A phase II study of carboplatin, pemetrexed, and bevacizumab followed by erlotinib and bevacizumab maintenance for non-squamous non-small cell lung cancer with wild-type EGFR (HOT1101)

Author(s)
Takashina, Taichi; Asahina, Hajime; Oizumi, Satoshi; Yamada, Noriyuki; Harada, Masao; Takamura, Kei; Yokouchi, Hiroshi; Harada, Toshiyuki; Honjo, Osamu; Ogi, Takahiro; Morikawa, Naoto; Kinoshita, Ichiro; Honda, Ryoichi; Nakano, Kosuke; Kanazawa, Kenya; Amano, Toraji; Dosaka-Akita, Hirotoshi; Isobe, Hiroshi; Nishimura, Masaharu

Citation
International journal of clinical oncology, 23(6), 1060-1069
https://doi.org/10.1007/s10147-018-1318-z

Issue Date
2018-12

Doc URL
http://hdl.handle.net/2115/74964

Rights
This is a post-peer-review, pre-copyedit version of an article published in International Journal of Clinical Oncology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10147-018-1318-z

Type
article (author version)

File Information
IJCO23_1060.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
A phase II study of carboplatin, pemetrexed, and bevacizumab followed by erlotinib and bevacizumab maintenance for non-squamous non-small cell lung cancer with wild-type EGFR (HOT1101)

Taichi Takashina1,2, Hajime Asahina2, Satoshi Oizumi1,3, Noriyuki Yamada2,3, Masao Harada3, Kei Takamura4, Hiroshi Yokouchi3,5, Toshiyuki Harada6, Osamu Honjo7, Takahiro Ogi4, Naoto Morikawa8, Ichiro Kinoshita9, Ryoichi Honda10, Kosuke Nakano3, Kenya Kanazawa4, Toraji Amano11, Hirotoshi Dosaka-Akita9, Hiroshi Isebe12, Masaharu Nishimura2, on behalf of Hokkaido Lung Cancer Clinical Study Group

1Department of Respiratory Medicine, Iwamizawa Municipal General Hospital, 2 West 7, 9-jo, Iwamizawa, Hokkaido, 068-8555, Japan
2First Department of Medicine, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
3Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, 2-3-54 Kikusui, Shiroishi-ku, Sapporo, Hokkaido, 003-0804, Japan
4Department of Respiratory Medicine, Obihiro-Kosei General Hospital, 1 West 6, North 8, Obihiro, Hokkaido, 080-0016, Japan
5Department of Pulmonary Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1247, Japan
6Center for Respiratory Diseases, JCHO Hokkaido Hospital, 3-18, 8-chome, Nakanoshima 1-jo, Sapporo, Hokkaido, 062-8618, Japan
7Department of Respiratory Medicine, Sapporo-Kosei General Hospital, 5 North 3, East 8, Sapporo, Hokkaido, 060-0033, Japan
8Division of Pulmonary Medicine, Allergy, and Rheumatology, Iwate Medical University School of Medicine, 1 Uchimaru 19, Morioka, Iwate, 020-0023, Japan
9Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
10Department of Respiratory Medicine, Sapporo Higashi Tokushukai Hospital, 3-1, Kita 33-jo Higashi 1-2, Sapporo, Hokkaido, 060-0023, Japan
Clinical Research and Medical Innovation Center, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan

Department of Medical Oncology, KKR Sapporo Medical Center, 3-40, 6-chome, Hiragishi 1-jo, Toyohira-ku, Sapporo, Hokkaido, 062-0931, Japan

Trial Registration: UMIN000005872

Corresponding author:

Hajime Asahina
First Department of Medicine
Hokkaido University Hospital
North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan

E-mail address: asahinah@pop.med.hokudai.ac.jp
Phone: +81-11-706-5911
Fax: +81-11-706-7899

E-mail addresses: 1990timetravel2012@gmail.com (T. Takashina), asahinah@pop.med.hokudai.ac.jp (H. Asahina), soizumi@sap-cc.go.jp (S. Oizumi), ymda3nr222@gmail.com (N. Yamada), mharada@sap-cc.go.jp (M. Harada), keitak@hokkaido.med.or.jp (K. Takamura), hyokouch@gmail.com (H. Yokouchi), harada-toshiyuki@hokkaido.jcho.go.jp (T Harada), tourbillon@w7.dion.ne.jp (O Honjo), topgun4413@yahoo.co.jp (T. Ogi), carcinoma@nifty.com (N. Morikawa), kinoshii@med.hokudai.ac.jp (I. Kinoshita), honda@sapmed.ac.jp (R. Honda), nakano@keiwakai-ebetsu.or.jp (K. Nakano), k-kenya@fmu.ac.jp (K. Kanazawa), toraji@med.hokudai.ac.jp (T. Amano), hdakita@med.hokudai.ac.jp (Hirotoshi Dosaka-Akita), h-isobe@kkr-smc.com (H. Isobe), ma-nishi@med.hokudai.ac.jp (M. Nishimura)
Abstract

Background: This study evaluated the efficacy and safety of switch maintenance erlotinib and bevacizumab after induction therapy with carboplatin/pemetrexed/bevacizumab for non-squamous non-small cell lung cancer (NSCLC) with wild-type EGFR.

Methods: Enrolled patients had treatment-naïve, advanced non-squamous NSCLC with wild-type EGFR. Carboplatin (area under the curve [AUC] 5.0), pemetrexed (500 mg/m2) and bevacizumab (15 mg/kg) were administered on day 1 every 3 weeks for 4-6 cycles. Maintenance therapy with erlotinib (150 mg/body) on day 1 through 21 plus bevacizumab on day 1 every 3 weeks were continued until disease progression or unacceptable toxicity. The primary endpoint was 6-month progression-free survival (PFS); secondary endpoints included overall survival (OS), overall response rate (ORR), toxicity, and quality of life (QOL).

Results: Fifty-one patients were enrolled between September 2011 and June 2014. The median number of cycles for induction and maintenance therapy were 4 (range: 1-6) and 4 (range: 1-20). Twenty-nine patients (58%) received maintenance therapy. The 6-month PFS rate was 59.5% (95% confidence interval [CI]: 45.0-72.6%). The ORR was 48.0% (95% CI: 34.8-61.5%), and disease control rate was 86.0% (95% CI: 73.8-93.0%). The median PFS and OS were 6.5 months (95% CI: 5.8-7.2 months) and 21.4 months (95% CI: 15.9-26.9 months), respectively. Although grades ≥3 adverse events were observed in 33 patients (66.0%), most were hematologic; there was no febrile neutropenia. QOL was maintained throughout treatment.

Conclusions: Carboplatin/pemetrexed/bevacizumab followed by erlotinib and bevacizumab maintenance showed modest efficacy and was well tolerated in non-squamous NSCLC patients with wild-type EGFR.

Keywords: maintenance therapy, pemetrexed, bevacizumab, erlotinib, non-small cell lung cancer
Introduction

Lung cancer is the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) accounts for more than 80% of all lung cancer cases [1,2]. Non-squamous (non-Sq) histology, mainly adenocarcinoma, is the predominant subtype of NSCLC. Nowadays, agents that target specific molecular abnormalities within the tumor, such as \(\text{EGFR} \) mutation, \(\text{ALK} \) rearrangement, and \(\text{ROS1} \) rearrangement, are the preferred first-line therapies [3-5]. Immune checkpoint inhibitors (ICIs) are also effective for subgroups of patients with NSCLC; pembrolizumab has shown superiority over platinum-based doublet therapy, leading to its approval as a first-line therapy for patients with NSCLC exhibiting programmed death-ligand 1 (PD-L1) overexpression [6]. However, chemotherapy remains the standard of care for the majority of patients without a defined molecular abnormality for which an approved targeted therapy is available.

Second-line therapy significantly improves overall survival (OS) of patients with NSCLC. As rapid deterioration after progression to first-line therapy might render patient ineligible for subsequent treatment, only two-thirds of patients receive second-line therapy in current clinical practice [7,8]. Maintenance therapy can increase the proportion of patients who receive additional therapy beyond first-line platinum-based chemotherapy [9,10]. Decades ago, prolonging first-line platinum doublet therapy led to cumulative toxicity issues that precluded the use of this strategy [11]. The availability of better-tolerated drugs (pemetrexed, epidermal growth factor receptor [EGFR]-tyrosine kinase inhibitors [TKIs], and bevacizumab) has produced maintenance therapy as a feasible option [12-14].

There are two effective maintenance strategies: continuation maintenance and switch maintenance. The former is the practice of discontinuing the platinum agent after 4–6 cycles and then resuming one or more of the drugs used in the induction regimen; the latter involves switching to non-cross-resistant agents immediately following first-line therapy [15]. Single agents such as pemetrexed and erlotinib administered as maintenance therapy have shown significant improvements in OS compared with placebo [12,13,16], while gemcitabine showed improvement in progression-free survival (PFS) over placebo [10]. Combination therapies using bevacizumab plus either pemetrexed or erlotinib as continuation or switch maintenance have also been investigated in several phase 3 trials [17-20], and some have shown improved PFS over single-agent comparators [17,18,19].

Despite low objective response rates, some patients with wild-type \(\text{EGFR} \) NSCLC received a
modest survival benefit with EGFR-TKIs in certain clinical settings [13,21]. Moreover, potential crosstalk
exists in vascular endothelial growth factor (VEGF) and EGFR pathways during tumor growth, metastasis,
and angiogenesis in NSCLC, and the dual inhibition of these pathways using bevacizumab and EGFR-
TKI showed efficacy in preclinical models, including in wild-type EGFR NSCLC [22,23]. Both the BeTA
and ATLAS phase 3 trials, which investigated the efficacy of combination bevacizumab and erlotinib,
showed improved PFS in Western patients with a lower prevalence of EGFR mutations [17,24]. These 2
trials used induction therapies consisting of several combinations of platinum-based doublets other than
platinum plus pemetrexed, which is currently the most frequently used regimen for the induction
treatment. These data suggest that better tolerability to carboplatin and pemetrexed plus bevacizumab as
an induction treatment might increase the efficacy of switch maintenance that comprises erlotinib and
bevacizumab.

Based on this background, we conducted this prospective phase 2 trial to evaluate the
efficacy and safety of combination carboplatin, pemetrexed, and bevacizumab followed by switch
maintenance erlotinib and bevacizumab in patients with non-Sq NSCLC carrying wild-type EGFR.

Patients and Methods

Eligibility

Eligible patients were those of ages 20–74 years old with histologically or cytologically
confirmed stage IIIB, stage IV, or postoperative recurrent non-Sq NSCLC carrying wild-type EGFR.
Patients who received prior systemic therapy for lung cancer were excluded, but patients who experienced
postoperative recurrence after at least 1 year had elapsed from the last administration of adjuvant
chemotherapy were allowed. The following were also required for eligibility: an Eastern Cooperative
Oncology Group performance status of 0 or 1; adequate organ function including of the bone marrow,
liver, kidneys (creatinine clearance ≥60 mL/min and proteinuria ≤1+), and lungs (alveolar O₂ pressure
≥60 Torr); and at least 1 measurable lesion as defined by the Response Evaluation Criteria in Solid
Tumors (RECIST, version 1.1).

The exclusion criteria included: a history of hemoptysis (≥2.5 mL); regular use of aspirin
(≥325 mg/day) or anticoagulants; a tumor in close proximity to a major vessel or with cavitation;
symptomatic central nervous system metastasis; uncontrollable hypertension, presence of severe pleural,
abdominal, or cardiac effusion; unstable comorbidities including cardiovascular disease, stroke, gastric ulcer, and interstitial pneumonitis; a history of active double cancer; or ineligibility as deemed by an investigator. This study protocol was approved by the institutional review board at each participating institution. All patients were required to provide written informed consent before enrollment. This trial was registered under the University Medical Hospital Information Network (UMIN) Clinical Trials Registry Identifier UMIN000005872.

Study design and treatment

This study was designed as a prospective, multicenter, single-arm phase 2 trial. The primary endpoint was treatment efficacy measured as PFS rate at 6 months. Secondary endpoints were OS, overall response rate (ORR), safety, proportion of patients receiving maintenance treatment, and quality of life (QOL).

Eligible patients received pemetrexed 500 mg/m2 through a 10-min intravenous infusion followed by intravenous infusion of carboplatin at a dose corresponding to an area under the curve (AUC) equal to 5 mg/mL/min (AUC=5) over 30 min, as well as bevacizumab 15 mg/kg for at least 30 min intravenously on day 1 of every 21-day cycle, for 4–6 cycles during the induction therapy. We used an AUC=5 of carboplatin based on the results of our previous trial instead of AUC=6 [25]. Afterwards, patients with complete response (CR), partial response (PR), or stable disease (SD) received maintenance therapy with erlotinib 150 mg/body on days 1–21 and bevacizumab 15 mg/kg on day 1 of every 21-day cycle until evidence of disease progression or unacceptable toxicity manifested. The period between the last dosage of induction therapy and the first dosage of maintenance therapy was required to be 3–6 weeks. All patients received oral folic acid (0.5 mg) daily and a vitamin B12 (1 mg) injection every 9 weeks, beginning at least 1 week before the first dose and continuing until 3 weeks after the last dose of pemetrexed.

In the event of severe toxicities during a given cycle, the doses of carboplatin and/or pemetrexed were reduced in subsequent cycles. Such toxicities included grade 4 thrombocytopenia, grade ≥3 febrile neutropenia, or other grade ≥3 nonhematological toxicities. Dose reduction comprised of a decrease in carboplatin to an AUC of 4 mg/mL/min and a decrease in pemetrexed to 400 mg/m2.

Subsequent dose increases were not permitted after a reduction in the chemotherapy dose. In the event of
recurrent severe toxicities following dose reduction, the protocol treatment was terminated.

Administration of erlotinib during the maintenance phase was interrupted if patients developed grade 3 neutropenia, grade 2 thrombocytopenia, a putative infection with a fever of ≥38°C, grade 1 hemoptyis or interstitial lung disease, intolerable grade 2 rash, or other grade 3 nonhematological toxicities until the toxicity had recovered to grade 0 or 1. Erlotinib dose was reduced to 100 mg/day (level -1) and 50 mg/day (level -2); the protocol treatment was terminated in the event of a third severe toxicity.

Bevacizumab administration was delayed in the presence of bevacizumab-related severe toxicities, such as grade ≥3 thrombotic events, bleeding events, hypertension, or proteinuria. Bevacizumab dose reductions were not permitted. If patients required a treatment delay of ≥2 weeks during both induction and maintenance phase, the protocol treatment was terminated.

Baseline and treatment assessments

Patient assessment, which included physical examination, complete blood counts, and biochemistry, was conducted once a week during the first cycle of treatment and then at least once for every subsequent cycle. Chest radiography, computed tomography (CT) scans of the chest and abdomen, magnetic resonance imaging studies of the brain, and bone scintigraphy or positron emission tomography-CT studies were performed for baseline tumor assessment within 28 days before initiation of the protocol treatment. Tumor response was assessed at baseline and every 2 cycles using the RECIST version 1.1. If a patient was documented as having a CR or PR, confirmatory evaluation was performed after an interval of at least 4 weeks. SD required a minimum 6-week period from enrollment in the study. Clinical response data were confirmed by extramural review. Toxicities were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0). The quality of life was assessed with the Functional Assessment of Cancer Therapy-General (FACT-G) and FACT-Lung (FACT-L) questionnaires completed at baseline and after every other cycle. PFS was defined as the time from the date of enrollment to the date of the first occurrence of disease progression or death from any cause; patients who had not experienced progression or death at the data cutoff time were censored at the last tumor assessment. OS was calculated from the date of enrollment to the date of death of any cause; data were censored at the date of last follow-up if the patient was confirmed to be alive.
Statistical methods

At the time of trial planning in 2010, only the E4599 trial had shown superior OS with the PacCBeV (induction therapy with carboplatin, paclitaxel, and bevacizumab followed by bevacizumab continuation) regimen [14]. The median PFS of PacCBeV in the E4599 trial was 6.2 months. Assuming a hazard constant exponential distribution in the survival time distribution, the 6-month PFS rate of E4599 was calculated as 51.3%. Assuming that a 6-month PFS rate of 70% in eligible patients would indicate potential treatment efficacy while a 6-month PFS rate of 50% would be the lower limit of interest, with alpha = 0.05 and beta = 0.20, the estimated accrual number was 47 patients. Hence, the accrual goal was 51 patients to allow for potential dropouts. Efficacy and safety analyses were planned for patients who received at least 1 cycle of the treatment. Survival estimation was performed using the Kaplan-Meier method.

Results

Patient characteristics

Between September 2011 and January 2014, a total of 51 patients were enrolled at 10 institutions of the Hokkaido lung cancer clinical study group Trial (HOT) in Japan. Of these patients, 50 were eligible for analysis and received the induction therapy; 1 patient developed cardiac tamponade rapidly before starting protocol treatment and was excluded from further analysis. Table 1 shows the baseline characteristics of the 50 patients. An EGFR mutation test for each patient was conducted at the local laboratory and not confirmed centrally. Highly sensitive methods such as PNA-LNA PCR clamp or Scorpion ARMS assay was covered by health insurance and widely used in Japan during the study period.

Treatment delivery

The CONSORT diagram of the study is shown in Fig. 1. Overall, the 50 eligible patients received a median of 4 cycles (range: 1–6 cycles) of induction therapy; 43 patients (86%) completed at least 4 cycles of induction therapy. Twenty-nine patients (58%) switched to the maintenance therapy and received a median of 4 cycles (range: 1–20 cycles). Of 29 patients, 6 (20.7%) and 3 (10.3%) received ≥ 8 and ≥ 10 cycles of maintenance treatment, respectively. Twenty-one patients (42%) did not receive maintenance therapy because of disease progression during or after the completion of induction therapy.
(n=10), toxicity (n=7), or patient choice (n=4). In the induction phase, 10 patients (20%) experienced dose reductions of chemotherapy. Of 29 patients who received maintenance therapy, 8 (28%) experienced erlotinib dose reductions. The reasons for discontinuing maintenance therapy were disease progression (n=16), toxicity (n=9), or patient choice (n=3). Rash acneiform was the most frequent reason for discontinuing maintenance treatment (5/9 patients) despite erlotinib dose reduction. One patient was still on treatment by the cutoff date.

Efficacy

Fifty patients were deemed eligible for evaluation of efficacy. No patient achieved a CR while 24 (48%) had a PR; the ORR was 48% (95% confidence interval [CI]: 34.8–61.5%) (Table 2). All 24 patients with PR achieved an objective response during the induction phase. Nineteen patients (38%) maintained an SD, yielding a disease control rate of 86% (95% CI: 73.8–93.0%). Seven patients (14%) experienced PD. After a median follow-up period of 14.3 months (range: 1.1–30.7 months), the median PFS (mPFS) and OS (mOS) were 6.5 months (95% CI: 5.8–7.2 months) and 21.4 months (95% CI: 15.9–26.9 months), respectively (Fig. 2). The 6-months PFS rate (the primary endpoint) was 59.5% (95% CI: 45.0–72.6%). The mPFS of the maintenance phase only (n=29) was 4.2 months (95% CI: 2.1–6.0 months).

At the time of data collection cutoff, which was 1 year and 8 months after the last patient enrolled, 17 patients (34%) were still alive.

Safety

The major adverse events of all eligible patients in each treatment phase (induction and maintenance phase) are summarized in Table 3. Although grade ≥3 adverse events were observed in 33 patients (66.0%), most were hematologic, and no febrile neutropenia was detected. One patient experienced grade 4 intestinal perforation and was salvaged by emergency surgery on day 5 in the first cycle of induction therapy. The operative pathology reported a metastasis at the perforation site. It is possible that bevacizumab caused intestinal perforation. One patient (3.4%) died due to ventricular fibrillation on day 15 in the first cycle of maintenance therapy, which was considered a treatment-related event.
Quality of life

Thirty-nine patients (78%) completed the QOL questionnaire at baseline. The number of patients with evaluable QOL was lower than expected owing to the low questionnaire completion rate at some institutions. Fig. 3 showed the mean FACT-L and FACT-G scores, trial outcome index (TOI), and Lung Cancer Subscale (LCS) at baseline, at the beginning of third cycle in the induction phase, at the beginning of maintenance therapy, and at the third, fifth, and seventh cycles in the maintenance phase. Although the number of evaluable patients was relatively low in the latter course of treatment, there was no significant decline in the FACT-L, FACT-G, TOI and LCS scores during treatment.

Second-line therapy

Thirty-seven patients (74%) underwent second-line therapy. The regimens of second-line therapy are shown in Table 4. No patients who progressed during induction phase were administered erlotinib or erlotinib plus bevacizumab as second-line therapy. Three patients (8%) achieved PR, 23 patients (62%) had SD, 7 patients (19%) had PD, and 4 patients (11%) were not evaluable, judged by each investigator.

Discussion

To our knowledge, this is the first multicenter phase 2 study to evaluate the efficacy and safety of switch maintenance erlotinib and bevacizumab after the induction therapy with carboplatin/pemetrexed/bevacizumab for non-Sq NSCLC with wild-type EGFR. Switch maintenance is considered an “early second-line” therapy. Docetaxel is the standard second-line treatment and has been previously tested as “early second-line” therapy; therefore, we tested another hypothesis and selected erlotinib in this trial [26]. This combination therapy achieved an ORR of 48%, mPFS of 6.5 months, and mOS of 21.4 months. The lower limit of the one-sided 95% CI of the 6-month PFS rate, the primary endpoint, was 45.0%; this did not exceed the prior assumption of 50%. Although 1 patient (2%) died due to ventricular fibrillation in the maintenance phase, 43 patients (86%) completed ≥4 cycles of induction therapy without experiencing febrile neutropenia, and 29 (58%) received a median of 4 cycles of maintenance therapy.
In the PointBreak study, the PemCBeV (induction therapy with carboplatin, pemetrexed, and bevacizumab followed by continuation maintenance therapy with pemetrexed and bevacizumab) and the PacCBeV treatment groups showed identical efficacy, with ORRs of 34.1% and 33.0%, DCRs of 65.9% and 69.8%, mPFS of 6.0 months and 5.6 months, and mOS of 12.0 months and 13.4 months from the start of induction therapy, respectively. Additionally, 66.0% of patients in the PemCBeV arm and 67.3% of those in the PacCBeV arm received maintenance therapy [19]. In the ATLAS study, induction therapy with any platinum-doublet (other than pemetrexed) plus bevacizumab followed by switch maintenance therapy with bevacizumab and erlotinib or placebo improved PFS over placebo to 4.8 months vs. 3.7 months (hazard ratio [HR], 0.71; 95% CI, 0.58–0.86; p<.001) without improving OS (14.4 months vs. 13.3 months; HR, 0.92; 95% CI, 0.70–1.21; p=.5341) from the start of maintenance therapy [17].

Considering that only patients with EGFR wild-type NSCLC were eligible for our study, mOS of 21.4 months was favorable. In addition, our findings of an ORR of 48% without febrile neutropenia by using an AUC=5 of carboplatin are also noteworthy.

On the other hand, the favorable OS in our study might be attributable to the strict eligibility criteria. Several retrospective studies showed that eligibility for bevacizumab is an independent favorable prognostic factor in NSCLC [27,28]. Additionally, erlotinib eligibility was required in our study, which might have increased the proportion of patients with never or light smoking status and contributed to the favorable OS outcome. Weiss et al. conducted a phase 2 trial of PemCBeV in patients with NSCLC with never or former/light smoking status, and showed similar efficacy with an ORR of 47%, mPFS of 12.6 months, and mOS of 20.3 months from the start of induction therapy [28]. Two other Japanese phase 2 studies of PemCBeV also reported similar favorable outcomes [29,30]. The additional benefits of adding bevacizumab to carboplatin and pemetrexed in Non-Sq NSCLC patients should be verified in other contexts.

Despite the statistically superior efficacy of EGFR-TKIs in the initial randomized clinical trial [21], the indication of such agents in patients with wild-type EGFR NSCLC has been limited [3,32,33]. However, even when using the “sensitive” EGFR mutation analysis method, a substantial number of patients who might benefit from EGFR-TKIs may be unable to take advantage of them because of their limited indication [34]. Therefore, in addition to the dual blockade of the EGFR and VEGF pathways in wild-type EGFR NSCLC, our protocol using EGFR-TKIs as a maintenance strategy...

11
would therefore treat those patients who would have otherwise missed such therapies because of a false-negative *EGFR* mutation status test. Considering the modest clinical efficacy of EGFR-TKI and bevacizumab for wild-type EGFR, which is the most likely explanation for not achieving the primary endpoint, it is difficult to justify the routine use of this regimen for EGFR wild-type NSCLC. However, the fact that 10% of patients received \(\geq 10 \) cycles of maintenance therapy suggests that a subpopulation of patients can derive a benefit from this switch maintenance strategy. The increased QOL in the latter course of treatment may also reflect the treatment’s efficacy in such subpopulations.

Seventeen patients (34%) survived for over 2 years. After undergoing protocol treatment, 2 patients were diagnosed as ALK positive and 1 patient was diagnosed as ROS1 positive. One case has recently been identified as an EGFR false negative case. After 20 cycles of maintenance therapy, the patient relapsed with pleural effusion, which contained EGFR mutation positive NSCLC cells. However, driver mutations were not found in the remaining 14/17 patients in whom survival exceeded 2 years.

There was no association between baseline characteristics and longer survival and we did not collect any pretreatment tumor specimens. Therefore, we could not identify the specific subgroup with a favorable outcome, which is the greatest limitation of the present study.

In the United States (US), pembrolizumab was recently approved as a first-line combination therapy with carboplatin and pemetrexed for patients with advanced NSCLC irrespective of their PD-L1 expression status, based on the result of a randomized phase 2 study, recently corroborated by a subsequent phase 3 trial [35,36]. Although this combination therapy has not yet been approved outside the US, most patients without activating driver mutations might be good candidates for this ICI combination therapy. Identifying patients who should be treated with a bevacizumab combination regimen and/or an ICI combination remains an important issue.

In conclusion, although carboplatin/pemetrexed/bevacizumab followed by erlotinib and bevacizumab maintenance showed modest efficacy and was well tolerated in non-squamous NSCLC patients with wild-type *EGFR*, this is a negative phase 2 trial. Considering a subpopulation of patients might be able to derive a long-time survival benefit from this switch maintenance strategy, further exploration of identifying useful biomarkers are warranted.
Acknowledgements: We thank all the patients, their families, and investigators who participated in this study.

Conflicts of interest: The authors declare no conflict of interest.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

11. Socinski MA, Schell MJ, Peterman A, et al. (2002) Phase III trial comparing a defined duration of therapy versus continuous therapy followed by second-line therapy in advanced-stage IIIB/IV non-

study of first-line pemetrexed + carboplatin followed by maintenance pemetrexed versus paclitaxel +
carboplatin + bevacizumab followed by maintenance bevacizumab in patients with advanced

the treatment of NSCLC. Oncologist 14:399–411

Target Oncol 11:507–514

alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa):
a double-blind, placebo-controlled, phase 3 trial. Lancet 377:1846–1854

line chemotherapy for non-squamous non-small cell lung cancer, and correlation between the
efficacy/toxicity and genetic polymorphisms associated with pemetrexed metabolism: Hokkaido
Lung Cancer Clinical Study Group Trial (HOT) 0902. Cancer Chemother. Pharmacol 74:1149–1157

docetaxel after front-line therapy with gemcitabine plus carboplatin in advanced non-small-cell lung

prognostic factor for patients with advanced non-squamous non-small cell lung cancer: a
retrospective cohort study. PLoS One 8:e59700

pemetrexed is associated with a favorable outcome in patients with advanced non-squamous non-
small-cell lung cancer who are eligible for bevacizumab and maintenance therapy. Mol Clin Oncol
5:575–578

29. Weiss JM, Villaruz LC, O’Brien J, et al. (2016) Results of a phase II trial of carboplatin, pemetrexed,
and bevacizumab for the treatment of never or former/light smoking patients with stage IV non-small

Figure Captions

Fig. 1
CONSORT diagram of the study.

Fig. 2
Kaplan-Meier curves of (A) progression-free survival (PFS) and (B) overall survival (OS). CI, confidence interval.

Fig. 3
Functional Assessment of Cancer Therapy (FACT)-Lung (FACT-L), FACT-General (FACT-G), trial outcome index (TOI), and lung cancer subscale (LCS) scores at baseline and during treatment. (i), induction therapy; (m), maintenance therapy.
Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>36–74</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>27</td>
<td>(54)</td>
</tr>
<tr>
<td>Female</td>
<td>23</td>
<td>(46)</td>
</tr>
<tr>
<td>ECOG Performance Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28</td>
<td>(56)</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>(44)</td>
</tr>
<tr>
<td>Disease Stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIIB</td>
<td>5</td>
<td>(10)</td>
</tr>
<tr>
<td>IV</td>
<td>41</td>
<td>(82)</td>
</tr>
<tr>
<td>Recurrence</td>
<td>5</td>
<td>(8)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>48</td>
<td>(96)</td>
</tr>
<tr>
<td>Non-small cell carcinoma</td>
<td>2</td>
<td>(4)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>13</td>
<td>(26)</td>
</tr>
<tr>
<td>Ever</td>
<td>34</td>
<td>(68)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3</td>
<td>(6)</td>
</tr>
</tbody>
</table>

ECOG, Eastern Cooperative Oncology Group.
Table 2. Treatment outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>PR</td>
<td>24</td>
<td>(48)</td>
</tr>
<tr>
<td>SD</td>
<td>19</td>
<td>(38)</td>
</tr>
<tr>
<td>PD</td>
<td>7</td>
<td>(14)</td>
</tr>
<tr>
<td>ORR</td>
<td>24</td>
<td>(48)</td>
</tr>
<tr>
<td>DCR</td>
<td>43</td>
<td>(86)</td>
</tr>
</tbody>
</table>

Abbreviations: CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; ORR, overall response rate; DCR, disease control rate
<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Induction phase, n=50</th>
<th>Maintenance phase, n=29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Grade</td>
<td>Grade 3</td>
</tr>
<tr>
<td></td>
<td>No. (%)</td>
<td>No. (%)</td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukopenia</td>
<td>38 (76.0)</td>
<td>12 (24.0)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>41 (82.0)</td>
<td>17 (34.0)</td>
</tr>
<tr>
<td>Anemia</td>
<td>43 (86.0)</td>
<td>9 (18.0)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>38 (76.0)</td>
<td>8 (16.0)</td>
</tr>
<tr>
<td>Nonhematologic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>31 (62.0)</td>
<td>3 (6.0)</td>
</tr>
<tr>
<td>Anorexia</td>
<td>31 (62.0)</td>
<td>7 (14.0)</td>
</tr>
<tr>
<td>Nausea</td>
<td>26 (52.0)</td>
<td>3 (6.0)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6 (12.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>6 (12.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Constipation</td>
<td>18 (36.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Mucositis</td>
<td>7 (14.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>19 (38.0)</td>
<td>5 (10.0)</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>7 (14.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Localized edema</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>8 (16.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Condition</td>
<td>Count (Percentage)</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Intestinal perforation</td>
<td>1 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Rash acneiform</td>
<td>2 (4.0)</td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>3 (6.0)</td>
<td></td>
</tr>
<tr>
<td>Alopecia</td>
<td>4 (8.0)</td>
<td></td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>1 (2.0)</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>4 (8.0)</td>
<td></td>
</tr>
<tr>
<td>AST increased</td>
<td>26 (52.0)</td>
<td></td>
</tr>
<tr>
<td>ALT increased</td>
<td>24 (48.0)</td>
<td></td>
</tr>
<tr>
<td>Cre increased</td>
<td>14 (28.0)</td>
<td></td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>12 (24.0)</td>
<td></td>
</tr>
<tr>
<td>Ventricular fibrillation</td>
<td>0 (0)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AST, aspartate transaminase; ALT, alanine transaminase; Cre, creatinine.
<table>
<thead>
<tr>
<th>Regimen</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>docetaxel</td>
<td>15</td>
<td>(41)</td>
</tr>
<tr>
<td>S-1</td>
<td>4</td>
<td>(11)</td>
</tr>
<tr>
<td>pemetrexed/bevacizumab</td>
<td>3</td>
<td>(8)</td>
</tr>
<tr>
<td>carboplatin/pemetrexed</td>
<td>2</td>
<td>(5)</td>
</tr>
<tr>
<td>pemetrexed</td>
<td>2</td>
<td>(5)</td>
</tr>
<tr>
<td>carboplatin/docetaxel</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>carboplatin/nab-paclitaxel</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>carboplatin/pemetrexed/bevacizumab</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>cisplatin/S-1</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>cisplatin/vinorelbine</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>amrubicin</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>gemcitabine</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>bevacizumab</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>alectinib</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>crizotinib</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>nivolumab</td>
<td>1</td>
<td>(3)</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>(100)</td>
</tr>
</tbody>
</table>
Fig. 1

Patients enrolled (n=51)

- Rapid deterioration before treatment (n=1)

Received induction therapy (n=50)

- Discontinued induction therapy (n=7)
 - Disease progression (n=4)
 - Toxicity (n=2)
 - Patient choice (n=1)

Received maintenance therapy (n=29)

- Disease progression (n=16)
- Toxicity (n=9)
- Patient choice (n=3)

Still on maintenance therapy (n=1)

Discontinued maintenance therapy (n=28)

- Disease progression (n=16)
- Toxicity (n=9)
- Patient choice (n=3)

Never received maintenance therapy (n=14)

- Disease progression (n=6)
- Toxicity (n=5)
- Patient choice (n=3)
Median PFS: 6.5 months (95% CI, 5.8–7.2)

Median OS: 21.4 months (95% CI, 15.9–26.9)
Fig. 3

The graph shows the trends of (TOI score, FACT-L, FACT-G) over different time points, with the y-axis representing the scores ranging from 0 to 150. The x-axis indicates the time points, which include baseline, before 3 cycles (i), before maintenance therapy, before 3 cycles (m), before 5 cycles (m), and before 7 cycles (m). The sample sizes (n) for each time point vary from 39 to 3. The lines represent mean scores for each measure: TOI, FACT-G, FACT-L, and LCS.