongs to and counting the number of
molecules[21]. As with the estimation of the macroscopic variables, the normalized velocity
distribution function is estimated from the ensemble average of 200 simulations obtained
from different initial conditions.

Figure 5 shows the normalized velocity distribution function (F = (2RTref)
1
2 f̂) composed

of molecules outgoing from BL1 or BV1 and having the positive velocity in the z-direction at
t∗ = 0, 100, 200 and 500. The closed circles denote F composed of molecules outgoing from
BL1 into the interface layer, and the open circles denote F composed of molecules outgoing
from BV1 into the vapor phase, that is, the normalized velocity distribution functions of the
KBCs because BV1 indicates the position of the kinetic boundary of liquid 1. In Fig. 5, the
dashed lines denote the normalized Maxwellian distribution at TL1, obtained as

F ∗(TL1) =

(
Tref

πTL1

) 1
2

exp

(
− ξ2i
2RTref

Tref

TL1

)
, (19)

where ξi indicates the molecular velocity in the direction tangential (i = x) or normal (i = z)
to the kinetic boundary.

As can be seen in Fig. 5, the closed circles are in excellent agreement with the dashed
lines at each normalized time. This result shows that the normalized velocity distribution
function outgoing from BL1 into the interface layer are well described by the normalized
Maxwellian distribution at TL1. In contrast, the open circles slightly differ from the dashed
lines at t∗ = 0. This result shows that the number of molecules that have a molecular veloc-
ity near ξx/(2RTref)

1
2 = 0 is larger than the normalized Maxwellian distribution at TL1 and
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the normalized velocity distribution function outgoing from BV1 becomes an anisotropic ve-
locity distribution function. We confirm that the second moment of the normalized velocity
distribution function outgoing from BV1 in the x-direction Tt,

Tt =
1

ρoutR

∫
ξz>0

ξ2xfoutdξ, (20)

where ρout =
∫
ξz>0

foutdξ, is 0.67Tc, which is smaller than the temperature of liquid 1
0.72Tc. This tendency has also been observed in a vapor–liquid two-phase system with
strong net evaporation by the numerical simulation based on molecular dynamics[39]. In this
simulation, the open circles eventually agree with the dashed lines because net evaporation
becomes weak with time.

Figure 6 shows the normalized velocity distribution function (F = (2RTref)
1
2 f̂) composed

of molecules outgoing from BL2 or BV2 and having the negative velocity in the z-direction at
t∗ = 0, 100, 200 and 500. The closed circles denote F composed of molecules outgoing from
BL2 into the interface layer, and the open circles denote F composed of molecules outgoing
from BV2 into the vapor phase, that is, the normalized velocity distribution functions of the
KBCs because BV2 indicates the position of the kinetic boundary of liquid 2. In Fig. 6, the
dashed lines denotes the normalized Maxwellian distribution at TL2, obtained as

F ∗(TL2) =

(
Tref

πTL2

) 1
2

exp

(
− ξ2i
2RTref

Tref

TL2

)
, (21)

where ξi indicates the molecular velocity in the direction tangential (i = x) or normal (i = z)
to the kinetic boundary.

As can be seen in Fig. 6, similar to Fig. 5, the closed circles are in excellent agreement
with the dashed lines at each normalized time. This result shows that the normalized
velocity distribution function outgoing from BL2 into the interface layer are well described
by the normalized Maxwellian distribution at TL2. In contrast, the open circles slightly
differ from the dashed lines at t∗ = 0. Contrary to Fig. 5, this result shows that the number
of molecules that have a molecular velocity near ξx/(2RTref)

1
2 = 0 is smaller than the

normalized Maxwellian distribution at TL2 and the normalized velocity distribution function
outgoing from BV2 becomes an anisotropic velocity distribution function. We confirm that
the second moment of the normalized velocity distribution function outgoing from BV2 in
the x-direction Tt,

Tt =
1

ρoutR

∫
ξz<0

ξ2xfoutdξ, (22)

where ρout =
∫
ξz<0

foutdξ, is 0.65Tc, which is larger than the temperature of liquid 2 0.60Tc.
This tendency has also been observed in vapor–liquid two-phase systems with strong net
condensation by the numerical simulation based on molecular dynamics and the EV-DSMC
simulation[22, 24, 39]. Similar to Fig. 5, the open circles eventually agree with the dashed
lines because net condensation becomes weak with time.
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On the basis of Figs. 5 and 6, the normalized velocity distribution functions outgoing
from BL1 and BL2 into the interface layer are well described as the normalized Maxwellian
distributions at TL1 and TL2 defined in Eq. (2), while the normalized velocity distribution
functions outgoing from BV1 and BV2 into the vapor phase become an anisotropic velocity
distribution functions at t∗ = 0. However, the normalized velocity distribution functions
outgoing from BV1 and BV2 into the vapor phase correspond to the normalized Maxwellian
distributions at TL1 and TL2 with time. We conclude that the normalized velocity distribution
functions of the KBCs (Eqs. (11) and (12)) can be assumed to be the normalized Maxwellian
distribution in unsteady net evaporation and condensation even though the interface layer
between the bulk liquid and kinetic boundary has a finite thickness and the delay time,
t∗I ≈ 10, arises from molecules traveling in this finite interface layer.

3.2. Estimation of liquid temperature

As stated in Section 2.1, we can impose the KBC (Eq. (11) or (12)) by simply specifying
liquid temperature in steady net evaporation/condensation. In this section, we estimate the
temporal evolution of liquid temperatures TL1 and TL2 to establish the KBC, which depends
on liquid temperature, in unsteady net evaporation/condensation.

We examine the process of estimating liquid temperature. The enlarged view of Fig. 4
shows the temperature field in liquid 2 from t∗ = 0 to 200; we focus only on liquid 2 because
its temperature change is larger than that of liquid 1 (see Fig. 7: a detailed explanation is
given in the next paragraph). In general, liquid temperature changes spatiotemporally with
time on the basis of a one-dimensional heat conduction equation; hence, we should estimate
the liquid temperature at position BL1 or BL2 to specify the KBC. In contrast, the bulk
liquid temperature of liquid 2 changes, keeping a spatially almost uniform distribution with
time, as shown in the enlarged view of Fig. 4.

To examine the accuracy of this spatially uniform temperature distribution, we analyt-
ically solve the one-dimensional heat conduction equation with the temporal evolution of
temperature of liquid 2 fitted by the exponential function, and then we define the index of
uniformity of the spatial temperature distribution. As a result, we confirm that the spatial
temperature distribution is to be approximately spatially uniform because the characteris-
tic time of thermal diffusion in liquid 2 (t∗d = td(2RTc)

1
2/a = 2.00 in this study) is much

smaller; therefore, we can estimate each liquid temperature as the spatial average. A detailed
explanation of thermal diffusion in liquid 2 is given in Appendix A.

Figure 7 shows the temporal evolution of each liquid temperature. Similar to the tem-
poral evolution of the net mass flux ρvz shown in Fig. 3, each liquid temperature changes
drastically until t∗ = 200; after that time, each liquid temperature changes gently and even-
tually converges to approximately 0.69Tc. It is also found that the temperature change of
liquid 2 is larger than that of liquid 1. In this simulation, we observe the maximum local
Mach number (|Ma| ≈ 0.2) at BV2 of the initial condition (t∗ = 0). We expect that this
maximum Mach number causes the larger temperature change in liquid 2.
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3.3. Validation of the KBC during unsteady net evaporation/condensation

In this section, we carry out a numerical simulation of the Boltzmann equation with the
KBC that varies with the temporal evolution of liquid temperature and then validate the
accuracy of the KBC by comparing the macroscopic variables, velocity and temperature,
obtained from the numerical simulation of the Boltzmann equation and those obtained from
the EV-DSMC simulation at each time. Because it has been found that the KBC significantly
affects the macroscopic variables in vapor between two liquid slabs at different temperatures
[40, 41, 42], a proper specification of the KBC is critical. In other words, the KBC in net
evaporation/condensation is valid if and only if the macroscopic variables in vapor obtained
from these two simulations agree with high accuracy at each time. This simple and practical
validation method has often been performed in the numerical simulation based on molecular
dynamics[40, 41].

In the simulation of the Boltzmann equation, we consider a one-dimensional physical
space (z-direction) and three-dimensional molecular velocity space. The system is composed
of the hard-sphere vapor between two kinetic boundaries at temperatures TL1 and TL2. We
utilize the ES-BGK model Boltzmann equation (ES-BGK equation)[43], which can set the
Prandtl number of hard-sphere molecules as 0.66[30], expressed as

∂f

∂t
+ ξi

∂f

∂xi

=
p

µ(1− ν)
[G(f)− f ], (23)

where µ is the viscosity coefficient and ν is a constant for fitting the Prandtl number,

Pr =
1

1− ν
, (24)

and set to 1/2 in this simulation. In the right-hand side of Eq. (23), G(f) is given as

G(f) =
ρ

(det(2πΥij))
1
2

, (25)

where Υij is

Υij = (1− ν)RTδij + νΦij, (26)

where δij is Kronecker’s delta and ρΦij is the stress tensor.
The system length, LV, of this simulation is determined as LV = ℓ0/Kn, where ℓ0 is the

mean free path at the mean temperature of two liquid slabs at t∗ = 0: T0 = 0.66Tc. The mean
free path ℓ0 and the Knudsen number are estimated by using the result of the EV-DSMC
simulation at t∗ = 0. The system length is approximately constant with time in the EV-
DSMC simulation because the position of the kinetic boundary with net evaporation goes
away from another kinetic boundary with net condensation, while that with net condensation
goes toward another kinetic boundary with net evaporation; therefore, we assume LV to be
constant in the numerical simulation of the ES-BGK equation.

The finite difference method is used for the numerical scheme. The cell numbers of the
physical space and the velocity space are set to 500 and 2000, respectively; the cell size

12



of the physical space, ∆z/ℓ0, is set to 1.0 × 10−4 and the cell size of the velocity space,

∆ξz/(2RT0)
1
2 , is set to 1.0× 10−4 near ξz = 0 and 1.0× 10−2 far from ξz = 0. Note that we

performed this simulation using double cell numbers of physical space and the velocity space
and confirmed that the result of the macroscopic variables shows no dependency on the cell
numbers. More detailed explanations of the ES-BGK equation and numerical scheme can
be found in the literature[24, 43, 44].

In the simulation of the ES-BGK equation, we impose Eq. (11) as the KBC at the kinetic
boundary with net evaporation (BV1 in Fig. 4), and Eq. (12) as the KBC at the kinetic
boundary with net condensation (BV2 in Fig. 4). The values of βne and βnc in Eqs. (11) and
(12) vary with the temporal evolution of liquid temperature as shown in Fig. 7; the liquid
temperature dependence of βne and βnc are explicitly clarified[27], and these dependence
fitted by the linear regression analysis are given as follows:

βne(TL) = −0.7411(TL/Tc) + 1.315, βnc(TL) = −1.024(TL/Tc) + 1.514. (27)

We utilize Eq. (27) to specify the values of βne and βnc at each time.
Figure 8 shows the results of the comparison between the vapor velocity and temperature

fields obtained from the numerical simulation of the ES-BGK equation and the EV-DSMC
simulation. The open circles denote the results of the EV-DSMC simulation and the solid
lines denote those of the numerical simulation of the ES-BGK equation. Note that we added
the proper offset to the data for legibility. As shown in Fig. 8 (a), the velocity fields in vapor
obtained from these two simulations are in excellent agreement at each time. In contrast,
as shown in Fig. 8 (b), the slope of the temperature field at t∗ = 0 obtained from the
EV-DSMC simulation is slightly larger than that obtained from the numerical simulation of
the ES-BGK equation; the temperature at BV1 obtained from the EV-DSMC simulation is
smaller, and that at BV2 is larger.

As was mentioned in Section 3.1, Tt, that is, the second moment of the normalized
velocity distribution function in the x-direction, at BV1 estimated from Eq. (20) is smaller
than the temperature of liquid 1 0.72Tc at t

∗ = 0, while that at BV2 estimated from Eq. (22)
is larger than the temperature of liquid 2 0.60Tc at t∗ = 0. These results imply that
the difference of the temperature fields between two different simulations is related to the
anisotropic velocity distribution function of the KBC (see Figs. 5 and 6). In our recent
study[24], we also confirmed that the anisotropic velocity distribution function of the KBC
affects the temperature gradient in vapor in the vapor–liquid two-phase system with strong
net evaporation/condensation. The difference of the temperature field at t∗ = 0, however,
is sufficiently small and decreases with time as shown in Fig. 8 (a).

On the basis of these results, we conclude that the macroscopic variables in the vapor
phase obtained from the numerical simulation of the ES-BGK equation and EV-DSMC
simulation are in good agreement. Therefore, the KBC (Eq. (11) or (12)) that depends
on liquid temperature is guaranteed to be accurate even in unsteady net evaporation and
condensation by considering the time evolution of liquid temperature.

Here, we briefly summarize a comparison of the numerical simulation of the ES-BGK
equation and the EV-DSMC simulation. Note that since the EV-DSMC simulation is cate-
gorized into the particle scheme, which does not directly solve the Enskog–Vlasov equation,
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as explained in Section 2.3, it is difficult to make a comparison of these algorithms. How-
ever, as far as we examine the computational time in the present simulation settings, the
numerical simulation of the ES-BGK equation with the KBC runs approximately 40 times
faster than the EV-DSMC simulation to obtain one simulation. As was mentioned in Section
2.3, the macroscopic variables, such as vapor velocity and temperature shown in Fig. 8, are
estimated from the ensemble average of one simulation obtained from different initial condi-
tions in the EV-DSMC simulation; thus, the computational cost of the numerical simulation
of the ES-BGK equation is obviously smaller than the EV-DSMC simulation. In regard to
this point, the numerical simulation of the Boltzmann equation or its model equation with
a certain KBC, which is established or validated by the molecular simulation, is useful to
examine the vapor–liquid two-phase flow with net evaporation/condensation.

4. Conclusion

In this study, we examined the KBC, which depends on liquid temperature, in the
vapor–liquid two-phase system with unsteady net evaporation and condensation. First, we
simulated an unsteady net evaporation and condensation problem in the system composed
two liquid slabs at different temperatures by using the molecular simulation based on mean-
field kinetic theory, and then we confirmed whether the functional form of the KBC at each
time is the same as that in steady net evaporation/condensation. The results showed that
the KBC follows the temporal evolution of liquid temperature attributed to unsteady net
evaporation and condensation even though the interface layer between the bulk liquid and
kinetic boundary has a finite thickness and the delay time arises from molecules traveling in
this finite interface layer. Finally, we carried out a numerical simulation of the Boltzmann
equation, and then validated the accuracy of the KBC by comparing the macroscopic vari-
ables, such as vapor velocity and temperature, obtained from the numerical simulation of
the Boltzmann equation with those of the molecular simulation based on mean-field kinetic
theory. The results showed that the KBC is applicable to a vapor–liquid two-phase system
with unsteady net evaporation and condensation.

We now comment on the applicable limits of the results of this study. To apply the
results of this study, we should consider the relatively gentle temperature change of the
bulk liquid; specifically, the maximum local Mach number (|Ma| ≈ 0.2) in this study was
observed at BV2 of the initial condition (t∗ = 0). If the maximum local Mach number
is larger, the temporal variation of the macroscopic variable, such as liquid temperature,
becomes drastic. We expect that the normalized velocity distribution function of the KBC
does not follow the temporal evolution of liquid temperature when the characteristic time of
the liquid temperature variation, becomes larger than the delay time (t∗I ≈ 10 in this study)
caused by molecules traveling in the interface. However, the maximum Mach number of the
vapor velocity induced by net evaporation is limited to |Ma| ≈ 0.6, which has been observed
in the case of evaporation into vacuum[21]. Furthermore, the maximum Mach number of the
vapor velocity induced by net condensation is also limited to |Ma| ≈ 0.6, which is caused
by the non-unity evaporation/condensation coefficients and called the blocking effect [45].
In fact, the evaporation into a vacuum and blocking effect are extreme situations of net
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evaporation and condensation; hence, we conclude that the results proposed in this study
can be applied to the practical problem of vapor–liquid two-phase system with unsteady net
evaporation/condensation.
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Figure 1: Picture of the vapor–liquid two-phase system.
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Appendix A. Thermal diffusion in a medium bounded by two parallel planes

Our proposed KBC (Eqs. (11) and (12)) requires liquid temperature TL. It is widely
accepted that the temperature field in liquid phase can be assumed to be uniform in the
case of steady net evaporation/condensation[22, 24, 25, 26, 27, 46]; hence, TL can be defined
without ambiguity. However, the uniformity of the temperature field is no longer necessarily
guaranteed in the case of unsteady net evaporation/condensation; hence, we need to evaluate
TL with extra caution. In Section 3.2, we estimate the spatially average temperature TA over
the bulk liquid and then define this average to be the liquid temperature TL. This definition
can be accepted only if the temperature field is uniform enough. In this appendix, we discuss
the legitimacy of this definition.

Under the assumption of no advection, the unsteady temperature field of the bulk liquid
is governed by the one-dimensional heat conduction equation:

∂T

∂t
= θ

∂2T

∂z2
, (A.1)

where θ is thermal diffusivity, which can be obtained with the use of a Chapman-Enskog
like successive approximation of the Enskog-Vlasov equation[34],

θ =
λ

Cρ
= A

(
RT

π

) 1
2 ma2

ρ
, (A.2)

where C is the specific heat with constant pressure and λ is heat conductivity. We used the
following expression of A in Eq. (A.2):

A =
0.8006

Y (η)

[
1 + 4.800 (ηY (η)) + 12.12 (ηY (η))2

]
, η =

π

6

ρa3

m
, (A.3)

where Y (η) = (1−η)/ (2(1− η)3) [28, 34, 36]. The liquid thermal diffusivity θ = 5.77a(2RTc)
1
2

is obtained at 0.60Tc from Eq. (A.2) The temporal bulk liquid temperature field obtained
from Eq. (A.1) with appropriate boundary and initial conditions, is in general spatially
nonuniform; however, the bulk liquid temperature of liquid 2 obtained from the EV-DSMC
simulation changes while keeping a spatially almost uniform distribution as shown in the
enlarged view of Fig. 4. Note that we also observed that the bulk liquid temperature of liq-
uid 1 similarly changes while keeping a spatially almost uniform distribution. These results
suggest that the use of TA for TL may be accepted in the range of the present calculation. We
further discuss the legitimacy the use of TA for TL by considering the solution of Eq. (A.1).

To investigate the temporal change of the spatial temperature distribution in the liquid,
we consider the following problem, taken from the textbook of Carslaw and Jaegar [47].
Here, the bulk liquid is bounded by two parallel planes: the region −L < z < L with zero
initial temperature, and the temperature of surface TS changes with time. Note that here,
the uniformity of the spatial temperature distribution greatly depends on the rate of change
of TS. In order to solve Eq. (A.1), we properly prepare the boundary condition TS. We
assume that TS can be roughly approximated by TA.
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The temporal change of TA is shown in Fig. A.9. We found that the data can be well
fitted by the exponential function:

TS(t : ω) = T0[1− exp(−ωt)], (A.4)

where t is time, T0 is the temperature difference and ω is the fitting parameter, where
0.005 ≤ ω ≤ 0.008. The temperature distribution with the boundary condition (Eq. (A.4))
can be found on p.104 of the literature[47]:

T (t;ω) =T0 − T0 exp(−ωt)
cos(x

√
ω/θ)

cos(L
√

ω/θ)

− 16T0ωL
2

π

∞∑
n=0

(−1)n exp [−(2n+ 1)2π2θt/(4L2)]

(2n+ 1) [4ωL2 − (2n+ 1)2π2θ]
cos

[
(2n+ 1)πx

2L

]
. (A.5)

We introduce the characteristic time td:

td =
L2

θ
, (A.6)

and the following nondimensional variables:

T ∗ =
T

T0

, T ∗
S =

TS

T0

, τ =
t

td
, ζ =

z

L
, b = ωtd. (A.7)

Then, Eqs. (A.4) and (A.5) can be rewritten as

T ∗
S (τ ; b) = 1− exp(−bτ), (A.8)

T ∗(τ ; b) =1− exp(−bτ)
cos(ζ

√
b)

cos(
√
b)

+
16b

π

∞∑
n=0

(−1)n exp [−(2n+ 1)2π2τ/4]

(2n+ 1) [(2n+ 1)2π2 − 4b]
cos

[
(2n+ 1)πζ

2

]
. (A.9)

Integration of Eq. (A.9) on 0 ≤ ζ ≤ 1 gives the average temperature T ∗
A:

T ∗
A(τ ; b) = 1− exp(−bτ)

sin(
√
b)√

b cos(
√
b)

+ 32b
∞∑
n=0

exp [−(2n+ 1)2π2τ/4]

(2n+ 1)2π2 [(2n+ 1)2π2 − 4b]
. (A.10)

Note that t∗d = td(2RTc)
1
2/a = 2.00 in the present calculation. As a result, 0.01 ≤ b ≤ 0.016.

We now define the index of uniformity κ(τ, b):

κ(τ, b) = 1− T ∗
A(τ ; b)

T ∗
S (τ ; b)

. (A.11)
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κ(τ, b) provides a basis from which to discuss the legitimacy of the use of TA for TL. We
can secure the legitimacy if κ(τ, b) is sufficiently small. Figure A.10 shows the temporal
change of κ(τ, b) for various b. Here, κ(τ, b) monotonously converges to zero as τ increases,
regardless of the magnitude of b; hence, for any given ν such that 0 ≤ ν ≤ 1, there exists
τν(b) that satisfies κ(τν , b) = ν. The smaller b is, the larger τν(b) is, i.e., the slower κ(τ, b)
converges to zero.

The temporal change of κ0(τ) = κ(τ, b → 0), which is written as

κ0(τ) = lim
b→0

κ(τ, b) = 1− 1

τ

[
1

3
− 32

∞∑
n=0

exp [−(2n+ 1)2π2τ/4]

(2n+ 1)4π4

]
, (A.12)

is also shown in Fig. A.10. The value of τ 0ν that satisfies κ0(τ 0ν ) = ν provides the upper
limit of τν(b). Note that b obtained from the present calculation is small enough that τν(b)
can be well approximated by τ 0ν , as observed in Fig. A.10. The typical values of τ 0ν for
ν = 0.05 and 0.02 are τ 00.05 = 6.67 and τ 00.02 = 16.67, respectively. Therefore, as far as
t > 33.4 (td = 2.00), We can regard the unsteady temperature field in the liquid 2 to be
approximately spatially uniform (see the enlarged view of Fig. 4) because κ(τ, b) < 0.02
from the analytical solution of the one-dimensional heat conduction equation. The above
investigation ensures that the heat transfer defined in the present study can be described
by the one-dimensional heat conduction equation when there is no advection in liquid; that
is, we can carry out the numerical simulation of vapor–liquid two-phase flow with unsteady
net evaporation/condensation at a large spatial scale by coupling the one-dimensional heat
conduction equation (Eq. (A.1)) and the Boltzmann equation, without carrying out the
molecular simulation of the bulk liquid that contains a much larger number of molecules
than those in the bulk vapor.
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Figure A.9: Fitting results of the temporal evolution of temperature of liquid 2.
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