<table>
<thead>
<tr>
<th>Title</th>
<th>Spin-wave thermodynamics of square-lattice antiferromagnets revisited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamamoto, Shoji; Noriki, Yusaku</td>
</tr>
<tr>
<td>Citation</td>
<td>Physical Review B, 99(9)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2019-03-11</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/74901</td>
</tr>
<tr>
<td>Rights</td>
<td>©2019 American Physical Society</td>
</tr>
<tr>
<td>Type</td>
<td>article</td>
</tr>
</tbody>
</table>
Spin-wave thermodynamics of square-lattice antiferromagnets revisited

Shoji Yamamoto and Yusaku Noriki
Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

(Received 23 October 2018; revised manuscript received 17 February 2019; published 11 March 2019)

DOI: 10.1103/PhysRevB.99.094412

I. INTRODUCTION

Some decades ago, the earliest treatment of antiferromagnetic spin waves (SWs) at finite temperatures [1] was modified [2–5] in an attempt to formulate thermodynamics of square-lattice Heisenberg antiferromagnets and thereby to interpret neutron-scattering measurements on the high-temperature-superconductor-parent compound La$_2$CuO$_4$ consisting of quantum spins $S = \frac{1}{2}$ [6]. Diagonalizing a bosonic Hamiltonian with its sublattice magnetizations constrained to be zero, Takahashi [2,3] gave a precise description of the thermal quantities at sufficiently low temperatures. Hirsch et al. [4,5] also demonstrated that such modified SWs (MSWs) well reproduce exact-diagonalization results for small clusters. Since we cannot calculate magnetic susceptibilities, whether uniform or staggered and whether static or dynamic, at finite temperatures within the conventional SW (CSW) theory, their findings opened up an avenue for the study of thermodynamics. However, Takahashi’s MSW thermodynamics deteriorates with increasing temperature, not only failing to design a Schottky-like peak of the specific heat but even encountering an artificial phase transition of the first order to the trivial paramagnetic solution [3,7], similar to the Schwinger-boson (SB) mean-field (MF) theory [8,9].

In order to avoid thermal breakdown, Ohara and Yosida [10,11] proposed another way of modifying CSWs, which consists of diagonalizing the Hamiltonian without any constraint but constructing the free energy under vanishing sublattice magnetizations. This scheme yields a peaked specific heat but spoils the otherwise excellent low-temperature findings. Its high-temperature findings are also unfortunate to deviate from the trivial paramagnetic behavior. The internal energy and uniform susceptibility per spin never approach zero and $(g\mu_B)^2S(S+1)/3k_B T$, respectively. Takahashi’s MSWs and Auerbach-Arovas’ SBs are accompanied by the discontinuous transition but thereafter stabilized into the correct paramagnetic state, while Ohara-Yosida’s MSWs remain correlated even in the $T \to \infty$ limit.

In this context, there is a rather different approach to thermodynamics of layered magnets. Combining Dyson-Maleev bosons [12,13] and auxiliary pseudofermions [14] to adjust the local Hilbert space dimension to the original spin degrees of freedom, Irkhin et al. [15] erased the artificial phase transition but thereafter stabilized into the correct paramagnetic state, while Ohara-Yosida’s MSWs remain correlated even in the $T \to \infty$ limit. This formulation unfortunately fails to reproduce the paramagnetic behavior at high temperatures but gives a satisfactory description of layered systems in the truly critical region crossing their magnetic ordering temperatures. It is also noteworthy that a fully convincing description of the two- to three-dimensional crossover is available within the $1/N$ expansion of the $O(N)$ model [19,20], i.e., the nonlinear sigma model generalized to N-component spins, rather than through the $1/S$ expansion of any SW Hamiltonian.

Under such circumstances, we revisit the SW thermodynamics of square-lattice antiferromagnets to find a better solution with particular emphasis on convenience for practical purposes. Is there something else within a simple SW Hamiltonian that is reliable over the whole temperature range and applicable to various spins and interactions? Since the MSW scheme initiated by Takahashi [2,3] and Hirsch et al. [4,5] impose a constraint condition of zero staggered magnetization on SWs via a Bogoliubov transformation dependent on temperature, we refer to this way of modifying
CSWs as a temperature-dependent-diagonalization (TDD)-MSW scheme. The MSW scheme proposed by Obara and Yoshida \cite{10,11} manipulates SWs under the same condition but leaves the CSW Hamiltonian as it is. Then we refer to this way of modifying CSWs as a temperature-independent-diagonalization (TID)-MSW scheme. Modifying sublattice bosons in a TDD manner but bringing them into interaction based on the Wick decomposition (WD) rather than by the Hartree-Fock (HF) approximation, we can retain the excellent low-temperature description and connect it naturally with the paramagnetic behavior without any thermal breakdown.

II. MODIFIED SPIN-WAVE THERMODYNAMICS

We divide the square lattice into two sublattices, referred to as A and B, each containing $N \equiv L/2$ spins of magnitude S. We denote a vector connecting nearest neighbors $r_i (i \in A)$ and $r_j (j \in B)$ by δ_l with l running from 1 to z to write the Hamiltonian of our interest as

$$\mathcal{H} = \sum_{i \in A} \sum_{l=1}^{z} J_b \delta_l \cdot S_{r_i} + \sum_{j \in B} \sum_{l=1}^{z} J_b \delta_l \cdot S_{r_j}. \quad (1)$$

z is equal to 4 and J_b are all set to $J (> 0)$ unless otherwise noted. We employ the Dyson-Maleev bosons

$$S_{r_i}^+ = \sqrt{2S} \left(1 - \frac{a_{r_i}^\dagger a_{r_i}}{2S}\right) \delta_l,$n

$$S_{r_i}^- = \sqrt{2S} a_{r_i}, \quad S_{r_i}^z = S - a_{r_i}^\dagger a_{r_i}, \quad (2)$$

and rewrite the Hamiltonian (1) into

$$\mathcal{H} = \sum_{i=1}^{2} \mathcal{H}^{(i)}; \quad \mathcal{H}^{(1)} = JS \sum_{(i,j)} (a_{r_i}^\dagger a_{r_j} + b_{r_i}^\dagger b_{r_j} + b_{r_j}^\dagger b_{r_i} + a_{r_i} b_{r_j}), \quad (3)$$

$$\mathcal{H}^{(0)} = -\frac{J}{2} \sum_{(i,j)} a_{r_i}^\dagger a_{r_j} + b_{r_i}^\dagger b_{r_j}. \quad (4)$$

We decompose the $O(S^0)$ quartic Hamiltonian $\mathcal{H}^{(0)}$ into quadratic (bilinear in the end) terms

$$\mathcal{H}^{(0)} \simeq NZJS^2 - J\langle S^2 - S \rangle \times \sum_{(i,j)} (a_{r_i}^\dagger a_{r_j} + b_{r_i}^\dagger b_{r_j} + b_{r_j}^\dagger b_{r_i} + a_{r_i} b_{r_j}), \quad (5)$$

where we introduce the multivalued double-angle-bracket notation applicable for various approximation schemes

$$\langle S \rangle \equiv S - \frac{1}{2} \left[a_{r_i}^\dagger a_{r_i} + b_{r_i}^\dagger b_{r_i} + a_{r_i} b_{r_i} \right], \quad \langle S^0 \rangle \equiv S - \frac{1}{2} \left[a_{r_i}^\dagger a_{r_i} + b_{r_i}^\dagger b_{r_i} + a_{r_i} b_{r_i} \right]. \quad (6)$$

which we shall read as the quantum average in the Dyson-Maleev-boson vacuum $\langle S \rangle$ for the linear SW (LSW) formalism, the quantum average in the magnon vacuum $\langle S \rangle_0$ for the WD-based interacting SW (WDISW) formalism, or the temperature-T thermal average $\langle S \rangle_T$ for the HF-decomposition-based interacting SW (HFTISW) formalism. Note that any average $\langle S \rangle$ is independent of the site indices r_i and δ_l by virtue of translation and rotation symmetries.

Let $M_A^\lambda = \sum_{i \in A} S_{r_i}^\lambda$, $M_B^\lambda = \sum_{j \in B} S_{r_j}^\lambda$, and $M_{A^\lambda} = \sum_{i} M_A^\lambda$ + M_B^λ. Then the TDD-MSW theory reads as diagonalizing the effective quadratic Hamiltonian

$$\tilde{\mathcal{H}}_{BL} \equiv \mathcal{H}_{BL} + \mu M_{\delta}^\lambda \quad (7)$$

with such μ as to satisfy $\langle M_{\delta}^\lambda \rangle_T = 0$. We introduce a key variable $p = \sqrt{q^2 + 1}$ to design various MSWs,

$$p \equiv \left\{ \begin{array}{ll} 1 - \frac{\mu}{\delta_{S}^2} & (\text{TDD}) \\ 1 & (\text{TID}) \end{array} \right. \quad (8)$$

We further define some functions of p,

$$\gamma_k \equiv \frac{\sum_{i=1}^{N} J_b \langle S \rangle e^{i k \cdot r_i}}{\sum_{i=1}^{N} J_b \langle S \rangle}, \quad (9)$$

$$\omega_k \equiv \frac{\delta_{k}}{\sum_{i=1}^{N} J_b \langle S \rangle} \equiv \sqrt{q^2 - \gamma_k^2}, \quad (10)$$

$$\epsilon \equiv \frac{p}{2} - \frac{1}{2} \frac{N}{\sum_{i=1}^{p} \omega_k} - \frac{1}{2}, \quad (11)$$

$$\tau \equiv \frac{1}{2} \frac{N}{\sum_{i=1}^{p} \omega_k} - \frac{1}{2}. \quad (12)$$

Carrying out the Fourier transformation

$$a_{k}^\dagger = \frac{1}{\sqrt{N}} \sum_{i \in A} e^{i k \cdot r_i} a_{r_i}, \quad b_{k} = \frac{1}{\sqrt{N}} \sum_{j \in B} e^{i k \cdot r_j} b_{r_j}, \quad (13)$$

and the Bogoliubov transformation

$$a_{k}^\dagger = a_{k}^\dagger \sinh \theta_k + b_{k} \cosh \theta_k, \quad \epsilon = \lambda \cosh \theta_k + b_{k} \sinh \theta_k; \quad (14)$$

$$\cosh 2\theta_k = \frac{p}{\omega_k}, \quad \sinh 2\theta_k = \frac{\gamma_k}{\omega_k}, \quad (15)$$

we can diagonalize the effective Hamiltonian into

$$\tilde{\mathcal{H}}_{BL} \equiv \sum_{l=0}^{2} E^{(l)} \sum_{k \in A} \sum_{\alpha \epsilon \pm} \alpha_{\alpha k}^\dagger \alpha_{\epsilon k} + 2 \mu N S. \quad (15)$$

where $E^{(2)}$ is the classical ground-state energy and $E^{(l \leq 1)}$ are its $O(S^l)$ quantum corrections,

$$E^{(2)} = -NS^2 \sum_{l=1}^{z} J_b = -NZJS^2; \quad (16)$$

$$E^{(1)} = -2NS \sum_{l=1}^{z} J_b = -2NZJS\epsilon. \quad (17)$$

094412-2
\begin{align}
E^{(0)} &= N \sum_{i=1}^{z} J_b [(S - \langle S \rangle)^2 + 2e(S - \langle S \rangle)] \\
&= N z J (S - \langle S \rangle)^2 + 2(S - \langle S \rangle) e].
\end{align}

Every SW thermodynamics can be formulated in terms of \(\langle S \rangle\) and \(p\), which indicate how the SWs are interacting and modified, respectively. The TDD-MSW thermal distribution function reads
\begin{align}
\langle \alpha_{k,1}^{\sigma} \alpha_{k,1}^{\sigma} \rangle_T &= \text{Tr} \left[e^{\varepsilon_{k,1}[\alpha_{k,1}^{\sigma}]} / g_{k,T} \right] \langle \alpha_{k,1}^{\sigma} \alpha_{k,1}^{\sigma} \rangle \\
&= \frac{1}{e^{\varepsilon_{k,1}/g_{k,T}} - 1} \equiv \bar{n}_{k,1},
\end{align}

with \(\varepsilon_{k,1}\) containing \(\langle S \rangle\). Every time we encounter \(\langle S \rangle\), we read it according to the scheme of the time,
\begin{align}
\langle S \rangle' &= S \text{ (LSW)}, \\
\langle S \rangle_0 &= S + \varepsilon + (p - 1) \tau \text{ (WDISW)}, \\
\langle S \rangle_T &= S + \varepsilon + (p - 1) (\tau + I_2) - I_1 \text{ (HFISW)},
\end{align}

where the sums
\begin{align}
I_1 &= \frac{1}{N} \sum_{\nu=1}^{N} \sum_{k=1}^{N} a_{\nu k} \bar{n}_{k,1}, \\
I_2 &= \frac{1}{N} \sum_{\nu=1}^{N} \sum_{k=1}^{N} p_{\nu k} \bar{n}_{k,1},
\end{align}

still contain \(\langle S \rangle\) to be self-consistently determined. The sublattice magnetizations read
\begin{align}
\langle M_{\nu}^A \rangle_T &= \langle M_{\nu}^B \rangle_T = 0, \\
\langle M_{\nu}^{-A} \rangle_T &= \langle M_{\nu}^{-B} \rangle_T = 0, \\
\langle M_{\nu}^{-A} \rangle_T &= -\langle M_{\nu}^+ \rangle_T = N (S - \tau - I_2),
\end{align}

and therefore, the constraint condition is given as
\begin{align}
\langle M_{\nu}^+ \rangle_T = 2 N (S - \tau - I_2) = 0.
\end{align}

In modified HFISW (MHFISW) schemes, we solve the simultaneous equations (20) plus (24) for \(\langle S \rangle_T\) and \(p\). In modified WDISW (MWDISW) schemes, we substitute Eq. (19) into Eq. (24) to obtain \(p\) and then \(\langle S \rangle_0\). In modified LSW (MLSW) schemes, \(\langle S \rangle_0\) is a constant and therefore we have only to solve Eq. (24) for \(p\). Employing the Bloch-De Dominicis theorem [21] to evaluate the thermal average of the quartic Hamiltonian, we can calculate the internal energy:
\begin{align}
\langle H^{(2)} \rangle_T &= -N S^2 \sum_{i=1}^{z} J_k = -N z J S^2, \\
\langle H^{(1)} \rangle_T &= -2 N S \sum_{i=1}^{z} J_k (\langle S \rangle_T - S) = -2 N z J S \langle S \rangle_T - S, \\
\langle H^{(0)} \rangle_T &= -N \sum_{i=1}^{z} J_k (\langle S \rangle_T - S)^2 = -N z J \langle (S) \rangle_T - S^2;
\end{align}

\[E = \langle H \rangle_T = -N \sum_{i=1}^{z} J_b \langle S \rangle^2_T = -N z J \langle S \rangle_T^2. \]

Having in mind that
\begin{align}
e^{i H_{\text{int},1} / \hbar} \alpha_{k,1}^\sigma e^{-i H_{\text{int},1} / \hbar} = e^{-i \varepsilon_{k,1} / \hbar} \alpha_{k,1}^\sigma,
\end{align}

the dynamic structure factors read
\begin{align}
S_{\nu q}(q, \omega) &= \frac{1}{2 \pi \hbar L} \sum_{k=1}^{L} e^{i q (r - r_v)} \int_{-\infty}^{\infty} \langle \delta S_{\nu}^q(t) \delta S_{\nu}^{q'}(t) \rangle_T e^{i \omega t} dt, \\
\delta S_{\nu}^q(t) &= e^{i H_{\text{int},1} / \hbar} \delta S_{\nu}^q e^{-i H_{\text{int},1} / \hbar}, \\
\langle S_{\nu}^q, S_{\nu}^{q'} \rangle_T &= S_{\nu}^q = \bar{n}_{k,1} - \langle \bar{S}_{\nu}^q \rangle_T. \\
S_{\nu}^{\text{xx},(q, \omega)} &= S_{\nu}^{\text{yy},(q, \omega)} = \frac{S - \tau - I_2}{2} (\cos \theta_{q} - \sin \theta_{q})^2 \\
&\times \left[\bar{n}_{k,1} (\bar{S}_{\nu}^q + \bar{S}_{\nu}^{q'}) + (\bar{n}_{k,1} + 1) \delta (\bar{S}_{\nu}^q + \bar{S}_{\nu}^{q'}) \right], \\
S_{\nu}^{\text{zz},(q, \omega)} &= \frac{1}{2 N} \sum_{\nu=1}^{N} \sum_{k=1}^{N} \left[\bar{n}_{k,1} \bar{S}_{\nu}^q + (\bar{n}_{k,1} + 1) \delta (\bar{S}_{\nu}^q + \bar{n}_{k,1} + 1) \right] \\
&\times \delta (\bar{S}_{\nu}^q + \bar{S}_{\nu}^{q'}) (\cos^2 (\theta_{q} - \theta_{q}) + 2 \bar{n}_{k,1} (\bar{S}_{\nu}^q + \bar{S}_{\nu}^{q'}) + 1).
\end{align}

The static structure factors are available from them,
\begin{align}
S_{\nu}^{\text{xx},(q)} &= \frac{1}{2 N} \sum_{k=1}^{N} \left[\bar{n}_{k,1} \bar{S}_{\nu}^q + (\bar{n}_{k,1} + 1) \delta (\bar{S}_{\nu}^q + \bar{n}_{k,1} + 1) \right] \\
&\times \sin^2 (\theta_{q} + \theta_{q}) + 2 \bar{n}_{k,1} (\bar{S}_{\nu}^q + \bar{S}_{\nu}^{q'}) + 1.
\end{align}

and so are the static uniform susceptibilities,
\begin{align}
\chi_{\nu}^{\text{xx}} / L &= \frac{1}{L} \sum_{k=1}^{N} \left[\bar{n}_{k,1} (\bar{S}_{\nu}^q + \bar{n}_{k,1} + 1) \right] \\
&\times \sin^2 (\theta_{q} + \theta_{q}) + 2 \bar{n}_{k,1} (\bar{S}_{\nu}^q + \bar{S}_{\nu}^{q'}) + 1.
\end{align}

We compare the TDD-MLSW and TDD-MHFI SW calculations of the internal energy \(E = \langle H \rangle_T\), specific heat \(C = \partial E / \partial T\), and uniform susceptibility \(\chi \equiv \sum_{\nu=x,y,z} \chi_{\nu}^{\text{xx}} / 3\) with quantum Monte Carlo (QMC) calculations in Figs. 1 \((S = 1/2)\) and 2 \((S = 1)\), in the former of which Kim and Troyer’s QMC findings [22] are also presented \((\ast)\). While the TDD-MLSW scheme succeeds in designing antiferromagnetic peaks of \(C\) and \(\chi\), it is far from precise at low temperatures, missing the \(T \to 0\) values of \(\chi\) considerably. We can improve these poor low-temperature findings by taking account of the SW interactions \(H^{(0)}\). While the thus-obtained TDD-MHFI SW
dependences. The worst of them is that they are accompanied
by an artificial phase transition of the first order to the trivial
paramagnetic solution at a certain finite temperature. The
specific heat jumps down to zero and the susceptibility switches
to that of free spins $L(g_{ij}S(S+1)/3k_B T$ when $k_B T/J$
reaches 0.9108 and 2.202 for $S = 1/2$ and $S = 1$, respectively,
where p diverges, while $(S)_T$ vanishes, satisfying $p(S)_T =
(k_B T/\varepsilon J)\ln(1 + 1/S)$.

The TID-MSW theory starts with diagonalizing the CSW
Hamiltonian $\hat{H}_{BL} \equiv \lim_{\nu \to 0} \hat{H}_{CS}$ \cite{10, 11, 23, 24}. When we
denote the probability of n antiferromagnons of mode σ with
momentum k_ν emerging at temperature T by $P_k(n)$, the free
energy reads

$$F = \sum_{l=0}^{2} E_l^{(1)} + 2 \sum_{\nu \in 1}^{N} \varepsilon_k \sum_{n=0}^{\infty} nP_k(n)$$
$$+ 2 k_B T \sum_{l=1}^{N} \sum_{n=0}^{\infty} P_k(n) \ln P_k(n).$$

(30)

$P_k(n)$ is determined so as to minimize the effective free energy

$$\tilde{F} = F + 2 \sum_{l=1}^{N} \mu_\nu \left[1 - \sum_{n=0}^{\infty} P_k(n) \right]$$
$$+ 2 \mu N \left[S - \tau - \sum_{l=1}^{N} \sum_{n=0}^{\infty} \frac{nP_k(n)}{\omega k_\nu} \right].$$

(31)

where μ_ν is obtained from the normalization condition
$\sum_{n=0}^{\infty} P_k(n) = 1$, while μ from the constraint condition (24). Then we have

$$P_k(n) = e^{\mu_\nu/k_BT-1} e^{-\varepsilon_k/k_BT} (1 - e^{-\varepsilon_k/k_BT}) e^{-\varepsilon_k/k_BT}$$

(32)

with the effective energy

$$\tilde{\varepsilon}_k \equiv \varepsilon_k - \frac{\mu}{\omega k_\nu}$$

(33)

to yield the TID-MSW optimal distribution

$\sum_{n=0}^{\infty} nP_k(n) = \frac{\text{Tr} [e^{-\varepsilon_k(\alpha_k^\sigma \alpha_k^\tau - k_BT \alpha_k^\sigma \alpha_k^\tau})] }{\text{Tr} [e^{-\varepsilon_k(\alpha_k^\sigma \alpha_k^\tau - k_BT \alpha_k^\tau \alpha_k^\sigma})] }$

$$= \frac{1}{e^{\tilde{\varepsilon}_k/k_BT} - 1} \equiv \tilde{n}_k..$$

(34)

The TID-MSW calculations of E, C, and χ are also shown in
Figs. 1 and 2. They are indeed free from thermal breakdown
but in poor agreement with QMC calculations through the
whole temperature range. The intermediate-temperature peak
of C is too high and the low-temperature increase of χ is
too slow. The high-temperature asymptotics is also incorrect
(refer to Appendix).

In order to retain the TDD-MHFISW precise low-
temperature findings by all means and connect them naturally
with the correct high-temperature asymptotics, we return to
the TDD modification scheme but design interacting SWs in
a different manner from the HF approximation. Our treatment
of the $O(S^3)$ quartic Hamiltonian $\hat{H}^{(3)}$ consists of applying
the Wick theorem based on the magnon operators $\alpha_k^+ \alpha_k^-$ to it

FIG. 1. MSW calculations of the internal energy E, specific heat C, and uniform susceptibility χ as functions of temperature for the
Hamiltonian (1) of $L \rightarrow \infty$ in comparison with QMC calculations in
the case of $S = \frac{1}{2}$.

FIG. 2. The same as Fig. 1 in the case of $S = 1$.
and neglecting the residual normal-ordered interaction: \(\mathcal{H}^{(0)} \). Then we have the bilinear Hamiltonian (4) with \(\langle S \rangle \) read as the SW ground-state expectation value \(\langle S \rangle_0 \) given by Eq. (19).

We show in Figs. 1 and 2 the MWDISW calculations as well. Both TDD and TID MWDISWs describe the Schottky-like peak of \(C \) much better than MHFISWs and their descriptions of \(E \) and \(C \) are exactly the same at sufficiently low temperatures [cf. Eq. (51)]. However, a significant difference is detected between the TDD and TID modification schemes in describing \(\chi \). The low-temperature increase of \(\chi \) is precisely described by TID MSWs but precisely reproduced by describing

\[
\text{detected between the TDD and TID modification schemes in }
\]

II. LOW-TEMPERATURE SERIES EXPANSION

In order to convert the \(\nu \) summations (21), (22), and (29) into \(x \) integrations and thereby expand them into low-temperature series, we define a state-density function:

\[
w(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - \omega_k + q) (0 \leq x \leq p - q) \quad (35)
\]

For the square lattice in the thermodynamic limit, this reads

\[
w(x) = \left(\frac{2}{\pi} \right)^2 (x + q) K(\sqrt{x^2 + 2qx}) \sqrt{\pi^2 - (x + q)^2} = 2 \sum_{l=0}^{\infty} u_l x^l;
\]

\[
K(k) = \int_0^\pi \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \frac{\pi}{2} \sum_{n=0}^\infty \left[\frac{(2n - 1)!!}{(2n)!!} \right] k^{2n}
\]

with leading coefficients explicitly given as

\[
w_0 = \frac{q}{\pi}, \quad w_1 = \frac{3q^2 + 2}{2\pi}, \quad w_2 = \frac{41q^3 + 36q}{16\pi},
\]

\[
w_3 = \frac{147q^4 + 164q^2 + 24}{32\pi},
\]

\[
w_4 = \frac{8649q^5 + 11760q^3 + 3280q}{1024\pi},
\]

\[
w_5 = \frac{32307q^6 + 51894q^4 + 21168q^2 + 1312}{2048\pi}.
\]

We define integral functions as

\[
F_\xi(v, t) = \begin{cases}
\int_0^{p-q} \int_0^{x - i} dx \int_0^{x - i} dy & (TDD) \\
\int_0^{p-q} \int_0^{x - i} dx \int_0^{x - i} dy & (TID)
\end{cases}
\]

\[
G_\xi(v, t) = \begin{cases}
\int_0^{p-q} \int_0^{x - i} dx \int_0^{x - i} dy & (TDD) \\
\int_0^{p-q} \int_0^{x - i} dx \int_0^{x - i} dy & (TID)
\end{cases}
\]

If we put

\[
f_\xi(v) = \frac{F_\xi(v, t)}{t I \Gamma(\xi)}; \quad t = \frac{k_B T}{\sum_{i=1}^{\infty} J_i \langle\langle S \rangle \rangle} = \frac{k_B T}{v \langle\langle S \rangle \rangle},
\]

\[
v = \left\{ \frac{q}{t} \right\} \frac{1}{\sqrt{\sum_{i=1}^{\infty} J_i \langle\langle S \rangle \rangle}} = \frac{1}{\sqrt{\sum_{i=1}^{\infty} J_i \langle\langle S \rangle \rangle}}
\]

and assume that \(t \ll p - q \), \(f_\xi(v) \) for TDD MSWs become Bose-Einstein integral functions and are therefore expanded in powers of \(v \) as

\[
f_\xi(v) = \frac{(-v)^{\xi-1}}{(\xi - 1)!} \left[\sum_{r=1}^{\xi-1} \frac{1}{r} - \ln v \right] + \sum_{n=0}^{\infty} \frac{\xi(\xi - n)(-v)^n}{n!}
\]

for \(\xi = 1, 2, 3, \cdots \), while \(f_\xi(v) \) for TID MSWs are similarly expanded as

\[
\Gamma'(\xi) f_\xi(v) = (-v^2)^{\xi-1/2} \left[\sum_{r=1}^{\xi-1} \frac{1}{r} - \ln v \right] + \sum_{n=0}^{\infty} \frac{\xi(2-\xi-2n)}{(\xi - 1)!} \left[2^{\xi-1} (1/2) - \ln v \right]
\]

\[
+ \sum_{n=0}^{\infty} \frac{\xi(2-\xi-2n)}{(\xi - 2)!} \left[2^{\xi-2} - 2^{\xi-1} \right]
\]

for \(\xi = 1, 3, 5, \cdots \).

Now we can expand the integrals (21), (22), and (29) in powers of \(t \) and \(v \) as

\[
I_1 = 2q \sum_{i=0}^{\infty} \sum_{l=0}^{i} \frac{u_l}{q^l} F_{i+l+1}(v, t),
\]

\[
I_2 = \begin{cases}
2q \sum_{i=0}^{\infty} \sum_{l=0}^{i} \frac{u_l}{q^l} F_{i+l+1}(v, t) & (q \neq 0) \\
2 \sum_{i=0}^{\infty} u_l F_{i+1}(v, t) & (q = 0)
\end{cases}
\]

\[
I_3 = 2 \sum_{l=0}^{\infty} w_l G_{l+1}(v, t).
\]
Having in mind that $p = \sqrt{1 + q^2} = \sqrt{1 + (vt)^2}$ for TDD MSWs and $p = \sqrt{1 + q^2} = 1$ for TID MSWs, we solve Eq. (24) for v in an iterative manner to have

$$v = \exp\left[-\pi \frac{S - \tau_{p=1}}{2t} + \frac{3\xi(3)}{2} t^2 + \frac{123\xi(5)}{8} t^4 + O(t^6)\right]$$

(46)
in both cases. Hence Eqs. (43) and (45) read

$$I = 4\frac{\xi(3)}{\pi} t^3 + 36\frac{\xi(5)}{\pi} t^5 + 1845\frac{\xi(7)}{2} t^7 + O(t^9),$$

(47)

$$I_3 = (S - \tau_{p=1}) t + \frac{27}{16} (TDD)$$

(48)

$$E \frac{N}{\zeta J} = -(S + \epsilon_{p=1})^2 - 16\left[\frac{\xi(3)}{\pi}\left(\frac{k_b T}{\zeta J}\right)^3 \right] S - \tau_{p=1} + \frac{2}{3\pi} \frac{\xi(3)}{\pi} \left(\frac{k_b T}{\zeta J}\right)^3 + O(T^5) \quad \text{(TDD)}$$

(51)

$$\chi J \frac{L(g\mu_B)}{2} = \left\{\begin{array}{ll}
\frac{S - \tau_{p=1}}{3S} + \frac{2}{3\pi} \frac{\xi(3)}{\pi} \left(\frac{k_b T}{\zeta J}\right)^3 & \text{(TDD)} \\
\frac{S - \tau_{p=1}}{3\zeta J(S + \epsilon_{p=1})} + \frac{2}{1\pi} \frac{\xi(3)}{\pi} \left(\frac{k_b T}{\zeta J(S + \epsilon_{p=1})}\right)^3 & \text{(TID)} \\
\frac{S - \tau_{p=1}}{3\zeta J(S + \epsilon_{p=1})} + \frac{2}{1\pi} \frac{\xi(3)}{\pi} \left(\frac{k_b T}{\zeta J(S + \epsilon_{p=1})}\right)^3 & \text{(TDD)} \\
\frac{S - \tau_{p=1}}{3\zeta J(S + \epsilon_{p=1})} + \frac{2}{1\pi} \frac{\xi(3)}{\pi} \left(\frac{k_b T}{\zeta J(S + \epsilon_{p=1})}\right)^3 & \text{(TID)} \\
\frac{S - \tau_{p=1}}{3\zeta J(S + \epsilon_{p=1})} + \frac{2}{1\pi} \frac{\xi(3)}{\pi} \left(\frac{k_b T}{\zeta J(S + \epsilon_{p=1})}\right)^3 & \text{(TDD)} \\
\frac{S - \tau_{p=1}}{3\zeta J(S + \epsilon_{p=1})} + \frac{2}{1\pi} \frac{\xi(3)}{\pi} \left(\frac{k_b T}{\zeta J(S + \epsilon_{p=1})}\right)^3 & \text{(TID)}
\end{array}\right.$$

(52)

Considering that $p = 1 + t^2 O(e^{-1/\nu})$, $\tau = \tau_{p=1} + t O(e^{-1/\nu})$, $\epsilon = \epsilon_{p=1} + t^2 O(e^{-1/\nu})$, and therefore

$$\langle S \rangle = \left\{\begin{array}{ll}
S + \epsilon_{p=1} + t^2 O(e^{-1/\nu}) & \text{(LSW)} \\
S + \epsilon_{p=1} - 4\frac{\xi(3)}{\pi} t^4 + O(t^5) & \text{(HFISW)}
\end{array}\right.$$

(49)

the nonlinearity of t as a function of T is weak, if any,

$$t = \left\{\begin{array}{ll}
\frac{k_b T}{\zeta J(S + \epsilon_{p=1})} + 1 + t^2 O(e^{-1/\nu}) & \text{(LSW)} \\
\frac{k_b T}{\zeta J(S + \epsilon_{p=1})} + 1 + \frac{4}{3}\frac{\xi(3)}{\pi} t^4 + O(t^5) & \text{(HFISW)}
\end{array}\right.$$

(50)

We eventually have

There is little difference of $O(e^{-1/\nu})$ between the TDD-MSW and TID-MSW low-temperature series expansions of E. Within the first four terms, they are exactly the same not only as each other but also as the CSW one. For E and therefore C, it does not matter whether and how SWs are modified but does whether and how they are interacting, as far as temperature is sufficiently low. Note that the chemical potential μ has little effect of $O(e^{-1/\nu})$ on I_1. On the other hand, there is a serious difference of $O(T)$ between the TDD-MSW and TID-MSW low-temperature series expansions of χ. While they converge to the same $T \rightarrow 0$ limit, the TID-MSW scheme underestimates the initial slope by a factor of 2. The TDD-MWDISW and TDD-MHFISW findings are precise and exactly the same as each other within the first two terms. With further increasing temperature, the latter deviate from the former and end in the artificial phase transition to the paramagnetic solution. We should be reminded that CSWs can reproduce nothing about χ. I_3 expanded in powers of t and v contains a term $-t^2 \ln v$, which diverges in the $v \rightarrow 0$ limit, i.e., within CSW theories, but stays finite by virtue of the constraint condition (24) in MSW theories.

IV. DYNAMIC STRUCTURE FACTOR

In order to further demonstrate the quality and reliability of the TDD-MWDISW thermodynamics, we show in Fig. 3 its findings for the dynamic structure factor $S(q, \omega) \equiv \sum_{\lambda=\pm,\pi,\nu} S_{\lambda}^2(q, \omega)/3$ in comparison with exact calculations of the expression (27) expanded as a continued fraction [25,26]. TDD MWDISWs give an excellent description, especially of the δ-function peaks at the one-magnon frequency ϵ_k. There is no visible difference between the MSW and exact calculations of them at all in the case of $S = 1$. There are two facts noteworthy in this context. One is that CSWs cannot reproduce anything about $S(q, \omega)$ even at $T = 0$ unless $L \rightarrow \infty$ and the other is that the TDD-MWDISW and TDD-MHFISW
schemes are equivalent at $T = 0$. In CSW theories, $p = 1$ and therefore the excitation energy $\varepsilon_k \equiv \varepsilon J \langle S \rangle_{0k}$ goes to zero at $k_\nu = 0$. Then we cannot calculate the v summation in Eq. (27), because $\sinh 2k_\nu$ and $\cosh 2k_\nu$ as well as n_k are divergent at $k_\nu = 0$. If we identify quantum averages at absolute zero, $\langle \rangle_{T=0}$, with those in the magnon vacuum, $\langle \rangle_0$, to set n_k’s all equal to zero and take the thermodynamic limit $L \rightarrow \infty$ to convert the intractable v summation into a convergent integral, the ground-state structure factors are available within CSW theories; however, the situation is still the same that $\chi \propto S(0)/T$ is not available there. The thus-calculated CSW findings for the ground-state dynamic structure factor are exactly the same as the $T = 0$ MSW calculations at each approximation level, i.e., LSW, WDISW, or HFISW. Still, the fact remains that we can calculate no magnetic correlation of finite-sized square-lattice Heisenberg antiferromagnets in terms of SWs without modifying them in a TDD manner. Since TID MSWs share the same Bogoliubov transformation as CSWs, they are also of little use in this context.

$S(q, \omega)$ of the Hamiltonian (1) with $S = \frac{1}{2}$ has been calculated in terms of SBS at a MF level [27] and MHFISWs [28] as well. They yield exactly the same findings at every temperature. Their findings at $T = 0$ are therefore exactly the same as the MWDISW calculations shown in Fig. 3. However, as was fully demonstrated in Figs. 1 and 2, MHFISWs are fragile and easy to break down with increasing temperature, while MWDISWs are robust and free from thermal breakdown.

V. COMPARISON WITH EXPERIMENTS

It is interesting to analyze inelastic-neutron-scattering (INS) measurements on the spin-$\frac{1}{2}$ square-lattice antiferromagnet La$_2$CuO$_4$ in terms of our MWDISW theory. This material is poorly fitted for the naive Heisenberg model (1) but well describable with a higher-order spin Hamiltonian [29] based on a strongly correlated single-band Hubbard model at half filling [30–32]:

$$
\mathcal{H} + \mathcal{V} = J(D_x + D_y) + J'(D_{x+y} + D_{x-y}) + J''(D_{2x} + D_{2y}) + J_c(Q_{x,y} + Q_{y,x} - Q_{x+y}) .
$$

$$
D_\alpha \equiv \sum_{k=1}^L S_{r_k} \cdot S_{r_k+\alpha} ,
$$

$$
Q_{\alpha,\beta,\gamma} \equiv \sum_{k=1}^L (S_{r_k} \cdot S_{r_k+\alpha})(S_{r_k+\beta} \cdot S_{r_k+\gamma}) ,
$$

$$
x \equiv \delta_1 = -\delta_2 ,\quad y \equiv \delta_1 = -\delta_4 .
$$

(53)

Allowing electrons to directly hop only between nearest-neighbor Cu sites and then denoting the hopping energy and on-site interaction by t and U, respectively, we have

$$
J = \frac{4t^2}{U} - \frac{24t^4}{U^2} ,\quad J' = J'' = \frac{J_c}{20} = \frac{4t^4}{U^3} .
$$

(54)

In the expression (53), we regard H/U as second order in t/U so as to reproduce the Heisenberg Hamiltonian with a nearest-neighbor-only coupling (1) and therefore V/U as fourth order in t/U.

Let $q \equiv k_{in} - k_{sc}$ and $\hbar \omega \equiv E_{in} - E_{sc}$ with k_{in} (k_{sc}) and E_{in} (E_{sc}) being the initial (final) wave vector and energy of neutrons, respectively. The double-differential INS cross section, defining the probability of scattering an incident neutron beam into a particular energy range dE and direction perpendicular to the surface area subtending the solid angle $d\Omega$, is directly related to the imaginary parts of the dynamic susceptibilities $\chi^{\lambda\lambda}(q, \omega)$.

$$
\frac{d^2 \sigma}{d\Omega dE} = \frac{Q_{\lambda\lambda}^2}{2 \mu_B^2} |F(q)|^2 e^{-2W(q)} \sum_{\lambda=x,y,z} \left(\sum_{\gamma=x,y,z} \left(\sum_{\beta=x,y,z} \left(\sum_{\alpha=x,y,z} \langle \langle \sigma_\alpha | q \cdot \phi(\nu) | \sigma_\beta \rangle \rangle \langle \langle \sigma_\beta | q \cdot \phi(\nu) | \sigma_\gamma \rangle \rangle \langle \langle \sigma_\gamma | q \cdot \phi(\nu) | \sigma_\lambda \rangle \rangle \right) \right) Im \chi^{\lambda\lambda}(q, \omega) ,
$$

(55)

where $(\gamma r_{12} / 2 \mu_B^2)$ measures 72.65×10^{-3} barn/μ_B^2. $F(q)$ is the magnetic form factor defined as $\int e^{i\mathbf{q} \cdot \mathbf{r}} | \phi(\mathbf{r}) |^2 d\mathbf{r}$ with $\phi(\mathbf{r})$ being a Wannier orbital, and $e^{-2W(q)}$ is the Debye-Waller factor. We rewrite D_α and $Q_{\alpha,\beta,\gamma}$ in terms of the Dyson-Maleev bosons (2) and denote their $O(S^4)$ terms by $D_\alpha^{(4)}$ and $Q_{\alpha,\beta,\gamma}^{(4)}$, respectively, similar to Eq. (3). Decomposing the $O(S^4)$ quartic, $O(S^2)$ quartic, $O(S^4)$ sextic, and $O(S^6)$ octic interactions $D_{\alpha}^{(4)}$, $Q_{\alpha,\beta,\gamma}^{(4)}$, $Q_{\alpha,\beta,\gamma}^{(6)}$, and $Q_{\alpha,\beta,\gamma}^{(8)}$ all into quadratic terms through the Wick theorem, we evaluate Eq. (55) in terms of MWDISWs and interpret separate INS experiments on different samples of La$_2$CuO$_4$ performed by Headings et al. at $T = 10$ K [33] and by Coldea et al. at $T = 295$ K [29]. While the Landé g factor may depend on direction in a solid [34], here we take an isotropic g and set it to 2 for simplicity [35].

Figure 4 shows the experimental and theoretical findings for the imaginary part of the dynamic susceptibility $\chi(q, \omega) \equiv \sum_{\lambda=x,y,z} \chi^{\lambda\lambda}(q, \omega)$ at $T = 10$ K. Supposing the ring exchange interaction is considerably strong, $J_c = 0.41J$, and making a manual correction to the conventional LSW (CLSW) dispersion relation, Headings et al. [33] gave a good guide to the one-magnon cross section [Fig. 4(a)]. Taking account of the $O(S^0)$ quartic terms $D^{(0)}_{\alpha}$ in the Heisenberg interactions but discarding the $O(S^4)$ sextic terms $Q^{(4)}_{\alpha,\beta,\gamma}$ and $O(S^6)$ octic terms $Q^{(6)}_{\alpha,\beta,\gamma}$ in the ring exchange interactions, Katzin and Kampf [38] demonstrated that conventional HFISWs (CHFISWs) can indeed reproduce Headings’ guiding line with $J = 151.9$ meV and $J' = J'' =$

094412-7
$J_{\square}/9.6 = 3.80 \text{ meV}$. Their estimate sounds more convincing with a moderate ring exchange interaction, $J_{\square} = 0.24J$, claiming that any orbital other than $\text{Cu 3d}_{x^2-r^2}$ should further contribute to magnetic interactions. Our full calculation, including all the up-to-$O(S^3)$ terms, can also yield a moderate ring exchange interaction, $J_{\square} = 0.20J' = 0.22J$, within the fourth-order perturbation theory (54).

Figure 5 shows the experimental findings for the INS cross section σ at room temperature in comparison with our theoretical findings for σ and $\chi(q, \omega)$ at various temperatures. Coldea et al. [29] report that the energy dispersion of magnetic excitations along the high-symmetry directions $X(\pi/\alpha, 0)$ to $\Lambda(\pi/2\alpha, \pi/2\alpha)$ becomes less pronounced upon heating. While Figs. 4 and 5 look consistent with such observations, we should be reminded that they are separate observations of different samples. The two samples have a small but nonnegligible difference of magnetic interaction and that is mainly why they exhibit a visibly different zone-boundary dispersion. In this context, we further note that different mechanisms may be responsible for the zone-boundary dispersion. Higher-order expansions in t/U and $1/S$ have competing effects on the zone-boundary one-magnon energies. Within the LSW description of the naivest Heisenberg Hamiltonian (1), there is no dispersion along the zone boundary between X and Λ. Higher-order spin couplings such as ring exchange interaction contribute to raising the one-magnon energies at around X with respect to those at around Λ [38], as was demonstrated in Figs. 4 and 5. Without any such higher-order exchange coupling, higher-order perturbation corrections within the Hamiltonian (1) also make the one-magnon energies along the zone boundary dispersive, raising those at around Λ with respect to those at around X [39,40]. Such observations are indeed obtained by INS experiments on another spin-$\frac{1}{2}$ square-lattice antiferromagnet, $\text{Cu(DCOO)}_2 \cdot 4\text{D}_2\text{O}$ [41,42], whose t/U is relatively small with respect to that of La_2CuO_4 and hence its nearest-neighbor-only coupling of $J = 6.3 \text{ meV}$ [43]. There are some other frustrated square-lattice antiferromagnets with dispersive one-magnon energies along the zone boundary [44,45]. Dependences of the zone-boundary dispersion on exchange coupling, spin quantum number, and temperature remain to be investigated from both experimental and theoretical points of view.

Magnetization measurements on carrier-free La_2CuO_4 [46] and $\text{Cu(DCOO)}_2 \cdot 4\text{D}_2\text{O}$ [43,47] reveal their Néel transitions at 325 K and 16.5 K, respectively. Hence it follows that the experimental observations in Fig. 5 describe the characteristics of SWs in the vicinity of the Néel temperature T_N. WDISWs overestimate T_N of layered antiferromagnets, as will be shown in Sec. VII. We can make higher-order perturbation corrections to WDISWs in an attempt to reduce their overestimation of T_N and further interpret various experimental observations of layered antiferromagnets in the truly critical temperature region near T_N. Such fluctuation corrections, together with auxiliary pseudofermions, indeed improve the HFISW calculations of sublattice magnetizations in a spin-1 layered perovskite with easy-axis single-ion anisotropy, K_2NiF_4 [15]. In three dimensions, however, the present MSW theories all reduce to a CSW formulation below T_N with their chemical potential vanishing, $\mu \rightarrow -0 (T \rightarrow T_N + 0)$. Therefore, we take more interest in developing an efficient MSW theory in lower dimensions. The TDD-WDISW thermodynamics of...
square-lattice antiferromagnets is precise and analytic at low temperatures and remains reliable at high temperatures. We expect that fluctuation corrections will further improve it at intermediate temperatures rather than attempt to refine that of layered antiferromagnets.

VI. MODIFIED SPIN WAVES COMBINED WITH PSEUDOFERMIONS

A combined boson-pseudofermion representation of spin operators can also give a reasonable description of thermodynamic properties. Tuning this tool in various aspects, Irkhin et al. [15] reproduced magnetization measurements on a layered antiferromagnet with particular emphasis on the dimensional-crossover temperature region. It must be of benefit to our future study to compare MSW theories of current interest with what they call self-consistent SW (SCSW) theories. Irkhin et al.’s SCSWs within one-particle picture are obtained by combining TDD MHFISWs with pseudofermions. Besides them, various MSWs combined with pseudofermions (MSWs+PFs) are available to formulate thermodynamics. Before concluding our paper, we investigate boson-pseudofermion mixed interactions in detail. Indeed, combining TDD MSWs with pseudofermions results in preventing them from thermal breakdown, but the resultant findings are not necessarily superior to those of pure TDD MSWs. TDD MLSSWs, MHFISWs, and MWDISISWs combined with pseudofermions (MLSSWs+PFs, MHFISWs+PFs, and MWDISISWs+PFs) all fail to reproduce the high-temperature paramagnetic behavior correctly. They remain correlated to underestimate the total spin degrees of freedom even at sufficiently high temperatures. Irkhin et al.’s SCSWs work better in the vicinity of magnetic ordering than elsewhere and are therefore suitable for describing two-dimensional magnets with interlayer coupling and/or magnetic anisotropy [15,48], which we shall demonstrate in the final section, in comparison with purely bosonic TDD-MSW calculations.

\[
S_r^+ = \sqrt{2S} \left[1 - \frac{a_r^\dagger a_r}{2S} - \frac{2(2S + 1)c_r^\dagger c_r}{2S} \right] a_r, \\
S_r^- = \sqrt{2S}a_r^\dagger, \\
S_r^z = S - a_r^\dagger a_r - (2S + 1)c_r^\dagger c_r, \\
S_r^+ = \sqrt{2S}b_r^\dagger \left[1 - \frac{b_r^\dagger b_r}{2S} - \frac{2(2S + 1)d_r^\dagger d_r}{2S} \right], \\
S_r^- = \sqrt{2S}b_r^\dagger, \\
S_r^z = b_r^\dagger b_r + (2S + 1)d_r^\dagger d_r - S,
\]

where auxiliary pseudofermions, created on sites \(r_i \) (\(i \in A \)) and \(r_j \) (\(j \in B \)) by \(c_r^\dagger \) and \(d_r^\dagger \), respectively, are employed to bring Dyson-Maleev bosons, created by \(a_r^\dagger \) and \(b_r^\dagger \), into kinematic interaction. The local Hilbert space in which the Bar’yakhtar-Krivoruchko-Yablonskii transforms (56) operate is spanned by the basis vectors

\[
|n_i, f_i \rangle_r = \frac{a_r^\dagger a_r}{\sqrt{n_i!}} c_r^\dagger f_i |0 \rangle_r, \quad (i \in A; \ n_i = 0, 1, 2, \ldots; \ f_i = 0, 1), \\
|n_j, f_j \rangle_r = \frac{b_r^\dagger b_r}{\sqrt{n_j!}} d_r^\dagger f_j |0 \rangle_r, \quad (j \in B; \ n_j = 0, 1, 2, \ldots; \ f_j = 0, 1).\]

Applying \(S_r^z \) to each basis set shows that \(|n_i, 0 \rangle_r \) with \(n_i \) larger than \(2S \) and \(|n_1, 1 \rangle_r \) are nonphysical states. The Bar’yakhtar-Krivoruchko-Yablonskii bosons combined with pseudofermions (56) rewrite the Hamiltonian (1) into

\[
\mathcal{H} = \sum_{l=0}^{2} \mathcal{H}^{(l)} - J(2S + 1)^2 \sum_{(i,j)} c_i^\dagger c_i d_j^\dagger d_j + J(2S + 1) \sum_{(i,j)} (S - a_i^\dagger a_i - b_i^\dagger b_i) d_i^\dagger d_j.
\]

Similar to Eq. (4), we decompose the quartic terms to have a bilinear Hamiltonian,

\[
\mathcal{H} \simeq -NZJS^2 + N \mathcal{J} \langle S - S \rangle^2 + J \sum_{(i,j)} \left(a_i^\dagger a_i + b_i^\dagger b_i \right) \mathcal{F} + J \langle S - S \rangle \sum_{(i,j)} \left(c_i^\dagger c_i \right),
\]

where the multivalued double-angle-bracket notation is applied to a boson-pseudofermion operator:

\[
S \equiv S - \frac{1}{2} \left(a_i^\dagger a_i + b_i^\dagger b_i \right) - \frac{1}{2} \left(a_i^\dagger b_i + b_i^\dagger a_i \right) - \frac{2S + 1}{2} \left(c_i^\dagger c_i \right).
\]

In an attempt to formulate thermodynamics in terms of MSWs+PFs, we again introduce the effective quadratic Hamiltonian \(\mathcal{H}_{\text{BL}} \equiv \mathcal{H}_{\text{MSW}} + \mu \mathcal{M}^z \), similar to Eq. (7), where \(\mu \) is determined so as to satisfy

\[
\langle \mathcal{M}_z \rangle_T \equiv \frac{\text{Tr}[P e^{-\beta \mathcal{H}_{\text{BL}}/k_B T} \mathcal{M}_z]}{\text{Tr}[P e^{-\beta \mathcal{H}_{\text{MSW}}/k_B T}]} = 0;
\]

\[
\mathcal{P} \equiv \exp \left[i \beta \left(\sum_{i \in A} c_i^\dagger c_i + \sum_{j \in B} d_j^\dagger d_j \right) \right].
\]

In taking every Bar’yakhtar-Krivoruchko-Yablonskii thermal average, the “pseudoprojection” operator \(\mathcal{P} \) serves to cancel nonphysical-state contributions. The MSW+PF
effective Hamiltonian is diagonalized into

\[\tilde{H}_{BL} = \sum_{l=0}^{2} E^{(l)} + \sum_{i=1}^{N} \varepsilon_{k_{i}} \sum_{\sigma=\pm} \alpha_{k_{i}\sigma}^{a} \alpha_{k_{i}\sigma}^{a} + 2\mu N S \]

\[+ \delta \left(\sum_{i \in A} c_{i}^{a} c_{i}^{a} + \sum_{j \in B} d_{j}^{a} d_{j}^{a} \right), \tag{62} \]

where the MSW energies \(\varepsilon_{k_{i}} \) look the same as those in Eq. (15), while pseudofermions, occupying only nonphysical states and therefore making no physical sense, are immobile and therefore have flat bands above the MSW dispersive bands,

\[\delta \varepsilon = (2S + 1)p \sum_{i=1}^{z} f_{b} \langle \langle S \rangle \rangle \]

\[> \sqrt{p^{2} - \nu_{c}^{2}} \sum_{i=1}^{z} f_{b} \langle \langle S \rangle \rangle \equiv \varepsilon_{k_{i}}. \tag{63} \]

In terms of the Bar'yakhtar-Krivoruchko-Yablonskiĭ thermal averages of quasiparticles,

\[\tilde{n}_{k_{i}} = \langle \alpha_{k_{i}\sigma}^{a} \alpha_{k_{i}\sigma}^{a} \rangle_{T} = \frac{\text{Tr}[PE^{-\tilde{H}_{BL}/k_{B}T}] \alpha_{k_{i}\sigma}^{a} \alpha_{k_{i}\sigma}^{a}]}{\text{Tr}[PE^{-\tilde{H}_{BL}/k_{B}T}]} = \frac{1}{e^{\varepsilon_{k_{i}}/k_{B}T} - 1}, \tag{64} \]

\[\tilde{f} = \langle \bar{f}_{r_{i}^{a} r_{i}^{b}} \rangle_{T} = \frac{\text{Tr}[PE^{-\tilde{H}_{BL}/k_{B}T} \bar{f}_{r_{i}^{a} r_{i}^{b}} \bar{f}_{r_{i}^{a} r_{i}^{b}}]}{\text{Tr}[PE^{-\tilde{H}_{BL}/k_{B}T}]} \]

\[= \frac{1}{e^{\varepsilon_{k_{i}}/k_{B}T - i\pi} + 1}; \quad r_{i}^{a} \equiv \left\{ \begin{array}{ll} c_{r_{i}} & (k \in A) \\ d_{r_{i}} & (k \in B) \end{array} \right., \tag{65} \]

the order parameter \(\langle \langle S \rangle \rangle \) is explicitly written as

\[\langle \langle S \langle \langle S \rangle \rangle = S \quad \langle \langle LSW+PF \rangle \rangle, \tag{66} \]

\[\langle \langle S \rangle \rangle_{0} = S + \varepsilon + (p - 1)\tau \quad \langle \langle WDISW+PF \rangle \rangle, \tag{67} \]

\[\langle \langle S \rangle \rangle_{T} = S + \varepsilon + (p - 1)(\tau + I_{2}) - I_{1} - (2S + 1)\tilde{f} \quad \langle \langle HFSW+PF \rangle \rangle. \tag{68} \]

The sublattice magnetizations read

\[\langle \langle M_{A}^{i} \rangle \rangle_{T} = \langle \langle M_{B}^{i} \rangle \rangle_{T} = 0, \quad \langle \langle M_{b}^{i} \rangle \rangle_{T} = 0, \tag{69} \]

\[\langle \langle M_{A}^{i} \rangle \rangle_{T} = -\langle \langle M_{b}^{i} \rangle \rangle_{T} = N[S - \tau - I_{2} - (2S + 1)\tilde{f}], \quad \langle \langle M_{c}^{i} \rangle \rangle_{T} = 2N[S - \tau - I_{2} - (2S + 1)\tilde{f}] = 0. \tag{70} \]

We choose one from Eqs. (66)–(68) and solve it simultaneously with Eq. (70) for \(\langle \langle S \rangle \rangle \) and/or \(p \), where every time we encounter \(\langle \langle S \rangle \rangle \), we read it as one of Eqs. (66)–(68), according to the scheme of the time. The internal energy and uniform susceptibilities are expressed as

\[E = -N \sum_{l=1}^{z} J_{b} \langle \langle S \rangle \rangle_{T}^{2} = -Nz \langle \langle S \rangle \rangle_{T}^{2}, \tag{71} \]

\[\frac{\chi^{x^x}}{L} = \frac{\chi^{x^y}}{L} = \frac{(g\mu_{B})^{2}}{k_{B}T} [S - \tau - I_{2} - (2S + 1)\tilde{f}] \times \frac{p - 1}{q} \left(\tilde{n}_{b} + \frac{1}{2} \right), \tag{72} \]

We compare the thus-calculated \(E, C \), and \(\chi \) of the purely two-dimensional square-lattice Heisenberg antiferromagnets (1) with the TDD-MSW calculations in Fig. 6. MHFISWs and MWDISWs, whether combined with pseudofermions or not, bring exactly the same results at sufficiently low temperatures, namely, within the first three (up to \(T^{3} \)) terms of \(E \) and the first two (up to \(T^{2} \)) terms of \(\chi T \). With further increasing temperature, there occurs a difference between their calculations. The MHFISW findings increase too rapidly as functions of temperature and encounter an artificial transition to the paramagnetic solution without auxiliary pseudofermions. Their first-order transition is fictitious indeed, but they hit the correct high-temperature limit. From this point of view, MHFISWs+PFs unfortunately mishit the high-temperature paramagnetic behavior (refer to Appendix), even though they are free from thermal breakdown. In the TDD-MHFISW+PF formulation, every thermodynamic quantity is overestimated and underestimated at intermediate and high temperatures, respectively. The internal energy and uniform susceptibility per spin never approach zero and \((g\mu_{B})^{2}S(S + 1)/3k_{B}T \), respectively, even when temperature rises. This behavior is reminiscent of the TID-MSW findings.
Now we are in a position to have a bird’s-eye view of various SW theories designed for thermodynamics of square-lattice antiferromagnets. Whether they are useful will depend on how we use them. If we take interest only in the low-temperature properties, TDD MSWs, no matter how they are interacting and whether or not they are combined with PFs, may serve our purpose. If we are under the necessity of reproducing the overall temperature dependences of experimental findings, TDD MHFISWs are no longer useful at all but TDD MWDISWs remain reliable. Indeed TDD MHFISWs are inferior in describing the thermodynamic properties of low-dimensional antiferromagnets, but they are potentially superior in predicting the ordering temperature of three-dimensional layered antiferromagnets (cf. Fig. 7 and see Ref. [15] as well). While TID MSWs appear to have no particular merit, there is an example of their successful detection [49] of exchange-scattering-enhanced three-magnon-mediated nuclear spin relaxation [50,51] in an intertwining double-chain ferrimagnet. It is hard to say in a word which scheme is the best. When we investigate two-dimensional antiferromagnets with no long-range order at finite temperatures, the TDD-MWFISW thermodynamics is highly precise at low temperatures, sufficient robust against thermalization, and well applicable to frustrated antiferromagnets as well, covering both static and dynamic properties. The spin-$\frac{1}{2}$ square-lattice Heisenberg antiferromagnet (1) frustrated by diagonal nearest-neighbor couplings have also ever been studied in terms of MSWs by numerous authors with particular emphasis on its nature at absolute zero. Chandra and Doucot [52] discussed within the CLSW scheme that a spin liquid phase may exist in the sense of the conventional antiferromagnetic long-range order disappearing. Hirsch and Tang [53] employed the TDD-MLSW scheme in an attempt to reveal a transition to a disordered phase. Nishimori and Saika [54] followed to introduce the TDD-MHFISW scheme and claim that a Néel-type long-range order consisting of either two or four sublattices should survive the strong frustration. While there are analytic [55] and numerical [56,57] MSW calculations of static properties at finite temperatures as well, the TDD-MWDISW thermodynamics of this model is never yet revealed. Such calculation is not only intriguing in itself but may also give a piece of information otherwise unavailable.

We take a particular interest in developing a SW thermodynamics unattainable within the CSW theory. We therefore devote much effort to describing low-dimensional magnets with no long-range order at finite temperatures. In three dimensions, a long-range order survives thermalization more or less, during which every MSW scheme reduces to a CSW formulation with its chemical potential unavailable from the constraint condition (24) [58]. In lower dimensions, SWs may be modified over the whole temperature range to have their otherwise unavailable thermodynamics. However, real layered magnets encounter an order-disorder phase transition at a finite temperature, which we shall denote by T_N, due to weak interlayer coupling and/or magnetic anisotropy. In an attempt to interpret the spontaneous magnetization as an anomalous function of temperature in a three-dimensional ferrimagnet, Karchev [59,60] proposed modifying CSWs with a temperature- and sublattice-dependent constraint condition. Focusing on a narrow critical region near T_N, Irkhin et al. [15] applied a SW theory refined with auxiliary pseudofermions to quasi-two-dimensional ferromagnets and antiferromagnets. There is also a possibility of further developing our scheme along this line.

TABLE I. Evaluation of thermodynamics of square-lattice Heisenberg antiferromagnets obtained through various formulations from the points of view of whether it is precise, valid, and correct at low, intermediate, and high temperatures, respectively. We judge the high-temperature asymptotics of the TDD-MWFISW thermodynamics to be incorrect in spite of its correct high-temperature limit, because TDD MHFISWs artificially jump to the paramagnetic phase at a finite temperature.

<table>
<thead>
<tr>
<th></th>
<th>Precise low-T analytics</th>
<th>Free from thermal analytics breakdown</th>
<th>Correct high-T asymptotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDD MLSW</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TDD MWDISW</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TDD MHFISW</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TDD MLSW</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TDD MWDISW</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TDD MHFISW</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TDD MLSW+PF</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TDD MWDISW+PF</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TDD MHFISW+PF</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>TDD MLSW+PF</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

FIG. 7. TDD-MSW and TDD-MSW+PF calculations of the staggered magnetization M_z and internal energy E as functions of temperature for the Hamiltonian (73) of $L \to \infty$ with $J_\perp = 0.3J$ in the cases of $S = \frac{1}{2}$ and $S = 1$.

VII. SUMMARY AND DISCUSSION

TDD MWDISWs serve as a sophisticated language for extensive quantum antiferromagnets in two dimensions. Their thermodynamics is highly precise at low temperatures, sufficiently robust against thermalization, and well applicable to frustrated antiferromagnets as well, covering both static and dynamic properties. The spin-$\frac{1}{2}$ square-lattice Heisenberg antiferromagnet (1) frustrated by diagonal nearest-neighbor couplings have also ever been studied in terms of MSWs by...
In order to gain better understanding of SW thermodynamics, we finally compare the TDD-MSW and TDD-MSW+PF findings for the order-disorder phase transitions of layered Heisenberg antiferromagnets describable within the Hamiltonian (1) of $z = 6$. When we set J_b to $J(>0)$ and $J_\perp(>0)$ for $1 \leq l \leq 4$ and $5 \leq l \leq 6$, respectively, the Hamiltonian of current interest reads

$$\mathcal{H} = J(D_x + D_y) + J_\perp D_z; \quad z \equiv \delta_5 = -\delta_6. \quad (73)$$

In terms of the Dyson-Maleev bosons (2) and Bar’yakhtar-Krivoruchko-Yablonski˘ı bosons combined with pseudofermions (56), this Hamiltonian is also rewritten into (3) and (58) and then decomposed into the quadratic forms (5) and (59), respectively. Under the constraint condition of zero staggered magnetization, the MSW and MSW+PF effective quadratic Hamiltonians $\mathcal{H}_{BL} \equiv \mathcal{H}_{BL} + \mu \mathcal{M}_z^\perp$ are diagonalized into (15) and (62), respectively. The bond-dependent order parameters $\langle S \rangle$ are explicitly written as

$$\langle S \rangle_0 = S \quad (\text{LSW}, \text{LSW+PF}), \quad (74)$$

$$\langle S \rangle_0 = S + \epsilon + (p - 1)\tau + \eta' - \eta \quad (\text{WDISW}, \text{WDISW+PF}), \quad (75)$$

$$\langle S \rangle_T = S + \epsilon + (p - 1)(\tau + l_2) - I_l + \eta' - \eta + H' - H \quad (\text{HFISW}),$$

$$\langle S \rangle_T = S + \epsilon + (p - 1)(\tau + l_2) - I_l - (2S + 1)\bar{J} + \eta' + \eta + H' - H \quad (\text{HFISW+PF}) \quad (76)$$

with the bond-dependent sums and their averages over bonds

$$\eta' \equiv \frac{1}{N} \sum_{n=1}^{N} \frac{r_k e^{ik \cdot \mathbf{a}_n}}{2\omega_k}, \quad (77)$$

$$\eta \equiv \sum_{n=1}^{N} \frac{r_k e^{ik \cdot \mathbf{a}_n}}{2\omega_k}, \quad (78)$$

$$H' \equiv \frac{1}{N} \sum_{n=1}^{N} \frac{r_k e^{ik \cdot \mathbf{a}_n}}{\omega_k}, \quad (79)$$

$$H \equiv \frac{\sum_{n=1}^{N} J_b \langle S \rangle_0 \langle S \rangle_0^*}{\sum_{n=1}^{N} J_b \langle S \rangle_0} \quad (80)$$

When we set J and J_\perp equal, Eqs. (74)–(76) reduce to Eqs. (18)–(20) and Eqs. (66)–(68) with η' and H' coinciding with η and H, respectively.

We compare the TDD-MSW and TDD-MSW+PF calculations of the staggered magnetization $\mathcal{M}_z^\perp \equiv \langle \mathcal{M}_z^\perp \rangle_T$ and internal energy $E \equiv \langle \mathcal{H} \rangle_T$ in Fig. 7. Similar to the case with single-layer antiferromagnets (Fig. 6), the TDD-MHFISW calculations of layered antiferromagnets are accompanied by an artificial phase transition of the first order to the trivial paramagnetic solution. Every TDD-MHFISW formulation inevitably suffers a pseudotransition from correlated to uncorrelated spins at a finite temperature, which we shall denote by T_c^*. The present findings require more careful observation and need to be distinguished from what we have observed.

<table>
<thead>
<tr>
<th>S</th>
<th>T_{μ}^*/J_S</th>
<th>T_{μ}^*/J_S</th>
<th>T_{ν}^*/J_S</th>
<th>T_{ν}^*/J_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>1.614</td>
<td>1.822</td>
<td>1.726</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>2.187</td>
<td>2.202</td>
<td>2.406</td>
<td>–</td>
</tr>
</tbody>
</table>

In Fig. 6. There are two artificial phase transitions of the first order in the TDD-MHFISW thermodynamics of layered antiferromagnets (cf. Table II), unless $J = J_\perp$. Preceding the total breakdown of the system into free spins at $T = T_c^* \ast$, there occurs another fictitious phase transition of the first order at a temperature below $T_c^* \ast$ which we shall denote by $T_{\mu}^* \ast$, where the spontaneous magnetization $\langle \mathcal{M}_z^\perp \rangle_T$ disappears, while the exchange interaction $\langle \mathcal{H} \rangle_T$ stays finite, losing the interlayer coupling $\langle S_{b=-z} \rangle_T$ but maintaining the intralayer correlation $\langle S_{b=-z} \rangle_T = \langle S_{b=-z} \rangle_T$. First arises a three-to-two-dimensional phase transition at $T = T_{\mu}^* \ast$ and then an antiferromagnetic-to-paramagnetic phase transition at $T = T_c^* \ast$ on TDD-MHFISWs. That is why we find exactly the same discontinuous transition to occur at exactly the same temperature in Figs. 6 and 7. A layered antiferromagnet, once its interlayer coupling is lost, degenerates into planar antiferromagnets merely stacked up.

While TDD-MHFISWs get free from a total breakdown with the help of auxiliary pseudofermions, yet they suffer a partial breakdown (cf. Table II). Even in the TDD-MHFISW+PF scheme, a layered antiferromagnet is still misled to discontinuously decouple into planar antiferromagnets at $T = T_c^* \ast$ with its spontaneous magnetization $\langle \mathcal{M}_z^\perp \rangle_T$ jumping down to zero. In order to overcome this difficulty, Irkhin et al. [15] considered replacing the bond-dependent short-range order parameter (76) by the averaged one

$$\langle S_{\text{eff}} \rangle_T = \frac{\sum_{n=1}^{N} J_b \langle S \rangle_T}{\sum_{n=1}^{N} J_b \langle S \rangle_0} \quad (81)$$

The thus-tuned MHFISWs+PFs are free from any fictitious transition but misread the ground-state properties (cf. insets in Fig. 7). With $\langle S \rangle_T$ averaged over δ_5’s, MHFISWs+PFs have the same Bogoliubov transformation (14) as MLSWs at $T = 0$ and therefore give the same ground-state energy and magnetization as MLSWs. Averaging $\langle S \rangle_T$ spoils the otherwise precise low-temperature findings of MHFISWs fully demonstrated in Figs. 1 and 2. In addition, every MSW+PF formulation, whether it employs $\langle S \rangle_T$ as they are or averages them, misreads the high-temperature paramagnetic behavior with everlasting two-dimensional correlation $\langle S_{b=-z} \rangle_T = \langle S_{b=-z} \rangle_T$.

TABLE II. Pseudotransition temperatures, T_{μ}^* and/or T_{ν}^*, in the TDD-MHFISW and TDD-MHFISW+PF theories for the Hamiltonian (73) of $L \rightarrow \infty$ with $J_c = 0.3J$ in the cases of $S = \frac{1}{2}$ and $S = 1$. With temperature reaching T_{μ}^*, the interlayer coupling $\langle S_{b=-z} \rangle_T$ jumps down to zero and so does the spontaneous magnetization \mathcal{M}_z^\perp, and then at the temperature T_{ν}^*, the intralayer couplings $\langle S_{b=-z} \rangle_T = \langle S_{b=-z} \rangle_T$ also jump down to zero to completely lose the correlation energy E.

094412-12
Indeed the MHFISW+PF thermodynamics formulated with the effective order parameter (81) is not so precise as the MWDISW one at temperatures far below and above the ordering temperature T_N, but it is highly successful in the truly critical temperature region near T_N. It reproduces the emergent magnetization $\langle M^- \rangle_T$ much more reasonably than the MWDISW thermodynamics and can be further improved by taking account of fluctuation corrections, within a random-phase approximation for instance [15]. Irkhin and Katanin [19,20] further demonstrated that the $O(N)$ model can more suitably describe the truly critical temperature region.

While the MWDISW thermodynamics is less precise there, yet there may be a possibility of applying it to layered ferromagnets, where an anomalous temperature dependence of the spontaneous magnetization far below T_N is also an interesting topic and remains to be solved [59,60]. Though we have here focused our attention on planar antiferromagnets aiming to solve a longstanding problem lying in MSW theories for them, the MWDISW scheme can be applied to many other intriguing magnetic systems including even “zero-dimensional” clusters [61,62] to reveal their overall thermodynamic properties possibly with precise expressions at low temperatures.

ACKNOWLEDGMENTS

We are grateful to J. Ohara for useful comments. This study was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

APPENDIX: HIGH-TEMPERATURE ASYMPTOTICS

We investigate high-temperature asymptotic thermodynamics of square-lattice Heisenberg antiferromagnets obtained through various MSW formulations. We employ the effective temperature $t \equiv k_B T / z J \langle \langle S \rangle \rangle$ (40).

First, we consider TDD MSWs. Having in mind that $-1 \leq \gamma_k \leq 1$, we find that the thermal distribution function (17) no longer depends on the wave vector in the high-temperature limit:

$$\lim_{t \to \infty} \tilde{n}_k = \lim_{t \to \infty} \frac{1}{e^{\gamma_k t} - 1} = \lim_{t \to \infty} \frac{1}{e^{p t} - 1}. \quad (A1)$$

With converging \tilde{n}_k, i.e., diverging p, in the $t \to \infty$ limit, we have

$$\lim_{t \to \infty} \epsilon = \frac{1}{2N} \sum_{k=1}^{N} \lim_{t \to \infty} \frac{\gamma_k^2}{p + \omega_k} = 0, \quad (A2)$$

$$\lim_{t \to \infty} \tau = \frac{1}{2N} \sum_{k=1}^{N} \lim_{t \to \infty} \left(\frac{p}{\omega_k} - 1 \right) = 0, \quad (A3)$$

$$\lim_{t \to \infty} \eta = \frac{1}{2N} \sum_{k=1}^{N} \lim_{t \to \infty} \frac{\gamma_k^2}{\omega_k} = 0, \quad (A4)$$

$$\lim_{t \to \infty} H = \frac{1}{N} \sum_{k=1}^{N} \lim_{t \to \infty} \frac{\gamma_k^2}{\omega_k} \tilde{n}_k = 0, \quad (A5)$$

$$\lim_{t \to \infty} I_1 = \frac{1}{N} \sum_{k=1}^{N} \lim_{t \to \infty} \omega_k \tilde{n}_k = \infty. \quad (A6)$$

Then the constraint condition (24) becomes

$$S = \lim_{t \to \infty} \frac{E}{N z J} = \lim_{t \to \infty} \frac{1}{e^{p t} - 1} \quad (A9)$$

to consistently yield diverging p in the $t \to \infty$ limit,

$$\lim_{t \to \infty} \frac{p}{t} = \ln \left(1 + \frac{1}{3}\right). \quad (A10)$$

Equations (20), (25), and (29) read

$$\lim_{t \to \infty} \frac{E}{N z J} = - \lim_{t \to \infty} \left(S - \tau - I_2 + \eta + H \right)^2 = 0, \quad (A11)$$

$$\lim_{t \to \infty} \frac{\chi k_B T}{L g(\mu_B)^2} = \frac{1}{3} \lim_{t \to \infty} \left[2(S - \tau - I_2)^2 + \frac{1}{q} \left(\tilde{n}_k + \frac{1}{2} \right)^2 \right]. \quad (A12)$$

We learn that TDD MSWs hit the correct high-temperature limit. TDD MHFISWs end up with an artificial transition to the paramagnetic solution, but TDD MLSWs and TDD MWDISWs really give correct high-temperature asymptotics, as is demonstrated in Fig. 8.

Next, we consider TID MSWs. Having in mind that $p = 1$ as well as $-1 \leq \gamma_k \leq 1$, we find that the thermal distribution function (34) still depends on the wave vector in the limit:

$$\lim_{t \to \infty} I_2 = \frac{1}{N} \sum_{k=1}^{N} \lim_{t \to \infty} \frac{p}{\omega_k} \tilde{n}_k = \lim_{t \to \infty} \tilde{n}_k, \quad (A7)$$

$$\lim_{t \to \infty} I_3 = \frac{1}{N} \sum_{k=1}^{N} \lim_{t \to \infty} \tilde{n}_k (\tilde{n}_k + 1) = \tilde{n}_k (\tilde{n}_k + 1). \quad (A8)$$

FIG. 8. TDD-MSW, TID-MSW, and TDD-MSW+PF calculations of the internal energy E and uniform susceptibility χ as functions of temperature for the Hamiltonian (1) of $L \to \infty$ in comparison with QMC calculations in the cases of $S = \frac{1}{2}$ and $S = 1.$
high-temperature limit,
\[
\lim_{t \to \infty} \tilde{n}_k = \lim_{t \to \infty} \frac{1}{e^{\mu/t} J[S] \omega_k} - 1 \quad \text{for } \mu = 0,
\]
making it difficult to analytically calculate the high-temperature asymptotics. \(E, \tau, \epsilon, \eta, \) and \(\eta\) are not dependent on temperature. With converging \(\tilde{n}_k\), in the \(t \to \infty\) limit, we have
\[
\begin{align*}
\lim_{t \to \infty} H &= \frac{1}{N} \sum_{\nu=1}^{N} \frac{j_k^2}{\omega_k} \lim_{t \to \infty} \tilde{n}_k, \\
\lim_{t \to \infty} I_1 &= \frac{1}{N} \sum_{\nu=1}^{N} \omega_k \lim_{t \to \infty} \tilde{n}_k, \\
\lim_{t \to \infty} I_2 &= \frac{1}{N} \sum_{\nu=1}^{N} \frac{1}{\omega_k} \lim_{t \to \infty} \tilde{n}_k, \\
\lim_{t \to \infty} I_3 &= \frac{1}{N} \sum_{\nu=1}^{N} \lim_{t \to \infty} \tilde{n}_k (\tilde{n}_k + 1).
\end{align*}
\]
We numerically solve the constraint condition (24) in the high-temperature limit,
\[
S = \lim_{t \to \infty} (\tau + I_2) = \tau + \frac{1}{N} \sum_{\nu=1}^{N} \frac{1}{\omega_k} \lim_{t \to \infty} e^{-\mu/t} J[S] \omega_k - 1
\]
to find \(\lim_{t \to \infty} N z J[S] = -e^{-1}\) to be nonzero and thus \(\lim_{t \to \infty} \tilde{n}_k\), to be finite. Equations (20), (25), and (29) read
\[
\begin{align*}
\lim_{t \to \infty} \frac{\chi}{N z J} &= -\left(\frac{\tau}{t} + \frac{1}{N} \sum_{\nu=1}^{N} \frac{1}{\omega_k} \lim_{t \to \infty} e^{-\mu/t} J[S] \omega_k - 1 \right)^2, \\
\lim_{t \to \infty} \chi k_B T \omega_k &= \frac{1}{3N} \sum_{\nu=1}^{N} \lim_{t \to \infty} e^{-\mu/t} J[S] \omega_k - 1 \\
&\times \left(\frac{1}{e^{-\mu/t} J[S] \omega_k} + 1\right).
\end{align*}
\]
We find \(\lim_{t \to \infty} (-\mu/t) J[S] \omega_k\) to be 1.31972709 and 0.74682827, \(\lim_{t \to \infty} E / L J = -0.21475012\) and \(-0.37814423\), and \(\lim_{t \to \infty} \chi k_B T / L(g\mu_B)^2\) to be 0.11970015 and 0.42202662 for \(S = \frac{1}{2}\) and \(S = 1\), respectively (see Fig. 8). We learn that TID MSWs cannot give correct high-temperature asymptotics.

Finally, we consider TDD MSWs combined with PFs. The Bar'yakhtar-Krivoruchko-Yablonskii thermal average of MSWs (64) in the high-temperature limit looks the same as (A1). That of PFs (65) is free from wave-vector dependence at every temperature:
\[
\tilde{f} = \frac{1}{1 - e^{S(1)/[S]}} = \frac{1}{1 - e^{2S+1/p}/t}.
\]
If the calculations of the high-temperature limit (A2)–(A8) remain unchanged, the constraint condition (70) becomes
\[
S = \lim_{t \to \infty} (\tau + I_2 + (2S + 1) \tilde{f})
\]
\[
= \lim_{t \to \infty} \left[\frac{1}{e^{p/t} - 1} - \frac{2S + 1}{e^{2S+1/p}/t - 1}\right]
\]
\[
= S - SB_5 \left\{\lim_{t \to \infty} \frac{p}{t}\right\}
\]
\[
= S - \frac{S(S + 1)}{3} \lim_{t \to \infty} \frac{p}{t} + O\left(\left\{\lim_{t \to \infty} \frac{p}{t}\right\}^3\right)
\]
with the Brillouin function
\[
B_5(x) = \frac{2S + 1}{2S} \coth \frac{2S + 1}{2S} x - \frac{1}{2S} \coth \frac{1}{2S} x.
\]
Since \(B_5(x)\) is a monotonically increasing function, \(\lim_{t \to \infty} p/t = 0\) is the only and only real solution of Eq. (A22), and therefore, the Bar'yakhtar-Krivoruchko-Yablonskii thermal averages (A1) and (A21) both diverge in the \(t \to \infty\) limit. Then, the calculations (A5)–(A8) are no longer reliable, because every thermal-distribution-weighted integration over \(k\) is not necessarily exchangeable with the \(t \to \infty\) operation. Yet, applying Eqs. (A5)–(A8) to Eqs. (68), (71), and (72) yields
\[
\lim_{t \to \infty} \frac{E}{N z J} = -\lim_{t \to \infty} \left[S - \tau - I_2 - (2S + 1) \tilde{f}\right] + \frac{1}{2} \eta + H^2 = 0,
\]
\[
\lim_{t \to \infty} \frac{\chi k_B T \omega_k}{L(g\mu_B)^2} = \frac{1}{3} \lim_{t \to \infty} \left\{2[S - \tau - I_2 - (2S + 1) \tilde{f}]\right\}
\]
\[
\times \left[\frac{p - 1}{q} \left(\frac{1}{2}\right) + I_3 + (2S + 1) \tilde{f} (1 - \tilde{f})\right]
\]
\[
= \frac{S^2}{3} B_5(\lim_{t \to \infty} \frac{p}{t}) = \frac{S(S + 1)}{9},
\]
which are indeed inconsistent with the correct calculations demonstrated in Fig. 8.

In order to analyze the high-temperature asymptotics of the TDD-MSW+PF thermodynamics correctly, we expand every thermal quantity into high-temperature series. Employing the state-density function (35) and its explicit expression (36) again, the thermal-distribution-weighted
At low temperatures, having in mind that low-energy excitations, i.e., much smaller than \(p - q \), make major contributions to the integrals (A26)–(A28), we expand \(w(x) \) in powers of \(x \) as Eqs. (36) and (37), while at high temperatures of current interest, having in mind that

$$
\left(\frac{2}{\pi} \right)^2 \int_0^1 \frac{1}{\sqrt{1 - y^2}} K(\sqrt{1 - y^2}) dy = \frac{1}{\pi} \left[\Gamma(l + 1/2) \right]^2 = \left[\frac{(2l - 1)!!}{2^l l!} \right]^2 \quad (l = 0, 1, 2, \ldots),
$$

we expand thermal distribution functions as

$$
\frac{1}{e^\beta - 1} = \frac{1}{\beta} - \frac{1}{2} + \frac{\beta}{12} - \frac{\beta^3}{720} + O(\beta^5),
$$

we expand thermal distribution functions as

$$
e^\beta = \ln(e^\beta - 1) + O(\beta^2).
$$

Note further that

$$
p - 2\epsilon = \int_0^{p - q} (x + q) w(x) dx = p \left(\frac{2}{\pi} \right)^2 \int_0^1 \frac{1}{\sqrt{1 - (y/p)^2}} K(\sqrt{1 - y^2}) dy,
$$

$$
2\tau + 1 = \int_0^{p - q} \frac{p}{x + q} w(x) dx = \left(\frac{2}{\pi} \right)^2 \int_0^1 \frac{K(\sqrt{1 - y^2})}{\sqrt{1 - (y/p)^2}} dy.
$$

Supposing \(p \) to be of order \(\sqrt{t} \), we consider such high temperatures as to satisfy \(1 \ll p \ll t \). Via the expansions (A30) with \(\beta = (p/t)\sqrt{1 - (y/p)^2} \), the integrals (A26)–(A28) become

$$
I_1 = p \left(\frac{2}{\pi} \right)^2 \int_0^1 \left[\frac{1}{p} + \frac{p}{12t} + O(t^{-3/2}) \right] K(\sqrt{1 - y^2}) dy - \frac{p - 2\epsilon}{2} = \frac{t}{2} - \frac{p}{12t} + \epsilon + O(t^{-1}),
$$

$$
I_2 = \left(\frac{2}{\pi} \right)^2 \int_0^1 \left\{ \frac{1}{p} \left[1 + \left(\frac{y}{p} \right)^2 \right] + \frac{p}{12t} + O(t^{-3/2}) \right\} K(\sqrt{1 - y^2}) dy - \frac{2\tau + 1}{2} = \frac{t}{2} - \frac{1}{4p^3} + \frac{p}{12t} - \tau + O(t^{-3/2}),
$$

$$
I_3 = \left(\frac{2}{\pi} \right)^2 \int_0^1 \left\{ \frac{1}{2p^2} \left[1 + \left(\frac{y}{p} \right)^2 + \left(\frac{y}{p} \right)^4 \right] - \frac{1}{12} + \frac{p^2}{240t^2} + O(t^{-2}) \right\} K(\sqrt{1 - y^2}) dy
$$

$$
= \frac{t^2}{2p^2} + \frac{t^2}{4p^4} - \frac{1}{12} + \frac{9r^2}{64p^6} + \frac{p^2}{240t^2} + O(t^{-2}),
$$

where the \(p \) dependences of \(\epsilon \) and \(\tau \) read

$$
p - 2\epsilon = p \left(\frac{2}{\pi} \right)^2 \int_0^1 \left[1 - \frac{y^2}{2p^2} - \frac{y^4}{8p^4} + O\left(\frac{y^6}{p^6} \right) \right] K(\sqrt{1 - y^2}) dy = p - \frac{1}{8p} - \frac{9}{512p^3} + O(p^{-5}),
$$

$$
2\tau + 1 = \left(\frac{2}{\pi} \right)^2 \int_0^1 \left[1 + \frac{y^2}{2p^2} + \frac{3y^4}{8p^4} + O\left(\frac{y^6}{p^6} \right) \right] K(\sqrt{1 - y^2}) dy = 1 + \frac{1}{8p^2} + \frac{27}{512p^4} + O(p^{-6}).
$$

Putting \(\beta = (2S + 1)p/t \) in Eq. (A30) yields the high-temperature series expansions of \(-\tilde{f}\) and \(-\tilde{f}(1 - \tilde{f})\). The constraint condition (70) becomes

$$
\frac{S(S + 1)p}{3t} - \frac{t}{4p^3} + O(t^{-3/2}) = 0
$$

(A38)
to reveal that p indeed diverges as \sqrt{t} at high temperatures:

$$p = \left[\frac{3}{4S(S+1)} \right]^{1/4} \sqrt{t} + O(t^{-1/2}).$$ \hspace{1cm} (A39)

Equations (68) and (72) read

$$\langle S \rangle_T = \frac{1}{2} \sqrt{\frac{S(S+1)}{3}} + O(t^{-1}),$$ \hspace{1cm} (A40)

$$\chi^{xx} = \chi^{yy} = 0, \quad \frac{x^{zz} k_B T}{L(g\mu_B)^2} = \frac{2S(S+1)}{3} + O(t^{-1}).$$ \hspace{1cm} (A41)

Having in mind that

$$t = \frac{k_B T}{zJS} \times \begin{cases} 1 & (\text{MLSW+PF}) \\ [1 + O(T^{-1/2})] & (\text{MWDISW+PF}) \\ \left[\frac{125}{541} + O(T^{-1}) \right] & (\text{MHFISW+PF}) \end{cases},$$ \hspace{1cm} (A42)

we eventually have

$$\frac{E}{NzJ} = -\frac{S(S+1)}{12} + O(T^{-1}),$$ \hspace{1cm} (A43)

$$\frac{\chi k_B T}{L(g\mu_B)^2} = \frac{2S(S+1)}{9} + O(T^{-1}),$$ \hspace{1cm} (A44)

which are now consistent with the numerical calculations demonstrated in Fig. 8. We learn that TDD MSWs+PFs cannot give correct high-temperature asymptotics.