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We demonstrate bubble generation outside the focus induced by irradiating a focused 

1064-nm continuous-wave laser beam into surface of water and L-phenylalanine H2O 

solution. In the former case of water, bubbles stay at positions distant from the focus during 

the irradiation, and their size and location are controllable by laser power. In the latter 

solution, bubbles move toward the surrounding, and subsequently crystallization takes place 

at the focus. We discuss these behaviors from the viewpoints of temperature elevation 

accompanying the decrease in air solubility as well as of optical trapping of L-phenylalanine 

clusters giving a single crystal. 
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Optical trapping with a tightly focused continuous-wave (cw) laser beam has been 

widely employed as optical tweezers for trapping small objects with the size ranging from 

micrometer to nanometer in solution.1) In the past decade, we have intensively explored 

new optical trapping phenomena in molecular and colloidal solutions at their interface.2–5) 

We succeeded in inducing crystallization of amino acids by irradiating a 1064-nm cw laser 

beam at solution surface.2) Intense laser irradiation into solution surface leads to local 

concentration increase through optical trapping of liquid-like clusters, in which solute and 

solvent molecules are weakly linked, and eventually crystal nucleation takes place at the 

focus. In L-phenylalanine (L-Phe) H2O unsaturated solution, a formed plate-like crystal 

grows continuously under optical trapping, and its two-dimensional growth rate is 

controllable by laser power.3) In optical trapping at surface of colloidal solution, 

polystyrene nanoparticles of 200 nm in diameter form a disk-like assembly that shows 

structural color.4) Furthermore, optical trapping of 500-nm polystyrene nanoparticles at 

glass/solution interface gives a colloidal assembly that expands into non-irradiated area 

with sticking out aligned particles like horns.5) 

Through the systematic study on optical trapping at interface, we accidentally found that 

bubbles are generated outside the focus upon irradiation of the high intensity 1064-nm cw 

laser at solution surface of pure H2O and L-Phe H2O solution. Bubble generation 

phenomena are frequently reported under irradiation of a focused cw laser into 

photo-absorbers.6–13) A single vapor microbubble is generated at the focus, and the 

nanometer-sized objects are attracted to the bubble by the fluidic force. Based on these 

characteristics, the cw-laser induced bubble generation has been applied to manipulation of 

DNA6), crystallization of glycine7), and patterning of quantum-dots8), carbon nanotubes9), 

and micro-particles10). The bubble generation in this Letter is quite different from these 

previous studies. Firstly, multiple bubbles are generated outside the focus. Secondly, 

bubbles appear after a while from the beginning of the irradiation. Thirdly, bubbles are 

stably located at positions distant from the focus, and their location is controllable by 

changing laser power. We show this unique bubble generation dynamics and discuss its 

possible mechanism, which provides important information on laser trapping-induced 

crystallization of amino acids. 

Laser irradiation and optical microscopic observation were carried out with an inverted 
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microscope (supplementary data). Figure 1 shows a series of optical micrographs captured 

with a charge-coupled device (CCD) video camera during laser irradiation at 1.1 W into 

surface of a water thin film of 15 μL. At the beginning, we observed only a small bright 

spot ascribed to light reflection at water surface. At about 120 sec, two circular rings of 20 

μm diameter appeared from lower position of the image (Fig. 1a). The edge of two rings 

gradually became darker and clearer, while they came close to the focus (Fig. 1b). 

Eventually, two rings reached positions 50 μm distant from the focus and stayed there 

stably for subsequent 40 sec. During this period, two rings were located at the almost same 

positions with small fluctuation, and the distance between the centers of the rings and the 

focus was kept nearly constant. It is reasonable to consider that the two rings are bubbles 

because the sample was pure water, namely, no molecule, nano- and micro-particle was 

added, they were prepared only by intense laser irradiation and disappeared upon its 

switching off. Their shape is always spherical, which is ascribed to surface tension. The 

initial optical micrograph giving pale rings implies that bubbles are located outside the 

focal plane. Namely, we infer that bubbles are possibly generated inside the water thin film 

and gradually move up to water surface at which the focus was set. 

At 170 sec, new two bubbles appeared (Fig. 1c). The bubbles moved close to the focus 

with accompanying the change in the contrast, while the initially formed bubbles were 

stably located around the focus. Eventually, the newly generated two bubbles arrived at 

positions 50 μm distant from the focus (Fig. 1d). The video movie of the bubble generation 

is uploaded as supplementary data. It should be noted that the size and the distance from 

the focus was nearly identical among four bubbles during laser irradiation. This steady 

state was kept for more than 1000 sec (Fig. 1e). 

The line profile for one bubble observed at 1205 sec is shown as the inset in the 

corresponding image (Fig. 1e). The bubble size that was defined here as the largest 

diameter of the dark ring was estimated to 26 μm at this time. When laser power was 

decreased down to 0.5 W, four bubbles came close to the focus. The bubbles decreased in 

their size down to 19 μm during their movement and finally arrived at positions 30 μm 

distant from the focus (Fig. 1f). When laser power was increased, the bubbles went away 

from the focus, and their size became larger gradually. At 0.8 W, the bubbles of 23 μm in 

their size stayed at positions 45 μm distant from the focus (Fig. 1g). At 1.1 W, the bubble 
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size and the distance from the focus were estimated to 27 μm and 50 μm, respectively (Fig. 

1h). Thus, the bubble size and the distance from the focus could be controlled by laser 

power. 

Bubbles were always observed after a few minutes from the beginning of the irradiation. 

The number of bubbles was different among samples, and the maximum value was 4 under 

the 1.1-W irradiation in water. The bubbles were kept stably during laser irradiation; 

however, they quickly disappeared after switching off the laser. The bubble disappearance 

dynamics was examined by an electron multiplying CCD (EMCCD) camera synchronized 

with a shutter to cut off the laser. A bubble was observed as a dark circle in the transmission 

image during laser irradiation (Fig. 2a). This is because illumination light is scattered by 

the bubble and intensity of light passing through the bubble becomes weak compared to the 

surrounding solution. The initial bubble diameter just before turning off the laser was about 

15 μm, which was considered to the inner diameter of the dark ring observed in the CCD 

camera. After switching off the laser, the bubble was continuously extended with time, and 

its size attained to 20 μm at 48 msec (Fig. 2b). Then the bubble completely disappeared in 

the image, and its lifetime was estimated to 48 msec. 

In order to discuss the role of temperature elevation under laser irradiation, we examined 

the effect of addition of D2O on the bubble generation. Ito et al. reported that the focused 

1064-nm laser irradiation into H2O elevates temperature in the focal volume through light 

absorption due to overtone of OH vibrational mode.14) The elevation is estimated to 22 

K/Watt. On the other hand, this temperature elevation is suppressed to 2.6 K/Watt in D2O. 

We prepared H2O/D2O mixtures with the D2O volume ratios of 0, 20, and 100% and 

carried out the irradiation experiments for 12 samples at each ratio. The bubble generation 

probabilities in the respective solutions were 83, 66.7, and 0%. The probability became low 

with the increase in the D2O content. Thus, light absorption and subsequent temperature 

elevation are critical for the bubble generation. 

The bubble generation in the L-Phe H2O solution provides important information on 

laser trapping-induced crystallization. In the L-Phe H2O solution with saturation degree of 

0.58, the generation probability was 28.4% (33 samples), in which the total sample number 

was 116. Since the probability in the L-Phe H2O solution was low compared to that in 

water, L-Phe likely has a role for suppressing the bubble generation. Actually, we 
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systematically carried out the experiments under the same irradiation condition in the 

L-Phe H2O solutions with saturation degree of 0.67–0.92; however no bubble generation 

was observed in these higher concentration solutions.3) 

Figure 3 shows a series of optical micrographs of the 80 × 60 μm2 area around the focus 

captured during laser irradiation at 1.1 W into surface of the L-Phe H2O solution. The field 

of view was changed to be small compared to the case of Fig. 1, in order to observe the 

crystallization starting at the focus. Initially, only a small bright spot was observed (Fig. 

3a). Four bubbles appeared from the outside of the image and arrived at positions 40 μm 

distant from the focus (Fig. 3b). The bubbles stably stayed in the almost same positions for 

several tens seconds and then moved away from the focus (Fig. 3c). The bubbles 

completely disappeared from the viewing field, and only the focus was observed again (Fig. 

3d). Further laser irradiation induced nucleation of an L-Phe plate-like crystal (Fig. 3e). 

The crystal grew continuously during laser irradiation while being trapped at the focus (Fig. 

3f). This crystallization behavior was similar to that in the higher concentration solutions.3) 

The bubble movement and subsequent crystallization were observed for 25 samples. In 

these samples, we estimated the time at which the bubbles started moving outwardly 

toward the surrounding. Furthermore, we defined the crystallization time at which a small 

crystal of a few micrometers is identified in a CCD image. The bubbles started moving at 

the time of 182–480 sec (Fig. 4a). On the other hand, the crystallization time was 182–

1253 sec and much different among samples (Fig. 4b). This is possibly ascribed to 

stochastic nature of crystal nucleation, as one single crystal was always observed. In most 

samples, time lag was observed between the bubble movement and the crystallization (Fig. 

4c), while several samples showed the crystallization immediately after the bubbles started 

moving. The remaining 71.6% (83) of the total samples (116) showed only the 

crystallization without the bubble generation. 

Based on the above results, we discuss possible mechanism for the bubble generation 

(Fig. 5). In conventional experiments on cw laser-induced bubble generation,6–13) one 

bubble is formed at the focus where temperature is increased over the boiling point of 

solvent through efficient photo-thermal conversion. Namely, a vapor bubble is formed 

through liquid/gas phase transition. In the present experiments, bubbles are not generated 

at the focus where temperature should be the highest. Furthermore, we estimated that the 
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temperature at the focus is 50 °C,14) which is lower than the boiling point of water. These 

results imply that bubbles in this study are ascribed not to vapor of water molecules but to 

air evaporated from water. 

Air solubility in water is decreased with the elevation of temperature.15) When a 

1064-nm cw laser beam is irradiated into water, the laser is absorbed in its optical path. 

Temperature is elevated through photo-thermal conversion due to absorption of the 1064-nm 

photon by OH vibrational overtone (Fig. 5a). The generated heat is diffused to the 

surrounding solution, and temperature distribution is widened (Fig. 5b). There air solubility 

is decreased, and the dissolved air appears as bubbles (Fig. 5c). The bubbles will receive the 

scattering force in the optical path, because their refractive index is low compared to the 

surrounding solution. As the result, the bubbles are possibly kicked out from the optical path 

and move up to water surface due to buoyancy force. The temperature distribution formed 

through photo-thermal conversion generates surface tension distribution, resulting in 

convection flow toward the surrounding from the focus. Actually, it is reported that 

convection and thermophoresis are generated during optical trapping in some situations.16–

18) The flow of dissolved air is also induced inside the bubbles according to the water flow at 

the surrounding interface. We infer that these air and water flows and the accompanying 

fluidic force keep air bubbles at the specific positions near water surface (Fig. 5d).19,20) 

When the laser is turned off, the elevated temperature is gradually decreased, and air 

solubility is recovered. Namely, the bubbles should be dissolved in water again with 

accompanying the decrease in their size.21) Nevertheless, the bubble was continuously 

extended and then disappeared suddenly. We consider that the bubble is released to the upper 

air layer through disruption of the fluidic force balance. 

Different from pure water, the movement of bubbles toward the surrounding was 

observed in the L-Phe H2O solution during laser irradiation. Considering the results that 

the behavior of bubbles was varied depending on laser power and L-Phe and D2O 

concentrations, the bubble movement prior to the crystallization implies that the solution 

state was changed during the irradiation. In the L-Phe solution, optical trapping of the 

liquid-like clusters should be induced in competitive manner with the bubble generation. In 

our previous study using the higher concentration L-Phe solutions, we proposed that 

optical trapping of the clusters gives a highly concentrated dense cluster domain prior to 
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the crystallization.3) We consider that the cluster domain formation is responsible for the 

bubble movement toward the surrounding. The laser irradiation gathers the clusters, and 

concentration in the focal volume is increased (Fig. 5e). Once liquid nucleation is induced, 

the small cluster dense domain is extended to the outside of the focus. The dense domain 

formation would vary temperature, surface tension, L-Phe concentration, and solution 

viscosity. As the result, the bubbles move away from the focus (Fig. 5f). When crystal 

nucleation is induced in the dense domain, the formed crystal grows continuously under 

laser irradiation in the manner similar to the higher concentration solutions (Fig. 5g, 5f).3) 

We infer that, in the samples showing crystallization without bubbles, optical trapping of 

the clusters is efficiently induced at the early stage of the irradiation and the bubble 

generation is suppressed with a dense cluster domain (Fig. 5i, 5j). Both bubble generation 

and cluster domain formation are nucleation phenomena with stochastic nature. They are 

induced competitively under the laser irradiation into the L-Phe H2O solution, 

stochastically leading to the route of Fig. 5c–5f or Fig. 5i–5j. 

In conclusion, we observed bubble generation outside the focus upon the irradiation of 

the focused 1064-nm cw laser into surface of water and L-Phe H2O solution. In the former, 

bubbles stayed at positions distant from the focus during the irradiation, and their size and 

location were controllable by laser power. We discussed these behaviors from the 

viewpoint of temperature elevation accompanying the decrease in air solubility. In the 

latter, bubbles move toward the surrounding, and subsequently crystallization took place at 

the focus. We explained that the movement of bubbles is due to the formation of a dense 

cluster domain. Namely, this is the first observation of the formation of the crystal 

precursor state using a probe in laser trapping-induced crystallization. The air bubbles in 

this study will be possibly used to manipulate various nanomaterials as demonstrated 

previously with the use of a vapor bubble.6–9) Since the air bubbles are formed at 

temperature below the boiling point of water, the manipulation can be carried out under 

relatively mild condition. Furthermore, we believe that the present bubble generation is 

interesting and important as the mechanistic study of laser trapping-induced crystallization. 
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Figure Captions 

Fig. 1. Optical micrographs upon the laser irradiation into solution surface of H2O. 

Irradiation time and laser power are shown in each image. Green arrows indicate bubbles 

outside the focal spot, and small black dots are artifacts due to contamination in optical 

items. The focal spot is indicated with a star-shaped mark. Line profiles of some bubbles 

are inserted in the images. The image size is 220 μm in width and 180 μm in height.  

 

Fig. 2. (a) Optical micrographs upon switching off the laser. Time after turning off the laser 

is given in each image. The image size is 35 μm in width and 35 μm in height. (b) The 

temporal change in the diameter of the bubble estimated from the EMCCD images. 

 

Fig. 3. Optical micrographs upon the laser irradiation at 1.1 W into solution surface of the 

L-Phe H2O solution. Irradiation time is shown in each image. Green arrows indicate 

bubbles. The image size is 80 μm in width and 60 μm in height. 

 

Fig. 4. The times required for (a) the bubble movement and (b) the crystallization. (c) The 

relation between the time for the bubble movement and the crystallization time. 

 

Fig. 5. The schematic illustration of possible mechanism for the bubble generation. The 

bubble generation summarized in upper figures is observed in common for water and 

L-Phe H2O solution, while the behavior in lower figures is specific for the latter sample. 
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