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Abstract

In recent years, much research interest in digital image and video processing has de-
veloped focusing on various aspects. Some of these include image smoothing, en-
hancement and haze removal. With continued advancement in development and de-
ployment of mobile consumer electronics capable of capturing images and stream-
ing video, the need for image processing technique optimization geared to support
real-time processing is increasing. Based on this, we investigate image smooth-
ing techniques, Retinex-based image enhancement and haze removal optimization
for real-time processing. We further propose an FPGA architecture to support ef-
ficient real-time processing. Our research work has been done in two segments;
1) Image smoothing, 2) Retinex-based enhancement and haze removal with FPGA
implementation. Our research in the first segment compliments the second segment.

Image smoothing decomposition techniques basically separate a digital image
into its structure and texture layers, hence the term smoothing as the structure can
exist apart from details. Such techniques have found relevance in various image
processing applications such as edge detection, detail enhancement, image tonal
mapping, image compression artifact removal, image noise removal, and in com-
puter vision object imaging/ robotics. It has also found application in the field of
optical measurement as a calibration method in image sensing. In this thesis, imple-
mentation of image smoothing using spatial iterative methods is investigated. We
formulate a smoothing algorithm suitable for spatial implementation and compare
our proposed multigrid preconditioned conjugate gradient implementation with ex-
isting smoothing algorithms. Furthermore, we take into account the image bound-
aries and eliminate wrap around errors which are inherent in some existing smooth-
ing algorithms including those implemented using Fast Fourier Transform solvers.
According to experimental results obtained using various image datasets, our ap-
proach computes smoothed output in competitively low processing time. Some
existing methods such as based on bilateral filtering, tree filtering and weighted
least squares, converge to a solution faster than our proposed approach. However,
according to qualitative results obtained, our approach produces better smoothing
results. A full HD image is processed in 0.85 secs. In further optimization, we
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incorporated image downsampling in one case, and in another case implemented
flow optimization by pre-calculating and loading the computational costly Lapla-
cian operator matrix from memory. In the case of downsampling, processing time
was reduced by approximately 21.6 %. However, a trade-off between processing
time and smoothing quality was encountered in this case. Downsampling optimiza-
tion may be adopted in applications utilizing low processing power and memory
hardware. In the case of flow optimization, processing time was reduced by ap-
proximately 46.1 % against existing smoothing algorithms. The smoothing quality
in this case is not affected as this simply involves computation flow optimization.
This optimization approach is useful and applicable to constant resolution input
stream, extending application to video processing.

Image enhancement and haze removal optimization are key research topic in
intelligible information gathering and classification. Environmental illumination
conditions play a major role in influencing visual perception and scene classifica-
tion. The quality of images and video taken from outdoor scenes is influenced by
scattering of light which occurs before reaching the camera sensor. The amount of
scattering depends on the distance between the scene points and the sensor, making
degradation spatial-variant. In haze (fog) weather, an elevated presence of atmo-
spheric particles such as water-droplets results in more scattering, resulting in low
contrast and colour fidelity images. Scattering is caused by two basic phenom-
ena, which are attenuation and airlight. Haze removal depends upon the unknown
depth information. This particularly makes haze removal a challenging task. Haze
removal is highly desired in computer vision applications. It not only serves to
significantly increase the visibility of the scene and correct the colour shift, it can
also benefit many vision algorithms and advanced image editing. Both Retinex-
based image enhancement and haze removal are computation costly. Considering
real-time processing in applications such as monitoring systems, autonomous cars,
and live streaming systems, there still remains much room for the development of
efficient hardware implementation of image enhancement and haze removal. Mo-
tivate by this, we propose an architecture supporting both real-time Retinex-based
image enhancement and haze removal, at low memory and process overhead utiliz-
ing a single module. The implementation results reveal that just 1 % logic circuits
overhead is required to support Retinex-based image enhancement in single mode
and haze removal based on Retinex model. This reduction in computation com-
plexity by using a single module reduces the processing and memory implications
especially in mobile consumer electronics, as opposed to implementing them in-
dividually using different modules. Furthermore, we utilize image enhancement
for transmission map estimation instead of soft matting, thereby avoiding further
computation complexity which would affect our goal of realizing high frame-rate
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real time processing. Our FPGA implementation, operating at an optimum fre-
quency of 125 MHz with 5.67 M total block memory bit size, supports WUXGA
(1,920x1,200) 60 fps as well as 1080p60 color input. The maximum logic utilization
and number of registers used are 3212 and 3648, respectively. At high frequency
of 240 MHz, our approach has the capability of processing 4K video at 30 fps. We
compare our approach to existing state-of-the-art algorithms, both quantitative and
qualitatively. Performing PSNR and SSIM tests on multiple inputs, it is observed in
average that our approach provides better results. In terms of hardware architecture
performance evaluation with existing FPGA architectures, our approach provides
the highest throughput of 125 Mpixels/s, utilizing 9 line buffers of 240 width size.
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Chapter 1

Introduction

1.1 Background

Digital image processing is basically the manipulation of a picture image for var-
ious applications. It focuses on: improvement of pictorial information for human
interpretation; processing of image data for storage, transmission and representation
for autonomous machine perception (e.g. robotics).

A image is basically a collection of points called pixels, of which values repre-
sent intensity of light ranging from black to white (i.e., 0 to 256 respectively). In
the case of color images, generally RGB format, each pixel location is represented
by a set of three values, which in combination produce the illusion of color. RGB
means an image is represented by three individual layers containing red, green and
blue information ranging from 0 to 256. This concept of a color image composed
of layers of individual colors is illustrated in Fig. 1.1.

It can be noted in each individual layer, Fig. 1.1((b))((c))((d)), that the color
represented therein has a greater intensity (256) at the point of origin (vertex of the
rectangular image) and fades in towards the center where the intensity reduces (ap-
proaches 0). In the area about the center, it can be noted that none of the individual
colors can be distinguished, however new shades of color are created. This is due
to at least two or all three color layers contributing a relatively significant value to
the pixel set. This in a nutshell is how images represent color captured in nature.

There multiply variations of image types: binary images whose pixel values is
either 0 or 1(black or white) only; gray-scale images whose pixels are represented
by only one value per pixel which ranges between 0 and 256, that is from black to
white with shades of gray in between; color images whose pixels are represented
by a set of generally three values, each ranging from 0 to 256, in the case of RGB
color space which is the common representation of color images. An example of

1



1.1. BACKGROUND CHAPTER 1. INTRODUCTION

((a)) Basic RGB image ((b)) red layer

((c)) green layer ((d)) blue layer

Figure 1.1: Illustration of layers combined to create a single color image

a color, binary and gray-scale image representation of the same image is shown in
Fig. 1.2((a)),((b)) and ((c)), respectively.

Digital image processing has found usage in various applications and fields.
Some examples of these are:

• Human computer interfaces

• Medical visualization systems

• Image enhancement

• Image reconstruction

• Noise removal

• Law enforcement
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((a)) Color image ((b)) Binary image ((c)) Gray-scale image

Figure 1.2: Examples of image representation

• Manufacturing industrial inspection

The key stages in digital image processing are shown in Fig. 1.3.

Figure 1.3: Components of digital image processing

Recently, much research interest has developed in image smoothing, image en-
hancement and haze removal techniques. With the growing need for efficient algo-
rithms suitable for real-time processing and hardware optimization, we have been
motivated to investigate this topics and formulate processing and memory efficient
algorithms.

In image smoothing, the main challenge is to efficiently decompose the im-
age based on homogeneous and non-homogeneous regions independently. Hence,
the smoothing algorithm should correctly classify salent edges. Without correct
classification and processing, salent edges are smoothed out resulting in sharpness
reduction. Hence, a study on edge classification and homogenous processing is
required in order to develop a smoothing algorithm. Furthermore, computational
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1.2. OBJECTIVES OF THIS THESIS CHAPTER 1. INTRODUCTION

costly classification methods are not recommended due to increase in processing
time. Therefore, a compromise between smoothing fidelity (quality) and computa-
tion complexity is considered in algorithm design.

Due to algorithmic complexity, Retinex-based image enhancement and haze re-
moval are implemented separately. Developing a new single module architecture to
efficiently support both at low overhead hardware resource cost is a challenge. This
requires a study on hardware architecture considering the specific characteristic of
the algorithms. At the same time, design efficiency is necessary in order to realize
a low memory and processing complexity. Furthermore, optimization to support
real-time processing at low complexity cost should be taken into account.

1.2 Objectives of this thesis
The objective of this dissertation is to investigate and propose an accelerated image
smoothing algorithm, and to design an FPGA architecture that efficiently supports
both Retinex-based enhancement and haze removal using a single module. In both
cases, we further focus on real-time processing. To approach this goal, primary
issues to study in this thesis are;

• Efficient image decomposition, edge classification and boundary constraints,

• Minimization cost function optimization and iterative solvers,

• Retinex model, haze model and related estimation functions,

• hardware architecture design and optimization.

Firstly, Chapter 2 focuses on investigating image smoothing. In Section 2.2, we
review some existing image smoothing algorithms based on weighted least squares,
LO gradient minimization and multiscale detail decomposition. Image smoothing
presents a complex minimization problem, which can be tackled in frequency or
spatial domain. Frequency domain based solvers provide a faster computation con-
vergence compared to spatial domain solvers. However, in certain conditions FFT
solvers introduce wrap around errors about the boundaries of the smoothed image
due to the inherent nature of FFT. Spatial domain solvers provide algorithmic con-
trol on the way image boundaries are handled. This is investigated and presented
in Section 2.5. In Section 2.3, we investigate spatial iterative methods, identifying
multigrid congugate gradient method as a suitable method due to the large system
matrix problem to solve. We also provide comparitive results in Section 2.5 with
other spatial solvers. Now the main focus is to propose an efficient problem formu-
lation in order to solve the complex image smoothing problem. In Section 2.4, we
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outline our proposed algorithm, which is implemented using multigrid conjugate
gradient method. Compared with existing state-of-the-art smoothing algorithms,
our approach is competitive in terms of processing time and smoothing quality. We
manage to produce a better trade-off balance compared to other algorithms. With
the goal to present an accelerated smoothing algorithm, we introduce two imple-
mentation optimization techniques.

• Scaling optimization: By introducing downsampling into the algorithm, we
managed to reduce the processing time by approximately 21.6 %. In addi-
tion to processing time reduction, the use of downsampled images on which
to perform image smoothing reduces the memory requirement. However, a
trade-off between processing time and smoothing quality is introduced. By
using simple downsampling algorithms, processing time advantage is gain at
the expense of smoothing quality. The use of more complex scaling algo-
rithms would improve the quality with less processing time gain.

• Flow optimization: This involves the pre-calculation and storage of compu-
tationally costly Laplacian operator matrix, which depends only on the res-
olution of the input. This is applicable to constant resolution input streams,
extending its application to video processing. By pre-calculating and storing
this operator only once, inputing images having the same resolution results in
a processing time reduction of approximately 46.1 %.

The selection of which optimization technique to use depends on the requirements
of the application, including the hardware resources proposed.

Secondly, Chapter 3 investigates Retinex-based enhancement and haze removal
with a proposed FPGA architecture design. Section 3.2 briefly highlight some re-
lated existing algorithms. Retinex image enhancement and haze removal are two
computational complex algorithms, which are often times investigated and imple-
mented independently. In Section 3.4, we propose an efficient FPGA architecture
capable of supporting both Retinex-base enhancement and haze removal using a
single module. Our further objective is to provide a real-time processing architec-
ture capable of processing 1920× 1200 input at 60 fps. According to experimental
results, our architecture supports this desired input, with capability of supporting
4K video at 30 fps. The hardware parameters used are; frequency of 125 MHz, 9
line buffers used for filtering each with a width of 240, 3648 registers and 366 RAM
blocks. Using PSNR and structural similarity index matrix (SSIM), we evaluate the
performance of our proposed algorithm and FPGA architecture against existing al-
gorithms. Both quantitative and qualitative results reveal that our approach provides
better results. Finally, Chapter 4 summarizes and concludes this thesis.
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Chapter 2

Image Smoothing

2.1 Introduction

Image smoothing is basically the removal of fine details while maintaining the in-
tegrity of the major image structure. According to [3], image smoothing can be
defined as a process of effectively sharpening major edges by increasing the steep-
ness of transition while eliminating a manageable degree of low-amplitude struc-
tures. While in [4], it is stated that many computer vision tasks require smoothing
as a preprocessing operation to reduce image noise. Many applications in image
processing and computer vision require decomposing an image into a piecewise
smooth base layer and a detail layer. The base layer captures the main structural
information, while the detail layer contains the residual smaller scale details in the
image.

Digital image smoothing research has become increasingly popular in recent
years. A good smoothing algorithm should have the ability of reducing noise (un-
desired components), while at the same time preserving important details, such as
edges. Edge preserving can be achieved via energy-minimizing, surface fitting, and
weighted averaging [4]. Several edge-preserving smoothing methods have been
proposed [5–15], and can be classified into two groups . The first group consists of
the edge-preserving filters that explicitly compute a filtering output as a weighted
average [16]. Bilateral filtering is a basic example, widely adopted for its simplic-
ity and effectiveness in removing noise-like structures. These are typically efficient
techniques, often giving a linear-time complexity dependent on the number of image
pixels only. As highlighted in [16], a common limitation of these essentially local
filters [5, 12, 17–27] is that they cannot completely resolve the ambiguity regarding
whether or not to smooth certain edges.

The second group of edge-preserving smoothing methods are based on global
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optimizations, solving for a globally optimal solution usually involving minimiza-
tion cost function with a prior smoothness term [28–35]. These techniques provide
better results compared to the local filter group discussed early. However, there
is a trade-off between quality and computation complexity. More computation re-
sources are required in order to implement smoothing techniques using global op-
timization, mainly arising from solving a large linear system. Hence, local filtering
techniques perform faster compared to global filtering techniques while sacrificing
on quality.

Image smoothing can be implemented using both frequency and spatial domain
techniques. In frequency domain, high frequencies correspond to quickly chang-
ing regions (edges), while low frequencies correspond to slowly changing regions
(smooth regions). To understand edge aware smoothing, let us first look as two most
basic building block filters, namely low pass and high pass filters.

• Low pass filter leaves the low frequencies unchanged. This in it’s simplest
form smooths the image; as blocked high frequencies correspond to sharp
intensity changes, i.e. to the fine-scale details and noise in the spatial domain
image. This is good for removing noise (sudden discontinuities in an image),
but blurs the image as its edges are equally modified as they are regions of
discontinuity.

• A high pass filter leaves the high frequencies unchanged. This thereby sharp-
ens the edges and is good for edge detection. Areas of rather constant gray-
level consist of mainly low frequencies and are therefore suppressed.

Hence, in layman’s terms, edge aware smoothing employs techniques which
have a hybrid characteristic of both a low and high pass filters, tuned according to a
specific application. Fig. 2.1 illustrates the concept of manipulation of frequencies
in frequency domain, in the case of applying low pass and high pass filtering, as
well as an edge-aware image smoothing technique(our subject of interest).

As can be observed simply from Fig. 2.1((g)) and ((h)), edge-aware smoothing
filters somehow combine desirable characteristics of both low and high pass fil-
ters. From henceforth, when we mention image smoothing, we refer to edge-aware
smoothing techniques.

In the case of spatial domain implementation of image smoothing, what is in-
volved is the direct manipulation of image pixels in spatial domain. As many re-
searchers have developed and implemented image smoothing using frequency do-
main techniques/ solvers, hence-from our motivation to implement image smooth-
ing in spatial domain in order to create a baseline of performance.

One would ask, why are we interested in image smoothing as the smoothing
output shown in Fig. 2.1((a)) is not as visually appealing as the original image in

7
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Fig. 2.1((g))? Well, as illustrated in [1, 3, 4, 36], image smoothing has applications
in detail enhancement, HDR tone mapping, edge enhancement and extraction, im-
age abstraction and pencil sketching, clip-art compression artifact removal, noise
removal and layer-based contrast manipulation, just to highlight a few. Accord-
ing to [37], smoothing can be combined with segmentation techniques in order to
produce superior segmentation results, important to many computer vision applica-
tions. Some of these applications are shown in Fig. 2.2.

8
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((a)) Original input image
((b)) FFT magnitude spectrum of (a)

((c)) low pass filtered image ((d)) low pass filter applied to (b)

((e)) High pass filtered image
((f)) High pass filter applied to (b)

((g)) edge-aware smoothed image ((h)) Edge-aware filter applied to (b)

Figure 2.1: FFT illustration of image filtering, showing how filter masks affect an
image 9
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((a)) Detail enhancement

((b)) Clip-art compression artifact removal (image obtained from [3])

((c)) Edge extraction process stabilized by image smoothing (image obtained from [3])

Figure 2.2: Example applications of image smoothing

10



2.2 Related Works
There are various image smoothing techniques proposed by researchers, some of
which are outlined in [4, 31, 38]. Taking a leaf from novel smoothing technique
research developer [4, 5, 39–41], who utilized information from existing smooth-
ing techniques upon which they built, we henceforth decided to identify an already
existing algorithm by which we can achieve our desired objective. Our criteria of
selection, upon investigative research, simply comes down to the algorithm pos-
sessing a fast convergence rate (least iterations) while producing a good edge-aware
smoothed output, significantly void of blur or artifacts. We also kept in mind the
flexibility of an algorithm to be modeled and solved using a spatial solver.

We briefly describe some related works focusing on image smoothing tech-
niques in the following subsections.

2.2.1 Fast Global Image Smoothing Based on Weighted Least
Squares

In a paper presented by Dongbo et al. [16], a technique for performing spatially
inhomogeneous edge-preserving image smoothing is outlined. Focusing on sparse
Laplacian matrices consisting of a data term and a prior term (typically defined
using four or eight neighbors for 2D image), such global objective functions are
solved by approximating the solution of an intensive large linear system. This linear
system, defined over a d-dimensional spatial domain is approximated by solving a
sequence of 1D sub-systems.

Given an input image f and a guidance image g, a desired output u is obtained
by minimizing the following weighted least squares (WLS) energy function:

J(u) =
∑
p

(up − fp)2 + λ
∑
q∈N(p)

wp,q (g) (up − uq)2

 (2.2.1)

where fp and gp represent a color (or grayscale) value of (x, y), and ΩD = {p =
(x, y)|0 ≤ x < W, 0 ≤ y < H} ⊂ <2. N(p) is a set of neighbors of a pixel

11
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p, and λ controls the balance between the two terms. Increasing λ results in more
smoothing in the output u. The smoothness constraint is adaptively enforced using
the spatially varying weighting function wp,q (g) defined with g. wp,q represents a
similarity between two pixels p and q.

Setting the gradient of J(u) to zero, the minimizer u is obtained by solving a
linear system based on a large sparse matrix:

(I + λA)u = f (2.2.2)

where u and f denote S × 1 column vectors containing color values of u and f , re-
spectively. I denotes an identity matrix and A represents a spatially-varying Lapla-
cian matrix witha size of S × S.

In this approach, a solution of an objective function defined on weighted L2

norm 2.2.1 by decomposing it into each spatial dimension and solving the matrix
with a sequence of 1D fast solvers. Alg. 1 shows this smoothing algorithm on a 2D
image using the 1D solver.

When the smoothing parameter λ (representing the total amount of spatial smooth-
ing) and the total number of iterations T are given as inputs, the separable 1D
smoothing operations are performed along the horizontal and vertical directions
with λt computed at the tth iteration.

2.2.2 Image Smoothing via L0 Gradient Minimization
In Xu et al. [42] [43], an algorithm which sharpens major edges by increasing the
steepness of transition whilde eliminating a manageable degree of low-amplitude
structures is introduced. This is achieved by using L0 gradient minimization, which
can globally control how many non-zero gradients are resulted. Let input image be
denoted by I and output computed image by S. The gradient∇Sp = (δxSp, δySp)

T

for each pixel p is calculated as color difference between neighboring pixels along
the x and y directions. The gradient measure is given by,

C(S) = #{p
∣∣ | δxSp | + | δySp |6= 0} (2.2.3)

counting p whose magnitude |δxSp| + |δySp| is not zero. With this definition, S is
estimated by solving

min
S

{∑
p

(Sp − Ip)2 + λ · C(s)

}
(2.2.4)

To simplify the problem by approximation, auxiliary variables hp and vp, corre-
sponding to δxSp and δySp respectively are introduced, rewriting the objective func-

12
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tion as

min
S,h,v

{∑
p

(Sp − Ip)2 + β
(
(δxSp − hp)2 + (δySp − vp)2

)}
(2.2.5)

whereC(h, v) = #{p
∣∣|hp|+|vp| 6= 0} and β is an automatically adapting parameter

to control the similarity between variables (h, v) and their corresponding gradients.
Applying Fast Fourier Transform yields a solution

S = F−1

{
F(1) + β(F(δx) ∗ F(h) + F(δy) ∗ F(v))

F(1) + β(F(δx) ∗ F(δx) + F(δy) ∗ F(δy))

}
(2.2.6)

where F is the FFT operator and F()∗ denotes the complex conjugate. F(1) is
the Fourier Transform of the delta function. Solving for (h, v), the following is
computed

Ep =

{
(hp − δxSp)2 +

λ

β
H (|hp|+ |vp|)

}
(2.2.7)

which reaches its minimum E∗p under the condition

(hp, vp) =

{
(0, 0) (δxSp)

2 + (δySp)
2 ≤ λ/β

(δxSp, δySp) otherwise
(2.2.8)

2.2.3 Fast Multi-scale Detail Decomposition via Accelerated It-
erative Shrinkage

In this section, we briefly describe the underlaying principles involved in [1]. This
algorithm performs edge-aware smoothing by running very few gradient shrinkage-
reconstruction iterations. The basis of this algorithm is the use of first order proxi-
mal operators [44] as a way to accelerate the shrinkage scheme. According to [1], a
smoothing problem is formulated as

argmin
u

λ

2
‖u− g‖2

2 + ψ(∇u), (2.2.9)

where g is input image, u is smoothed outpur, ψ(∇u) is a gradient function, and
λ is a positive regularization term. Problem (2.2.9) can be simplified by applying
half-quadratic form, and solved by iterative minimization as follows,

v(k+1) ← argmin
v

ψ(v) +
β

2

∥∥∇u(k) − v
∥∥2

2
, (2.2.10)

u(k+1) ← argmin
u

λ ‖u− g‖2
2 + β

∥∥∇u− v(k+1)
∥∥2

2
, (2.2.11)

13
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where v(k+1) corresponds to a shrinkage operation, u(k+1) corresponds to the screened
Poisson equation [45], and β is the new regularization term. By applying first order
proximal operator, v(k+1) can be simplified to

v(k+1) ← ∇u(k) ◦ f
(
∇u(k)

)
, (2.2.12)

where f is the shrinkage weight. For a color image, the following shrinkage weights
can be used,

f1(T (∇u)) = 1− 1

1 + (T (∇u)/γ)α
,

f2 (T (∇u)) = 1− e−(T (∇u)/γ)α , (2.2.13)

where α and γ are positive parameters, and T (∇u) is given by

T (∇u) =

√√√√( ch∑
k=1

∣∣∣∣∂uk∂x

∣∣∣∣
)2

+

(
ch∑
k=1

∣∣∣∣∂uk∂y
∣∣∣∣
)2

, (2.2.14)

where uk corresponds to a color channel of u. From Eq. (2.2.11), u(k+1) is solved
using fast Fourier transform and given by

u(k+1) ← F−1

(
F
(
λg − β div(v(k+1))

)
λ− β lap

)
, (2.2.15)

where div is the discrete divergence, and F and F−1 are forward and inverse fast
Fourier transforms, respectively. In Eq. (2.2.15), lap is independent of the input im-
age characteristics. It is basically the optical transfer function of a discrete Lapla-
cian filter such as  0 1 0

1 −4 1
0 1 0

 .

Finally, an initial solution calculation prior to the smoothing iteration is per-
formed as a way to speed up the smoothing process [1]. This is approximated by,

u(0) ≈ g + ξ div(Og − O ◦ fi(T (Og))). (2.2.16)

According to [46], compared with a monochrome image, the own characteristics
of a color image is its color components. If the luminance component and color
component of a color image can be respectively described, not only can more useful
information be gained from the color image, but also the processing technologies

14
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Colorspace conversion

Initial solution calculation

Smoothing iterations

Colorspace conversion

Smoothed output image

lap

Input image

((a)) Flow of the smoothing algorithm.

Gradient & shrinkage calc.

Color channel separation

DFT

lap

Initial solution

IDFT & store

Color channel merge

Smoothing

For each color channel

Iteration loop

((b)) Flow of the smoothing iteration stage in
Fig. 2.3(a).

Figure 2.3: Flow of algorithm proposed in [1]

used to process the color image. Hence, in this algorithm, smoothing is performed
in CIELab color space.

We summarize the algorithm flow as shown in Fig. 2.3((a)), with detailed ex-
pansion of the smoothing iteration stage represented in Fig. 2.3((b)).

In [47], we performed a computational cost analysis of [1]. It provides a de-
tailed computational breakdown, which serves as a foundation to better understand
the processing involved in image smoothing, as it also provides information to re-
searchers interested in altering/ improving the outlined smoothing technique in, pre-
sented in this section.
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Algorithm 1 Separable global smoother for 2D image smoothing

1: Target Operation: u = (I + λA)−1 f
Input: 2D image f(x, y); f(S × 1 vector)
Input: 2D guide image g(x, y); g(S × 1 vector )(g = f for image filtering,
g 6= f for joint filtering)
Output: 2D image u(x, y); u(S × 1 vector)
Parameters and Notations
T: iteration num., S = HW : image size
λ: smoothing parameter
Algorithm
Initialize u← f

2: for t = 1 : T do
3: compute λt
4: for y = 0 : H − 1 do
5: fh(x)← u(x, y) for all x = 0, . . . ,W − 1
6: if (image filtering) then
7: gh(x)← fh(x) for all x compute wx,i using gh for i ∈ Nh(x)

build a tridiagonal matrix Ah
solve (Ih + λtAh)uh = fh
u(x, y)← uh(x) for all x = 0, . . . ,W − 1

8: end if
9: end for

10: for x = 0 : W − 1 do
11: f v(y)← u(x, y) for all y = 0, . . . , H − 1
12: if (image filtering) then
13: gv(y)← f v(y) for all y

compute wy,j using gv for j ∈ Nv(y)
build a tridiagonal matrix Av
solve (Iv + λtAv)uv = fv
u(x, y)← uv(y) for all y = 0, . . . , H − 1

14: end if
15: end for
16: end for

16
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Algorithm 2 L0 Gradient Minimization
Input: image I , smoothing weight λ
parameters: β0, βmax, and rate κ
Initialization: S ← I , β ← β0, i← 0
while (β ≤ βmax) do

With S(i), solve for h(i)
p and v(i)

p in Eq. 2.2.8
With h(i) and v(i), solve for S(i+1) with Eq. 2.2.6
β ← κβ
i+ +

end while

17



2.3 Preliminary

2.3.1 Matrices
A matrix basically is a collection of numbers ordered by rows and columns. It
generally represents a collection of information stored or arranged in an orderly
fashion. A general matrix A having m rows and n columns can therefore be written
as:

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
... . . . ...

am1 am2 am3 . . . amn

 (2.3.1)

where aij are elements of matrix A, for i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n.
The elements aij are scalars, can either be real or complex numbers. We write

A ∈ Rm×n ifA is anm×nmatrix whose elements are real numbers, andA ∈ Cm×n

if A is composed of complex number elements [48].
The concept of a matrix can be extended to image processing, as an image is

basically a collection of well-ordered rows and columns of numbers representing
how light or dark an area of that image is in relation to the rest. Fig. 2.4 illustrates
a basic shape, represented as a matrix and as an intelligible image, in order to re-
enforce the idea of an image basically being a matrix of ordered entries.

Images can have either two or three dimensional matrix structures(matrix of
pixel values) . An example of a two dimensional matrix structural image is a gray-
scale image (Fig. 1.2((c))) which is only depicted using one matrix layer, i.e. one
value per pixel location. In the case of a color image(Fig. 1.2((a))), it is referred to
as a three dimensional matrix structures. This implies that it possess multiple (e.g
in case of RGB, 3) matrices layered one onto another. Thus a combination of these
pixel values on different layers, aligned in one location produces the illusion of
color(illustrated in Fig. 1.1, as opposed to a gray-scale image which is represented
by one value per pixel location.

Keeping this concept of an image as a matrix structure in mind, manipulation of
images can be approached with greater ease. We shall now present a recap of basic
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((a)) Basic single layer im-
age



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 100 100 0
0 0 0 0 0 0 0 100 100 0
0 0 0 0 0 0 0 100 100 0
0 0 0 0 0 0 0 150 150 0
0 0 0 0 0 0 0 150 150 0
0 0 0 0 0 0 0 150 150 0
0 0 0 0 0 0 0 200 200 0
0 0 0 0 0 0 0 200 200 0
0 0 0 0 0 0 0 200 200 0
0 100 100 150 150 200 200 255 255 0
0 100 100 150 150 200 200 255 255 0
0 0 0 0 0 0 0 0 0 0


((b)) Matrix representation of (a)

Figure 2.4: Illustration of image in its matrix form

matrix and vector operations and properties, in order to equip the reader with basic
knowledge to help in understanding of image smoothing.

Matrix properties

Order of Matrix
The order of a matrix A is defined in terms of its number of rows and columns, i.e.

Aorder = No.ofrows×No.ofcolumns

This concept when extended to images is analogous to the resolution of an im-
age, being in terms of number of rows and columns of pixel points. For example, a
1920 × 1080 pixel resolution image basically means it is represented by that many
number of rows and columns. Hence, a high resolution image basically is one rep-
resented by a great number of rows and columns of pixel point, with the opposite
true for low resolution images.

Transpose
The transpose of a matrix A is denoted by a prime as A′ or a with a superscript as
AT . By transposing, the first row of a matrix A becomes the first column of the
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transpose matrix AT , the second row becomes the second column, and so on. Thus,
a transpose operation is represented in Eq. 2.3.2

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , AT =

a11 a21 a31

a12 a22 a32

a13 a23 a33

 (2.3.2)

Square matrix
A square matrix is one that has the same number of rows and columns. A square
matrix in which all the elements of the principal diagonal are equal to 1 while all
other elements are zero is called a unit matrix. A unit matrix is commonly referred
to as an identity matrix I , given as:

In =


1 0 0 . . . 0
0 1 0 . . . 0

0 0 1
...

...
... . . . ...

0 0 . . . . . . 1

 (2.3.3)

Inverse
Remember, in scalar algebra, the inverse of a number is that number which, when
multiplied with the original number yields a product equal to one. Hence, the in-
verse of x is simply 1/x. Or, in a different notation, as x−1. In matrix algebra, the
inverse of a matrix is that matrix which, when multiplied with the original matrix
yields an identity matrix I . Hence,

AA−1 = A−1A = I (2.3.4)

In a general extension, consider two square matrices A and B. If

AB = BA = I

then B is the inverse of A, and can be denoted as A−1.
A matrix must be square to have an inverse, but not all square matrices have an

inverse. The inverse of a matrix exists only if the columns are linearly independent.
For covariance and correlation matrices, an inverse will always exist, provided that
there are more subjects than there are variables and that every variable has a vari-
ance greater than zero [49].
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Null matrix
A matrix whose elements are all equal to zero,i.e. aij = 0 ∀ i, j, is called null matrix.

Diagonal matrix
A diagonal matrix is a square matrix in which all the elements except the elements
of the principal diagonal are zero. Note that what distinguishes it from an identity
matrix is that its diagonal elements are not restricted to a value equal 1.

Symmetry
A symmetric matrix is a square matrix in which aij = aji ∀ iandj. In other terms,
a matrix is symmetric if it is equal to its transpose, i.e. A = AT . Eq. 2.3.5 clearly
illustrates this, where A is symmetric while B is not.

A =

9 1 5
1 6 2
5 2 7

 , B =

9 1 5
2 6 2
5 1 7

 (2.3.5)

Vectors
A matrix having only one row (or column) of elements is refered to as a row vec-
tor(or column vector). Hence, anm×nmatrix can be represented by its row vectors
of 1× n dimension, or by column vectors of m× 1 dimension. Given in Eq. 2.3.6
is a row vector x and column vector y representation of an m× n matrix.

x =
[
x1 x2 . . . xn

]
, y =


y1

y2
...
ym

 (2.3.6)

Dense and Sparse matrices
A matrix, depending on the relative quantity of non-zero elements can be defined
as either sparse of dense. A dense matrix is one possessing a significant relative
quantity of non-zero elements, while a sparse matrix possess relatively few non-
zero elements. An example of a dense matrix D and a sparse matrix S is given
as;
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D =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

 , S =


∗ ∗ ∗

∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗

 (2.3.7)

It can be intrinsically observed that more memory storage is required to store a
dense matrix as compared to a sparse matrix.

Orthogonality
Only square matrices may be orthogonal matrices, although not all square matrices
are orthogonal matrices. An orthogonal matrix satisfies Eq. 2.3.8

AAT = I (2.3.8)

Thus, the inverse of an orthogonal matrix is simply the transpose of that matrix.
Matrices of eigenvectors are orthogonal matrices [49].

Positive-definitive
A matrix A is positive-definite if, for every nonzero vector x,

xTAx > 0 (2.3.9)

A matrix being positive-definite is a desired quality in minimization problems, as
in our case of image smoothing via minimization of a cost function. If a matrix is
positive-definite, then a unique minimum point solution exists for its problem. If a
matrix is not positive-definite, then it either be negative-definite, singular positive-
definite or indefinite matrix. Fig. 2.5 graphically illustrates these definition varia-
tions.

Matrix operations
Addition, subtraction and multiplication
Two matrices can be added(subtracted) by adding(subtracting) the corresponding
elements of the two matrices, as shown in Eq. 2.3.10

C = A±B
cij = aij ± bij (2.3.10)

Note that matrices A, B and C must have the same order. The same holds in the
case of subtraction operation. This is shown by:
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((a)) Positive-definite
matrix

((b)) Negative-
definite matrix

((c)) Singular
positive-indefinite
matrix

((d)) Indefinite matrix

Figure 2.5: Graphic representation of matrix definitiveness

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 , C =

a11 ± b11 a12 ± b12 a13 ± b13

a21 ± b21 a22 ± b22 a23 ± b23

a31 ± b31 a32 ± b32 a33 ± b33


In the case of matrix multiplication, two matrices can be multiplied together

provided they are compatible with respect to their orders. The number of columns
in the first matrix A must be equal to the number of rows in the second matrix B.
That is,

A(n×p) ×B(m×q) : compatible if p = m.

B(m×q) × A(n×q) : compatible if q = m. (2.3.11)

Hence, the resulting matrix will have the same number of rows as A and the
same number of columns as B.

If a matrix is multiplied by a scalar k, each element of the matrix is multiplied
by k.

kA =

ka11 ka12 ka13

ka21 ka22 ka23

ka31 ka32 ka33

 (2.3.12)

The following are properties which hold for matrix addition(not including sub-
traction) and multiplication:

• Matrix addition is commutative,

A+B = B + A (2.3.13)
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• Matrix addition is associative,

(A+B) + C = A+ (B + C) (2.3.14)

• Matrix addition and scalar multiplication are distributive,

λ (A+B) = λA+ λB,

(λ+ µ)A = λA+ µA. (2.3.15)

• Transpose of a sum,
(A+B)T = AT +BT (2.3.16)

• Transpose of a product,
(AB)T = BTAT (2.3.17)

As expressed in [48], the seemingly simple properties outlined above are of
great value to a programmer. In that, amount of computations can be reduced just
by observing them. For example, computing λA + λB requires twice as many
operations as opposed to computing λ (A+B).

Norms & Inner Products
Vector Norms

Definition 2.2.1. For a vector xn×1, the euclidean norm of x is defined as

‖x‖ =

(
n∑
i=1

x2
i

)1/2

=
√
xTx whenever x ∈ Rn×1,

‖x‖ =

(
n∑
i=1

| xi |2
)1/2

=
√
x∗x whenever x ∈ Cn×1. (2.3.18)

For example [50]. if u = (0;−1; 2;−2; 4) and v = (i; 2; 1− i; 0; 1 + i), then

‖u‖ =
√∑

u2
i =
√
uTu =

√
0 + 1 + 4 + 4 + 16 = 5,

‖v‖ =
√∑

| vi |2 =
√
v∗v =

√
1 + 4 + 2 + 0 + 2 = 3
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Definition 2.2.2. Standard inner products for Rn and Cn are scalar terms defined
by,

xTy =
n∑
i=1

xiyi ∈ R, and

x∗y =
n∑
i=1

x̄iyi ∈ C, (2.3.19)

respectively.

Definition 2.2.3. Given the general euclidean norm as ‖.‖, for p ≥ 1, the p-norm
of x ∈ Cn is defined as

‖x‖p =

(
n∑
i=1

| xi |p
)1/p

(2.3.20)

Properties of general vector norms. A norm for a real or complex vector space v
is a function ‖.‖ mapping V into R that satisfies the following condtions:

‖x‖ ≥ 0 and ‖x‖ = 0←→ x = 0,

‖αx‖ =| α | ‖x‖ for all scalars α,
‖x+ y‖ ≤ ‖x‖+ ‖y‖,
| ‖x‖ − ‖y‖ |≤ ‖x− y‖. (2.3.21)

For detailed proof, refer to [50].

Matrix Norms
The norm of a square matrix A is a non-negative real number denoted ‖A‖.

There are several different ways of defining a matrix norm, but they all share the
forllowing properties:

‖A‖ ≥ 0 for any square matrix A,
‖A‖ = 0 if and only if the martix A = 0,

‖kA‖ =| k | ‖A‖, for any scalar k,
‖A+B‖ ≤ ‖A‖+ ‖B‖,

‖AB‖ ≤ ‖A‖‖B‖. (2.3.22)

The norm of a matrix is a measure of how large its elements are. It is a way of
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determinig the ”size” of a matrix that is not necessaryily related to how many rows
or columns the matrix has.

Definition 2.2.4. The 1-norm is given by

‖A‖1 = max
1≤j≤n

(
n∑
i=1

| aij |

)
(2.3.23)

which is simply the maximum absolute column sum. Put simply, we can sum the
absolute values down each column and then take the biggest answer.

Definition 2.2.5. The∞-norm is given as,

‖A‖∞ = max
1≤i≤n

(
n∑
j=1

| aij |

)
(2.3.24)

which is simply the maximum absolute row sum. Put simply, we sum the absolute
values along each row and then take the biggest answer.

Definition 2.2.6. The Euclidean norm of a matrix A is,

‖A‖E =

√√√√ n∑
i=1

n∑
j=1

(aij)
2 (2.3.25)

This is similar to ordinary ”Pythagorean” length where the size of a vector is found
by taking the square root of the sum of the squares of all the elements. This is the
most commonly used norm, and is also refered to as the 2-norm (‖.‖2). This norm
possesse the following specific properties.

‖A‖2 = max
‖x‖2=1

max
‖y‖2=1

| y∗Ax | . (2.3.26)

‖A‖2 = ‖A∗‖2. (2.3.27)
‖A∗A‖2 = ‖A‖2

2. (2.3.28)

‖
(
A 0
0 B

)
‖2 = max{‖A‖2, ‖B‖2}. (2.3.29)

‖U∗AV ‖2 = ‖A‖2 when UU∗ = I and V ∗V = I. (2.3.30)

26



CHAPTER 2. IMAGE SMOOTHING 2.3. PRELIMINARY

Inner Products
Definition 2.2.7. An inner product on a real (or complex) vector space is a function
that maps each ordered pair of vectors x, y to a real (or complex) scalar < x|y > is
given by,

x
′
y =

p∑
j=1

xjyj (2.3.31)

such that the following properties hold:

〈x|x〉 is real with 〈x|x〉 = 0 if x = 0,

〈x|αy〉 = α〈x|y〉 for all scalars α,
〈x|y + z〉 = 〈x|y〉+ 〈x|z〉,

〈x|y〉 = 〈y|x〉(for real spaces, this becomes 〈x|y〉 = 〈y|x〉). (2.3.32)

Any real or complex vector space that is equipped with an inner product is called
an inner-product space [50].

Definition 2.2.8. If V is an inner-product space, and if we set ‖.‖ =
√
〈.|.〉, then

|∠x|y〉| ≤ ‖x‖‖y‖ for all x, y ∈ V (2.3.33)

Equality holds if and only if y = αx for α = 〈x|y〉/‖x‖2.
Hence, a norm on V is defined as

‖ ? ‖ =
√
〈?|?〉 (2.3.34)

By application, the following is realized:

‖x+ y‖2 = 〈x+ y|x+ y〉
= 〈x|x〉+ 〈x|y〉+ 〈y|x〉+ 〈y|y〉
≤ ‖x‖2 + 2 ‖〈x|y〉‖+ ‖y‖2

≤ (‖x‖+ ‖y‖)2

(2.3.35)

Definition 2.2.9. For a given norm ‖x‖ on a vector space V , there exists an in-
ner product on V such that 〈x|x〉 = ‖x‖2 if and only if the parallelogram identity

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
(2.3.36)

holds for all x, y ∈ V .
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2.3.2 Iterative Methods

In many large-scale scientific simulation codes, most computation is spent on solv-
ing linear equations with sparse coefficient matrices. For this reason, much of the
scalable algorithm research and development is aimed at solving these large, sparse
linear systems of equations on parallel computers. Sparse linear solvers can be
broadly classified as being either direct or iterative. Among the sparse linear solvers,
iterative methods are memory scalable and the only choice for large-scale simula-
tions by massively parallel computers. The rate of convergence of iterative methods
depends strongly on the spectrum of the coefficient matrix [51].

Direct solvers such as Gaussian Elimination are based on a factorization of the
associated sparse matrix. They are extremely robust and would give the exact so-
lution of Ax = b after a finite number of steps without round-off errors. However,
their memory requirements grow as a nonlinear function of the matrix size , hence
not making them suitable for very large sparse linear problems [51].

In contrast, iterative methods are memory scalable. Iterative methods hence
can be effectively implemented on parallel processors. Iterative methods are gener-
ally classified as being stationary or non-stationary. Stationary methods are such as
the Jacobi method, the Gauss-Seidel method and SOR (Successive Over-relaxation)
method. Non-stationary methods are the Krylov subspace methods such as the Con-
jugate Gradient (CG) method, the Bi-Conjugate Gradient Stabilized (BiCGSTAB)
method and the Generalized Minimal Residual (GMRES) method [51].
Stationary iterative methods are iterative methods that can be expressed in a simple
form:

xk = Bxk−1 + c (2.3.37)

where neither B nor c depend upon the iteration count k.

However in the case of non-stationary methods, the computations involve infor-
mation that changes at each iteration. Typically, constants are computed by taking
inner products of residuals or other vectors arising from the iterative method [52].

We shall henceforth briefly look at some of the iterative methods, which are rele-
vant to realizing our goal of performing image smoothing using an iterative method,
thereby also comparing its performance to that implemented using FFT. We shall
start also by introducing some of the basic, most common iterative methods, which
may not be optimized for our goal but provide a good understanding foundation.

28



CHAPTER 2. IMAGE SMOOTHING 2.3. PRELIMINARY

Jacobi, Gauss-Seidel & SOR

Jacobi Method

The Jacobi method is based on solving for every variable locally with respect to
the other variables; one iteration of the method corresponds to solving for every
variable once.
Given an n × n real matrix A and a real n-column vector b, the task is to solve for
unknown x in a linear system given by Eq. 2.3.38

Ax = b (2.3.38)

For simpler understanding of Jacobi method, we shall express it in its vector form
as

xk+1 = D−1 (E + F )xk +D−1b (2.3.39)

where the matrix D is the diagonal matrix of A, E and F are the strict lower and
strict upper triangular matrices of A respectively. It is always assumed that the
diagonal entries of A are all nonzero [53].
In Jacobi method, the i−th equation is independent of others, hence it is also known
as the method of simultaneous displacements, since the updates could in principle
be done simultaneously [52]. The pseudocode is given in Alg. 3: This method is

Algorithm 3 Jacobi Method

Choose an initial guess x(0) to the solution x.
2: for k = 1, 2, . . .

for i = 1, 2, . . . , n
4: xi = 0

for j = 1, 2, . . . , i− 1, i+ 1, . . . , n
6: xi = xi + ai,jx

k−1
j

end for
8: xi = (bi − xi) /ai,i

end for
10: xk = x

check convergence; continue if necessary
12: end for

easy to understand and implement, but convergence is slow [52].
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Gauss-Seidel Method
Gauss-Seidel method is similar to Jacobi method, except that it uses updated values
as soon as they are available. In general, if the Jacobi method converges, the Gauss-
Seidel method will converge faster than Jacobi method, though still relatively slowly
[52].

Gauss-Seidel’s computation is a serial computation, as each component of the
new iterate depends upon all previously computed components. The update cannot
be done simultaneously as in the Jacobi method.
In matrix terms, the definition of Gauss-Seidel method can be expressed as:

xk+1 = (D − E)−1 Fxk + (D − E)−1 b (2.3.40)

where the matrix D is the diagonal matrix of A, E and F are the strict lower and
strict upper triangular matrices of A, respectively.
Eq. 2.3.40 represents forward Gauss-Seidel. In backward Gauss-Seidel, we just
replace D − E wiht D − F in the equation. The pseudocode is given in Alg. 4.

Algorithm 4 Gauss-Seidel Method

Choose an initial guess x(0) to the solution x.
for k = 1, 2, . . .

3: for i = 1, 2, . . . , n
σ = 0
for j = 1, 2, . . . , i− 1

6: σ = σ + ai,jx
k
j

end for
for j = i+ 1, . . . , n

9: σ = σ + ai,jx
k−1
j

end for
xki = (bi − σ) /ai,i

12: end for
check convergence; continue if necessary

end for

Successive Over-relaxation (SOR)
This method can be derived from the Gauss-Seidel method by introducing an ex-
trapolation parameter ω. For the optimal choice of ω, SOR may converge faster
than Gauss-Seidel by an order of magnitude [52].
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The extrapolation term ω takes the form of a weighted average between the
previous iterate and the computed Gauss-Seidel iterate successively for each com-
ponent. In matrix terms, the SOR can be expressed as:

xk = (D − ωE)−1 (ωF + (1− ω)D)xk−1 + ω (D − ωE)−1 b (2.3.41)

The pseudocode is given in Alg. 5.

Algorithm 5 SOR method

Choose an initial guess x(0) to the solution x.
for k = 1, 2, . . .

for i = 1, 2, . . . , n
4: σ = 0

for j = i+ 1, . . . , i− 1
σ = σ + ai,jx

k
j

end for
8: for j = i+ 1, . . . , n

σ = σ + ai,jx
k−1
j

end for
σ = (bi − σ) /ai,i

12: xki = xk−1
i + ω

(
σ − xk−1

i

)
end for
check convergence; continue if necessary

end for

Multigrid Method

Multigrid methods are called scalable or optimal because they can solve a linear
system with N unknowns with onlyO(N) work. Since this work can be effectively
distributed across a parallel machine, multigrid methods are able to solve ever larger
problems on proportionally larger parallel computers in essentially constant time,
making them an ideal solver for large-scale scientific simulation [54].

Simple iterative methods such as Jacobi and Gauss-Seidel have O(N) cost per
iteration. The number of iterations depends on the condition number of matrix
A and on the desired level of accuracy [55]. Hence, as in the case of smoothing
problems, in which the condition number can be very large, henceforth requiring
far too many iterations to be practical. However, iterative methods such as Jacobi
and Gauss-Seidel, when used as smoothers, are an inexpensive way to discover
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high-frequency components of the correction in very few iterations. Hence they are
used in multigrid methods [55].

Multigrid method is basically a divide-and-conquer algorithm for solving the
discrete Poisson equation. It is widely used on other similar (“elliptic”) partial dif-
ferential equations as well. It uses divide-and-conquer in two related senses. First,
it obtains an initial solution for an N × N grid by using (N/2) × (N/2) grid as
an approximation, taking every other grid point from the N × N grid. The coarse
(N/2) × (N/2) grid is in turn approximated by an (N/4) × (N/4) grid, and so on
recursively. Fig. 2.6 illustrates the concept of multi grids, which will help to better
understand it. Hence, obtaining a solution on coarsest grid(Fig. 2.6((d))), which has

((a)) Fine grid(N ×
N )

((b)) N2 ×
N
2 grid ((c)) N4 ×

N
4 grid ((d)) N6 ×

N
6 grid

Figure 2.6: Illustration of multigrid method

fewer unknowns, and using it to approximate the solution of a fine grid(Fig. 2.6((a)))
is less computational costly. The second way multigrid uses divide-and-conquer is
in frequency domain. Considering the error in the iterate solution of a general iter-
ative method such as Jacobi and Gauss-Seidel as sinusoidal components, high fre-
quency errors being refered to as rough error, while low frequency errors as smooth
error. According to [56], iterative methods such as Jacobi and Gauss-Seidel nearly
remove high frequency errors in a few iterations. However, their slow convergence
rate is due to their inability to eliminate smooth errors quickly. Multigrid method
addresses this by transferring fine grids to coarse grids, on which the smooth error
becomes rough and thereby removed quickly.

Therefore, what multigrid does on the finest grid P(m)(Fig. 2.6((a))), is to damp
down the upper half of the frequency components (high frequency) of the error in
the solution. On the next coarser grid P(m−1)(Fig. 2.6((b))) with half as many points,
multigrid damps the upper half of the remaining frequency components in the error.
On the next coarser grid P(m−2)(Fig. 2.6((c))), the upper half of the remaining fre-
quency components are damped, and so on, until we solve the exact (1 unknown)
problem P(1)(Fig. 2.6((d))). Fig. 2.7 illustrates the process by which the error com-
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ponent is dampened by grid manipulation. This recursive application yields a multi-
grid V–cycle. In the V-cycle shown in Fig. 2.8((a)), starting with the finest grid, all
subsequent coarser grids are visited only once; in the down-cycle, smoothers damp
oscillatory error components at different grid scales; in the up-cycle, the smooth
error components remaining on each grid level are corrected using the error ap-
proximations on the coarser grids. However, in a W-cycle shown in Fig. 2.8((b)),
the coarser grids are solved more rigorously in order to reduce residuals as much as
possible before going back to the more expensive finer grids.

Figure 2.7: Multigrid error elimination, per grid change

((a)) V-Cycle ((b)) W-Cycle

Figure 2.8: Multigrid cycles
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Therefore, the multigrid approach was developed in recognition that low-frequency
error can be accurately and efficiently removed on a coarser grid. Multigrid method
uniformly damps all frequencies of error components with a computational cost that
depends only linearly on the problem size, with N unknowns O(N) [51].

To explain the concept of multigrid, we shall use the simplest form which is a
two-grid method, which exploits only two grids: a fine grid and a coarse grid. The
two-grid method consists of a smoothing step and a coarse-grid correction step [57].
Given a linear system problem in Eq. 2.3.42, on a fine grid:

Afxf = bf (2.3.42)

where the subscript f represents fine grid. To better understand the operations of
multigrid method on a given linear problem, we shall first state the core operators
involved.

• The restriction operator; this operator transfers the residual containing low-
frequency (or smooth) components from a fine grid onto a coarse grid. Hence,
the problem is restricted to a simpler problem, in essence. According to [58],
an example of restriction can be symbolized by the following stencils:1/4 1/2 1/2

1/2 1 1/2
1/4 1/2 1/4


• The interpolation operator; this operator transfers the solution obtained on

a coarse grid onto a fine grid. This approximation of the solution onto a
fine grid has the low-frequency components taken care of on the coarse grid,
and thereby acts as a correction to the fine solution (coarse grid correction).
Inherently by its name, it prolongates the small scale solution onto a large
scale grid. Taking from [58], an example of interpolation (or prolongation) is
a standard transfer operation interpolated bi-linearly. This can be symbolized
as:

1

16

1 2 1
2 4 2
1 2 1


• The smoother operator; this relaxes the problem on the fine grid, operating

on the initial solution and thereby computing an improved solution. This
relaxation is basically the removal of high frequency (or rough) error from
the initial solution. A example of a smoothing operator is Jacobi or Gauss-
Seidel method.
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Algorithm 6 Two-grid Multigrid Method
while (!convergence)
xf = pre smoother (Af , bf , xf ); //pre-smoothing
rc = restrict (bf − Afxf ); //coarse-grid correction
Solve Acdc = rc;

5: xf = xf + prolongate (dc);
xf = post smoother (Af , bf , xf ); //post-smoothing

end while

The pseudocode of two-grid multigrid is given in Alg. 6. From this, a simple coarse
grid correction can henceforth be given by Eq. 2.3.43:

x
(k+1)
f = x

(k)
f +RTA−1

c R
(
b− Afx(k)

f

)
(2.3.43)

where the subscript c and f refers to coarse grid and fine grid respectively, whileRT

and R represent the interpolate/prolongate and restrict operator respectively [51].
Fig. 2.9 gives a graphic flow chart summarizing multigrid method operations.

Figure 2.9: Multigrid method flow chart

Multigrid methods can be categorized into two main groups, depending on the
method used to construct the coarse grids. These are geometric and algebraic multi-
grid.
Geometric Multigrid

According to findings in [59], geometric multigrid methods were originally de-
signed for solving elliptic PDEs, of the form represented in Eq. 2.3.44, by discretiz-

35



2.3. PRELIMINARY CHAPTER 2. IMAGE SMOOTHING

ing them using a hierarchy of regular grids of varying degrees of fineness over the
same domain. This hierarchy can be cumbersome to construct [60].

− ∂

∂x

(
v
∂u

∂x

)
− ∂

∂y

(
v
∂u

∂y

)
= f (2.3.44)

In geometric multigrid, the geometry of the problem is used to define the various
multigrid components. According to [61], geometric multigrid refers to a multigrid
method that uses fixed full-octave coarsening along with fixed non-adaptive (uni-
form) bilinear interpolation.
Algebraic Multigrid

Algebraic multigrid(AMG) method is a generalization of the hierarchical ap-
proach of the geometric multigrid method so that it is not dependent on the avail-
ability of the meshes used for discretizing a PDE, but can be used as a black-box
solver for a given linear system of equations [59]. In [62], it is conferred that in con-
trast to geometrically based multigrid, algebric multigrid does not require a given
problem to be defined on a grid but rather operates directly on (linear sparse) alge-
braic equations of the form given in Eq. 2.3.38:

Ax = b

To easily understand, terms such as grids basically refer to simply a set of vari-
ables, while coarse-grid discretization corresponds to certain matrix equations of
reduced dimensions [62]. According to [51], AMG is suitable for applications with
unstructured grids, which can be extended to image smoothing minimization. AMG
preconditioner can therefore be derived explicitly from the coefficient matrix A of
the system Ax = b [59].

AMG is easier to apply to a generally wide range of linear sparse problem,
however the down-side is that efficient parallelization of AMG is much harder than
that of geometric multigrid [59].

Conjugate Gradient
Conjugatet gradient (CG) method is the most popular iterative method for solving
large systems of linear equations. CG is effective for systems of the form given in
Eq. 2.3.38, shown below.

Ax = b

where x is the unknown vector, b is a known vector, andA is a known sparse(Eq. 2.3.7),
symmetric(A = AT ), positive-definite matrix(Eq. 2.3.9,Fig. 2.5((a))). These sys-
tems arise in many important settings, such as finite difference and finite element
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methods for solving partial differential equations, structural analysis, circuit analy-
sis, and math homework [63]. Henceforth, we investigate its application in image
processing. It was first introduced by M.R. Hestenes & E. Stiefel in 1952, and has
since gained popularity. CG method is a Krylov subspace iterative method.

The conjugate gradient method derives its name from the fact that it generates
a sequence of conjugate (or orthogonal) vectors. These vectors are the residuals of
the iterates. They are also the gradients of a quadratic functional, the minimization
of which is equivalent to solving the linear system. CG is an extremely effective
method when the coefficient matrix is symmetric positive definite, since storage for
only a limited number of vectors is required [52].

Basically, the fundamental underlying structure of conjugate gradient method
is:

1. Start with an initial point,

2. determine direction of movement from that point, in step towards solution,

3. move in that direction by desired stepsize to a relative minimum of the objec-
tive function, and

4. at the new point, a new direction is determined and the process is repeated,
until desired solution is arrived at.

To better understand CG, let us begin with some definitions/ reviews. A is an
n × n matrix, and x and b are row column vectors(i.e., n × 1 vectors), written out
fully, Eq. 2.3.45. 

a11 a12 . . . a1n

a21 a22 a2n
... . . . ...
an1 an2 . . . ann



x1

x2
...
xn

 =


b1

b2
...
bn

 (2.3.45)

Note: For matrix properties and manipulate used to formulate and implement
conjugate gradient method, refer to Sec. 2.3.1.

In conjugate gradient method, it is important for matrix A to be positive-definite
(Eq. 2.3.9) as this will ensure a unique solution to the minimization problem, as
illustrated graphically in Fig. 2.5((a)), of which image smoothing is a minimization
problem.

A minimization problem presented in a problem Ax = b can be likened to a so-
lution of a quadratic problem(solution being at zero gradient point). A quadratic
form is simply a scalar, quadratic function of a vector with the form given in
Eq. 2.3.46.

f (x) =
1

2
xTAx− bTx+ c (2.3.46)
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where c is a constant. Solving a problem of the form Ax = b is equivalent to
minimizing the quadratic function given in Eq. 2.3.46. In order to find the solution
to Eq. 2.3.46, which is a minimum point in the case of minimization, we formulate
its derivative as given in Eq. 2.3.47.

f
′
(x) =

1

2
ATx+

1

2
Ax− b (2.3.47)

Given that A is symmetric, i.e. AT = A, this equation reduces to

f
′
(x) = Ax− b

Setting the gradient to zero, we obtain Eq. 2.3.38, the linear system we wish to
solve [63]. From this formulation above, it is evident that symmetry and positive-
definitiveness are very critical to obtaining a solution to our problem.

Conjugate gradient method proceeds by generating vector sequences of iterates
(i.e., successive approximations to the solution), residuals corresponding to the iter-
ates, and search directions used in updating the iterates and residuals. Although the
length of these sequences can become large, only a small number of vectors needs
to be kept in memory. In every iteration of the method, two inner products are per-
formed in order to compute update scalars that are defined to make sequence satisfy
certain orthogonality conditions [51]. In a nutshell, by simply starting at an initial
guess of solution of x, and moving by step-size in a search direction constructed by
conjugation of the residual (r(k) = b–Ax(k)), a solution is reached.

The iterates x(k), which are the solutions of x at the k− th iteration, are updated
in each iteration by a step-size multiple(α(k)) in the search direction vector d(k):

x(k) = x(k−1) + αkd(k) (2.3.48)

correspondingly the residuals r(k) = b− Ax(k) are updated as

r(k) = r(k−1) − αkq(k) (2.3.49)

where,
q(k) = Ad(k)

The search directions are updated using the residuals, yielding

d(k) = r(k−1) + βkd(k−1) (2.3.50)

where the choice
βk =

(
r(k)

T r(k)

)
�
(
rT(k−1)r(k−1)

)
(2.3.51)
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ensures that d(k) and Ad(k−1)(or equivalently, r(k) and r(k−1)) are orthogonal. The
choice of,

αk =
(
rT(k)r(k)

)
�
(
dT(k)q(k)

)
(2.3.52)

minimizes
rT(k)A

−1r(k)

The pseudocode of conjuagate gradient method is given in Alg. 7.

Algorithm 7 Conjugate Gradient Method

[x] = CG (A, b, x0)
x0 = 0; # Or initial guess value
r0 = b− Ax0; # initial residual
d0 = r0; # initial search direction
for k = 1, 2, . . .

6: α(k) =
rT
(k−1)

r(k−1)

dT
(k−1)

Ad(k−1)
; #step length

x(k) = x(k−1) + α(k)d(k−1); # approximate solution
r(k) = r(k−1) − α(k)Ad(k−1); # residual
check convergence; break if converged

β(k) =
rT
(k)
r(k)

rT
(k−1)

r(k−1)
; #improvement

d(k) = r(k) + β(k)d(k−1) # search direction
12: end for

Preconditioned Conjugate Gradient

The robustness and the speed of Krylov subspace iterative methods is improved,
often dramatically, by preconditioning [59]. Hence, we can greatly improve the
performance of CG method by introducing a preconditioner M into the problem
Ax = b. For mathematical details on preconditioning a general problem Ax = b,
refer to Chapter 2.3.2.

By this modification, the resulting preconditioned conjugate gradient(PCG) psue-
docode is given in Alg. 8. The convergence rate and robustness of the PCG largely
depends on how well the preconditioner approximates A.

Iterative methods for solving sparse systems of linear equations are potentially
less memory and computation intensive than direct methods, but often experience
slow convergence or fail to converge at all.The rate of convergence of iterative meth-
ods depends strongly on the spectrum of the coefficient matrix A [51]. Therefore,
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Algorithm 8 Preconditioned conjugate gradient method

[x] = PCG (A, b, x0)
x0

r0 = b− Ax0

d0 = Mr0

for k = 1, 2, . . .

αk =
(dT(k−1)

r(k−1))
dT
(k−1)

Ad(k−1)

7: x(k) = x(k−1) + α(k)d(k−1)

r(k) = b− Ax(k) = r(k−1) − α(k)Ad(k−1)

r̃(k) = Mr(k) //Preconditioning
check for convergence; continue if necessary

β(k) =
(r̃T(k)Ad(k−1))(
dT
(k−1)

Ad(k−1)

)
d(k) = r̃(k) − β(k)d(k−1)

end for

convergence rate is dependent greatly on the condition number of matrix A. Condi-
tion number is given by Eq. 2.3.53

κ (A) = ‖A−1‖ · ‖A‖ (2.3.53)

If A is normal then,

κ (A) =| λmax (A)

λmin (A)
| (2.3.54)

where λmax (A) and λmin (A) are maximal and minimal eigenvalues of A respec-
tively.

A low condition number signifies a well-conditioned problem, resulting in good
convergence rate, while a high condition number signifies an ill-conditioned prob-
lem resulting in poor convergence rate.

Preconditioning is a technique for improving the condition number of a coeffi-
cient matrix. The use of a good preconditioner improves the convergence of itera-
tive methods, sufficiently to overcome the extra cost of constructing and applying
the preconditioner. Indeed, without a preconditioner the iterative method may even
fail to converge [51].
Suppose a preconditioner M which is a symmetric and positive-definite matrix that
approximates A, but is easier to invert compared to A. We can now solve Ax = b
indirectly by solving Eq. 2.3.55

M−1Ax = M−1b (2.3.55)
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If κ (M−1A) << κ (A), or if the eigenvalues of M−1 are better clustered than
those of A, we can iteratively solve Eq. 2.3.55 quicker than the original problem in
Eq. 2.3.38 [63].

Practical requirements for successful preconditioning are that the cost of com-
puting M itself must be low and the memory required to compute and apply M
must be significantly less than that for solving Ax = b via direct factorization [59].
Hence, selecting a well suited preconditioner is the key to achieving better perfor-
mance.

Preconditioners can be roughly classified into six groups, according to [59]. We
discuss this preconditioner groups in the following sections.

Split-based

Preconditioners based on splitting of the matrix A are basically simple precondi-
tioners based on stationary iterative methods. These are general preconditioners
namely, the Jacobi, Gauss-Seidel and SOR. The Jacobi preconditioner is the sim-
plest of them all, as it is a diagonal matrix whose diagonal entries are identical
to those of matrix A. Refer to Sec. 2.3.2 for the introduction to these methods as
standalone iterative methods. Here we describe them as preconditioners.

Given coefficient matrix A, let us split it into a diagonal matrix D, lower and
upper triangular matrices −E and −F respectively, shown in Eq. 2.3.56

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

 D =


a11

a22

. . .
ann

 (2.3.56)

E = −


0
a21 0

...
... . . .

an1 an2 . . . 0

 F = −


0 a12 . . . a1n

0 . . . a2n

. . . ...
0


Hence, Jacobi method, Gauss-Seidel and SOR are formulated as preconditioning
matrices MJA, MGS and MSOR in Eqs. 2.3.57, 2.3.58, and 2.3.59, respectively.

MJA = D, (2.3.57)
MGS = (D + E)D−1 (D + F ) , (2.3.58)

MSOR =

(
D

ω
+ E

)
ωD−1

2− ω

(
D

ω
+ F

)
, where 0 < ω < 2. (2.3.59)

41



2.3. PRELIMINARY CHAPTER 2. IMAGE SMOOTHING

Incomplete factorization
Preconditioners based on Incomplete factorization. This is based on factorization
along the lines of a regular Gaussian elimination or Cholesky factorization. As op-
posed to complete factorization methods such as A = LU , in which the resulting
triangular matrices are much denser than A, and therefore too expensive to compute
and store, incomplete factorization drops most of nonzero entries from the trian-
gular factors. This makes such preconditioners conceptually simple but highly ef-
fective. Incomplete factorization methods can be broadly categorized depending on
the selective nonzero element dropping criteria, of which namely are static-pattern,
Threshold-based, and inverse-norm estimate based incomplete factorization [59].

According to [64], IC (incomplete Cholesky) factorization is an important pre-
conditioner in iterative methods involving sparse positive definite(SPDs). IC fac-
torization is the simplest form, belonging to static-pattern incomplete factorization
category [59]. IC can be modified by applying strategies, which use information
about the values of dropped elements and modify the process to assure the exis-
tence of the factorization [65], for example, a strategy which uses only information
about the nonzero structure of the matrix to be factored and the structure of the
target sparsity pattern for the IC factor [66]. More variants of modified incomplete
Cholesky factorization is given in [67]. The Incomplete Cholesky factorization of
a positive definite matrix A is M = LLT where L is a modified lower triangular
matrix of A, which is somehow close to the lower triangular matrix of A, but is as
sparse as A. Applying the preconditioner M in split form i.e., in terms of L ensures
preservation of SPD properties in the resulting problem [68]. One popular way to
find incomplete Cholesky factorization matrix is to use the algorithm for finding the
exact Cholesky decomposition, except that any entry is set to zero if the correspond-
ing entry in A is also zero. Incomplete Cholesky factorization L of A of size n× n
can be realized using the Alg. 9 Applying the incomplete Cholesky factorization as

Algorithm 9 Incomplete Cholesky
for i = 1, 2, . . . , n

Lii =
(
aii −

∑i−1
k=1 L

2
ik

) 1
2

for j = i+ 1, . . . , n
Lji = 1

Lii(aij−
∑i−1
k=1 LikLjk)

end for
end for

a preconditioner M = LLT to the problem in Eq. 2.3.55, yields

L−1AL−Tu = L−1b, where x = L−Tu (2.3.60)
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IC factorization can be applied to preconditioned conjugate gradient as a precon-
ditioner. This method is refered to as ICCG. The pseudocode is given in Alg. 10.

Algorithm 10 Incomplete Cholesky Conjugate Gradient
First compute L, as the preconditioner.
r0 = b− Ax0

r̃ = L−1r0

for k = 1, 2, . . .
z = L−1AL−T r̃

v =
(r(k−1),r(k−1))

(r̃,z)

x(k) = x(k−1) + vr̃
r(k) = r(k−1) − vz

9: µ = (rk,rk)

(r(k−1),r(k−1))
r̃ = r(k) + µr̃
if converged then
x(k) = L−Tx(k)

return x(k)

end if
end for

Multigrid
According to [51], Multigrid methods tend to be problem-specific solutions and
less robust than preconditioned Krylov iterative methods such as CG, IC/ILU iter-
ative methods. Fortunately, it is easy to combine the best features of multigrid and
Krylov iterative methods into one algorithm, i.e., multigrid-preconditioned Krylov
iterative methods. It has been proven in [51] that the resulting algorithm is robust,
efficient and scalable. Hence, such is intrinsically suitable for parallel comput-
ing. In our case, we seek to implement it with preconditioned Conjugate gradient
method. This combination is achieved by replacing the preconditioning step of the
Krylov subspace solver (in our case CG solver) with one iteration of the multigrid
algorithm [59]. This is referred to as MCCG method [69].

According to [59], multigrid method can be implemented as a preconditioner
in preconditioned conjugate gradient method by replacing the preconditioning step
with one iteration of multigrid algorithm, instead of repeating the multigrid cycle k
times to solve the problem; treating the approximate solution obtained by an itera-
tion of the multigrid algorithm as the solution with respect to a hypothetical precon-
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ditioner matrix. The inclussion of multigrid in PCG method is shown in Alg. 11,
collectively known as MGCG.

Algorithm 11 Multigrid Conjugate Gradient

[x] = MGCG (A, b, x0)
x0

r0 = b− Ax0

d0 = r0

for k = 1, 2, . . .

αk =
(dT(k−1)

r(k−1))
dT
(k−1)

Ad(k−1)

x(k) = x(k−1) + α(k)d(k−1)

r(k) = b− Ax(k) = r(k−1) − α(k)Ad(k−1)

Relax r̃(k) = Mr(k) using the Multigrid method
10: check convergence; continue if necessary

β(k) =
(r̃T(k)Ad(k−1))(
dT
(k−1)

Ad(k−1)

)
d(k) = r̃(k) − β(k)d(k−1)

end for

Sparse Approximate Inverse
As opposed to incomplete factorization preconditioners which seek to compute the
sparse approximation of the triangular matrices L and U (which constitute of M ) of
the coefficient matrix A, sparse approximate preconditioners seek to directly com-
puteM−1 as an approximation to its inverseA−1. According to [59], there are some
important advantages of explicity using an approximation of A−1 for precondition-
ing, rather than using A’s approximate factors. These are; avoiding of breakdown
in computation which may occur in the case of incomplete factorization precondi-
tioners, in an event of matrix A has small or zero diagonal elements; application of
sparse matrix M−1 maybe simpler and more easily parallelizable than the forward
and back susbstitutions with L̃ and Ũ . However, approximating the inverse of A in
somecases is difficult, let alone impossible to compute or store as it is most likely
dense.

Stochastic
This class of preconditioners involve approximating the solution of linear systems
based on random sampling of the coefficient matrix. This class is yet to be ex-

44



CHAPTER 2. IMAGE SMOOTHING 2.3. PRELIMINARY

tensively explorered by researchers, as it has somewhat limited classes of linear
systems on which it is applicable. However, it has an attractive property of these
methods is that they are usually trivially parallelizable [59].

Matrix-Free Methods and Physics-Based
This class of preconditioners is different from those discussed previously, as it does
not explicitly depend on the availability of matrix A. In this case, a coefficient
matrix-free method, preconditioning is applied implicitly, or the knowledge of the
physics of the application is utilized to construct the preconditioner [59]. These pre-
conditioners are of a highly application-specific nature, henceforth are not covered
in detail.
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2.4 Proposed Algorithm

2.4.1 Problem formulation
Remember from Sec. 2.2 that an image smoothing problem can be represented by
Eq. 2.2.9 can be split by using half-quadratic form into Eq. 2.2.11,recapped below.

v(k+1) ← argmin
v

ψ(v) +
β

2

∥∥∇u(k) − v
∥∥2

2
,

u(k+1) ← argmin
u

λ ‖u− g‖2
2 + β

∥∥∇u− v(k+1)
∥∥2

2
,

Note that we solve for the shrinkage operation v(k+1) by Eq. 2.2.12 in Sec. 2.2.
The part of the problem which we wish to solve using a spatial iterative solver is the
screened Poisson equation corresponding to solving for u(k+1), which was originally
solved using an FFT solver, Eq. 2.2.15 [1].

According to [45], the screened Poisson equation corresponding to solving for
u(k+1) comprises of two components; ‖u–g‖2

2 and ‖∇u–v(k+1)‖2
2 which represent

the data term and gradient term respectively. The data term ensures the closeness of
the term u (smoothed output) to the term g (original input). While the gradient term
ensures the closeness of the gradient of u to a given gradient field v(k+1), which in
our case corresponds to a shrinkage operation performed on u according to v(k+1).
As introduced in Sec. 2.3.1, remember that we can redefine the terms in u(k+1) by
euclidean norm, yielding

‖u− g‖2
2 =

√∑
i

(ui − gi)2

2

=
∑
i

(ui − gi)2 , (2.4.1)

‖∇u− v(k+1)‖2
2 =

(√∑
i

(
∇ui − v(k+1)

i

)2
)2

=
∑
i

(
∇ui − v(k+1)

i

)2

.(2.4.2)

Remember according to quadratic functions minimization, a solution is simply the
minimum point of the function curve. This in other terms represents the point of
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zero gradient (point at which derivative of the function equal zero). Hence, we
can solve for the solution u by introducing an arbituary function L representing the
problem for solving for u(k+1), shown in Eq. 2.4.3, and finding its derivative equated
to zero.

L = λ‖u− g‖2
2 + β‖∇u− v(k+1)‖2

2 (2.4.3)
Note that according to [45], v is a vector-valued function that is generally not a
gradient derived from another function, where v = (vx, vy). Subscripts in x and
y correspond to partial derivatives with respect ot those variables. However, the
superscripted vx and vy are used to denote the elements of v rather than subscript
them, which would incorrectly suggest they are partial derivatives of the same func-
tion. In our case, this is a representation of a shrinkage operation.
Eq. 2.4.3 can be simplified by applying the concept of euclidean norm given in
Eq. 2.4.1 and Eq. 2.4.2, yielding

L = λ (u− g)2 + β
(
(ux − vx)2 + (uy = vy)2) (2.4.4)

which when the derivative is performed, based on the satisfaction of the Euler-
Lagrange, and equated to zero yields,

λu− β (uxx + uyy) = λg − β
(
vxx + vyy

)
(2.4.5)

which finally simplifies into,(
λI − β∇2

)
u = −β∇.v + λg (2.4.6)

where∇2 is the discrete Laplacian matrix, and I is the identity matrix.
Remember, our goal is to solve the screened Poisson equation corresponding

to solving for u(k+1) using an iterative linear solver. Such solvers are suited for
problems of the form Ax = b, of which Eq. 2.4.6 can be modeled as such, with:

A =
(
λI − β∇2

)
,

x = u,

b = −β∇.v + λg

Hence, we can now use multigrid and conjugate gradient methods to solve for a
solution u, which is the smoothed output. We henceforth experimentally performed
our proposed extension of image smoothing by two distinct procedures:

1. Calculate shrinkage operator v based on [1], using Eq. 2.2.12.

2. Implement image smoothing problem in Eq. 2.4.6 by multigrid and (precon-
ditioned) conjugate gradient iterative method. We apply various precondi-
tioners, of which are reviewed in detail in Sec. 2.3.2.

The proposed smoothing algorithm is summarized in Alg. 12.
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Algorithm 12 Proposed Smoothing Implementation
Data: Input image g, parameters λ, β and
convergence stopping criteria ε.
Result: Smoothed image u.
Step 1: Calculate gradient field v,
use it to compute b = λg − β∇ · v and store.
Step 2: Calculate A = λI − β∇2 and store it.
Step 3:
while (!convergence) do

Solve Ax = b using iterative method.
end while
Solution u = x

2.4.2 Boundary Processing

In some existing smoothing algorithms, especially implementations utilizing FFT
solvers, boundary processing results in wrap-around errors in the resulting smooth-
ing output in applications requiring higher smoothing strength. One of the justifica-
tions of utilizing spatial methods is the freedom to model boundary conditions better
than in frequency domain methods. In FFT solvers, wrap-around errors occur along
image boundaries due to the periodicity implied by the discrete Fourier transforma-
tion. To avoid wrap-around errors, one of the solutions is to introduce padding along
the boundaries. However, this increased the processing time and memory require-
ment. In our approach, we manipulate the Laplacian operator in-order to eliminate
wrap-around errors without increasing complexity.

The Laplacian operator we use in this paper is the following 5 point 3×3 kernel
in the form of 2-D convolution, 0 1 0

1 −4 1
0 1 0

 . (2.4.7)

Here, we assume that f(x, y) is a pixel of position (x, y) in an image of sizeM×N ,
which means that x and y must be 0, 1, . . . ,M−1 and 0, 1, . . . , N−1, respectively.
To process the image boundaries, we need to define f(x, y) for x < 0, x ≥ M ,
y < 0, and y ≥ N . When we define,

• f(−1, y) = f(M − 1, y),

• f(M, y) = f(0, y),
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• f(x,−1) = f(x,N − 1), and

• f(x,N) = f(x, 0),

this kernel can be represented simply in a matrix notation form by the following,
assuming that input image is 3× 3

−4 1 1 1 0 0 1 0 0
1 −4 1 0 1 0 0 1 0
1 1 −4 0 0 1 0 0 1
1 0 0 −4 1 1 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 1 1 −4 1 0 1
1 0 0 1 0 0 −4 1 1
0 1 0 0 1 0 1 −4 1
0 0 1 0 0 1 1 1 −4


, (2.4.8)

If opposite boundaries are assumed to be continous and the above matrix is used
as the Laplacian operator, wrap-around errors occur similar to the processing in
frequency domain. Therefore, we consider the following image boundary contraint
to avoid boundary connectivity violations

• f(−1, y) = f(0, y),

• f(M, y) = f(M − 1, y),

• f(x,−1) = f(x, 0), and

• f(x,N) = f(x,N − 1).

In this case, the Laplacian operator can be represented in the following form assum-
ing that input image is 3× 3,

−4 2 0 2 0 0 0 0 0
1 −4 1 0 2 0 0 0 0
0 2 −4 0 0 2 0 0 0
1 0 0 −4 2 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 2 −4 1 0 1
0 0 0 2 0 0 −4 2 0
0 0 0 0 2 0 1 −4 1
0 0 0 0 0 2 0 2 −4


. (2.4.9)
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Now apart from our test case representation for the sake of easier understanding, in
general the size of the Laplacian operator matrix is MN ×MN , where M and N
are the dimensions of the input image. For example, in the case of an input image of
size 1920×1080, the Laplacian operator is approximately 2Mega×2Mega (i.e,4T
elements). It should be noted that this matrix is sparse, where there are at most five
non-zero values in each row. Therefore, this does not have a significant impact of
storage.
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2.5 Implementation
In this section we investigate and compare the performance of the image smoothing
algorithm using various spatial iterative methods. Furthermore, we present the ef-
fect of boundary processing choice on the smoothed result. We also present key op-
timization techniques tailored towards constant input resolution streams (e.g video
inputs), taking advantage of pre-calculation and storage of computational costly
components to further reduce processing time.

2.5.1 Multigrid
Algebraic multigrid method (AMG) is a general form of multigrid, which solely
derives required information from the coefficient matrixA, as opposed to geometric
multigrid.

We present experimental results based on v-cycle implementation for both non-
preconditioned and preconditioned algebraic multigrid. Gauss-Seidel was used as
the smoother to remove high frequency errors easily. Gauss-Seidel was preferred to
Jacobi method as it has a superior convergence rate, as discussed in Sec. 2.3.2.

In the case of preconditioning, CG method was used as a preconditioner. Fig. 2.10
shows experimental results obtained by performing image smoothing by AMG with
and without applying a preconditioner, with a stopping criteria of tolerance ε =
10−6, which was as default. At this stage, every other parameter was kept constant.

Note that we tweaked this iterative method by first observing performance changes
produced by each individual parameter, henceforth combining individual optimiza-
tion to get the overall optimal conditions for image smoothing.

As it can be noted from Fig. 2.10, applying a preconditioner does improve the
convergence rate of AMG, which conforms to the expectations of preconditioning
as discussed in Chapter 2.3.2. Performing smoothing with a preconditioner on a
full HD image(1920×1080 = 2.07 megapixels) may be an improvement compared
to AMG without preconditioning, however, the processing time taken of 130 secs
would not be practical for time sensitive applications. Hence, further optimization
was performed to improve performance of AMG.
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Figure 2.10: Result of algebraic multigrid method (AMG). Resolution vs time.

As we are dealing with a multigrid method, for further optimization we ran test
to determine the optimal number of grids, ensuring removal of unnecessary grid
computations. Our test image was a 256×256 RGB image. Table 2.1 illustrates
the optimal number of grids and the associated processing time. From this, we
notice that only 6 grid levels are necessary, with an optimal processing time of 0.66
seconds.

In image smoothing applications, in which details are not a priority but the fi-
delity of the overall structure(edges), we can relax the tolerance condition in a bid
to further optimize this iterative method. Tolerance basically implies how strict
we set conditions for convergence. This means that if the tolerance is small then
the strict conditions are to be satisfied in order to reach convergence, while a large
value of tolerance relaxes the conditions necessary for convergence. Hence, with
very low values of tolerance an exact solution can be achieved, as in the case of
FFT. However, not all applications, such as image smoothing require an exact so-
lution. Hence, we can relax tolerance in AMG to tailor it to our image smoothing
application, in a bid to attain further computationa l cost optimization.

Figures 2.11 and 2.12 depict the effect of tolerance on convergence rate, and the
PSNR with reference to default tolerance ε = 10−6, respectively. From Fig. 2.11, it
can be noted that relaxing the tolerance leads to a reduction in the overall processing
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Table 2.1: Preconditioned AMG coarsening level vs processing time (tolerance:
ε = 10−6, image size: 256×256).

Coarsest Number of grids Processing time (sec)
128×128 2 1.78
64×64 3 1.26
32×32 4 0.76
16×16 5 0.69
8×8 6 0.66
4×4 7 0.66
2×2 8 0.66

time.

From experimenting with various image resolutions,it was noted that high toler-
ance levels of 10−2 and 10−1 affect the output smoothing quality of higher resolution
images more than low resolution images. Hence, we applied two different tolerance
thresholds between low resolution and high resolution images. For low resolution
images, we had a higher degree of freedom in that even a tolerance of 10−1 was
sufficient for image smoothing, while a tolerance of 10−3 is sufficient.

Table 2.2: Optimized AMG for smoothing application

Resolution Non-optimized Optimized PSNR
(Mpixel) (sec) (sec) (dB)

0.05 1.8 0.45 84
0.21 9.0 1.62 85.1
0.50 22.5 4.02 106.3
0.70 39.6 5.55 113.4
1.02 64.8 8.22 108.9
1.92 142.3 15.88 109.5
2.07 185.7 17.18 112.3

Finally, by applying various optimization tweaks to AMG method, we obtained
results given in Table 2.2. We can see a great improvement has been achieved
through applying a preconditioner, grid and tolerance optimization, with computa-
tion time reducing from 185.7 secs to 17.18 secs in the case of a full HD image.
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Figure 2.11: AMG: Tolerance vs processing time.
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Figure 2.12: AMG: Tolerance vs PSNR.

2.5.2 Conjugate Gradient

Conjugate gradient method (CG) is a Krylov space iterative method. There are
many variants, some of which are application specific. We performed image smooth-
ing by conjugate gradient method, incomplete Cholesky factorization precondi-
tioned conjugate gradient (ICCG) and multigrid preconditioned conjugate gradient
method (MGCG).

Figure 2.13 shows the performance of non-preconditioned conjugate gradient
method for various resolutions and tolerance values. Image smoothing using con-
jugate gradient has a relatively linear characteristic in relation to image resolution
verse computational cost, as can be seen.

By relaxing the tolerance, convergence rate was improved linearly across all the
used image resolutions. For images having resolutions lower than 1.5 megapixel, a
tolerance level as low as 10−1 was sufficient for image smoothing purpose. How-
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Figure 2.13: Result of conjugate gradient method (CG). Resolution vs time.

ever, images with resolutions equal or above 1.5 megapixels required a stricter
threshold of 10−3 in order to sufficiently perform smoothing. Figure 2.14 depicts a
better understanding of the tolerance changes in terms of PSNR, with reference to
the default tolerance result. In image smoothing, a PSNR of 30dB or more repre-
sents an acceptable level of fidelity.

It can be noticed that convergence rate of CG method is more superior to AMG
method. This is so because of the a-orthogonal nature of CG method, hence its
convergence does not slag as a solution is approached.

ICCG
As discussed in Chapt. 2.3.2, introducing a preconditioner to a problem being solved
by spatial iterative methods improves the conditioning. Hence, in order to improve
the condition number of the coefficient matrix A, thereby clustering the eigen val-
ues, we first introduced an incomplete Cholesky factorization preconditioner into
CG method. This is collectively referred to as ICCG.

Figure 2.15 shows the performance of image smoothing by ICCG, for various
image resolutions. As in case of the previous experiments, tolerance was relaxed
in order to obtain optimal conditions sufficient for image smoothing. As supported
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Figure 2.14: Result of conjugate gradient method (CG). Resolution vs PSNR.

by Sec. 2.3.2, applying IC preconditioner greatly improved the performance of CG.
For a full HD image smoothing process, the computational time was reduced from
17.1 to 8.8 secs at a strict default tolerance of ε = 10−6.

2.5.3 MGCG
We further went on to incorporate multigrid as a preconditioner, yielding results
shown in Fig. 2.16. We applied two-grid, v-cycle multigrid method, relaxing the
problem once per CG iteration. Clearly far more superior results were obtained,
with the computation time reducing from 17.1 to 4.4 secs for a full HD image at
default tolerance ε = 10−6, compared to non-preconditioned CG. Hence by com-
bining robustness of MG method with a-orthogonal properties of CG, MGCG has
proven to effectively perform image smoothing with a reduced computational time.

56



CHAPTER 2. IMAGE SMOOTHING 2.5. IMPLEMENTATION

0

1

2

3

4

5

6

7

8

9

0.0 0.5 1.0 1.5 2.0

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

Resolution (M pixel)

ε=10
-6

ε=10
-5

ε=10
-4

ε=10
-3

ε=10
-2

ε=10
-1

Figure 2.15: Result of incomplete Cholesky factorization preconditioned conjugate
gradient method (ICCG). Resolution vs processing time.
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Figure 2.16: Result of multigrid preconditioned conjugate gradient method
(MGCG). Resolution vs processing time.
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2.5.4 Evaluation
In this subsection, we evaluate the performance of our proposed approach against
frequency domain algorithms and existing state-of-the-art smoothing techniques
such as [16, 31, 40, 70, 71]. All experiments shown in this section were performed
on Intel Core i7 CPU @3.4 MHz.
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Figure 2.17: Performance comparison

Figure 2.17 illustrates the computation cost of both spatial iterative methods and
FFT solvers. For the iterative solvers, the outlined results were taken at tolerance of
10−2, yielding acceptable results. It can be seen that FFT and MGCG at the spec-
ified condition are very closely competitive in terms of computation time without
compromising quality. In applications involving image smoothing that do not re-
quire a strict tolerance criteria, such as 10−1, MGCG converges faster than FFT in
such cases, hence being scalable to tailor for an application.

Table 2.3 shows simulation results obtained at various input resolutions, also
comparing our approach with existing state-of-the-art smoothing techniques. Fig-
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ures 2.24 to 2.31 show visual output of our proposed approach against other existing
methods. These results show that our approach not only presents a good balance

Table 2.3: Processing time (secs) comparision of our proposed approach with exist-
ing algorithms.

Method/Resolution 0.05M 0.21M 0.5M 0.7M 1.02M 1.92M 2.07M
FastGlobal [16] 0.026 0.028 0.032 0.044 0.061 0.144 0.169
Bilateral [40] 0.097 0.109 0.106 0.139 0.162 0.232 0.254

TreeFiltering [71] 0.149 0.166 0.197 0.246 0.310 0.760 0.838
Proposed 0.176 0.196 0.242 0.289 0.378 0.771 0.850

Non linear [70] 0.245 0.398 0.468 0.585 0.735 1.431 1.611
Lo Gradient [3] 1.065 0.980 1.539 1.708 2.243 4.101 5.596

WLS Filtering [31] 1.616 1.797 2.229 2.694 3.981 6.531 6.748
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Figure 2.18: Processing time comparison using data in Table 2.3

between complexity and quality, but also presents a compatitive approach with more
flexibility and scalability depending on the application requirements and resources
available.

Boundary processing
We present the results and compare boundary performance between existing FFT
smoothing algorithms and our proposed approach. Figure 2.19:(a), (b) and (c)
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show the input image, and smoothing outputs obtained from existing algorithms
and our approach, respectively. Our boundary conditions implemented are modeled
in Section 2.4. In the case of FFT implementations, it can be seen that so-called
wrap-around errors occur along the image boundaries due to the periodicity implied
by frequency domain processing. In applications requiring the smoothing strength
to be relatively great, these undesired artifacts are more predominant. This wrap-

((a)) Input. ((b)) FFT. ((c)) Proposed.

Figure 2.19: Image smoothing boundary processing results. The input image is
obtained from publicdomainpictures.net (image 8363),

around error can be suppressed using padding. However, this increases the image
size significantly in order to completely remove these artifacts, thereby impacting
performance. In our proposed approach, padding is not necessary as we enforce
better boundary conditions mathematically when generating the Laplacian operator
matrix.

In the following subsections, we outline two optimization techniques. One is
suitable for constant input resolution feeds and the other for low processing and
memory hardware.

Flow Optimization
In this subsection, we present application specific optimization. In applications
which have a constant input resolution stream such as in the case of video process-
ing, further processing optimization is possible. Taking advantage of spatial do-
main processing and identifying that calculating λI − β∇2 of the smoothing prob-
lem (λI − β∇2)u = −β∇.v + λg only depends on the input’s resolution (size),
this computational costly stage can be pre-calculated and stored in memory. Be-
ing sparse, the memory storage required is almost trivial. Hence, by applying the
flow optimization shown in Fig. 2.20, we achieve a performance improvement of
approximately 46% over existing smoothing algorithms considered in this thesis.
This alteration does not affect the smoothing quality as shown in Fig. 2.22.
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Figure 2.20: Flow optimization chart.

Scaling Optimization

As can be observed from the results, the presented image smoothing implementa-
tions possess a relatively linear relationship between input resolution and processing
time. This implies that larger image resolutions require more time to be processed.

With this, we decided to incorporate image scaling algorithms into the image
smoothing algorithm to support lightweight hardware with low processing power
and memory. By image scaling, we simply mean the acceptable reduction in image
resolution, on which image smoothing is applied, with finally interpolating the re-
sult to the original resolution and performing similarity control. This is illustrated
in Fig. 2.23.

Such an implementation results in a trade-off between image smoothing qual-
ity and computational time. Hence, it should be noted that using complex scaling
algorithms do thrive to maintain the smoothing quality, but may not provide much
advantage in terms of computation cost, as their complexity affects overall process-
ing time. On the other hand, simple scaling algorithms are cheaper to implement at
the cost of quality. Therefore, including image scaling in image smoothing has its
pros and cons, which can be exploited depending on an application and hardware.

Figures 2.21 and 2.22 summarizes the processing time performance gain and
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Figure 2.21: Computation time benefit of flow and scaling optimization techniques

smoothing quality of the two optimization techniques compared with the base pro-
posed algorithm, respectively.
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Figure 2.22: Smoothing quality of optimization techniques

Downscaling

Upscaling

SmoothingPost-processing

Final smoothed output

Figure 2.23: Scaling optimization flow chart
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.24: Smoothing simulation results. Image from publicdomainpictures.net (image
3421)
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.25: Smoothing simulation results
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.26: Smoothing simulation results. image from internet
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.27: Smoothing simulation results
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.28: Smoothing simulation results
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.29: Smoothing simulation results. image from internet
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.30: Smoothing simulation results. image from internet
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((a)) Input ((b)) [16]

((c)) [40] ((d)) [70]

((e)) [71] ((f)) [31]

((g)) [3] ((h)) Proposed

Figure 2.31: Smoothing simulation results. image from internet
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2.6 Conclusion
We successfully implemented image smoothing using spatial iterative methods. It
is observed that MGCG has superior performance among the iterative solvers meth-
ods demonstrated in the experiments. When applied to a full HD image, MGCG
converged in 3.4 secs, while ICCG in 5.7 secs and CG in 9 secs. Both qualita-
tive and quantitative analysis show that our approach provides a good balance be-
tween complexity and quality compared with existing algorithms. Furthermore, We
investigated two implementation optimization techniques to further accelerate our
proposed method.

The first was using image downsampling in order to reduce the resolution re-
quired to processing in smoothing algorithm. By utilizing downsampling, we man-
aged to reduce the processing time by approximately 21.6 %. In addition to pro-
cessing time reduction, the use of downsampled images on which to perform image
smoothing reduces the memory requirement. However, a trade-off between pro-
cessing time and smoothing quality is introduced. By using simple downsampling
algorithms, processing time advantage is gain at the expense of smoothing qual-
ity. This optimization is suitable for low processing power and memory hardware
applications.

The second approach involved the pre-calculation and storage of the computa-
tionally costly Laplacian operator matrix, which depends only on the resolution of
the input.By pre-calculating and storing this operator only once, inputing images
having the same resolution results in a processing time reduction of approximately
46.1 %. This optimization is suitable for same resolution input streams, extending
its application to video processing.

Iterative solvers provide the user greater degree of flexibility, as various compo-
nents which affect processing time can be tweaked to achieve an application specific
desired outcome. It can be concluded that iterative methods are scalable and flexi-
ble.

Finally, our approach includes image boundary constraint which prevents intro-
duction of wrap around errors which are inherent to FFT smoothing implementa-
tions under extreme smoothing conditions.
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Chapter 3

Retinex-based Enhancement and
Haze Removal with FPGA
Implementation

3.1 Introduction

Digital image and video processing plays an essential role in modern day consumer
electronics, with the increasing demand in digital media driven by current social
trends. With continued advancement in digital imaging applications, real-time im-
age (video) enhancement and haze removal are among key research topics influenc-
ing consumer electronics.

Image enhancement schemes can be categorized into two groups; adaptive and
non-adaptive schemes. Non-adaptive schemes compensate each pixel value uni-
formly based on given equations [72], while adaptive schemes refer surrounding
pixels to reproduce a high quality image. Retinex theory [73] [74] is a well-known
adaptive image enhancement scheme, its variant which we shall consider in this
paper. Haze removal methods can be categorized as; single and multiple image
schemes. Single-image schemes are more popular, requiring less overhead.

The quality of images and video taken from outdoor scenes is influenced by
scattering of light which occurs before reaching the camera sensor. The amount of
scattering depends on the distance between the scene points and the sensor, mak-
ing degradation spatial-variant [75]. In haze (fog) weather, an elevated presence of
atmospheric particles such as water-droplets results in more scattering, resulting in
low contrast and color fidelity images. Scattering is caused by two basic phenom-
ena, which are attenuation and airlight. According to [75, 76], haze removal de-
pends upon the unknown depth information. This particularly makes haze removal
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a challenging task. Numerous haze removal methods have been proposed [77–83]
in recent years with significant advancements. Most dehazing methods use a variety
of visual cues to capture deterministic and statistical properties of haze images [84].
Haze removal is highly desired in computer vision applications. It not only serves
to significantly increase the visibility of the scene and correct the color shift, it can
also benefit many vision algorithms and advanced image editing.

Both Retinex-based image enhancement and haze removal are computation costly.
Considering real-time processing in applications such as monitoring systems, au-
tonomous cars, and live streaming systems, there still remains much room for the
development of efficient hardware implementation of image enhancement and haze
removal. Motivate by this, in this paper we propose an architecture supporting both
real-time Retinex-based image enhancement and haze removal, at low memory and
process overhead utilizing a single module.

Our proposed implementation and architecture efficiently supports both Retinex-
based image enhancement and haze removal. Efficiently leveraging the similarity
between Retinex-based image enhancement and haze removal, and modifying the
process, we present a novel architecture optimized for both processes at low over-
head cost.
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3.2 Related Works

Various researchers have proposed algorithms to address image enhancement and
haze removal, commonly independent of each other. Considering Retinex based im-
age enhancement, Shen and Hwang [85] presented a color image processing using a
robust envelope to improve the visual appearance of an image. Guo et al. [86] intro-
duced a visibility restoration method for a single image using Retinex algorithm on
luminance component, while Fattal [87] presented a novel transmission estimation
method to increase scene visibility and recover haze-free image. Marsi and Gio-
vanni [88] proposed and FPGA implementation for illuminance-reflectance video
enhancement in a single module. In Shiau et al. [89], hardware implementation of
haze removal is presented. They, [89], proposed an 11-stage pipelined hardware
architecture. However, these existing algorithms highlighted require high memory
and computation, more so at higher resolutions. Furthermore, most of these algo-
rithms are optimized for either enhancement or haze removal only.

Furthermore, Ren, Wenqi, et al. [84] proposed a multi-scale convolutional neu-
ral network dehazing method. In this proposal, a holistic prediction of the trans-
mission map using a dataset trained neural network is utilized. In this case training
is required in order to learn mapping, which is a complex task. In [90], an end-to-
end image dehazing method called Densely Connected Pyramid Dehazing Network
(DCPDN) is proposed. This jointly learns the transmission map, atmospheric light
and dehazing all together by directly embedding the atmospheric scattering model
into the network. By this, the method follows the physics-driven scattering model
for dehazing. Dataset training is required in this implementation as is in [84].

Galdran, Adrian, et al. [91] presents a dual relationship between image dehazing
and non-uniform illumination separation, applying Retinex operation on an inverted
image followed by another image inversion in order to obtain a dehazed output. It is
generally concluded that Retinex and dehazing can be connected by a simple linear
relationship. The outcome of this was to demonstrate the general usability of exist-
ing Retinex implementations for haze removal based on a simple linear relationship,
not to provide output performance gain over existing approaches.

75



3.2. RELATED WORKS
CHAPTER 3. RETINEX-BASED ENHANCEMENT AND HAZE REMOVAL

WITH FPGA IMPLEMENTATION

3.2.1 Single Image Dehazing via Multi-Scale Convolutional Neu-
ral Networks

Ren et al. [84] proposes a multi-scale deep neural network for single-image dehaz-
ing by learning the mapping between hazy images and their corresponding transmis-
sion maps. The proposed algorithm consists of a coarse-scale net which predicts a
holistic transmission map based on the entire image, and a fine-scale net which re-
fines results locally. This technique requires dataset training, as neural networks are
utilized in order to achieve haze removal.

For each scene, the transmission map t(x) is estimated based on a multi-scale
convolutional neural network (MCNN). The coarse structure of the scene transmis-
sion map for each image is obtained from the coarse-scale network, and then refined
by the fine-scale network. Both coarse and fine scale networks are applied to the
original input hazy image. The output of the coarse network is passed to the fine
network as additional information, hence refining the coarse prediction with details.

In order to learn the mapping between hazy images and corresponding trans-
mission maps, minimizing the loss between the reconstructed transmission ti(x)
and the corresponding ground truth map t∗i (x) is performed by

L (ti(x), t∗i (x)) =
1

q

q∑
i=1

||ti(x)− t∗i (x)||2 (3.2.1)

where q is the number of hazy images in the training set. Equation 3.2.1 is mini-
mized using stochastic gradient descent method with the backpropagation learning
rule.

The atmospheric light, A, is estimated by selecting 0.1% darkest pixels in a
transmission map t(x). After computing t(x) and A, the final scene radiance J(x)
is recovered by

J(x) =
I(x)− A

max{0.1, t(x)}
+ A (3.2.2)

3.2.2 On the Duality Between Retinex and Image Dehazing
In the work done by Galdran et al. [91], the basic relationship between Retinex en-
hancement and haze removal is investigated. While image enhancement and haze
removal are two apparently unrelated problems, their goal is to show that they can be
connected by a simple linear relationship. They present theoretic proof that Retinex
on inverted intensities is a solution to image dehazing problem. This is based on
an observation that most Retinex-based algorithms have the characteristic feature
of always increasing image brightness, which turns them into ideal candidates for
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effective image dehazing by directly applying Retinex to a hazy image whose in-
tensities have been inverted.

Their main contribution is a formal proof of the following direct relationship
between Retinex and haze removal:

Dehazing(I) = 1− Retinex(1− I) (3.2.3)

According to this research, existing Retinex-based algorithms can be adopted to de-
haze images directly by incorporating two intensity-inversion operations, without
modifying Retinex-based algorithms. It should be noted that the goal of this work is
not to produce results largely improving those of haze removal state-of-the-art algo-
rithms, but to demonstrate the general usability of existing Retinex implementations
for the task of haze removal. Furthermore, the presented simple linear relationship
between Retinex and haze removal does not take atmospheric light, A, into account
as this results in a more complex problem. Hence, the output results by ignoring A
lead to a disparate color recovery in different images.
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3.3 Preliminary

3.3.1 Retinex-based Image Enhancement

The Retinex theory [92] deals with compensation for illumination effects in images.
This introduces the lightness and color perception of the human visual system, and
is based on the property of the color constancy phenomenon, in that humans can
recognize and match colors under a wide range of different illuminations. This
theory decomposes an input image I(x) into two different images, defined by

I(x) = L(x)J(x), (3.3.1)

where L(x) and J(x) is the illumination image and reflectance image, repectively.
The benefits of such decomposition include the possibility of removing illumination
effects, enhancing image edges, and correcting the colors in images by removing
illumination induced color shifts [86].

Image enhancement can be achieved by extracting L(x) from I(x) in order to
generate J(x), as an illumination-independent image. The logarithmic expression
of the reflectance image J(x) can be expressed by

J(x) =
I(x)

L(x)
,

j(x) = i(x)− l(x). (3.3.2)

where i = log I , l = logL, and j = log J . Fig. 3.1 highlights the general flow chart
of Retinex-based algorithms.

Several illumination models are proposed so far based on Retinex theory, such
as Path-based [73], Center/Surround based [74] and Variational model [93], just
to mention a few. Path-based algorithms are the primary methods in Retinex the-
ory [92], having high computation complexity with a need for too many parame-
ters [73]. The initial implementation relied on stochastic theory, with subsequent
research utilizing multi-resolution image pyramids [94] [95].
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Center/Surround algorithms are based on assumption that the illumination com-
ponent tends to vary smoothly, while reflectance changes at sharp edges [74]. There-
fore the output relectance values can be obtained by subtracting a blurred given
image [96]. Center/surround algorithms, including SSR (single scale Retinex) and
MSR (multiscale Retinex) [97] are easily implemented but require a large number
of parameters.

Path and center based models are easily implemented but require a large number
of parameters. Hence, these were not considered in our FPGA implementation as
the require more memory and computation resources than proposed.

The variational model [93](Kimmel’s variational model), assumes spatial smooth-
ness of the illumination field. In addition, knowledge of the limited dynamic range
of the reflectance is used as a constraint in the recovery process [96]. A modifica-
tion of this variant was implemented in this paper, recognizing variational model as
one of the most suitable models for practical applications in terms of computational
cost and image quality, suitable for our real-time FPGA architecture [2].

The variational model algorithm is constructed to minimize the following penalty
function,

F [l] =

∫
Ω

(
|∇l|2 + α(i− l)2 + β|∇(i− l)|2

)
dx, (3.3.3)

where α and β are weight parameters, i and l represent the logarithmic expression of
input image I and illumination image L, respectively. Penalty terms, |∇l|2, (i− l)2,
and |∇(i − l)|2 represent spatial smoothness of the illumination image, closeness
between l and i, and spatial smoothness of the reflectance image j, respectively.
The illumination image l which minimizes the penalty F [l] is iteratively calculated
using a projected normalized steepest descent algorithm.

Fig. 3.1 illustrates the flow of the Retinex image enhancement with illumination
correction.

New
illumination
L’

Illumination
L

Image enhancement
Input
I

Refrectance
J

Enhanced
image J’

Illumination
estimation Refrectance

image gen.

correction
Gamma

Figure 3.1: The flow of the Retinex image enhancement

By utilizing such adaptive image enhancement methods, halo artifacts are ob-
served in the enhanced images. These are caused because such methods utilize the
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constraint that the illumination image should be spatially smooth. When the illumi-
nation is estimated in the regions around the edge with this constraint, these regions
in reflectance image tend to be either over-enhanced or insufficiently enhanced.
Hence there are two types of halo artifacts; positive and negative. In the variational
model, positive halo artifacts are successfully suppressed using a constraint i ≤ l in
iterative calculation while leaving negative halo artifacts present [98]. Various halo
effect suppression techniques have been investigated in [85,88], which however are
computation costly. In [98] we proposed a halo artifacts reduction method, with a
small area overhead.

3.3.2 Haze Removal
The haze image model [82, 87, 99, 100], which consists of direct attenuation model
and airlight model is generally expressed by,

I(x) = J(x)T (x) + A(1− T (x)), (3.3.4)

where I is the observed luminance representing the input haze image, J is the scene
radiance representing the restored haze-free image, T is the medium transmission
describing the portion of the light that is not scattered and reaches the camera, and
A is the global atmospheric light. The goal of haze removal is to recover J from I
using estimated T and A by,

J(x) =
I(x)− A
T (x)

+ A, (3.3.5)

In general, T and A are estimated using dark channel prior [75]. The dark
channel prior is a kind of statistics of the haze-free outdoor images. It is based
on an observation that most local patches in the haze-free outdoor images contain
some pixels which have very low intensities in at least one color channel. Hence the
minimum intensity in such a patch should have a very low value. In [75], the dark
channel of an arbitrary image J is defined as

Jdark(x) = min
y∈Ω(x)

(
min

c∈{R,G,B}
J c(y)

)
, (3.3.6)

where J c is the color channel of J comprising of RGB components, and Ω(x)
depicts a local patch centered at x. The low intensity of the dark channels is due to
shadows, colorful objects or surfaces and dark objects in images. According to the
observation in [75], if J is a haze-free outdoor image, the intensity of Jdark is low
and tends to be zero except for the sky region in an image. Due to additive airlight,
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a haze image is brighter than its haze-free version. Hence the dark channel of the
haze image will have higher intensity in regions with denser haze. Therefore, the
intensity of the dark channel is a rought approximation of the thickness of the haze.

In [75], the transmission T is determined using soft matting. However, this
approach requires a high computation cost. Motivated by this, some approaches use
edge-preserving smoothing such as bilateral filters for estimating T with reasonable
processing cost [101]. In our approach, we use edge-preserving smoothing based on
the cost minimization function in Eq. (3.3.3) and [102] to generate the transmission
T instead of soft matting. Hence, in a complimentary approach, we use Retinex-
based image enhancement to suppliment haze removal at a low overhead resource
cost.
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3.4 Proposed Architecture
The block diagram of our proposed FPGA architecture is shown in Fig. 3.2 and
Fig. 3.5. The logic of this architecture is shown in Fig. 3.3. This architecture
accommodates both Retinex-based enhancement and haze removal using a single
module, with a low overhead resource cost as opposed to using separate modules.

This architecture consists of three parts (Figs. 3.2 and 3.3); (1) Gaussian pyra-
mid generation part, (2) illumination/transmission estimation part, and (3) image
enhancement/haze-removal part.

We utilize Gaussian pyramid downsampling in order to realize low block mem-
ory size hardware requirement. Considering spatial smoothness characteristic of the
illumination field, the effects of downsampling are tolerable.

Downsampling
w/RGB to s conversion

Calc
illumination

Image
enhancement

Illumination 

estimation

Image enhancement

using illumination image

DVI in DVI outFrame t+2 Frame t+1 Frame t

Frame t+2

Gaussian pyramid

generation
SRAM_s SRAM_l

Figure 3.2: The block diagram of the proposed architecture [2].

Layer0:

Input image’s resulotion

Layer1
Layer3

Layer2

Layer4
Layer5

Figure 3.3: Layer hierarchy for illumination estimation.

Illumination and transmission estimation are performed on layers 5, 4, and 3
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of Fig. 3.3, enabling accelerated iterations with low memory requirements. Fig-
ure 3.3 illustrates the scaling relationship between successive downsampled image
layers, which are used as iterative inputs in the estimation process. Therefore by
downsampling, the size of the buffers required are significantly reduced since the
size of layers 3, 4 and 5 are 1/64, 1/256 and 1/1024 of the resolution of the input
image, respectively. The adaptation of Gaussian in our approach presents a compu-
tational efficient approximation, especially for FPGA. The use of double buffering
in Fig. 3.5 prevents memory access conflict. The original resolution is reconstructed
using bicubic interpolation. In order to combat blur effect inherent to bicubic inter-
polation, we implement the constraint i ≤ l. Fig. 3.4 illustrates blur edge handling
by this constraint.

 Input i illumination l Edges on layer 3 Edges on layer 0

r = l - i

Figure 3.4: Edge preservation using constraint i ≤ l

In Fig. 3.5, showing the illumination and transmission estimation module of
Fig. 3.2, we have the following:

GA(x, y) = ∇l(k)
j−1(x, y),

GB(x, y) = ∇s(k)(x, y),

µA =
∑
x

∑
y

G(x, y)2,

µB = −
∑
x

∑
y

G(x, y)∇G(x, y),

µNSD =
µA
αµA

+ (1 + β)µA,

G(x, y) = −GA(x, y) +

α
(
l
(k)
j−1(x, y)− s(k)(x, y)

)
+

β (GA(x, y)−GB(x, y)) (3.4.1)

where k is the layer number, j the iteration index is j = 1, 2, ..., Tk and s represents
decimated image. The illumination/ transmission estimation is given by,

l
(k)
j = max

(
l
(k)
j−1(x, y)− µNSDG(x, y), s(k)(x, y)

)
(3.4.2)
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SRAM_s

calc_uNSD

update_l
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uNSD
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calc GB
calc G

Calc illumination

Figure 3.5: Expanded view of Illumination and transmission estimation module

This module has a throughput of 1 pixel/cycle, achieved by utilizing line buffers for
laplacian calculation, and double buffering of SRAM I.

The components of our proposed architecture work in a pipeline manner, each
component processing its corresponding frame. In this paper we do not utilize an
external frame buffer to storing input frames temporally. To compensate for this, we
leverage the close similarity characteristic of consecutive frames enabling estima-
tion component reuse. As shown in the Fig. 3.2, an input frame t+2 is enhanced by
using the illumination/ transmission estimated from a preceding frame t, without la-
tency. If an external frame buffer which stores two successive input frames is used,
each input frame can be enhanced with the corresponding estimated illumination
with a latency of two frames delay. Hence, the advantage of our approach, further
aided by our implementation of Gaussian pyramid downsampling, is that no latency
in frame processing is introduced, making real-time processing more feasible.

In the Gaussian pyramid generation part, an RGB image is converted to HSV
colorspace. The V component given by Eq. 3.4.3 is used as the initial estimation of
the illumination image, L.

IV(x) = max
c∈{R,G,B}

Ic, (3.4.3)

Illumination component is estimated iteratively based on Eq. 3.3.3, by using Eq. 3.4.3
as an initial estimate argument. Considering Eq. (3.3.6), calculation of the dark
channel involves minimization over each pixel, over a local patch with transmis-
sion T (x) estimated using Eq. 3.3.3, in conjunction with our previously proposed
minimization technique in [102].

From the definitions of Eqs. (3.3.3) and (3.3.4), we observe the following use-
ful relationships between image enhancement and haze removal, which aid in the

84



CHAPTER 3. RETINEX-BASED ENHANCEMENT AND HAZE REMOVAL
WITH FPGA IMPLEMENTATION 3.4. PROPOSED ARCHITECTURE

FPGA realization at a low overhead resource cost.

i = log (I) , I: input
l = log (L) , L: illumination/transmission
j = log (J) , J : reflectance/haze-free image

where, in the case of image enhancement,

J(x) =
I(x)− A
T (x)

+ A,

j(x) = i(x)− l(x)

J(x) = exp(−l(x)) I(x), (3.4.4)

and, for haze removal,

J(x) =
I(x)− A
T (x)

+ A,

J(x) = exp(−t(x)) (I(x)− A) + A, (3.4.5)

We formulate a generalized equation from Eq. 3.4.5 by replacing t(x) with l(x)
based on our use of image enhancement for transmission estimation, yielding

J(x) = exp(−l(x)) (I(x)− A) + A, (3.4.6)

Here, it should be noted that Eq. (3.4.4) is a special case of Eq. (3.4.6), whereA = 0.
Furthermore, Eqs. 3.4.4 and 3.4.6 are efficiently suitable expression for our FPGA
implementation, as we do not need to perform calculations in logarithmic space.
Hence, this limits the requirement for more hardware resources. This architecture
takes advantage of these similarities between Retinex-based image enhancement
and haze removal, also using Retinex for transmission map estimation instead of
soft matting.

In our setup, users can select any of the following operation modes; i) Retinex-
based enhancement, ii) haze removal, or iii) in combination. In the image enhance-
ment mode, max operation is used in the Gaussian pyramid generation part, andA is
set zero. In the haze removal mode, min operation is used in the Gaussian pyramid
generation part, and A is set by user’s input. In the combined mode, the use of two
parallel in-built circuits is used to perform the max and min initial operations. In
single mode, only either is utilized. In addition, these modes are supported by our
previously proposed smoothing technique [102], accelerated based on predefined
Gaussian pyramid generated downsamples.
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Since it can be regarded that A is relatively stable during many successive
frames, we do not employ any automatic A estimation. An approximation of A,
such as around the maximum value is set manually, based on initial illumination
estimation in Eq. 3.4.3. This is relatively sufficient for our approach. However, it
should be noted that in some real-time applications such as on-board car cameras,
it is necessary to update A regularly using automatic estimation.

Table 3.1: FPGA implementation result (1,920×1,200 and 60 fps)

Retinex-based image enhancement Both image enhancement and haze removal
Family Cyclone V
Device 5CSXFC6D6F31C6

Timing Models Final
Logic utilization (in ALMs) 3,179/41,910 (8 %) 3,213/41,910 (8 %)

Total registers 3,616 3,648
Total block memory bits 2.71 M/5.67 M (48 %) 2.71 M/5.67 M (48 %)

Total RAM Blocks 366/553 (66 %) 366/553 (66 %)
Total DSP Blocks 16/112 (14 %) 16/112 (14 %)
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3.5 Implementation
We implemented the proposed architecture using Intel Cyclone V FPGA, which is
from one of the lowest system cost FPGA series. The operating frequency used was
125 MHz, with a 5.67 M total block memory bit size.

Based on Fig. 3.3, we utilized only layer 5, 4, and 3. Table 3.2 shows the
optimum number of iterations used per layer in order to obtain desirable results
without introducing blur artifacts. Layer 3 is interpolated from layer 4, with layer

Table 3.2: Guassian Pyramid Generation layer size and iterations

Size (of the input resolution) # of Iterations
Layer 5 1/1024 30
Layer 4 1/256 20
Layer 3 1/64 10

4 from layer 5. By this, our FPGA implementation supports frame resolution and
frame-per-second of 1,920×1,200 and 60 fps, respectively.

The implementation results are summarized in Table 3.1. In Table 3.1, it can
be noted that the required number of bits is 2.71 M. This is due to the architecture
utilizing only layer 5, 4, and 3 in Fig. 3.3. The advantages of utilizing these layers
instead of larger resolution layers 0, 1 or 2 are lower block memory and less iterative
complexity, realizing real-time processing at 60 fps.

It was observed that by using layer sizes larger than layer 3, i.e layers 1 and 2,
block memory and bits required increased above 453 and 3.28 M, respectively. This
also resulted in a decrease in frame rate performance to 45 fps, moving away from
our goal of real-time processing at higher frame rate of at least 60 fps, while main-
taining operation at relatively low frequency rate. At a frequency of 240 MHz, with
a capability of processing 4K video at 30 fps, memory access conflict occured un-
predictably. Also taking our hardware memory into consideration, our architecture
choice of not using larger layer sizes resulted in better overall performance.

As can be observed from the Table 3.1, both enhancement and haze removal can
be implemented using one module with an overall 1 % overhead of logics between
single and combined modes, with logic utilization and registers increasing 3179→
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3212 and 3616 → 3648, respectively. The required RAM blocks and memory bits
remain constant in both single and combined modes of operation.

Table 3.3: Software performance comparision

Method Image Size Average runtime (sec)
[87] 1920 x 1200 307.6

[103] 1920 x 1200 124.8
[75] 1920 x 1200 96
[89] 1920 x 1200 1.651
[84] 1920 x 1200 0.182

Proposed 1920 x 1200 0.165

Table 3.4: Quantitative comparision (PSNR)

Method street books peppers tower toys Average
[103] 16.29 16.57 16.59 18.82 12.56 16.17
[75] 20.12 13.52 29.21 19.32 18.46 20.13

[104] [105] 20.01 15.84 26.73 21.88 17.56 20.40
[84] 19.20 23.59 12.66 23.31 11.42 18.04

Proposed 20.40 21.92 24.78 24.44 18.17 21.94

Table 3.5: Quantitative comparision (SSIM)

Method street books peppers tower toys Average
[103] 0.873 0.825 0.858 0.933 0.687 0.835
[75] 0.943 0.881 0.979 0.95 0.809 0.912

[104] [105] 0.943 0.815 0.978 0.972 0.888 0.919
[84] 0.948 0.968 0.790 0.981 0.672 0.872

Proposed 0.898 0.93 0.959 0.98 0.876 0.929

In Figs. 3.7 and 3.8, sample results of our proposed FPGA implementation are
presented. Table 3.3 shows a software performance comparision of our proposed
method with other related methods. Our software implementation was in C++ on
Intel(R) Core(TM) i5 − 4460 CPU @3.20 GHz. Our approach is competitive, with
less simulated processing time. Table 3.6 some hardware performance comparision
results. The referenced related works were tested using input feeds at a resolution
of 600× 400, while our implementation was tested at 1920× 1200.

To futher verify our proposed design, we compared its performance with vari-
ous state-of-the-art dehazing methods. Synthesized hazy images were used, having
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Table 3.6: Hardware performance comparision

Method FPGA Freq. (MHz) buffers Mpixels/s
[89] stratix 58.43 6 58.43

[106] stratix 116 6 116
Proposed Cyclone v 125 6 125

the respective ground truth images. Figure 3.6 presents qualitative results obtained
from our proposed method compared with [103], [75], [104, 105] and [84]. As
can be observed visually, our proposal is competitive in haze removal performance.
The results of Tarel and Hautire [103] have color distortions. The results of Ren
et al. [84] retain some elements of haze under heavy haze conditions. Berman et
al. [104, 105] produces better results compared to [75,84, 103], however with some
visible color shift in certain images. In He et al. [75], the output images are darker
due to the underlaying assumptions used in dark channel prior. Our method, which
is a modification based on [75], does not suffer from this darkening characteristic
while maintaining high color fidelity. In table 3.4, the PSNR values obtained using
the results from Fig. 3.6 are presented. Our method provides an overall better per-
formance based on the average PSNR value of 21.94. Table 3.5 shows the Structural
Similarity metrics (SSIM) using the same dataset presented. Our proposed method
achieves competitive results are highlighted.
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(a) Ground truth (b) haze input (c) [103] (d) [75]

(e) [104] [105] (f) [84] (g) Proposed

Figure 3.6: Results on sythetic haze
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(a) Input I(x). (b) Transmission L(x) (c) Output J(x)

Figure 3.7: Proposed haze removal on natural haze

(a) Input I(x) (b) Illumination L(x) (c) Reflectance J(x)

Figure 3.8: Proposed Retinex image enhancement [2]
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3.6 Conclusion
In this segment, a novel architecture supporting both real-time Retinex-based im-
age enhancement and haze removal is proposed, with emphasis on low memory
requirement and processing complexity. The FPGA implementation results show
that enhancement and haze removal can be implemented using one module, with
1 % logic circuits overhead cost. By utilizing layers 5, 4, and 3 in Fig. 3.3, our pro-
posed architecture supports real-time processing of 1,920×1,200 at 60 fps, under
optimal conditions at 125 MHz frequency. By implementing the constraint i ≤ l,
we were able to preserve edges, which otherwise would have suffered from blur
effect due to interpolation on smoothed components. Furthermore, by not using an
external frame buffer in Fig. 3.2, our proposed FPGA implementation do not suffer
from latency in processing real-time feeds. We also used double buffering to prevent
memory access conflict. Our design proves to be competitive with state-of-the-art
designs, both qualitatively and quantitatively, shown in tables 3.4 and 3.5.
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Chapter 4

Conclusion

4.1 Summary and conclusion

Chapter 1 introduces digital image processing techniques. This also outlines the
objectives of this thesis. We propose a accelerated image smoothing algorithm, and
further investigate and propose real-time FPGA architecture which supports both
Retinex-based enhancement and haze removal using a single module.

Chapter 2 focuses on investigating image smoothing. Image smoothing presents
a complex minimization problem, which can be tackled in frequency or spatial do-
main. Frequency domain based solvers provide a faster computation convergence
compared to spatial domain solvers. However, in certain conditions FFT solvers
introduce wrap around errors about the boundaries of the smoothed image due to
the inherent nature of FFT. Spatial domain solvers provide algorithmic control on
the way image boundaries are handled. This is investigated and presented in Section
2.5. We successfully implemented image smoothing using spatial iterative methods,
with good smoothing quality. It is observed that MGCG has superior performance
among the iterative solvers methods demonstrated in the experiments. When ap-
plied to a full HD image, MGCG converged in 3.4 secs, while ICCG in 5.7 secs, CG
in 9 secs and multigrid in 17.18 secs. Comparing the performance of our proposed
approach with existing algorithms shows that our approach converges in compet-
itive relatively less time while not compromising greatly on smoothing quality as
the case of others. We successfully investigated two implementation optimization
techniques to further accelerate our proposed method.

The first was using image downsampling in order to reduce the resolution re-
quired to processing in smoothing algorithm. By introducing downsampling into
the algorithm, we managed to reduce the processing time by approximately 21.6
%. In addition to processing time reduction, the use of downsampled images on
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which to perform image smoothing reduces the memory requirement. However, a
trade-off between processing time and smoothing quality is introduced. By using
simple downsampling algorithms, processing time advantage is gain at the expense
of smoothing quality. The use of more complex scaling algorithms would improve
the quality with less processing time gain.

The second approach involved the pre-calculation and storage of the compu-
tationally costly Laplacian operator matrix, which depends only on the resolution
of the input. This is applicable to constant resolution input streams, extending its
application to video processing. By pre-calculating and storing this operator only
once, inputing images having the same resolution results in a processing time reduc-
tion of approximately 46.1 %. The choice of which optimization technique depends
on the application parameters and hardware resource availability.

Iterative solvers provide the user greater degree of flexibility, as various compo-
nents which affect processing time can be tweaked to achieve an application specific
desired outcome. It can be concluded that iterative methods are scalable and flexi-
ble.

In Chapter 3, a novel architecture supporting both real-time Retinex-based im-
age enhancement and haze removal is proposed, with emphasis on low memory re-
quirement and processing complexity. The FPGA implementation results show that
enhancement and haze removal can be implemented using one module, with 1 %
logic circuits overhead cost. By utilizing Gaussian pyramid generation, our pro-
posed architecture supports real-time processing of 1,920×1,200 at 60 fps, under
optimal conditions at 125 MHz frequency. At frequency of 240 MHz, our architec-
ture is capable of processing 4K video at 30 fps. By implementing the constraint
i ≤ l, we were able to preserve edges, which otherwise would have suffered from
blur effect due to interpolation on smoothed components. Furthermore, by not using
an external frame buffer in, our proposed FPGA implementation do not suffer from
latency in processing real-time feeds. According to experimental results obtained,
by evaluating PSNR and SSIM, our approach yields better results compared to ex-
isting state-of-the-art algorithms. Comparing hardware performance with existing
architectures, our architecture provides the highest throughput of 125 Mpixels/s,
utilizing 9 line buffers for filtering with a width of 240.

In conclusion, the objectives of our research to investigate and develop an ac-
celerated image smoothing algorithm, and to design an FPGA architecture capable
to support both Retinex-based enhancement and haze removal have been completed
successfully. We have evaluated our designs against existing designs, yielding fa-
vorable quantitative and qualitative results.
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