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Transient Behavior of a Stress-Strain Curve
within Cottrell-Stokes Law"
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By employing stress-strain constitutive relationships within Gilman-Johnston and Alexander-Haasen models,
transient behavior of calculated stress-strain curves is examined in the light of Cottrell-Stokes law. It is pointed out
that the incorporation of the interaction force between mobile and immobile dislocations are indispensable to satisfy

Cottrell-Stokes law.
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I. Introduction

Although the experimental and theoretical studies on
dislocation behavior in plastic deformation have been
recently advanced, the theory of collective behavior of
dislocations have not been well established yet. In order
to describe the collective behavior of dislocations, the
evolution of the mobile dislocation densities, N, and the
variation of average velocity, v, of moving dislocations
should be properly formulated. The body of former
studies on the collective behavior of dislocations exclu-
sively focused on yield point and work-hardening be-
havior under a constant external condition such as
deformation temperature and cross-head speed. Few
works have been performed on transient behavior
caused by a sudden change of deformation condition. In
the present study, as a key to the analysis of the transient
behavior, Cottrell-Stokes law? is evoked.

We describe the stress-strain curve at temperatures 7
and T3, by a(e, T1) and o(e, T;), respectively, and as-
sume that deformation temperature changes from 73 to
T, (T, >T>) at a strain £¢*. When only mobility of dislo-
cations, which is manifested by the velocity v, is con-
trolled by temperature and multiplication behavior is in-
dependent of that, a discontinuous jump of the stress,
o(e*, T»)—a(e*, Ty), is realized and the stress-strain
curve of T, is followed in the subsequent deformation.
Whereas in the opposite case, that is, only the multipli-
cation behavior has temperature dependency, no jump of
the stress is expected and a resulting stress-strain curve
follows continuously from o (g, T;) with the inclination,
do(e, T»)/de. In the actual case, however, both mobility
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and multiplication processes have temperature depen-
dences and a certain amount of the discontinuous change
of the stress Ao, which is less than |ag(e, T2)—o(e, T1)!,
is anticipated. Most importantly for this discontinuity of
the stress 4o, Cottrell and Stokes observed that Ao/ o is
independent of the strain. This is the Cottrell-Stokes law
and Ao /o is termed Cottrell-Stokes ratio.

In this paper, we discuss transient behavior of theo-
retically calculated stress-strain curves in view of Cot-
trell-Stokes law. In particular, we focus on two
representative traditional theories: Gilman-Johnston’s®
and Alexander-Haasen’s models®.

II. A Brief Summary of Theories

1. Constitutive equation of stress-displacement

The constitutive equation to describe the stress-dis-
placement relation is given in the following form®,

dTapp_K',B.( 1 _lyﬁ‘é)
dy C S. /)

where 1., is the applied shear stress, y is the displacement
of the cross-head and S. is a cross-head speed. K, g, C
and /y, are, respectively, the rigidity of a machine-sample
system, Schmid factor, the initial cross section area of
the sample and the initial gauge length of the sample. The
strain rate, &, is defined as

E=Ny-v-b, )
where b is the magnitude of Burgers vector. Substitution
of eq. (2) into eq. (1) yields the differential equation

drapp_K-ﬂ.<l_lo-ﬁ-Nm-z7~b>
dy C Se ’

which correlates microscopic dislocation behavior with
macroscopically observed stress-strain relations. In order
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to draw a stress-strain curve, one needs to give an ex-
pression for the average dislocation velocity, ¥, and mo-
bile dislocation density, Nn. In the present study, we
adopted two representative formulations described in the
next section.

2. Gilman-Johnston model and Alexander-Haasen
model

From experimental observations, Gilman and Joh-
nston® provided the velocity, v, and the density, Np, in
the following forms,

=By 1 €Xp ( —ka} =K(T) -1, )]
and
Nm=C1+C2'y1/2, (5)

where both By, m, C; and C; are constants to be deter-
mined experimently. Q, ks and T are, respectively, an
activation energy, Boltzmann constant and the absolute
temperature. 7. is the effective stress defined in the next
section. Based on these equations they reproduced yield
point behavior quite satisfactorily.

Alexander and Haasen® assumed that the increase in
the total length of mobile dislocations is proportional to
the area swept by moving dislocations. Thus

dNy=0J Ny v-dt, 6)

where ¢ is the time and ¢ is a proportionality coefficient
which is assumed to be an increasing function of 7.z ex-
pressed as

0=B T, Q)

where B is a material parameter specifying the multipli-
cation rate. Based on eqgs. (6) and (7), a differential equ-
ation describing the evolution (devolution) of mobile
dislocation densities is derived as

dN, 1

—=—B- 1 Nn- .

dy S ®

HI. Calculation Results and Discussion

In both models in the previous section, 7.x in egs. (4)
and (7) is the effective stress defined as

®

where i, is the internal stress. In the present study, two
kinds of expression for the internal stress are assumed.
One is

Teff = Tapp — Tins

1
rin=rm=7A-N}n/2 10)
and the other is
1 1/2 1/2
rm=rm+ri=?A~Nm +C(T) &3, (11)

where
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B’
u is the stiffness of the material and B, characterizes the
interaction between mobile dislocations. In the former
case, the internal stress originates from interaction
among mobile dislocations, t,,, while for the latter case,
an additional contribution being proportional to &!/?
simulates the interaction between mobile and immobile
dislocations, 7;, and C(T) is the function which increases
with the decrease of temperature. Parameters and con-
stants employed in the present study are tabulated in
Table 1. In this calculation, it is assumed that the tem-
perature is reduced forom 298 to 248 K.

When eq. (10) is adopted with Gilman-Johnston
model, the temperature dependency is conveyed only in
the average dislocation velocity (v) in eq. (4). In fact, the
sudden change of the temperature from 7) to 7T, induces
the jump of the stress and the resultant stress-strain curve
coincides exactly with the one for 7, as shown for three
different strains in Fig. 1.

A (12)

Table 1 The employed parameters and constants in this calculation.
These values are typical for the aluminum-magnesium dilute solid
solution.

Parameters and constants Values
C 7.5%107° (m?)
N 2.0x 1072 (m)
b 2.8635x 107" (m)
u 2.8x10" (Pa)
S. 1.2x107* (m/s)
(0] 4.73x 1072 (J)
kg 1.38x 1072 (J/K)
K 5.0% 10° (Pa-m)
B 5.0x107°
(o} 2.0x10* (m™2)
(o) 2.5%10° (m™?%)
B 0.4
m 1.0
B, 3.3
C(T) 5.0 10%(T, =298 K)
8.0 % 104(T,=248 K)
10*
1,
f
4.8 |
10 ) \ a(&,T2)
NN | ]
= 45 N __________,_,__,/’_
§ 10 ]" ."_,-—-"l
B N S ‘
"
10*? a(e,T1)
0‘0 1 1 1 1 4J
0.0 100 200 300 40.0 500
strain (%)

Fig. 1 Transient behavior of stress-strain curve associated with tem-
perature change from T, to T5. In this calculation, temperature de-
pendency is assumed only for the mobility (7) of mobile dislocations.
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Fig. 2 Transient behavior of stress-strain curve associated with tem-
perature change from 7 to 7,. Temperature dependency is assumed
only for multiplication process (Ny).
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Fig. 3 Transient behavior of stress-strain curve associated with tem-
perature change from 7T; to T,. Temperature dependencies are as-
sumed both for 7 and N,,.

In order to examine the temperature dependence of the
multiplication process, Alexander-Haasen model is
adopted with the internal stress given by eq. (10). For the
velocity v in eq. (8), eq. (4) is employed with a con-
stant value assigned to K (7'), which enables one to derive
the sole effect of the temperature dependency of Ny. As
shown in Fig. 2, the stress-strain curve shows no dis-
continuous jump of the stress at any strains. Further-
more the inclination do(e, T3)/de, at the onset is ob-
served to be nearly the same as that of g(e, T) for each
strain.

The effect of the temperature on both mobility and
multiplication behavior are studied within Alexander-
Haasen model. In this case, the temperature dependency
of the velocity is explicitly incorporated through K (7) in
eq. (4). With the internal stress expression eq. (10), the
transient behavior is calculated as shown in Fig. 3. Cer-
tainly, a discontinuous stress change, 4o, is observed.
But the magnitude of Ao is less than a(e, T2)—a(e, T1).
This is regarded as an intermediate situation between two
extreme cases shown in Figs. 1 and 2. Unfortunately,
however, the Cottrell-Stokes ratio are not kept to be a
constant value as shown in Fig. 4.

Finally, Alexander-Haasen model is employed with the
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Fig. 4 Cottrell-Stokes ratio corresponding to Fig. 3.
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Fig. 5 Transient behavior of stress-strain curve associated with tem-
perature change from 7 to T,. Temperature dependencies are as-
sumed both # and N,,. Also, immobile-mobile dislocation interaction
force is taken into consideration.
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Fig. 6 Cottrell-Stokes ratio corresponding to Fig. 5.

internal stress given by eq. (11). The transient behaviors
are demonstrated in Fig. 5. In this case, the Cottrell-
Stokes ratio stays a constant value as can be seen in Fig.
6 when appropriate values of C(7') tabulated in Table 1

are employed.

IV. Conclusions

In the present study, we examined the transient be-
havior of stress-strain curve associated with the sudden
change of temperature. Within the Gilman-Johnston and
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Alexander-Haasen models, the temprature dependencies
of dislocation mobility (#) and multiplication process
(Nn) are well studied both in a separate and in a syn-
thesized manner. It is pointed out that the interaction
between mobile and immobile dislocations play essential
role to observe Cottrell-Stokes law. It is believed that the
transient behavior due to the change of strain rate can be
studied within the same framework.

REFERENCES

(1) A. H. Cottrell and R. J. Stokes: Proc. Roy. Soc. Lon, A233 (1955),
17-34.

(2) For example; T. Mohri and T. Suzuki, in Impurities in Engineering
Materials (Clyde L. Briant, eds.), Marcel Dekker, New York,
(1999), 259-299.

(3) W. G. Johnston and J. Gilman: J. Appl. Phys., 30 (1959), 129-144.

(4) H. Alexander and P. Haasen: Solid State Phys., 22 (1968), 28-158.



