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Abstract 13 

Frost damage is a common durability problem for concrete structures in cold and wet regions, and in many 14 

cases, the frost damage is coupled with fatigue loadings such as the traffic loads on bridge decks or pavements. In 15 

this paper, to investigate the basic fatigue behavior of concrete materials affected by frost damage, a mesoscale 16 

approach based on Rigid Body Spring Method (RBSM) has been developed, of which the concrete material can 17 

be divided into three parts: mortar, coarse aggregate and interfacial transition zone (ITZ) between them. First, the 18 

cyclic constitutive laws are developed at normal and shear directions for mortar and ITZ, and verified with the 19 

existing experimental data in compression and tension fatigue. Then, several levels of frost damage are introduced 20 

by different numbers of freeze-thaw cycles (FTCs), and finally, the static tests and fatigue tests are conducted 21 

using the frost damaged concrete. The simulation results on the static strength and fatigue life show a good 22 

agreement with experimental data, and found that as the frost damage level (irreversible plastic deformation) 23 

increases, not only the static strength, but also the fatigue life at each stress level will decrease. The S-N curves of 24 

frost damaged concrete still follow a linear relationship but with bigger slopes, and the frost damaged concrete 25 

will become more ductile under fatigue loadings.  26 

Keywords: concrete material; frost damage; fatigue behavior; mesoscale simulation; combined effect. 27 

1. Introduction 28 

Frost damage mechanism under freezing and thawing cycles (FTCs) is an important issue for service life 29 

evaluation of concrete structures in cold regions. Once frost damage happens, deterioration process like chloride 30 

ingress, carbonation and even the frost action itself will be largely accelerated, resulting in shorter service life. In 31 

addition, the frost action is always coupled with external loads, and the combined effect will also affect the 32 
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material degradation and structure performance significantly. If the saturation degree exceeds a critical value [1], 1 

significant damage in the porous skeleton will occur due to several kinds of pore pressures during ice formation 2 

[2-6]. This kind of internal damage will be cumulated with numbers of FTC and result in gradual degradation in 3 

material properties [7-8]. For the combined effect of FTC damage and fatigue loads, Hasan et al. [9] conducted 4 

the fatigue tests on the concrete specimens which have experienced different numbers of FTCs, and found a 5 

serious reduction of the fatigue life in compression. Although the cyclic frost action and fatigue loading have 6 

different natures, the damage of both can be reflected by the initiation and propagation of micro cracks, which 7 

will finally result in the increasing residual deformation, reduction in stiffness and strength, and so on. Therefore, 8 

it is possible to model and simulate the combined effects by the same approach. 9 

Many concrete models are either macro model or micro model. The macro models can be directly applied to 10 

structural analysis and obtained experimentally without theoretical basis, but with less applicability once the input 11 

variables or working conditions become different. The micro models have strong theoretical bases and cover 12 

much more influential factors, but may not be convenient to study structural performances due to lack of linkage 13 

between micro and macro models. Other than above two approaches, the mesoscale approach is more general and 14 

can be applied to various kinds of damages. On one hand, the macro nonlinear mechanical behavior can be 15 

simulated by defining the constitutive laws for mortar, coarse aggregate and ITZ in mesoscale. For example, 16 

Nagai et al. [10] presented a 2D mesoscale model using RBSM, which can simulate the macroscale nonlinear 17 

properties in both compression and tension. The same mesoscale model was also extended to simulate concrete 18 

with frost damage [11], and the time-dependent degradation under fatigue loadings [12]. On the other hand, the 19 

microscale events in the porous matrix of cement paste can also be up-scaled to the mortar level, such as the pore 20 

pressures during FTCs based on poromechanics [13], and the moisture transport and chloride migration [14-15]. 21 

Some other mesoscale modeling works for concrete material can be also found [16-17]. Therefore, it would also 22 

be beneficial to adopt RBSM in mesoscale for the combined degradation problem of FTC and fatigue loadings. 23 

In this study, based on the mesoscale RBSM, the constitutive laws under cyclic mechanical loadings are 24 

developed first, and verified with the fatigue experiments for non-FTC damaged mortar and concrete in both 25 

compression and tension. The damage effect by FTCs is also included in the above constitutive laws. For the 26 

analysis of combined effect, the FTC tests are simulated first to obtain different levels of frost damage, then using 27 

the FTC damaged concrete, static tests are conducted to obtain the residual strengths, and followed by the fatigue 28 

simulation based on each residual strength. The results are discussed in detail and compared with experimental 29 

data, which are found in a satisfactory agreement. 30 

2. Method of Analysis 31 

2.1 Concept of RBSM 32 
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The RBSM is a discrete numerical analysis method, which was first developed by Kawai [18]. Unlike the 1 

continuum methods such as Finite Element Method or Finite Difference Method, RBSM is a more proper way to 2 

simulate splitting and cracking in cement-based materials like mortar and concrete. Also, compared to other 3 

discrete method like Distinct Element Method, RBSM is more suitable for small deformation and tiny cracks 4 

which are often seen in concrete structures. 5 

 6 
Fig. 1 Basic concept of RBSM analysis [10] 7 

 8 

The concrete to be simulated is divided into polyhedron elements, and the mesh is arranged randomly using a 9 

Voronoi diagram. Each Voronoi cell represents a mortar or aggregate element in the model. For two adjacent 10 

elements, there are two springs connecting them: normal spring and shear spring, which are placed at the 11 

boundary of the elements (see Fig. 1). Each element has two translational and one rotational degree of freedom at 12 

the centroid. The normal and shear stiffness are calculated by assuming a plane stress condition as follows [10]: 13 
2/ (1 )

/ (1 )
n

s

k E
k E

n
n

= −
= +

                                                                                                                                                        (1) 14 

where kn and ks are the stiffness of normal and shear spring; E and ν are the elastic modulus and Poisson’s ratio of 15 

the element (either mortar or aggregate), respectively. In case of the springs on the mortar-aggregate interface, the 16 

stiffness is given as a weighted average of mortar and aggregate element: 17 
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perpendicular line from the centroid of element to the boundary. The stress-strain relationship of the normal 1 

spring will adopt a linear tension-softening curve, and a normal distribution was assumed for the tensile strength 2 

to increase the heterogeneous performance as [10]: 3 

( ) ( )2

2

1 exp
22

0.2 1.5

t
t

f
f f

ss

s

µ
p

µ

 −
= − 

  
= − +

                                                                                                                              (3) 4 

where ft is the tensile strength of the element, and for ft <0, set ft =0; μ is the average value of ft ; and s is the 5 

standard derivation. For the shear spring of porous body, the following criterion is adopted [10]: 6 

( )( ) ( )0.63
max 0.11 t t t tf f f ft σ σ= ± − + + ≤                                                                                                        (4) 7 

where σ is the normal stress. And for the interface between mortar and aggregate, the shear spring criterion is as 8 

follows: 9 

( )max tan ict σ ϕ= ± − +                                                                                                                                            (5) 10 

where φ and ci are constant values. For the shear springs of both mortar and ITZ, the ideal plastic performance is 11 

assumed when the local shear strain is small [10], however, if the shear sliding becomes so big that the attached 12 

length of two elements is significantly reduced, the shear transfer will also decrease linearly as: 13 

max max' (1 / )
' (1 / )

s elem

s s s elem

l
k k l
ττ  δ

δ
= −

= −
                                                                                                                                           (6) 14 

where sδ is the sliding distance and lelem is the length of boundary between two elements. It can be imaged that the 15 

local shear strain in mesoscale could be several orders larger than the averaged shear strain in macroscale when 16 

failure happens, thus the above formulation can still guarantee a shear softening behavior in macroscale.  17 

The tensile cracking and shear sliding will also interact with each other for both mortar elements and ITZ. The 18 

concept of mesoscale analysis is that the constitutive laws should be as simple as possible to simulate the 19 

complicated macroscale mechanical behavior. Considering that the tension stress transfer capability may be 20 

reduced with damage induced by sliding at the same location, the tension softening stress is assumed reducing 21 

linearly with the amount of shear sliding between two adjacent elements: 22 

' (1 / )
' (1 / )

t t s elem

n n s elem

f f l
k k l

δ
δ

= −
= −

                                                                                                                                                (7) 23 

Similarly, the shear strength (τmax”) and stiffness (ks”) also can be affected by the tensile cracking, and a linear 24 

relation is assumed: 25 

max max max

max

'' '(1 / )
'' '(1 / )s s

w w
k k w w
ττ = −

= −
                                                                                                                                        (8) 26 
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where w is the crack width in normal direction and wmax is the maximum crack width which tensile and shear 1 

transfer can happen. The above coupling effect has been verified by the uniaxial compression tests and biaxial 2 

compression-tension tests [10]. The mathematical solution of the RSBM is briefly summarized in Appendix A. 3 

2.2 Cyclic constitutive laws 4 

In fatigue test, the applied stress is less than macroscale strength, and inducing stresses in mesoscale whose 5 

average is less than the average strength of all springs. Since the normal distribution of tensile strength was 6 

assumed for normal springs (the shear criterion will also be affected according to Eq. (4)), a part of springs will 7 

still break. Then the broken springs will lose capacity gradually and result in new breaking springs. After a period 8 

of damage cumulating, the material will get failure finally. The constitutive model for fatigue and creep based on 9 

RBSM has been studied by Matsumoto et al. [12] and modified later [19]. Matsumoto et al.’s model contains four 10 

kinds of mechanical components in both normal and shear springs: the elastic, plastic, visco-elastic and visco-11 

plastic component, which can simulate both the fatigue damage and time dependent creep from the very basic 12 

constitutive laws. On the contrary, for FTC induced damage, both the previous mesoscale experiments [20-21] 13 

and constitutive modeling [8,13] were mainly focusing on the time-independent deformation and damage (only 14 

contains elastic and plastic components), but the creep effect during FTCs is still not clear. Therefore, to combine 15 

the fatigue and FTC damage into the same constitutive laws, and also to make the mesoscale model simpler, the 16 

combined effects are formulated only with elastic and plastic components, while the creep strain is calculated 17 

separately for each normal spring based on the existing models [22-23].  18 

2.2.1 Cyclic normal and shear deterioration in mortar and ITZ 19 

 20 
(a)                                                                                      (b) 21 

Fig. 2 Constitutive Laws under cyclic loading (a) Normal spring (b) Shear spring 22 
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The cyclic constitutive laws of normal and shear springs are shown in Fig. 2. The nonlinear stress-strain curve 1 

of normal spring was originally defined in Nagai el al. [10], and followed by Ueda et al. [11] which considered 2 

the irreversible tensile plastic strain (εpf) by introducing one constant strain (εpa = 400μ) at the compression branch. 3 

For fatigue simulation, the unloading curves (red line) and reloading curves (green line) should not be exactly the 4 

same, so that the cyclic degradation can be taken into consideration. According to Fig. 2 (a), once the tensile 5 

strength (ft), initial stiffness (ft /ε0) and the maximum tensile strain at zero stress (εmax) are known, then when the 6 

peak tensile strain (εta) reaches the plastic region, the irreversible plastic tensile strain (εpf) during unloading would 7 

be [8]:  8 

max 0

0 max 0 0 0

( )
( )( ) ( )

ta
pf pa

pa ta

ε ε εε ε
ε ε ε ε ε ε ε

−
=

+ − − −
                                                                                                                            (9) 9 

where ε0 is the strain at the tensile strength. During the cyclic unloading-reloading process, small damage will be 10 

generated and cumulated gradually, thus in each loading cycle, the reloading curve cannot go back to the peak 11 

point of last cycle (σup, εta), but will be slightly softened to 𝜀𝜀𝑡𝑡𝑡𝑡′, whose value can be determined by introducing 12 

another 𝜀𝜀𝑝𝑝𝑝𝑝′ for the reloading curve, which is: 13 

0 max max 0

max 0

( ) ( )pa pf pf pa
ta

pa pf

ε ε ε ε ε ε ε ε
ε

ε ε ε ε

′ + + −′ =
+

                                                                                                                (10) 14 

where degradation parameter 𝜀𝜀𝑝𝑝𝑝𝑝′ should depend on the stress level of previous cycle: 15 

1

1
m

up up lw
pa pa nm

t t

c
f f

aσ σ σ
ε ε

−
 −  ′ = ⋅ +       

                                                                                                                  (11) 16 

where σup and σlw are the upper and lower normal stress of previous cycle, cnm and αm are parameters for mortar 17 

which reflect the effect of unloading and reloading on the stress reduction, and need to be calibrated. Then during 18 

every unloading process, εpa = 400μ will be used to achieve the new irreversible plastic strain εpf, while during the 19 

reloading process,  𝜀𝜀𝑝𝑝𝑝𝑝′ will be adopted. From Eq. (11), 𝜀𝜀𝑝𝑝𝑝𝑝′ is a changing value depending on the stress condition 20 

(σup and σlw) of previous cycle. As the plastic strain increases (σup decreases), 𝜀𝜀𝑝𝑝𝑝𝑝′ will move to εpa gradually and 21 

the cyclic degradation will also become smaller. By doing so, the gradual degradation process can be simulated 22 

from the mesoscale constitutive laws smoothly.  23 

For the shear spring of mortar element, similar stress drop is introduced to reflect the degradation during 24 

cyclic loadings (Fig. 2 (b)). The maximum shear capacity (shear criterion) will be affected by both the crack width 25 

in normal spring and the unloading and reloading history of the shear spring itself, which is: 26 
3 0.6

max 1 2

1 max

2

0.11 ( )

1 /

1
m

t t t

up up lw
sm

N t t

f f f f f

f w w

f c
f f

β

t s

t t t

 = ± − + × × 
= −
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= −       

∏

                                                                                                                           (12) 27 
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where f1 is the reduction factor due to the crack opening in normal direction and f2 reflects the effect of cyclic 1 

shear stress, which will be cumulated with the fatigue cycles (N). w=(h1+h2)(ε-ε0) is the crack width after the 2 

tensile strain exceeds the critical strain (ε0) at the tensile strength (ft), and wmax=(h1+h2)(εmax-ε0) is the maximum 3 

crack width, which is usually 0.03mm for mesoscale analysis [10]. csm and βm are the parameters of mortar 4 

reflecting the continuous degradation of the shear spring by cyclic unloading and reloading. τup and τlw are the 5 

upper and lower stresses in the shear springs. The parameters for mortar after calibration are: 6 

 
8
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1.0 10
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= ×
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                                                                                                                                                                         (13) 7 

For the concrete, the ITZ must be taken into consideration. Although the properties of the ITZ are usually 8 

weaker than the mortar, the general characteristics of the degradation at interface should be similar with the 9 

mortar. Therefore, similar idea is applied on the interface, then, for the normal spring of ITZ: 10 
1

1
i

up up lw
pa pa ni

t t

c
f f

aσ σ σ
ε ε

−
 −  ′ = ⋅ +       

                                                                                                                            (14) 11 

And for the shear spring of ITZ: 12 

( )max 1 2

1 max

2

tan
1 /

1
i

i

up up lw
si

N t t

c f f
f w w
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f f

β

t s ϕ

t t t
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                                                                                                                                    (15) 13 

where wmax for ITZ is set as 0.01mm [10], the parameters cni, αi, csi and βi have the same physical meaning with 14 

the mortar element, but the values should be different to reflect different degradation speed under cyclic loads, 15 

which are chosen as: 16 

13

20.0

3.0 10
9.0
9.0

ni

si

i

i

c
c
α
β

−

=

= ×
=
=

                                                                                                                                                       (16) 17 

2.2.2 Basic creep and fatigue creep in mortar and ITZ 18 

During the fatigue test, the duration is usually long enough to have obvious creep deformation. The creep 19 

occurs at all stress levels and, within the service stress range, is linearly dependent on the stress if the pore water 20 

content is constant. There are several models to estimate the creep strain under sustained loads, such as the B3 21 
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Model [22]. In addition, Bazant and Hubler also developed a theoretical model for the creep under fatigue 1 

loadings based on Paris law [23], in which the total creep strain is: 2 

N tot meanJe σ=                                                                                                                                                           (17) 3 

where εN is the total creep strain after N cycles; Jtot is the total material compliance (the creep strain caused by per 4 

unit of stress); σmean=0.5(σmax+σmin) is the mean stress of the fatigue loading. The total compliance is composed by 5 

two parts: 6 

0( , )tot NJ J t t J= +                                                                                                                                                   (18) 7 

where J(t,t0) is the compliance for ordinary creep based on the B3 Model [22]; JN is the compliance for the cyclic 8 

effect of fatigue. If excluding the elastic response during the fatigue test, and also moisture content is assumed 9 

constant, then J(t,t0) would be as follows according to the B3 Model: 10 

0 2 0 3 0 4
0

( , ) ( , ) ln[1 ( ) ] lnn tJ t t q Q t t q t t q
t


= + + − + 
 

                                                                                                 (19) 11 

where q2, q3 and q4 represent the ageing viscoelastic compliance, non-ageing viscoelastic compliance, and flow 12 

compliance, respectively [22]; and Q(t,t0) is a binomial integral which cannot be expressed analytically, whose 13 

values are shown in previous paper [22]; n is a constant which equals to 0.1; t0 is the age when the loads are 14 

applied (in days); t is the current time (in days). The determination of those parameters follows: 15 
0.5 0.9
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3 2
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                                                                                                                                              (20) 16 

where w, c and a are the content (kg/m3) of water, cement and aggregates respectively.  17 

The cyclic creep during fatigue is also called fatigue creep, which is a long-term deformation due to cyclic 18 

load in addition to the static creep, and given its expression as [23]: 19 

N t
c

J C N
f

α
σ  ∆

= 
 

                                                                                                                                                  (21) 20 

where Ct is constant which is chosen as 6.67×10-3 (micron/MPa) [23]; N is the number of fatigue cycles; α is a 21 

constant which equals to 4 [23]; Δσ is the amplitude of the fatigue loads. It should be noticed that the above 22 

empirical formulas in B3 model and fatigue creep model are all calibrated based on concrete material, while in the 23 

mesoscale RBSM, the creep is only considered in mortar and ITZ. For the creep phenomenon in concrete 24 

materials, the viscous flow of capillary and gel water under permanent loadings has been deemed as the main 25 

mechanism [24], thus a simple relation for creep has been built between cement and concrete containing 26 

aggregates [25]: 27 
1.9/ (1 )c p gε ε = −                                                                                                                                                      (22) 28 
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where εc and εp are the creep strain of concrete and cement paste respectively; g is the volume ratio of aggregates. 1 

Based on the creep mechanism, also considering that in both B3 model and Neville’s formula, there is no strict 2 

difference between coarse aggregate (gravel) and fine aggregate (sand), thus in this paper, the B3 model is still 3 

applicable if adopting the mix proportion of mortar. The creep in ITZ may not be ignored because its porosity is even 4 

larger than cement paste, but in the RBSM, only the ITZ of coarse aggregates are considered separately, while the ITZ 5 

of sands are already averaged into the mortar element. Thus, the creep deformation of ITZ around coarse aggregates 6 

has little contribution to the total creep deformation due to its limited volume ratio. However, the creep may still have 7 

some effects on the mechanical properties of ITZ, thus, the same creep model is applied on the normal springs at ITZ 8 

for a simple consideration of the damage effect. Then, if taking w=310, c=620 and a=1240 (sand) for mortar sample 9 

as in the literature [19], with different loading frequency, the basic creep (J(t,t0)) and the fatigue creep (JN) can be 10 

estimated as in Fig. 3 (a) (the horizontal axis means loading cycles). It can be seen that the basic creep is almost 11 

linear to the logarithm value of cycles while the fatigue creep is linear to the numbers of loading cycles. Fig. 3 (b) 12 

shows the total compliance for different stress levels. It can be seen that for the low cycle fatigue, the fatigue 13 

creep is not significant while the main creep deformation comes from the basic creep. But for the high cycle 14 

fatigue, the fatigue creep becomes obvious and the higher stress level is, the bigger creep compliance will be.  15 

 16 
(a)                                                                             (b) 17 

Fig. 3 The estimated creep compliance during fatigue test (a) Under different loading frequency (80% stress level) 18 

(b) Under different stress level (f = 1Hz) 19 

 20 

The above model can be directly applied to the single fatigue problem, but when the FTC and fatigue loads 21 

happens together, the stress level on the concrete skeleton may vary with time, thus a differentiation form of Eq. 22 

(19) with respect to time is needed [22]: 23 
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Here the effective stress on the porous skeleton caused by FTC has been formulated from the pore pressures 1 

based on poromechanics, which will be briefly summarized in the next section. As a simple coupling of FTC and 2 

fatigue loading in this study, the two process happens independently in sequence (FTC first and followed by 3 

fatigue), the cyclic FTC stress can be similarly regarded as a fatigue load but with different frequency and 4 

amplitude. When the FTC and fatigue loading are applied to concrete simultaneously, considering the big 5 

difference in the time scale, the total stress can still be regarded as a high-frequency fatigue load whose mean 6 

value changes periodically at a low-frequency, and this type of coupling will be investigated in future. Therefore, 7 

in this study, the total creep strain under sequential FTC and fatigue loading will be: 8 

0( , )( )N mean t
c

J t tt dt C N
t f

a
σe σ σ
∂ ∆

= + ∂  
∫                                                                                                               (24) 9 

where σ(t) is the real-time stress either by FTC or fatigue loading; σmean and N are the mean stress and number of 10 

cycles in either FTC or fatigue process. Finally, in the RBSM simulation, the total creep compliance will be 11 

introduced to each normal spring according to their particular stress conditions (stress level, amplitude, history 12 

etc.). 13 

 14 

2.3 Nonlinear model with ice 15 

The nonlinear constitutive laws with the effect of ice expansion has been developed in previous study [13]. In 16 

which the internal stress due to ice formation will linearly decrease when the expansion of porous skeleton 17 

becomes bigger (Fig. 4 (a)), and finally the ice and liquid water in pores will reach a mechanical equilibrium with 18 

the porous material (the intersection point of two constitutive curves). During this process, the initial effective 19 

stress (σ0) is generated inside the spring of ice and water (like in a pre-compressed condition). This model can 20 

describe the real physical process well but is not convenient for the numerical simulation, especially when 21 

external load (mechanical load) is also applied outside of two springs. However, it can be proved mathematically 22 

that the final states of spring for porous body are the same when σ0 is directly applied outside on two springs (Fig. 23 

4 (b)). Then the spring of ice-water will only act as an aided tool to get the correct status of the porous body, but 24 

with less physical meaning. Since the main target is to find the deterioration of the porous body, this 25 

transformation has no effect on the porous material and on the contrary, the internal effective stress can be treated 26 

as an ordinary external load.  27 
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 1 
Fig. 4 Parallel model for normal spring with ice volume expansion (a) Stress generated in ice system (b) Stress 2 

applied on both porous body and ice system [13] 3 

 4 

The normal spring of porous body in Fig. 4 exactly follows the constitutive model developed in previous 5 

sections, while for the spring of ice and liquid, the following linear behavior has been proposed [13]: 6 

0.09 3C L w
C x

C LK K b
φψ φψ σφψ ε


= + ⋅ +
 

                                                                                                                       (25) 7 

where ϕ is the void ratio of mortar; Cψ and Lψ are the volume fraction of ice and unfrozen water in the total pore 8 

space, which can be either empirically estimated [26] or regressed from experiments [27]; KC and KL are the bulk 9 

moduli of ice and water; εx is the one-dimensional expansion of porous skeleton; b is the Biot coefficient which 10 

reflects the effective stress (σw) on the porous skeleton caused by the pore pressure (ph), that is: w hb pσ = ⋅ . The 11 

Biot coefficient can be approximately equal to 2ϕ/(1+ϕ) [27]. Actually Eq. (25) expresses the linear curve in Fig. 12 

4, and it can also be seen that the initial stress (σ0) and the stiffness (kw) of ice-liquid spring are: 13 

0 0.09 C L
C

C L

b
K K
φψ φψσ φψ


= ⋅ + 

 
                                                                                                                            (26) 14 

3
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bk
K Kφ ψ ψ

=
+

                                                                                                                                       (27) 15 

Then the ice expansion problem can be solved by simply adding another stiffness matrix: 16 
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{ } { }0[ ]p w u FΚ +Κ =                                                                                                                                                  (28) 1 

where [Kp]and [Kw] are the stiffness matrix of the porous body and ice-water system, respectively. And the load 2 

boundary condition {F0} can be calculated using {σ0}: 3 

{ } { }0 0[ ]TF B σ=                                                                                                                                                        (29) 4 

where [B] is the deformation matrix in RBSM analysis. Since the internal effective stress is a volume stress, it can 5 

be considered only applied on the normal spring, then finally the stiffness matrix would be: 6 

0
0

n w

s

k k
k

+ 
=  
 

D                                                                                                                                                     (30) 7 

3. Simulation Model 8 

3.1 Model size and boundary conditions 9 

The model and boundary condition for the fatigue tests and the combined tests are shown in Fig. 5, in which 10 

the mortar prism will be used to verify the fatigue life that is predicted from the simplified fatigue constitutive 11 

laws without FTC damage, and compared with previous simulations [19] and experiments [29]. The mesh size 12 

and convergence criterion are chosen considering the balance between calculating efficiency and accuracy, which 13 

is briefly discussed in Appendix B. Then the pure fatigue model will be extended from mortar to concrete, and the 14 

fatigue life of concrete will be compared with experimental data. Circular coarse aggregates are distributed 15 

randomly according to the size distribution specified in JSCE standard [28], with a maximum diameter of 20mm. 16 

The volume of aggregates is around 40% of the total volume of the models. There is a layer of boundary elements 17 

(loading plate with zero thickness) between the applied loads and the mortar [19]. For the fixed boundary, all the 18 

degrees of freedom (x, y and θ) are fixed; while for the loading plates, only x and θ are fixed. After verifying the 19 

pure fatigue simulation of mortar and concrete, the combined FTC and fatigue test will be simulated on the 20 

concrete prism.  21 
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 1 
Fig. 5 The model and boundaries for fatigue test and combined test with FTC (Mortar prism: 2 

200mm×100mm×100mm, 1859 elements; Concrete prism: 200mm×100mm×100mm, 2566 elements) 3 

 4 

3.2 Material properties 5 

The determination process of input material properties will be based on literature [10], in which the 6 

compressive strength (Eq. (19)), elastic modulus (Eq. (20)) and the tensile strength (Eq. (21)) are given as 7 

follows: 8 

21.3 / 10.6cmf c w′ = −                                                                                                                                             (31) 9 

1000(7.7ln 5.5)m cmE f ′= −                                                                                                                                      (32) 10 

1.4ln 1.5tp cmf f ′= −                                                                                                                                                 (33) 11 

where c/w is the inverse value of w/c ratio, f’cm is the static compressive strength of mortar (MPa), Em is the elastic 12 

modulus of mortar (MPa) and ftp is the pure tensile strength of mortar (MPa). The properties of interface are 13 

regressed as follows [10]: 14 

1.44 / 2.3tif w c= − +                                                                                                                                               (34) 15 

2.6 / 3.9ic w c= − +                                                                                                                                                 (35) 16 

where fti is the tensile strength of mortar-aggregate interface (MPa), ci is the constant in Eq. (5) (MPa). The elastic 17 

modulus of coarse aggregate is set as 50GPa; the Poisson’s ratio of mortar and aggregates are 0.18 and 0.25; and 18 

the constant φ in Eq. (5) is chosen as 35o [10]. Table 1 shows the input material properties of the mortar and 19 

concrete in this simulation, and also the simulated static compressive and tensile strengths of the undamaged 20 

mortar and concrete are shown in Fig. 6. 21 

 22 
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Displacement Control x

y
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Table 1 The material properties in the FTC and fatigue simulation 1 

ID w/c f’cm 

(MPa) 

Em 

(GPa) 

ftp 

(MPa) 

φ ci 

(MPa) 

fti 

(MPa) 

fc 

(MPa) 

ft 

(MPa) 

M1  

0.47 

 

35.0 

 

21.876 

 

3.48 

  

- 

 

- 

36.60 3.49 

M2 - 37.80 3.42 

M3  35.93 3.55 

C1  

0.47 

 

35.0 

 

21.876 

 

3.48 

  

2.69 

 

1.63 

28.48 2.53 

C2 35o 29.85 2.43 

C3  30.04 2.51 

 2 

 3 
(a)                                                                                  (b) 4 

Fig. 6 The static strengths of mortar and concrete without FTC damage (Left: compressive. Right: tensile) 5 

 6 

4. Results and Discussions 7 

4.1 Pure fatigue for mortar and concrete 8 

First, the pure fatigue tests are conducted on the mortar prism. The global strain is defined as the average 9 

strain from the top to the bottom surface, and the global stress is the average stress on the loading (top) surface. 10 

Then, the global strain history and the global stress-strain curves in compressive and tensile fatigue are shown in 11 

Fig. 7. In which “M1-C80” means mortar sample 1 under a stress level of 80% of the compressive strength, while 12 

“T” represents tensile strength accordingly. For the compressive fatigue of mortar, as the number of fatigue cycles 13 

increases, there is an increment in the maximum strain and residual strain until it reaches the very end of fatigue 14 

life. According to the mechanical model in this paper, the residual plastic strain is only introduced to the normal 15 

spring for the tensile part. However, for the compressive failure of mortar with the boundaries fixed in the 16 
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horizontal direction, the final failure is mainly controlled by the shear criterion. Therefore, although the damage 1 

will cumulate in the shear springs gradually during unloading and reloading, the residual deformation due to 2 

damage along the vertical axis will still not be obvious compared to the creep, until the very end of fatigue life. 3 

Thus, the residual deformation in the analysis is mainly because of the creep effect. On the contrary, the tensile 4 

failure is mainly depending on the normal spring, so the gradual increasing maximum strain and residual strain 5 

contains both creep deformation and the crack opening.  6 

 7 
(a)                                                                              (b) 8 

 9 
(c)                                                                              (d) 10 

Fig. 7 The global strain history and the global stress-strain curves of the mortar in compressive and tensile fatigue. 11 

(a) Strain history in 80% compression (b) Stress-strain curve in 80% compression (c) Strain history in 80% 12 

tension (d) Stress-strain curve in 80% tension 13 

0 200 400 600 800 1000 1200

No. of cycles

0

1000

2000

3000

4000

C
om

pr
es

si
ve

 s
tra

in
 (1

0
-

6
)

M1-C80

0 1000 2000 3000 4000 5000

Compressive strain (10
- 6

)

0

10

20

30

40

C
om

pr
es

si
ve

 s
tre

ss
 (M

P
a)

M1-C80

0 200 400 600 800 1000 1200 1400

No. of cycles

0

200

400

600

800

Te
ns

ile
 s

tra
in

 (1
0

-
6

)

M1-T80

0 100 200 300 400 500 600

Tensile strain (10
- 6

)

0

1

2

3

4

Te
ns

ile
 s

tre
ss

 (M
Pa

)

M1-T80



16 

 

 1 
(a)                                                                              (b) 2 

Fig. 8 The S-N diagrams of mortar for the simplified time-independent model, with Matsumoto et al.’s analysis 3 

[19] and Morris et al.’s data [29]. (a) Compression; (b) Tension 4 

 5 

The fatigue life with different stress levels are shown in the S-N curve of mortar as presented in Fig. 8, and 6 

the simulation results are also compared with Matsumoto’s analysis [19] and Morris et al.’s experimental data 7 

[29]. It can be seen that the simulation results of compressive fatigue agree well with Matsumoto’s results and 8 

experimental data. While for the tensile fatigue modeling, the experimental data does not follow the common S-N 9 

curve, but with much smaller slope (Fig. 8 (b)). This might be due to the sensitivity problem when conducting the 10 

tension test. Nevertheless, for numerical simulation, the calibrated parameters should guarantee that the simulated 11 

S-N curve will generally go through the reference point, for which at the stress level of 1.0, the fatigue life would 12 

be 1. 13 

 14 
(a)                                                                              (b) 15 
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 1 
(c)                                                                              (d) 2 

Fig. 9 The global strain history and the global stress-strain curves of concrete in compressive and tensile fatigue 3 

(a) Strain history in 80% compression (b) Stress-strain curve in 80% compression (c) Strain history in 80% 4 

tension (d) Stress-strain curve in 80% tension 5 

 6 
(a)                                                                              (b) 7 

Fig. 10 The simulated S-N curves of concrete (a) Compressive and tensile fatigue for concrete (b) Simulated 8 

compressive fatigue life with experiment data 9 

 10 

Then by introducing the similar degradation process to the ITZ, the fatigue failure of concrete can be 11 

simulated. In Fig. 9, several cases are shown with the strain development and the stress-strain curves. It can be 12 

seen that for the compression fatigue, the cumulated residual deformation is still mainly coming from the creep 13 

but with smaller values due to the existence of coarse aggregates, whose creep can be neglected compared to 14 

cement mortar [30]. The tensile fatigue of concrete also becomes different compared to mortar, that is, although 15 

the increasing of the residual strain can be seen, the values are smaller compared to pure mortar. This 16 

phenomenon occurs because that, for the concrete under tensile stresses, the ITZ whose strength is much weaker 17 
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than the mortar part will have cracks first. As a result, during the most of the fatigue life, the damage cumulating 1 

will mainly occur in the ITZ, meanwhile the mortar part may still stay within the elastic region. Therefore, the 2 

global residual deformation could be smaller despite of the big crack opening in ITZ. 3 

The S-N curves of the compressive and tensile fatigue for concrete are simulated, which can be seen in Fig. 4 

10. The two simulated S-N curves have similar shape and tendency, and the fatigue lives are within the same 5 

range. The previous data are collected from the compressive and tensile fatigue tests for the comparison purpose. 6 

The compressive fatigue data are picked from Lee and Barr’s review paper [31], and the original data are coming 7 

from several experiments [32-35], as shown in Fig. 10 (a). While for the tensile fatigue, Cornelissen’s study [36] 8 

is referred, in which two kinds of curing conditions were used (sealed and open to air). Considering the big scatter 9 

in the fatigue experiments, the simulated S-N curves for concrete are within the range of previous data, and the 10 

slopes of S-N curves are also in a good agreement with the average values of previous experiments. 11 

 12 

4.2 FTC damage and static strength 13 

In order to introduce different levels of frost damage before analyzing the fatigue behavior, the free expansion 14 

during 300 FTCs has been simulated first, which corresponds to Hasan’s FTC experiments [7]. The details of ice 15 

formation modeling, internal pressure modeling and environmental conditions can be found in literature [13]. 16 

Here only the simulated result of free FTC expansion is shown (Fig. 11) as the given initial condition for fatigue 17 

analysis. According to Hasan’s discussion [7], and considering the nature of RBSM constitutive model, the 18 

residual tensile strain after each FTC is the most important parameter which can be linked to other material 19 

properties, such as the stiffness, strength and so on. Therefore, once the simulated residual strain matches the 20 

measured data, the FTC damage in experiments can be represented reasonably by the RBSM simulation.  21 

 22 
Fig. 11 Simulated cyclic strain and experimental measurements in 300 FTC 23 
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 1 
(a)                                                                              (b) 2 

Fig. 12 The static strengths of concrete with different numbers of FTC (a) Compression (b) Tension 3 

 4 
Fig. 13 Degradation of compressive strength after different numbers of FTC 5 

 6 

The static compressive and tensile behaviors after different numbers of FTCs are simulated and shown in Fig. 7 

12. It can be seen that as the number of FTCs increases, both the residual stiffness and strengths decreases 8 

gradually, and at the meanwhile, both the ascending and softening parts become more ductile. Same phenomenon 9 

has also been reported in previous studies for compression [37] and tension [38]. The normalized reduction in 10 

compressive strength is compared with Hasan’s experimental data [7] after different numbers of FTCs, as shown 11 

in Fig. 13. Although some variation is existed in both experimental and analytical data, the average values are still 12 

in a good agreement. Therefore, the FTC damage simulation and residual mechanical properties are reliable to be 13 

used in the following fatigue analysis. 14 
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4.3 Fatigue behavior after FTC damage 16 
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 1 

 2 

 3 

 4 

 5 
Fig. 14 Strain development under different numbers of FTC and followed by different levels of compressive 6 

fatigue stress 7 
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 1 
Fig. 15 Crack opening and failure mode of compressive fatigue after FTC damage 2 

 3 

Using the FTC damaged concrete, and based on the residual strengths (used as stress level 1.0), the fatigue 4 

simulation is conducted. Fig. 14 shows the strain development under the combined FTCs and compressive fatigue 5 

cycles. The expansive freezing stress during FTCs will cause continuously increasing expansion, which is 6 

reflected as negative compressive strain (red curve in Fig. 14). When the FTC test stops, there is a residual 7 

expansion, and this residual deformation should be recovered first when the compressive loading is applied from 8 

the top of the concrete prism in the real experiments. For each compressive stress level, as the number of FTCs 9 

increases, the stiffness of material will decrease and the concrete will become more ductile, and thus, the strain 10 

amplitude during fatigue will increase. Although the bigger FTC damage means a smaller absolute compressive 11 

stress for each stress level, it will still result in a shorter fatigue life. In addition, once bigger FTC damage is 12 

introduced, the strain development at the very end of failure stage shows bigger ductility. Some examples of crack 13 

pattern and failure mode are shown in Fig. 15, in which the deformation has been enlarged by 10 times. For both 14 

90% and 80% stress level, concrete with bigger FTC damage shows a more uniform crack distribution. This is 15 

because FTCs will generate many uniformly distributed mesoscale cracks, and these mesoscale cracks will 16 

prevent localized failure under fatigue loadings. Since not a single major crack, but many mesoscale cracks will 17 

develop and grow during the fatigue life, more energy will be absorbed so that the concrete could become more 18 

ductile (bigger strain development). 19 

 20 
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 1 

 2 

 3 

 4 
Fig. 16 Strain development under different numbers of FTC and followed by different levels of tensile fatigue 5 
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 1 
Fig. 17 Crack opening and failure mode of tensile fatigue after FTC damage 2 

 3 

For the case of tensile fatigue, similar strain development curves of concrete with different FTC damage and 4 

different stress levels are shown in Fig. 16. Under this condition, the deformations in both FTCs and fatigue 5 

cycles are in the same direction. Similar with the compression fatigue, the tensile fatigue also shows a clear 6 

reduction in fatigue life if more numbers of FTCs were introduced. In addition, at each stress level, the 7 

deformation under fatigue also become more ductile if FTC damage is bigger. The failure modes are shown in Fig. 8 

17, in which the deformation has been enlarged by 50 times. For the non-FTC damaged cases, only a single major 9 

crack is generated when tensile failure occurs because of the stress relaxation in the non-cracked elements. 10 

However, once more mesoscale cracks are introduced by FTCs, the stress relaxation effect would become much 11 

smaller. Therefore, even after one major crack is generated, cracks at other locations can still grow, thus in 12 

macroscale the concrete material will show a bigger ductility and a more uniform damage. 13 

 14 
                                                 (a)                                                                                 (b) 15 

Fig. 18 S-N curves of compressive and tensile fatigue life for FTC damage concrete and undamaged concrete 16 

(experimental data of compressive fatigue comes from [9]) (a) Compression (b) Tension 17 
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 1 

The S-N curves in Fig. 18 show that the FTC damaged concrete will have a shorter fatigue life than the 2 

undamaged ones, and still a linear relationship can be regressed. Once expansive FTC damage is introduced 3 

before fatigue, most of the normal springs of mortar and ITZ will reach the softening part (the shear capacity also 4 

closely relies on the normal springs), then the damage cumulating during fatigue will become faster than 5 

undamaged concrete, therefore the fatigue life will become shorter.  The simulated compressive fatigue life is 6 

compared with Hasan et al.’s data [9], and the reduction effects by different FTCs are in a good agreement 7 

between the analytical and experimental results. 8 

 9 

5. Conclusions 10 

In this paper, the mesoscale numerical approach based on RBSM has been developed for the combined FTCs 11 

and mechanical fatigue problem. The simulated results show a good agreement with previous experimental data. 12 

The detailed conclusions are: 13 

(1) The constitutive laws under fatigue loading are developed and discussed. The degradation caused by cyclic 14 

loading is introduced and formulated for the normal and shear springs of mortar and ITZ, and finally 15 

combined with the fatigue creep model in a simpler way. The simulated fatigue behaviors of non-FTC 16 

damaged mortar and concrete show a good agreement with common knowledge and previous experimental 17 

data. 18 

(2) The internal stress model induced by FTCs is combined with the cyclic constitutive laws to simulate the 19 

fatigue behavior after different levels of FTC damage. First in the simulation, different numbers of FTCs are 20 

applied to obtain different frost damage levels. Then using the FTC damaged concrete, static test is simulated 21 

to obtain the residual compressive and tensile strengths. The simulation results show that both the static 22 

stiffness and strengths will decrease proportionally to the FTC-induced irreversible tensile strain. And the 23 

stress strain relationship of damaged material will become more ductile in both ascending and softening 24 

stages. The simulated static performance agrees with experimental phenomenon well. 25 

(3) Finally, the fatigue behaviors of concrete are simulated for different levels of FTC damage. The residual static 26 

strengths calculated above are used as the new reference strengths in fatigue simulation. Although the 27 

absolute stresses applied on FTC damaged concrete is smaller than non-damaged ones, the fatigue life still 28 

shows a significant reduction, as reported in pervious experiments. During the fatigue simulation, the FTC 29 

damaged concrete shows a more ductile performance due to the pre-introduced mesoscale cracks. The S-N 30 

curve for the FTC damaged concrete still follows a linear relationship. 31 
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(4) In this simulation, the fatigue test is conducted after FTC damage in room temperature, and shows a clear 1 

decreasing in fatigue life. However, some experiments under simultaneous FTCs and mechanical fatigue 2 

showed a longer life than the single effect. When ice exists in pores, concrete material will be strengthened so 3 

that the fatigue damage could become smaller. The mechanism and numerical simulation under this condition 4 

should be investigated in the future. In addition, the 2D model presented in this paper will also be extended to 5 

the 3D case in the future studies. 6 
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 12 

Appendix A. Mathematical bases of RBSM  13 

The RBSM was firstly developed by Kawai [18], together with its theoretical bases. The current 2D computer 14 

program used in this study is based on Nagai’s work [39], and for the Voronoi meshing, the geometric 15 

computational software developed by Sugihara [40] is applied.  16 

 17 
Fig. 19 Local displacement of elements [39] 18 

 19 

The elongation of the springs at normal and shear directions (δn, δs) is calculated from the relative 20 

deformation of the midpoints (xf, yf) at the shared face. Then the relative displacement [u1, v1, θ1] of Element 1 to 21 

the midpoint (xf, yf) is: 22 
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The same equations can be applied to Element 2, then (δn, δs) can be known. The transformation from x-y to n-s 24 

coordination is: 25 
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where dT=[δn, δs] and ue
T=[u1, v1, θ1, u2, v2, θ2]. The transformation matrix B is: 1 

43 43 43 1 43 1 43 43 43 2 43 2

43 43 43 1 43 1 43 43 43 2 43 243

( ) ( )1
( ) ( )

p p p p

p p p p

y x x x y y y x x x y y
x y y x x y x y y x x yl

− − − − + 
=  − − − − +  

B                                                                  (38) 2 

where xij=xi-xj, yij=yi-yj and l43 means the length of the shared boundary. In addition, 3 

4 3

4 3

( ) / 2 ( 1,2)
( ) / 2 ( 1,2)

pi i i

pi i i

x x x i
y y y i

= + =

= + =
                                                                                                                                (39) 4 

Then the local equilibrium can be expressed in global coordinate as: 5 

∆ = ∆e e ek u f                                                                                                                                                             (40) 6 

where the element stiffness matrix associated with the shared boundary (ke) is: 7 
T=ek B DB                                                                                                                                                              (41) 8 

where 9 

0
0

n

s

k
k

 
=  
 

D                                                                                                                                                                           (42) 10 

 11 

Appendix B. Mesh convergence of RBSM 12 

The iteration process of the current program adopts the modified Newton-Raphson method due to the negative 13 

stiffness in the tension softening part. Actually, the poor efficiency in iteration can be also lessened by the smaller 14 

size of total matrix in RBSM, because there are only three degrees of freedom in each element, which is much less 15 

than the FEM. The convergence criterion is as follows: 16 

410
F

R
−∆

≤                                                                                                                                                              (43) 17 

where ΔF is the unbalanced nodal force and R is the loading and reaction forces. In the RBSM analysis, large 18 

deformation is allowed and the two elements can be totally separated without any stress transfer. Therefore, the 19 

convergence will be much slower after failure happens, and Eq. (43) may not be reached. In this case, the fixed 20 

maximum iteration number has been set manually, so that the program can still go to the next step.  21 
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 1 
(a)                                                                                  (b) 2 

Fig. 20 Sensitivity of the mesh size and maximum iteration number (a) effect of mesh size on compression of 3 

mortar (b) effect of iteration number on compression of concrete 4 

 5 

Fig. 20 shows the effects of mesh size and maximum iteration number on simulation results. The convergence 6 

in tension tests is much faster than the compression tests due to the weak coupling between normal and shear 7 

springs, thus here only the compression cases are discussed. Too big mesh size will lead to a significant bias error 8 

from the real solution (Fig. 20 (a)) and even the failure mode may not be accurate. Considering the balance 9 

between computation time and accuracy, for a prism (100×100×200 mm) mesh with size of 3.3mm (namely 10 

30×60 mesh) can provide the acceptable accuracy and also the mesh size dependency can be largely reduced. 11 

Another factor is the maximum iteration number after big tensile and shear failure occurs, and from Fig. 20 (b), 12 

200 iteration steps can be enough for an acceptable accuracy. Actually, the smaller mesh is, the higher efficiency 13 

the iteration has. It can also be seen that the convergence level will affect the softening branch but has little effects 14 

on the failure mode. 15 

 16 
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